
 APPLICATION NOTE

R01AN1710EJ0100 Rev. 1.00 Page 1 of 60
Sep. 16, 2014

RX63N Group, RX631 Group
Flash Bootloader with the USB Peripheral CDC

Abstract
This application note describes a method to reprogram the on-chip flash memory via USB memory (flash bootloader via
USB) using the USB 2.0 host/function module as a function controller.

The features of the flash bootloader via USB are described below.

 Controls the target device by transmitting commands from a PC.
With commands from a PC, erasing, programming, blank checking, or target program execution are performed for
the flash memory on the target device.

 Programs in the Motorola S format can be programmed.
 Supports USB 2.0 full-speed transfer.
 Compliant with the Abstract Control Model in the Universal Serial Bus Class Definitions for Communications

Devices.

Products
- RX63N Group 177-pin and 176-pin packages with a ROM size between 768 KB and 2 MB

- RX63N Group 145-pin and 144-pin packages with a ROM size between 768 KB and 2 MB

- RX63N Group 100-pin package with a ROM size between 768 KB and 2 MB

- RX631 Group 177-pin and 176-pin packages with a ROM size between 256 KB and 2 MB

- RX631 Group 145-pin and 144-pin packages with a ROM size between 256 KB and 2 MB

- RX631 Group 100-pin package with a ROM size between 256 KB and 2 MB

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN1710EJ0100
Rev. 1.00

Sep. 16, 2014

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 2 of 60
Sep. 16, 2014

Contents

1. Specifications ... 4

2. Operation Confirmation Conditions .. 5

3. Reference Application Notes .. 6

4. Hardware .. 6
4.1 Pins Used ... 6

5. Software ... 7
5.1 Operation Overview ... 7
5.2 Commands ... 9
5.3 Start Address of the Target Program ... 9
5.4 Mode Transitions ... 10

5.4.1 Idle Mode .. 10
5.4.2 Command display Mode ... 10
5.4.3 Command Wait Mode ... 10
5.4.4 Blank Check Mode .. 10
5.4.5 Erase Mode .. 10
5.4.6 Program Mode .. 11
5.4.7 Error End Wait Mode .. 11
5.4.8 Program Execution Mode ... 11

5.5 Data Flow when Programming ... 12
5.6 ROM Capacity .. 13
5.7 File Composition .. 14
5.8 Constants ... 15
5.9 Structure/Union List ... 16
5.10 Message Table List .. 17
5.11 Functions .. 18
5.12 Function Specifications .. 19
5.13 Flowcharts .. 28

5.13.1 USB Main Processing .. 28
5.13.2 Reprogramming Main Processing ... 30
5.13.3 Processing During Idle Mode .. 31
5.13.4 Command Analysis .. 32
5.13.5 Erase Processing .. 33
5.13.6 Program Processing .. 33
5.13.7 Executing the Target Program .. 34
5.13.8 Wait for Completion of an Error Processing .. 35
5.13.9 Displaying Commands ... 36
5.13.10 Start Processing for Blank Check .. 36
5.13.11 Start Processing for Erasing .. 36
5.13.12 Start Processing for Programming .. 37
5.13.13 Executing the Target Program .. 37
5.13.14 Blank Check .. 38
5.13.15 Erasing the Target Area .. 39

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 3 of 60
Sep. 16, 2014

5.13.16 Storing Motorola S Format Data .. 40
5.13.17 Motorola S Format Header Analysis and Binary Data Conversion 41
5.13.18 ASCII to Binary Conversion of Motorola S Format Data ... 43
5.13.19 Making Programming Data .. 44
5.13.20 Programming the Target Area ... 45
5.13.21 Clearing Variables for Motorola S Format Data .. 46
5.13.22 Stopping USB .. 47
5.13.23 Storing USB Receive Data .. 48
5.13.24 Storing USB Transmit Data ... 48
5.13.25 Setting Message Data to be Displayed ... 49
5.13.26 Checking Receive Ring Buffer Space ... 50
5.13.27 Checking Data in the Transmit Ring Buffer ... 50
5.13.28 Executing the Target Program with the USB Disconnected.. 51
5.13.29 Storing Data in the Receive Ring Buffer.. 51
5.13.30 Reading the Receive Ring Buffer .. 52
5.13.31 Clearing the Receive Ring Buffer .. 52
5.13.32 Checking the Number of Data in the Receive Ring Buffer .. 52
5.13.33 Storing Data in the Transmit Ring Buffer... 53
5.13.34 Reading the Transmit Ring Buffer ... 53
5.13.35 Clearing the Transmit Ring Buffer ... 53
5.13.36 Checking the Number of Data in the Transmit Ring Buffer ... 54
5.13.37 ASCII to Binary Conversion ... 54

6. Using the Sample Code ... 55

7. Sample Target Program ... 56

8. Notes on Using This Application Note .. 56
8.1 Programming Speed .. 56
8.2 USB Disconnection During Programming or Erasing .. 56
8.3 HEW Configuration .. 56
8.4 Vender ID and Product ID for the USB .. 56
8.5 Interrupts in the Fixed Vector Table ... 56
8.6 Reset Vector of the Target Program .. 56
8.7 Motorola S Format ... 56
8.8 Processing with the while(1) Statement ... 56
8.9 Stop of the Program During USB Communication... 56
8.10 Endian .. 56
8.11 Changes in the Simple Flash API for RX ... 57
8.12 Changes in the USB PCDC Driver .. 58

8.12.1 Changed Items .. 58
8.12.2 Additional Files .. 58
8.12.3 Additional Sections .. 58
8.12.4 Include File Directory ... 59
8.12.5 Linker Settings ... 59

8.13 Changes in the RX63N Group, RX631 Group Initial Setting ... 59

9. Sample Code .. 60

10. Reference Documents .. 60

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 4 of 60
Sep. 16, 2014

1. Specifications
With the flash bootloader via USB, commands are transmitted from the terminal application on the host PC to the MCU
to reprogram the flash memory on the MCU.

Table 1.1 lists the Peripheral Functions and Their Applications and Figure 1.1 shows a Usage Example.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application

ROM (flash memory for code storage) Reprogramming the on-chip flash memory in ROM
P/E mode.

USB 2.0 host/function module Communication with the host PC.

On-chip flash
memory

Reprogram in P/E mode

MCU
(RX63N, RX631)

Terminal application
(command transmission)

USB interface

Target board

Figure 1.1 Usage Example

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 5 of 60
Sep. 16, 2014

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU used R5F563NBDDFC (RX63N Group)

Operating frequencies

- Main clock: 12 MHz
- PLL: 192 MHz (main clock divided by 1 and multiplied by 16)
- System clock (ICLK): 96 MHz (PLL divided by 2)
- FlashIF clock (FCLK): 48 MHz (PLL divided by 4)
- External bus clock (BCLK): 24 MHz (PLL divided by 8)
- Peripheral module clock B (PCLKB): 48 MHz (PLL divided by 4)
- USB clock (UCLK): 48 MHz (PLL divided by 4)

Operating voltage 3.3 V
Integrated development
environment

Renesas Electronics Corporation
 High-performance Embedded Workshop Version 4.09.01

C compiler

Renesas Electronics Corporation
C/C++ Compiler Package for RX Family V.1.02 Release 01

Compile options
--cpu=rx600 -bit_order=left -include="$(WORKSPDIR)\WorkSpace\ANSI"
-include="$(WORKSPDIR)\WorkSpace\CDCFW\include"
-include="$(WORKSPDIR)\WorkSpace\HwResourceForUSB\inc"
-include="$(WORKSPDIR)\WorkSpace\HwResourceForUSB\USBHW"
-include="$(WORKSPDIR)\WorkSpace\HwResourceForUSB\USBHW\DEF"
-include="$(WORKSPDIR)\WorkSpace\HwResourceForUSB\USBHW\REG"
-include="$(WORKSPDIR)\WorkSpace\HwResourceForUSB\USRCFG"
-include="$(WORKSPDIR)\WorkSpace\SmplMain\APL"
-include="$(WORKSPDIR)\WorkSpace\USBSTDFW\include"
-include="$(WORKSPDIR)\WorkSpace\FLASH"
-include="$(WORKSPDIR)\WorkSpace\FLASH\src"
-include="$(WORKSPDIR)\WorkSpace\r_bsp"
-define=USB_FW_PP=USB_FW_NONOS_PP,USBC_DEBUGLCD_PP
-output=obj="$(CONFIGDIR)\$(FILELEAF).obj" -debug -nostuff -nologo

iodefine.h version Version 1.6A
Endian Little endian
Operating mode Single-chip mode
Processor mode Supervisor mode
Sample code version Version 1.00
Board used Renesas Starter Kit+ for RX63N (product part no.: R0K50563NC000BE)

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 6 of 60
Sep. 16, 2014

3. Reference Application Notes
For additional information associated with this document, refer to the following application notes.

- RX600 & RX200 Series Simple Flash API for RX Rev.2.40 (R01AN0544EU)
- Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware Rev.2.10 (R01AN0512EJ)
- Renesas USB MCU and USB ASSP USB Peripheral Communications Device Class Driver (PCDC) Rev.2.10

(R01AN0273EJ)
- RX63N Group, RX631 Group Initial Setting Rev. 1.10 (R01AN1245EJ)

The functions in the reference application notes above are used in the sample code in this application note. The revision
number of the reference application note is current as of when this application note was made. However the latest
version is always recommended. Visit the Renesas Electronics Corporation website to check and download the latest
version.

4. Hardware

4.1 Pins Used
Table 4.1 lists the Pins Used and Their Functions.

Table 4.1 Pins Used and Their Functions

Pin Name I/O Function

USB1_DP I/O D+ I/O pin of the USB on-chip transceiver
Connected to the D+ pin of the USB bus.

USB1_DM I/O D- I/O pin of the USB on-chip transceiver
Connected to the D- pin of the USB bus.

USB1_VBUS Input
USB cable connection monitor pin
Connected to VBUS of the USB bus. The state of the VBUS
connection (connected/disconnected) can be detected.

USB1_DPUPE Output 1.5-kΩ pull-up resistor control signal for USB D+ signal
Note: • For settings of the other pins used in the USB Peripheral Communication Device Class Driver (USB

PCDC driver) such as switch or SCI, refer to the USB Peripheral Communications Device Class Driver
(PCDC) application note.

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 7 of 60
Sep. 16, 2014

5. Software

5.1 Operation Overview
The sample code receives command data from the host PC and performs the operation (command display, blank check,
erase, program, or target program execution) according to the command. Commands from the host PC are transmitted
by the terminal application. The sample code can reprogram only the specific part (target area) of the user area.
Addresses FFFF0000h to FFFFFFFFh are used by the sample code itself and cannot be reprogrammed.

Figure 5.1 shows the Memory Allocation.

Target area (ROM) (2)

(user can use this area)

ROM used by the sample
code

0000 0000h

0002 0000h

FFFF FFFFh

FFFE 0000h

FFF0 0000h

When R5F563NBDDFC is used:
(ROM: 1 MB, RAM: 128 KB)

RAM (user can use this area)

Reserved area,
peripheral I/O register,

etc.

On-chip ROM

RAM used by the sample
code (1)

On-chip RAM

Notes:
1. This area can be used by the user while the target program is being executed.
2. The target program is written to this area.

Figure 5.1 Memory Allocation

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 8 of 60
Sep. 16, 2014

In the sample code, the flash memory is reprogrammed in the following steps.

(1) After a reset, if the MCU is not connected to a PC and the value in the target reset vector (address FFFD FFFCh) is
not FFFF FFFFh, the target program is executed. If connected to the PC, the MCU transmits the message "Press
any key" to the PC at a certain intervals until the MCU receives a data (until the terminal application is started and
a key is pressed on the keyboard). See Figure 5.2 below.

(2) When the MCU receives data from the PC, it transmits the command list to the PC and waits for receiving a
command data. See Figure 5.3 below.

(3) When a command is received, the MCU performs the operation (command display, blank check, erase, program, or
target program execution) according to the command.

Press any key.

Press any key.

Terminal Application

Figure 5.2 Screen Example When Waiting for Key Input

Press any key.

Press any key.

Renesas USB Flash Sample
Press:-
 1 - Show instructions(these).
 2 - Blank check.
 3 - Erase target area.
 4 - Start programming.
 5 - Run target program.

Terminal Application

Figure 5.3 Screen Example for Inputting a Command

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 9 of 60
Sep. 16, 2014

5.2 Commands
Table 5.1 lists the Commands. The commands are listed on the terminal application by the show instructions command.

Table 5.1 Commands

Key Entered on the PC ASCII Code Command
1 31h Show instructions(these)
2 32h Blank check
3 33h Erase target area.
4 34h Start programming
5 35h Run the target program

5.3 Start Address of the Target Program
In the sample code, if the USB is not connected after a reset, or if the target program execution command is selected,
the target program is executed. The target program is executed from the address written in address FFFD FFFCh (target
reset vector). This means that the reset vector of the target program should be FFFD FFFCh. Thus the start address of
the target program needs to be stored in the target reset vector in advance.

Target area (ROM)
(user can use this area)

ROM used by the sample
code

FFFF FFFFh

FFFF 0000h

FFF0 0000h

FFFD FFFCh FFF0 0000h

The program is executed from the
address written in address FFFD
FFFCh (target reset vector)

Figure 5.4 Target Reset Vector

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 10 of 60
Sep. 16, 2014

5.4 Mode Transitions
Figure 5.5 shows the Mode Transitions in the Sample Codes.

Idle

After a reset

Command wait

Program execution

Command
display

Erase

Program

Blank check

USB connected
and a key input

Command list
displayed

Show
instructions
command

Error end wait

Run the target
program command

Target reset vector:
FFFF FFFFh

Command
error No transmission

from the PC for a
certain time

Error occurred

Blank check command

Erase target area command

Erase completed

Target program executed

 Target reset vector is not
FFFF FFFFh

Check completed

Programming completed

USB not connected and
the target reset vector is

not FFFF FFFFh

Start
programming

command

Figure 5.5 Mode Transitions in the Sample Codes

5.4.1 Idle Mode
After a reset, the MCU enters idle mode. If the USB is not connected and the target reset vector has a value other than
FFFF FFFFh, the target program is executed. If the USB is connected, the MCU transmits the message to prompt for
key input at a certain intervals. When a key is pressed on the PC (i.e., when the MCU receives a given data), the MCU
enters command display mode.

5.4.2 Command display Mode
The command list is displayed. After the list is displayed, the MCU enters command wait mode.

5.4.3 Command Wait Mode
The MCU waits for a command from the PC. When a command is received, the MCU enters a mode according to the
command received.

5.4.4 Blank Check Mode
The blank check is performed for the target area. When the blank check is completed, the blank check result is
displayed and the MCU enters command wait mode.

5.4.5 Erase Mode
The target area is erased using the Simple Flash API. When the erasing is completed, the erase result is displayed and
the MCU enters command wait mode.

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 11 of 60
Sep. 16, 2014

5.4.6 Program Mode
The target area is programmed using the Simple Flash API. After the MCU receives the start programming command, it
waits for receiving a mot file. Send a mot file in ASCII from the PC. Operations after the MCU receives the command
are as follows:

(1) The MCU waits for receiving 'S' (in ASCII) that is the first data of the Motorola S format. Any data other than 'S' is
discarded.

(2) After receiving 'S', the MCU receives data in Motorola S format and programs the received data. Once 'S' is
received, if the subsequent received data is not in Motorola S format, the MCU enters error end wait mode. It also
enters error end wait mode if the other error occurs such as checksum. Refer to 5.10 “Message Table List” for
details on errors and displayed messages.

(3) When the program operation is completed, a message to inform of the result is displayed. Then the MCU enters
command wait mode.

Note: • Once data is determined as Motorola S format data, data through to checksum is recognized as
Motorola S format in the sample code. The sample code discards data after checksum, which is
received simultaneously. If the data which is supposed to be discarded is received after the actual
discard operation, the MCU receives the data as a command. In this case the message for
command error may be displayed.

5.4.7 Error End Wait Mode
If the MCU receives a command not listed in 5.2 Commands, or if an error occurs in program mode, the MCU enters
error end wait mode. If no data is received from the PC for a certain period during error end wait mode, the MCU enters
command wait mode.

When there is an error in a received mot file, the MCU cancels the program operation while the terminal application
may continue to transmit data. Then if the MCU enters command wait mode immediately after an error occurred, such
transmit data may be received as a command. Therefore the MCU enters error end wait mode once and waits until no
data is transmitted from the PC. Note that any data received from the PC during error end wait mode will be discarded.

5.4.8 Program Execution Mode
The USB is stopped and the target program is executed. If the value of the target reset vector is FFFF FFFFh, an
appropriate error message is displayed and the MCU enters command wait mode.

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 12 of 60
Sep. 16, 2014

5.5 Data Flow when Programming
Figure 5.6 shows the flow of data within the MCU when programming the target area on the flash memory.

When receiving:

(1) Data received from the PC is transferred to the receive ring buffer.

(2) One record of Motorola S format data is copied to the MotS buffer (ASCII).

(3) The header part of the Motorola S format data is analyzed, and at the same time, ASCII data is converted to binary
data and stored in the MotS buffer (binary).

(4) Data is stored in the programming buffer.
Data is programmed in the user area of the MCU in 256 bytes. Steps (1) to (4) are repeated until the size of the
stored programming data becomes 256 bytes. If the size exceeds 256 bytes, the excess data is temporarily stored
and used when programming the next 256 bytes.

(5) The prepared data (256 bytes) is written to the flash memory using the Simple Flash API.

When transmitting:

(6) The result of the programming operation is determined by the return value from the Simple Flash API.

(7) The message corresponding to the result of the programming operation is stored in the transmit ring buffer.

(8) The message is transmitted to the PC using the USB PCDC driver.

Display message
table

(Error, Complete
and other

messages)

Receive
data

U
S

B
 P

C
D

C
 d

riv
er

Receive ring buffer MotS buffer
(ASCII)

Copies one record of
MotS format data

MotS buffer
(binary)

Analyzes the
header and

converts data
to binary

Programming
buffer

Stores in the
programming

buffer

R
X

60
0

&
 R

X
20

0
S

er
ie

s
S

im
pl

e
Fl

as
h

A
P

I f
or

 R
X

Programming
data

(256 bytes)

Stores 256 bytes of programming data and calls the
Simple Flash API.

Transmit ring buffer
Stores the message data
 in the transmit ring buffer

Notifies of the programming result
(succeeded/failed)

Transmit
data

Processing Performed by the Sample Code

(1) (2) (3) (4) (5)

(6)(7)(8)

Figure 5.6 Data Flow when Programming

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 13 of 60
Sep. 16, 2014

Figure 5.7 shows the Data Structures when Programming.

'S'

Receive ring buffer
fl_ring_data

- Copies one record only.
- Discards control codes.

(2)

n

Length 1

Length 2

Addr 1

Addr 2

Addr i

Data 1

Data 2

Data i

Sum 1

Sum 2

Control code

'S'

n

MotS buffer (ASCII)
fl_wr_mot_s

'S'

n

Length 1

Length 2

Addr 0

Addr 1

Addr i

Data 1

Data 2

Data i

Sum 1

Sum 2

MotS buffer (binary)
fl_wr_mot_s_bin

Length 1

Addr 1

Addr 2

Addr 4

Data 1

Data 2

Data i

(3)

Programming buffer
fl_writing_data

Addr 1

Addr 2

Addr 4

Data 1

Data 2

Data 256

- Converts ASCII to binary.
- Converts sizes of address
 and data length to 32 bits.
- Calculates checksum.
- If the record format is S3, discards
 the header ('S3'), and Sum 1 and
 Sum 2, and goes to (4).
- If the record format is a format
 other than S3, discards all data.

(4)

- Stores data in the buffer
 (256-byte).
- Discards the data length.

Temporary buffer (binary)
fl_wr_mot_s_bin_surplus

Length 1

Addr 1

Addr 2

Addr 4

Data 1

Data 2

Data j

- If the total size of the current
 and previous programming
 data exceeds 256 bytes,
 stores the excess data
 temporarily.

Addr 3

Addr 3

Addr 3

Figure 5.7 Data Structures when Programming

5.6 ROM Capacity
The sample code assumes 1 MB ROM is used. When an MCU with ROM capacity other than 1 MB is used, change the
"FL_END_BLOCK_NUM" definition in the r_Flash_main.h file appropriate to the MCU used.

Table 5.2 lists the ROM Capacities of the Target Area.

Table 5.2 ROM Capacities of the Target Area

ROM Capacity ROM Capacity of the
Target Area

Start Address of the
Target Area

Block Number of the
Target Area

2 MB 1920 KB FFE0 0000h EB14 to EB69
1.5 MB 1408 KB FFE8 0000h EB14 to EB61
1 MB 896 KB FFF0 0000h EB14 to EB53

768 KB 640 KB FFF4 0000h EB14 to EB45
512 KB 384 KB FFF8 0000h EB14 to EB37
384 KB 256 KB FFFA 0000h EB14 to EB29
256 KB 128 KB FFFC 0000h EB14 to EB21

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 14 of 60
Sep. 16, 2014

5.7 File Composition
Table 5.3 lists the Files Used in the Sample Code.

Table 5.3 Files Used in the Sample Code

File Name Outline Remarks

r_flash_api_rx.c RX600 & RX200 Series Simple Flash API
program for RX

Refer to the RX600 & RX200
Series Simple Flash API for RX
application note for details.

r_flash_api_rx63n.h
External reference header file for RX600 &
RX200 Series Simple Flash API program for
RX

r_flash_api_rx_private.h Header file for RX600 & RX200 Series
Simple Flash API for RX.

r_flash_api_rx_config.h
External reference header file for RX600 &
RX200 Series Simple Flash API program for
RX.

r_flash_api_rx_if.h
External reference header file for RX600 &
RX200 Series Simple Flash API program for
RX.

r_init_stop_module.c Stop processing for active peripheral
functions after a reset

r_init_stop_module.h Header file for r_init_stop_module.c
r_init_non_existent_port.c Nonexistent port initialization
r_init_non_existent_port.h Header file for r_init_non_existent_port.c
r_init_clock.c Clock initialization
r_init_clock.h Header file for r_init_clock.c
r_Flash_main.c Flash reprogramming data processing

r_Flash_main.h External reference header file for flash
reprogramming data processing

r_Flash_buff.c Processing associated with buffers used for
USB transmission/reception

r_Flash_buff.h
External reference header file for
processing associated with buffers used for
USB transmission/reception

TrgtPrgDmmy.c Dummy program for allocating space for the
target program

Files in the r_bsp folder
Programs in the r_bsp package used for
RX600 & RX200 Series Simple Flash API
program for RX

Other files Programs of the USB PCDC driver

Refer to the “USB Basic Host and
Peripheral firmware” and “USB
Peripheral Communications
Device Class Driver” application
notes for details.

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 15 of 60
Sep. 16, 2014

5.8 Constants
Table 5.4 lists the Constants Used in the Sample Code. Note that constants used in the USB PCDC driver and Simple
Flash API are not included here.

Table 5.4 Constants Used in the Sample Code

Constant Name Setting Value Contents
FL_CMD_DATA_SHOW_INST 31h Command value that is 1 in ASCII
FL_CMD_DATA_BLNK_CHECK 32h Command value that is 2 in ASCII
FL_CMD_DATA_ERASE_TRGT_AREA 33h Command value that is 3 in ASCII
FL_CMD_DATA_PRG_TRGT_AREA 34h Command value that is 4 in ASCII
FL_CMD_DATA_RUN_TRGT_AREA 35h Command value that is 5 in ASCII

FL_RINGBUFF_SIZE 1024 Ring buffer size for receiving data from the
USB

FL_RINGBUFF2_SIZE 256 Ring buffer size for transmitting data to the
USB

FL_USB_RCV_BLANK_SIZE 64 The data size that the USB can transmit at a
time.

FL_SEND_END_CODE 00h End code of the message table

FL_MOTS_ADDR_SIZE 4 Buffer size for the address of Motorola S
format data

FL_MOTS_SUM_SIZE 1 Buffer size for the checksum of Motorola S
format data

FL_START_BLOCK_NUM 14 First block of the target area
FL_END_BLOCK_NUM 53 Last block of the target area
FL_TARGET_REST_VECT_ADDR FFFD FFFCh Target reset vector

FL_USB_UNCONNECT_WAIT_PERIOD 10000h Wait time until the target program is executed
with the USB disconnected

FL_IDLE_MESSAGE_OUTPUT_PERIOD 10000h Interval of time to display the message when
in idle mode

FL_ERROR_WAIT_PERIOD 10000h
Wait time for completion of an error (the wait
processing is terminated if nothing is received
from the USB during counting this value.)

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 16 of 60
Sep. 16, 2014

5.9 Structure/Union List
Figure 5.8 shows the Structure/Union Used in the Sample Code. Note that structure/union used in the USB PCDC
driver and Simple Flash API are not included here.

/* buffer for mot S format data */
typedef struct {
 uint8_t type[2]; /* "S0", "S1" and so on */
 uint8_t len[2]; /* "0-255" */
 uint8_t addr_data_sum[512];
} Fl_prg_mot_s_t;

/* buffer for write data
 (this data is the converted data from mot S format data) */
typedef struct {
 uint8_t len;
 uint32_t addr;
 uint8_t data[256];
} Fl_prg_mot_s_binary_t;

/* buffer for writing flash */
typedef struct {
 uint32_t addr;
 uint8_t data[256];
} Fl_prg_writing_data_t;

Figure 5.8 Structure/Union Used in the Sample Code

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 17 of 60
Sep. 16, 2014

5.10 Message Table List
Table 5.5 lists messages used in the sample code. The new line character is omitted from each message in the table.

Table 5.5 Messages Used in the Sample Code

Message Description
Press any key. Displayed periodically in idle mode.
Renesas USB Flash Sample Press:-
 1 - Show instructions(these).
 2 - Blank check.
 3 - Erase target area.
 4 - Start programming.
 5 - Run target program.

Command list

Target area is blank. After a blank check, displayed when the target area is blank.

Target area is NOT blank. After a blank check, displayed when the target area is not
blank.

Erase target area... Displayed when an erase operation is in progress.
Erase complete. Displayed when an erase operation is completed.
ERROR!!! - Erase is failed. Displayed when an erase operation is failed.

Please send a mot file. Displayed when a program operation is started.
Send a mot file after this message is displayed.

Program complete. Displayed when a program operation is completed.
Program failed. Displayed when a program operation is failed.
ERROR!!! - Verify error. Displayed when a verify error occurred.
Run target program. Displayed when the target program is executed.
ERROR!!! - Target reset
vector(0xFFFDFFFC) is 0xFFFFFFFF.

Displayed when the target vector is FFFF FFFFh in attempting
to execute the target program.

ERROR!!! - Command error.
Please press a number from 1 to 5. Displayed when an incorrect command is entered.

ERROR!!! - Mot file format is NOT
correct. Displayed when an incorrect target program is transmitted.

ERROR!!! - Check sum error. Displayed when a checksum error occurred in Motorola S
format in the target program.

Please wait for instructions to be shown.

Displayed when an error occurred and data continues to be
transmitted. The MCU enters command wait mode when data
is not transmitted for a certain period. If data continues to be
sent after the error occurrence, a period (.) is displayed in
regular intervals.

Period (.) Displayed in regular intervals after an error occurred.
Newline code (\r\n) Used for a newline following each message.

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 18 of 60
Sep. 16, 2014

5.11 Functions
Table 5.6 lists the Functions. Note that functions used in the USB PCDC driver and Simple Flash API are not included
here.

Table 5.6 Functions

Function Name Outline
R_INIT_StopModule Stop processing for active peripheral functions after a reset
R_INIT_NonExistentPort Nonexistent port initialization
R_INIT_Clock Clock initialization
R_Fl_Rewrite_process Reprogramming main processing
R_Fl_Idle Processing during idle mode (until a key is pressed after a reset)
R_Fl_AnalyzeCMD Command analysis
R_Fl_EraseTrgtArea Erase processing
R_Fl_PrgTrgtArea Program processing
R_Fl_RunTrgtPrg Executing the target program
R_Fl_ErrorWait Wait for completion of an error processing
R_Fl_cmd_ShowInst Displaying commands
R_Fl_cmd_BlankCheckStart Start processing for blank check
R_Fl_cmd_EraseStart Start processing for erasing
R_Fl_cmd_PrgStart Start processing for programming
R_Fl_cmd_RunTrgtPrgStart Executing the target program
R_Fl_Blnk_BlankCheck Blank check
R_Fl_Ers_EraseFlash Erasing the target area
R_Fl_Prg_StoreMotS Storing Motorola S format data
R_Fl_Prg_ProcessForMotS_data Motorola S format header analysis and binary data conversion
R_Fl_Prg_MotS_AsciiToBinary ASCII to binary conversion of Motorola S format data
R_Fl_Prg_MakeWriteData Making programming data
R_Fl_Prg_WriteData Programming the target area
R_Fl_Prg_ClearMotSVariables Clearing variables for Motorola S format data
R_Fl_Run_StopUSB Stopping USB
R_Fl_RcvDataString Storing USB receive data
R_Fl_SetSendData Storing USB transmit data
R_Fl_SetDisplayMsgData Setting message data to be displayed (dot display)
R_Fl_RingCheckBlank Checking receive ring buffer space
R_Fl_Ring2CheckData Checking data in the transmit ring buffer
R_Fl_USB_NonConnect_Run Executing the target program with the USB disconnected
R_Fl_RingEnQueue Storing data in the receive ring buffer
R_Fl_RingDeQueue Reading the receive ring buffer
R_Fl_RingClear Clearing the receive ring buffer
R_Fl_RingCheck Checking the number of data in the receive ring buffer
R_Fl_Ring2EnQueue Storing data in the transmit ring buffer
R_Fl_Ring2DeQueue Reading the transmit ring buffer
R_Fl_Ring2Clear Clearing the transmit ring buffer
R_Fl_Ring2Check Checking the number of data in the transmit ring buffer
R_Fl_AsciiToHexByte ASCII to Binary conversion

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 19 of 60
Sep. 16, 2014

5.12 Function Specifications
The following tables list the sample code function specifications.

R_INIT_StopModule
Outline Stop processing for active peripheral functions after a reset
Header r_init_stop_module.h
Declaration void R_INIT_StopModule(void)
Description Configures the setting to enter the module-stop state.
Arguments None
Return Value None
Remarks Transition to the module-stop state is not performed in the sample code. Refer to the

RX63N Group, RX631 Group Initial Setting Rev. 1.10 application note for details on
this function.

R_INIT_NonExistentPort
Outline Nonexistent port initialization
Header r_init_non_existent_port.h
Declaration void R_INIT_NonExistentPort(void)
Description Initializes port direction registers for ports that do not exist in products with less than

176 pins.
Arguments None
Return Value None
Remarks The number of pins in the sample code is set for the 176-pin package

(PIN_SIZE=176). After this function is called, when writing in byte units to the PDR
registers or PODR registers which have nonexistent ports, set the corresponding bits
for nonexistent ports as follows: set the I/O select bits in the PDR registers to 1 and
set the output data store bits in the PODR registers to 0.
Refer to the RX63N Group, RX631 Group Initial Setting Rev. 1.10 application note
for details on this function.

R_INIT_Clock
Outline Clock initialization
Header r_init_clock.h
Declaration void R_INIT_Clock(void)
Description Initializes the clock.
Arguments None
Return Value None
Remarks The sample code selects processing which uses PLL as the system clock without

using the sub-clock.
The following settings have been changed from the original settings.
1. BCLK division ratio: Changed from divide-by-4 to divide-by-8.
2. USB clock: Changed “not used” to divide-by-4.
3. BCLK pin output: Changed “no division” to divide-by-2.
Refer to the RX63N Group, RX631 Group Initial Setting Rev. 1.10 application note
for details on this function.

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 20 of 60
Sep. 16, 2014

R_Fl_Rewrite_process
Outline Reprogramming main processing
Header r_Flash_main.h
Declaration void R_Fl_Rewrite_process(void)
Description Calls functions for processing according to programming mode.
Arguments None
Return Value None

R_Fl_Idle
Outline Processing during idle mode (until a key is pressed after a reset)
Header None
Declaration static void R_Fl_Idle(void)
Description Displays “Press any key” in a regular intervals until the USB receives any data (until

any key is pressed from PC).
Arguments None
Return Value None

R_Fl_AnalyzeCMD
Outline Command analysis
Header None
Declaration static Fl_SMPL_command_t R_Fl_AnalyzeCMD(void)
Description When data is present in the receive ring buffer, the first byte of the data is analyzed

as a command. Then the rest of data is discarded.
Arguments None
Return Value - Data not received: FL_CMD_NONE

- Show instruction command received: FL_CMD_SHOW_INST
- Blank check command received: FL_CMD_BLNK_CHECK
- Erase target area command received: FL_CMD_ERASE_TRGT_AREA
- Start programming command received: FL_CMD_PRG_TRGT_AREA
- Run the target program command received: FL_CMD_RUN_TRGT_AREA
- Anything other than above received: FL_CMD_ERROR

R_Fl_EraseTrgtArea
Outline Erase processing
Header r_Flash_main.h
Declaration static void R_Fl_EraseTrgtArea(void)

Description Calls the function to erase the target area and displays the message for the erase
result.

Arguments None
Return Value None

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 21 of 60
Sep. 16, 2014

R_Fl_PrgTrgtArea
Outline Program processing
Header None
Declaration static void R_Fl_PrgTrgtArea(void)
Description When data is present in the receive ring buffer, calls the function to store the data in

Motorola S format. When one record of Motorola S format data is received, calls the
function to analyze the header and convert the data to binary data. When the
conversion to binary data is completed, calls the function to store the converted data
in the programming buffer.

Arguments None
Return Value None

R_Fl_RunTrgtPrg
Outline Executing the target program
Header None
Declaration static void R_Fl_RunTrgtPrg(void)
Description If the target reset vector is a value other than FFFF FFFFh, stops the USB and then

executes the target program.
If the target reset vector is FFFF FFFFh, displays the message for target vector error.

Arguments None
Return Value None

R_Fl_ErrorWait
Outline Error end wait mode processing
Header None
Declaration static void R_Fl_ErrorWait(void)
Description If a certain period of time elapsed while the receive ring buffer is empty, the MCU

enters command wait mode.
If there is any data in the receive ring buffer, the data is discarded and then a wait
processing for a certain period is performed again.

Arguments None
Return Value None

R_Fl_cmd_ShowInst
Outline Displaying commands
Header None
Declaration static void R_Fl_cmd_ShowInst(void)
Description Displays commands.
Arguments None
Return Value None

R_Fl_cmd_BlankCheckStart
Outline Start processing for blank check
Header None
Declaration static void R_Fl_cmd_BlankCheckStart(void)
Description Calls the function to blank check for the target area and displays the message for the

result.
Arguments None
Return Value None

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 22 of 60
Sep. 16, 2014

R_Fl_cmd_EraseStart
Outline Start processing for erasing
Header None
Declaration static void R_Fl_cmd_ EraseStart (void)

Description Starts erasing the target area and displays the message for starting an erase
operation.

Arguments None
Return Value None

R_Fl_cmd_PrgStart
Outline Start processing for programming
Header None
Declaration static void R_Fl_cmd_PrgStart(void)

Description Starts programming the target area and displays the message for starting a program
operation.

Arguments None
Return Value None

R_Fl_cmd_RunTrgtPrgStart
Outline Executing the target program
Header None
Declaration static void R_Fl_cmd_RunTrgtPrgStart(void)
Description If the target vector is FFFF FFFFh, the message for the target vector error is

transmitted.
If the target vector is not FFFF FFFFh, the message for target program execution is
displayed and the MCU enters program execution mode.

Arguments None
Return Value None

R_Fl_Blnk_BlankCheck
Outline Blank check
Header None
Declaration Fl_API_SMPL_rtn_t R_Fl_Blnk_BlankCheck(void)
Description Performs a blank check for the target area.
Arguments None
Return Value - When the target area is blank: FLASH_API_SAMPLE_OK

- When the target area is not blank: FLASH_API_SAMPLE_NG

R_Fl_Ers_EraseFlash
Outline Erasing the target area
Header None
Declaration Fl_API_SMPL_rtn_t R_Fl_Ers_EraseFlash(void)
Description Erases the target area.
Arguments None
Return Value - When the erase is completed successfully: FLASH_API_SAMPLE_OK

- When the erase is failed: FLASH_API_SAMPLE_NG
Remarks To avoid a ROM access by an interrupt during the erase operation, the processor

interrupt priority level (IPL) for the processor status word (PSW) is changed.

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 23 of 60
Sep. 16, 2014

R_Fl_Prg_StoreMotS
Outline Storing Motorola S format data
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_Prg_StoreMotS(uint8_t)
Description Stores the data, which is received with the argument, in Motorola S format in bytes.

Any data is discarded until 'S' in ASCII is received.
Arguments mot_data: Motorola S format data
Return Value - When one record of Motorola S format data (from 'S' to checksum) is stored:

FLASH_API_SAMPLE_OK
- When the stored Motorola S format data is not enough for one record:
FLASH_API_SAMPLE_NG

Remarks - To use this function, one byte of Motorola S format data is passed repeatedly with
the argument.
- Checksum is not calculated.

R_Fl_Prg_ProcessForMotS_data
Outline Motorola S format header analysis and binary data conversion
Header None
Declaration static void R_Fl_Prg_ProcessForMotS_data(void)
Description Analyzes the Motorola S format header and calls the function to convert the data to

binary. If there is non-Motorola S format data, the error message is displayed.
Arguments None
Return Value None

R_Fl_Prg_MotS_AsciiToBinary
Outline ASCII to binary conversion of Motorola S format data
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_Prg_MotS_AsciiToBinary (Fl_prg_mot_s_t *,

Fl_prg_mot_s_binary_t *)
Description Converts Motorola S format in ASCII to binary data and verifies the checksum of the

converted binary data.
If there is non-Motorola S format data, the error message is displayed.
If a checksum error occurs, the error message is displayed.

Arguments First argument: *tmp_mot_s: Pointer to Motorola S format data in ASCII
Second argument: *tmp_mot_s_binary: Pointer to the variable for storing data

which is converted to binary
Return Value - When conversion is completed: FLASH_API_SAMPLE_OK

- When conversion is not completed: FLASH_API_SAMPLE_NG

R_Fl_Prg_MakeWriteData
Outline Making programming data
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_Prg_MakeWriteData(void)
Description Makes data separated by 256 bytes.
Arguments None
Return Value - When 256 bytes of programming data is made successfully:

FLASH_API_SAMPLE_OK
- When 256 bytes of programming data is not made: FLASH_API_SAMPLE_NG

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 24 of 60
Sep. 16, 2014

R_Fl_Prg_WriteData
Outline Programming the target area
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_Prg_WriteData(void)
Description Programming is performed for the target area and verifies the programmed data. If

the programming is failed, the error message is displayed.
If the verify error occurs, the error message is displayed.

Arguments None
Return Value - When programming is completed successfully: FLASH_API_SAMPLE_OK

- When programming is failed: FLASH_API_SAMPLE_NG
Remarks To avoid a ROM access by an interrupt during the programming operation, the

processor interrupt priority level (IPL) for the processor status word (PSW) is
changed.

R_Fl_Prg_ClearMotSVariables
Outline Clearing variables for Motorola S format data
Header None
Declaration static void R_Fl_Prg_ClearMotSVariables(void)
Description Clears variables for Motorola S format data.
Arguments None
Return Value None

R_Fl_Run_StopUSB
Outline Stopping USB
Header iodefine.h, r_usb_usrconfig.h
Declaration static void R_Fl_Run_StopUSB(void)
Description Stops the USB.
Arguments None
Return Value None

R_Fl_RcvDataString
Outline Storing USB receive data
Header R_Flash_main.h
Declaration Fl_API_SMPL_rtn_t R_Fl_RcvDataString(void *, uint16_t)
Description Stores data received by the USB in the receive ring buffer.
Arguments First argument: *tranadr: Pointer to the buffer for storing data received by the

USB
Second argument: length: The number of data received by the USB

Return Value - When the received data is stored successfully: FLASH_API_SAMPLE_OK
- When the receive ring buffer was full: FLASH_API_SAMPLE_NG

R_Fl_SetSendData
Outline Storing USB transmit data
Header R_Flash_main.h
Declaration uint16_t R_Fl_SetSendData(void *, uint16_t)
Description Stores data to be transmitted by the USB in the transmit ring buffer.
Arguments First argument: *tranadr: Pointer to the transmit buffer

Second argument: length_lim: Limit number of data stored in the transmit buffer
Return Value The number of data stored in the transmit buffer

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 25 of 60
Sep. 16, 2014

R_Fl_SetDisplayMsgData
Outline Setting message data to be displayed (dot display)
Header None
Declaration static Fl_API_SMPL_rtn_t R_Fl_SetDisplayMsgData(Fl_disp_tbl_num_t)
Description Stores the specified message in the transmit ring buffer.
Arguments table_num: Message number to be displayed
Return Value - When the transmit data is stored successfully: FLASH_API_SAMPLE_OK

- When the transmit ring buffer was full: FLASH_API_SAMPLE_NG

R_Fl_RingCheckBlank
Outline Checking receive ring buffer space
Header R_Flash_main.h
Declaration Fl_API_SMPL_rtn_t R_Fl_RingCheckBlank(void)
Description Checks whether the receive ring buffer has enough space for a USB reception (64

bytes).
Arguments None
Return Value - When the buffer has enough space: FLASH_API_SAMPLE_OK

- When the buffer does not have enough space: FLASH_API_SAMPLE_NG

R_Fl_Ring2CheckData
Outline Checking data in the transmit ring buffer
Header R_Flash_main.h
Declaration Fl_API_SMPL_rtn_t R_Fl_Ring2CheckData(void)
Description Checks whether data is present in the transmit ring buffer.
Arguments None
Return Value - When data is present: FLASH_API_SAMPLE_OK

- When no data is present: FLASH_API_SAMPLE_NG

R_Fl_USB_NonConnect_Run
Outline Executing the target program with the USB disconnected
Header R_Flash_main.h
Declaration void R_Fl_USB_NonConnect_Run(void)
Description Stops the USB and executes the target program.
Arguments None
Return Value None
Remarks This function is called when the USB is disconnected.

R_Fl_RingEnQueue
Outline Storing data in the receive ring buffer
Header r_Flash_buff.h
Declaration Fl_API_SMPL_rtn_t R_Fl_RingEnQueue(uint8_t)
Description Stores data in the receive ring buffer.
Arguments enq_data: Data to be stored
Return Value - When data is stored successfully: FLASH_API_SAMPLE_OK

- When the buffer was full: FLASH_API_SAMPLE_NG

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 26 of 60
Sep. 16, 2014

R_Fl_RingDeQueue
Outline Reading the receive ring buffer
Header r_Flash_buff.h
Declaration Fl_API_SMPL_rtn_t R_Fl_RingDeQueue(uint8_t *)
Description Reads data from the receive ring buffer.
Arguments *deq_data: Pointer to the buffer for storing the read data
Return Value - When data is read successfully: FLASH_API_SAMPLE_OK

- When no data to be read is present: FLASH_API_SAMPLE_NG

R_Fl_RingClear
Outline Clearing the receive ring buffer
Header r_Flash_buff.h
Declaration Fl_API_SMPL_rtn_t R_Fl_RingClear(void)
Description Clears the receive ring buffer.
Arguments None
Return Value FLASH_API_SAMPLE_OK is always returned.

R_Fl_RingCheck
Outline Checking the number of data in the receive ring buffer
Header r_Flash_buff.h
Declaration uint32_t R_Fl_RingCheck(void)
Description Checks the number of data in the receive ring buffer.
Arguments None
Return Value The number of received data is returned.

R_Fl_Ring2EnQueue
Outline Storing data in the transmit ring buffer
Header r_Flash_buff.h
Declaration Fl_API_SMPL_rtn_t R_Fl_Ring2EnQueue(uint8_t)
Description Stores data in the transmit ring buffer.
Arguments enq_data: data to be stored
Return Value - When data is stored successfully: FLASH_API_SAMPLE_OK

- When the buffer was full: FLASH_API_SAMPLE_NG

R_Fl_Ring2DeQueue
Outline Reading the transmit ring buffer
Header r_Flash_buff.h
Declaration Fl_API_SMPL_rtn_t R_Fl_Ring2DeQueue(uint8_t *)
Description Reads data in the transmit ring buffer.
Arguments *deq_data: Pointer to the buffer for storing the read data
Return Value - When data is read successfully: FLASH_API_SAMPLE_OK

- When no data to be read is present: FLASH_API_SAMPLE_NG

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 27 of 60
Sep. 16, 2014

R_Fl_Ring2Clear
Outline Clearing the transmit ring buffer
Header r_Flash_buff.h
Declaration Fl_API_SMPL_rtn_t R_Fl_Ring2Clear(void)
Description Clears the transmit ring buffer.
Arguments None
Return Value FLASH_API_SAMPLE_OK is always returned.

R_Fl_Ring2Check
Outline Checking the number of data in the transmit ring buffer
Header r_Flash_buff.h
Declaration uint32_t R_Fl_Ring2Check(void)
Description Checking the number of data in the transmit ring buffer.
Arguments None
Return Value The number of transmit data is returned.

R_Fl_AsciiToHexByte
Outline ASCII to Binary conversion
Header r_Flash_buff.h
Declaration uint8_t R_Fl_AsciiToHexByte(uint8_t, uint8_t)
Description Converts 2-byte ASCII data to 1-byte binary data.
Arguments First argument: in_upper: Upper byte of ASCII data
 Second argument: in_lower: Lower byte of ASCII data
Return Value Converted binary data is returned.

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 28 of 60
Sep. 16, 2014

5.13 Flowcharts
5.13.1 USB Main Processing
Figure 5.9 and Figure 5.10 show the USB Main Processing.

usb_pcdc_main_task

Receiving message
R_USB_TRCV_MSG()

Is the
message for periodic

activation?

Periodic activation:
USB_PCDC_PERIODIC_PROCESS

Transmitting message
usb_pcdc_smpl_message_send()

Periodic activation
request to this task

Is the
state of the USB transmitting

 flag ON?

Reprogramming main
processing

R_Fl_Rewrite_process()

Is data
 to be transmitted by the USB

present?

Storing USB transmit data
R_FI_SetSendData()

Transmitting data
write()

Set the USB transmitting flag to on

Is the state
of the USB next reception

request flag ON?

Is there
enough space in the

receive buffer for next USB
data?

Receiving data
read()

Set the USB next reception
request flag to off

usb_gpcdc_tx_wait_flag = USB_OFF

usb_gpcdc_tx_wait_flag = USB_ON

Yes

No

USB reception completed:
USB_PCDC_RX_COMP

Obtaining the number of
data received by the USB

control()

Storing USB receive data
R_FI_RcvDataString()

Is there
enough space in the

receive buffer for next USB
data?

Receiving data
read()

USB transmission completed:
USB_PCDC_TX_COMP

Is data
 to be transmitted

present?

Set the USB transmitting
flag to off

Storing USB transmit data
R_Fl_SetSendData()

Transmitting data
write()

Set the USB transmitting
flag to on

Yes

No

Yes

No

Yes

No

Another message

Is data
 to be received by the USB

present?

Yes

No

ON

OFF

A

B

Set the USB next reception
request flag to on

Figure 5.9 USB Main Processing (1/2)

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 29 of 60
Sep. 16, 2014

Is the
message for close

request?

CLOSE request: USB_PCDC_CLOSE

The other message

CDCD open
open(USB_CLASS_PCDCD,,)

Is CDCD file number valid?

Has the
USB been disconnected for a

certain time?

Executing the target program
with the USB disconnected

R_Fl_USB_NonConnect_Run()

Transmitting the message for
open request

usb_pcdc_smpl_message_send()

CDCC open
open(USB_CLASS_PCDCC,,)

Is CDCC file number valid?

Transmitting the message for
periodic activation

usb_pcdc_smpl_message_send()

Is CDCD file number valid?

CDCD close
close(CDCD file No,,)

Is CDCD file number valid?

CDCD close
close(CDCC file No,,)

Initializing application variables
usb_pcdc_apl_init()

Valid (0x10 to 0x1f)

Invalid (-1)

Invalid (-1)

Valid (0x10 to 0x1f)

Valid (0x10 to 0x1f)

Invalid (-1)

OPEN request: USB_PCDC_OPEN

Valid (0x10 to 0x1f)

Invalid (-1)

No

Yes

A

B

Figure 5.10 USB Main Processing (2/2)

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 30 of 60
Sep. 16, 2014

5.13.2 Reprogramming Main Processing
Figure 5.11 shows the Reprogramming Main Processing.

R_Fl_Rewrite_process

Mode determination

IDLE

Processing during idle mode
R_Fl_Idle()

Command analysis
R_Fl_AnalyzeCMD()

Command
determination

Erase processing
R_Fl_EraseTrgtArea()

Program processing
R_Fl_PrgTrgtArea()

Executing the target program
R_Fl_RunTrgtPrg()

Wait for completion of an
error processing
R_Fl_ErrorWait()

Displaying commands
R_Fl_cmd_ShowInst()

Command wait

Start processing for blank
check

R_Fl_cmd_BlankCheckStart()

Start processing for erasing
R_Fl_cmd_EraseStart()

Start processing for
programming

R_Fl_cmd_PrgStart()

Executing the target program
R_Fl_cmd_RunTrgtPrgStart()

Displaying commands
R_Fl_cmd_ShowInst()

return

Erase

Program

Program execution

Error end wait

Show instructions

Blank check

Erase target area

Start programming

Run the target program

default

None

default

Enters Error end wait mode

Figure 5.11 Reprogramming Main Processing

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 31 of 60
Sep. 16, 2014

5.13.3 Processing During Idle Mode
Figure 5.12 shows the Processing During Idle Mode.

R_Fl_Idle

Is received data
present?

Yes

return

Displaying commands
R_Fl_cmd_ShowInst()

No

Did a
certain amount of time

elapse?

Display the message for idle
R_Fl_SetDisplayMsgData()

Clear the counter

Elapsed

Not elapsed

Enter command wait mode

Checking the number of data
in the receive ring buffer

R_Fl_RingCheck()

Clearing the receive buffer
R_Fl_RingClear()

Counter + 1

Figure 5.12 Processing During Idle Mode

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 32 of 60
Sep. 16, 2014

5.13.4 Command Analysis
Figure 5.13 shows the Command Analysis.

R_Fl_AnalyzeCMD

Is receive data present?

Yes

return ret_code

No

Command determination

Set 'Instruction' as the return value

Set 'Blank' as the return value

Set 'Erase' as the return value

Set 'Program' as the return value

Set 'Run' as the return value

Set 'Error' as the return value

0x31

0x32

0x33

0x34

0x35

default

Set the return value to 'None'

Clearing the receive ring
buffer

R_Fl_RingClear()

Reading the receive ring
buffer

R_Fl_RingDeQueue()

Figure 5.13 Command Analysis

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 33 of 60
Sep. 16, 2014

5.13.5 Erase Processing
Figure 5.14 shows the Erase Processing.

R_Fl_EraseTrgtArea

Was the
erase operation completed

successfully?

Yes

return

No

Erasing the target area
R_Fl_Ers_EraseFlash

Enter command wait mode

Display the message for
erase succeeded

R_Fl_SetDisplayMsgData()

Display the message for
erase failed

R_Fl_SetDisplayMsgData()

Figure 5.14 Erase Processing

5.13.6 Program Processing
Figure 5.15 shows the Program Processing.

R_Fl_PrgTrgtArea

Is the MotS binary
data present?

Yes

return

No
Making programming data

R_Fl_Prg_MakeWriteData()

Is receive data present?

Reading the receive ring buffer
R_Fl_RingDeQueue()

No

Yes

Has one
format data (address and data

only) been received?

Reception completed

Motorola S format header analysis
and binary data conversion

R_Fl_Prg_ProcessForMotS_data()

Is the
data to be programmed

ready?

No

Yes

Programming the target
area

R_Fl_Prg_WriteData()
Storing Motorola S format data

R_Fl_Prg_StoreMotS()

Reception not completed

Figure 5.15 Program Processing

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 34 of 60
Sep. 16, 2014

5.13.7 Executing the Target Program
Figure 5.16 shows the Executing the Target Program.

R_Fl_RunTrgtPrg

return

Display the message for
vector error

R_Fl_SetDisplayMsgData()

Is the
target reset vector value

0xFFFF FFFF?
No

Yes

Stopping USB
R_Fl_Run_StopUSB()

Executing the target
program

Enter command wait mode

Figure 5.16 Executing the Target Program

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 35 of 60
Sep. 16, 2014

5.13.8 Wait for Completion of an Error Processing
Figure 5.17 shows the Wait for Completion of an Error Processing.

R_Fl_ErrorWait

Has a
wait for error processing

started?
Not started

return

Started

Is data
received by the USB

present?
No

Yes

Set the error wait start flag

Clear the error wait counter and
the dot display counter

Display the message for a
wait for error processing

R_Fl_SetDisplayMsgData()

Clear the error wait counter

Has the wait
 time for error processing

elapsed?

Display the message for
new line

R_Fl_SetDisplayMsgData()

Yes

Clear the error wait start flag

Error wait counter + 1
dot display counter + 1

Has the
dot display time

elapsed?

dot display
R_Fl_SetDisplayMsgData()

Clear the dot display counter

No

Clearing the receive ring
buffer

R_Fl_RingClear()

Yes

No

Display commands
R_Fl_SetDisplayMsgData()

Enter command wait mode

Clearing the receive ring
buffer

R_Fl_RingClear()

Figure 5.17 Wait for Completion of an Error Processing

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 36 of 60
Sep. 16, 2014

5.13.9 Displaying Commands
Figure 5.18 shows the Displaying Commands.

R_Fl_cmd_ShowInst

return

Displaying commands
R_Fl_SetDisplayMsgData()

Figure 5.18 Displaying Commands

5.13.10 Start Processing for Blank Check
Figure 5.19 shows the Start Processing for Blank Check.

R_Fl_cmd_BlankCheckStart

return

Was the area blank?
Not blank

Blank

Blank check
R_Fl_Blnk_BlankCheck()

Display the message for
blank

R_Fl_SetDisplayMsgData()

Display the message for
not blank

R_Fl_SetDisplayMsgData()

Figure 5.19 Start Processing for Blank Check

5.13.11 Start Processing for Erasing
Figure 5.20 shows the Start Processing for Erasing.

R_Fl_cmd_EraseStart

return

Display the message for
starting an erase operation
R_Fl_SetDisplayMsgData()

Enter erase mode

Figure 5.20 Start Processing for Erasing

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 37 of 60
Sep. 16, 2014

5.13.12 Start Processing for Programming
Figure 5.21 shows the Start Processing for Programming.

R_Fl_cmd_PrgStart

return

Clearing variables for
Motorola S format data

R_Fl_Prg_ClearMotSVariables()

Display the message for starting
a program operation

R_Fl_SetDisplayMsgData()

Enter program mode

Figure 5.21 Start Processing for Programming

5.13.13 Executing the Target Program
Figure 5.22 shows the Executing the Target Program.

R_Fl_cmd_RunTrgtPrgStart

return

Set the target reset vector
address

Is the
target reset vector value

0xFFFF FFFF?

No

Display the message for
vector error

R_Fl_SetDisplayMsgData()

Yes

Enter command wait mode

Display the message for
target program execution

R_Fl_SetDisplayMsgData()

Enter program execution mode

Figure 5.22 Executing the Target Program

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 38 of 60
Sep. 16, 2014

5.13.14 Blank Check
Figure 5.23 shows the Blank Check.

R_Fl_Blnk_BlankCheck

return ret_code

Set 'OK' to ret_code

Have
all addresses been

checked?

Yes

No

Set 'NG' to ret_code

Address for checking + 1

Address for checking - 1

Was the
checked address

blank?

Yes

No

Set the end address

Figure 5.23 Blank Check

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 39 of 60
Sep. 16, 2014

5.13.15 Erasing the Target Area
Figure 5.24 shows the Erasing the Target Area.

R_Fl_Ers_EraseFlash

return ret_code

Set 'OK' to ret_code

Has
the target area been

erased?

Yes

No

Set 'NG' to ret_code

Has the
area been erased

successfully?

Erasing flash
(Simple Flash API function)

R_FlashErase()

Yes

No

Store current PSW.IPL

Set PSW.IPL to
FLASH_READY_IPL(5)

Restore the original value into
PSW.IPL

Figure 5.24 Erasing the Target Area

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 40 of 60
Sep. 16, 2014

5.13.16 Storing Motorola S Format Data
Figure 5.25 shows the Storing Motorola S Format Data.

R_Fl_Prg_StoreMotS

return ret_code

Set 'NG' to ret_code

Check for
the number of MotS

data

0

Clear the counter and
set 'OK' to ret_code

ASCII to Binary conversion
of data length

R_Fl_AsciiToHexByte()

MotS data = 'S'?

Store the upper byte of the header
and increment the counter

'S'

Other than 'S'

1

2

3

Store the MotS data and
increment the counter

default

Has one
format data (address
and data only) been

received?

Reception completed

Reception not completed

Store the lower byte of the header
and increment the counter

Store the upper byte of the data
length and increment the counter

Store the lower byte of the data
length and increment the counter

Figure 5.25 Storing Motorola S Format Data

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 41 of 60
Sep. 16, 2014

5.13.17 Motorola S Format Header Analysis and Binary Data Conversion
Figure 5.26 and Figure 5.27 show the Motorola S Format Header Analysis and Binary Data Conversion.

R_Fl_Prg_ProcessForMotS_data

Check the
value in the lower byte of the

header

0

Set the MotS analysis start flag

3

ASCII to Binary conversion of
MotS

R_Fl_Prg_MotS_AsciiToBinary()

Was
conversion completed

successfully?

Yes

No (an error occurred)

Set the MotS data completion flag

Has
MotS analysis been

started?

Yes

No

ASCII to Binary conversion of
MotS

R_Fl_Prg_MotS_AsciiToBinary()

Display the message for
MotS error

R_Fl_SetDisplayMsgData()

Clearing variables for
Motorola S format data

R_Fl_Prg_ClearMotSVariables()

Enter error end wait mode

Has
MotS analysis been

started?
Display the message for

MotS error
R_Fl_SetDisplayMsgData()

Clearing variables for
Motorola S format data

R_Fl_Prg_ClearMotSVariables()

Enter error end wait mode

Yes

No

A B

Figure 5.26 Motorola S Format Header Analysis and Binary Data Conversion (1/2)

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 42 of 60
Sep. 16, 2014

return ret_code

7, 8, or 9

default

ASCII to binary conversion of
Motorola S format data

R_Fl_Prg_MotS_AsciiToBinary()

Was
conversion completed

successfully?

Yes

No (an error occurred)

Is excess data present?

Programming the target area
R_Fl_Prg_WriteData()

Yes

No

Clearing the receive ring buffer
R_Fl_RingClear()

Display the message for completion
of programming

R_Fl_SetDisplayMsgData()

Clearing variables for
Motorola S format data

R_Fl_Prg_ClearMotSVariables()

Enter command wait mode

Display the message for
MotS error

R_Fl_SetDisplayMsgData()

Clearing variables for
Motorola S format data

R_Fl_Prg_ClearMotSVariables()

Enter error end wait mode

No

Yes Display the message for
MotS error

R_Fl_SetDisplayMsgData()

Clearing variables for
Motorola S format data

R_Fl_Prg_ClearMotSVariables()

Enter error end wait mode

A B

Has MotS analysis been started?

Figure 5.27 Motorola S Format Header Analysis and Binary Data Conversion (2/2)

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 43 of 60
Sep. 16, 2014

5.13.18 ASCII to Binary Conversion of Motorola S Format Data
Figure 5.28 shows the ASCII to Binary Conversion of Motorola S Format Data.

R_Fl_Prg_MotS_AsciiToBinary

return ret_code

ASCII to Binary conversion of
data length

R_Fl_AsciiToHexByte()

Store the data length
(subtract length of checksum and

address)

Display the message for
checksum error

R_Fl_SetDisplayMsgData()

Yes

No

Set 'NG' to ret_code

Clearing variables for
Motorola S format data

R_Fl_Prg_ClearMotSVariables()

Enter error end wait mode

Did a
checksum error

occur?

Store the address

Store the data

Set 'OK' to ret_code

Convert all data to binary data

Figure 5.28 ASCII to Binary Conversion of Motorola S Format Data

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 44 of 60
Sep. 16, 2014

5.13.19 Making Programming Data
Figure 5.29 shows the Making Programming Data.

R_Fl_Prg_MakeWriteData

return ret_code

Set 'NG' to ret_code

Total
of programming data ≥

256?

> 256

≤ 256

Has the
programming address

been specified?

Yes

No

Store MotS data (binary)
in the programming buffer

Specify the programming address

Total
of the programming data

> 256?

≥ 256

≤ 257

Store 256 bytes of MotS data
(binary) in the programming buffer

Store excess data and set the
programming address for the

excess data

Clear the MotS data
completion flag

Set 'OK' to ret_code

Figure 5.29 Making Programming Data

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 45 of 60
Sep. 16, 2014

5.13.20 Programming the Target Area
Figure 5.30 show the Programming the Target Area.

R_Fl_Prg_WriteData

return ret_code

Has the
area been programmed

successfully?

Yes

No

Set 'OK' to ret_code

Programming Flash
(Simple Flash API function)

R_FlashWrite()

Display the message for
programming error

R_Fl_SetDisplayMsgData()

Clearing variables for
Motorola S format data

R_Fl_Prg_ClearMotSVariables()

Enter error end wait mode

Set 'NG' to ret_code

Read the programmed data

Is the programmed
data correct?

Yes

No

Display the message for verify error
R_Fl_SetDisplayMsgData()

Clearing variables for
Motorola S format data

R_Fl_Prg_ClearMotSVariables()

Enter error end wait mode

Set 'NG' to ret_code

Clear the programming address
and the programming buffer

Has the
programming address for

excess data been
specified?

Yes

No

Store the excess data in the
programming buffer

Clear the MotS data
completion flag

Clear the programming address
for excess data

Set the programming address

Restore the original value into
PSW.IPL

Store the current PSW.IPL

Set PSW.IPL to
FLASH_READY_IPL(5)

Figure 5.30 Programming the Target Area

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 46 of 60
Sep. 16, 2014

5.13.21 Clearing Variables for Motorola S Format Data
Figure 5.31 shows the Clearing Variables for Motorola S Format Data.

R_Fl_Prg_ClearMotSVariables

return ret_code

- Clear the MotS data completion flag
- Clear the MotS analysis start flag
- Clear the programming address for excess data
- Clear the programming address
- Clear the programming buffer

Figure 5.31 Clearing Variables for Motorola S Format Data

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 47 of 60
Sep. 16, 2014

5.13.22 Stopping USB
Figure 5.32 shows the Stopping USB.

R_Fl_Run_StopUSB

return ret_code

Disable USB0 module operation

Disable USB0 interrupt request

Clear USB0 interrupt request

Enter the USB0 module-stop state

USB0.SYSCFG register
 USBE bit ← 0: USB operation is disabled.

IER04 register
 IEN1 bit ← 0: Interrupt request is disabled.
 IEN2 bit ← 0: Interrupt request is disabled.
 IEN3 bit ← 0: Interrupt request is disabled.
IER0B register
 IEN2 bit ← 0: Interrupt request is disabled.

IR33 register
 IR bit ← 0: No interrupt request is generated.
IR34 register
 IR bit ← 0: No interrupt request is generated.
IR35 register
 IR bit ← 0: No interrupt request is generated.

MSTPCRB register
 MSTPB19 bit ← 1: Transition to the module-stop state is made.

Disable USB1 module operation

Disable USB1 interrupt request

Clear USB1 interrupt request

Enter the USB1 module-stop state

USB1.SYSCFG register
 USBE bit ← 0: USB operation is disabled.

IER04 register
 IEN4 bit ← 0: Interrupt request is disabled.
 IEN5 bit ← 0: Interrupt request is disabled.
 IEN6 bit ← 0: Interrupt request is disabled.
IER0B register
 IEN3 bit ← 0: Interrupt request is disabled.
IR36 register
 IR bit ← 0: No interrupt request is generated.
IR37 register
 IR bit ← 0: No interrupt request is generated.
IR38 register
 IR bit ← 0: No interrupt request is generated.

MSTPCRB register
 MSTPB18 bit ← 1: Transition to the module-stop state is made.

Executed when USB_FUNCSEL_USBIP1_PP == USB_PERI_PP

Enable writing to related registers PRCR register ← A502h
 PRC1 bit = 1

Disable writing to related registers PRCR register ← A500h
 PRC1 bit = 0

Executed when USB_FUNCSEL_USBIP0_PP == USB_PERI_PP

Figure 5.32 Stopping USB

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 48 of 60
Sep. 16, 2014

5.13.23 Storing USB Receive Data
Figure 5.33 shows the Storing USB Receive Data.

R_Fl_RcvDataString

return ret_code

Set 'OK' to ret_code

Is there
 enough space in the receive

buffer?

No

Checking the number of data
in the receive ring buffer

R_Fl_RingCheck()

Yes

Store receive data Set 'NG' to ret_code

Figure 5.33 Storing USB Receive Data

5.13.24 Storing USB Transmit Data
Figure 5.34 shows the Storing USB Transmit Data.

R_Fl_SetSendData

return ret_code

Number of
transmit data > space in the

transmit buffer?

Number of transmit data >
space in the transmit buffer

Checking the number of data in
the transmit ring buffer

R_Fl_Ring2Check()

Set the number of transmit data Set the number of transmit data for
the space size in the transmit buffer

Number of transmit data ≤
space in the transmit buffer

Set the number of data to ret_code

Set the transmit data for the number
of transmit data

Figure 5.34 Storing USB Transmit Data

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 49 of 60
Sep. 16, 2014

5.13.25 Setting Message Data to be Displayed
Figure 5.35 shows the Setting Message Data to be Displayed.

R_Fl_SetDisplayMsgData

return ret_code

Is the transmit buffer full?

No

Checking the number of data
in the transmit ring buffer

R_Fl_Ring2Check()

Set the transmit data

Set 'OK' to ret_code

Set the pointer to the message to
be displayed

Yes

Has the
transmit data been

stored?

Data stored successfully

Data exceeded the buffer size

Set 'NG' to ret_code

Is the transmit data null?

No

Yes

Figure 5.35 Setting Message Data to be Displayed

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 50 of 60
Sep. 16, 2014

5.13.26 Checking Receive Ring Buffer Space
Figure 5.36 shows the Checking Receive Ring Buffer Space.

R_Fl_RingCheckBlank

return ret_code

Checking the number of data
in the receive ring buffer

R_Fl_RingCheck()

Set 'OK' to ret_code

Is there
enough space for

the number of bytes the
USB receives?

Yes

No

Set 'NG' to ret_code

Figure 5.36 Checking Receive Ring Buffer Space

5.13.27 Checking Data in the Transmit Ring Buffer
Figure 5.37 shows the Checking Data in the Transmit Ring Buffer.

R_Fl_Ring2CheckData

return ret_code

Checking the number of data
in the transmit ring buffer

R_Fl_Ring2Check()

Set 'OK' to ret_code

Is transmit data present?

Yes

No

Set 'NG' to ret_code

Figure 5.37 Checking Data in the Transmit Ring Buffer

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 51 of 60
Sep. 16, 2014

5.13.28 Executing the Target Program with the USB Disconnected
Figure 5.38 shows the Executing the Target Program with the USB Disconnected.

R_Fl_USB_NonConnect_Run

Is the
target reset vector value

0xFFFF FFFF?

No

Yes

Stopping USB
R_Fl_Run_StopUSB()

Executing the target program

return

Figure 5.38 Executing the Target Program with the USB Disconnected

5.13.29 Storing Data in the Receive Ring Buffer
Figure 5.39 shows the Storing Data in the Receive Ring Buffer.

R_Fl_RingEnQueue

Is there
 any space in the receive

buffer

Yes

No

return

Store data

Set 'OK' as the return value Set 'NG' as the return value

Figure 5.39 Storing Data in the Receive Ring Buffer

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 52 of 60
Sep. 16, 2014

5.13.30 Reading the Receive Ring Buffer
Figure 5.40 shows the Reading the Receive Ring Buffer.

R_Fl_RingDeQueue

Is there data
 in the buffer?

Yes

No

return

Read the data

Set 'OK' as the return value Set 'NG' as the return value

Figure 5.40 Reading the Receive Ring Buffer

5.13.31 Clearing the Receive Ring Buffer
Figure 5.41 shows the Clearing the Receive Ring Buffer.

R_Fl_RingClear

return

Clear the buffer pointer

Figure 5.41 Clearing the Receive Ring Buffer

5.13.32 Checking the Number of Data in the Receive Ring Buffer
Figure 5.42 shows the Checking the Number of Data in the Receive Ring Buffer.

R_Fl_RingCheck

return

Set the number of data
as the return value

Figure 5.42 Checking the Number of Data in the Receive Ring Buffer

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 53 of 60
Sep. 16, 2014

5.13.33 Storing Data in the Transmit Ring Buffer
Figure 5.43 shows the Storing Data in the Transmit Ring Buffer.

R_Fl_Ring2EnQueue

Is there
enough space

for storing data in the
buffer?

Yes

No

return

Store data

Set 'OK' as the return value Set 'NG' as the return value

Figure 5.43 Storing Data in the Transmit Ring Buffer

5.13.34 Reading the Transmit Ring Buffer
Figure 5.44 shows the Reading the Transmit Ring Buffer.

R_Fl_Ring2DeQueue

Is there data
 in the buffer?

Yes

No

return

Read data

Set 'OK' as the return value Set 'NG' as the return value

Figure 5.44 Reading the Transmit Ring Buffer

5.13.35 Clearing the Transmit Ring Buffer
Figure 5.45 shows the Clearing the Transmit Ring Buffer.

R_Fl_Ring2Clear

return

Clear the buffer pointer

Figure 5.45 Clearing the Transmit Ring Buffer

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 54 of 60
Sep. 16, 2014

5.13.36 Checking the Number of Data in the Transmit Ring Buffer
Figure 5.46 shows the Checking the Number of Data in the Transmit Ring Buffer.

R_Fl_Ring2Check

return

Set the number of data
as the return value

Figure 5.46 Checking the Number of Data in the Transmit Ring Buffer

5.13.37 ASCII to Binary Conversion
Figure 5.47 shows the ASCII to Binary Conversion.

R_Fl_AsciiToHexByte

return

Convert upper 4 bits

Convert lower 4 bits

Figure 5.47 ASCII to Binary Conversion

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 55 of 60
Sep. 16, 2014

6. Using the Sample Code
(1) Change the vendor ID and product ID for the sample code.

Change USB_VENDORID and USB_PRODUCTID in the r_usb_pcdc_descriptor.c file appropriate to your
environment. Refer to the USB Peripheral Communication Device Class Driver and USB Basic Firmware
application notes for details.

/**
User define macro definitions
**/
#define USB_VENDORID 0x0000
#define USB_PRODUCTID 0x0002

Figure 6.1 Vendor ID and Product ID in r_usb_pcdc_descriptor.c for the Sample Code

(2) Change the vendor ID and product ID for the USB driver.
Change VID_0000 and PID_0002 in the CDC_Demo.inf or CDC_Demo_Win7.inf file in the usb_driver folder.
The changed values must be the same as the vendor ID and product ID for the sample code set in step (1) above.
Refer to the USB Peripheral Communication Device Class Driver and USB Basic Firmware application notes for
details.

[Manufacturer]
%STRING_MAUNUFACTURER%=Model

[Model]
%STRING_MODEL%=CDC, USB\VID_0000&PID_0002

Figure 6.2 Vendor ID and Product ID in CDC_Demo.inf for the USB Driver

[DeviceList]
%DESCRIPTION%=DriverInstall, USB\VID_0000&PID_0002

[DeviceList.NTamd64]
%DESCRIPTION%=DriverInstall, USB\VID_0000&PID_0002

Figure 6.3 Vendor ID and Product ID in CDC_Demo_Win7.inf for the USB Driver

(3) Build all codes of the sample code and program the codes into the MCU.

(4) After the MCU is powered on, connect the PC and MCU via the USB. (1)

(5) In the Windows installation screen for the USB driver, select the CDC_Demo.inf or CDC_Demo_Win7.inf file in
the usb_driver folder to install the driver. If the USB driver is already installed, this step can be skipped.

(6) Start the terminal application to start communication with the MCU.

(7) After step (6), follow the message displayed in the terminal application to continue the operation.

Note:
1. If a value other than FFFF FFFFh is written to the target reset vector, and the USB interface remains

disconnected for a certain time, the target program will be executed. Note that the USB will be
stopped when the target program is executed. Write FFFF FFFFh to the target reset vector when the
USB driver is installed since it may take some time to connect the USB interface.

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 56 of 60
Sep. 16, 2014

7. Sample Target Program
A sample target program (UsrPrgSample.zip) is provided with this application note. In the sample target program, LEDs
on the board listed on "2. Operation Confirmation Conditions" are turned on in order. Use this program as a reference
when setting the target reset vector and sections. This program assumes an operation with 1 MB ROM.

8. Notes on Using This Application Note

8.1 Programming Speed
Programming speed may be extremely slow depending on the terminal application used. If this is the case, try another
terminal application.

8.2 USB Disconnection During Programming or Erasing
Do not disconnect or reconnect the USB interface during programming or erasing the target area.

8.3 HEW Configuration
When reprogramming the flash, the sample code on the ROM is transferred to the RAM and executed. For details on
settings regarding the sample code operations, refer to 2.10 “Adding Middleware to Your Project” and 2.12 “Putting
Flash API Code in RAM” in the RX600 & RX200 Series Simple Flash API for RX application note.

8.4 Vender ID and Product ID for the USB
When using the sample code, the vender ID and product ID for the USB need to be changed. Refer to 6. “Using the
Sample Code” in this application note, and the USB Peripheral Communication Device Class Driver and USB Basic
Firmware application notes.

8.5 Interrupts in the Fixed Vector Table
The sample code only defines the reset vector from interrupts allocated to the fixed vector table. If the other interrupts
in the fixed vector table are necessary, change the sample code appropriate to the user program.

8.6 Reset Vector of the Target Program
The start address of the target program, which is programmed by the sample code, is specified with the value in the
target reset vector (FFFD FFFCh). Therefore the reset vector of the target program needs to be FFFD FFFCh. Refer to
5.3 “Start Address of the Target Program” for details on the start address, and refer to 7. “Sample Target Program” for
details on the target program.

8.7 Motorola S Format
The sample code only supports S0, S3, and S7 of the Motorola S formats. Also the order of addresses must be in
ascending order. Do not transmit a mot file with addresses that are in descending order or mixed order.

8.8 Processing with the while(1) Statement
In the sample code, when the transmit ring buffer overflows, the while(1) statement is used for deadlock.

8.9 Stop of the Program During USB Communication
If the MCU is reset while the MCU is connected to the terminal application on the PC, and if the MCU is restarted,
communication may not be performed correctly. In this case, exit the terminal application and then connect the MCU to
the PC again.

8.10 Endian
This sample code only supports the little endian.

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 57 of 60
Sep. 16, 2014

8.11 Changes in the Simple Flash API for RX
The sample code uses the Simple Flash API program with some changes. Refer to the RX600 & RX200 Series Simple
Flash API for RX application note for details on the specifications of the Simple Flash API.

Files r_flash_api_rx600_config.h and r_bsp_config.h are changed in the Simple Flash API for this application note.

 Changes in r_flash_api_rx600_config.h:

1. The processor interrupt priority level (IPL) of the processor status word (PSW) is changed to the value
specified with the macro definition shown below to prevent ROM access due to interrupts during
programming and erasing the flash. The value is set to 5 in the application note.

Macro definition: #define FLASH_READY_IPL 5

2. Settings for the Simple Flash API are changed as follows:

Before: //#define FLASH_API_RX_CFG_FLASH_TO_FLASH

#define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

#define FLASH_API_RX_CFG_COPY_CODE_BY_API

After: #define FLASH_API_RX_CFG_FLASH_TO_FLASH

//#define FLASH_API_RX_CFG_IGNORE_LOCK_BITS

//#define FLASH_API_RX_CFG_COPY_CODE_BY_API

 Changes in r_bsp_config.h:

1. Files stored in the r_bsp/board/rskrx63n of the Simple Flash API are used.

2. Settings for the Simple Flash API are changed as follows:

Before: #define BSP_CFG_PCKA_DIV (4)

#define BSP_CFG_IEBCK_DIV (8)

#define BSP_CFG_BCLK_OUTPUT (0)

After: #define BSP_CFG_PCKA_DIV (2)

#define BSP_CFG_IEBCK_DIV (2)

#define BSP_CFG_BCLK_OUTPUT (2)

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 58 of 60
Sep. 16, 2014

8.12 Changes in the USB PCDC Driver
The sample code uses programs that use the ANSI interface in the USB PCDC driver with some changes. For details on
the specifications of the USB PCDC driver, refer to the USB PCDC Driver and USB Basic Firmware application notes.

8.12.1 Changed Items
Files r_usb_pcdc_apl.c, dbsct_pcdc.c, and rx_mcu.c are changed in the USB PCDC driver for this application note.

 Changes in r_usb_pcdc_apl.c:

1. Include files have been added.

Added: #include "r_Flash_main.h"

#include " r_Flash_buff.h"

2. Changes other than above are included in the section of #ifdef R_FLASH_USB.

 Changes in dbsct_pcdc.c:

The changes are indicated with the comment "// Flash table".

 Changes in rx_mcu.c:

1. Include files have been added.

Added: #include "r_init_clock.h"

#include "r_init_non_existent_port.h"

#include "r_init_stop_module.h"

2. The CPU initialization (usb_cpu_McuInitialize function) is changed to use the R_INIT_StopModule,
R_INIT_NonExistentPort, and R_INIT_Clock functions in the RX63N Group, RX631 Group Initial Setting
application note.

8.12.2 Additional Files
For details on files added to the USB PCDC driver, refer to 5.7 “File Composition”.

8.12.3 Additional Sections
Table 8.1 lists the Additional Sections.

Table 8.1 Additional Sections

Section Name Description
B_flash_api_sec Section for variables used in the flash reprogramming codes which operate

in the RAM R_flash_api_sec
RPFRAM Section for the flash reprogramming codes which operate in the RAM
TRGT_DMMY_FIXEDVECT Section for the fixed vector of the target program

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 59 of 60
Sep. 16, 2014

8.12.4 Include File Directory
Include file directories “WorkSpace\FLASH” and “WorkSpace\r_bsp” have been added.

8.12.5 Linker Settings
Settings for ROM to RAM mapping have been added to the Linker.

- ROM PFRAM is mapped to RPFRAM.

- ROM D_flash_api_sec is mapped to R_flash_api_sec.

8.13 Changes in the RX63N Group, RX631 Group Initial Setting
The sample code uses programs in the RX63N Group, RX631 Group initial setting with some changes. For details on
the specifications of the initial setting, refer to the RX63N Group, RX631 Group Initial Setting application note.

The r_init_clock.c file is changed in the initial setting.

1. The BCLK division ratio is changed from divide-by-4 to divide-by-8.

Before: SYSTEM.SCKCR.LONG = 0x21C21211;

while (0x21C21211 != SYSTEM.SCKCR.LONG)

After: SYSTEM.SCKCR.LONG = 0x21C31211;

while (0x21C31211 != SYSTEM.SCKCR.LONG)

2. The USB clock setting is changed from ‘not used’ to divide-by-4.

Before: SYSTEM.SCKCR2.WORD = 0x0012;

After: SYSTEM.SCKCR2.WORD = 0x0032;

3. The BCLK pin output is changed from ‘no division’ to divide-by-2.

Before: SYSTEM.BCKCR.BYTE = 0x00;

while (0x00 != SYSTEM.BCKCR.BYTE)

After: SYSTEM.BCKCR.BYTE = 0x01;

while (0x01 != SYSTEM.BCKCR.BYTE)

RX63N Group, RX631 Group Flash Bootloader with the USB Peripheral CDC

R01AN1710EJ0100 Rev. 1.00 Page 60 of 60
Sep. 16, 2014

9. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

10. Reference Documents
User’s Manual: Hardware

RX63N Group, RX631 Group User’s Manual: Hardware Rev.1.70 (R01UH0041EJ)
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family C/C++ Compiler Package V.1.01 User’s Manual Rev.1.00 (R20UT0570EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY RX63N Group, RX631 Group Application Note
Flash Bootloader with the USB Peripheral CDC

Rev. Date
Description

Page Summary
1.00 Sep. 16, 2014 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Notes
	4. Hardware
	4.1 Pins Used

	5. Software
	5.1 Operation Overview
	5.2 Commands
	5.3 Start Address of the Target Program
	5.4 Mode Transitions
	5.4.1 Idle Mode
	5.4.2 Command display Mode
	5.4.3 Command Wait Mode
	5.4.4 Blank Check Mode
	5.4.5 Erase Mode
	5.4.6 Program Mode
	5.4.7 Error End Wait Mode
	5.4.8 Program Execution Mode

	5.5 Data Flow when Programming
	5.6 ROM Capacity
	5.7 File Composition
	5.8 Constants
	5.9 Structure/Union List
	5.10 Message Table List
	5.11 Functions
	5.12 Function Specifications
	5.13 Flowcharts
	5.13.1 USB Main Processing
	5.13.2 Reprogramming Main Processing
	5.13.3 Processing During Idle Mode
	5.13.4 Command Analysis
	5.13.5 Erase Processing
	5.13.6 Program Processing
	5.13.7 Executing the Target Program
	5.13.8 Wait for Completion of an Error Processing
	5.13.9 Displaying Commands
	5.13.10 Start Processing for Blank Check
	5.13.11 Start Processing for Erasing
	5.13.12 Start Processing for Programming
	5.13.13 Executing the Target Program
	5.13.14 Blank Check
	5.13.15 Erasing the Target Area
	5.13.16 Storing Motorola S Format Data
	5.13.17 Motorola S Format Header Analysis and Binary Data Conversion
	5.13.18 ASCII to Binary Conversion of Motorola S Format Data
	5.13.19 Making Programming Data
	5.13.20 Programming the Target Area
	5.13.21 Clearing Variables for Motorola S Format Data
	5.13.22 Stopping USB
	5.13.23 Storing USB Receive Data
	5.13.24 Storing USB Transmit Data
	5.13.25 Setting Message Data to be Displayed
	5.13.26 Checking Receive Ring Buffer Space
	5.13.27 Checking Data in the Transmit Ring Buffer
	5.13.28 Executing the Target Program with the USB Disconnected
	5.13.29 Storing Data in the Receive Ring Buffer
	5.13.30 Reading the Receive Ring Buffer
	5.13.31 Clearing the Receive Ring Buffer
	5.13.32 Checking the Number of Data in the Receive Ring Buffer
	5.13.33 Storing Data in the Transmit Ring Buffer
	5.13.34 Reading the Transmit Ring Buffer
	5.13.35 Clearing the Transmit Ring Buffer
	5.13.36 Checking the Number of Data in the Transmit Ring Buffer
	5.13.37 ASCII to Binary Conversion

	6. Using the Sample Code
	7. Sample Target Program
	8. Notes on Using This Application Note
	8.1 Programming Speed
	8.2 USB Disconnection During Programming or Erasing
	8.3 HEW Configuration
	8.4 Vender ID and Product ID for the USB
	8.5 Interrupts in the Fixed Vector Table
	8.6 Reset Vector of the Target Program
	8.7 Motorola S Format
	8.8 Processing with the while(1) Statement
	8.9 Stop of the Program During USB Communication
	8.10 Endian
	8.11 Changes in the Simple Flash API for RX
	8.12 Changes in the USB PCDC Driver
	8.12.1 Changed Items
	8.12.2 Additional Files
	8.12.3 Additional Sections
	8.12.4 Include File Directory
	8.12.5 Linker Settings

	8.13 Changes in the RX63N Group, RX631 Group Initial Setting

	9. Sample Code
	10. Reference Documents

