
 APPLICATION NOTE

R01AN1725EU0100 Rev.1.00 Page 1 of 30
Dec 2, 2013

RX111 Group
Quick Design Guide

Introduction
This document answers common questions and points out subtleties of the MCU that might be missed unless the
hardware manual was extensively reviewed. The document is not intended to be a replacement for the hardware
manual; it is intended to supplement the manual by highlighting some key items most engineers will need to start their
own design.

Target Device
RX111 Group

Contents

1. Power Supplies ... 2

2. Emulator Support .. 3

3. MCU Operating Modes.. 4

4. Option Setting Memory.. 5

5. Clock Circuits .. 7

6. Reset Requirements and Reset Circuit ... 11

7. Memory ... 13

8. Register Write Protection .. 15

9. I/O Ports and Register Structures ... 16

10. I/O Port Configuration and the Multifunction Pin Controller (MPC) ... 19

11. Module Stop Function ... 23

12. Interrupts ... 24

13. Low Power Consumption .. 27

14. References .. 29

R01AN1725EU0100
Rev.1.00

Dec 2, 2013

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 2 of 30
Dec 2, 2013

1. Power Supplies
The RX family has digital power supplies and analog power supplies. The power supplies use the following pins:

Digital Power Supplies

Symbol Name Description
VCC Power supply 1.8V to 3.3V power supply. Connect to the system power

supply. Connect this pin to VSS via a 0.1 uF capacitor
placed close to the VCC pin.

VSS Ground Ground
VCL Power supply Connect this pin to VSS via a 4.7uF capacitor close to the

VCL pin.
VCC_USB USB power supply USB power supply pin. Connect this pin to VCC. If USB is

not used, it is safe to omit the 10uF cap on VCC_USB.
VCC_VSS USB ground USB ground pin. Connect this pin to VSS.

Analog Power Supplies

Symbol Name Description
AVCC0 12-bit ADC power

supply
Analog voltage supply pin for the 12-bit A/D converter.
Connect this pin to VCC if the 12-bit ADC is not used.

AVSS0 12-bit ADC ground Analog ground for the 12-bit A/D converter. Connect this
pin to VSS if the 12-bit ADC is not used.

VREFH0 12-bit ADC high
reference voltage

Reference power supply pin for the 12-bit A/D converter.
Connect this pin to VCC if the 12-bit ADC is not used.

VREFL0 12-bit ADC low
reference voltage

Analog reference ground pin for the 12-bit A/D converter.
Connect this pin to VSS if the 12-bit ADC is not used.

1.1 References
Further information regarding the power supply for the RX can be found in the following chapters of the Hardware
Manual:

Table 1 R01UH0365EJ0100 - RX111 Group User's Manual: Hardware

Chapter Name Description
1 Overview Lists power pins in each package with notes on termination

and bypassing.
6 Resets Discusses the Power-on Reset and how to differentiate this

from other reset sources.
8 Voltage Detection

Circuit
Provides details on the Low-Voltage Detection Circuit that
can be used to monitor the power supply.

11 Low Power
Consumption

Using low power modes may allow you to reduce the
voltage of the power supply. See this chapter for details on
how operating modes affect power supply requirements.

30
31

12-Bit A/D Converter
D/A Converter

If you plan to use the on-chip A/D or D/A converters, these
chapters give details on how to provide filtered power
supplies for these peripherals.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 3 of 30
Dec 2, 2013

2. Emulator Support
The RX111 supports a 1-wire FINE debug interface. FINE supports full on-chip debugging, including branch trace, but
does not support real-time RAM monitoring or hot plug-in. Renesas emulators support a FINE connection through the
standard 14-pin E1 interface.

2.1 Debug interface
To use an E1 debugger, the MD/FINED and RES# pins from the MCU must be connected to the E1 connector as shown
in the diagram below. Note that P14/UB# may be connected to a pull-up as shown or left open (do not pull down).

Figure 1 – Connections for FINE debug and FINE programming via E1 connector

VCC VCC

RX111
14-pin

2.54mm pitch
connector

MD/FINED

RES#

VCC

 All resistors
4.7K

VCC

MD/FINED

RES#

7

13

8
VCC

2,12,14
GND

P14/UB#

VCC

2.2 Notes on Emulator Connections
Pin P14/UB# on the MCU must be pulled high during debugging. If your design uses the special USB boot mode then
you will need to add additional circuitry to switch P14/UB# to ground at reset during USB boot. See for section 3,
“MCU Operating Modes,” for more details.

2.3 Production Programming Requirements
The RX111 supports three interfaces for production programming: FINE, serial boot mode, and USB boot mode. FINE
programming requires an E1 emulator and the circuit shown above in section 2.1.

Serial programming requires connections to the P15/RxD1 and P16/TxD1 pins, either through the E1 connector as
shown below or through an application-specific connector. During reset the MD/FINED and P14/UB# pins must be
pulled to appropriate levels as detailed in section 3, “MCU Operating Modes”. The E1 emulator and the PG-FP5 stand-
alone programmer both support serial boot mode programming.

Flash Memory Access Disable Function (ID Code)

The program memory can be protected with an ID code to prevent unauthorized reading of program memory. See
section 7.3.4 - ID Code Protection for more details.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 4 of 30
Dec 2, 2013

Figure 2 - Connections for FINE debug and serial programming via E1 interface

VCC VCC

RX111
14-pin

2.54mm pitch
connector

MD/FINED

RES#

VCC

 All resistors
4.7K

VCC

MD/FINED

RES#

7

13

8
VCC

2,12,14
GND

P14/UB#

VCC

P15/RxD1

P16/TxD1

VCC VCC

5

11

RxD

TxD

3. MCU Operating Modes
The RX111 MCUs can enter one of three modes after reset: single-chip mode, serial boot mode, or USB boot mode.
The boot mode is selected by the MD pin and, optionally, the state of the P14/UB# pin.

Table 2 – Operating Modes Available at Reset

Mode Setting Pin
MD*1 P14/UB# Mode
High Don’t care Single-chip mode
Low High or open Boot mode (SCI mode)
Low Low Boot mode (USB interface mode)

Note 1: Do not change the level on the MD pin while the MCU is operating.

3.1 USB Boot Mode
Pin P35/UPSEL selects whether the device is self-powered or bus-powered in USB boot mode.

Table 3 - Selecting Self-Powered or Bus-Powered USB Boot Mode

Mode Setting Pin
MD P14/UB# P35/UPSEL Mode
Low Low Low USB Boot mode in Self-Powered mode
Low Low High USB Boot mode in Bus-Powered mode

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 5 of 30
Dec 2, 2013

4. Option Setting Memory
The RX100 Series MCUs have Option Setting Memory. These are flash-based registers that are set when the device is
programmed, and that govern the operation of the chip immediately after reset. The registers are detailed in Chapter 7
of the Hardware Manual: “Option Setting Memory”.

The flash option registers occupy space in a reserved area of the memory map; they are located as part of the fixed
vector table. The image below shows the Option Setting Memory which consists of the two Option Function Select
registers (OFSx) and the Endian Select Register (MDE). These registers are read by the MCU at reset to determine
whether the part will run in big-endian or little-endian mode, and if peripherals like the Independent Watchdog Timer
(IWDT), the High-speed On-chip Oscillator (HOCO), and low-voltage detection circuit are operational or not at boot
time.

Figure 3 - Option Function Select registers

Enabling HOCO via these registers means that the HOCO is powered up and will start stabilizing immediately after
reset. This reduces the wait time when switching from the LOCO (the default clock source on startup) to the HOCO. If,
however, power savings is a requirement, then the registers can be configured to leave the HOCO off on power-up. The
OFS registers are also used to configure all aspects of the IWDT operation.

4.1 Option Setting Memory Registers
Below is a summary of the Option Setting Memory registers. Make sure that they are configured properly before
startup.

• OFS0 register
o Independent Watchdog Timer (IWDT) auto start
o IWDT timeout, frequency, windowing, interrupt type, and low power mode behavior
o Watchdog Timer (WDT) auto start
o WDT timeout, frequency, windowing, and interrupt type

• OFS1 register
o LVD0 enable after reset
o HOCO startup after reset

• MDE register
o Big/little endian mode

Below is an example on how to set the option setting memory register, MDE, which is at the address 0xFFFFFF80.
Note that unused/reserved bits are written to a ‘1’ as instructed in the Hardware Manual; be sure to set unused/reserved
bits per the hardware manual.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 6 of 30
Dec 2, 2013

/* Allocate the name MDEreg to the address 0xFFFFFF80 */
#pragma address MDEreg = 0xFFFFFF80

#ifdef __BIG
/* Set as Big Endian */
const unsigned long MDEreg = 0xFFFFFFF8u
#else
/* Set as Little Endian */
const unsigned long MDEreg = 0xFFFFFFFFu
#endif

Most sample projects and demo code from Renesas includes code to set the option registers.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 7 of 30
Dec 2, 2013

5. Clock Circuits
The RX111 group MCUs have five oscillators (see Table 4 - RX111 Oscillators). Four of these may be used as source
for the main system clock; the remaining oscillator is dedicated to the Independent Watchdog Timer. In a typical
system the main clock is driven with an external crystal or clock. This input is directed to a divider to bring it into the
4-8 MHz input range required by the PLL, then multiplied by the PLL up to a maximum speed of 48 MHz.

Table 4 - RX111 Oscillators

Oscillator Input source Frequency Primary uses
Main clock External crystal/resonator

 -or-

External clock

1 MHz to 20 MHz
(VCC >= 2.4 V)
1 MHz to 8 MHz
(VCC < 2.4V)

Up to 20 MHz

PLL input, main system clock,
peripherals clocks, flash
clock, USB clock

Sub-clock External crystal/resonator 32.768 kHz Real-time clock, system clock
in low power modes

High-speed on-chip
(HOCO)

On-chip oscillator 32 MHz Main system clock, peripheral
clocks in low power modes

Low-speed on-chip
(LOCO)

On-chip oscillator 4 MHz System clock at startup, in low
power modes, & during main
oscillator stop detection

Independent Watchdog
(IWDT)

On-chip oscillator 15 kHz Independent watchdog timer
clock

5.1 Reset Conditions
At reset the RX111 MCU uses the low-speed on-chip oscillator (LOCO) at 4 MHz as the main system clock. The
LOCO provides a good balance between performance and low-power. At reset, the main oscillator and the PLL are off
by default. The HOCO and IWDT may be on or off depending on the settings in the Option Setting Memory (see
section 4).

5.2 Main Clock Oscillator Voltage and Speed Dependency
The Main Clock Oscillator Forced Oscillation Control Register (MOFCR) is used to configure the main oscillator
circuit for variances in MCU operating voltage, oscillator speed, and oscillator type. The MODRV21 bit selects the
drive capability of the main clock oscillator, and the MOSEL bit selects whether an external resonator (crystal) or
external oscillator is used. Refer to chapter 9 of the Hardware Manual for more details on the MOFCR register.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 8 of 30
Dec 2, 2013

5.3 Clock Domains
The diagram below shows a simplified view of the RX111 clock domains. On the left are the five oscillators (main
clock osc, sub-clock osc, HOCO, LOCO, and IWDT). The main clock can be routed into a PLL circuit to boost its
speed. A selector chooses between five sources as the main system clock (PLL output, main clock, sub-clock, HOCO,
and LOCO), and the output of this selector is routed through a divider and then on to individual on-chip clock domains.

Figure 4 - RX111 Clock Chain

Main clock
osc

Sub clock
osc

HOCO

LOCO

PLL Div PLL

S
el

ec
to

r

1/1
1/2
1/4
1/8

1/16
1/32
1/64

S
el

7

S
el

S
el

S
el

ICLK

FCLK

PCLKB

PCLKD
(S12ADb)

UCLK
(48 MHz)

1-20 MHz

32.768 kHz

32 MHz

4 MHz

IWDT15 kHz IWDTCLK

The internal clock domains are as follows:

Table 5 - RX111 Internal Clock Domains

Clock domain Description Frequency
ICLK Main system (instruction) clock

Provide clock for CPU, DTC, ROM, and RAM
Up to 32 MHz

FCLK Flash Clock. Paces reads/writes of data flash and
writes to program flash when self-programming.

32 MHz max for
reading data flash,
>= 1 MHz for writing,
<= ICLK
(see section 5.4.2)

PCLKB Peripheral Clock B. Clocks all on-chip peripherals
except ADC, Data flash, and USB

32 MHz max, <= ICLK

PCLKD Peripheral Clock D. Clocks the S12ADb 32 MHz max, <= ICLK
UCLK USB clock (for devices with USB) Must be 48 MHz.
IWDTCLK Independent watchdog clock. Fixed at 15 kHz

5.4 Clock Frequency Requirements
The ICLK must always be greater than or equal to the peripheral clocks (PCLKB, PCLKD) and the flash clock (FCLK).

5.4.1 USB
The USB 2.0 Host/Function Module (USB) available on some members of the RX family requires a 48 MHz USB
clock signal (UCLK). UCLK is generated internally by the PLL, which must be set to generate a 48 MHz output. This

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 9 of 30
Dec 2, 2013

means that all other clock domains (ICLK, PCLKB, PCLKD, FCLK) must use at least a divide by 2 divider since their
maximum speed is 32 MHz. Therefore, when using USB the maximum ICLK speed is 24 MHz (48 MHz output from
the PLL divided by 2).

5.4.2 Programming and Erasing ROM or Data Flash
The FCLK must be at least 1 MHz to perform programming and erasing on internal ROM and data flash. When using
FCLK at lower than 4 MHz, during programming or erasing the flash memory, the frequency must be set to 1, 2, or 3
MHz.

5.5 Lowering CGC Power Consumption
The CGC area can account for 30%-40% of the power consumption of the chip. To aid in saving power, set the
dividers for any unused clocks (i.e. FCLK while not using data flash or performing self-programming) to the highest
possible value. Ensure that unused oscillators are powered off if not in use (i.e. if your application runs off the HOCO
and the main clock and PLL are not used, then power the main clock and PLL off). The registers for controlling each
clock source are shown in the table below:

Oscillator Register Description
Main clock MOSCCR Starts/stops main clock oscillator
Sub-clock SOSCCR Starts/stops sub-clock oscillator
High-speed on-chip (HOCO) HOCOCR Starts/stops HOCO
Low-speed on-chip (LOCO) LOCOCR Starts/stops LOCO
Independent Watchdog (IWDT) ILOCOCR Starts/stops IWDT on-chip oscillator

5.6 Sample Code for Clock Setup
See the sample code for the RSK RX111 board for an example of how to setup the clock.

5.7 HOCO Accuracy
The internal high-speed on-chip oscillator (HOCO) runs at 32 MHz +/-1% over the -20 to 85° C range. Accuracy
decrease slightly between -20° and -40° C. Refer to the Electrical Specifications in the hardware manual for details.

5.8 FlashIF Clock
The FlashIF Clock (FCLK) is used as the operating clock for when programming and erasing internal flash (ROM and
data flash) and for reading from the data flash. Therefore, the frequency setting of the FCLK will have a direct impact
on the amount of time it takes to read from the data flash. If the user’s program is reading from the data flash, or
performing programming or erasures on internal flash, then using the maximum FCLK frequency is recommended.

Please note that the FCLK frequency does not have any impact upon reading from ROM (i.e. executing instructions) or
reading and writing to RAM. Both of these memory areas are always single-cycle access.

5.9 Board Design
Refer to the “Usage Notes” section of the Clock Generation Circuit chapter in the Hardware Manual for more
information on using the CGC and for board design recommendations. A separate application note, “Design Guide for
Low CL Sub-Clock Circuits” (R01AN1012EJ0100), provides details on board layout for clock circuits.

5.10 Oscillation Stop Detect
The Oscillation Stop Detect function detects when the main oscillator stops and then automatically switches the MCU’s
system clock over to the LOCO in response.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 10 of 30
Dec 2, 2013

5.10.1 Important notes regarding Oscillation Stop Detect
• The Oscillation Stop Detect circuit is disabled by default after reset, but may be enabled by writing to the

OSTDE bit in the Oscillator Stop Detection Control Register (OSCTDR)
• When the main oscillator is selected as the system clock, and oscillation stop detect is enabled, if an oscillation

stop occurs the system clock source is switched to the LOCO. The SCKCR3.CKSEL bits remain unchanged,
however. The system will stay on the LOCO until the OSTDF flag in the OSTDSR register is cleared. Clear
this flag by changing the SCKCR3.CKSEL bits to the LOCO, then clear the flag, then switch the clock source
back to the main oscillator. The steps are shown in the flowchart from the hardware manual below.

• When the PLL is selected as the system clock, and oscillation stop detect is enabled, if an oscillation stop
occurs the system clock source remains the PLL, the SCKCR3.CKSEL bits remain unchanged, and the system
frequency becomes the PLL free-running oscillation frequency.

• When transitioning to the LOCO, the frequency divisors in the SCKCR register for ICLK, PCLKB, PCLKD,
and FCLK may need to be adjusted.

• Because the main clock oscillator is turned off in Software Standby Mode, the Oscillation Stop Detect circuit
must be disabled before entering this mode.

• The Oscillation Stop Detect circuit must be disabled before the main clock oscillator is stopped by setting the
MOSTP bit in the MOSCCR.

• To use the Non-Maskable Interrupt for Oscillation Stop Detect, the OSTEN bit in the Non-Maskable Interrupt
Enable Register (NMIER) must be set.

• Oscillation Stop Detect should only be enabled after the main clock oscillator has properly stabilized.
• Application code servicing the Independent Watchdog Timer (IWDT) must take into account that the IWDT

continues to run at the same rate even though the MCU is running at a reduced rate after an Oscillation Stop
Detect event.

Figure 5 - Oscillation Stop Detect Recovery

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 11 of 30
Dec 2, 2013

6. Reset Requirements and Reset Circuit
There are six types of resets:

Reset Name Source
Pin reset RES# is driven low
Power-on reset VCC rices (voltage detection: VPOR)
Voltage-monitoring 1 reset VCC falls (voltage detection Vdet1)
Voltage-monitoring 2 reset VCC falls (voltage detection Vdet2)
Independent watchdog timer
reset

The independent watchdog timer underflows, or a refresh
occurs outside the permitted window (refresh error)

Software reset Register setting

6.1 Pin Reset
When the RES# pin is driven low, all processing is aborted and the RX enters a reset state. To reset the MCU while it is
running, RES# should be held low for the specified reset pulse width (minimum of 30 us). Refer to the “Electrical
Characteristics” chapter of the Hardware Manual for more detailed timing requirements. Also refer to section 2,
“Emulator Support” for details on reset circuitry in relation to debug support.

If you do not plan on using the internal Power-On Reset function (see next section), you must ensure that RES# is held
low for at least 3 ms after VCC rises above Vpor. A much simpler solution is to use the internal POR circuit.

6.2 Power-On Reset
The built-in Power-On Reset circuit reduces the number of external components needed to safely start the MCU at
power-up. To enable the Power-On Reset circuit, simply tie the RES# pin to VCC with a 4.7k resistor. The Power On
Reset occurs when the RES# pin is high as power is applied to the MCU. After VCC has exceeded the power on
voltage, Vpor, and the power-on reset time, tPOR has elapsed, the chip is released from the power-on reset state. The
power-on reset time is a period that allows for stabilization of the external power supply and the MCU.

Because the POR circuit relies on having RES# high concurrently with VCC, don’t place a capacitor on the reset pin.
This will slow the rise time of RES# in relation to VCC, preventing the POR circuit from properly recognizing the
power-on condition.

If the RES# pin is high when the power supply (VCC) falls to or below Vpor, a power-on reset is generated. The chip
is released from the power-on state after VCC has risen above Vpor and the tPOR has elapsed.

After a power on reset, the PORF bit in RSTSR0 is set to 1; following a pin reset PORF is cleared to 0.

6.3 Voltage Monitoring Reset
The RX111 group includes circuitry that allows the MCU to protect against unsafe operation during brownouts. On-
board comparators check the supply voltage against two reference voltages, Vdet1 and Vdet2. As the supply dips
below each reference voltage an interrupt or a reset can be generated. The trip levels of Vdet1 and Vdet2 are
configurable.

When Vcc subsequently rises above Vdet1 or Vdet2, release from the voltage-monitoring reset proceeds after a
stabilization time has elapsed.

Low Voltage Detection (Vdet1 and Vdet2) is disabled by default after reset; Vdet1 can be enabled out of reset by using
the Option Function register OFS1. For more details, see the chapter “Voltage Detection Circuit (LVD)” in the
hardware manual for details.

After an LVD Reset, the LVDnRF (n= 1, 2) bit in RSTSR0 is set to 1

6.4 Independent Watchdog Timer Reset
This is an internal reset generated by the Independent Watchdog Timer (IWDT).

When the IWDT underflows, or if data is written outside the refresh-permitted period, an independent watchdog timer
reset is optionally generated (NMI can be generated instead) and the UNDFF bit in the IWDTSR is set to a 1. After a
short delay (tRESW2 = 300 µsec), the IWDT reset is canceled.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 12 of 30
Dec 2, 2013

6.5 Software Reset
This is an internal reset generated by writing 0xA501 to the SWRR register. The internal reset time when using
software reset is typically of 168 µsec. When using software reset, make sure that the watchdogs are serviced first
before issuing the software reset command.

6.6 Determination of Cold/Warm Start
The CWSF bit in Reset Status Register 1 (RSTSR1) is cleared automatically by the MCU at power-on; it is not cleared
by other reset sources. By reading and then setting this bit, software can tell whether the MCU was just powered on or
whether the reset was caused by some other source (i.e. a pin reset or an independent watchdog reset). If the bit is clear,
then a power-on reset has occurred; if the bit is set, then some other reset occurred.

6.7 Determining the Reset Source
The RX MCU allows the user to determine the reset signal generation source. Refer to the hardware manual section
6.3.9 Determination of Reset Generation Source for the flow diagram.

The following code sample shows how to determine the source that caused a reset.

#define RST_SRC_SW 0x001 /* Software reset */

#define RST_SRC_VDET2 0x004 /* Voltage monitor 2 reset */

#define RST_SRC_VDET1 0x008 /* Voltage monitor 1 reset */

#define RST_SRC_IWDT 0x020 /* Independent watchdog reset */

#define RST_SRC_POR 0x080 /* Power on reset */

#define RST_SRC_PIN 0x100 /* Pin reset */

int ResetSource ()

{

 /* Check for software reset */

 if (SYSTEM.RSTSR2.BIT.SWRF == 1) return (RST_SRC_SW) ;

 /* Check for voltage monitoring reset on Vdet2 */

 if (SYSTEM.RSTSR0.BIT.LVD2RF == 1) return (RST_SRC_VDET2) ;

 /* Check for voltage monitoring reset on Vdet1 */

 if (SYSTEM.RSTSR0.BIT.LVD1RF == 1) return (RST_SRC_VDET1) ;

 /* Check for independent watchdog timer (IWDT) reset */

 if (SYSTEM.RSTSR2.BIT.IWDTRF == 1) return (RST_SRC_IWDT) ;

 /* Check for power on reset */

 if (SYSTEM.RSTSR0.BIT.PORF == 1) return (RST_SRC_POR) ;

 /* If no other reset sources were indicated, then it must have been a pin reset */

 return (RST_SRC_PIN) ;

}

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 13 of 30
Dec 2, 2013

7. Memory
The RX100 Series of MCU’s have a 32-bit memory space spanning 4 Gbyte that includes areas for on-chip memory and
peripherals. Program and data memory share the address space; separate buses are used to access each, increasing
performance and allowing same-cycle access of program and data. Contained within the memory map are regions for
on-chip RAM, peripheral I/O registers, program ROM, and data flash.

Address Memory Map
0x0000 0000 RAM

(up to 16 Kbytes)

0x0000 4000 Reserved
0x0008 0000

Peripheral I/O Registers

0x0010 0000 On-chip data flash
(8 Kbytes)

0x0010 2000 Reserved
0x007F C000 Peripheral I/O Registers
0x007F C500 Reserved
0x007F FC00 Peripheral I/O Registers
0x0080 0000

Reserved

0xFFFE 0000 On-Chip ROM
(up to 128 Kbytes) 0xFFFF FFFF

7.1 On-Chip RAM
Members of the RX100 include high-speed on-chip RAM that can be accessed in a single cycle at CPU speeds up to 32
MHz. Data stored in RAM is retained in all low-power modes of the CPU. Depending on the RX100 device, up to 16K
of on-chip RAM is accessed starting at address 0x00000000.

7.2 Peripheral I/O Registers
Blocks of peripheral I/O registers appear at various locations in the memory map depending on the device and the
current operating mode. The majority of peripheral I/O registers occupy a region from address 0x00080000 to
0x00100000. This region contains registers that are available at all times in all modes of operation. The Renesas tool
chain generates C header files that map all of the peripheral I/O registers for a specific device to easily accessible C data
structures.

7.3 Program ROM & Data Flash
The RX100 Series of MCUs feature two flash memory sections: program ROM and data flash. The program ROM is
designed to store user application code and constant data. The data flash is designed to store information that may be
updated from time to time such as configuration parameters, user settings, or logged data. The units of programming
and erasure in the data flash area are smaller than that of the program ROM (1 bytes for Data Flash versus 4 bytes for
ROM). This makes the data flash better suited for storing information that would benefit from the finer granularity of
the data flash area, such as configuration parameters.

Both the data flash and ROM areas can be programmed or erased by application code. This enables field firmware
updates without having to connect an external programming tool. To speed development of code that supports in-
application programming of the flash, Renesas supplies APIs that can be used for modifying both ROM and data flash.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 14 of 30
Dec 2, 2013

7.3.1 Enabling Data Flash Memory
Out of reset the data flash memory cannot be read, programmed, or erased. In order to allow read access the data flash
must be enabled by setting the DFLEN bit in the DFLCTL register.

7.3.2 Blank Checking of Data Flash Memory
A data flash memory area can be checked to see if it is erased by verifying it contains all 0xFF’s. This is different than
RX600 & RX200 MCUs where erased memory had an undefined value.

7.3.3 Background Operation
RX100 MCUs support background operations for ROM and data flash. This means that when a program or erase is
started, the user can keep executing and accessing memory from memory areas other than the one being operated on.
For example, the CPU can execute application code from ROM while the data flash memory is being erased or
programmed. Also, the CPU can execute application code from RAM while the ROM memory is being erased or
programmed. The only exception to this rule is that the data flash cannot be accessed during ROM programming or
erasing.

7.3.4 ID Code Protection
RX100 MCUs have a 32-byte memory area that is used as an ID code. If this ID code is left blank (0xFF’s) then no
protection is enabled and access to the MCU is allowed through boot mode or using the on-chip debugger. If the ID
code is set then the user can control access to these modes. The user can choose to always disallow connections, or can
choose to allow connections when a matching ID code is input. Refer to the “Flash Memory >> Flash Memory Access
Disable Function” section of the hardware manual for more information.

7.4 Memory Access Speed
Both the RAM and internal ROM can be accessed in a single cycle with no wait states. This is true to up to the current
maximum operating frequency of the RX100 Series, which is 32MHz. The FlashIF Clock (FCLK) controls the speed
when reading data flash memory. The number of FCLK cycles it takes to read the data flash depends on the access
width.

Access Size 8-bit 16-bit 32-bit

Number of FCLK cycles to read
data from data flash 4 to 5 6 to 7 14 to 15

7.5 Data Alignment
There are no limits for aligning data. The MCU is capable of doing byte, word, and long accesses on odd memory
locations. While it is still optimal to align data accesses, it is not required.

7.6 Runtime ROM Protection
The RX111 has two different mechanisms to help protect user applications that perform self-programming. Startup-Up
Program Protection is one feature that allows the top two 16KB areas of ROM to be swapped. This is useful when
writing the fixed-vector table because the new table can be written in the bottom 16KB block, verified that it has been
written, and then the blocks swapped. If a power down or reset were to occur during the writing of the bottom block, the
fixed-vector table would still be intact in the top block. This feature is only available on MCUs that have at least 32KB
of ROM. For more information on this feature please see the “Flash Memory >> Start-Up Program Protection” section
of the hardware manual.

The Area Protection feature can be also be used for runtime ROM protection. This feature works by setting an upper
and lower address for ROM blocks that can be rewritten using self-programming. When set, only ROM blocks that are
below the upper address and above the lower address can be modified. If self-programming is attempted on a ROM
block that is outside of these addresses then the operation will fail. This feature does not pertain to Boot Mode where all
ROM blocks can always be rewritten. For more information on this feature please see the “Flash Memory >> Area
Protection” section of the hardware manual.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 15 of 30
Dec 2, 2013

8. Register Write Protection
The Register Write Protection function protects certain registers in the MCU from inadvertent changes by runaway or
buggy software. The system Protect Register (PRCR) contains bits that enable writing to other registers in the MCU.
PRCR is a sixteen bit register with a key in the upper byte and the protection bits in the lower byte. A key code of A5
hex must be written to the upper 8 bits of PRCR to modify any of the lock bits in the lower byte. Setting a PRC bit to a
1 allows writing of the protect registers. Protection is enabled by default after reset (all PRC bits are zero after reset).

Figure 6 - PRCR Register

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

PRKEY[7:0] — — — — PRC3 PRC2 PRC1 PRC0

PRCR bit Description
PRC0 • Registers in the Clock Generation Circuit (CGC) that control operation of

the MCU’s clocks: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR,
SOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR, CKOCR

PRC1 • Registers related to the operating modes:SYSCR1
• Registers related to the low power consumption functions: SBYCR,

MSTPCRA, MSTPCRB, MSTPCRC, OPCCR, RSTCKCR, SOPCCR
• Registers related to clock generation circuit: MOFCR, MOSCWTCR
• Software reset register: SWRR

PRC2 • Registers related to the clock generation circuit
• HOCOWTCR

PRC3 • Registers related to the Low Voltage Detection circuit (LVD): LVCMPCR,
LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR

PRKEY[7:0] Write 0xA5 to these bits to allow writing to the PRC bits. To modify the
system protection, write 0xA5 to the PRKEY bits while setting the PRC bits.

8.1 System Protection Example Code
To unlock all registers, write 0xA50F to the PRCR. Set it back to 0xA500 to protect them all again.

/* Disable write protection for all protected registers */
SYSTEM.PRCR.WORD = 0xA50F;
/* Change system clock divisors */
SYSTEM.SCKCR.LONG = 0x21000202 ;
/* Turn write protection back on for all protected registers */
SYSTEM.PRCR.WORD = 0xA500;

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 16 of 30
Dec 2, 2013

9. I/O Ports and Register Structures
Renesas supplies a C language header file named ‘iodefine.h’ that allows users to easily access I/O registers through
unions and structures. The syntax of using these unions and structures to access hardware registers is:

Peripheral.Register<.AccessWidth>.<Bit>

Where:

Peripheral is the name of a specific peripheral such as: SCI5, ICU, S12AD, etc.

Register is the register abbreviation for a specific register such as: SCR, IPR, ADCSR, etc.

AccessWidth is an optional field used when an I/O register has more than one field. One of four keywords
specifies how to access the register: LONG, WORD, BYTE, or BIT.

Bit is an optional field that is only used when AccessWidth is BIT. It specifies the name of a single bit or range
of bits in a register such as: TIE, IPR, or ADIE.

Note that Peripheral, Register, and Bit match the mnemonics used in the RX Hardware Manual.

If accessing a register that does not have bit fields, use the peripheral and register name only. An example is ‘MTU0
Timer Counter’ shown in the table below.

What to access Bits to Access How to access

System Clock Control Register (SCKCR) 32 SYSTEM.SCKCR.LONG

MTU0 Timer Counter 16 MTU0.TCNT

SCI Channel 5, Receive Data Register (RDR) 8 SCI5.RDR

SCI Channel 5, Serial Control Register (SCR) 8 SCI5.SCR.BYTE

SCI Channel 5, Receive enable bit in SCR 1 SCI5.SCR.BIT.RE

Port 2, Pin 5, Port Direction Register Bit 1 PORT2.PDR.BIT.B5

CMT0 Control Register clock selection bits 2 CMT0.CMCR.BIT.CKS

CMT0 Control Register – whole register 16 CMT0.CMCR.WORD

9.1 I/O Register Macros
Macros in the iodefine.h for RX family parts make it easier to refer to ICU control registers, module stop registers, DTC
enable registers, and interrupt vector numbers by the logical names associated with the peripherals. These macros allow
portability across RX family members by hiding specific register and vector numbers. See the documentation contained
in iodefine.h and sections below for details.

Some examples:

Macro Usage example
IR(“module name”, “bit name”) if (IR(SCI5,TXI5) == 1)…

IEN(“module name”, “bit name”) IEN(SCI5,TXI5) = 1 ;

IPR(“module name”, “bit name”) IPR(SCI5,TXI5) = 0x02 ;

MSTP(“module name”) MSTP(SCI5) = 0 ;

VECT(“module name”, “bit name”) #pragma interrupt
 (MySciTxIsr(vect=VECT(SCI5,TXI5))

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 17 of 30
Dec 2, 2013

9.2 ICU Register Macros
These macros help with accesses to the following registers in the ICU:

• Interrupt Request Registers (IRn)

• DTC Activation Enable Register (DTCERn)

• Interrupt Request Enable Register (IERm)

• Interrupt Priority Register (IPRm)

Instead of having to refer to the values for ‘n’ and ‘m’, the user can specify the desired peripheral and interrupt.
Application code then becomes portable across members of the RX family that share the same peripheral.

Examples are below.

Without Macro With Macro

ICU.IR[28].BIT.IR = 0; IR(CMT0, CMI0) = 0;

ICU.DTCER[28].BIT.DTCE = 1; DTCE(CMT0, CMI0) = 1;

ICU.IER[3].BIT.IEN4 = 1; IEN(CMT0, CMI0) = 1;

ICU.IPR[4].BIT.IPR = 3; IPR(CMT0, CMI0) = 3;

9.3 Vector Number Macro
When using the Renesas compiler, interrupt service routines written in C language are hooked to specific interrupts
vectors using the #pragma interrupt directive:

#pragma interrupt (INT_CMI0(vect=28))
void INT_CMI0 (void) ;

The above example hooks the C language function “INT_CMI0” to interrupt vector number 28, which is the compare
match interrupt for CMT0. This same interrupt source (CMI0) may not use the same vector number (28) on other
members of the RX family. To provide portability, the VECT() macro allows the user to specify a logical name for an
interrupt source which is then expanded by a part-specific iodefine.h file to the correct vector number.

The syntax is:

 VECT(Peripheral, Source)

Where:

Peripheral is the name of a specific peripheral such as: SCI5, CMT0, AD0, etc.

 Source is the name of an interrupt source in that peripheral such as: RXI5, CMI0, ADI0, etc.

Example:

Without Macro

/* Declare ISR for CMT0 – CMI0 */

#pragma interrupt CMT0_CMI0(vect=28)

With Macro

/* Declare ISR for TMR0 – CMI0 */

#pragma interrupt CMT0_CMI0(vect=VECT(CMT0,CMI0))

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 18 of 30
Dec 2, 2013

9.4 Module Stop Control Macro
The Module Stop Control Registers allow individual peripherals to be turned on or off for power savings. By default,
most peripherals are off at power up and must be powered on before accessing their control registers (see hardware
manual for details). The Module Stop Control Registers contain bit fields for a number of peripherals; these registers
change in layout from part to part in the RX family. The MSTP() macro simplifies control of the stop state of
peripherals and makes code portable.

To use this macro, specify the name of the peripheral:

 MSTP (Peripheral)

Example:

Without Macro With Macro

/* Turn on SCI5 */

SYSTEM.MSTPCRB.BIT.MSTPA26 = 0;

/* Turn on SCI5 */

MSTP(SCI5) = 0;

Care should be taken when using the MSTP() macro because sometimes multiple peripheral channels will map to the
same MSTP bit. For example, the MSTPA15 bit controls CMT0 and CMT1 (both channels are part of CMT unit 0).
This means that both MSTP(CMT0) and MSTP(CMT1) will resolve to SYSTEM.MSTPCRA.BIT.MSTPA15. This is
not a problem when powering on a peripheral but could cause a problem when powering down. If the user turns off
CMT0 to save power by using ‘MSTP(CMT0) = 1;’ then they will also turn off CMT1 even if they did not intend to.
The user can avoid this problem by always checking to make sure both channels are not in use before powering down.

9.5 I/O Registers and Endian Settings
The RX I/O Registers are at fixed locations and byte orders in memory regardless of the endian setting of the processor.
When accessing data memory, the most significant byte of a 16-bit word can be stored at either an odd or even address
depending on the endian setting; this is not the case with the RX I/O Registers.

Always access I/O registers using the proper access instruction for the size of the register; do not access word or
long word registers with byte instructions, or long word registers with word instructions. Do not assume that
registers for a particular peripheral are big-endian or little-endian.

This can confuse some compilers depending on the data structures used to access I/O Registers, particularly when using
bit fields in 16-bit or wider registers. The iodefine.h file generated by the Renesas tools uses directives specific to the
Renesas compiler (such as “__evenaccess”) to ensure that access to the I/O registers is correct regardless of the endian
setting of the processors.

Because of this:

The user is strongly advised to use only the structures in iodefine.h file to access I/O registers
and

to check the compiler output at the assembly language level if changes are made to the file.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 19 of 30
Dec 2, 2013

10. I/O Port Configuration and the Multifunction Pin Controller (MPC)
The I/O Ports and Multifunction Pin Controller (MPC) sections of the Hardware Manual describe exact pin
configurations based on peripheral selection and other register settings. Some general information is listed below.

10.1 Setting Up and Using Port as GPIO
• Select a pin as an output by writing a “1” to the corresponding Port Direction Register (PDR)

• The Port Direction Register (PDR) is read/write. Setting the value to a “1” selects the pin as an output. Default
state for I/O Ports is “0” (input). The port direction registers can be read on the RX.

• The Port Output Data Register (PODR) is read/write. When the PODR is read the state of the output data latch
(not the pin level) is read.

• The Port Input Register (PIDR) is read only. Read the PIDR register to read the pin state.

• The Port Mode Register (PMR) is read/write and is used to specify whether individual pins function as GPIO
or as peripheral pins. Out of reset all PMR registers are set to 0 which sets all pins to work as GPIO. If a PMR
register is set to 1 then that corresponding pin will be used for peripheral functions. The peripheral function is
defined by that pin’s MPC setting.

• When setting a pin as an output it is recommended that the desired output value of the port be written to the
data latch first, then the direction register is set to an output. Though not important in all systems, this prevents
an unintended output glitch on the port being setup.

Examples:

Set up Port 0, bit 1 as an input:

/* Make pin an input */
PORT0.PDR.BIT.B1 = 0;
/* See if input is high */
if (PORT0.PIDR.BIT.B1 == 1) …

Set up Port 0, bit 1 as an output:

/* Set the output level first to prevent glitches */
PORT0.PODR.BIT.B1 = 1;
/* Make pin an output */
PORT0.PDR.BIT.B1 = 1;

10.1.1 Internal Pull-Ups
• Most pins have optional internal pull-up resistors that can be enabled with the Pull-up Control Registers (PCR).

Each bit in the PCR register controls the corresponding bit on the port. Set the PCR bit to “1” to enable the
pull-up and “0” to disable it.

• Out of reset all PCR registers are cleared to 0; therefore, all on-chip pull-ups are disabled.
• The pull-up is automatically turned off whenever a pin is designated as an output, or assigned as a peripheral

function output pin.

Enable pull-up on Port 0, bit 1:

/* Port pin P01 requires a pull-up */
PORT0.PCR.BIT.B1 = 1;

10.1.2 Open-Drain Output
• Pins configured as outputs normally operate as CMOS outputs
• Many pins have the option of being configured as N-channel open-drain outputs, and some can be configured

as P-channel open-drain outputs
• The Open Drain Control Registers (ODR0 and ODR1) control which pins operate in open-drain mode. The

ODR0 registers control the settings for pins 0 through 3 on a port, and the ODR1 registers control the settings
for pins 4 through 7 on each port. Check the “I/O Ports” section in the hardware manual for your device for
specific pin settings.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 20 of 30
Dec 2, 2013

Set Port A, bit 3 as N-channel open-drain output:

/* Set the output level first to prevent glitches */
PORTA.PODR.BIT.B3 = 1;
/* Set PA3 to open-drain */
PORTA.ODR0.BIT.B3 = 1;
/* Make pin an output */
PORTA.PDR.BIT.B1 = 1;

10.2 Setting Up and Using Port Peripheral Functions
The Multifunction Pin Controller (MPC) allows flexible run-time assignment of peripheral functions to I/O pins. It
allows mapping of peripheral functions to various places around the chip’s package, making board design and layout
easier.

• Each pin has a Pin Function Control register (PmnPFS where m = port, n = pin). For example, the P10PFS
register allows you to choose pin functions for pin 0 on port 1.

• Each PmnPFS register can contain up to 3 fields: ASEL, ISEL, and PSEL.

• The ASEL bit is present only for pins that support analog functions. Set this bit to a 1 to use the pin in analog

mode. In addition, the pin’s bit in the Port Mode Register (PMR) should be set to 0, and the pin’s direction
(set in the PDR) should be set to input.

• The ISEL bit is present only for pins that support IRQ interrupt functionality. Set this bit to a 1 to use the pin
as an IRQ pin.

• The PSEL bits are present in every PmnPFS register. These bits determine the peripheral function to assign to
the pin. Refer to the appropriate register in the MPC chapter of the hardware manual for a table of the
available peripheral functions for each pin for your device and packages.

• In order to ensure that no unexpected edges are input or output on peripheral pins make sure to clear the PMR
bit for the targeted pin before modifying the pin’s PmnPFS register.

• All PmnPFS registers are write protected out of reset. In order to write to these registers the Write-Protect
Register (PWPR) must first be used to enable writing.

• Care should be taken when setting PmnPFS registers such that a single function is not assigned to multiple pins.
The user should not do this but the MCU will allow it. If this occurs the function on the pins will be undefined.

• The example below shows the steps for setting port C, bit 2 to be a SCI receiver input pin (RXD5). These steps
are defined in the Multi-Function Pin Controller (MPC) >> Usage Notes >> Procedure for Specifying
Input/Output Pin Function section of the RX111 HW manual.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 21 of 30
Dec 2, 2013

Example - Enabling SCI5 to use port C, bit C as SCI receiver input pin

/* Allow writing to MSTP registers. */
SYSTEM.PRCR.WORD = 0xA50B;
/* Enable SCI5 (take out of stop mode) */
MSTP(SCI5) = 0;
/* Configure SCI5 */
...
/* Clear PMR bit for PC2 before changing PC2PFS register. */
PORTC.PMR.BIT.B2 = 0;
/* Set PC2 as input pin. */
PORTC.PDR.BIT.B2 = 0;
/* Unlock protection register */
MPC.PWPR.BIT.B0WI = 0;
/* Unlock MPC registers */
MPC.PWPR.BIT.PFSWE = 1;
/* Set PC2 to be used for RXD5 function. */
MPC.PC2PFS.BYTE = 0x0A;
/* Assign PC2 to be used for peripheral function. */
PORTC.PMR.BIT.B2 = 1;

/* Set other port registers and re-enable MPC & MSTP register protection. */

10.3 Setting Up and Using IRQ Pins
• Certain port pins can be used as hardware interrupt lines (IRQ). See the Multi-Function Pin Controller (MPC)

“Overview” section of the HW Manual for information on which pins are available for your MCU.

• To set a port pin to be used as an IRQ pin, the Interrupt Input Function Select bit (ISEL) in the pin’s PFS
register must be set to “1”.

• Pins can be used for both IRQ and peripheral functions simultaneously. To enable this the user should set both
the ISEL and PSEL bits in the pin’s PFS register.

• IRQ pins can trigger interrupts on detection of:

o Low level

o Falling edge

o Rising edge

o Rising and falling edges

Which trigger is selected is chosen using the IRQ Control Registers (IRQCRi).

• Digital filtering is available for IRQ pins. The filters are based on repetitive sampling of the signal at one of
four selectable clock rates (PCLK, PCLK/8, PCLK/32, PCLK/64). They filter out short pulses: any high or
low pulse less than 3 samples at the filter rate. The filters are useful for filtering out ringing and noise in these
lines, but are much too quick for filtering out long events like mechanical switch bounce. Enabling filtering
adds a short bit of latency (the filter time) to the hardware IRQ lines.

• Digital filtering can be enabled for each IRQ pin independently. This is done by setting the IRQ Pin Digital
Filter Enable Registers (IRQFLTEi).

• The clock rate for digital filtering is configurable for each IRQ pin independently. This is done by setting the
IRQ Pin Digital Filter Setting Registers (IRQFLTCi).

• The example below shows code to enable IRQ3 with falling edge detection on port 2, pin 7.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 22 of 30
Dec 2, 2013

Example - Enabling port 2, bit 7 as IRQ3 input

/* P27 is not being used for peripheral function. */
PORT2.PMR.BIT.B7 = 0;
/* Make pin an input */
PORT2.PDR.BIT.B7 = 0;
/* Unlock protection register */
MPC.PWPR.BIT.B0WI = 0;
/* Unlock MPC registers */
MPC.PWPR.BIT.PFSWE = 1;
/* Set P27 to be used for IRQ function. */
MPC.P27PFS.BYTE = 0x40;
/* Set IRQ type (falling edge) */
ICU.IRQCR[3].BIT.IRQMD = 0x01;
/* Clear any pending interrupts. */
IR(ICU,IRQ3) = 0;
/* Set interrupt priority to 3 */
IPR(ICU,IRQ3) = 0x03;
/* Enable the interrupt */
IEN(ICU,IRQ3) = 1;
/* Be sure to write an interrupt handler!!! */

10.4 Unused Pins
NOTE:

Some pins require specific termination: See the “I/O Ports: Handling
of Unused Pins” section of the Hardware Manual for specific
recommendations.

Unused pins that are left floating can consume extra power and leave the system more susceptible to noise problems.
Terminate unused pins with one of the methods detailed here:

1. The first option is to set the pin to an input (the default state after Reset) and connect the pin to Vcc or Vss using a
resistor. There is no difference from a MCU standpoint between one connection or another; however, there may be
an advantage from a system noise perspective. Vss is probably the most typical choice. Avoid connecting a pin
directly to Vcc or Vss since an accidental write to the port’s direction register that sets the pin to an output could
create a shorted output.

2. A second method is to set the pin to an output. It does not matter whether the pin level is set high or low; however,
setting the pin as an output and making the output low connects the pin internally to the ground plane. This may
help with overall system noise concerns. A disadvantage of setting unused pins to outputs is that the configuration
of the port must be done via software control. While the MCU is held in Reset and until the direction register is set
for output the pin will be a floating input and may draw extra current. If the extra current can be tolerated during
this time, this method eliminates the external resistors required in the first method.

3. A variation on leaving the pins as inputs and terminating them with external resistors uses the internal pull-ups
available on some ports of the MCU. This has the same limitation as setting the pins to outputs (requires the
program to set up the port) but it does limit the effect of accidental pin shorts to ground, adjacent pins or Vcc since
the device will not be driving the pin.

10.5 Non-Existent Pins
When using a MCU with less than 64 pins, set the corresponding bits of nonexistent ports in the PDR register to “1”
(output) and in the PODR register to “0”. The user can see which ports are available on each MCU package by
reviewing the “Specifications of I/O Ports” table in the I/O Ports section of the HW Manual. For example pins 3 and 5
on port 0 are only available on the 64 pin package. A separate application note covers software startup of the chip
including initialization of nonexistent pins. See the “Initial Setting” application note in the References section of this
document.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 23 of 30
Dec 2, 2013

10.6 Electrical Characteristics
GPIO require CMOS level inputs (High ≥0.8 * Vcc, Low≤ 0.2*Vcc) see electrical characteristics for more information

10.7 MPC Register Setting Summary
The following table can be found in section 19.3 of the Hardware Manual. Additional information can be found there.

Table 6 - Register Settings for GPIO

Item PMR.Bn PDR.Bn

PmnPFS

Point to note ASEL ISEL PSEL[4:0]

After a reset 0 0 0 0 00000b Pins function as general input port pins
after release from the reset state.

General input ports 0 0 0 0/1 X Set the PmnPFS.ISEL bit to 1 if these
are multiplexed with interrupt inputs.

General output ports 0 1 0 0 X

Peripheral functions 1 X 0 0/1 Peripheral
function
setting

Set the PmnPFS.ISEL bit to 1 if these
are multiplexed with interrupt inputs.

Interrupt inputs 0 0 0 1 X

NMI X X X X* X Register settings are not required

Analog inputs and
outputs

0 0 1 X* X Set these as general input port pins so
that the output buffers are turned off

XCIN 0 0 X X* X Set these as general input port pins so
that the output buffers are turned off.

X: setting not required

0/1: Setting the PmnPFS.ISEL bit to 0 makes the pin incapable of functioning as an IRQ pin.

 Setting the PmnPFS.ISEL bit to 1 makes the pin capable of functioning as an IRQ pin

*Even if the PmnPFS.ISEL bit is set to 1, the pin will not function as an IRQn input pin.

11. Module Stop Function
To maximize power efficiency, the RX family of MCU’s allow on-chip peripherals to be shut down individually by
writing to the Module Stop Control Registers (MSTPCRi, i=A, B, C). After reset most of the modules are stopped
(exceptions are DTC and on-chip RAM; see hardware manual for details).

Before accessing any of the registers for a peripheral, it must be enabled by taking out of stop mode by writing a ‘0’ to
the corresponding bit in the MSTPCRi register. The MSTPCRi registers are protected registers and they have to be
unprotected by writing to the PRCR registers first (see section 8 - Register Write Protection). See example below.

Peripherals may be shut down by writing a ‘1’ to the proper bit in the MSTPCRi register.

The MSTP() macro in iodefine.h makes it easy to enable and disable peripherals using their name.

Example – Turning on SCI5 using the MSTP macro

/* Disable write protection for the MSTP registers */
SYSTEM.PRCR.WORD = 0xA502;
/* Enable SCI5 (take out of stop mode) */
MSTP(SCI5) = 0 ;
/* Enable write protection for the MSTP registers */
SYSTEM.PRCR.WORD = 0xA500;
/* You can now access SCI5 control registers */

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 24 of 30
Dec 2, 2013

12. Interrupts
The RX family has a sophisticated Interrupt Control Unit (ICU) that handles asynchronous events from over 200
sources. These sources include on-board peripherals, external hardware, and software requests. The Interrupt Control
Unit chapter of the Hardware Manual lists each source for specific parts.

Local interrupt enable flags in each peripheral gate a signal from the peripheral to the ICU. These signals set Interrupt
Status Flags in individual ICU Interrupt Request registers (IRx) that exist for each interrupt source. Within the ICU,
individual bits in the Interrupt Request Enable Registers (IERx) determine whether an interrupt is taken when the Status
Flag becomes set.

To handle simultaneous interrupt requests from multiple sources, the ICU allows each interrupt source to be assigned a
priority. These priorities are compared to the current priority level in the CPU status register IPL bits, and an interrupt
is only serviced if its priority is greater than the CPU’s current IPL and all other active requests. Two active sources
with the same priority level are serviced in vector number order, lowest vector first.

The steps to enable an interrupt are:

1. The peripheral or port pin generating the interrupt must be enabled and configured in both the Port setup
registers and the Multifunction Pin Controller Registers.

2. Set an interrupt priority for the interrupt source (IPR macro) to a value greater than zero (zero = disabled).
3. Enable the interrupt in the peripheral (local enable bit)
4. Enable the interrupt in the ICU (IEN macro)

For edge-triggered interrupts, the Interrupt Status Flags in the IR registers are cleared automatically when an interrupt
fires and the CPU vectors to the Interrupt Service Routine (ISR). The flags must be manually cleared when using
polled operation rather than interrupts.

For level-sensitive interrupts, the Interrupt Status Flag in the IR register stays set until the interrupt source is cleared.

12.1 Nesting Interrupts
The global interrupt enable bit in the Processor Status Word (PSW), the ‘I’ bit, is cleared whenever an interrupt is taken,
disabling all further interrupts including higher priority interrupts. To allow nesting of interrupts and pre-emption of the
ISR by higher priority interrupts, the ‘I’ bit must be set in the ISR. When declaring an interrupt in C (#pragma
interrupt), use the ‘enable’ keyword to automatically set the ‘I’ bit when the interrupt is taken. Refer to RX compiler
manual for more info.

12.2 Interrupt Vector Tables
The RX family has a fixed interrupt vector table and a relocatable interrupt vector table. Each vector in the vector table
consists of four bytes and specifies the address where the corresponding exception handler starts.

12.2.1 Fixed Vector Table
The fixed vector table is allocated to a fixed address range. The individual vectors for the privileged instruction
exception, undefined instruction exception, floating-point exception, non-maskable interrupt, and reset are allocated to
addresses in the range from FFFFFF80h to FFFFFFFFh. Also included in the fixed vector table are some locations that
are reserved for system configuration and ROM protection. Figure 7 - Fixed Vector Table shows the fixed vector table.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 25 of 30
Dec 2, 2013

Figure 7 - Fixed Vector Table

Address Description
FFFFFF80h Endian select register (MDE) in single-chip mode
FFFFFF84h (Reserved)
FFFFFF88h Option Function Select Register 1 (OFS1)
FFFFFF8Ch Option Function Select Register 2 (OFS2)
FFFFFF90h –
FFFFFFCCh (Reserved)

FFFFFFA0h –
FFFFFFACh ID Code for flash protection

FFFFFFD0h Privileged instruction exception
FFFFFFD4h (Reserved)
FFFFFFD8h (Reserved)
FFFFFFDCh Undefined instruction exception
FFFFFFE0h –
FFFFFFF4h (Reserved)

FFFFFFF8h Non-maskable interrupt
FFFFFFFCh Reset

12.2.2 Relocatable Vector Table
The address where the relocatable vector table is placed can be adjusted. The table is a 1,024-byte region that contains
all vectors for unconditional traps and interrupts and starts at the address (IntBase) specified in the interrupt table
register (INTB). Figure 8 - Relocatable Vector Table shows the relocatable vector table.

Each vector in the relocatable vector table has a vector number from 0 to 255. Each of the INT instructions, which act
as the sources of unconditional traps, is allocated to the vector that has the same number as that of the instruction itself
(from 0 to 255). The BRK instruction is allocated to the vector with number 0. Furthermore, vector numbers within the
set from 0 to 255 are also allocated to other interrupt sources, such as on-chip peripherals, on a per-product basis.

Note that the value of the Interrupt Table Register (INTB) is undefined after reset. The Renesas tool chain can
automatically generate startup code that initializes the INTB register. INTB can only be changed when the MCU is in
supervisor mode.

Figure 8 - Relocatable Vector Table

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 26 of 30
Dec 2, 2013

12.3 Fast Interrupts
For applications where interrupt response is critical, interrupt latency can be reduced through the use of the Fast
Interrupt. The Fast Interrupt specifies one interrupt source in the Fast Interrupt Vector register (FINTV) as a high-
priority interrupt, and uses dedicated registers for saving the Program Status Word (BPSW) and Program Counter
(BPC). Further speed enhancements can be realized by instructing the compiler to reserve some of the general purpose
CPU registers for exclusive use by the Fast Interrupt service routine. With a dedicated set of CPU registers reserved for
its sole use, the response of Fast Interrupt service routine is improved by eliminating the need to save and restore
processor context on the stack during entry and exit. The performance of the main application code may be slightly
degraded due to the smaller register set available to it.

12.4 Interrupt Stack Pointers
A separate Interrupt Stack Pointer (ISP) is used during exception processing. This greatly reduces RAM requirements
when using an RTOS since room for an interrupt stack does not need to be allocated as part of each task’s stack. The
ISP is automatically set by the startup code generated by the Renesas tool chain (see “Startup Program Creation” in the
RX Software manual for details). Register R0 is used as the stack pointer and contains the current value of the active
stack pointer (ISP or USP) depending on the processor mode.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 27 of 30
Dec 2, 2013

13. Low Power Consumption
The RX111 has register settings that allow the MCU to operate with lower power consumption. These modes are
referred to as the Operating Power Control Modes and are controlled by the OPCCR and SOPCCR registers. The three
Operating Power Control Modes, High, Medium, and Low speed operating mode, switch on-chip regulators on and off
which limit maximum system frequencies in lower power modes. Power savings are realized by setting an appropriate
power control mode for the current system clock settings.

Below is a summary of these modes and the maximum permissible clocking and voltage levels under each mode.

Table 7 - Operating Frequency and Voltage Ranges in Operating Power Control Modes

Operating
Power
Control
Mode

OPCM
[2:0]
Bits

SOPCM
Bit

Operating
Voltage
Range

Operating Frequency Range

Flash Memory Read Frequency

Flash Memory
Programming/
Erasure
Frequency

ICLK FCLK PCLKD PCLKB FCLK
High-speed
operating
mode

000b 0 2.7 to 3.6V Up to 32 MHz Up to 32 MHz Up to 32 MHz Up to 32 MHz 1 to 32 MHz

2.4 to 2.7V Up to 16 MHz Up to 16 MHz Up to 16 MHz Up to 16 MHz ---

1.8 to 2.4V Up to 8 MHz Up to 8 MHz Up to 8 MHz Up to 8 MHz ---
Middle-
speed
operating
mode

010b 0 2.4 to 3.6V Up to 12 MHz Up to 12 MHz Up to 12 MHz Up to 12 MHz 1 to 12 MHz

1.8 to 2.4V Up to 8 MHz Up to 8 MHz Up to 8 MHz Up to 8 MHz 1 to 8 MHz

Low-speed
operating
mode

000b 1 1.8 to 3.6V Up to 32.768 kHz Up to 32.768 kHz Up to 32.768 kHz Up to 32.768 kHz ---

010b 1 1.8 to 3.6V

In order to achieve the lowest power numbers, use the maximum possible dividers in the clock generation circuits.

Note that when switching from a lower power, lower speed mode to a higher power, higher speed mode, change the
Operating Power Control Mode first by writing to the OPCM and SOPCM bits first (which enables on-chip regulators)
and then switch to the higher frequency clock. Conversely, when switching from high power, high speed mode to lower
power, lower speed mode, make the clock source and speed settings first and then write the OPCM and SOPCM bits to
switch off the regulators.

There are some restrictions on which oscillators can be used in each Operating Power Control Mode:

Table 8 - Oscillator Usability in Power Control Modes

PLL

HOCO

LOCO

Main Clock
Oscillator

Sub-Clock
Oscillator

High-speed operating mode Usable if
VCC > 2.4V

Usable Usable Usable Usable

Middle-speed operating mode Usable if
VCC > 2.4V

Usable Usable Usable Usable

Low-speed operating mode Not usable Not usable Not usable Not usable Usable

In addition to the Operating Power Control Modes, the RX111 also has Low Power Consumption modes where the
CPU is stopped and the other peripherals/clocks are switched on or off depending on how much power needs to be
conserved. These modes are activated by configuring the appropriate control registers (refer to Figure 11.1 in the
hardware manual) and then executing the wait() instruction. Since the low power modes can be exited on receiving an
interrupt, all pending requests should be handled and the I flag cleared prior to executing the wait() instruction.

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 28 of 30
Dec 2, 2013

Table 9 - Low Power Consumption CPU Modes

 Sleep Mode Deep Sleep Mode Software Standby Mode

Entry trigger Control register + instruction Control register + instruction Control register + instruction

Exit trigger Interrupt Interrupt Interrupt

After exiting from each mode, CPU

begins from

Interrupt handling Interrupt handling Interrupt handling

Main clock oscillator Operating possible Operating possible Stopped

Sub-clock oscillator Operating possible Operating possible Operating possible

High-speed on-chip oscillator Operating possible Operating possible Stopped

Low-speed on-chip oscillator Operating possible Operating possible Stopped

IWDT-dedicated on-chip oscillator Operating possible Operating possible Operating possible

PLL Operating possible Operating possible Stopped

CPU Stopped (retained) Stopped (retained) Stopped (retained)

RAM0 (0000 0000h to 0000 3FFFh) Operating possible (retained) Stopped (retained) Stopped (retained)

DTC Operating possible Stopped (retained) Stopped (retained)

Flash memory Operating Stopped (retained) Stopped (retained)

Independent watchdog timer Operating possible Operating possible Operating possible

Real time clock (RTC) Operating possible Operating possible Operating possible

Voltage detection circuit (LVD) Operating possible Operating possible Operating possible

Power-on reset circuit Operating Operating Operating

Peripheral modules Operating possible Operating possible Stopped (retained)

I/O ports Operating Operating Retained

RTCOUT Operating possible Operating possible Operating possible

CLKOUT Operating possible Operating possible Operating possible

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 29 of 30
Dec 2, 2013

14. References
The following documents were used in creating this Quick Design Guide:

Reference Document Number Description
1 R01UH0365EJ0100_RX111 RX111 Group User’s Manual: Hardware
2 R20UT0398EJ0300_E1E20 E1 Emulator E20 Emulator User’s Manual
3 R20UT0399EJ0600_E1E20_RX E1/E20 Emulator Additional Document for User’s Manual

(RX User System Design)
4 R01AN0252ET0101_RX RX Family Debug Console Function Using E1

RX111 Group Quick Design Guide

R01AN1725EU0100 Rev.1.00 Page 30 of 30
Dec 2, 2013

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision Record

Rev. Date
Description
Page Summary

1.00 Dec 2, 2013 — Initial release

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and

 equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial

 implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

 use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement

 possibility of physical injury, and injury or damage caused by fire in

 redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to

 products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas

 regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

liability for malfunctions or damages arising out of the

safety measures to guard them against the

life support devices or systems, surgical

http://www.renesas.com

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Arcadiastrasse 10, 40472 D
Tel: +49-211-65030, Fax: +49-211-6503-1327

üsseldorf, Germany

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Canada Limited

Renesas Electronics Europe Limited

Renesas Electronics America Inc.

Renesas Electronics (China) Co., Ltd.

Renesas Electronics (Shanghai) Co., Ltd.

Renesas Electronics Europe GmbH

Renesas Electronics Taiwan Co., Ltd.

Renesas Electronics Singapore Pte. Ltd.

Renesas Electronics Hong Kong Limited

Renesas Electronics Korea Co., Ltd.

Renesas Electronics Malaysia Sdn.Bhd.

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

Electronics products or technology described in this document, you should comply with the applicable export control laws and

	1. Power Supplies
	1.1 References

	2. Emulator Support
	2.1 Debug interface
	2.2 Notes on Emulator Connections
	2.3 Production Programming Requirements

	3. MCU Operating Modes
	3.1 USB Boot Mode

	4. Option Setting Memory
	4.1 Option Setting Memory Registers

	5. Clock Circuits
	5.1 Reset Conditions
	5.2 Main Clock Oscillator Voltage and Speed Dependency
	5.3 Clock Domains
	5.4 Clock Frequency Requirements
	5.4.1 USB
	5.4.2 Programming and Erasing ROM or Data Flash

	5.5 Lowering CGC Power Consumption
	5.6 Sample Code for Clock Setup
	5.7 HOCO Accuracy
	5.8 FlashIF Clock
	5.9 Board Design
	5.10 Oscillation Stop Detect
	5.10.1 Important notes regarding Oscillation Stop Detect

	6. Reset Requirements and Reset Circuit
	6.1 Pin Reset
	6.2 Power-On Reset
	6.3 Voltage Monitoring Reset
	6.4 Independent Watchdog Timer Reset
	6.5 Software Reset
	6.6 Determination of Cold/Warm Start
	6.7 Determining the Reset Source

	7. Memory
	7.1 On-Chip RAM
	7.2 Peripheral I/O Registers
	7.3 Program ROM & Data Flash
	7.3.1 Enabling Data Flash Memory
	7.3.2 Blank Checking of Data Flash Memory
	7.3.3 Background Operation
	7.3.4 ID Code Protection

	7.4 Memory Access Speed
	7.5 Data Alignment
	7.6 Runtime ROM Protection

	8. Register Write Protection
	8.1 System Protection Example Code

	9. I/O Ports and Register Structures
	9.1 I/O Register Macros
	9.2 ICU Register Macros
	9.3 Vector Number Macro
	9.4 Module Stop Control Macro
	9.5 I/O Registers and Endian Settings

	10. I/O Port Configuration and the Multifunction Pin Controller (MPC)
	10.1 Setting Up and Using Port as GPIO
	10.1.1 Internal Pull-Ups
	10.1.2 Open-Drain Output

	10.2 Setting Up and Using Port Peripheral Functions
	10.3 Setting Up and Using IRQ Pins
	Example - Enabling port 2, bit 7 as IRQ3 input

	10.4 Unused Pins
	10.5 Non-Existent Pins
	10.6 Electrical Characteristics
	10.7 MPC Register Setting Summary

	11. Module Stop Function
	12. Interrupts
	12.1 Nesting Interrupts
	12.2 Interrupt Vector Tables
	12.2.1 Fixed Vector Table
	12.2.2 Relocatable Vector Table

	12.3 Fast Interrupts
	12.4 Interrupt Stack Pointers

	13. Low Power Consumption
	14. References
	Website and Support
	Revision Record
	General Precautions in the Handling of MPU/MCU Products

