
 Application Note

R01AN6129EJ0101 Rev.1.01 Page 1 of 56

Feb.7.22

RX23W Group

Temperature and Humidity Sensor Data Communication Sample Code Using
Bluetooth Mesh Network

Introduction

This application note describes a Mesh temperature and humidity sensor data communication demo (Mesh

Sensor Demo) that utilizes a Sensor Model included in the Bluetooth🄬 Mesh module for the RX23W.

Mesh Network (MtoM communication) of the Bluetooth Low Energy communication makes it possible to send
data over much farther distances than conventional PtoP communication, easily expand the network by
adding nodes, and build the network that is resistant to communication failures.

This application note and the associated program were created using RX23W Group Bluetooth Mesh Stack
Development Guide (R01AN4875) as a reference.

Operation Confirmation Devices

• RX23W Group

• Temperature and humidity sensor

Renesas Electronics HS300x Relative Humidity and Temperature Sensor (HS300x sensor)

Operation Confirmation Boards

• Target Board for RX23W (TB-RX23W board)

• HS3001 Sensor Board*1: Relative Humidity Sensor Pmod™ Board (US082-HS3001EVZ)

• Converter board*1: Interposer Board for Pmod Type 2A/3A to 6A (US082-INTERPEVZ)

Note: 1. Contact a Renesas representative for information on obtaining the Interposer Board.

Even if the HS3001 Sensor Board is not connected, it is possible to confirm the communication

functionality using the Sensor Model because pseudo data transmission is possible.

Related Documents

This application note refers to and explains the following documents. In addition, the last 6 digits of the
document number are omitted. The chapter structure may change when the document is updated. Please be
careful when referencing.

Document Title Document No.

RX Family

Renesas Sensor Control Modules Firmware Integration Technology

R01AN5892EJ0110

RX Family

Renesas HS300x Sensor Control Module Firmware Integration Technology

R01AN5893EJ0110

RX Family

Renesas Sensor I2C Communication Middleware Control Module Firmware

Integration Technology

R01AN5895EJ0110

RX23W Group

Bluetooth Mesh Stack Startup Guide

R01AN4874EJ0120

RX23W Group

Bluetooth Mesh Stack Development Guide

R01AN4875EJ0120

RX23W Group

Bluetooth Mesh Module Using Firmware Integration Technology

R01AN4930EJ0120

RX23W Group

BLE Module Firmware Integration Technology

R01AN4860EJ0230

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 2 of 56

Feb.7.22

Contents

1. Overview ... 4

1.1 System Overview ... 4

1.1.1 Mesh Network Configuration and Data Flows ... 4

1.1.2 MOT Files and e2 studio Projects in Mesh Sensor Demo Package .. 6

1.2 Folder and File Structure ... 7

1.2.1 Folder Structure ... 7

1.2.2 Principal FIT Modules Used by Mesh Sensor Demo Project .. 10

1.2.3 Smartphone App ‘Renesas Bluetooth Mesh Mobile’ ... 11

1.3 Operation Confirmation Environment .. 12

1.4 Code Size .. 12

2. Firmware Programming ... 13

2.1 Programming the RX23W Using Renesas Flash Programmer ... 13

3. Demo ... 16

3.1 Demo Overview ... 16

3.2 Hardware Environment .. 17

3.3 Software Environment ... 19

3.3.1 Terminal Emulator Software Settings .. 19

3.3.2 Installing Mesh Mobile ... 19

3.4 Sensor Data Communication Demo .. 20

3.4.1 Provisioning and Configuration using Mesh Mobile .. 20

3.4.2 Establishment of Friendship between Low Power (Sensor Server_Low Power with Low Power

Feature Enabled) Node and Friend (Friend_Relay) Node .. 25

3.4.3 Sensor Data Transmission by Sensor Server (Sensor Server_Low Power) Node 26

3.4.4 Sensor Data Reception by Sensor Client Node .. 27

3.5 Sensor Data Send Interval Change Demo .. 28

3.6 Operation Change Based on Friend Node Presence/Absence Demo .. 29

3.7 Operation Changes Due to Presence/Absence of Relay Node .. 30

4. Program Description .. 31

4.1 Software Configuration .. 31

4.1.1 Software Configuration of Sensor Server_Low Power Node .. 31

4.1.2 Software Configuration of Sensor Client Node ... 31

4.2 Mesh Models ... 32

4.2.1 Mesh Model Configuration of Each Node ... 32

4.2.2 Sensor Model (Sensor Server/Sensor Client) Settings ... 33

4.2.3 Sensor Models... 33

4.3 Optional Features Node Settings .. 35

4.3.1 Relay Node .. 35

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 3 of 56

Feb.7.22

4.3.2 Low Power Node ... 35

4.3.3 Friend Node ... 36

4.4 Node Configuration Settings ... 37

4.5 Each Node Project and Mesh Sample Header File (mesh_appl.h) Macro Settings 37

4.6 Program Differences.. 38

4.6.1 Settings in r_xxx_config.h File Related to Mesh FIT Module .. 38

4.6.2 tbrx23w_sensor_mesh_server and tbrx23w_sensor_mesh_client Projects 39

4.6.2.1 tbrx23w_sensor_mesh_server Project .. 39

4.6.2.2 tbrx23w_sensor_mesh_server Project .. 47

4.6.3 tbrx23w_sensor_mesh_friend Project ... 52

4.7 Global Variables .. 52

4.8 Main Processing .. 53

5. Troubleshooting ... 54

Revision History .. 56

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 4 of 56

Feb.7.22

1. Overview

1.1 System Overview

All the nodes used for Mesh network employ the RX23W. A Bluetooth Mesh network is constructed from a
Sensor Server node, a Sensor Client node, nodes with Relay feature, and a node with Friend feature, and
temperature and humidity data from the HS300x sensor connected to the Sensor Server node is transmitted

to the Sensor Client node. Requests to change the send interval for sensor data (default 2 seconds 5
seconds) can be sent from the Sensor Client node to the Sensor Server node.

In addition, the Sensor Server node has Low Power feature to reduce power consumption.

The Renesas Bluetooth Smartphone application, a smartphone app for configuring Mesh node settings, and
be used for provisioning and configuration of all the nodes.

1.1.1 Mesh Network Configuration and Data Flows

(1) Network Configuration for Mesh Sensor Demo

Table 1-1 lists the nodes in the Mesh Sensor Demo, and Figure 1-1 shows the Mesh network configuration.

For the configuration of elements and models for each node, refer to 4.2, ‘Mesh Models’.

Table 1-1 Nodes

Node Description

Sensor Client Node that operates as a Sensor Client Model

The following operations are supported:

• Reception of sensor data

• Transmission of sensor data send interval change request values

Sensor Server

_Low Power

Node that operates as a Sensor Server Model and has the optional Low Power feature

In the description that follows, this node is sometimes referred to as the Sensor Server

node or Low Power node.

The following operations are supported:

• Acquisition and transmission of measurement data from the connected sensor device

• Reception of sensor data send interval change request values and switching of the

send interval

Friend_Relay Node with optional Friend and Relay feature

In the description that follows, this node is sometimes referred to as the Friend node.

Relay Node with optional Relay feature

Sensor Server
_Low Power

Friend_Relay

Relay

Sensor Client

Figure 1-1 Network Configuration for Mesh Sensor Demo

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 5 of 56

Feb.7.22

(2) Flow of Messages (Sensor Data) from Sensor Server Node to Sensor Client Node

Figure 1-2 shows the flow of sensor data when the Sensor Client receives measurement data from the
Sensor Server. Even if the Sensor Client node is outside direct radio range of the Sensor Server node, the
Sensor Client node can receive the sensor data via nodes with Relay feature.

Sensor Server
_Low Power

Friend_Relay

Relay

Sensor Client

Sensor Data

Sensor Data

<Source>

<Destination>

Retransmission

Retransmission

Direct Radio
Range

Figure 1-2 Data Flow when Sensor Client Node Is Outside Direct Radio Range of Sensor Server Node

(3) Flow of Messages (Sensor Data Send Interval Change Requests) from Sensor Client Node to
Sensor Server Node

The Sensor Server (Sensor Server_Low Power) node with Low Power feature can run with Low Power
feature by establishing a friendship relationship with the Friend node. For this reason, messages from the
Sensor Client node are stored on the Friend node. The Sensor Server node can then receive the messages
stored on the Friend node when scanning restarts.

Figure 1-3 shows the flow of messages (sensor data send interval change request values).

SensorServer
_Low Power

Friend_Relay

Relay

Sensor Client

Friend Poll

Stored
messages

Direct Radio
Range

Messages
Storage

<Source>

<Destination>

Figure 1-3 Flow of Messages from Sensor Client Node

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 6 of 56

Feb.7.22

1.1.2 MOT Files and e2 studio Projects in Mesh Sensor Demo Package

An overview of the MOT files and e2 studio projects in the package is presented below.

(1) MOT Files

The package contains the MOT files listed in Table 1-2.

After programming the MOT files to the TB-RX23W boards, you can run the demo immediately.

For the programming procedure, refer to 2.1, ‘Programming the RX23W Using Renesas Flash Programmer’.

For the project settings used to create the MOT files, refer to 1.3, ‘Operation Confirmation Environment’.

Table 1-2 MOT Files

MOT File Name Description*1

tbrx23w_mesh_sensor_server.mot Sensor Server model for TB-RX23W board

tbrx23w_mesh_sensor_client.mot Sensor Client model for TB-RX23W board

tbrx23w_mesh_sensor_friend.mot*2 Friend_Relay node for TB-RX23W board

Relay node for TB-RX23W board

Notes: 1. All files are stored in the FITDemos\ROM_Files folder.

 2. The same MOT file is used for the Friend_Relay node and the Relay node.

(2) e2 studio Projects

The package contains the Sensor Model projects listed in Table 1-3.

To run the demo, import each e2 studio project and program it to the appropriate TB-RX23W board.

For the e2 studio project settings, refer to 1.3, ‘Operation Confirmation Environment’.

Table 1-3 Sensor Model Projects

Project Name Description and Name of Storage Folder

tbrx23w_mesh_sensor_server Sensor Server model project for TB-RX23W board

Folder name: tbrx23w_mesh_sensor_server

tbrx23w_mesh_sensor_client Sensor Client model project for TB-RX23W board

Folder name: tbrx23w_mesh_sensor_client

tbrx23w_mesh_sensor_friend Friend_Relay node and Relay node project for TB-RX23W board

Folder name: tbrx23w_mesh_sensor_friend

Note: Each project uses BLE module Ver.2.30.

The above projects were created using the tbrx23w_mesh_server project and tbrx23w_mesh_client project
contained in the ‘Bluetooth Mesh Stack package’ (R01AN4930) as a basis.

For the differences between the projects, refer to 4.6, ‘Program Differences’.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 7 of 56

Feb.7.22

1.2 Folder and File Structure

1.2.1 Folder Structure

The structure of the folders and files is shown below. Some folders and files have been omitted.

(1) r01an6129xx0101-rx23w-blemesh-sensor.zip

r01an6129xx0101-rx23w-blemesh-sensor

├─FITDemos

│ ├─ROM_Files

│ │ ├─tbrx23w_mesh_sensor_client.mot MOT File for Sensor Client Node

│ │ ├─tbrx23w_mesh_sensor_friend.mot MOT File for Friend_Relay Node

│ │ └─tbrx23w_mesh_sensor_server.mot MOT File for Sensor Server Node

│ ├─tbrx23w_mesh_sensor_client.zip Project Zip file for Sensor Client Node

│ ├─tbrx23w_mesh_sensor_friend.zip Project Zip file for Friend_Relay Node

│ └─tbrx23w_mesh_sensor_server.zip Project Zip file for Sensor Server Node

├─r01an6129ej0101-rx23w-blemesh-sensor

└─r01an6129jj0101-rx23w-blemesh-sensor

Figure 1-4 Package Folder and File Structure

(2) tbrx23w_mesh_sensor_client.zip

tbrx23w_mesh_sensor_client

├─.cproject

├─.project

├─.settings

├─src

│ ├─main.c

│ ├─mesh_appl.h

│ ├─mesh_core.c

│ ├─mesh_model.c

│ ├─smc_gen

│ │ ├─general

│ │ ├─r_ble_rx23w

│ │ ├─r_bsp

│ │ ├─r_byteq

│ │ ├─r_cmt_rx

│ │ ├─r_config

│ │ ├─r_flash_rx

│ │ ├─r_gpio_rx

│ │ ├─r_irq_rx

│ │ ├─r_lpc_rx

│ │ ├─r_mesh_rx23w

│ │ ├─r_pincfg

│ │ └─r_sci_rx

│ └─vendor_model

├─tbrx23w_mesh_client HardwareDebug.launch

├─tbrx23w_mesh_client.rcpc

└─tbrx23w_mesh_client.scfg

Figure 1-5 Folder and File Structure of tbrx23w_mesh_sensor_client.zip

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 8 of 56

Feb.7.22

(3) tbrx23w_mesh_sensor_friend.zip

tbrx23w_mesh_sensor_friend

├─.cproject

├─.project

├─.settings

├─src

│ ├─main.c

│ ├─mesh_appl.h

│ ├─mesh_core.c

│ ├─mesh_model.c

│ ├─smc_gen

│ │ ├─general

│ │ ├─r_ble_rx23w

│ │ ├─r_bsp

│ │ ├─r_byteq

│ │ ├─r_cmt_rx

│ │ ├─r_config

│ │ ├─r_flash_rx

│ │ ├─r_gpio_rx

│ │ ├─r_irq_rx

│ │ ├─r_lpc_rx

│ │ ├─r_mesh_rx23w

│ │ ├─r_pincfg

│ │ └─r_sci_rx

│ └─vendor_model

│ ├─vendor_api.h

│ ├─vendor_client.c

│ └─vendor_server.c

├─tbrx23w_mesh_client HardwareDebug.launch

├─tbrx23w_mesh_client.rcpc

└─tbrx23w_mesh_client.scfg

Figure 1-6 Folder and File Structure of tbrx23w_mesh_sensor_friend.zip

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 9 of 56

Feb.7.22

(4) tbrx23w_mesh_sensor_server.zip

tbrx23w_mesh_sensor_server

├─.cproject

├─.project

├─.settings

├─src

│ ├─hs300x

│ │ ├─RX_HS300X.c

│ │ └─RX_HS300X.h

│ ├─main.c

│ ├─mesh_appl.h

│ ├─mesh_core.c

│ ├─mesh_model.c

│ ├─smc_gen

│ │ ├─general

│ │ ├─r_ble_rx23w

│ │ ├─r_bsp

│ │ ├─r_byteq

│ │ ├─r_cmt_rx

│ │ ├─r_comms_i2c_rx : I2C COMM Module

│ │ ├─r_config

│ │ ├─r_flash_rx

│ │ ├─r_gpio_rx

│ │ ├─r_hs300x_rx : HS300x Module

│ │ ├─r_irq_rx

│ │ ├─r_lpc_rx

│ │ ├─r_mesh_rx23w

│ │ ├─r_pincfg

│ │ ├─r_riic_rx : RIIC Module (Not used)

│ │ ├─r_sci_iic_rx : SCI Simple I2C Mode

│ │ └─r_sci_rx

│ └─vendor_model

│ ├─vendor_api.h

│ ├─vendor_client.c

│ └─vendor_server.c

├─tbrx23w_mesh_sensor_server.x.launch

├─tbrx23w_mesh_server HardwareDebug.launch

├─tbrx23w_mesh_server.rcpc

└─tbrx23w_mesh_server.scfg

Figure 1-7 Folder and File Structure of tbrx23w_mesh_sensor_server.zip

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 10 of 56

Feb.7.22

1.2.2 Principal FIT Modules Used by Mesh Sensor Demo Project

Figure 1-8 shows the component settings of the Sensor Client project and Sensor Server project.

Sensor client project Sensor server project

Figure 1-8 Project Component Settings

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 11 of 56

Feb.7.22

The principal FIT modules used are described below in Table 1-4.

For information on the other FIT modules (e.g., the BSP FIT module) required when using the FIT modules
below, refer to the documentation of each FIT module.

For the configuration of the software layer of the FIT modules, refer to 4.1, ‘Software Configuration’. Also
refer to 1.3, ‘Operation Confirmation Environment’.

Table 1-4 Principal FIT Modules used

Module

Name

Module

Ver.

Description

Bluetooth

Mesh Module

(Mesh FIT

Module)

Ver.1.20 This module includes the Bluetooth Mesh stack layer and Bluetooth bearer
wrapper layer.

The Bluetooth Mesh stack package (R01AN4930xx0120) contains demo

projects such as the tbrx23w_mesh_server project and tbrx23w_mesh_client

project, as well as the smartphone application.

BLE Module

(BLE FIT

Module)

Ver.2.30 This module includes the Bluetooth Low Energy protocol stack layer.

HS300x

Module

Ver.1.10 This module acquires data from an HS300x sensor connected to the I2C bus.

This module controls the I2C module via the I2C COMMS module.

I2C COMMS

Module

Ver.1.10 This module connects the HS300x module and the I2C module.

I2C Module Ver.2.49 This module controls the I2C bus. It is intended for use with the RIIC module
or SCI Simple I2C Mode module.

The Mesh Sensor Demo uses the SCI Simple I2C Mode module.

The RIIC module is included, but it is not used due to issues regarding the
connector for connecting the sensor.

1.2.3 Smartphone App ‘Renesas Bluetooth Mesh Mobile’

The ‘Renesas Bluetooth Mesh Mobile’ (Mesh Mobile) included in the Bluetooth Mesh stack package
(R01AN4930) is used with the demo.

Also refer to 1.3, ‘Operation Confirmation Environment’.

Mesh Mobile is a sample application provided for use with the demo. It can be used to perform provisioning
and configuration of the nodes.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 12 of 56

Feb.7.22

1.3 Operation Confirmation Environment

(1) Operation Confirmation Conditions

The operation of the Mesh Sensor Demo has been confirmed under the conditions listed below.

Table 1-5 Operation Confirmation Conditions

Item Description

MCU RX23W

MCU board Target Board for RX23W (TB-RX23W board)

Sensor HS3001

Sensor board Relative Humidity Sensor Pmod Board (US082-HS3001EVZ)

Interface converter

board

Interposer Board for Pmod Type 2A/3A to 6A (US082-INTERPEVZ)

Converter board for connecting the PMOD connector on the MCU board to the

sensor board.

IDE e2 studio 2021-07 or later

Toolchain CC-RX V2.08.01

Firmware

concatenation tool

Renesas Flash Programmer V3.08.03 or later

Smartphone Handset running Android™ OS 8 or later

Mesh Mobile

application

Renesas Bluetooth Mesh Mobile

Included in Bluetooth Mesh stack package (R01AN4930).

It has been confirmed to work with the one included in R01AN4930xx0120.

(2) Node Function Settings

The demo uses the four types of nodes shown in Figure 1-1, ‘Network Configuration for Mesh Sensor Demo’.

Table 1-6 lists the feature settings of each node.

Refer to 3.2, ‘Hardware Environment’, for information on implementing the demo with a small number of
boards.

Table 1-6 Optional Feature Settings of Nodes

Node Features

Sensor Client Node Sensor Client feature

Sensor Server_Low Power Node Sensor Server feature

Low Power feature enabled

Friend_Relay Node*1 Friend feature and Relay feature enabled

Relay Node*1 Relay feature enabled

Notes: Nodes other than those listed above require features. Also refer to 4.2, ‘Mesh Models’.

 1. These nodes can run as a Friend_Relay node or Relay node by means of the configuration

described below.

1.4 Code Size

Figure 1-7 shows the code size of each node.

Table 1-7 Code Size Lists

Project Total Subtotal of BLE Section and

MESH Section

tbrx23w_mesh_sensor_server ROM: 315KB

RAM: 45KB

ROM：227KB

RAM：21KB

tbrx23w_mesh_sensor_client ROM: 298KB

RAM: 44KB

ROM：227KB

RAM：21KB

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 13 of 56

Feb.7.22

2. Firmware Programming

The procedure for programming the RX23W using the Renesas Flash Programmer is described below.

2.1 Programming the RX23W Using Renesas Flash Programmer

You can use the Renesas Flash Programmer to program a MOT file to the RX23W on the board. Refer to
Table 1-2, ‘MOT Files’, for a list of the bundled MOT files.

Obtain Renesas Flash Programmer V3.08.03 or later from the link below.

https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui

The programming procedure is described below.

(1) ESW1 Switch Setting when Programming TB-RX23W Board

Make the following setting.

• Firmware programming and debugging: Set the ESW1 2-4 to ON.

Figure 2-1 ESW1 Switch Setting when Programming TB-RX23W Board

(2) Connecting the PC to the TB-RX23W Board

Connect the PC to the emulator connector (ECN1) with a USB cable as shown in Figure 2-2.

Figure 2-2 Connecting the PC to the TB-RX23W Board

ESW1

ECN1

https://www.renesas.com/software-tool/renesas-flash-programmer-programming-gui

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 14 of 56

Feb.7.22

(3) Renesas Flash Programmer startup and connection processing

Launch the Renesas Flash Programmer.

The procedure differs depending on whether or not a Renesas Flash Programmer project has already been
created. The following two versions of the procedure are described here.

a. Procedure when Renesas Flash Programmer project has not yet been created

b. Procedure when Renesas Flash Programmer project has already been created

(a) Procedure when Renesas Flash Programmer project has not yet been created

1. Creating a New Project

From the File menu, select Create New Project….

Make the following settings.

• Project Information → Microcontroller: RX200

• Communication → Tool: E2 emulator Lite (Specifies the onboard emulator on the TB-RX23W

board.)

• Communication → Interface: FINE

Confirm that Power: None is displayed under Communication.

Figure 2-3 Project Information and Communication Settings

2. Connection Processing

Click the Connect button shown in Figure 2-3. The Renesas Flash Programmer starts connection

processing.

Confirm that the following is displayed in the log output window.

Figure 2-4 Display in Log Output Window upon Successful Connection

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 15 of 56

Feb.7.22

(b) Procedure when Renesas Flash Programmer project has already been created

1. Opening the Project

From the File menu, select Open Project… and select the project file.

Select the Connect Settings tab and confirm the following settings under Communication.

• Tool: E2 emulator Lite (Specifies the onboard emulator on the TB-RX23W board.)

• Interface: FINE

• Power: None

Figure 2-5 Settings on Connect Settings Tab

(4) Programming to the TB-RX23W Board

Follow the operation procedure of the Renesas Flash Programmer to program the firmware to the TB-
RX23W board.

(5) ESW1 Switch Setting after Programming to TB-RX23W Board

Make the following setting to run the demo.

• To execute firmware without using the onboard emulator: Set the ESW1 2-4 to OFF.

Figure 2-6 ESW1 Switch Setting after Programming to TB-RX23W Board

ESW1

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 16 of 56

Feb.7.22

3. Demo

The procedure for running the Mesh Sensor Demo is described below.

3.1 Demo Overview

The nodes and network configuration shown in Figure 3-1, ‘Overall Configuration of Demo’ can be used to
demonstrate sensor data communication from the Sensor Server node to the Sensor Client node and data
send interval change request communication from the Sensor Client node to the Sensor Server node, as
summarized in Table 3-1.

In addition, node state changes are output to logs via serial communication.

Table 3-1 Overview Description of Demo Operations

Node Overview of Demo Operations

Sensor Server

_Low Power
• Acquisition and transmission of sensor data, and establishing of Friendship with

Friend node:

Refer to 3.4, ‘Sensor Data Communication Demo’.

• Reception of sensor data send interval change requests and interval change

processing:

Refer to 3.5, ‘Sensor Data Send Interval Change Demo’.

Sensor Client • Reception of sensor data:

Refer to 3.4, ‘Sensor Data Communication Demo’.

• Sensor data send interval change requests:

Refer to 3.5, ‘Sensor Data Send Interval Change Demo’.

Friend_Relay • Low Power node operation change confirmation depending on the Friend node

presence/absence:

Refer to 3.6, ‘Operation Change Based on Friend Node Presence/Absence Demo’.

• Mesh network communication change confirmation depending on the Friend node

presence/absence*1.

Relay • Mesh network communication change confirmation depending on the Relay

presence/absence*1.

Notes: It does not transition all nodes to low power software standby mode of the RX MCU’s Low power

consumption.

 1. If all nodes are placed in close proximity, it is not possible to confirm the Mesh network changes

depending on the presence or absence of the nodes.

SensorServer_Low Power

Friend_Relay

Relay

Sensor Client

LOG

USB

USB

Provisioning & Configurarion Tartget

Sensorconnected to
PMOD connector

Figure 3-1 Overall Configuration of Demo

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 17 of 56

Feb.7.22

3.2 Hardware Environment

The hardware configuration of the demo is described below.

(1) TB-RX23W Board

TB-RX23W boards are used for the four types of nodes shown in Figure 3-1, ‘Overall Configuration of
Demo’.

Refer to section 2, ‘Firmware Programming’, and program the appropriate firmware to each board
beforehand.

If an insufficient number of boards are available, you can still confirm the Sensor Model feature using
a minimum of two boards.

Table 3-2 TB-RX23W Board Configuration

Node Number of Boards Remarks

Sensor Client 1 (required) ⎯

Sensor Server

_Low Power

1 (required) ⎯

Friend_Relay 1 (optional)

Priority: High

The Low Power feature of the Sensor Server_Low Power node

will not work if this node is not present.

If neither this node nor the Relay node is present, place the

Sensor Client node and Sensor Server_Low Power node near

enough to each other to allow direct one-to-one communication

between them.

Relay 1 (optional)

Priority: Low

If this node is not present, either place the Sensor Client node

and Sensor Server_Low Power node near enough to each other

to allow direct one-to-one communication between them, or

place another node with Relay feature between them at the

distance where communication is possible.

(2) Confirming ESW1 Switch Setting on TB-RX23W Board

Make the following setting to run the demo.

• To execute firmware without using the onboard emulator: Set ESW1 2-4 to OFF.

The demo will not operate properly if the ESW1 switch setting is incorrect.

Figure 3-2 ESW1 Switch Setting on TB-RX23W Board for Demo

ESW1

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 18 of 56

Feb.7.22

(3) Connection between TB-RX23W Board for Sensor Server_Low Power Node and HS3001 Sensor
Board

Use a multi-stage connection to connect the HS3001 Sensor Board (US082-HS3001EVZ) to the PMOD
connector (CN2) via the converter board (US082-INTERPEVZ), as shown in Figure 3-3.

Confirm the mark indicating pin 1 on the converter board (US082-INTERPEVZ) and make sure to plug it into
the PMOD connector (CN2) correctly.

Short both pairs of jumper pins (J4 and J5) on the HS3001 Sensor Board (US082-HS3001EVZ) to enable
pull-up processing of I2C bus signals.

Note that if no HS3001 Sensor Board is present, pseudo data is generated in place of actual sensor
data.

Figure 3-3 Connection between TB-RX23W Board for Sensor Server_Low Power Node and

HS3001 Sensor Board

(4) Connecting the Serial Cable for Log Output to the PC and TB-RX23W Board

Each TB-RX23W board can produce log output.

Use a USB cable to connect the PC to the USB serial converter connector (CN5) as shown in Figure 3-4.

Figure 3-4 Serial Cable Connection between PC and TB-RX23W Board

(5) Smartphone

A smartphone is used for provisioning and configuration of each node. Refer to 1.3, ‘Operation Confirmation
Environment’.

HS3001 Sensor Board
US082-HS3001EVZ

#1

#1
#1

#1

 J4

 J5

J4, J5: Short

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 19 of 56

Feb.7.22

3.3 Software Environment

First, refer to section 2, ‘Firmware Programming’, and program the firmware to the TB-RX23W boards.

3.3.1 Terminal Emulator Software Settings

Terminal emulator software (e.g., Tera Term) is required to generate log output using serial communication.
Note that a serial communication channel (SCI channel 8 in the case of the TB-RX23W boards) must be
enabled in order to implement log output.

For the setting procedure, refer to 5.4.2, ‘r_ble_rx23w’, and 5.4.3, ‘r_sci_rx’, in ‘RX23W Group: Bluetooth
Mesh Module Using Firmware Integration Technology’ (R01AN4930).

(1) Serial Port Settings

Table 3-3 lists the serial port settings.

Table 3-3 Serial port settings

Item Setting

Baud rate 115,200 bps

Data 8 bits

Parity None

Stop 1 bit

Flow control None

3.3.2 Installing Mesh Mobile

Mesh Mobile is a tool for provisioning and configuration of Mesh nodes. It is contained in the Bluetooth Mesh
stack package (R01AN4930).

If you have not already done so, install Mesh Mobile on the smartphone. An example of the installation
procedure is described below.

Step 1: Copy the package file (apk file) located in the following folder of the Bluetooth Mesh stack package

(R01AN4930) from the PC to the smartphone via USB.

FITDemos\mesh_mobile\android-debug.apk

Step 2: Use a file manager application to run the apk file on the smartphone.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 20 of 56

Feb.7.22

3.4 Sensor Data Communication Demo

Communication of sensor data is started by the following processing sequence. Also refer to section 7,
‘Demonstration’, in ‘RX23W Group Bluetooth Mesh Stack Startup Guide’ (R01AN4874).

1. Provisioning and configuration using Mesh Mobile

2. Establishment of friendship between Low Power (Sensor Server_Low Power with Low Power feature

enabled) node and Friend (Friend_Relay) node

3. Sensor data transmission by Sensor Server_Low Power node

4. Sensor data reception by Sensor Client node

3.4.1 Provisioning and Configuration using Mesh Mobile

Supply power to all boards and launch Mesh Mobile.

Note: You will need to enable the following settings in order to use Mesh Mobile on an Android smartphone.

• Location information

• Storage

The setting procedure for provisioning and configuration is described below.

If the setting procedure does not proceed as indicated below, refer to section 5, ‘Troubleshooting’.

(1) Provisioning

This step involves adding each device to the Mesh network and registering it as a node.

Carry out the following procedure for each board.

1. Select the PROVISION tab and tap the SCAN button to search for unprovisioned devices.

2. From the search results, select a device to perform provisioning.

3. After a connection is established, provisioning is executed.

 Tap the SCAN button. Tap a device. Provisioning in progress.

Figure 3-5 Step 1 Provisioning Screens

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 21 of 56

Feb.7.22

(2) Configuration

This step configures the provisioned nodes.

Configuration activates each node and enables Mesh model communication.

The following setting are supported.

• Setting multiple nodes as a group

You can add multiple nodes to a specified group that can then be manipulated.

It is possible to create groups without depending on Mesh models.

• Configuring settings for optional features (firmware dependent) of nodes

(a) Adding a Group

Due to usage limitations, you should skip the group addition setting procedure described below. Later, we
will make use of a ‘Demo’ group. Modifications are planned for the next Bluetooth Mesh stack package or
later.

Carry out the following procedure to create a group.

1. Select the MODELS tab and tap the ADD GROUP button.

Groups are not dependent on Mesh models, so you can add a group when either the GENERIC

ONOFF tab or the VENDOR STRING tab is selected.

2. On the ADD GROUP dialog panel, enter a group name, such as “Kitchen.”

3. Confirm that the group has been added.

 Adding a group. Group added successfully.

Figure 3-6 Step 2 Configuration (Add Group) Screen

Enter the group

name in the open

dialog panel.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 22 of 56

Feb.7.22

(b) Group Registration Settings and Node Settings for Each Board

Carry out the following procedure to register each board with a group.

Due to usage limitations, you should register the boards with the ‘Demo’ group.

1. Select the CONFIG tab and tap the SCAN button to search for nodes.

2. Nodes that are available for connection are displayed in green. Tap a node displayed in green to

establish a connection and perform configuration.

3. After the configuration information is displayed, select the CONFIGURATION tab.

Display of configuration information

Figure 3-7 Step 2 Configuration (Group Registration and Node Settings) Screen (1/2)

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 23 of 56

Feb.7.22

4. Select the appropriate group and node settings on the CONFIGURATION tab.

5. Tap the APPLY button.

Table 3-4 lists the settings for each node used in the demo. Figure 3-8 shows screenshots of the settings.

Table 3-4 Nodes

Sensor Client

Node

Sensor Server

_Low Power Node Friend_Relay Node Relay Node

Select the Group. • Select Friend and Relay.

• The Group setting is not

needed.

• Select Relay.

• The Group setting is not

needed.

 Client/Server node Friend_Relay node Relay node

Figure 3-8 Step 2 Configuration (Group Registration and Node Settings) Screen (2/2)

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 24 of 56

Feb.7.22

6. After finishing configuration, tap the DISCONNECT button to go to the CONFIG tab.

Figure 3-9 Step 2 Configuration Screen (DISCONNECT)

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 25 of 56

Feb.7.22

3.4.2 Establishment of Friendship between Low Power (Sensor Server_Low Power with
Low Power Feature Enabled) Node and Friend (Friend_Relay) Node

When provisioning and configuration of the Low Power node are complete, processing to establish a
friendship with the Friend node starts.
After the friendship is established, the Low Power node automatically suspends and resumes scanning and
polls the Friend node. Also refer to Figure 4-6, 'Operation of Lower-Power Node and Friend Node’.

Figure 3-10 shows log output during processing by the Low Power node to establish a friendship.

…

Figure 3-10 Log Output during Processing by Low Power Node when Establishing Friendship

The log sequence is described below.

(1) Low Power Node Log

Table 3-5 lists the items in the log of the Low Power node.

Also refer to 3.5.2, ‘Low Power Node’, and 3.5.3, ‘Low Power Node Sequence’, in ‘RX23W Group Bluetooth
Mesh Stack Development Guide’ (R01AN4875).

Table 3-5 Contents of Low Power Node Log

Log Entry Description

[LPN] MS_trn_lpn_setup_friendship() Indicates that sending of a Friend Request to establish a

friendship with a Friend node has started.

[LPN] MS_TRN_FRIEND_SETP_CNF Friendship establishment completion event

[ACCESS] MS_access_cm_get_all_model

_subscription_list()

Indicates acquisition of all subscription addresses of the

Low Power node.

[LPN] MS_trn_lpn_subscrn_list_add()*1 Indicates addition of all subscription addresses of the

Low Power node to the friend subscription list of the

Friend node

[LPN] MS_TRN_FRIEND_SUBSCRNLIST

_CNF

All subscription address registration events on the Friend

Subscription List.

Note: 1. This enables the Friend node to store messages to a Low Power node.

(2) Friend Node Log

No log output is generated when a friendship is established.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 26 of 56

Feb.7.22

3.4.3 Sensor Data Transmission by Sensor Server (Sensor Server_Low Power) Node

The Sensor Server node with Low Power feature enabled repeats 1 to 4 below periodicary.

1. Acquisition of sensor data produced by sensor operation

2. Transmission of sensor data

3. The Low Power feature restarts scan and queries the Friend node.

4. The Low Power feature suspends scan.

Figure 3-11 shows log output during transmission of sensor data by the Sensor Server node.

Note that the values shown in the figure are pseudo data values produced when no HS3001 sensor is
connected. Figure 3-12 shows the log output when the Sensor Client node receives these values.

Figure 3-11 Log Output during Transmission of Sensor Data (Pseudo data) by Sensor Server Node

When a HS3001 sensor is connected, the measurement values obtained from the HS300x sensor are
output.

(1) Sensor Server Node Log

Table 3-6 lists the items in the log of the Sensor Server node.

Table 3-6 Contents of Sensor Server Node Log

Log Entry Description

[SENSOR] Temperature XX.XX[‘C] Indicates the temperature [°C].

[SENSOR] Humidity XX.XX[%RH] Indicates the relative humidity [%RH].

[SENSOR] MS_sensor_server_state_update() Indicates transmission of measurement data.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 27 of 56

Feb.7.22

3.4.4 Sensor Data Reception by Sensor Client Node

The Sensor Client node repeatedly receives sensor data.

Figure 3-12 shows log output during reception of sensor data by the Sensor Client node. In this example the
transmitted data is that shown in Figure 3-11, ‘Log Output during Reception of Sensor Data (Pseudo data) by
Sensor Client Node’.

Figure 3-12 Log Output during Reception of Sensor Data (Pseudo data) by Sensor Client Node

When a HS3001 sensor is connected, the measurement values obtained from the HS300x sensor are
output.

(1) Sensor Client Node Log

Table 3-7 lists the items in the log of the Sensor Client node.

Table 3-7 Contents of Sensor Client Node Log

Log Entry Description

[SENSOR] Temperature XX.XX[‘C] Indicates the temperature [°C].

[SENSOR] Humidity XX.XX[%RH] Indicates the relative humidity [%RH].

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 28 of 56

Feb.7.22

3.5 Sensor Data Send Interval Change Demo

By pressing SW1 on the TB-RX23W board of the Sensor Client node, you can toggle the sensor data send
interval between 2 seconds and 5 seconds (default*1).

Note: 1. For setting values, refer to 4.2.3(3), ‘Changing the Sensor Data Send Interval’.

Figure 3-13 shows log output during changing of the sensor data send interval between the Sensor Client
node and Sensor Server node.

Sensor Client Node Sensor Server Node

Figure 3-13 Log Output during Changing of Sensor Data Send Interval

(1) Sensor Client Node Operation Description

When SW1 on the board is pressed, a sensor data send interval change request is sent using a Sensor
Cadence Set Unacknowledged message.

(2) Sensor Server Node Operation Description

When the sensor data send interval change request using a Sensor Cadence Set Unacknowledged
message is received, the sensor data send interval is switched.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 29 of 56

Feb.7.22

3.6 Operation Change Based on Friend Node Presence/Absence Demo

Figure 3-14 shows log output when, after a friendship has been established, powering off of the Friend node
causes the friendship to be severed. After the friendship is severed, a friendship request is sent.

Figure 3-14 Log Output of Low Power (Sensor Server_Low Power) Node when Friend Node Is

Powered Off

Figure 3-15 shows log output when the Friend node is powered on again and the friendship is reestablished.

Figure 3-15 Log Output of Low Power (Sensor Server_Low Power) Node when Friend Node Is

Powered On Again

Table 3-8 lists the items in the log of the Low Power node.

Also refer to 3.5.2, ‘Low Power Node’, and 3.5.3, ‘Low Power Node Sequence’, in ‘RX23W Group Bluetooth
Mesh Stack Development Guide’ (R01AN4875).

Table 3-8 Contents of Low Power Node Log

Log Description

[LPN] MS_TRN_FRIEND_TERMINATE_IND A friendship severed event

[LPN] MS_trn_lpn_setup_friendship() Indicates that sending of a Friend Request to establish a

friendship with a Friend node has started.

[ACCESS] MS_access_cm_get_all_model

_subscription_list()

Indicates acquisition of all subscription addresses of the

Low Power node.

[LPN] MS_trn_lpn_subscrn_list_add()*1 Indicates addition of all subscription addresses of the

Low Power node to the friend subscription list of the

Friend node

[LPN] MS_TRN_FRIEND_SUBSCRNLIST

_CNF

All subscription address registration events on the Friend

Subscription List.

Note: 1. This enables the Friend node to store messages to a Low Power node.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 30 of 56

Feb.7.22

3.7 Operation Changes Due to Presence/Absence of Relay Node

Operation when the Relay node is present or absent can be confirmed by powering off the Relay node and
then powering it on again.

If all the nodes are placed close together, confirmation of changes in Mesh network operation due to the
presence or absence of other nodes cannot be confirmed.

Therefore, you can confirm the operation of the Relay node by installing it outside the wireless range of the

Sensor Client node and the Friend node as shown in Figure 3-16, and installing the Relay node between

them.

Sensor Server
_Low Power

Friend_Relay

Relay

Sensor Client

Sensor Data

Sensor Data

<Source>

<Destination>

Direct Radio
Range

Sensor Data

Figure 3-16 Data Flow when Relay Node is Installed between Sensor Client Node and Friend Node

Outside Radio Range

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 31 of 56

Feb.7.22

4. Program Description

A program of the Mesh Sensor Demo software is presented below.

4.1 Software Configuration

4.1.1 Software Configuration of Sensor Server_Low Power Node

The software configuration of the Sensor Server is shown below.

Mesh Sensor Server Application

Bluetooth Mesh Stack

Bluetooth Bearer

Bluetooth LE Stack

RX23W

HS300x Software

I2C Communication Middletware
Peripheral

Driver

Figure 4-1 Software Configuration of Sensor Server_Low Power Node

• Mesh Sensor Server Application

Controls the Bluetooth Mesh stack and the HS300x module. Control of other sensors can be added easily.

For information on software other than the above, refer to the related documentation.

4.1.2 Software Configuration of Sensor Client Node

The software configuration of the Sensor Client is shown below.

Mesh Sensor Cl ient Application

Bluetooth Mesh Stack

Bluetooth Bearer

Bluetooth LE Stack

RX23W

Peripheral
Driver

Figure 4-2 Software Configuration of Sensor Client Node

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 32 of 56

Feb.7.22

4.2 Mesh Models

The Mesh models used in the Mesh Sensor Demo are implemented in the file mesh_model.c.

The description in this section mainly concerns the Sensor Models. For information on the Configuration
Server Model and Health Server Model, refer to ‘RX23W Group Bluetooth Mesh Stack Development Guide’
(R01AN4875).

4.2.1 Mesh Model Configuration of Each Node

Each node must have the Configuration Server/Health Server feature of the Foundation Models.

Optional Relay, Proxy, Friend, or Low Power feature can be added. Also refer to 4.3, ‘Optional Features
Node Settings’.

Figure 4-3 shows the Mesh model configuration of the nodes used in the Mesh Sensor Demo.

The Sensor Server node uses the Sensor Server Model of the Mesh models.

The Sensor Client node uses the Sensor Client Model of the Mesh models.

Since the Mesh Sensor Demo does not use the Relay node or Friend_Relay node for other purposes,
it is not necessary to embed Mesh models other than the Configuration Server Model and Health
Server Model.

Note that the same project is used for the Relay node and the Friend_Relay node. The features of each
node are activated by configuration.

Node

Element

Configuration Server Model

Health Server Model

Sensor Server Model

State

tbrx23w_mesh_sensor_server Project

Sensor Server Node and Low-Power Node

Node

Element

Configuration Server Model

Health Server Model

Sensor Client Model

tbrx23w_mesh_sensor_clientProject

Sensor Client Node

Node

Element

Configuration Server Model

Health Server Model

tbrx23w_mesh_sensor_friend Project

Friend Node and/or Relay Node

Figure 4-3 Mesh Model Configurations of Nodes Used in Mesh Sensor Demo

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 33 of 56

Feb.7.22

4.2.2 Sensor Model (Sensor Server/Sensor Client) Settings

Sensor Models from the Bluetooth Specification Mesh Model are used. Table 4-1 lists the settings.

Table 4-1 Sensor Model Settings

Model (Project Name) Macro Definition for Build Options

Sensor Server Model (tbrx23w_mesh_sensor_server Project) DEMO_SENSOR_SERVER_MODEL

Sensor Client Model (tbrx23w_mesh_sensor_client Project) DEMO_SENSOR_CLIENT_MODEL

4.2.3 Sensor Models

The Sensor Models have four sensor states (Sensor Descriptor state, Sensor Setting and Sensor Cadence
states, Sensor Data state, and Sensor Series Column state).

The Mesh Sensor Demo uses the Sensor Setting and Sensor Cadence states and the Sensor Data state.

(1) Sensor Server Node

The sample program for the Sensor Server node can perform the following operations.

⎯ Measurement of temperature and humidity data from the HS300x sensor at the sensor data send

interval and display of temperature and humidity.

⎯ Transmission of sensor data to the Sensor Client node.

The Sensor Data state is used as the transmission of sensor data using the Sensor Setting Set

Unacknowledged message.

⎯ Reception of sensor data send interval change requests from the Sensor Client node and updating of

the sensor data send interval.

The Sensor Setting and Sensor Cadence states are used as the sensor data send interval change

request using the Sensor Cadence Set Unacknowledged message.

The sensor data send interval is specified by the value of the Status Min Interval field of these states.

(a) Transmission of Sensor Data

The operation of the Sensor Models during transmission of sensor data is shown below.

Sample Program Mesh Stack Sample ProgramMesh Stack

Sensor Server Node Sensor Client Node

Sensor Measurement

MS_sensor_server_state_update()

Sensor Status Message
Callback function

(Sensor Client)

Receive
Sensor Data

Figure 4-4 Sensor Model Operation during Transmission of Sensor Data

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 34 of 56

Feb.7.22

(b) Reception of Sensor Data Send Interval Change Requests

The operation of the Sensor Models during reception of a sensor data send interval change request is shown
below.

Sample Program Mesh Stack Sample ProgramMesh Stack

Sensor Client Node Sensor Server Node

Press SW1

MS_sensor_cadence_set()
Sensor Cadence Set

Unacknowledged Message
Callback function

(Sensor Server)

Receive
Change Request

Figure 4-5 Sensor Model Operation during Reception of Sensor Data Send Interval Change Request

(2) Sensor Client Node

The sample program for the Sensor Client node can perform the following operations.

⎯ Reception of sensor data from the Sensor Server node.

⎯ Transmission of sensor data send interval change requests using the Sensor Cadence Set

Unacknowledged message when SW1 on the Sensor Client node board is pressed.

(a) Reception of Sensor Data

For operation of the Sensor Models during reception of sensor data, refer to Figure 4-4, ‘Sensor Model
Operation during Transmission of Sensor Data’.

(b) Transmission of Sensor Data Send Interval Change Requests

For operation of the Sensor Models during transmission of a sensor data send interval change request, refer
to Figure 4-5, ‘Sensor Model Operation during Reception of Sensor Data Send Interval Change Request’.

(3) Changing the Sensor Data Send Interval

It is possible to define two send intervals for sensor data. Pressing SW1 on the Sensor Client node toggles
between the two send intervals.

If you wish to change the interval settings, modify the following macros in the mesh_appl.h file of the Sensor
Client project.

Table 4-2 Sensor Data Send Interval Setting Macros

Macro Name Default Value (Unit: Seconds)

SENSOR_DATA_SEND_INTRERVAL01 2

SENSOR_DATA_SEND_INTRERVAL02 5

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 35 of 56

Feb.7.22

4.3 Optional Features Node Settings

The nodes with optional features (Low Power, Friend, or Relay) used in the Mesh Sensor Demo are
described below.

For information on each type of features, refer to ‘RX23W Group Bluetooth Mesh Stack Development Guide’
(R01AN4875).

4.3.1 Relay Node

(1) Enabling Relay Feature

A node is activated as a Relay node through configuration by Mesh Mobile, which acts as the configuration
client.

4.3.2 Low Power Node

(1) Enabling Low Power Feature

Enabling or disabling Low Power feature is accomplished by setting the value of the
LOW_POWER_FEATURE_EN macro in the mesh_appl.h file.

The Sensor Server project contains a setting to enable Low Power feature. Also refer to 4.6.2.1(2),
‘mesh_appl.h’.

When a friendship is established, Low Power feature is activated on the Low Power node.

Table 4-3 LOW_POWER_FEATURE_EN Macro

Macro Name Setting Value Project

LOW_POWER_FEATURE_EN 1 Sensor Server project

 0 Projects other than the above

(2) Scan Suspend Interval

Suspending and resuming scanning and polling of the Friend node take place automatically. The Friend
node is polled when scan resume occurs, and data reception takes place if there is stored data.

Scanning is suspended again after the data is transmitted. The interval from scan suspend to scan resume is
controlled by the following macro.

Also refer to Figure 4-6, ‘Operation of Lower-Power Node and Friend Node’.

Table 4-4 Scan Suspend Interval Macro

Macro Name

Default Value

(Unit: 100 ms) Minimum Value Maximum Value

CORE_FRIEND_POLLTIMEOUT 50 1 345,600 (96 hours)

Setting a long scan suspend interval lengthens the duration when scanning is halted and reduces power
consumption, but it also lengthens the duration before requests from the Client node are received. This
results in a delay before operations requested by the Sensor Client node start.

Also refer to 3.5.3, ‘Low Power Node Sequence’, in ‘RX23W Group Bluetooth Mesh Stack Development
Guide’ (R01AN4875).

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 36 of 56

Feb.7.22

4.3.3 Friend Node

(1) Enabling Friend Feature

A node is activated as a Friend node through configuration by Mesh Mobile, which acts as the configuration
client.

(2) Friend Node Operation

Figure 4-6 shows the operation of the Low Power node and the Friend node in the Mesh Sensor Demo.

For information on Friend node operation, refer to 1.10.3, ‘Friendship’, and 3.5, ‘Friendship’, in ‘RX23W
Group Bluetooth Mesh Stack Development Guide’ (R01AN4875).

Scan Suspend

Sensor Server

_Low Powe Node

Transmission

Scan Resume

Store message for
Sensor Server Node

Friend_Relay Node Sensor Client Node

Resuest to
Sensor Server Node

Measurement

Pol l to Freind Node

Scan Suspend

Transmit s tored
message

(CORE_FRIEND
_POLLTIMEOUT -10)
x 0.1 seconds

Figure 4-6 Operation of Lower-Power Node and Friend Node

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 37 of 56

Feb.7.22

4.4 Node Configuration Settings

The node configuration settings are described below. In this example the Mesh sample program
mesh_model.c implements the settings. Configuring node configuration settings requires implementation of
at least the following.

(1) Create node: MS_access_create_node()

(2) Register element: MS_access_register_element()

(3) Add Configuration Server Model: MS_config_server_init()

(4) Add Health Server Model: MS_health_server_init()

(5) Add Application Model

For information on (1) to (4), refer to 3.2, ‘Node Composition, in the application note RX23W Group Bluetooth
Mesh Stack Development Guide’ (R01AN4875).

For specifics of (5), ‘Add Application Model’, refer to 4.6.2.1(3), ‘mesh_model.c’ and 4.6.2.2(3),

‘mesh_model.c’.

4.5 Each Node Project and Mesh Sample Header File (mesh_appl.h) Macro Settings

The macro settings in the Mesh sample header file (mesh_appl.h) differ as shown below.

Table 4-5 Nodes and Projects Used

Node Sensor Server_Low Power Sensor Client Friend_Relay Relay

Project tbrx23w_mesh_sensor_server tbrx23w_mesh_sensor_client tbrx23w_mesh_sensor_friend

Table 4-6 Macro Settings in Mesh Sample Header File (mesh_appl.h) of Each Project

Macro Name

tbrx23w_mesh

_sensor_server

tbrx23w_mesh

_sensor_client

tbrx23w_mesh

_sensor_friend

Enabling of IV update start processing

IV_UPDATE_INITIATION_EN

(1) (1) (1)

Enabling of Low Power feature

LOW_POWER_FEATURE_EN

(1) (0) (0)

Mesh monitor settings

CONSOLE_MONITOR_LOG

(0) (0) (0)

Console output settings

CONSOLE_OUT_EN

(1) (1) (1)

ANSI CSI output to console settings

ANSI_CSI_EN

(1) (1) (1)

Enabling of CPU utilization rate measurement

CPU_USAGE_EN

(0) (0) (0)

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 38 of 56

Feb.7.22

4.6 Program Differences

The differences among the projects are described below.

Table 4-7 lists the projects used as the basis for the Mesh Sensor Demo projects. Also refer to 1.1.2, ‘MOT
Files and e2 studio Projects in Mesh Sensor Demo Package’.

Table 4-7 Projects Used as Basis for Mesh Sensor Demo Projects

Project Name Node Project Used as Basis

tbrx23w_mesh_sensor_server Sensor Server_Low Power tbrx23w_mesh_server

tbrx23w_mesh_sensor_client Sensor Client tbrx23w_mesh_client

tbrx23w_mesh_sensor_friend Friend_Relay

Relay

In addition, the following change applies to all the projects.

⎯ Update of BLE module to Ver. 2.30

4.6.1 Settings in r_xxx_config.h File Related to Mesh FIT Module

The following settings are configured in all the projects. The setting values are the same as those in the
projects used as a basis.

(1) r_mesh_rx23w_config.h

The default values listed in 3.1, Mesh FIT Module, in Bluetooth Mesh Module Using Firmware Integration
Technology (R01AN4930) are used.

(2) r_bsp_config.h

The values for the Mesh FIT module listed in 3.2, BSP FIT Module, in Bluetooth Mesh Module Using
Firmware Integration Technology (R01AN4930) are used.

(3) r_ble_rx23w_config.h

The values for the Mesh FIT module listed in 3.3, BLE FIT Module, in Bluetooth Mesh Module Using
Firmware Integration Technology (R01AN4930) are used.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 39 of 56

Feb.7.22

4.6.2 tbrx23w_sensor_mesh_server and tbrx23w_sensor_mesh_client Projects

The differences related to incorporation of the Sensor Models and the HS300x module are shown below.

In order to simplify things when adding Sensor Model control, the structures and definitions for the Vendor
Model are used.

Changes have been made under the following identifiers.

⎯ DEMO_SENSOR_MODEL : Macro for Sensor Model

⎯ DEMO_SENSOR_SERVER_MODEL : Macro for Sensor Server Model

⎯ DEMO_SENSOR_CLIENT_MODEL : Macro for Client Model

Table 4-8 lists the modified files. The changes for each project are shown below.

Table 4-8 Modified Files

Finename tbrx23w_mesh_sensor_server tbrx23w_mesh_sensor_client

maim.c Common files for Sensor Server and Sensor Client

mesh_appl.h For Sensor Server only

(Same except for the value of the

LOW_POWER_FEATURE_EN macro)

For Sensor Client only

meshu_model.c Common files for Sensor Server and Sensor Client

r_irq_rx.c

Pin.c For Sensor Server only

4.6.2.1 tbrx23w_sensor_mesh_server Project

For files that are common to Sensor Server and Sensor Client, only the changes for Sensor Server are
described.

(1) main.c

Processing to read the header file for the HS300x module.

Lines 48 to 50

#ifdef DEMO_SENSOR_SERVER_MODEL

#include "RX_HS300X.h"

#endif

Processing to change variable declarations and add variables for the Sensor Server Model.

Lines 114 to 121

#ifdef DEMO_SENSOR_SERVER_MODEL

#define SENSOR_DEMO_ADD (0.1)

static UINT32 gs_send_interval_timer_hdl;

static float g_demo_value_cnt = 0.0;

UINT16 g_send_Interval = 2000;

bool g_interval_change_flg = false;

bool g_send_flg = false;

#endif /* DEMO_SENSOR_SERVER_MODEL */

Processing to add a structure for the Sensor Models.

Lines 164 to 171

#ifdef DEMO_SENSOR_SERVER_MODEL

static void mesh_sensor_server_set_cb

 (

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 40 of 56

Feb.7.22

 MS_ACCESS_MODEL_REQ_MSG_CONTEXT * ctx,

 MS_STATE_VENDOR_STRUCT * state

);

MS_ACCESS_MODEL_REQ_MSG_CONTEXT g_ctx;

#endif /* DEMO_SENSOR_SERVER_MODEL */

Processing to set callback functions for the Sensor Models.

Lines 206 to 208

#ifdef DEMO_SENSOR_SERVER_MODEL

.sensor_server_set_cb = mesh_sensor_server_set_cb,

#endif /* DEMO_SENSOR_SERVER_MODEL */

Processing to transmit sensor data for the Sensor Server Model.

Note that pseudo data values are generated if no HS300x sensor is connected. The data starts from 0 and is
then incremented by 0.1 with each transmission. Float data is used, so there may be errors in the smaller
values.

Lines 299 to 357

#ifdef DEMO_SENSOR_SERVER_MODEL
static void sever_send_data_timer_cb(UINT32 timer_hdl)
{
 API_RESULT retval;
 static MS_STATE_SENSOR_DATA_STRUCT param;
 static MS_ACCESS_MODEL_STATE_PARAMS current_state_params;
 UCHAR dummy_data[10] = {0};
 UINT16 dummy_len;
 float consol_dummy_01;
 float consol_dummy_02;
 uint8_t demo_sensro_less_value[sizeof(float)] = {0};

 if (true == g_send_flg)
 {
 if (0 == *(const float*)g_sensor_temp_value)
 {
 < Operation without HS300x Sensor >

 }
 else
 {
 < Operation with HS300x Sensor >

 }
 dummy_len = 8;
 param.property_id_1 = 0xAA;
 param.raw_value_1 = dummy_data;
 param.raw_value_1_len = dummy_len;
 current_state_params.state_type = MS_STATE_SENSOR_DATA_T;
 current_state_params.state = ¶m;

 retval = MS_sensor_server_state_update(&g_ctx, ¤t_state_params, NULL,
0, NULL, 0, 0);
 CONSOLE_OUT ("[SENSOR] Temperature %f['C]\n", consol_dummy_01);
 CONSOLE_OUT ("[SENSOR] Humidity %f[%RH]\n", consol_dummy_02);
 CONSOLE_STATUS("[SENSOR] MS_sensor_server_state_update()", retval);
 CONSOLE_OUT ("\n");
 }

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 41 of 56

Feb.7.22

}
#endif /* DEMO_SENSOR_SERVER_MODEL */

Processing for the Sensor Models.

Lines 583 to 599

#ifdef DEMO_SENSOR_SERVER_MODEL

/***

* @brief Callback function to receive a new Vendor state

***/

static void mesh_sensor_server_set_cb

 (

 MS_ACCESS_MODEL_REQ_MSG_CONTEXT * ctx,

 MS_STATE_VENDOR_STRUCT * state

)

{

 --- Omitted ---
}

#endif /* DEMO_SENSOR_SERVER_MODEL */

Processing to configure timer settings when transmitting sensor data for the Sensor Server Model.

Lines 758 to 761

int main(void)
{
 --- Omitted ---
#ifdef DEMO_SENSOR_SERVER_MODEL
 R_BLE_TIMER_Create(&gs_send_interval_timer_hdl, g_send_Interval,
BLE_TIMER_PERIODIC, sever_send_data_timer_cb);
 R_BLE_TIMER_Start(gs_send_interval_timer_hdl);
#endif /* DEMO_SENSOR_SERVER_MODEL */

 --- Omitted ---

}

Processing to acquire sensor data for the Sensor Server Model.

Lines 780 to 783

int main(void)
{
 --- Omitted ---
#ifdef DEMO_SENSOR_SERVER_MODEL
 /* Initialize HS3001 Sensor Fit */
 sensor_hs3001_init();
#endif /* DEMO_SENSOR_SERVER_MODEL */

 --- Omitted ---

}

Processing to implement updating of the sensor data send interval by the Sensor Server node in response to
a request from the Sensor Client node.

Processing to acquire sensor data using sensor_hs3001_main().

Lines 840 to 850

int main(void)

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 42 of 56

Feb.7.22

{
 --- Omitted ---

 /* main loop */
 while (1)
 {
 --- Omitted ---
#ifdef DEMO_SENSOR_SERVER_MODEL
 if (true == g_interval_change_flg)
 {
 R_BLE_TIMER_Stop(gs_send_interval_timer_hdl);
 R_BLE_TIMER_Create(&gs_send_interval_timer_hdl, g_send_Interval,
BLE_TIMER_PERIODIC, sever_send_data_timer_cb);
 R_BLE_TIMER_Start(gs_send_interval_timer_hdl);
 g_interval_change_flg = false;
 }

 sensor_hs3001_main();
#endif /* DEMO_SENSOR_SERVER_MODEL */

}
 --- Omitted ---

}

(2) mesh_appl.h

Header file read processing is as follows.

⎯ Vendor Model API: Some structures and definitions defined in the Vendor Model are used.

⎯ Sensor Model API:

⎯ Access Model API: Used to produce log output for subscription address acquisition, etc.

Lines 35 to 39

#if defined(DEMO_SENSOR_SERVER_MODEL) || defined(DEMO_SENSOR_CLIENT_MODEL)

#include "vendor_model/vendor_api.h"

#include "MS_sensor_api.h"

#include "MS_access_api.h"

#endif /* defined(VENDOR_SERVER_MODEL) || defined(VENDOR_CLIENT_MODEL) */

This setting enables Low Power feature. Low Power feature is enabled in the Sensor Server project. Also
refer to 4.3.2(1), ‘Enabling Low Power Feature’.

Line 53

#define LOW_POWER_FEATURE_EN (1)

Function declarations for callback functions.

Lines 217 to 227

#ifdef DEMO_SENSOR_SERVER_MODEL

void (*sensor_server_set_cb)(

 MS_ACCESS_MODEL_REQ_MSG_CONTEXT * ctx,

 MS_STATE_VENDOR_STRUCT * state);

#endif /* DEMO_SENSOR_SERVERT_MODEL */

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 43 of 56

Feb.7.22

(3) mesh_model.c

As with the settings in the projects used as a basis, this code is also shared, with processing added for the
Sensor Server Model and Sensor Client Model. The Vendor Model is used as a reference and Sensor Model
professing has been added. Also, some structures and definitions defined in the Vendor Model are used.

Processing to declare variables for the Sensor Models.

Lines 62 to 69

#ifdef DEMO_SENSOR_SERVER_MODEL

static MS_ACCESS_MODEL_HANDLE gs_sensor_server_model_handle;

static MS_ACCESS_MODEL_HANDLE gs_sensor_setup_server_model_handle;

extern UINT16 g_send_Interval;

extern bool g_interval_change_flg;

extern bool g_send_flg;

extern MS_ACCESS_MODEL_REQ_MSG_CONTEXT g_ctx;

#endif /* DEMO_SENSOR_SERVER_MODEL */

Processing to declare structures for the Sensor Models.

Lines 113 to 122

#ifdef DEMO_SENSOR_SERVER_MODEL

static API_RESULT mesh_model_sensor_server_cb

 (

 MS_ACCESS_MODEL_REQ_MSG_CONTEXT * ctx,

 MS_ACCESS_MODEL_REQ_MSG_RAW * msg_raw,

 MS_ACCESS_MODEL_REQ_MSG_T * req_type,

 MS_ACCESS_MODEL_STATE_PARAMS * state_params,

 MS_ACCESS_MODEL_EXT_PARAMS * ext_params

);

#endif /* DEMO_SENSOR_SERVER_MODEL */

Reception processing for the Sensor Server Model.

Lines 607 to 769

#ifdef DEMO_SENSOR_SERVER_MODEL

/***

* @brief Callback function to receive events for Vendor Server model

***/

static API_RESULT mesh_model_sensor_server_cb

 (

 MS_ACCESS_MODEL_REQ_MSG_CONTEXT * ctx,

 MS_ACCESS_MODEL_REQ_MSG_RAW * msg_raw,

 MS_ACCESS_MODEL_REQ_MSG_T * req_type,

 MS_ACCESS_MODEL_STATE_PARAMS * state_params,

 MS_ACCESS_MODEL_EXT_PARAMS * ext_params

)

{

 --- Omitted ---

}

#define MS_MAX_NUM_STATES 3

#define MS_MAX_SENSORS 1

#define CONSOLE_PRINT(...)

typedef struct _MS_SENSOR_STRUCT

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 44 of 56

Feb.7.22

{

 --- Omitted ---

} MS_SENSOR_STRUCT;

bool debug_sensor_led = false;

/**

 * Check if the sensor data to be published, based on the current value of the sensor data,

 * Fast Cadence High, Low range

 */

API_RESULT appl_handle_sensor_publish_timeout(/* IN */ MS_ACCESS_MODEL_HANDLE

* handle)

{

 --- Omitted ---

}

/**

 * \brief Access Layer Model Publication Timeout Callback.

 *

 * \par Description

 * Access Layer calls the registered callback to indicate Publication Timeout

 * for the associated model.

 *

 * \param [in] handle Model Handle.

 * \param [out] blob Blob if any or NULL.

 */

API_RESULT mesh_sensor_server_publish_timout_cb

 (

 /* IN */ MS_ACCESS_MODEL_HANDLE * handle,

 /* IN */ void * blob

)

{

 --- Omitted ---

}

#endif /* DEMO_SENSOR_SERVER_MODEL */

Configuration processing for the Sensor Server Model.

Lines 897 to 926

static API_RESULT mesh_model_config_server_cb
 (
 MS_ACCESS_MODEL_REQ_MSG_CONTEXT * ctx,
 UINT32 opcode,
 UCHAR * data_param,
 UNIT16 data_len
)
{

 --- Omitted ---

 #ifdef DEMO_SENSOR_SERVER_MODEL
 if (opcode == gs_config_opcode_string_table[20].opcode)
 {
 g_send_flg = true;

 /* make MS_ACCESS_MODEL_REQ_MSG_CONTEXT for sending Sensor Status message
*/
 /** Model Handle - for which request is received */
 g_ctx.handle = gs_sensor_server_model_handle;

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 45 of 56

Feb.7.22

 /** Source Address - originator of request */
 MS_ACCESS_PUBLISH_INFO publish_info;
 MS_access_cm_get_model_publication(gs_sensor_server_model_handle,
&publish_info);
 g_ctx.saddr = publish_info.addr.addr; // It assumes that Publish Address
is a address other than Virtual Address

 /** Destination Address - of the request */
 MS_access_cm_get_primary_unicast_address(&g_ctx.daddr);

 /** Associated Subnet Identifier */
 g_ctx.subnet_handle = 0x0000; // hard-coded: primary subnet

 /** Associated AppKey Identifier */
 g_ctx.appkey_handle = 0x0000; // hard-coded: first appkey

 CONSOLE_OUT("g_ctx.handle = 0x%04X\n", g_ctx.handle);
 CONSOLE_OUT("g_ctx.saddr = 0x%04X\n", g_ctx.saddr);
 CONSOLE_OUT("g_ctx.daddr = 0x%04X\n", g_ctx.daddr);
 CONSOLE_OUT("g_ctx.subnet_handle = 0x%04X\n", g_ctx.subnet_handle);
 CONSOLE_OUT("g_ctx.appkey_handle = 0x%04X\n", g_ctx.appkey_handle);
 }
 #endif /* DEMO_SENSOR_SERVER_MODEL */

Model registration processing for the Sensor Models.

Lines 1146 to 1163

static API_RESULT mesh_application_model_register(void)

{

 --- Omitted ---

 #ifdef DEMO_SENSOR_SERVER_MODEL

 retval = MS_sensor_server_init

 (

 gs_element_handle,

 &gs_sensor_server_model_handle,

 mesh_model_sensor_server_cb,

 mesh_sensor_server_publish_timout_cb

);

 CONSOLE_STATUS("[SENSOR] MS_sensor_server_init()", retval);

 retval = MS_sensor_setup_server_init

 (

 gs_element_handle,

 &gs_sensor_setup_server_model_handle,

 mesh_model_sensor_server_cb

);

 CONSOLE_STATUS("[SENSOR] MS_sensor_setup_server_init()", retval);

 #endif /* DEMO_SENSOR_SERVER_MODEL */

(4) Pin.c

This settings file enables the HS300x sensor on the Sensor Server node to connect to the I2C bus. It is
created using the “Generate Code”.

Therefore, there is no DEMO_SENSOR_SERVER_MODEL identifier.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 46 of 56

Feb.7.22

Changes apply to the Pin.c file of the Sensor Server Mode project.

Lines 68 to 74

 /* Set SSCL1 pin */

 MPC.P30PFS.BYTE = 0x0AU;

 PORT3.PMR.BYTE |= 0x01U;

 /* Set SSDA1 pin */

 MPC.P26PFS.BYTE = 0x0AU;

 PORT2.PMR.BYTE |= 0x40U;

(5) r_irq_rx.c

Processing of the detection flag when SW1 is pressed for the Sensor Client Model.

This is for the Sensor Client Model, but the same file is used in the Sensor Server Mode project.

It does not work on the Sensor Server.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 47 of 56

Feb.7.22

4.6.2.2 tbrx23w_sensor_mesh_server Project

For files that are common to Sensor Server and Sensor Client, only the changes for Sensor Client are
described.

(1) main.c

Processing to read the header file for the HS300x module.

Lines 48 to 50

#ifdef DEMO_SENSOR_SERVER_MODEL

#include "RX_HS300X.h"

#endif

Processing to change variable declarations for the Sensor Client Model.

Lines 106 to 112

#ifdef DEMO_SENSOR_CLIENT_MODEL

static UCHAR gs_sci_buf[MS_VENDOR_VALUE_MAX_SIZE];

static UINT16 gs_sci_max_len;

static UINT16 gs_sci_rcv_len;

static sci_comp_cb gs_sci_comp_cb = NULL;

extern unsigned char g_server_setting_flg;

#endif /* DEMO_SENSOR_CLIENT_MODEL */

Processing to add a structure for the Sensor Models.

Lines 172 to 178

#ifdef DEMO_SENSOR_CLIENT_MODEL

static void mesh_sensor_client_status_cb

 (

 MS_ACCESS_MODEL_REQ_MSG_CONTEXT * ctx,

 MS_VENDOR_STATUS_STRUCT * status

);

#endif /* DEMO_SENSOR_CLIENT_MODEL */

Processing to set callback functions for the Sensor Models.

Lines 209 to 211

#ifdef DEMO_SENSOR_CLIENT_MODEL

.sensor_client_status_cb = mesh_sensor_client_status_cb,

#endif /* DEMO_SENSOR_CLIENT_MODEL */

Processing for the Sensor Models.

Lines 601 to 677

#ifdef DEMO_SENSOR_CLIENT_MODEL

/***

* @brief Callback function to receive a state from Vendor Server model

***/

static void mesh_sensor_client_status_cb

 (

 MS_ACCESS_MODEL_REQ_MSG_CONTEXT * ctx,

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 48 of 56

Feb.7.22

 MS_VENDOR_STATUS_STRUCT * status

)

{

 --- Omitted ---

}

/***

* @brief Callback function for receiving and handling string from SCI

***/

static void sci_rcv_string(void)

{

 --- Omitted ---

}

#endif /* DEMO_SENSOR_CLIENT_MODEL */

Processing to repurpose processing for the Vendor Model for the sensor of the Sensor Models.

Lines 796 to 799

int main(void)
{
 --- Omitted ---

 /* main loop */
 while (1)
 {
 --- Omitted ---

 #ifdef DEMO_SENSOR_CLIENT_MODEL
 /* Receive and Handle String from SCI */
 sci_rcv_string();
 #endif /* DEMO_SENSOR_CLIENT_MODEL */
 --- Omitted ---

}
 --- Omitted ---

}

Processing to request a change in the sensor data send interval by pressing SW1 for the Sensor Client
Model.

Lines 808 to 839

int main(void)
{
 --- Omitted ---

 /* main loop */
 while (1)
 {
 --- Omitted ---

#ifdef DEMO_SENSOR_CLIENT_MODEL
 MS_SENSOR_CADENCE_SET_STRUCT param;
 static UCHAR dummy_data = SENSOR_DATA_SEND_INTRERVAL01;
 API_RESULT retval;
 if (1 == g_server_setting_flg)
 {
 if (SENSOR_DATA_SEND_INTRERVAL02 == dummy_data)
 {
 dummy_data = SENSOR_DATA_SEND_INTRERVAL01;
 }
 else if (SENSOR_DATA_SEND_INTRERVAL01 == dummy_data)

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 49 of 56

Feb.7.22

 {
 dummy_data = SENSOR_DATA_SEND_INTRERVAL02;
 }
 --- Omitted ---

 }
#endif /* DEMO_SENSOR_CLIENT_MODEL */
 --- Omitted ---

}
 --- Omitted ---

}

(2) mesh_appl.h

Header file read processing is as follows.

⎯ Vendor Model API: Some structures and definitions defined in the Vendor Model are used.

⎯ Sensor Model API:

⎯ Access Model API: Used to produce log output for subscription address acquisition, etc.

Lines 35 to 39

#if defined(DEMO_SENSOR_SERVER_MODEL) || defined(DEMO_SENSOR_CLIENT_MODEL)

#include "vendor_model/vendor_api.h"

#include "MS_sensor_api.h"

#include "MS_access_api.h"

#endif /* defined(VENDOR_SERVER_MODEL) || defined(VENDOR_CLIENT_MODEL) */

Two send intervals for sensor data are defined. Also refer to 4.2.3(3), ‘Changing the Sensor Data Send
Interval’.

Lines 179 to 182

#ifdef DEMO_SENSOR_CLIENT_MODEL

#define SENSOR_DATA_SEND_INTRERVAL01 (2)

#define SENSOR_DATA_SEND_INTRERVAL02 (5)

#endif /* DEMO_SENSOR_CLIENT_MODEL */

Function declarations for callback functions.

Lines 223 to 227

#ifdef DEMO_SENSOR_CLIENT_MODEL

void (*sensor_client_status_cb)(

 MS_ACCESS_MODEL_REQ_MSG_CONTEXT * ctx,

 MS_VENDOR_STATUS_STRUCT * state);

#endif /* DEMO_SENSOR_CLIENT_MODEL */

Function declarations for the Sensor Server Client.

Lines 261 to 265

#ifdef DEMO_SENSOR_CLIENT_MODEL

API_RESULT mesh_model_sensor_client_get(void);

API_RESULT mesh_model_sensor_client_set_unack(UCHAR * value, UINT16 len);

#endif /* DEMO_SENSOR_CLIENT_MODEL */

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 50 of 56

Feb.7.22

(3) mesh_model.c

As with the settings in the projects used as a basis, this code is also shared, with processing added for the
Sensor Server Model and Sensor Client Model. The Vendor Model is used as a reference and Sensor Model
professing has been added. Also, some structures and definitions defined in the Vendor Model are used.

Processing to declare variables for the Sensor Models.

Lines 70 to 72

w#ifdef DEMO_SENSOR_CLIENT_MODEL

static MS_ACCESS_MODEL_HANDLE gs_sensor_client_model_handle;

#endif /* DEMO_SENSOR_CLIENT_MODEL */

Processing to declare structures for the Sensor Models.

Lines 123 to 131

#ifdef DEMO_SENSOR_CLIENT_MODEL

static API_RESULT mesh_model_sensor_client_cb

 (

 MS_ACCESS_MODEL_REQ_MSG_CONTEXT * ctx,

 UINT32 opcode,

 UCHAR * data_param,

 UINT16 data_len

);

#endif /* DEMO_SENSOR_CLIENT_MODEL */

Reception processing for the Sensor Client Model.

Lines 770 to 872

#ifdef DEMO_SENSOR_CLIENT_MODEL

/******************************* ***

* @brief Callback function to receive events for Vendor Client model

***/

static API_RESULT mesh_model_sensor_client_cb

 (

 MS_ACCESS_MODEL_REQ_MSG_CONTEXT * ctx,

 UINT32 opcode,

 UCHAR * data_param,

 UINT16 data_len

)

{

 --- Omitted ---

}

/***

 * @brief Sends Vendor Get message

***/

API_RESULT mesh_model_sensor_client_get(void)

{

 --- Omitted ---

}

/***

 * @brief Sends Vendor Set message

***/

API_RESULT mesh_model_sensor_client_set(UCHAR * value, UINT16 len)

{

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 51 of 56

Feb.7.22

 --- Omitted ---

}

/***

* @brief Sends Vendor Set Unacknowledged message

***/

API_RESULT mesh_model_sensor_client_set_unack(UCHAR * value, UINT16 len)

{

 --- Omitted ---

}

#endif /* DEMO_SENSOR_CLIENT_MODEL */

Model registration processing for the Sensor Models.

Lines 1165 to 1173

static API_RESULT mesh_application_model_register(void)
{
 --- Omitted ---

 #ifdef DEMO_SENSOR_CLIENT_MODEL
 retval = MS_sensor_client_init
 (
 gs_element_handle,
 &gs_sensor_client_model_handle,
 mesh_model_sensor_client_cb
);
 CONSOLE_STATUS("[SENSOR] MS_sensor_client_init()", retval);
 #endif /* DEMO_SENSOR_CLIENT_MODEL */

 --- Omitted ---
}

(4) r_irq_rx.c

Processing of the detection flag when SW1 is pressed for the Sensor Client Model.

This is for the Sensor Client Model, but the same file is used in the Sensor Server Mode project.

Lines 1015 to 1017 and 1027 to 1029

#ifdef DEMO_SENSOR_CLIENT_MODEL
unsigned char g_server_setting_flg = 0;
#endif
R_BSP_ATTRIB_INTERRUPT void irq5_isr(void)
{
 /* check callback address */
 if((FIT_NO_FUNC != (*(g_irq5_handle.pirq_callback))) && (NULL !=
(*(g_irq5_handle.pirq_callback))))
 {
 /* casting void * type to callback* type is valid */
 (*(g_irq5_handle.pirq_callback))((void*)&(g_irq5_handle.irq_num));
 }

#ifdef DEMO_SENSOR_CLIENT_MODEL
 g_server_setting_flg = 1;
#endif

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 52 of 56

Feb.7.22

} /* End of function irq5_isr */

4.6.3 tbrx23w_sensor_mesh_friend Project

This is the project for the following nodes.

• Friend_Relay node for TB-RX23W board

• Relay node for TB-RX23W board

There are no changes for the Sensor Models.

4.7 Global Variables

Table 4-9 lists the global variables added for the Sensor Models.

Table 4-9 Global Variables

Variable Name Type Remarks

g_send_Interval UINT16 Stores the sensor data send interval change request value from the

Sensor Client node.

g_interval_change_flg bool Set to “true” when a sensor data send interval change request value

has been received from the Sensor Client node.

g_send_flg bool A value of “true” is input when entering of configuration settings from

the smartphone app finishes.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 53 of 56

Feb.7.22

4.8 Main Processing

A flowchart of the main processing is shown below.

Start

Initialize for BLE Protocol Stack.

Configure for the Board.

Initialize the Low Pow er Control.

Initialize BLE Timer.

Create BLE Timer for BLE

Create and Start BLE Timer for Sensor.

Register callback function for SW1.

Create BLE Timer for SW1.

Initialize the BLE Protocol Stack for Mesh Bearer.

Initialize the HS3001 Sensor.

w hile (1)

Yes

No

Execute the BLE Task.

Enter Low Pow er.

true == g_interval_change_flg

Yes

No

Stop BLE Timer for Data Transmission Cycle.

Create and Start BLE Timer for New Data Transmission Cycle.

Execute the Sensor Operation.

Terminate timer for LED blink.

Terminate BLE Protocol Stack.

End

Figure 4-7 Main Processing Flowchart

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 54 of 56

Feb.7.22

5. Troubleshooting

Troubleshooting tips are presented below. Refer to them as needed when evaluating the application.

1 • Cannot find device for provisioning.

 ⎯ Try tapping SCAN once again.

2 • When I press DISCONNECT after configuring one node, the next unconfigured node is not found.

 ⎯ Try tapping SCAN once again.

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 55 of 56

Feb.7.22

Trademarks and Copyrights

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use
of such marks by Renesas Electronics Corporation is under license. Other trademarks or registered
trademarks are the property of their respective owners.

RX23W Group Bluetooth Mesh stack uses the following open source software.

crackle: AES-CCM and AES 128-bit functionality

BSD 2-Clause License

Copyright (c) 2013-2018, Mike Ryan

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Android™ is a trademark of Google LLC.

Pmod™ is a trademark of Digilent Inc. of the United States of America.

https://github.com/mikeryan/crackle

RX23W Group Temperature and Humidity Sensor Data Communication Sample Code
Using Bluetooth Mesh Network

R01AN6129EJ0101 Rev.1.01 Page 56 of 56

Feb.7.22

Revision History

Rev. Date

Description

Page Summary

1.01 Feb. 7, 2022 ⎯ First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	Related Documents
	1. Overview
	1.1 System Overview
	1.1.1 Mesh Network Configuration and Data Flows
	(1) Network Configuration for Mesh Sensor Demo
	(2) Flow of Messages (Sensor Data) from Sensor Server Node to Sensor Client Node
	(3) Flow of Messages (Sensor Data Send Interval Change Requests) from Sensor Client Node to Sensor Server Node

	1.1.2 MOT Files and e2 studio Projects in Mesh Sensor Demo Package
	(1) MOT Files
	(2) e2 studio Projects

	1.2 Folder and File Structure
	1.2.1 Folder Structure
	(1) r01an6129xx0101-rx23w-blemesh-sensor.zip
	(2) tbrx23w_mesh_sensor_client.zip
	(3) tbrx23w_mesh_sensor_friend.zip
	(4) tbrx23w_mesh_sensor_server.zip

	1.2.2 Principal FIT Modules Used by Mesh Sensor Demo Project
	1.2.3 Smartphone App ‘Renesas Bluetooth Mesh Mobile’

	1.3 Operation Confirmation Environment
	(1) Operation Confirmation Conditions
	(2) Node Function Settings

	1.4 Code Size

	2. Firmware Programming
	2.1 Programming the RX23W Using Renesas Flash Programmer
	(1) ESW1 Switch Setting when Programming TB-RX23W Board
	(2) Connecting the PC to the TB-RX23W Board
	(3) Renesas Flash Programmer startup and connection processing
	(a) Procedure when Renesas Flash Programmer project has not yet been created
	(b) Procedure when Renesas Flash Programmer project has already been created

	(4) Programming to the TB-RX23W Board
	(5) ESW1 Switch Setting after Programming to TB-RX23W Board

	3. Demo
	3.1 Demo Overview
	3.2 Hardware Environment
	(1) TB-RX23W Board
	(2) Confirming ESW1 Switch Setting on TB-RX23W Board
	(3) Connection between TB-RX23W Board for Sensor Server_Low Power Node and HS3001 Sensor Board
	(4) Connecting the Serial Cable for Log Output to the PC and TB-RX23W Board
	(5) Smartphone

	3.3 Software Environment
	3.3.1 Terminal Emulator Software Settings
	(1) Serial Port Settings

	3.3.2 Installing Mesh Mobile

	3.4 Sensor Data Communication Demo
	3.4.1 Provisioning and Configuration using Mesh Mobile
	(1) Provisioning
	(2) Configuration
	(a) Adding a Group
	(b) Group Registration Settings and Node Settings for Each Board

	3.4.2 Establishment of Friendship between Low Power (Sensor Server_Low Power with Low Power Feature Enabled) Node and Friend (Friend_Relay) Node
	(1) Low Power Node Log
	(2) Friend Node Log

	3.4.3 Sensor Data Transmission by Sensor Server (Sensor Server_Low Power) Node
	(1) Sensor Server Node Log

	3.4.4 Sensor Data Reception by Sensor Client Node
	(1) Sensor Client Node Log

	3.5 Sensor Data Send Interval Change Demo
	(1) Sensor Client Node Operation Description
	(2) Sensor Server Node Operation Description

	3.6 Operation Change Based on Friend Node Presence/Absence Demo
	3.7 Operation Changes Due to Presence/Absence of Relay Node

	4. Program Description
	4.1 Software Configuration
	4.1.1 Software Configuration of Sensor Server_Low Power Node
	4.1.2 Software Configuration of Sensor Client Node

	4.2 Mesh Models
	4.2.1 Mesh Model Configuration of Each Node
	4.2.2 Sensor Model (Sensor Server/Sensor Client) Settings
	4.2.3 Sensor Models
	(1) Sensor Server Node
	(a) Transmission of Sensor Data
	(b) Reception of Sensor Data Send Interval Change Requests

	(2) Sensor Client Node
	(a) Reception of Sensor Data
	(b) Transmission of Sensor Data Send Interval Change Requests

	(3) Changing the Sensor Data Send Interval

	4.3 Optional Features Node Settings
	4.3.1 Relay Node
	(1) Enabling Relay Feature

	4.3.2 Low Power Node
	(1) Enabling Low Power Feature
	(2) Scan Suspend Interval

	4.3.3 Friend Node
	(1) Enabling Friend Feature
	(2) Friend Node Operation

	4.4 Node Configuration Settings
	4.5 Each Node Project and Mesh Sample Header File (mesh_appl.h) Macro Settings
	4.6 Program Differences
	4.6.1 Settings in r_xxx_config.h File Related to Mesh FIT Module
	(1) r_mesh_rx23w_config.h
	(2) r_bsp_config.h
	(3) r_ble_rx23w_config.h

	4.6.2 tbrx23w_sensor_mesh_server and tbrx23w_sensor_mesh_client Projects
	4.6.2.1 tbrx23w_sensor_mesh_server Project
	(1) main.c
	(2) mesh_appl.h
	(3) mesh_model.c
	(4) Pin.c
	(5) r_irq_rx.c

	4.6.2.2 tbrx23w_sensor_mesh_server Project
	(1) main.c
	(2) mesh_appl.h
	(3) mesh_model.c
	(4) r_irq_rx.c

	4.6.3 tbrx23w_sensor_mesh_friend Project

	4.7 Global Variables
	4.8 Main Processing

	5. Troubleshooting
	Trademarks and Copyrights
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

