
 APPLICATION NOTE

R01AN0698EU0102 Rev. 1.02 Page 1 of 20
August 10, 2011

RX62N Group
ADPCM Audio Compression Record and Playback

Introduction
This document explains what Adaptive Differential Pulse Code Modulation is and how it is used for audio compression
and decompression on an embedded RX62N based target platform. This is demonstrated with a project that includes
source code.

Audio playback can easily be added to an embedded application without expensive hardware due to the following
reasons:

• A D/A converter is not necessary since a PWM signal can be filtered for playback instead.
• Less memory is needed with 4:1 ADPCM encoding.
• Regular ‘parallel’ internal or external flash memory is not needed for audio data storage if serial flash memory is

used.
• Audio re-programming for this external audio memory can be made simple with a low cost serial debug interface

and a tool like Hew Target Server to automate audio data programming.

Target Device
RX62N.

The YRDKRX62N board is used in this application, which has an RX62N MCU, the R5F562N8BDFP. (100 pin, 96kB
RAM, 512+32 kB flash memory).

Related Documents
• REJ06J0085-0100, Rev.1.00, Jun.15.2010. “M3S-S2-Tiny” for RX Family. Sound Data Compression/Expansion

Software. Explains the usage of the audio data compression/expansion software library along with a simple sample
program.

• When the YRDK CD has been installed, the Manual Navigator (located under Start All Programs Renesas High
Perf. Embedded Workshop) will contain multiple documents including Quick Start Guide, RX hardware manual,
board schematic etc.

R01AN0698EU0102
Rev. 1.02

August 10, 2011

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 2 of 20
August 10, 2011

Contents

1. Overview ... 3

2. Tools and Documents ... 3
2.1 File Directory Content ... 3

3. RPDL... 5

4. Sampled and Compressed Audio ... 5
4.1 Pulse Code Modulation & Compression ... 5

5. Audio Memory Space.. 7

6. Board and MCU Considerations ... 7
6.1 Jumper settings ... 7
6.2 Board rework needed for recording... 7
6.3 MCU Timers Used... 8
6.4 DAC... 8

7. Demo Record & Playback ... 8
7.1 Demo State Machine... 9
7.2 Playback Selection from RAM or Flash... 9
7.3 Recording with the board to RAM ... 12
7.4 Selecting an ADPCM Encode/Decode Library.. 13

8. The “ADPCM_Lib” Workspace.. 15
8.1 Encoding Library Functions... 15
8.2 Decoding Library Functions .. 16

9. Single File Audio Format Conversion GUI .. 17

10. Appendix A MTU Interrupt ISR instead of DTC - PWM Mode 2 - Stereo 17

11. Appendix B Using DAC instead of PWM .. 18

Revision Record .. 1

General Precautions in the Handling of MPU/MCU Products... 2

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 3 of 20
August 10, 2011

1. Overview
The purpose of this application note is to provide an example of how to perform ADPCM encoding and decoding on the
YRDKRX62N board. A sample workspace with source code and libraries are provided and commented on throughout
this document.

2. Tools and Documents
Please install the YRDK62N CD. This will give you:

• HEW with its source code Project Generator, compiler
• The Segger J-Link Debugger for the board, etc.
• Documentation for the board. This includes schematics, HW manual for MCU, User Manual, and third party device

information. See Figure 1.

Figure 1 After installing the YRDK62N CD you will get documentation covering the board, the MCU and for third
party peripherals used on the board.

2.1 File Directory Content
See the header of source code file ADPCM_Demo\sample_player\main_ADPCM.c for directions on running the
demo.

Also included with the source tree is a separate directory containing a project with which ADPCM encode and decode
libraries can be built. These libraries are used by the playback/record sample code.

Here is how the code/libraries are laid out in the RX_RDK_ADPCM_Demo directory.

RX_RDK_ADPCM_Demo Workspace directory of HEW
|
|-- ADPCM_Demo Project directory of HEW
| |
| |-- ADPCM_audiodata ADPCM sound data
| |
| |-- ADPCM_Lib Workspace directory of HEW
| | |
| | |-- ADPCM Project directory for full ADPCM lib
| | | |
| | | |-- lib Library storage for ADPCM with encode and decode
| | | |
| | | |-- Release Configuration directory
| | |
| | |-- ADPCM_Decode Project directory for ADPCM decode only
| | | |

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 4 of 20
August 10, 2011

| | | |-- lib Library storage for ADPCM decode only
| | | |
| | | |-- Release Configuration directory
| | |
| | |-- ADPCM_Encode Project directory for ADPCM encode only
| | | |
| | | |-- lib Library storage for ADPCM encode only
| | | |
| | | |-- Release Configuration library
| | |
| | |-- src Source code to the ADCPM libraries
| |
| |-- BSP Directory for board specific support routines
| |
| |-- Debug Configuration directory
| |
| |-- RPDL R-PDL interrupt handler source code and library
| |
| |-- sample_player Sample code demonstrating ADPCM encode and decode
|
|-- ADPCM_TOOL ADPCM conversion tool
 |
 |-- bin Tool to convert .wav files to ADCPM format
 |

|-- doc Documentation for using ADPCM conversion tool

2.1.1 Directory Content Explanation
• ADPCM_audiodata

Contains ADPCM encoded sample sound clips record at an 11 kHz sample rate. The file adpcm_sample.dat is
currently linked into the demo build and resides in flash and can be used as audio source to test the
decode/playback logic.

• ADPCM_Lib
Contains the workspace, source code and library files associated with the ADPCM encoding and decoding
algorithms.

• BSP
Contains the Board Support Package software for the YRDKRX62N board. It includes the hardware
initialization routines, drivers to write to the LCD, manage the on-board switches and an API layer to
coordinate RSPI bus access.

• RPDL
[See also 3 下の] Contains the necessary header files to reference the library functions, sample interrupt
handlers, and the RPDL .lib file. RPDL is utilized throughout the demo code to perform various peripheral set
up and modification as required to perform the record and playback functions.

• sample_player
Contains the demo application source code.

Two workspaces are provided in this directory tree. One workspace, ADPCM_Demo, provides a sample program that
demonstrates how to use the ADPCM libraries to perform recordings and playback on the YRDKRX62N board. The
other workspace, ADPCM_Lib, provides projects to build three variations of the ADPCM library:

1. ADPCM Builds the full library with both encode and decode capability

2. ADPCM_Decode Builds the library with only the decode function

3. ADPCM_Encode Builds the library with only the encode function

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 5 of 20
August 10, 2011

3. RPDL
The Renesas Peripheral Driver Library is included in the workspace. RPDL is used to set up a peripheral using just a
function call with the appropriate arguments. For example, this is used to set up the MTU used for recording in the
sample code.

The manual for RPDL should be under your windows Start menu. ADPCM_Demo Workspace.

4. Sampled and Compressed Audio
Almost all electronic audio reproduction today is digital. This means that to record and reproduce audio it is necessary
to sample the original waveform, store the samples, and later use the samples to re-create the original signal as closely
as practical.

If the sampling rate is too low, the higher frequencies will be lost. Losing non-audible frequencies above 20 kHz is
usually not an issue. “Phone quality” audio is sampled at 8 kHz, meaning that the highest reproduced signal will be 4
kHz. This is usually considered minimum quality.

The other aspect of audio digitizing is the sample width. The more bits per sample are used, the higher the quality of the
signal. In this application note we will be using 16-bit audio technology. Note that only 8-bit data is used in the audio
samples provided.

4.1 Pulse Code Modulation & Compression
The reason to use compression is to save memory space and communication bandwidth. We will show how ADPCM
works, but first describe PCM and DPCM.

4.1.1 Pulse Code Modulation, PCM
Pulse Code Modulation is very straightforward. Each sample is coded “in itself” with its numerical value, with no
relation to, or dependence on the previous or following sample values. With PCM, if a signal at one point in time is 3V,
with the maximum output of 5V in the system, it will have a 16-bit PCM value of 3/5 * 215 = 39322 (or 999AH). For 8-
bit PCM sampling the value would be 0x99, since 3/5 * 28 = 153 (0x99H).

4.1.2 Differential Pulse Code Modulation, DPCM
If the last audio output value is saved, it is only necessary to save the difference in output from the last sample. With the
simplest type of DPCM encoding, the next value of the audio signal is simply an offset of the current. Since only the
difference between the prediction and the actual sample is needed, less data needs to be saved.

With a more sophisticated DPCM encoding, the next PCM value is predicted by both the encoder and the decoder. The
sample then offsets this prediction. The better the prediction, the fewer the bits needed to represent the same
information.

Figure 2 DPCM variant where the next PCM value is predicted both by the encoder and the decoder. The sample is
then the offset of the prediction.

4.1.3 ADPCM
With ADPCM, a further reduction in data is achieved. The compression is 4:1. A 16-bit PCM sample is therefore
encoded as a 4-bit value. An audio file of type PCM and of size 100 kB will therefore only take 25 kB of memory.

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 6 of 20
August 10, 2011

In ADPCM, the algorithm adapts the weight, or ‘stepsize’, of the unit step for each sample. For example, the
quantization value of ‘1’ may translate to a change of 40 in the output PCM value for one sample, but for a later sample
instead translate to a value of 72. This allows further reduction of data bandwidth compared to DPCM.

Each 4-bit sample encodes a non-linear and varying difference between each sample, encoded as

Each PCM sample is given by the Dialogic ADPCM Algorithm:

Output(n) = Output(n-1) +- stepsize x (b2 + b1 / 2 + b0 / 4 + 1/8)
Sign +- given by b3

The recursive formula yields the next PCM decoded output value based not only on the magnitude of the sample, but on
the weight of the stepsize. This weight changes each sample depending on the magnitude itself and two table lookups.
The magnitude can only be 0-7 units but the stepsize varies, or adapts. The end result in total PCM steps between
samples can vary greatly.

The first table

gives the number of steps to take within the stepsize table:

The use of both these tables is best illustrated with an example:

The stepsize at one sample point in time is 400. See the stepsize table. If the next sample has the magnitude 5, the index
table’s row (marked yellow) says to increase the stepsize to a value four steps up in the stepsize table, so the stepsize

 Bit # 3 2 1 0

Sign Magnitude (0 to 7)

-1

-1 1

-1 2

-1 3

2 4

4 5

6 6

8 7

Table
index
change

ADPCM
input
mag-
nitude

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 7 of 20
August 10, 2011

becomes 586. Let’s say the next sample’s magnitude is 2, for which the table gives -1, meaning the stepsize should
decrease to the value given one step down in the table from 586, and so stepsize for the next sample becomes 533. And
so on.

5. Audio Memory Space
Audio can be stored on the MCU itself but could quickly fill up available memory space. Here is a calculation example
for 16-bit PCM audio compressed 4:1 with ADPCM.

One byte of audio memory contains two samples of four bits each. With sampling rate 8 kHz (phone quality) we get

8000 samples/sec * ½ bytes/sample = 4000 bytes/sec
or 4 kB memory space per second @8 kHz.

With 1 MB of memory one could therefore theoretically store

1000 kB / 4 kB/s = 250 seconds
or over 4 minutes of audio per MB @8 kHz.

6. Board and MCU Considerations
6.1 Jumper settings
6.1.1 On-board speaker output
The YRDKRX62N has a small speaker provided for convenience that may be used to check audio playback. A two-pin
jumper, JP7, is provided to allow the audio signal from the RIGHT audio channel to be routed to the speaker. JP7 is
located in the lower-right area of the PCB with the label SPK ENA.

• To hear audio playback on the speaker, connect the two pins of JP7 with a jumper.

• To disable audio output from the speaker, remove the jumper from JP7.

Note 1: Rev. 5 boards and later have an additional jumper, JP17, that routes the AUD_R signal to the speaker's
amplifier. Pins 1-2 of this jumper are shorted with a trace on the back of the PCB by default which is correct
for this application. However, if JP17 has been modified for other use, be sure to connect pins 1-2.

Note 2: The small size and low volume output from the on-board speaker requires listening closely.

6.1.2 Stereo output jack
The YRDKRX62N has a dual-channel audio amplifier that is well suited to listening with the use of stereo headphones
plugged into the provided stereo output jack. Alternatively, the pre-amplified audio signal may be routed to an external
amplifier with a stereo audio cable for greater output. Sound output will be from the RIGHT audio channel in this case.

Rev. 5 boards and later have three jumpers, JP17 (AUD_R / SPK SEL), JP18 (AUD_R/AUDIO SELECT), and JP19
(AUD_L/ AUDIO SELECT). Each of these jumpers has three pins (1-3). Pins 1-2 of these jumpers are shorted with a
trace on the back of the PCB by default which is correct for this application. However, if the traces have been cut for
other use, be sure to connect pins 1-2 on JP17 through JP19 with jumper shorting plugs (3-pin headers may need to be
installed).

6.2 Board rework needed for recording
If working on a YRDKRX62N board with a revision lower than Rev. 5, a minor physical rework must be done to be
able to record to RAM. If you only plan to do audio playback from flash, this is not necessary.

The area of the board affected by the rework is in the lower right hand corner between the potentiometer and the
speaker. There are two changes that must be made and are denoted in the schematic capture below:

(a) Rework 1

• Add 15K resistor on the empty pad at R69

• Add 4.71K resistor on the empty pad at R70

(b) Rework 2

• Add 100K pull-up resistor as shown to 3V3A to set ADC to midpoint

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 8 of 20
August 10, 2011

Figure 3 Rework necessary to be able to use the recording circuit of the RDK are shown here.
 Rework 1 and 2 are marked with red rectangles.

6.3 MCU Timers Used
The timers used are selected in file syscfg.h and are set to the following in the sample code:

/* MTU channel used for recording sample rate timing. */
#define RECORD_SAMPLE_MTU 6

/* MTU channels used for carrier and sample rate timing. */
#define SAMPLE_MTU 7
#define CARRIER_MTU 8

The Audio Right channel is connected to pin MTIOC8A. This pin carries the PWM signal of timer channel
CARRIER_MTU running in PWM Mode 1. TGRA is used for the PWM period (the PWM carrier frequency) and the
value set in TGRB specifies the duty cycle (sample value).

The Audio Left channel is connected to pin MTIOC8B, which if configured (not done in demo) can only run in PWM
Mode 2.

An alternative software configuration of section 10 of the timers could save MCU resources by freeing up the DTC for
other usage. In addition, this method would have the benefit that it could be used for both channels L+R (stereo) using
the same MTU timer setup and PWM mode (Mode 2).

6.4 DAC
The DAC could also be used to playback audio instead of sung PWM. Comments on doing this are in section 10.

7. Demo Record & Playback
The ADPCM_Demo project in the RX_RDK_ADPCM_Demo workspace provides a sample recorder and playback
program. Recordings utilize the Analog Devices ADMP401 omni-directional microphone to collect an analog signal
and pass it to the 12-bit Analog/Digital Converter peripheral on the RX62N processor. Samples are collected at an
11.025 kHz rate, converted to PCM data, and then compressed to ADPCM.

Playback is a slightly more complicated process, requiring hardware to pace PWM adjustments. It starts by decoding a
segment of the ADPCM data into an array used as input into the Data Transfer Controller (DTC) peripheral. The DTC
is then started to transfer the PCM data to the PWM timer to modify the duty cycle. The DTC updates the PWM timer
at the defined sample rate of 11.025 kHz. When the DTC has finished transferring the current segment of the PCM data,
the processor is interrupted and another segment of decoded data is fed into the DTC. This process is repeated until the
entire audio sample has been processed.

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 9 of 20
August 10, 2011

7.1 Demo State Machine
There is a simple state machine that is used to manage the playback and record processes in the provided sample code.
There are 6 states:

Figure 4 ADPCM Demo State Machine

SOUND_IDLE is the idle state when no buttons have been pressed and no ADPCM data is being played. It can only
be entered from SOUND_PLAYING or SOUND_RECORDING_CANCELLED.

SOUND_PLAYBACK_REQUESTED is entered when switch SW1 is pressed on the board. It can only be entered
from SOUND_IDLE.

SOUND_PLAYING is entered when the “player” is started and remains in this state for the duration of the playback.
There is no way to “cancel” playback. It can only be entered from SOUND_PLAYBACK_REQUESTED.

SOUND_RECORD_REQUESTED is entered when switch SW2 is pressed. It can only be entered from
SOUND_IDLE.

SOUND_RECORDING is entered when the “recorder” is started. The state machine remains in this state while SW2
remains pressed and the recording buffer has not been filled. It can only be entered from
SOUND_RECORD_REQUESTED.

SOUND_RECORDING_CANCELLED is entered when the current recording is to be stopped. This can be because
SW2 has been released or the recording buffer has been filled. It can only be entered from SOUND_RECORDING.

7.2 Playback Selection from RAM or Flash
The sample code provides the ability to play back either a pre-encoded file that has been linked into flash with the build,
or play a dynamically created audio clip from RAM generated by the recording process done in the demo. A
preprocessor ‘#if’ statement in main_ADPCM.c (see Figure 5) determines whether a pre-linked audio clip from flash,
which comes with the workspace, is used as audio source, or a an audio clip from RAM. Note that the latter(RAM) is
only available after the user has first made a recorded audio clip using switch 2.

Figure 5 Depending on this preprocessor‘#if’ statement in main_ADPCM.c, either a pre-linked
 audio clip from flash which comes with the workspace is used as audio source, or a clip available after a recording to
RAM has been done - with PLAY_FROM_RAM set to 0 nothing will be played (silence) after startup until something is
recorded.

7.2.1 Playback from RAM
After user has recorded using switch 2, the audio data will be available in RAM (in the g_EncodedData[]). For this
to happen, PLAY_FROM_RAM must be set to 1 as described in 7.2. To play the “dynamically” created ADPCM file,
make the recording using Switch 2. Then simply press SW1 to listen.

7.2.2 Playback from Flash

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 10 of 20
August 10, 2011

If you wish to play a linked-in file in flash, you must change the code in main() to use the ADPCM data located at
ADPCM_ADDR instead of the data at g_EncodedData[].

The data in ADPCM_ADDR comes from the file adpcm_sample.dat located in the ADPCM_audiodata directory.
For this demo, the length of the file has been hardcoded by the constant ADPCM_DATA_SIZE.

If you wish to use a different audio file in your build, place your audio data file in the ADPCM_audiodata directory,
you can either rename your file to the name that the build is expecting or change the name that the build is to pick up.
In either case, you must also adjust the constant ADPCM_DATA_SIZE to the size of your new file.

(1) Creating Your Own ADPCM File on your PC

If you wish to create your own ADPCM file, included in this package is a tool called ADPCM.exe which encodes a
WAVE file into ADPCM format. Select the WAVE file you wish to convert. It must meet the following specifications:

Quantization bits: 16
Channels: Mono
Sampling Frequency 11.025 kHz
File Format WAV

Double-click on the ADPCM.exe file in the ADPCM_TOOL/bin directory to start the tool. In the ADPCM_TOOL/doc
directory is a PDF file that explains how to generate the file.

(2) Loading Prerecorded ADPCM to Flash

After you have encoded the file into ADCPM format, you need to change ADPCM audio files in the demo build by
doing the following:

Select “Build” then “RX Standard Toolchain…”. In the window that appears, click on the “Link/Library” tab.

In the “Category” pull down, select “Input” and then “Binary files” in the “Show entries for” pull down.

To modify the current entry, double-click on it (shown in blue in the above picture).

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 11 of 20
August 10, 2011

Now, edit the file path for the file you wish to use and hit “OK”.

After saving your change, be sure you have updated the constant ADPCM_DATA_SIZE and then rebuild the project.

7.2.3 Decoding Process Detail (MTU and DTC)
When the pressing of switch SW1 is detected, function SwitchPressCallback()conditionally changes the state
machine to SOUND_PLAYBACK_REQUESTED. Main() acknowledges the request, moves the state machine to
SOUND_PLAYING and calls ADPCM_Playback() to play the ADPCM file.

ADPCM_Playback() decodes a portion of the data file and builds an array of PCM data to be fed into the PWM
generator. This is done by utilizing the highly flexible RX62N DTC peripheral. It is set up to transfer data from the
fixed length PCM data array directly to MTU 8, CARRIER_MTU, which is used to generate the PWM signal.

The pacing of the DTC is controlled by MTU 7, SAMPLE_MTU, set up to generate an interrupt at the sample rate
(11.025 kHz). On every MTU 7 interrupt, the DTC will grab the next PCM data and update the register in the MTU
which is used to control the duty cycle (TGRB). All of this occurs in the background, freeing up the MCU to allow the
application to prepare the next portion of the file to be fed into the DTC.

When the DTC has transferred the last entry of the current array, the next MTU 7 interrupt is detected by the MCU and
the next portion of already decoded data is fed into the DTC. The process continues until the entire file has been played.

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 12 of 20
August 10, 2011

Figure 6 Playback Process Detail.

7.3 Recording with the board to RAM
Open the HEW workspace, build the project with PLAY_FROM_RAM set to 1 as described in 7.2. Load the image and
hit Reset/Go. The LCD should display the project name and simple instructions to use switch 2 to record. When ready
to make a recording, press and hold SW2 and then speak into the microphone located next to the speaker. Release the
button when done recording. The recording will also stop when the internal memory space allocated for the recording
is full.

LED14 will light while the recording is being made and is shut off when the recording process stops.

7.3.1 Encoding Process Detail
When a Switch 2 press is detected, SwitchPressCallback() will change the state machine to
SOUND_RECORDING_REQUESTED. Function main() acknowledges the request, changing the state machine to
SOUND_RECORDING and calls ADPCM_Record() to perform the actual recording.

The same MTU (MTU 8) is used for running the PWM recording as is used playback and is set up using RPDL (see 3
上の). It interrupts the processor at the a rate of 11.025 kHz, or every 91 us. The. The MTU interrupt is created by
RPDL and will trigger the callback routine provided by the user to the RPDL API, in our case
RecordSampleRateTimerCallback(). When this callback gets control, it reads the current value from the 12-
bit ADC peripheral and save it in a local array until four values have accumulated. These are then converted to four 16-
bit PCM values and saved in the global array g_InputData[]. ADPCM_Record() is then notified that there is data
ready for compression.

When ADPCM_Record() detects the notification, it calls EncodeData() to perform the ADPCM conversion. This
is then done by a function call to the ADPCM library.

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 13 of 20
August 10, 2011

Figure 7 The data array g_EncodedData[…]

The ADPCM encoded data is written to the data array g_EncodedData[] which is defined as a 27,563 (6BABh)
byte array. This provides 2*27,563=55,126 ADCPM samples. At 11.025 kHz, this allows for a recording of 5.00
seconds. Longer recordings can be made by modifying the constant MAX_DATA_LENGTH.

7.4 Selecting an ADPCM Encode/Decode Library
As mentioned earlier, there are three versions of the ADPCM libraries

• Decode only
• Encode only
• Encode and decode.
One version of the library must be linked into the demo build. By default, the full library (encode and decode) is linked
in.

To change the library, select “Build” then “RX Standard Toolchain…”. In the window that appears, click on
“Link/Library”.

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 14 of 20
August 10, 2011

Figure 8 In the “Category” pull down, select “Input” and then “Library files” in the “Show entries for” pull down.
Double click on the entry circled in red above.

Figure 9 In the “Modify library file” pop up, modify the file path and name to the library file to be included in the demo
build.

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 15 of 20
August 10, 2011

8. The “ADPCM_Lib” Workspace

Precompiled libraries
Also included with the demo code is a workspace to build your own ADPCM library. As mentioned earlier, three
projects are provided to custom build the library for your requirements. However, these libraries have already been
built and are included in the distribution.

These libraries are named and located at:

• RX_RDK_ADPCM_Demo/ADPCM_Lib/ADCPM/lib/RX62N_ADCPM.lib
• RX_RDK_ADPCM_Demo/ADPCM_Lib/ADCPM_Decode/lib/RX62N_ADCPM_Decode.lib
• RX_RDK_ADPCM_Demo/ADPCM_Lib/ADCPM_Encode/lib/RX62N_ADCPM_Encode.lib
The ADCPM_Demo project is configured to link in RX62N_ADPCM.lib directly from the directory it was built in.

ADPCM Source Code
The source code to build the various ADPCM libraries is located ADPCM_Lib/src.

The key functions are written in assembler and reside in the following files:

adpcm_encoder.src Compression routines

adpcm_decoder.src Decompression routines

adpcm_table.src Step and index tables used for both compression and decompression

Also included is a file called version.c, which reflects the current version of the encoding algorithm.

8.1 Encoding Library Functions
8.1.1 Initialization (R_apdcm_initEnc)

Prototype
void R_adpcm_initEnc(adpcm_env *wenv);

Explanation
This function initializes the sound data that is to be compressed.

This function has to be executed only once for completing the initialization before compressing consecutive ADPCM
data.

The adpcm_env structure data type is declared in the header file r_s2_lib.h. Before executing this function, declare the
adpcm_env type structure variable that is to be passed as an argument. Value need not be set to the argument before this
function is executed.

Return value
None

8.1.2 Compression (R_adpcm_encode)

Prototype
int16_t R_adpcm_encode(int16_t smpln, adpcm_env *wenv);

Explanation
This function encodes (compresses) 16-bit PCM data to 4-bit ADPCM data. Encoded data is stored in the memory area
initialized in the function R_adpcm_initEnc. The argument smpln specifies the number of bits into which ADPCM data
is to be encoded. Value of smpln must be in multiples of 4. The size of the output memory location depends upon the
smpln variable.

Return value
int32_t - If value of smpln is not in multiples of 4, -1 is returned, else 0 is returned

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 16 of 20
August 10, 2011

8.1.3 Refresh (R_adpcm_refreshEnc)

Prototype
void R_adpcm_refreshEnc(int16_t *inputAddr, uint8_t *outputAddr,
 adpcm_env *wenv);

Explanation
This function refreshes internal PCM input data buffer, and refreshes the output ADPCM data buffer. The argument
inputAddr specifies the memory area where input data is stored. The argument outputAddr specifies the memory area
where ADPCM data is stored. When this function and function R_adpcm_encode are called in succession,
R_adpcm_encode encodes from the top of the memory area pointed out by inputAddr, stores the encoded data from the
top of the memory area pointed out by outputAddr.

Table 1: Arguments for the initialization function

Argument Type Explanation

inputAddr int16_t * Top address of PCM data area.

outputAddr uint8_t * Top address of ADPCM data (compressed data) area.

wenv adpcm_env * Pointer to the encode management structure.

8.2 Decoding Library Functions
8.2.1 Initialization (R_adpcm_initDec)
Prototype:

void R_adpcm_initDec(adpcm_env *wenv);

Explanation
This function initializes the sound data to be expanded.

This function has to be executed only once before expanding consecutive ADPCM data.

The adpcm_env structure data type is declared in the header file r_s2_lib.h. Before executing this function, declare the
adpcm_env type structure variable that is to be passed as an argument. Value need not be set to the argument before this
function is executed.

Return value
None

8.2.2 Decompression (R_adpcm_decode)

Prototype
int16_t R_adpcm_decode(int16_t smpln, adpcm_env *wenv);

Explanation
This function converts the encoded 4bit ADPCM data into decoded 16bit PCM data. Decoded data is stored in the
memory area initialized in the function R_adpcm_refreshDec. The number of 16 bit samples decoded by each call to
this function is determined by smpln and must be a multiple of 2.

Define the output sample buffer before calling this function. The size of this buffer depends upon the smpln variable.
Required output memory will be size × 16 bit.

E.g. If size = 16, define int16_t buffer[16] to allocate storage for output sample buffer.

Return value
If the conversion size of the ADPCM data is an odd number, -1 is returned, else 0 is returned.

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 17 of 20
August 10, 2011

8.2.3 Refresh (R_adpcm_refreshDec)

Prototype
void R_adpcm_refreshDec(uint8_t *inputAddr, int16_t *outputAddr,
adpcm_env *wenv);

Explanation
This function refreshes internal ADPCM input data buffer and refreshes the output PCM data buffer. The argument
inputAddr specifies the memory area where input data is stored. The argument outputAddr specifies the memory area
where PCM data is stored. When this function and function R_adpcm_decode are called in succession,
R_adpcm_decode decodes from the top of the memory area pointed out by inputAddr, and stores the decoded data from
the top of the memory area pointed out by outputAddr.

Return value
None

9. Single File Audio Format Conversion GUI
There is a windows GUI tool ADPCM.exe in the folder ..\R8CSPB_AN\tools\ADPCM-tool that also comes with this
application note download. It can be used to create ADPCM encoded files from WAV-files one at a time. It can also be
used to decode ADPCM files to WAV files. See the manual for ADPCM-Tool.

Figure 10. The ADPCM Tool is a GUI for converting back and forth between ADPCM and WAV formats. After
selecting what format types to convert between and sampling frequency, press ‘Go’ to select the file to convert.

The ADPCM-tool GUI will only convert one audio clip at a time.

There are plenty of other audio conversion tools available on-line, however there are different ADPCM formats, not
always compatible with each other.

10. Appendix A
MTU Interrupt ISR instead of DTC - PWM Mode 2 - Stereo

An alternative software configuration of the timers with the YRDK62N board Rev.5 and higher could save MCU
resources by freeing up the DTC for other usage.

The MTU8 compare match interrupt request signal TGIA8A is used in the default code to trigger the DTC. The DTC
then writes the audio samples to the PWM output timer register (MTU8.TGRB) at the sampling rate. Instead of

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 18 of 20
August 10, 2011

triggering the DTC, the above TGIA8A signal’s interrupt service routine could be used instead. In addition to freeing up
the DTC, this method has the benefit that it could be used for both channels L+R (stereo) using the same MTU timer
setup and PWM mode (Mode 2). This means simpler code if both channels are used.

It is strongly recommended to use the timer registers in buffered mode so that the new value written to the PWM output
timer register at the beginning of each PWM count period, and not a random time within the PWM period, which could
result in audible disturbances.

Here is how the timers would be set up to do this, using MTU6 for the PWM duty cycles and another timer “MTUx” for
the PWM period:

• Set TMDR register for buffered mode so TGRC is buffer for TGRA, and TGRD is buffer for TGRB.

• Set the TMDR register for PWM Mode 2.

• Set TBTM for buffered mode and compare match.

PWM Duty cycle:

• Duty cycles for L+R channels set in the buffer registers MTU6.TGRC and MTU6.TGRD.

PWM Period:

• TSYR set for synchronous operation. This would make for synchronous operation of TCNT in MTU6 with
another MTU; “MTUx”.

• MTUx set to clear TCNT with one of its TGRs, for example MTUx.TGRA.

To do this, changes to the jumper settings and must be made. This is only possible in Rev. 5 of YRDK62N and higher.
Jumpers JP18 and JP19 must be set to use the MTU6 output pins MTIOC6A and MTIOC6B instead of the MTU8 pins
(MTIOC8A and MTIOC8B).

11. Appendix B
Using DAC instead of PWM

Instead of using a PWM signal generated by timers, the on-chip DAC could be used instead.

If working on a YRDKRX62N board with a revision higher than Rev. 5, there is a jumper JP17 place reserved on the
board which if used would connect the R audio channel to the DA1 pin, instead of a PWM source. To route the DAC
audio out to the speaker on the YRDKRX62N board, it is necessary to cut the trace that shunts JP17 pins 1 and 2. The
DA audio comes out on JP17 pin 3. Connect this pin instead to pin2 to route the DAC audio to the speaker. A 3-position
jumper header may be installed at JP17 so that the audio can easily be switched between PCM audio or DAC audio.

The DAC uses the same data that was extracted from the data stream for the PCM R channel, so the pointer to the audio
data buffer for the DAC should be the same as for loading the PWM output value (perhaps scaled). This data is
normally 16-bit format, and since no scaling to 10-bit values has been done for the DAC, there is the possibility that the
data may go out of the DAC range if the encoded signal amplitude level is too great. But as long as the data values
remain below 10-bits then the audio will reproduce correctly.

Initializing the DTC will be the same except that the destination address (DAR) will be the DAC data register.

/* Define location where DTC is to write DUTY cycle values. */
#define DTC_DESTINATION (uint16_t *)&DA.DADR1

Below is an example of DA initialization.

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 19 of 20
August 10, 2011

/***
Function Name : R_InitDA
* Declaration : void R_InitDA(void)
* Description : This function initializes DAC1
* Arguments : none
* Return value : none
***/
static void R_InitDA(void)
{
 PORT0.DDR.BIT.B5 = 0;
 PORT0.ICR.BIT.B5 = 0;

 /* Cancel D/A Converter Module Stop state. */
 SYSTEM.MSTPCRA.BIT.MSTPA19 = 0;

 /* Init D/A Data Register. */
 DA.DADR1 = 0x0020;

 /* D/A Control Register. */
 DA.DACR.BYTE = 0x9F; /* b7 DAOE1 - D/A Output Enable 1 - enabled.
 b6 DAOE0 - D/A Output Enable 0 - disabled.
 b5 DAE - D/A Enable 0 - independent on each channel
 b4:b0 Reserved - Set to 1.*/

 /* D/A Data Placement Register. */
 DA.DADPR.BYTE = 0x00; /* b7 DPSEL - Data Placement Select aligned to LSB.
 b6:b0 Reserved - Set to 0.*/
}

RX62N Group ADPCM Audio Compression Record and Playback

R01AN0698EU0102 Rev. 1.02 Page 20 of 20
August 10, 2011

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 Jun.7.11 — First edition issued
1.01 July 25, ‘11 Changed 6.1, 6.3, 7.2.1, 7.3.
1.02 August 10, ‘11 Changed 6.1, 6.3

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

⎯ When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

⎯ The characteristics of an MPU or MCU in the same group but having a different part number may
differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation. All rights reserved.

Colophon 1.1

