
 Application Note 

R01AN5880EJ0102  Rev.1.02  Page 1 of 50 
Sep.15.22 

RX Family 
Implementing TLS Using TSIP Driver 
Introduction  
The Trusted Secure IP (TSIP) driver supports APIs for SSL/TLS (referred to below as TLS) communication. 
This document describes the TLS APIs of the TSIP driver and how to implement them in user programs. A 
sample project based on FreeRTOS is appended to this document. The sample project incorporates the 
TSIP driver as well as FreeRTOS, including Mbed TLS, and can be used to test MQTT communication with 
Amazon Web Services (AWS). 

 

Devices on Which Operation Confirmed 
The operation of the sample program appended to this document has been confirmed on the following 
devices. 

• RX72N: R5F572NDHDFB 
 

Operating Environment 
The operation of the sample program appended to this document has been confirmed on the following 
environment. 

IDE e2 studio 2021-04 
Toolchain CCRX compiler v3.0.3 

GCC for Renesas 8.3.0.202002-GNURX 
Target board RX72N Envision Kit (product No.: RTK5RX72N0C00000BJ) 
Debugger E2 Lite emulator (RX72N Envision Kit onboard debugger) 
TSIP driver Version 1.11 
Tera Term Version 4.105 
OpenSSL 1.1.1f 

 
 

Related Documents 
• RX Family TSIP (Trusted Secure IP) Module Firmware Integration Technology (R20AN0371) 
• RX Family How to implement FreeRTOS OTA by using Amazon Web Services on RX65N (R01AN5549) 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 2 of 50 
Sep.15.22 

Contents  

1. Overview .......................................................................................................................................4 
1.1 Advantages of TLS Communication Using TSIP ................................................................................... 4 
1.2 Cipher Suites Supported by TSIP Driver ............................................................................................... 4 
1.3 TLS APIs of TSIP Driver ........................................................................................................................ 5 
1.4 Definitions of Terms .............................................................................................................................. 6 

2. Implementing TLS Communication Using TSIP ..........................................................................7 
2.1 Preparation Beforehand ........................................................................................................................ 8 
2.1.1 Preparation of Root CA Certificate ...................................................................................................... 8 
2.1.2 Preparation of Client Certificate........................................................................................................... 9 
2.2 Verifying Root CA Certificate ............................................................................................................... 10 
2.3 Handshake Protocol ............................................................................................................................ 12 
2.3.1 Certificate .......................................................................................................................................... 12 
2.3.2 Server Key Exchange and Client Key Exchange............................................................................... 14 
2.3.2.1 ECDHE Key Exchange .................................................................................................................... 14 
2.3.2.2 RSA Key Exchange ......................................................................................................................... 15 
2.3.3 Certificate Verify ................................................................................................................................ 16 
2.3.4 Finished ............................................................................................................................................. 17 
2.4 Application Data Protocol .................................................................................................................... 19 

3. Sample Project ...........................................................................................................................20 
3.1 Folder Structure ................................................................................................................................... 22 
3.2 Key and Certificate Preparation........................................................................................................... 22 
3.2.1 Obtaining Root CA Certificate ........................................................................................................... 23 
3.2.2 Generating RSA Keys and Client Certificate ..................................................................................... 24 
3.2.3 Generating ECDSA Client Certificate and Key Pair........................................................................... 25 
3.2.3.1 Generating ECC Key Pair ............................................................................................................... 25 
3.2.3.2 Registering Keys on AWS ............................................................................................................... 26 
3.2.4 Root CA Certificate Signature Generation and Certificate File Format Conversion ........................... 32 
3.2.4.1 RSA Certificate ................................................................................................................................ 32 
3.2.4.2 ECDSA Certificate ........................................................................................................................... 35 
3.2.5 Key Wrapping .................................................................................................................................... 36 
3.3 Settings for Communication with AWS ................................................................................................ 38 
3.3.1 AWS IoT Settings .............................................................................................................................. 38 
3.3.2 IP Settings ......................................................................................................................................... 39 
3.3.3 Client Certificate Format Selection .................................................................................................... 39 

4. Building and Running the Project ...............................................................................................40 
4.1 Importing the Project ........................................................................................................................... 40 
4.2 Building the Project ............................................................................................................................. 41 
4.3 Connecting to AWS IoT ....................................................................................................................... 41 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 3 of 50 
Sep.15.22 

5. Using Renesas Secure Flash Programmer ...............................................................................44 
5.1 Generating a Provisioning Key File ..................................................................................................... 44 
5.2 Generating Encrypted Key Files .......................................................................................................... 44 

6. Appendix .....................................................................................................................................47 
6.1 TLS Communication Performance Using TSIP Driver ......................................................................... 47 
6.2 Flowchart of TLS Negotiation and Calls to TSIP Driver ....................................................................... 47 

Revision History .................................................................................................................................50 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:  
• AWS™ is a trademark of Amazon.com, Inc. or its affiliates.  

(https://aws.amazon.com/trademark-guidelines) 
• FreeRTOS™ is a trademark of Amazon Web Services, Inc. (https://freertos.org/copyright.html) 
• Git® is a trademark of Software Freedom Conservancy, Inc. (https://www.git-scm.com/about/trademark) 
• GitHub® is a trademark of GitHub, Inc. (https://github.com/logos) 
• Arm® is a trademark of Arm Limited or its subsidiaries. 

(https://www.arm.com/company/policies/trademarks/guidelines-trademarks) 
• Mbed™ is a trademark of Arm Limited or its subsidiaries. 

(https://www.arm.com/company/policies/trademarks/guidelines-trademarks) 
• OpenSSL™ is a trademark of OpenSSL Software Foundation. 

(https://www.openssl.org/policies/trademark.html) 
 

https://aws.amazon.com/trademark-guidelines
https://www.git-scm.com/about/trademark
https://www.arm.com/company/policies/trademarks/guidelines-trademarks
https://www.arm.com/company/policies/trademarks/guidelines-trademarks
https://www.openssl.org/policies/trademark.html


RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 4 of 50 
Sep.15.22 

1. Overview 
1.1 Advantages of TLS Communication Using TSIP 
The TSIP driver supports APIs for TLS (client side only). These APIs provide the following two advantages. 

• No keying information is handled as plaintext during TLS protocol processing, thereby reducing the risk 
that customer keying information stored on the device may leak. 

• Hardware acceleration speeds up encryption processing. 
 
 

1.2 Cipher Suites Supported by TSIP Driver  
The TSIP driver supports the following cipher suites conforming to TLS 1.2. 

• TLS_RSA_WITH_AES_128_CBC_SHA 
• TLS_RSA_WITH_AES_256_CBC_SHA 
• TLS_RSA_WITH_AES_128_CBC_SHA256 
• TLS_RSA_WITH_AES_256_CBC_SHA256 
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 
 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 5 of 50 
Sep.15.22 

1.3 TLS APIs of TSIP Driver 
Table 1.1 lists the TSIP driver APIs used for TLS communication. For details of each API, refer to section 2, 
Implementing TLS Communication Using TSIP, and the application note RX Family TSIP (Trusted Secure 
IP) Module Firmware Integration Technology (R20AN0371). 

 
Table 1.1   API Functions Used for TLS Communication 

Where Used API Function 
Certificate installation R_TSIP_GenerateTlsRsaPublicKeyIndex 

R_TSIP_Close 
R_TSIP_Open 
R_TSIP_TlsRootCertificateVerification 

Certificate R_TSIP_TlsCertificateVerification 
Server Key Exchange 
Client Key Exchange  
(ECDHE key exchange algorithm) 

R_TSIP_TlsServersEphemeralEcdhPublicKeyRetrieves 
R_TSIP_GenerateTlsP256EccKeyIndex 
R_TSIP_TlsGeneratePreMasterSecretWithEccP256Key 

Client Key Exchange  
(RSA key exchange algorithm) 

R_TSIP_TlsGeneratePreMasterSecret 
R_TSIP_TlsEncryptPreMasterSecretWithRsa2048PublicKey 

Certificate Verify R_TSIP_RsassaPkcs1024/2048SignatureGenerate 
R_TSIP_RsassaPkcs1024/2048SignatureVerification 
R_TSIP_EcdsaP192/224/256/384SignatureGenerate 
R_TSIP_EcdsaP192/224/256/384SignatureVerification 

Finished R_TSIP_TlsGenerateMasterSecret 
R_TSIP_TlsGenerateVerifyData 
R_TSIP_TlsGenerateSessionKey 
R_TSIP_Sha1HmacGenerateInit/Update/Final 
R_TSIP_Sha1HmacVerifyInit/Update/Final 
R_TSIP_Sha256HmacGenerateInit/Update/Final 
R_TSIP_Sha256HmacVerifyInit/Update/Final 
R_TSIP_Aes128CbcEncryptInit/Update/Final 
R_TSIP_Aes128CbcDecryptInit/Update/Final 
R_TSIP_Aes256CbcEncryptInit/Update/Final 
R_TSIP_Aes256CbcDecryptInit/Update/Final 
R_TSIP_Aes128GcmEncryptInit/Update/Final 
R_TSIP_Aes128GcmDecryptInit/Update/Final 

Application Data R_TSIP_TlsGenerateSessionKey 
R_TSIP_Sha1HmacGenerateInit/Update/Final 
R_TSIP_Sha1HmacVerifyInit/Update/Final 
R_TSIP_Sha256HmacGenerateInit/Update/Final 
R_TSIP_Sha256HmacVerifyInit/Update/Final 
R_TSIP_Aes128CbcEncryptInit/Update/Final 
R_TSIP_Aes128CbcDecryptInit/Update/Final 
R_TSIP_Aes256CbcEncryptInit/Update/Final 
R_TSIP_Aes256CbcDecryptInit/Update/Final 
R_TSIP_Aes128GcmEncryptInit/Update/Final 
R_TSIP_Aes128GcmDecryptInit/Update/Final 

 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 6 of 50 
Sep.15.22 

1.4 Definitions of Terms 
Terms used in this document are defined below. 

 
Table 1.2   Terms 

Terms Description 
User key The key employed by the user when inputting data to the encryption 

function of the device. Generated by the user. 
Encrypted key Keying information generated by using a provisioning key to encrypt the 

user key with AES-128 and appending a MAC value. Generated by 
Renesas Secure Flash Programmer. 

Key index User key or other data converted to a format usable by the TSIP driver. 
Generated by the TSIP. 

Provisioning key A key necessary for generating an encrypted key from a user key. 
Generated by the user. 

Encrypted provisioning key Keying information used by the TSIP to decrypt an encrypted key and 
convert it into a key index. Generated by the DLM server. 

Hidden Root Key (HRK) A key that exists only inside the TSIP and in a secure room (the DLM 
server, etc.) at Renesas. 

DLM server 
(https://dlm.renesas.com/) 

The key administration server at Renesas. “DLM server” is short for 
“device lifecycle management server.” Used to perform key wrapping 
(encrypting) of provisioning keys. 

 
 

https://dlm.renesas.com/


RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 7 of 50 
Sep.15.22 

2. Implementing TLS Communication Using TSIP 
Figure 2.1 shows an outline flowchart of TLS 1.2 communication and the processing performed using the 
TSIP driver. The processing enclosed in white boxes in the figure must be implemented using the TSIP 
driver. In order to make use of the TLS APIs of the TSIP driver, it is first necessary to use the TSIP driver to 
verify the integrity of the root CA certificate stored on the device. To do this it is necessary to append the 
signature to be used by the TSIP for verification to the root CA certificate beforehand. 

Client

Server

Client Hello 

Server Hello
Certificate
Server Key Exchange (optional)
Certificate Request (optional)
Server Hello Done

Finished 

Certificate (optional)
Client Key Exchange
Certificate Verify (optional)

Finished 

Change Cipher Spec 

Change Cipher Spec

Certificate
Verify server certificate

Server Key Exchange, Client Key Exchange
Diffie–Hellman key exchange
Generate premaster secret

Finished
Generate master secret and session key
Generate and verify finished message

Encrypt and decrypt the message

Application data
Encrypt and decrypt messages

Application data

Application data

Handshake protocol

Application data protocol

Prepare and verify root CA certificate

Verify

Generate key pair and signature
Generate TLS public key index

Certificate Verify
Generate signature

 

Figure 2.1   Outline of TLS Communication and Processing Performed Using TSIP Driver 

 
For details of the parts of Figure 2.1 involving use of the TSIP driver, refer to Figure 6.1 and Figure 6.2 in 
section 6.2, Flowchart of TLS Negotiation and Calls to TSIP Driver.  

Section 2.1 below describes preparation of the root CA certificate and client certificate as well as verification 
using the TSIP. Sections 2.3 and 2.4 describe the implementation of TLS protocols using the TSIP driver. 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 8 of 50 
Sep.15.22 

2.1 Preparation Beforehand  
2.1.1 Preparation of Root CA Certificate  
Before using the TLS APIs of the TSIP driver to extract the public key from the root CA certificate, it is 
necessary to verify the integrity of the root CA certificate. 

Follow the steps below to obtain the root CA certificate and generate the signature to be verified by the TSIP 
driver. Refer to Figure 2.2 for the preparation sequence. 

1.  Obtain the root CA certificate. 
2.  Convert the root CA certificate to DER format. 
3.  Generate the signature of the root CA certificate and generate an RSA 2048-bit key pair to be used for 

signature verification. 
4.  Use the private key from the generated key pair to generate the signature corresponding to the root CA 

certificate. The signature format is “RSA2048 PSS with SHA256.” 
 
The TSIP driver will not except input of user keys in plaintext, so the RSA 2048-bit public key used for 
signature verification must be converted to a format that will be accepted by the TSIP driver and embedded 
into a program. The procedure for “wrapping” user keys for use by the TSIP driver is described in section 
3.2.5. 

Root CA certificate

Public key
Generate RSA key pair
Private key

Renesas Secure
Flash Programmer

!

Signature

Provisioning key

!

Encrypted
provisioning key

Encrypted on
DLM ServerConvert to 

DER format Convert to
encrypted key

RSA2048 PSS with SHA256 signature

 
! Keep the key in a safe place. 

Figure 2.2   Root CA Certificate Preparation Sequence 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 9 of 50 
Sep.15.22 

2.1.2 Preparation of Client Certificate 
This procedure involves generating the client key pair and preparing the client certificate. 

Follow the steps below to generate the key pair and accept issuance of the client certificate. Refer to 
Figure 2.3 for the preparation sequence. 

1.  Generate an RSA and ECC key pair for use by the client. 
2.  Generate a certificate signing request (CSR) for the generated key pair. 
3.  Submit the CSR to the certificate authority (CA). 
4.  Obtain the client certificate issued by the CA based on the CSR. 
 
The TSIP driver will not except input of user keys in plaintext, so the key pair used for signature generation 
and verification by the client must be converted to a format that will be accepted by the TSIP driver and 
embedded into a program. The procedure for “wrapping” user keys for use by the TSIP driver is described in 
section 3.2.5. 

Public key
Generate RSA or ECC key pair

Private key

Client certificate

CA

CSR!

Wrapping

Renesas Secure
Flash Programmer

If server requests client certificate

Provisioning key

!

Encrypted
provisioning key

Encrypted on
DLM Server

 
! Keep the key in a safe place. 

Figure 2.3   Key Pair and Client Certificate Generation Sequence 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 10 of 50 
Sep.15.22 

2.2 Verifying Root CA Certificate  
Follow the steps below to verify the root CA certificate, using the DER format certificate, signature, and 
encrypted key created as described in section 2.1.1. Note that there can be a division of programs between 
steps 3 and 4. However, the TLS public key index must have been generated on the same device. Refer to 
Figure 2.4 for the processing sequence and to Table 2.1 for details of the TSIP driver APIs used. 

1.  Use the R_TSIP_Open() function to validate the TSIP. 
2.  Use the R_TSIP_GenerateTlsRsaPublicKeyIndex() function to generate the TLS public key index. 
3.  Use the R_TSIP_Close() function to halt operation of the TSIP. 
4.  Use the R_TSIP_Open() function to validate the TSIP once again and read in the TLS public key index. 
5.  Use the R_TSIP_TlsRootCertificateVerification() function to verify the root CA certificate. 
 

TLS public key index*

R_TSIP_TlsRootCertificateVerification

R_TSIP_Open

Root CA certificate public key

R_TSIP_GenerateTlsRsaPublicKeyIndex

Key Install phase

Signature

R_TSIP_Open

Convert to 
DER format

R_TSIP_Close

Convert to
encrypted key

 
* To assure validity, the TSIP only accepts a key index, even for a public key. 

Figure 2.4   Root CA Certificate Verification Sequence 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 11 of 50 
Sep.15.22 

Table 2.1   API Functions Used for Root CA Certificate Preparation and Installation 

API Function Description 
e_tsip_err_t R_TSIP_Open ( 
 tsip_tls_ca_certification_public_key_index_t 
*key_index_1, 
 tsip_update_key_ring_t *key_index_2 
) 

Validates the TSIP. 
To validate the TLS APIs of the TSIP driver, it is 
necessary to input the key_index parameter of 
R_TSIP_GenerateTlsRsaPublicKeyIndex(). 
 
Parameters 
For key_index_1, input a null pointer the first time 
the function is called, and input the key_index 
value output by 
R_TSIP_GenerateTlsRsaPublicKeyIndex() the 
second time the function is called. If the key update 
function is not used, input a null pointer for 
key_index_2. 

e_tsip_err_t 
R_TSIP_GenerateTlsRsaPublicKeyIndex( 
 uint8_t * encrypted_provisioning_key, 
 uint8_t *iv, 
 uint8_t *encrypted_key, 
 tsip_tls_ca_certification_public_key_index_t 
 *key_index 
) 

Outputs the RSA public key key_index value used 
by R_TSIP_TlsRootCertificateVerification(). 
 
Parameters 
For encrypted_provisioning_key, iv, and 
encrypted_key, input the corresponding variables 
in key_data.c, output by Renesas Secure Flash 
Programmer. 

e_tsip_err_t R_TSIP_Close (void) Halts operation of the TSIP. 
e_tsip_err_t R_TSIP_TlsRootCertificateVerification ( 
 uint32_t public_key_type 
 uint8_t *certificate,  
 uint32_t certificate_length, 
 uint32_t public_key_n_start_position,  
 uint32_t public_key_n_end_position, 
 uint32_t public_key_e_start_position,  
 uint32_t public_key_e_end_position, 
 uint8_t *signature,  
 uint32_t *encrypted_root_public_key); 
) 

Verifies the root CA certificate prepared 
beforehand. 
 
Parameters 
For public_key_type, input the type of the public 
key contained in the certificate. For certificate, 
input the certificate in DER format, and for 
certificate_length, input the length of the 
certificate. For public_key_*_*_position, input the 
addresses corresponding to the start and end 
points of the public keying information of the root 
CA certificate obtained by decrypting the certificate. 
For signature, input the signature data 
corresponding to the certificate. For 
encrypted_root_public_key, keying information is 
output that is used to verify the server certificate in 
the next procedure. 

 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 12 of 50 
Sep.15.22 

2.3 Handshake Protocol 
The handshake protocol processing requiring implementation of the TSIP driver is described below. 

 
2.3.1 Certificate 
Follow the steps below to verify the certificate chain. Refer to Figure 2.5 for the processing sequence and to 
Table 2.2 for details of the TSIP driver API used. 

1.  Prepare the public key (the encrypted_root_public_key parameter of the 
R_TSIP_TlsRootCertificateVerification() function) extracted from the root CA certificate. 

2.  Use the R_TSIP_TlsCertificateVerification() function to verify the next certificate after the last certificate is 
verified. 

3.  If there is an unverified certificate remaining, the certificate verified in step 2 is an intermediate certificate. 
Prepare the public key (the encrypted_output_public_key parameter) contained in the verified 
certificate and return to step 2. If there are no unverified certificates remaining, the certificate verified in 
step 2 is the server certificate. Prepare the public key contained in the verified certificate and proceed to 
the next processing procedure.  

 

Root CA certificate 

R_TSIP_TlsRootCertificateVerification

R_TSIP_TlsCertificateVerification

Still certificate 
exists

SSL/TLS stack should select which 
certificate would be input into 

R_TSIP_TlsCertificateVerification()

Server public key output
by R_TSIP_TlsCertificateVerification

Yes
No

Root CA certificate public key

Intermediate certificate 

Server certificate 

 

Figure 2.5   Server Certificate Verification Sequence 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 13 of 50 
Sep.15.22 

Table 2.2   API Function Used for Server Certificate Verification 

API Function Description 
e_tsip_err_t R_TSIP_TlsCertificateVerification ( 
 uint32_t public_key_type, 
 uint32_t *encrypted_input_public_key 
 uint8_t *certificate,  
 uint32_t certificate_length, 
 uint8_t *signature,  
 uint32_t public_key_n_start_position,  
 uint32_t public_key_n_end_position, 
 uint32_t public_key_e_start_position,  
 uint32_t public_key_e_end_position,  
 uint32_t *encrypted_output_public_key 
) 

Verifies the certificate chain. Call this function 
repeatedly to perform the necessary processing, 
starting with verification of the intermediate 
certificate after the root CA certificate and ending 
with verification of the server certificate. 
 
Parameters 
For public_key_type, input the type of the public 
key contained in the certificate. For certificate, 
input the certificate in DER format, and for 
certificate_length, input the length of the 
certificate. For signature, input the signature data 
from the certificate to be verified. For 
public_key_*_*_position, input the addresses 
corresponding to the public keying information to 
be verified. For encrypted_input_public_key, 
input the public key of the certificate verified 
immediately previously. The parameter 
encrypted_output_public_key, output when the 
server certificate is verified, is used when 
R_TSIP_TlsEncryptPreMasterSecretWithRsa2048
PublicKey() or 
R_TSIP_TlsServersEphemeralEcdhPublicKeyRetri
eves() is called to perform key exchange.  

 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 14 of 50 
Sep.15.22 

2.3.2 Server Key Exchange and Client Key Exchange 
2.3.2.1 ECDHE Key Exchange 
Follow the steps below to perform key exchange. Refer to Figure 2.6 for the processing sequence and to 
Table 2.3 for details of the TSIP driver APIs used. 

1.  Use the R_TSIP_TlsServersEphemeralEcdhPublicKeyRetrieves() function to verify the server ephemeral 
ECDH public key received in the Server Key Exchange message. 

2.  Use the R_TSIP_GenerateTlsP256EccKeyIndex() function to generate the client ephemeral ECDH key 
pair. Send the client ephemeral ECDH public key to the server in the Client Key Exchange message. 

3.  Use the R_TSIP_TlsGeneratePreMasterSecretWithEccP256Key() function to generate the premaster 
secret from the server ephemeral ECDH public key and client ephemeral ECDH private key. 

 

R_TSIP_GenerateTlsP256EccKeyIndex

tsip_pre_master_secret 
as Premaster Secret

R_TSIP_TlsServersEphemeralEcdhPublic
KeyRetrieves

R_TSIP_TlsGeneratePreMasterSecret
WithEccP256Key

Server ephemeral
ECDH public key

Client ephemeral
ECDH private key

 

Figure 2.6   ECDHE Key Exchange Sequence 

 
Table 2.3   API Functions Used for ECDHE Key Exchange  

API Function Description 
e_tsip_err_t 
R_TSIP_TlsServersEphemeralEcdhPublicKeyRetrieves ( 
 uint32_t public_key_type, 
 uint8_t *client_random, 
 uint8_t *server_random, 
 uint8_t *server_ephemeral_ecdh_public_key, 
 uint8_t *server_key_exchange_signature, 
 uint32_t *encrypted_public_key, 
 uint32_t *encrypted_ephemeral_ecdh_public_key 
) 

Verifies the Server Key Exchange signature 
based on the server public key. The output is 
an encrypted ephemeral ECDH public key 
used by 
R_TSIP_TlsGeneratePreMasterSecretWithEc
cP256Key(). 

e_tsip_err_t  
R_TSIP_GenerateTlsP256EccKeyIndex ( 
 tsip_tls_p256_ecc_key_index_t 
 *tls_p256_ecc_key_index, 
 uint8_t *ephemeral_ecdh_public_key 
) 

Generates a key pair using the ECDH 
algorithm. The output is the keying 
information used by 
R_TSIP_TlsGeneratePreMasterSecretWithEc
cP256Key() and the ephemeral ECDH public 
key sent to the server in the Client Key 
Exchange message. 

e_tsip_err_t 
R_TSIP_TlsGeneratePreMasterSecretWithEccP256Key ( 
 uint32_t *encrypted_public_key, 
 tsip_tls_p256_ecc_key_index_t 
 *tls_p256_ecc_key_index, 
 uint32_t *tsip_pre_master_secret 
) 

Outputs the premaster secret based on the 
values input from 
R_TSIP_TlsServersEphemeralEcdhPublicKe
yRetrieves() and 
R_TSIP_GenerateTlsP256EccKeyIndex(). 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 15 of 50 
Sep.15.22 

2.3.2.2 RSA Key Exchange 
Follow the steps below to perform key exchange. Refer to Figure 2.7 for the processing sequence and to 
Table 2.4 for details of the TSIP driver APIs used. 

1.  Use the R_TSIP_TlsGeneratePreMasterSecret() function to generate the premaster secret. 
2.  Use the R_TSIP_TlsEncryptPreMasterSecretWithRsa2048PublicKey() function to encrypt the premaster 

secret. Send the encrypted premaster secret to the server in the Client Key Exchange message. 
 

R_TSIP_TlsEncryptPreMasterSecretWithRsa2048PublicKey

R_TSIP_TlsGeneratePreMasterSecret

tsip_pre_master_secret 
as Premaster Secret

 

Figure 2.7   RSA Key Exchange Sequence 

 
Table 2.4   API Functions Used for RSA Key Exchange  

API Function Description 
e_tsip_err_t R_TSIP_TlsGeneratePreMasterSecret ( 
 uint32_t *tsip_pre_master_secret 
) 

Generates the premaster secret. 

e_tsip_err_t 
R_TSIP_TlsEncryptPreMasterSecretwithRsaPublicKey ( 
( 
 uint32_t *encrypted_public_key, 
 uint32_t *tsip_pre_master_secret, 
 uint8_t *encrypted_pre_master_secret 
) 

Outputs the premaster secret to be sent to the 
server in the Client Key Exchange message as 
data encrypted with the RSA-2048 public key. 

 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 16 of 50 
Sep.15.22 

2.3.3 Certificate Verify 
This procedure involves generating a signature used to verify the client certificate on the server side. 

The API functions used differ according to the type of public key contained in the client certificate. Refer to 
Figure 2.8 for the processing sequence and to Table 2.5, API Functions Used for Client Certificate 
Verification, for details of the TSIP driver APIs used. 

If the public key type is RSA, the following sequence is used to generate the signature. 

1.  Use the R_TSIP_RsassaPkcs1024/2048SignatureGenerate() function to generate a signature for the 
message. 

2.  If necessary, generate a public key index from the public key with 
R_TSIP_GenerateRsa1024/2048PublicKeyIndex() function, and use the 
R_TSIP_RsassaPkcs1024/2048SignatureVerification() function to self-verify the generated signature. 

 
If the public key type is ECC, the following sequence is used to generate the signature. 

1.  Use the R_TSIP_EcdsaP192/224/256/384SignatureGenerate() function to generate a signature for the 
message. 

2. If necessary, generate a public key index from the public key with 
R_TSIP_GenerateEccP192/224/256/384PublicKeyIndex() function, and use the 
R_TSIP_EcdsaP192/224/256/384SignatureVerification() function to self-verify the generated signature. 

 

Type of key pair is

ECC

RSA

Key pair

R_TSIP_RsassaPkcs1024/2048SignatureGenerate

R_TSIP_EcdsaP192/224/256/384SignatureGenerate

R_TSIP_EcdsaP192/224/256/384SignatureVerification

R_TSIP_RsassaPkcs1024/2048SignatureVerification

 

Figure 2.8   Signature Generation Sequence for Client Certificate Verification 

 
Table 2.5   API Functions Used for Client Certificate Verification 

API Function Description 
R_TSIP_RsassaPkcs1024/2048SignatureGenerate Uses an RSA private key to generate an 

RSASSA-PKCS1-v1_5 signature. 
R_TSIP_RsassaPkcs1024/2048SignatureVerification Uses an RSA public key to verify an 

RSASSA-PKCS1-v1_5 signature. 
R_TSIP_EcdsaP192/224/256/384SignatureGenerate Uses an ECC private key to generate an ECDSA 

signature. 
R_TSIP_EcdsaP192/224/256/384SignatureVerification Uses an ECC public key to verify an ECDSA 

signature. 
 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 17 of 50 
Sep.15.22 

2.3.4 Finished 
Follow the steps below to create and verify the Finished message. Refer to Figure 2.9 for the processing 
sequence and to Table 2.6, Table 2.7, Table 2.8, Table 2.9, and Table 2.10 for details of the TSIP driver 
APIs used. 

1.  Use the R_TSIP_TlsGenerateMasterSecret () function to generate the master secret from the premaster 
secret. 

2.  Use the R_TSIP_TlsGenerateSessionKey() function to generate four session keys (client write MAC key, 
server write MAC key, client write encryption key, and server write encryption key) and two IVs (client 
write IV and server write IV) from the master secret 

3.  Use the R_TSIP_TlsGenerateVerifyData() function to generate verify data from the content of the 
Finished message sent from the client. 

4.  Use the hash function and AES function supported by the cipher suite to generate and encrypt the 
signature of the Finished message. 

5.  Send the Finished message from the client to the server. 
6.  Receive the Finished message from the server. 
7.  Use the hash function and AES function supported by the cipher suite to decrypt and verify the signature 

of the Finished message. 
8.  Use the R_TSIP_TlsGenerateVerifyData() function to verify the verify data. This concludes the 

handshake protocol. 
 

R_TSIP_TlsGenerateMasterSecret

R_TSIP_TlsGenerateSessionKey
Generate client verify data

R_TSIP_TlsGenerateVerifyData

Generate MAC
R_TSIP_Sha256HmacGenerate

Init/Update/Final

Encrypt message
R_TSIP_Aes128CbcEncrypt

Init/Update/Final

tsip_master_secret 
as Master Secret

client_crypto_key_index 
as session key index

Decrypt message
R_TSIP_Aes128CbcDecrypt

Init/Update/Final

Generate server verify data
R_TSIP_TlsGenerateVerifyData

  client_mac_key_index 
as MAC key index

server_crypto_key_index 
as session key index

Verify MAC
R_TSIP_Sha256HmacVerify

Init/Update/Final

  server_mac_key_index 
as MAC key inedx

compare

Block cipher mode
of operation is

GCMCBC

Update nonce
R_TSIP_TlsGenerateSessionKey

Encrypt message
R_TSIP_Aes128GcmEncrypt

Init/Update/Final

Update nonce
R_TSIP_TlsGenerateSessionKey

Generate server verify data
R_TSIP_TlsGenerateVerifyData

Decrypt message
R_TSIP_Aes128GcmDecrypt

Init/Update/Final

compare

client_crypto_
key_index

server_crypto_
key_index

 

Figure 2.9   Finished Message Generation and Verification Sequence 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 18 of 50 
Sep.15.22 

Table 2.6   API Functions Used for Master Secret Generation and Finished Message Generation and 
Verification  

API Function Description 
e_tsip_err_t R_TSIP_TlsGenerateMasterSecret ( 
 uint32_t select_cipher_suite, 
 uint32_t *tsip_pre_master_secret,  
 uint8_t *client_random,  
 uint8_t *server_random,uint32_t *tsip_master_secret 
) 

Generates the master secret based on the 
premaster secret. 

e_tsip_err_t R_TSIP_TlsGenerateSessionKey ( 
 uint32_t select_cipher_suite,  
 uint32_t * tsip_master_secret, 
 uint8_t *client_random,  
 uint8_t *server_random, 
 uint8_t *nonce_explict, 
 tsip_hmac_sha_key_index_t *client_mac_key_index, 
 tsip_hmac_sha_key_index_t *server_mac_key_index, 
 tsip_aes_key_index_t *client_crypto_key_index, 
 tsip_aes_key_index_t *server_crypto_key_index, 
 uint8_t *client_iv,  
 uint8_t *server_iv 
) 

Outputs the session key key_index 
(client_mac_key_index, 
server_mac_key_index, 
client_crypto_key_index, and 
server_crypto_key_index) based on the 
master secret. The IVs are contained in 
client_crypto_key_index and 
server_crypto_key_index. 
When using CBC mode, input NULL for 
nonce_explicit. When using GCM mode, 
input a nonce value.  

e_tsip_err_t R_TSIP_TlsGenerateVerifyData ( 
 uint32_t select_verify_data, 
 uint32_t *tsip_master_secret, 
 uint8_t *hand_shake_hash, 
 uint8_t *verify_data 
) 

Generates verify data for the Finished 
message. 

 
Table 2.7   API Functions Used for Encryption in CBC Mode 

API Function Description 
R_TSIP_Sha1HmacGenerateInit/Update/Final 
R_TSIP_Sha256HmacGenerateInit/Update/Final 

Uses client_mac_key_index to generate the MAC 
value of the data to be sent to the server. 

R_TSIP_Aes128CbcEncryptInit/Update/Final 
R_TSIP_Aes256CbcEncryptInit/Update/Final 

Uses client_crypto_key_index to encrypt the data to 
be sent to the server. 

 
Table 2.8   API Functions Used for Decryption in CBC Mode 

API Function Description 
R_TSIP_Aes128CbcDecryptInit/Update/Final 
R_TSIP_Aes256CbcDecryptInit/Update/Final 

Uses server_crypto_key_index to decrypt cipher 
text received from the server. 

R_TSIP_Sha1HmacVerifyInit/Update/Final 
R_TSIP_Sha256HmacVerifyInit/Update/Final 

Uses server_mac_key_index to verify the MAC 
value of decrypted data received from the server.  

 
Table 2.9   API Functions Used for Encryption in GCM Mode 

API Function Description 
R_TSIP_TlsGenerateSessionKey Updates the nonce in the TSIP. For nonce_explicit, 

input a different nonce for each packet. 
R_TSIP_Aes128GcmEncryptInit/Update/Final Uses client_crypto_key_index to encrypt and 

generate a certification tag for data to be sent to the 
server. Input NULL for Ivec and 0 for ivec_len. 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 19 of 50 
Sep.15.22 

Table 2.10   API Functions Used for Decryption in GCM Mode 

API Function Description 
R_TSIP_TlsGenerateSessionKey Updates the nonce in the TSIP. For nonce_explicit, 

input the nonce contained in the packet. 
R_TSIP_Aes128GcmDecryptInit/Update/Final Uses server_crypto_key_index to decrypt and verify 

the certification tag of data received from the server. 
 
 

2.4 Application Data Protocol 
Like the Finished message of the handshake protocol, the application data protocol uses TSIP driver APIs to 
carry out encryption and decryption processing and to perform encrypted communication. Refer to Table 2.7 
and Table 2.8 for the APIs used in CBC mode and to Table 2.9 and Table 2.10 for the APIs used in GCM 
mode. 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 20 of 50 
Sep.15.22 

3. Sample Project 
The sample project is a demo program that uses the RX72N Envision Kit to establish a TLS connection to 
AWS and performs MQTT communication. 

Information on the connections used when running the sample project on the RX72N Envision Kit is shown 
below. Connect the RX72N Envision Kit to a PC using two USB cables for debugging and serial 
communication. To connect to the internet, connect the RX72N Envision Kit to a router using an Ethernet 
cable. 

Router

MicroUSB
(Debugger)

MicroUSB
(Serial)

USB

USB

Ethernet

User PC

Internet

AWS Server

 

Figure 3.1   Connections for Sample Project 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 21 of 50 
Sep.15.22 

The sample project is based on an FreeRTOS project. FreeRTOS provides IoT libraries containing source 
code necessary for applications involving IoT devices. The sample project makes use of one of these, the 
open source Mbed TLS, as its encryption library. In the project, some of the processing of the Mbed TLS 
library is reassigned to the TLS APIs of the TSIP driver. The software configuration of the sample project is 
shown below. 

FIT Module

RX72N

TSIP Driver

TSIP

Middleware

FreeRTOS Kernel     FreeRTOS
Internal Libraries

Application

Secure Sockets

TLS

Mbed TLS

+TCP

 

Figure 3.2   Software Configuration of Sample Project 

 
The sample project is based on the FreeRTOS project for RX located in the following repository. 

https://github.com/renesas/amazon-freertos/releases/tag/v202002.00-rx-1.0.5 

 
The following tools are used in the operations described in this section, so you will need to obtain them 
before starting.  

• Shell script (bash) execution environment 
• OpenSSL 
• Renesas Secure Flash Programmer 
 
 

https://github.com/renesas/amazon-freertos/releases/tag/v202002.00-rx-1.0.5


RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 22 of 50 
Sep.15.22 

3.1 Folder Structure 
The folder structure of the sample project is shown below. Bold text indicates the locations of files that have 
been modified from the base project. Only the top folder is shown in cases where a folder contains many 
subfolders. To check for differences in detail, use a utility such as the diff tool. 

amazon-freertos 
|--demos 
|  |--dev_mode_key_provisioning/src/aws_dev_mode_key_provisioning.c 
|--doc 
|--freertos_kernel 
|--libraries 
|  |--3rdparty/mbedtls 
|  |--abstractions/pkcs11/mbedtls/iot_pkcs11_mbedtls.c 
|  |--freertos_plus/standard/tls 
|--projects 
|--tests 
|--tools 
|--vendors/renesas 
  |--boards/rx_mcu_boards/(board name)/aws_demos/src/smc_gen 
  |  |--general 
  |  |--r_config/r_tsip_rx_config.h 
  |--rx_driver_package/v125/r_tsip_rx 
 

 
In the sample project the following modifications have been made to the base project to enable use of the 
TSIP driver. 

• The TSIP driver FIT module has been added to the project. 
• Some of the processing of FreeRTOS and Mbed TLS has been reassigned to the TSIP driver. 
• Exclusive control has been added to prevent conflicts when accessing the TSIP in a multitasking 

environment. 
• New setting files have been added containing descriptors of certificates and their signatures. 
 
 

3.2 Key and Certificate Preparation 
The methods for obtaining keys and certificates for use with the sample project and utilizing them with the 
TSIP driver are described below. Table 3.1 summarizes the methods for obtaining keys and certificates for 
use with the sample project. The procedure described in section 3.2.2 can be omitted if no RSA client 
certificate will be used. The procedure described in section 3.2.3 can be omitted if no ECDSA client 
certificate will be used. In those cases, skip ahead to the procedure described in sections 3.2.4 and 3.2.5. 

 
Table 3.1   Methods for Obtaining Keys and Certificates for Use with Sample Project 

Key/Certificate How to Obtain Section 
RSA root CA certificate Download from AWS. 3.2.1 
ECDSA root CA certificate Download from AWS. 3.2.1 
RSA key pair Download automatically generated certificate from AWS. 3.2.2 
RSA client certificate Download from AWS. 3.2.2 
ECC key pair Create using OpenSSL tools or equivalent. 3.2.3.1 
ECDSA client certificate Create certificate signing request (CSR) using OpenSSL 

tools or equivalent, and upload it to AWS. Then download 
the certificate from AWS. 

3.2.3.2 

Key pair for root CA certificate 
signature generation and 
signature verification 

Created by user using OpenSSL tools or equivalent. 3.2.4.1 
3.2.4.2 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 23 of 50 
Sep.15.22 

3.2.1 Obtaining Root CA Certificate 
Obtain a root CA certificate via the following link. 

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-
certs 

 
To use an RSA certificate, use the Amazon Root CA 1 download link. To use an ECDSA certificate, use the 
Amazon Root CA 3 download link. 

 
 
Copy the downloaded certificate file to the following location in the key_crt_sig_generator folder of the 
sample project. 

key_crt_sig_generator 
|-- ca 
|   |-- AmazonRootCA1.pem 
|   |-- AmazonRootCA3.pem 
|-- ca-sign-keypair-rsa2048 
|-- client-ecc256 
|-- client-rsa2048 
|-- output 
|--1_rsa2048_convertCrt.sh 
|--2_1_ecc256_generateKeyPair.sh 
|--2_2_ecc256_convertCrt.sh 
|--3_showkeyValues.sh 
|--convertCrt.sh 
 

 

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs


RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 24 of 50 
Sep.15.22 

3.2.2 Generating RSA Keys and Client Certificate 
You can have an RSA key pair and client certificate generated automatically on the AWS server. Follow the 
steps in 1.1, Sign in the console, of the application note RX Family: How to implement FreeRTOS OTA by 
using Amazon Web Services on RX65N (R01AN5549) to register a thing and obtain an RSA-2048 client 
certificate, public key, and private key. 

Copy the downloaded certificate and key files to the following location in the key_crt_sig_generator folder 
of the sample project. 

key_crt_sig_generator 
|-- ca 
|   |-- AmazonRootCA1.pem 
|   |-- AmazonRootCA3.pem 
|-- ca-sign-keypair-rsa2048 
|-- client-ecc256 
|-- client-rsa2048 
|   |-- *-certificate.pem.crt 
|   |-- *-private.pem.key 
|   |-- *-public.pem.key 
|-- output 
|--1_rsa2048_convertCrt.sh 
|--2_1_ecc256_generateKeyPair.sh 
|--2_2_ecc256_convertCrt.sh 
|--3_showkeyValues.sh 
|--convertCrt.sh 
 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 25 of 50 
Sep.15.22 

3.2.3 Generating ECDSA Client Certificate and Key Pair 
To generate an ECDSA client certificate using AWS, you will need to generate an ECC key pair and 
certificate signing request (CSR) and upload them to AWS. 

 
3.2.3.1 Generating ECC Key Pair 
Run 2_1_ecc256_generateKeyPair.sh, located in the key_crt_sig_generator folder. 

The contents of 2_1_ecc256_generateKeyPair.sh are listed below. 

#!/bin/sh 
 
# Create a key pair and CSR 
openssl ecparam -genkey -name prime256v1 -out client-ecc256/prime256v1-
private.pem.key 
openssl req -new -sha256 -key client-ecc256/prime256v1-private.pem.key -out 
client-ecc256/prime256v1-csr.pem.csr 
echo -e "\nPlease upload \"prime256v1-csr.pem.csr\" to AWS IoT Core and 
download \"*-certificate.pem.crt\"." 
 

 
After running the script, the ECC key pair and associated CSR are output to the client-ecc256 folder. 

key_crt_sig_generator 
|-- ca 
|   |-- AmazonRootCA1.pem 
|   |-- AmazonRootCA3.pem 
|-- ca-sign-keypair-rsa2048 
|-- client-ecc256 
|   |-- prime256v1-csr.pem.csr 
|   |-- prime256v1-private.pem.key 
|-- client-rsa2048 
|-- output 
|--1_rsa2048_convertCrt.sh 
|--2_1_ecc256_generateKeyPair.sh 
|--2_2_ecc256_convertCrt.sh 
|--3_showkeyValues.sh 
|--convertCrt.sh 
 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 26 of 50 
Sep.15.22 

3.2.3.2 Registering Keys on AWS 
Upload the output CSR to AWS IoT. 

If you skipped the procedure described in 3.2.2, Generating RSA Keys and Client Certificate, you will need to 
start by creating a thing on AWS. Follow the steps in 1.1, Sign in the console, of the application note RX 
Family: How to implement FreeRTOS OTA by using Amazon Web Services on RX65N (R01AN5549) to 
register a thing. On the Add a certificate for your thing page shown below, click Create thing without 
certificate. 

 
 
Sign in to the AWS Management Console (https://aws.amazon.com/console/) and select All Services → 
Internet of Things → IoT Core. 

From the menu on the left, select Secure → Certificates. 

 
 

https://aws.amazon.com/console/


RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 27 of 50 
Sep.15.22 

Click the Create button at the upper right. 

 
 
Click Create with CSR. 

 
 
When the Open File dialog box appears, select the prime256v1-csr.pem.csr file created as described in 
section 3.2.3.1. Next, click the Upload file button. 

 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 28 of 50 
Sep.15.22 

AWS IoT issues a certificate for the ECC key pair. Click Download, then Activate, then Attach a policy. 

 
 
Select the policy that was created when you registered the thing, then click Done. 

 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 29 of 50 
Sep.15.22 

From the menu on the left, select Secure → Certificates. 

 
 
Select the previously created certificate from the list. 

 
 
Under Actions, select Attach thing. 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 30 of 50 
Sep.15.22 

 
 
Select the previously created thing and click the Attach button. 

 
 
This completes the procedure for attaching the certificate to the thing. 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 31 of 50 
Sep.15.22 

Copy the downloaded certificate and key files to the following location in the key_crt_sig_generator folder 
of the sample project. 

key_crt_sig_generator 
|-- ca 
|   |-- AmazonRootCA1.pem 
|   |-- AmazonRootCA3.pem 
|-- ca-sign-keypair-rsa2048 
|-- client-ecc256 
|   |-- *-certificate.pem.crt 
|   |-- prime256v1-csr.pem.csr 
|   |-- prime256v1-private.pem.key 
|-- client-rsa2048 
|-- output 
|--1_rsa2048_convertCrt.sh 
|--2_1_ecc256_generateKeyPair.sh 
|--2_2_ecc256_convertCrt.sh 
|--3_showkeyValues.sh 
|--convertCrt.sh 
 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 32 of 50 
Sep.15.22 

3.2.4 Root CA Certificate Signature Generation and Certificate File Format Conversion 
Certificates used for TLS are generally provided in PEM format. To use certificates with the TSIP driver, you 
must first convert them from PEM format to DER format. Convert just the RSA or ECDSA certificate, or 
convert both types of certificates, to match the cipher suite you are using. Also, append a signature to the 
root CA certificate. 

 
3.2.4.1 RSA Certificate 
Follow the steps below to convert the RSA root CA certificate (AmazonRootCA1.pem) and client certificate 
to DER format. In addition, we will generate an RSA 2048-bit key pair for generating and verifying the root 
CA certificate signature and then use the private key from the generated key pair to generate a signature for 
the root CA certificate. 

Run 1_rsa2048_convertCrt.sh, located in the key_crt_sig_generator folder. 

The contents of 1_rsa2048_convertCrt.sh  are listed below. 

#!/bin/sh 
 
# If the format of client certificate is RSA, this project utilize RSA root 
CA certificate. 
 
INPUT_CRT_CLIENT_PEM="./client-rsa2048/*-certificate.pem.crt" 
OUTPUT_CRT_CLIENT_DER="./output/client_rsa2048_crt.der" 
OUTPUT_CRT_CLIENT_TXT="./output/client_rsa2048_crt_array.txt" 
 
INPUT_CRT_ROOT_PEM="./ca/AmazonRootCA1.pem" 
OUTPUT_CRT_ROOT_DER="./output/AmazonRootCA1_crt.der" 
OUTPUT_CRT_ROOT_TXT="./output/AmazonRootCA1_crt_array.txt" 
 
INPUT_KEY_PRIVATE_PEM="./ca-sign-keypair-rsa2048/rsa2048-private.pem" 
INPUT_KEY_PUBLIC_PEM="./ca-sign-keypair-rsa2048/rsa2048-public.pem" 
 
OUTPUT_CRT_ROOT_SIG_BIN="./output/AmazonRootCA1_sig.sig" 
OUTPUT_CRT_ROOT_SIG_TXT="./output/AmazonRootCA1_sig_array.txt" 
 
. ./convertCrt.sh 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 33 of 50 
Sep.15.22 

The contents of convertCrt.sh, which is called by 1_rsa2048_convertCrt.sh, are listed below. 

#!/bin/sh 
 
# 1.Convert PEM format client certicicate to DER 
if [ -e $INPUT_CRT_CLIENT_PEM ] 
then 
    openssl x509 -in $INPUT_CRT_CLIENT_PEM -out $OUTPUT_CRT_CLIENT_DER -
outform der 
    hexdump -v -e '/1 "0x%02x, "' $OUTPUT_CRT_CLIENT_DER > 
$OUTPUT_CRT_CLIENT_TXT 
else 
    echo "Client certificate is not found" 
    exit 1 
fi 
 
# 2.Convert PEM format root CA certicicate to DER 
if [ -e $INPUT_CRT_ROOT_PEM ] 
then 
    openssl x509 -in $INPUT_CRT_ROOT_PEM -out $OUTPUT_CRT_ROOT_DER -outform 
der 
    hexdump -v -e '/1 "0x%02x, "' $OUTPUT_CRT_ROOT_DER > 
$OUTPUT_CRT_ROOT_TXT 
else 
    echo "Root CA certificate is not found" 
    exit 1 
fi 
 
# 3.Generate RSA-2048 key pair for signature if it is not exist 
if [ ! -e $INPUT_KEY_PRIVATE_PEM ] || [ ! -e $INPUT_KEY_PUBLIC_PEM ] 
then 
    openssl genrsa -out $INPUT_KEY_PRIVATE_PEM 2048 
    openssl rsa -in $INPUT_KEY_PRIVATE_PEM -pubout -out 
$INPUT_KEY_PUBLIC_PEM 
fi 
 
# 4.Create a signature of the Root CA certificate 
if [ -e $INPUT_KEY_PRIVATE_PEM ] && [ -e $OUTPUT_CRT_ROOT_DER ] 
then 
    openssl dgst -sha256 -sigopt rsa_padding_mode:pss -sigopt 
rsa_pss_saltlen:-1 -sign $INPUT_KEY_PRIVATE_PEM -out 
$OUTPUT_CRT_ROOT_SIG_BIN $OUTPUT_CRT_ROOT_DER 
    openssl dgst -sha256 -sigopt rsa_padding_mode:pss -verify 
$INPUT_KEY_PUBLIC_PEM -signature $OUTPUT_CRT_ROOT_SIG_BIN 
$OUTPUT_CRT_ROOT_DER 
    hexdump -v -e '/1 "0x%02x, "' $OUTPUT_CRT_ROOT_SIG_BIN > 
$OUTPUT_CRT_ROOT_SIG_TXT 
fi  

 
After running the script, the six files listed below are generated in the output folder. Of these, the files listed 
in red are used by the sample project. These files contain generated binary data in C language uint8_t array 
format. Copy these files to the amazon-freertos/vendors/renesas/boards/rx_mcu_boards/(board_name)/ 
aws_demos/src/smc_gen/general folder of the sample project, overwriting the files of the same names. 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 34 of 50 
Sep.15.22 

• AmazonRootCA1_crt_array.txt 
• AmazonRootCA1_sig_array.txt 
• client_rsa2048_crt_array.txt 
• AmazonRootCA1_crt.der 
• AmazonRootCA1_sig.sig 
• client_rsa2048_crt.der 
 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 35 of 50 
Sep.15.22 

3.2.4.2 ECDSA Certificate 
Follow the steps below to convert the ECDSA root CA certificate (AmazonRootCA3.pem) and client 
certificate to DER format. In addition, we will generate an RSA 2048-bit key pair for generating and verifying 
the root CA certificate signature and then use the private key from the generated key pair to generate a 
signature for the root CA certificate. 

Run 2_2_ecc256_convertCrt.sh. 

The contents of 2_2_ecc256_convertCrt.sh are listed below. 

#!/bin/sh 
 
# If the format of client certificate is ECDSA, this project utilize ECDSA 
root CA certificate. 
 
INPUT_CRT_CLIENT_PEM="./client-ecc256/*-certificate.pem.crt" 
OUTPUT_CRT_CLIENT_DER="./output/client_ecc256_crt.der" 
OUTPUT_CRT_CLIENT_TXT="./output/client_ecc256_crt_array.txt" 
 
INPUT_CRT_ROOT_PEM="./ca/AmazonRootCA3.pem" 
OUTPUT_CRT_ROOT_DER="./output/AmazonRootCA3_crt.der" 
OUTPUT_CRT_ROOT_TXT="./output/AmazonRootCA3_crt_array.txt" 
 
INPUT_KEY_PRIVATE_PEM="./ca-sign-keypair-rsa2048/rsa2048-private.pem" 
INPUT_KEY_PUBLIC_PEM="./ca-sign-keypair-rsa2048/rsa2048-public.pem" 
 
OUTPUT_CRT_ROOT_SIG_BIN="./output/AmazonRootCA3_sig.sig" 
OUTPUT_CRT_ROOT_SIG_TXT="./output/AmazonRootCA3_sig_array.txt" 
 
. ./convertCrt.sh  

 
After running the script, the six files listed below are generated in the output folder. Of these, the files listed 
in red are used by the sample project. These files contain generated binary data in C language uint8_t array 
format. Copy these files to the amazon-freertos/vendors/renesas/boards/rx_mcu_boards/(board_name)/ 
aws_demos/src/smc_gen/general folder of the sample project, overwriting the files of the same names. 

• AmazonRootCA3_crt_array.txt 
• AmazonRootCA3_sig_array.txt 
• client_ecc256_crt_array.txt 
• AmazonRootCA3_crt.der 
• AmazonRootCA3_sig.sig 
• client_ecc256_crt.der 
 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 36 of 50 
Sep.15.22 

3.2.5 Key Wrapping 
The TSIP driver will not accept input of user keys in plaintext, so the keys must be “wrapped” to convert them 
to a format that will be accepted by the TSIP driver. The procedure for converting the keys used for TLS to 
the format the TSIP driver accepts, and writing them to the device, is described below. 

As with certificates, keys used for TLS are generally provided in PEM format. For use by the TSIP driver, the 
keying data must be extracted from the PEM format key file. After this, follow the steps below to wrap it using 
the Renesas DLM server (https://dlm.renesas.com/) and Renesas Secure Flash Programmer. 

1.  Extract the keying data for root CA certificate signature verification and the client certificate keying data 
from the PEM format key files. 
Run 3_showkeyValues.sh. 

#!/bin/sh 
 
KEY_ROOT_SIGNATURE_RSA2048="./ca-sign-keypair-rsa2048/rsa2048-private.pem" 
KEY_CLIENT_RSA2048="./client-rsa2048/*-private.pem.key" 
KEY_CLIENT_ECC256="./client-ecc256/prime256v1-private.pem.key" 
 
echo Root CA signature RSA-2048bit Public: 
if [ -e $KEY_ROOT_SIGNATURE_RSA2048 ] 
then 
     
    openssl asn1parse -in $KEY_ROOT_SIGNATURE_RSA2048 | awk -F: 
'NR==3{print $4} NR==4{printf("%08d\n", $4)}' | tr -d "\n" 
else 
    echo "Not found" 
fi 
 
echo -e "\n\nClient RSA-2048bit All:" 
if [ -e $KEY_CLIENT_RSA2048 ] 
then 
    openssl asn1parse -in $KEY_CLIENT_RSA2048 | awk -F: 'NR==3{print $4} 
NR==4{printf("%08d\n", $4)} NR==5{print $4}' | tr -d "\n" 
else 
    echo "Not found" 
fi 
 
echo -e "\n\nClient ECC-256bit All: " 
if [ -e $KEY_CLIENT_ECC256 ] 
then 
    TEMP_PRIVATE=`openssl ec -in $KEY_CLIENT_ECC256 -text -noout | sed -n 
3,5p` 
    TEMP_PUBLIC=`openssl ec -in $KEY_CLIENT_ECC256 -text -noout | sed -n 
7,11p` 
    echo $TEMP_PUBLIC $TEMP_PRIVATE | sed "s/^04//" | tr -d " :" 
else 
    echo "Not found" 
fi  

 
When you run the script, the keying data for root CA certificate signature verification and the client 
certificate keying data are output to the console in a format that can be input to the Key Data field on the 
Key Wrap tab of Renesas Secure Flash Programmer. 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 37 of 50 
Sep.15.22 

2.  Generate a random provisioning key and then upload it to the DLM server to generate an encrypted 
provisioning key. The provisioning key is used to wrap the public key used for signature verification. 
You can use Renesas Secure Flash Programmer to create a provisioning key file in a format that will be 
accepted by the DLM server. Refer to section 5.1 for instructions for creating a provisioning key file. For 
information on using the DLM server, refer to the KeyWrap Service Operation Manual that is accessible 
via the FAQ link on the DLM server top page. 

 
3.  Next, enter the encrypted provisioning key and plaintext provisioning key, and the keying data for root CA 

certificate signature verification and client certificate keying data extracted in step 1, in Renesas Secure 
Flash Programmer and generate encrypted key files (key_data.c and key_data.h). The key for root CA 
certificate signature verification and client certificate keys are output to the encrypted key files as keys 
(encrypted keys) wrapped using the encrypted provisioning key and provisioning key. Refer to section 5.2 
for a detailed description of the steps involved. Follow the steps below to enter the key for root CA 
certificate signature verification and client certificate key pair in Renesas Secure Flash Programmer. 

 
3-1. Entering Key for Root CA Certificate Signature Verification 

For Key Type on the Key Wrap tab, specify RSA-2048bit Public as the type of the key pair to be 
registered. 
For Key Data on the Key Wrap tab of Renesas Secure Flash Programmer, enter the keying data for root 
CA certificate signature verification extracted in step 1 and click the Register button. 

 
 
3-2. Entering Client Certificate Key Pair 

For Key Type on the Key Wrap tab, specify the type of the key pair to be registered. Specify 
RSA-2048bit All when using an RSA client certificate and ECC-256bit All when using an ECDSA client 
certificate. 
For Key Data, enter the client certificate key pair extracted in step 1 and click the Register button. 

 
 
Copy the generated encrypted key files (key_data.c and key_data.h) to the amazon-freertos/vendors/ 
renesas/boards/rx_mcu_boards/(board_name)/aws_demos/src/smc_gen/general folder of the sample 
project, overwriting the files of the same names. 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 38 of 50 
Sep.15.22 

3.3 Settings for Communication with AWS 
The procedure for making settings in the setting file supplied with FreeRTOS and the setting file of the 
sample program is described below. 

 
3.3.1 AWS IoT Settings 
Open the file demos/include/aws_clientcredential.h in the amazon-freertos folder and enter the following 
settings. 

• For #define clientcredentialMQTT_BROKER_ENDPOINT, enter the Rest API endpoint. 
• For #define clientcredentialIOT_THING_NAME, enter the name of the thing. 
 
To confirm the Rest API endpoint and thing name, sign in to the AWS Management Console 
(https://aws.amazon.com/console/) and select All Services → Internet of Things → IoT Core. Under 
Manage click Things, and select the thing created as described in section 3.2. 

 
 

https://aws.amazon.com/console/


RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 39 of 50 
Sep.15.22 

Click Interact, and on the page that is displayed the name of the thing is shown at the top left, and the Rest 
API endpoint is shown under HTTPS. 

 
 
3.3.2 IP Settings 
The default setting is to use DHCP. If DHCP has been disabled on the router connected to the target board, 
make settings as follows. 

Open the file vendors/renesas/boards/rx_mcu_boards/(board_name)/aws_demos/config_files/ 
FreeRTOSIPConfig.h in the amazon-freertos folder, and set #define ipconfigUSE_DHCP to 0. 

Open the file vendors/renesas/boards/rx_mcu_boards(board_name)/aws_demos/config_files/ 
FreeRTOSConfig.h in the amazon-freertos folder, and enter settings for IP address, default gateway, DNS 
server address, and subnet mask. 

 
3.3.3 Client Certificate Format Selection 
By default, the RSA certificate type is enabled. To switch to the ECDSA certificate type, open the file 
amazon-freertos/vendors/renesas/boards/rx_mcu_boards/(board_name)/aws_demos/src/smc_gen/ 
general/r_trust_certificate_data.h, and edit it as shown below. 

// RSA or ECDSA 
//#define TSIP_CLIENT_CERTIFICATE_TYPE   R_TSIP_TLS_PUBLIC_KEY_TYPE_RSA2048    
// RSA 
#define TSIP_CLIENT_CERTIFICATE_TYPE R_TSIP_TLS_PUBLIC_KEY_TYPE_ECDSA_P256 
// ECDSA 
 

 

Thing name 

Rest API endpoint 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 40 of 50 
Sep.15.22 

4. Building and Running the Project 
4.1 Importing the Project 
Launch e2 studio, go to a workspace of your choice, and select File → Import. Next, select Existing 
Projects into Workspace under General, as shown below.  

 
 
Click the Browse… button next to the Select root directory item and select amazon-freertos/projects/ 
renesas/(board_name)/e2studio/aws_demos. After confirming that a project called aws_demos is now 
selectable, click the Finish button. 

At this time, check to make sure that Copy projects into workspace is unchecked. 

 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 41 of 50 
Sep.15.22 

4.2 Building the Project 
Select Project → Build All to build the project. Note that a warning message appears at this time, but this 
does not indicate a problem. 

After the build finishes, connect the target board to the PC and router as shown in Figure 3.1. Then select 
Run → Debug to start debugging. 

 

4.3 Connecting to AWS IoT 
Sign in to the AWS Management Console (https://aws.amazon.com/console/) and select All Services → 
Internet of Things → IoT Core. From the menu on the left, select Test to launch the MQTT test client. 

 
 
In the Topic filter field enter the wildcard character #, then click Subscribe.  

 
 

https://aws.amazon.com/console/


RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 42 of 50 
Sep.15.22 

Confirm that an empty console is displayed at the bottom of the page, as shown below.  

 
 
Launch the terminal emulator of your choice, such as Tera Term, and establish a serial communication link 
with the target board. Next, in e2 studio, select Run and then click the Resume button to run the program, 
which will connect to AWS. 

 
When a connection to AWS is successfully established, a communication log is output on the MQTT client. 

 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 43 of 50 
Sep.15.22 

In addition, a task log is displayed on the terminal emulator. 

 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 44 of 50 
Sep.15.22 

5. Using Renesas Secure Flash Programmer 
5.1 Generating a Provisioning Key File 
Figure 5.1 shows the provisioning key tab in Renesas Secure Flash Programmer. For provisioning key 
Value, enter the value of the provisioning key in 32-byte hexadecimal format, then click the format to DLM 
server file… button to create a provisioning key file that can be sent to the DLM server. 

By clicking the format to DLM server file… button when (Random) is displayed you can generate a 
provisioning key file using a random number as the basis, but this method should not be used for production 
products because the random number used lacks sufficient precision. 

 

Figure 5.1   Provisioning Key Tab in Renesas Secure Flash Programmer  

 

5.2 Generating Encrypted Key Files 
Figure 5.2 shows the Key Wrap tab in Renesas Secure Flash Programmer, and Table 5.1 contains 
descriptions of the Key Wrap tab setting values. Enter setting values based on the descriptions in Table 5.1, 
then click the Generate Key Files… button to generate the encrypted key files (key_data.c and 
key_data.h). Refer to Table 5.2 for descriptions of the various buttons. 

 
Figure 5.2   Key Wrap Tab in Renesas Secure Flash Programmer  

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 45 of 50 
Sep.15.22 

Table 5.1   Key Wrap Tab Setting Values 

Parameter Setting Value Description 
Select MCU • TSIP-Lite(DF Memory 8KB) 

• TSIP-Lite(DF Memory 32KB) 
• TSIP(DF Memory 8KB) 
• TSIP(DF Memory 32KB) 

Selects the MCU (TSIP type and data flash 
memory size) to be used. For the sample 
program, specify TSIP(DF Memory 32KB). 

Key Type • AES-128bit 
• AES-256bit 
• DES 
• 2Key-TDES 
• Triple-DES 
• ARC4-2048bit 
• SHA1-HMAC 
• SHA256-HMAC 
• RSA-1024bit Public/Private/All 
• RSA-2048bit Public/Private/All 
• RSA-3072bit Public 
• RSA-4096bit Public 
• ECC-192bit Public/Private/All 
• ECC-224bit Public/Private/All 
• ECC-256bit Public/Private/All 
• ECC-384bit Public/Private/All 
• Update Key Ring 

Specifies the type of the user key to be 
generated. For the sample program, specify 
the following: 
• RSA-2048bit Public 

Where Key Data is keying data used to 
verify the signature of the root CA 
certificate. 

• RSA-2048bit All 
Where Key Data is keying data for an 
RSA client certificate. 

• ECC-256bit All 
Where Key Data is keying data for an 
ECDSA client certificate. 

Key Data User key 
Refer to section 7 of RX Family: TSIP 
(Trusted Secure IP) Module Firmware 
Integration Technology (R20AN0371) 
for the key format. 

Specify the user keying data to be 
generated. For the sample program, the key 
specified by Key Type above is used. 

provisioning key 
File Path 

File path of provisioning key file Specify the file path of the plaintext 
provisioning key file to be used when 
encrypting the user key. Refer to section 5.1 
for instructions for creating a provisioning 
key file. 

encrypted 
provisioning key 
File Path 

File path of wrapped provisioning key 
file 

Specify the file path of the wrapped 
provisioning key file to be output as a C 
language file. Use the DLM server to create 
the wrapped provisioning key file. 

IV (16 byte hex / 
32 characters) 

IV value Enter a 16-byte IV value. The user key input 
to the TSIP must have an encrypted MAC 
value appended, and the IV value is used as 
the initialization vector when calculating the 
MAC value. 

Generate Key 
Files… 

Button for generating C language files Outputs C language encrypted key files. 

 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 46 of 50 
Sep.15.22 

Table 5.2   Descriptions of Buttons on Key Wrap Tab 

Button Description 
Register Registers the user keying data specified in the Key Data field. Enter user keying data 

matching Key Type in the Key Data field and click this button to register it. 
Delete Deletes registered user keying data. First select in the window the user keying data to 

be deleted, then click this button to delete it. 
Browse… Click these buttons to use Explorer to specify the file paths to the provisioning key file 

and the wrapped provisioning key file. You can also enter file paths directly. 
Generate Key 
Files… 

Generates encrypted key files (key_data.c and key_data.h). Click this button after 
entering appropriate values into the various fields. After the button is clicked a dialog 
box appears for specifying the output folder for the encrypted key files, and the files are 
output. 

 
 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 47 of 50 
Sep.15.22 

6. Appendix 
6.1 TLS Communication Performance Using TSIP Driver 
Table 6.1 lists examples of application data transfer speeds for TLS communication using the RX72N 
Envision Kit. The MCU’s internal timer was used to measure transfer times for 1 MB of data, five transfers 
were performed, and the average time was calculated. In these examples, using the TSIP driver boosted the 
transfer rate from 3 to 7 Mbps to 20 to 30 Mbps. 

 
Table 6.1   Examples of TLS Communication Speeds Using TSIP Driver  

Cipher Suite Block Cipher Mbed TLS*1 
Mbed TLS  
with TSIP*2 

TLS_RSA_WITH_AES_128_CBC_SHA 128-bit AES-CBC Up: 6.4 Mbps 
Down: 6.6 Mbps 

Up: 25.0 Mbps 
Down: 28.3 Mbps 

TLS_RSA_WITH_AES_256_CBC_SHA 256-bit AES-CBC Up: 5.5 Mbps 
Down: 5.6 Mbps 

Up: 24.2 Mbps 
Down: 27.2 Mbps 

TLS_ECDHE_RSA_WITH_AES_128_GCM
_SHA256 

128-bit AES-GCM Up: 3.7 Mbps 
Down: 3.8 Mbps 

Up: 22.4 Mbps 
Down: 29.5 Mbps 

Notes: System clock (ICLK): 240 MHz 
 TSIP operating clock (PCLKB): 60 MHz 
 1. Mbed TLS: Software processing 
 2. Mbed TLS with TSIP: Using TLS APIs of TSIP driver 
 
 

6.2 Flowchart of TLS Negotiation and Calls to TSIP Driver 
Below are flowcharts of TLS negotiation overall and associated calls to the TSIP driver. Figure 6.1 applies 
when the key exchange algorithm is RSA and Figure 6.2 when it is ECDHE. 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 48 of 50 
Sep.15.22 

Client Hello 

Server Hello
Certificate
Certificate Request (optional)
Sever Hello Done 

Root CA certificate 

Finished 

Certificate (optional)
Client Key Exchange
Certificate Verify (optional)

Encrypted Premaster Secret

Send Finished

Decrypt
Premaster Secret

Master Secret

R_TSIP_TlsCertificateVerification

Still certificate 
exists

R_TSIP_TlsEncryptPreMasterSecretWithRsa2048PublicKey

R_TSIP_TlsGeneratePreMasterSecret

R_TSIP_TlsGenerateMasterSecret

R_TSIP_TlsGenerateSessionKey

Generate client verify data
R_TSIP_TlsGenerateVerifyData

Generate MAC **
R_TSIP_Sha1HmacGenerateInit/Update/Final

R_TSIP_Sha256HmacGenerateInit/Update/Final

Encrypt message **
R_TSIP_Aes128CbcEncryptInit/Update/Final
R_TSIP_Aes256CbcEncryptInit/Update/Final

tsip_pre_master_secret 
as Premaster Secret

tsip_master_secret 
as Master Secret

client_crypto_key_index 
as session key index Finished 

MAC SecretSession Key

Yes
No

Receive Finished
Decrypt message **

R_TSIP_Aes128CbcDecryptInit/Update/Final
R_TSIP_Aes256CbcDecryptInit/Update/Final

Generate server verify data
R_TSIP_TlsGenerateVerifyData

* To assure validity, the TSIP only accepts a key index, even for a public key.
** Select the API that matches the cipher suite.
! Keep the key in a safe place.

  client_mac_key_index 
as MAC key index

server_crypto_key_index 
as session key index

Intermediate certificate 

Server certificate 

Verify MAC **
R_TSIP_Sha1HmacVerifyInit/Update/Final

R_TSIP_Sha256HmacVerifyInit/Update/Final

  server_mac_key_index 
as MAC key inedx

compare

Client session key Client MAC key

Server session key   Server MAC key
Change Cipher Spec 

Change Cipher Spec

SSL/TLS stack should select which 
certificate would be input into 

R_TSIP_TlsCertificateVerification()
Receive Certificate

Server public key output
by R_TSIP_TlsCertificateVerification

Client
ServerTLS public key index*

R_TSIP_TlsRootCertificateVerification

R_TSIP_Open

Server certificate 

Root CA certificate public key

R_TSIP_GenerateTlsRsaPublicKeyIndex

Public key
Generate RSA or ECC key pair

Private key

Client certificate

CA

CSR

RSA2048 PSS with SHA256 signature

Root CA certificate

Public key
Generate RSA key pair
Private key

!

Convert to
encrypted key

Renesas Secure
Flash Programmer

!

If server requests client certificate

Key Install phase

Provisioning key

!

Encrypted
provisioning key

Encrypted on
DLM Server

R_TSIP_Open

R_TSIP_Close

Type of key pair is

ECC

RSA

Key pair

Generate
Certificate Verify message

Generate Certificate Verify Message

R_TSIP_RsassaPkcs1024/2048SignatureGenerate

R_TSIP_EcdsaP192/224/256/384SignatureGenerate

R_TSIP_EcdsaP192/224/256/384SignatureVerification

R_TSIP_RsassaPkcs1024/2048SignatureVerification

Signature
Convert to 
DER format

 

Figure 6.1   Flowchart of TLS Negotiation and Associated Calls to TSIP Driver  
(RSA Key Exchange Algorithm) 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 49 of 50 
Sep.15.22 

Client
Server

Client Hello 

Server Hello
CertificateRoot CA certificate 

Finished 

Certificate (optional)
Client Key Exchange
Certificate Verify (optional)

Send Finished

Generate
Premaster Secret

Master Secret

TLS public key index*

R_TSIP_TlsRootCertificateVerification

R_TSIP_TlsCertificateVerification

Still certificate 
exists

R_TSIP_GenerateTlsP256EccKeyIndex

R_TSIP_TlsGenerateMasterSecret

R_TSIP_TlsGenerateSessionKey
Generate client verify data

R_TSIP_TlsGenerateVerifyData

Generate MAC
R_TSIP_Sha256HmacGenerate

Init/Update/Final

Encrypt message
R_TSIP_Aes128CbcEncrypt

Init/Update/Final

SSL/TLS stack should select which 
certificate would be input into 

R_TSIP_TlsCertificateVerification()

Static public key output
by R_TSIP_TlsCertificateVerification

tsip_pre_master_secret 
as Premaster Secret

tsip_master_secret 
as Master Secret

client_crypto_key_index 
as session key index Finished 

MAC SecretSession Key

Yes
No

Server certificate 

Receive Finished
Decrypt message

R_TSIP_Aes128CbcDecrypt
Init/Update/Final

Generate server verify data
R_TSIP_TlsGenerateVerifyData

  client_mac_key_index 
as MAC key index

server_crypto_key_index 
as session key index

R_TSIP_Open

Root CA certificate public key

Intermediate certificate 

Server certificate 

Verify MAC
R_TSIP_Sha256HmacVerify

Init/Update/Final

  server_mac_key_index 
as MAC key inedx

R_TSIP_GenerateTlsRsaPublicKeyIndex

compare

Client session key Client MAC key

Server session key   Server MAC key

Public key
Generate RSA or ECC key pair

Private key

Client certificate

CA

CSR

Root CA certificate

Public key
Generate RSA key pair
Private key

!

Renesas Secure
Flash Programmer

!

If server requests client certificate

Change Cipher Spec 

Change Cipher Spec

Receive Certificate

Key Install phase

Receive Public Key 
and Signature

R_TSIP_TlsServersEphemeralEcdhPublic
KeyRetrieves

Client ephemeral ECDH public key

R_TSIP_TlsGeneratePreMasterSecret
WithEccP256Key

Server ephemeral
ECDH public key

Client ephemeral
ECDH private key

Server ephemeral
ECDH private key

Server ephemeral
ECDH public key

Block cipher mode
of operation is

GCMCBC

Update nonce
R_TSIP_TlsGenerateSessionKey

Encrypt message
R_TSIP_Aes128GcmEncrypt

Init/Update/Final

Update nonce
R_TSIP_TlsGenerateSessionKey

Generate server verify data
R_TSIP_TlsGenerateVerifyData

Decrypt message
R_TSIP_Aes128GcmDecrypt

Init/Update/Final

compare

client_crypto_
key_index

server_crypto_
key_index

Server Key Exchange
Certificate Request (opntional)
Sever Hello Done 

Signature

* To assure validity, the TSIP only accepts a key index, even for a public key.
! Keep the key in a safe place.

Provisioning key

!

Encrypted
provisioning key

Encrypted on
DLM Server

R_TSIP_Open

Convert to 
DER format

R_TSIP_Close

Type of key pair is

ECC

RSA

Key pair

Generate
Certificate Verify message

Generate Certificate Verify Message

R_TSIP_RsassaPkcs1024/2048SignatureGenerate

R_TSIP_EcdsaP192/224/256/384SignatureGenerate

R_TSIP_EcdsaP192/224/256/384SignatureVerification

R_TSIP_RsassaPkcs1024/2048SignatureVerification

Convert to
encrypted key

RSA2048 PSS with SHA256 signature

 

Figure 6.2   Flowchart of TLS Negotiation and Associated Calls to TSIP Driver  
(ECDHE Key Exchange Algorithm) 



RX Family Implementing TLS Using TSIP Driver 

R01AN5880EJ0102  Rev.1.02  Page 50 of 50 
Sep.15.22 

Revision History  

Rev. Date 
Description 
Page Summary 

1.00 Jun. 30, 2021  First edition issued 
1.01 Mar. 31, 2022  Error correction 
1.02 Sep. 15, 2022 16 2.3.3 Added explanation about generating Certificate Verify 

 

 



 

 

General Precautions in the Handling of Microprocessing Unit and Microcontroller 
Unit Products 
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the 
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 

1. Precaution against Electrostatic Discharge (ESD) 

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps 

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be 

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. 

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and 

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor 

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. 
2. Processing at power-on 

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of 

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset 

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins 

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the 

level at which resetting is specified. 
3. Input of signal during power-off state 

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O 

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal 

elements. Follow the guideline for input signal during power-off state as described in your product documentation. 
4. Handling of unused pins 

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are 

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of 

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal 

become possible. 
5. Clock signals 

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program 

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator 

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal 

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. 
6. Voltage application waveform at input pin 

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL 

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the 

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). 
7. Prohibition of access to reserved addresses 

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these 

addresses as the correct operation of the LSI is not guaranteed. 
8. Differences between products 

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. 

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms 

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, 

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product. 
 
 



 

© 2022 Renesas Electronics Corporation. All rights reserved. 

Notice 
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products 

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your 
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use 
of these circuits, software, or information. 

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, 
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this 
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples. 

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics 
or others. 

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, 
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required. 

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any 
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering. 

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for 
each Renesas Electronics product depends on the product’s quality grade, as indicated below. 
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home 

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc. 
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key 

financial terminal systems; safety control equipment; etc. 
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas 
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to 
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space 
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics 
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product 
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document. 

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics 
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but 
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS 
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING 
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, 
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND 
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT 
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH 
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO 
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. 

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for 
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by 
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas 
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such 
specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific 
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability 
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics 
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily 
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as 
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for 
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are 
responsible for evaluating the safety of the final products or systems manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas 
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of 
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these 
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance 
with applicable laws and regulations. 

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is 
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations 
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions. 

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or 
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document. 

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics. 
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas 

Electronics products. 

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled 
subsidiaries. 

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
(Rev.5.0-1  October 2020)  

Corporate Headquarters  Contact information 
TOYOSU FORESIA, 3-2-24 Toyosu, 
Koto-ku, Tokyo 135-0061, Japan 
www.renesas.com 

 For further information on a product, technology, the most up-to-date 
version of a document, or your nearest sales office, please visit: 
www.renesas.com/contact/. 

Trademarks   
Renesas and the Renesas logo are trademarks of Renesas Electronics 
Corporation. All trademarks and registered trademarks are the property 
of their respective owners. 

  

 
   

https://www.renesas.com/
https://www.renesas.com/contact/

	Devices on Which Operation Confirmed
	Operating Environment
	Related Documents
	1. Overview
	1.1 Advantages of TLS Communication Using TSIP
	1.2 Cipher Suites Supported by TSIP Driver
	1.3 TLS APIs of TSIP Driver
	1.4 Definitions of Terms

	2. Implementing TLS Communication Using TSIP
	2.1 Preparation Beforehand
	2.1.1 Preparation of Root CA Certificate
	2.1.2 Preparation of Client Certificate

	2.2 Verifying Root CA Certificate
	2.3 Handshake Protocol
	2.3.1 Certificate
	2.3.2 Server Key Exchange and Client Key Exchange
	2.3.2.1 ECDHE Key Exchange
	2.3.2.2 RSA Key Exchange

	2.3.3 Certificate Verify
	2.3.4 Finished


	Notice
	2.4 Application Data Protocol

	3. Sample Project
	3.1 Folder Structure
	3.2 Key and Certificate Preparation
	3.2.1 Obtaining Root CA Certificate
	3.2.2 Generating RSA Keys and Client Certificate
	3.2.3 Generating ECDSA Client Certificate and Key Pair
	3.2.3.1 Generating ECC Key Pair
	3.2.3.2 Registering Keys on AWS

	3.2.4 Root CA Certificate Signature Generation and Certificate File Format Conversion
	3.2.4.1 RSA Certificate
	3.2.4.2 ECDSA Certificate

	3.2.5 Key Wrapping

	3.3 Settings for Communication with AWS
	3.3.1 AWS IoT Settings
	3.3.2 IP Settings
	3.3.3 Client Certificate Format Selection


	4. Building and Running the Project
	4.1 Importing the Project
	4.2 Building the Project
	4.3 Connecting to AWS IoT

	5. Using Renesas Secure Flash Programmer
	5.1 Generating a Provisioning Key File
	5.2 Generating Encrypted Key Files

	6. Appendix
	6.1 TLS Communication Performance Using TSIP Driver
	6.2 Flowchart of TLS Negotiation and Calls to TSIP Driver

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

