
 APPLICATION NOTE

R01AN5759ES0271 Rev.2.71 Page 1 of 58
Mar.15.25

RX Family
RSCI Module Using Firmware Integration Technology

Introduction
This application note describes the enhanced serial communications interface (RSCI) module which uses
Firmware Integration Technology (FIT). This module uses RSCI to provide Asynchronous, Synchronous, SPI
(SSPI), and Manchester support for all channels of the RSCI peripheral. In this document, this module is
referred to as the RSCI FIT module.

Target Devices
• RX26T Group (Products with 64 Kbytes of RAM)
• RX671 Group
• RX660 Group
• RX260, RX261 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after
making modifications to comply with the alternate MCU.

Target Compilers
Renesas Electronics C/C++ Compiler Package for RX Family

GCC for Renesas RX

IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “6.1 Confirmed Operation
Environment".

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 2 of 58
Mar.15.25

Contents

1. Overview ... 4
1.1 RSCI FIT Module ... 4
1.2 Overview of the RSCI FIT Module .. 4
1.3 API Overview ... 6
1.4 Limitations ... 6
1.5 Using the FIT RSCI module .. 6
1.5.1 Using FIT RSCI module in C++ project ... 6

2. API Information .. 6
2.1 Hardware Requirements ... 6
2.2 Software Requirements ... 7
2.3 Limitations ... 7
2.3.1 RAM Location Limitations ... 7
2.4 Supported Toolchain ... 7
2.5 Interrupt Vector .. 8
2.6 Header Files .. 9
2.7 Integer Types .. 9
2.8 Configuration Overview ... 10
2.9 Code Size .. 13
2.10 Parameters .. 20
2.11 Return Values .. 21
2.12 Callback Function .. 21
2.13 Adding the FIT Module to Your Project ... 26
2.14 “for”, “while” and “do while” statements ... 27

3. API Functions .. 28
R_RSCI_Open() .. 28
R_RSCI_Close() .. 33
R_RSCI_Send() ... 34
R_RSCI_Receive() .. 36
R_RSCI_SendReceive() .. 39
R_RSCI_Control() ... 41
R_RSCI_GetVersion() ... 46

4. Pin Setting ... 47

5. Demo Projects ... 48
5.1 rsci_demo_rskrx671, rsci_demo_rskrx671_gcc .. 48

6. Appendices .. 49
6.1 Confirmed Operation Environment .. 49
6.2 Troubleshooting ... 55

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 3 of 58
Mar.15.25

7. Reference Documents ... 56

Related Technical Updates ... 56

Revision History .. 57

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 4 of 58
Mar.15.25

1. Overview
1.1 RSCI FIT Module
The RSCI FIT module can be used by being implemented in a project as an API. See section 2.13, Adding
the FIT Module to Your Project for details on methods to implement this FIT module into a project.

1.2 Overview of the RSCI FIT Module
RSCI can handle both asynchronous and clock synchronous serial communications. RSCI has FIFO buffer
of 32 stages in transmission/reception blocks, and it can select the FIFO composition, and it can
transmit/receive efficiently, and it can also communicate continuously.

Additionally, the driver supports the following features in Asynchronous mode:

• Noise cancellation
• Outputting baud clock on the SCK pin
• One-way flow control of either CTS or RTS

All basic UART, Master SPI, Master Synchronous, and Manchester mode functionality are supported by this
driver.

Features not supported by this driver are:
• Extended
• Multiprocessor mode (all channels)
• Event linking
• DMAC/DTC data transfer
• RZI code

Handling of Channels
This is a multi-channel driver, and it supports all channels present on the peripheral. Specific channels can
be excluded via compile-time defines to reduce driver RAM usage and code size if desired. These defines
are specified in “r_rsci_rx_config.h”.

An individual channel is initialized in the application by calling R_RSCI_Open(). This function applies power
to the peripheral and initializes settings particular to the specified mode. A handle is returned from this
function to uniquely identify the channel. The handle references an internal driver structure that maintains
pointers to the channel’s register set, buffers, and other critical information. It is also used as an argument
for the other API functions.

Interrupts, and Transmission and Reception
Interrupts supported by this driver are TXI, TEI, RXI, and ERI. For Asynchronous mode, circular buffers are
used to queue incoming as well as outgoing data. The size of these buffers can also be set on compilation.

The TXI and TEI interrupts are used in Asynchronous or Manchester mode. The TXI interrupt occurs when
transmit data in the TDR register has been shifted into the TSR register. During this interrupt, the next byte in
the transmit circular buffer is placed into the TDR register to be ready for transmit. If a callback function is
provided in the R_RSCI_Open() call, it is called here with a TEI event passed to it. Support for TEI interrupts
may be removed from the driver via a setting in “r_rsci_rx_config.h”.

The RXI interrupt occurs each time the RDAT field of the RDR register has shifted in receive data. In
Asynchronous or Manchester mode, this byte is loaded into the receive circular buffer during the interrupt for
access later via an R_RSCI_Receive() call at the application level. If a callback function is provided, it is
called with a receive event. If the receive queue is full, it is called with a queue full event while the last
received byte is not stored. In SSPI and Synchronous modes, the shifted-in byte is loaded directly into the
receive buffer specified from the last R_RSCI_Receive() or R_RSCI_SendReceive() call. The data received
before R_RSCI_Receive() or R_RSCI_SendReceive() call is ignored. With SSPI and Synchronous modes,
data is transmitted and received in the RXI interrupt handler. The number of data remaining to be transferred
or received can be checked with the value of the transmit counter (tx_cnt) and received counter (rx_cnt) in
the handle set for the fourth parameter of the R_RSCI_Open function. Refer to 2.10, Parameters for details.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 5 of 58
Mar.15.25

To use RSCI nested interrupts, enable macros RSCI_CFG_CHn_EN_TXI_NESTED_INT,
RSCI_CFG_CHn_EN_RXI_NESTED_INT, RSCI_CFG_CHn_EN_TEI_NESTED_INT and
RSCI_CFG_CHn_EN_ERI_NESTED_INT for each related channel.

Error Detection
The ERI interrupt occurs when a framing, overrun, or parity error is detected by the receive device. In
Manchester mode, there are also Manchester code, preface, start bit, or receive Sync errors. If a callback
function is provided, the interrupt determines which error occurred and notifies the application of the event.
Refer to 2.12, Callback Function for details.
This FIT module clears the error flag in the ERI interrupt handler regardless of the callback function provided
or not. If the FIFO function is enabled, the callback function is called before the error flag is cleared. So, the
data where the error occurred can be determined by reading the RDR register for the number of data
received. Refer to 2.12 Callback Function for details.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 6 of 58
Mar.15.25

1.3 API Overview
 Table 1.1 lists the API functions included in this module.

 Table 1.1 API Functions

Function Name Description
R_RSCI_Open() Applies power to the RSCI channel, initializes the associated

registers, enables interrupts, and provides the channel handle for
use with other API functions. Specifies the callback function which is
called when a receive error or other interrupt events occur.

R_RSCI_Close() Removes power to the RSCI channel and disables the associated
interrupts.

R_RSCI_Send() Initiates transmit if transmitter is not in use.
R_RSCI_Receive() For Asynchronous or Manchester mode, fetches data from a queue

which is filled by RXI interrupts.
For Synchronous and SSPI modes, initiates dummy data
transmission and reception if transceiver is not in use.

R_RSCI_SendReceive() For Synchronous and SSPI modes only. Transmits and receives
data simultaneously if the transceiver is not in use.

R_RSCI_Control() Handles special hardware or software operations for the RSCI
channel.

R_RSCI_GetVersion() Returns at runtime the driver version number.

1.4 Limitations
None.

1.5 Using the FIT RSCI module
1.5.1 Using FIT RSCI module in C++ project
For C++ project, add FIT RSCI module interface header file within extern “C”{}:

Extern “C”
{

#include “r_smc_entry.h”
#include “r_rsci_rx_if.h”

}

2. API Information
This FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
The MCU used must support the following functions:

 RSCI

 GPIO

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 7 of 58
Mar.15.25

2.2 Software Requirements
This driver is dependent upon the following FIT module:

 Renesas Board Support Package (r_bsp) v6.10 or higher

 r_byteq (Asynchronous or Manchester mode)

2.3 Limitations
2.3.1 RAM Location Limitations
In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.

The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.

In the case of the CCRX project (e2 studio V21.7.0), the RAM start address is set as 0x4 to prevent the
variable from being located at address 0x0. In the case of the GCC project (e2 studio V21.7.0) and IAR
project (EWRX V4.20.1), the start address of RAM is 0x0, so the above measures are necessary.

The default settings of the section may be changed due to the IDE version upgrade. Please check the
section settings when using the latest IDE.

2.4 Supported Toolchain
This driver has been confirmed to work with the toolchain listed in 6.1, Confirmed Operation Environment.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 8 of 58
Mar.15.25

2.5 Interrupt Vector
The RXIn and ERIn interrupt is enabled by executing the R_RSCI_Open function.

For SSPI and synchronous modes, interrupts TXIn and TEIn are not used in these modes.

Table 2.1 lists the interrupt vector used in the RSCI FIT Module.

Table 2.1 Interrupt Vector Used in the RSCI FIT Module

Device Interrupt Vector
RX671
RX660

RXI interrupt (vector no.: 32)
TXI interrupt (vector no.: 33)
RXI interrupt (vector no.: 42)
TXI interrupt (vector no.: 43)
GROUPAL0 interrupt (vector no.: 112)
• TEI interrupt (group interrupt source no.: 24)
• ERI interrupt (group interrupt source no.: 25)
• TEI interrupt (group interrupt source no.: 27)
• ERI interrupt (group interrupt source no.: 28)

RX26T RXI interrupt (vector no.: 100)
TXI interrupt (vector no.: 101)
RXI interrupt (vector no.: 102)
TXI interrupt (vector no.: 103)
RXI interrupt (vector no.: 114)
TXI interrupt (vector no.: 115)
GROUPBL1 interrupt (vector no.: 111)
• TEI interrupt (group interrupt source no.: 24)
• ERI interrupt (group interrupt source no.: 25)
• TEI interrupt (group interrupt source no.: 26)
• ERI interrupt (group interrupt source no.: 27)
GROUPAL0 interrupt (vector no.: 112)
• TEI interrupt (group interrupt source no.: 12)
• ERI interrupt (group interrupt source no.: 13)

RX260
RX261

ERI interrupt (vector no.: 214)
RXI interrupt (vector no.: 215)
TXI interrupt (vector no.: 216)
TEI interrupt (vector no.: 217)
ERI interrupt (vector no.: 230)
RXI interrupt (vector no.: 231)
TXI interrupt (vector no.: 232)
TEI interrupt (vector no.: 233)
ERI interrupt (vector no.: 234)
RXI interrupt (vector no.: 235)
TXI interrupt (vector no.: 236)
TEI interrupt (vector no.: 237)

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 9 of 58
Mar.15.25

2.6 Header Files
All API calls and their supporting interface definitions are located in r_rsci_rx_if.h.

2.7 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 10 of 58
Mar.15.25

2.8 Configuration Overview
The configuration option settings of this module are located in r_rsci_rx_config.h. The option names and
setting values are listed in the table below:

Configuration options in r_rsci_rx_config.h

RSCI_CFG_PARAM_CHECKING_ENABLE 1

1: Parameter checking is included in the build.
0: Parameter checking is omitted from the build.
Setting this #define to
BSP_CFG_PARAM_CHECKING_ENABLE utilizes the
system default setting.

RSCI_CFG_ASYNC_INCLUDED 1
RSCI_CFG_SYNC_INCLUDED 0
RSCI_CFG_SSPI_INCLUDED 0
RSCI_CFG_MANC_INCLUDED 0

These #defines are used to include code specific to their
mode of operation. A value of 1 means that the supporting
code will be included. Use a value of 0 for unused modes
to reduce overall code size.

RSCI_CFG_DUMMY_TX_BYTE 0xFF This #define is used only with SSPI and Synchronous
mode. It is the value of dummy data which is clocked out
for each byte clocked in during the R_RSCI_Receive()
function call.

RSCI_CFG_CH0_INCLUDED 0
RSCI_CFG_CH8_INCLUDED 0
RSCI_CFG_CH9_INCLUDED 0
RSCI_CFG_CH10_INCLUDED 0
RSCI_CFG_CH11_INCLUDED 0

Each channel has associated with it transmit and receive
buffers, counters, interrupts, and other program and RAM
resources. Setting a #define to 1 allocates resources for
that channel.
Be sure to enable the channels you will be using in the
config file.

RSCI_CFG_CH0_TX_BUFSIZ 80
RSCI_CFG_CH8_TX_BUFSIZ 80
RSCI_CFG_CH9_TX_BUFSIZ 80
RSCI_CFG_CH10_TX_BUFSIZ 80
RSCI_CFG_CH11_TX_BUFSIZ 80

These #defines specify the size of the buffer to be used in
Asynchronous or Manchester mode for the transmit queue
on each channel. If the corresponding
RSCI_CFG_CHn_INCLUDED is set to 0,
RSCI_CFG_ASYNC_INCLUDED is set to 0, or
RSCI_CFG_MANC_INCLUDED is set to 0, the buffer is
not allocated.

RSCI_CFG_CH0_RX_BUFSIZ 80
RSCI_CFG_CH8_RX_BUFSIZ 80
RSCI_CFG_CH9_RX_BUFSIZ 80
RSCI_CFG_CH10_RX_BUFSIZ 80
RSCI_CFG_CH11_RX_BUFSIZ 80

These #defines specify the size of the buffer to be used in
Asynchronous or Manchester mode for the receive queue
on each channel. If the corresponding
RSCI_CFG_CHn_INCLUDED is set to 0,
RSCI_CFG_ASYNC_INCLUDED is set to 0, or
RSCI_CFG_MANC_INCLUDED is set to 0, the buffer is
not allocated.

RSCI_CFG_TEI_INCLUDED 0 Setting this #define to 1 causes the Transmit Buffer Empty
interrupt code to be included. This interrupt occurs when
the last bit of the last byte of data has been sent. The
interrupt calls the user's callback function (specified in
R_RSCI_Open()) and passes it an RSCI_EVT_TEI event.

RSCI_CFG_ERI_TEI_PRIORITY 3 This sets the receiver error interrupt (ERI) and transmit
end interrupt (TEI) priority level. 1 is the lowest priority and
15 is the highest. The ERI interrupt handles overrun,
framing, and parity errors for all channels. In Manchester
mode, there are also Manchester code, preface, start bit,
and receive Sync errors. The TEI interrupt indicates when
the last bit has been transmitted and the transmitter is idle
(Asynchronous/Manchester mode).

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 11 of 58
Mar.15.25

Configuration options in r_rsci_rx_config.h
RSCI_CFG_CH0_EN_TXI_NESTED_INT 0
RSCI_CFG_CH8_EN_TXI_NESTED_INT 0
RSCI_CFG_CH9_EN_TXI_NESTED_INT 0
RSCI_CFG_CH10_EN_TXI_NESTED_INT 0
RSCI_CFG_CH11_EN_TXI_NESTED_INT 0

Specifies whether to include code for nested interrupt TXI
Enable =1, Disable =0.

RSCI_CFG_CH0_EN_RXI_NESTED_INT 0
RSCI_CFG_CH8_EN_RXI_NESTED_INT 0
RSCI_CFG_CH9_EN_RXI_NESTED_INT 0
RSCI_CFG_CH10_EN_RXI_NESTED_INT 0
RSCI_CFG_CH11_EN_RXI_NESTED_INT 0

Specifies whether to include code for nested interrupt RXI
Enable =1, Disable =0.

RSCI_CFG_CH0_EN_TEI_NESTED_INT 0
RSCI_CFG_CH8_EN_TEI_NESTED_INT 0
RSCI_CFG_CH9_EN_TEI_NESTED_INT 0
RSCI_CFG_CH10_EN_TEI_NESTED_INT 0
RSCI_CFG_CH11_EN_TEI_NESTED_INT 0

Specifies whether to include code for nested interrupt TEI
Enable =1, Disable =0.

RSCI_CFG_CH0_EN_ERI_NESTED_INT 0
RSCI_CFG_CH8_EN_ERI_NESTED_INT 0
RSCI_CFG_CH9_EN_ERI_NESTED_INT 0
RSCI_CFG_CH10_EN_ERI_NESTED_INT 0
RSCI_CFG_CH11_EN_ERI_NESTED_INT 0

Specifies whether to include code for nested interrupt ERI
Enable =1, Disable =0.

RSCI_CFG_CH10_FIFO_INCLUDED 0
RSCI_CFG_CH11_FIFO_INCLUDED 0

1: Processing regarding the FIFO function is included in
the build
0: processing regarding the FIFO function is omitted from
the build

RSCI_CFG_CH10_TX_FIFO_THRESH 8
RSCI_CFG_CH11_TX_FIFO_THRESH 8

When the RSCI operating mode is clock synchronous
mode or simple SPI mode, set the values same as the
receive FIFO threshold value.
0 to 31: Specifies the threshold value of the transmit FIFO.

RSCI_CFG_CH10_RX_FIFO_THRESH 8
RSCI_CFG_CH11_RX_FIFO_THRESH 8

1 to 31: Specifies the threshold value of the receive FIFO.

RSCI_CFG_CH0_DATA_MATCH_INCLUDED 0
RSCI_CFG_CH8_DATA_MATCH_INCLUDED 0
RSCI_CFG_CH9_DATA_MATCH_INCLUDED 0
RSCI_CFG_CH10_DATA_MATCH_INCLUDED 0
RSCI_CFG_CH11_DATA_MATCH_INCLUDED 0

1: Processing regarding the data match function is
included in the build
0: processing regarding the data match function is omitted
from the build

RSCI_CFG_CH0_TX_SIGNAL_TRANSITION_TIMING_IN
CLUDED 0
RSCI_CFG_CH8_TX_SIGNAL_TRANSITION_TIMING_IN
CLUDED 0
RSCI_CFG_CH9_TX_SIGNAL_TRANSITION_TIMING_IN
CLUDED 0
RSCI_CFG_CH10_TX_SIGNAL_TRANSITION_TIMING_I
NCLUDED 0
RSCI_CFG_CH11_TX_SIGNAL_TRANSITION_TIMING_I
NCLUDED 0

Disable or enable Transmit signal transition timing
adjustment feature
Enable =1, Disable =0.

RSCI_CFG_CH0_RX_SIGNAL_TRANSITION_TIMING_IN
CLUDED 0
RSCI_CFG_CH8_RX_SIGNAL_TRANSITION_TIMING_IN
CLUDED 0
RSCI_CFG_CH9_RX_SIGNAL_TRANSITION_TIMING_IN
CLUDED 0
RSCI_CFG_CH10_RX_DATA_SAMPLING_TIMING_INCL
UDED 0
RSCI_CFG_CH11_RX_DATA_SAMPLING_TIMING_INCL
UDED 0

Disable or enable Receive data sampling timing adjust
feature
Enable =1, Disable =0.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 12 of 58
Mar.15.25

Configuration options in r_rsci_rx_config.h

RSCI_CFG_CH9_TX_SEL_ENCODING_POL 0
RSCI_CFG_CH10_TX_SEL_ENCODING_POL 0
RSCI_CFG_CH11_TX_SEL_ENCODING_POL 0

0: Logic 0 is encoded as a low to high transition and logic
1 is encoded as a high to low transition.
1: Logic 0 is encoded as a high to low transition and logic
1 is encoded as a low to high transition.

RSCI_CFG_CH9_RX_SEL_DECODING_POL 0
RSCI_CFG_CH10_RX_SEL_DECODING_POL 0
RSCI_CFG_CH11_RX_SEL_DECODING_POL 0

0: Low to high transition is decoded to logic 0 and high to
low transition is decoded to logic 1.
1: high to low transition is decoded to logic 0 and low to
high transition is decoded to logic 1.

RSCI_CFG_CH9_TX_PREFACE_LENGTH 8
RSCI_CFG_CH10_TX_PREFACE_LENGTH 8
RSCI_CFG_CH11_TX_PREFACE_LENGTH 8

0 to 15: Specifies the preface length value of the transmit.

RSCI_CFG_CH9_RX_PREFACE_LENGTH 8
RSCI_CFG_CH10_RX_PREFACE_LENGTH 8
RSCI_CFG_CH11_RX_PREFACE_LENGTH 8

0 to 15: Specifies the preface length value of the receive.

RSCI_CFG_CH9_TX_PREFACE_PATTERN 0
RSCI_CFG_CH10_TX_PREFACE_PATTERN 0
RSCI_CFG_CH11_TX_PREFACE_PATTERN 0

0 to 3: Specifies the preface pattern value of the transmit.

RSCI_CFG_CH9_RX_PREFACE_PATTERN 0
RSCI_CFG_CH10_RX_PREFACE_PATTERN 0
RSCI_CFG_CH11_RX_PREFACE_PATTERN 0

0 to 3: Specifies the preface pattern value of the receive.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 13 of 58
Mar.15.25

2.9 Code Size
Typical code sizes associated with this module are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.8, Configuration Overview. The table lists reference values when the C compiler’s
compile options are set to their default values, as described in 2.4, Supported Toolchain. The compile option
default values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The
code size varies depending on the C compiler version and compile options.

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

RX671

Asynchronous mode ROM 3472 bytes 3122 bytes 1 channel used
RAM 192 bytes 192 bytes 1 channel used

Clock synchronous mode ROM 2990 bytes 2596 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 3744 bytes 3368 bytes 1 channel used
RAM 200 bytes 200 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 4550 bytes 4070 bytes Total 2 channels
used

RAM 392 bytes 392 bytes Total 2 channels
used

Maximum stack usage 68 bytes
FIFO mode + Asynchronous
mode

ROM 4372 bytes 3917 bytes 1 channel used
RAM 200 bytes 200 bytes 1 channel used

FIFO mode +
Clock synchronous mode

ROM 4024 bytes 3571 bytes 1 channel used
RAM 44 bytes 44 bytes 1 channel used

FIFO mode + Asynchronous
mode +
Clock synchronous mode

ROM 5902 bytes 5362 bytes Total 2 channels
used

RAM 408 bytes 408 bytes Total 2 channels
used

Maximum stack usage 68 bytes

RX660

Asynchronous mode ROM 3497 bytes 3173 bytes 1 channel used
RAM 192 bytes 192 bytes 1 channel used

Clock synchronous mode ROM 3019 bytes 2646 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 3610 bytes 3242 bytes 1 channel used
RAM 200 bytes 200 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 4458 bytes 4002 bytes Total 2 channels
used

RAM 392 bytes 392 bytes Total 2 channels
used

Maximum stack usage 72 bytes
FIFO mode + Asynchronous
mode

ROM 4454 bytes 4080 bytes 1 channel used
RAM 200 bytes 200 bytes 1 channel used

FIFO mode +
Clock synchronous mode

ROM 4100 bytes 3667 bytes 1 channel used
RAM 44 bytes 44 bytes 1 channel used

FIFO mode + Asynchronous
mode +
Clock synchronous mode

ROM 5868 bytes 5352 bytes Total 2 channels
used

RAM 408 bytes 408 bytes Total 2 channels
used

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 14 of 58
Mar.15.25

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

Renesas Compiler
With Parameter

Checking
Without Parameter

Checking

Maximum stack usage 72 bytes

RX26T

Asynchronous mode ROM 3628 bytes 3303 bytes 1 channel used
RAM 192 bytes 192 bytes 1 channel used

Clock synchronous mode ROM 3128 bytes 2762 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 3740 bytes 3372 bytes 1 channel used
RAM 200 bytes 200 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 4621 bytes 4161 bytes Total 2 channels
used

RAM 392 bytes 392 bytes Total 2 channels
used

Maximum stack usage 72 bytes
FIFO mode + Asynchronous
mode

ROM 4574 bytes 4199 bytes 1 channel used
RAM 200 bytes 200 bytes 1 channel used

FIFO mode +
Clock synchronous mode

ROM 4208 bytes 3771 bytes 1 channel used
RAM 44 bytes 44 bytes 1 channel used

FIFO mode + Asynchronous
mode +
Clock synchronous mode

ROM 6020 bytes 5500 bytes Total 2 channels
used

RAM 408 bytes 408 bytes Total 2 channels
used

Maximum stack usage 72 bytes

RX260

Asynchronous mode ROM 3382 bytes 3057 bytes 1 channel used
RAM 192 bytes 192 bytes 1 channel used

Clock synchronous mode ROM 2912 bytes 2544 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 3498 bytes 3129 bytes 1 channel used
RAM 200 bytes 200 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 4331 bytes 3879 bytes Total 2 channels
used

RAM 392 bytes 392 bytes Total 2 channels
used

Maximum stack usage 72 bytes

RX261

Asynchronous mode ROM 3382 bytes 3057 bytes 1 channel used
RAM 192 bytes 192 bytes 1 channel used

Clock synchronous mode ROM 2912 bytes 2544 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 3498 bytes 3129 bytes 1 channel used
RAM 200 bytes 200 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 4331 bytes 3879 bytes Total 2 channels
used

RAM 392 bytes 392 bytes Total 2 channels
used

Maximum stack usage 72 bytes 72 bytes

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 15 of 58
Mar.15.25

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC Compiler
With Parameter

Checking
Without Parameter

Checking

RX671

Asynchronous mode ROM 6704 bytes 6016 bytes 1 channel used
RAM 192 bytes 192 bytes 1 channel used

Clock synchronous mode ROM 5604 bytes 4883 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 7008 bytes 6264 bytes 1 channel used
RAM 256 bytes 256 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 8892 bytes 7916 bytes Total 2 channels
used

RAM 392 bytes 392 bytes Total 2 channels
used

Maximum stack usage -
FIFO mode + Asynchronous
mode

ROM 8408 bytes 7624 bytes 1 channel used
RAM 200 bytes 200 bytes 1 channel used

FIFO mode +
Clock synchronous mode

ROM 7636 bytes 6756 bytes 1 channel used
RAM 44 bytes 44 bytes 1 channel used

FIFO mode + Asynchronous
mode +
Clock synchronous mode

ROM 11516 bytes 10420 bytes Total 2 channels
used

RAM 408 bytes 408 bytes Total 2 channels
used

Maximum stack usage -

RX660

Asynchronous mode ROM 6604 bytes 5940 bytes 1 channel used
RAM 256 bytes 256 bytes 1 channel used

Clock synchronous mode ROM 5760 bytes 5024 bytes 1 channel used
RAM 0 bytes 0 bytes 1 channel used

Manchester mode ROM 6816 bytes 6072 bytes 1 channel used
RAM 256 bytes 256 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 8496 bytes 7544 bytes Total 2 channels
used

RAM 384 bytes 384 bytes Total 2 channels
used

Maximum stack usage -
FIFO mode + Asynchronous
mode

ROM 8380 bytes 7604 bytes 1 channel used
RAM 256 bytes 256 bytes 1 channel used

FIFO mode +
Clock synchronous mode

ROM 7856 bytes 6968 bytes 1 channel used
RAM 128 bytes 128 bytes 1 channel used

FIFO mode + Asynchronous
mode +
Clock synchronous mode

ROM 11184 bytes 10104 bytes Total 2 channels
used

RAM 384 bytes 384 bytes Total 2 channels
used

Maximum stack usage -

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 16 of 58
Mar.15.25

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

GCC Compiler
With Parameter

Checking
Without Parameter

Checking

RX26T

Asynchronous mode ROM 4336 bytes 3864 bytes 1 channel used
RAM 256 bytes 256 bytes 1 channel used

Clock synchronous mode ROM 3676 bytes 3140 bytes 1 channel used
RAM 128 bytes 128 bytes 1 channel used

Manchester mode ROM 4552 bytes 3992 bytes 1 channel used
RAM 256 bytes 256 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 5476 bytes 4788 bytes Total 2 channels
used

RAM 384 bytes 384 bytes Total 2 channels
used

Maximum stack usage -
FIFO mode + Asynchronous
mode

ROM 5560 bytes 4968 bytes 1 channel used
RAM 256 bytes 256 bytes 1 channel used

FIFO mode +
Clock synchronous mode

ROM 5036 bytes 4372 bytes 1 channel used
RAM 128 bytes 128 bytes 1 channel used

FIFO mode + Asynchronous
mode +
Clock synchronous mode

ROM 7228 bytes 6412 bytes Total 2 channels
used

RAM 512 bytes 512 bytes Total 2 channels
used

Maximum stack usage -

RX260

Asynchronous mode ROM 4100 bytes 3644 bytes 1 channel used
RAM 192 bytes 192 bytes 1 channel used

Clock synchronous mode ROM 3476 bytes 2948 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 4332 bytes 3780 bytes 1 channel used
RAM 200 bytes 200 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 5236 bytes 4540 bytes Total 2 channels
used

RAM 392 bytes 392 bytes Total 2 channels
used

Maximum stack usage -

RX261

Asynchronous mode ROM 4100 bytes 3636 bytes 1 channel used
RAM 192 bytes 192 bytes 1 channel used

Clock synchronous mode ROM 3476 bytes 2940 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 4332 bytes 3772 bytes 1 channel used
RAM 200 bytes 200 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 5236 bytes 4532 bytes Total 2 channels
used

RAM 392 bytes 392 bytes Total 2 channels
used

Maximum stack usage - -

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 17 of 58
Mar.15.25

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without Parameter

Checking

RX671

Asynchronous mode ROM 5494 bytes 4874 bytes 1 channel used
RAM 581 bytes 581 bytes 1 channel used

Clock synchronous mode ROM 4404 bytes 3793 bytes 1 channel used
RAM 40 bytes 40 bytes 1 channel used

Manchester mode ROM 5805 bytes 5049 bytes 1 channel used
RAM 589 bytes 589 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 7010 bytes 6154 bytes Total 2 channels
used

RAM 781 bytes 781 bytes Total 2 channels
used

Maximum stack usage 152 bytes
FIFO mode + Asynchronous
mode

ROM 6751 bytes 6034 bytes 1 channel used
RAM 589 bytes 589 bytes 1 channel used

FIFO mode +
Clock synchronous mode

ROM 5905 bytes 5173 bytes 1 channel used
RAM 48 bytes 48 bytes 1 channel used

FIFO mode + Asynchronous
mode +
Clock synchronous mode

ROM 8897 bytes 7924 bytes Total 2 channels
used

RAM 797 bytes 797 bytes Total 2 channels
used

Maximum stack usage 224 bytes

RX660

Asynchronous mode ROM 5398 bytes 4807 bytes 1 channel used
RAM 577 bytes 577 bytes 1 channel used

Clock synchronous mode ROM 4403 bytes 3871 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 5676 bytes 4957 bytes 1 channel used
RAM 585 bytes 585 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 6690 bytes 5879 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 152 bytes
FIFO mode + Asynchronous
mode

ROM 6711 bytes 6018 bytes 1 channel used
RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Clock synchronous mode

ROM 5936 bytes 5302 bytes 1 channel used
RAM 44 bytes 44 bytes 1 channel used

FIFO mode + Asynchronous
mode +
Clock synchronous mode

ROM 8632 bytes 7715 bytes Total 2 channels
used

RAM 793 bytes 793 bytes Total 2 channels
used

Maximum stack usage 228 bytes

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 18 of 58
Mar.15.25

ROM and RAM minimum sizes (bytes)
Device Category Memory usage Remarks

IAR Compiler
With Parameter

Checking
Without Parameter

Checking

RX26T

Asynchronous mode ROM 5356 bytes 4760 bytes 1 channel used
RAM 577 bytes 577 bytes 1 channel used

Clock synchronous mode ROM 4453 bytes 3853 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 5579 bytes 4914 bytes 1 channel used
RAM 585 bytes 585 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 6811 bytes 5991 bytes Total 2 channels
used

RAM 777 bytes 777 bytes Total 2 channels
used

Maximum stack usage 152 bytes
FIFO mode + Asynchronous
mode

ROM 6793 bytes 6104 bytes 1 channel used
RAM 585 bytes 585 bytes 1 channel used

FIFO mode +
Clock synchronous mode

ROM 6093 bytes 5386 bytes 1 channel used
RAM 44 bytes 44 bytes 1 channel used

FIFO mode + Asynchronous
mode +
Clock synchronous mode

ROM 8755 bytes 7852 bytes Total 2 channels
used

RAM 793 bytes 793 bytes Total 2 channels
used

Maximum stack usage 228 bytes

RX260

Asynchronous mode ROM 5338 bytes 4723 bytes 1 channel used
RAM 576 bytes 576 bytes 1 channel used

Clock synchronous mode ROM 4408 bytes 3808 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 5582 bytes 4913 bytes 1 channel used
RAM 584 bytes 584 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 6434 bytes 5596 bytes Total 2 channels
used

RAM 580 bytes 580 bytes Total 2 channels
used

Maximum stack usage 148 bytes

RX261

Asynchronous mode ROM 5220 bytes 4605 bytes 1 channel used
RAM 576 bytes 576 bytes 1 channel used

Clock synchronous mode ROM 4294 bytes 3694 bytes 1 channel used
RAM 36 bytes 36 bytes 1 channel used

Manchester mode ROM 5466 bytes 4797 bytes 1 channel used
RAM 584 bytes 584 bytes 1 channel used

Asynchronous mode +
Clock synchronous mode (or
simple SPI)

ROM 6316 bytes 5478 bytes Total 2 channels
used

RAM 580 bytes 580 bytes Total 2 channels
used

Maximum stack usage 148 bytes

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 19 of 58
Mar.15.25

RAM requirements vary based on the number of channels configured. Each channel has associated data
structures in RAM. In addition, for Asynchronous or Manchester mode, each Async or Manc channel will
have a Transmit queue and a Receive queue. The buffers for these queues each have a minimum size of 2
bytes, or a total of 4 bytes per channel. Since the queue buffer sizes are user configurable, the RAM
requirement will be increased or decreased directly by the amount allocated for buffers.
The formula for calculating Async or Manc mode RAM requirements is:

Number of channels used (1 to 2) × (Data structure per channel (32 bytes)
 + Transmit queue buffer size (size specified by RSCI_CFG_CHn_TX_BUFSIZ)
 + Receive queue buffer size (size specified by RSCI_CFG_CHn_RX_BUFSIZ))

* For FIFO mode, the data structure per channel is 36 bytes.

The Sync and SPI mode RAM requirements are number of channels × data structure per channel (fixed at
36 bytes, for FIFO mode, fixed at 40 bytes).

The ROM requirements vary based on the number of channels configured for use. The exact amount varies
depending on the combination of channels selected and the effects of compiler code optimization.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 20 of 58
Mar.15.25

2.10 Parameters
This section describes the parameter structure used by the API functions in this module. The structure is
located in r_rsci_rx_if.h as are the prototype declarations of API functions.

Structure for Managing Channels

This structure is to store management information required to control RSCI channels. The contents of the
structure vary depending on settings of the configuration option and the device used. Though the user does
not need to care for the contents of the structure, if clock synchronous mode/SSPI mode is used, the number
of data to be processed can be checked with tx_cnt or rx_cnt.

The following shows an example of the structure for RX671:
typedef struct st_rsci_ch_ctrl // Channel management structure
{
rsci_ch_rom_t const *rom; // Start address of the RSCI register for the
channel
rsci_mode_t mode; // RSCI operating mode currently set for the channel
uint32_t baud_rate; // Baud rate currently set for the channel
void (*callback)(void *p_args); // Address of the callback function
union
{
#if (RSCI_CFG_ASYNC_INCLUDED || RSCI_CFG_MANC_INCLUDED)
byteq_hdl_t que; // Transmit byte queue (asynchronous/manchester mode)
#endif
uint8_t *buf; // Start address of the transmit buffer
//(clock synchronous/SSPI mode)
} u_tx_data;
union
{
#if (RSCI_CFG_ASYNC_INCLUDED || RSCI_CFG_MANC_INCLUDED)
byteq_hdl_t que; // Receive byte queue (asynchronous/manchester mode)
#endif
uint8_t *buf; // Start address of the receive buffer
 //(synchronous/SSPI mode)
} u_rx_data;
bool tx_idle; // Transmission idle state (idle state/transmitting)
#if (RSCI_CFG_SSPI_INCLUDED || RSCI_CFG_SYNC_INCLUDED)
bool save_rx_data; // Receive data storage (enable/disable)
uint16_t tx_cnt; // Transmit counter
uint16_t rx_cnt; // Receive counter
bool tx_dummy; // Transmit dummy data (enable/disable)
#endif
uint32_t pclk_speed; // Operating frequency of the peripheral module clock
#if RSCI_CFG_FIFO_INCLUDED
uint8_t fifo_ctrl; // FIFO function (enable/disable)
uint8_t rx_dflt_thresh; // Recive FIFO threshold value (default)
uint8_t rx_curr_thresh; // Recive FIFO threshold value (current)
uint8_t tx_dflt_thresh; // Transmit FIFO threshold value (default)
uint8_t tx_curr_thresh; // Transmit FIFO threshold value (current)
#endif
#if RSCI_CFG_MANC_INCLUDED
uint8_t rx_decoding_pol; // Decoding conversion select
uint8_t rx_preface_length; // RX Preface length
uint8_t rx_preface_pattern; // RX Preface pattern
uint8_t tx_encoding_pol; // Encoding conversion select
uint8_t tx_preface_length; // TX Preface length
uint8_t tx_preface_pattern; // TX Preface pattern
#endif
} rsci_ch_ctrl_t;

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 21 of 58
Mar.15.25

2.11 Return Values
This section describes return values of API functions. This enumeration is located in r_rsci_rx_if.h as are the
prototype declarations of API functions.
typedef enum e_rsci_err // RSCI API error codes
{
 RSCI_SUCCESS=0,
 RSCI_ERR_BAD_CHAN, // Non-existent channel number
 RSCI_ERR_OMITTED_CHAN, // RSCI_CHx_INCLUDED is 0 in config.h
 RSCI_ERR_CH_NOT_CLOSED, // Channel still running in another mode
 RSCI_ERR_BAD_MODE, // Unsupported or incorrect mode for channel
 RSCI_ERR_INVALID_ARG, // Argument is not valid for parameter
 RSCI_ERR_NULL_PTR, // Received null ptr; missing required argument
 RSCI_ERR_XCVR_BUSY, // Cannot start data transfer; transceiver busy

 // Asynchronous or Manchester
 RSCI_ERR_QUEUE_UNAVAILABLE, // Cannot open tx or rx queue or both
 RSCI_ERR_INSUFFICIENT_SPACE, // Not enough space in transmit queue
 RSCI_ERR_INSUFFICIENT_DATA, // Not enough data in receive queue

 // Synchronous/SSPI modes only
 RSCI_ERR_XFER_NOT_DONE // Data transfer still in progress
} rsci_err_t;

2.12 Callback Function
In this module, the callback function specified by the user is called when the RXIn, ERIn interrupt occurs.

The callback function is specified by storing the address of the user function in the “void (* const
p_callback)(void *p_args)” structure member (see 2.10, Parameters). When the callback function is called,
the variable which stores the constant is passed as the argument.

The argument is passed as void type. Thus the argument of the callback function is cast to a void pointer.
See examples below as reference.

When using a value in the callback function, type cast the value.

The following shows an example template for the callback function in asynchronous mode.
void MyCallback(void *p_args)
{
rsci_cb_args_t *args;
args = (rsci_cb_args_t *)p_args;
if (args->event == RSCI_EVT_RX_CHAR)
{
//from RXI interrupt; character placed in queue is in args->byte
nop();
}
else if (args->event == RSCI_EVT_RX_CHAR_MATCH)
{
//from RXI interrupt, received data match comparison data
//character placed in queue is in args->byte
nop();
}

#if RSCI_CFG_TEI_INCLUDED
else if (args->event == RSCI_EVT_TEI)
{
// from TEI interrupt; transmitter is idle
// possibly disable external transceiver here
nop();
}

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 22 of 58
Mar.15.25

#endif
else if (args->event == RSCI_EVT_RXBUF_OVFL)
{
// from RXI interrupt; receive queue is full
// unsaved char is in args->byte
// will need to increase buffer size or reduce baud rate
nop();
}
else if (args->event == RSCI_EVT_OVFL_ERR)
{
// from ERI interrupt; receiver overflow error occurred
// error char is in args->byte
// error condition is cleared in ERI routine
nop();
}
else if (args->event == RSCI_EVT_FRAMING_ERR)
{
// from ERI interrupt; receiver framing error occurred
// error char is in args->byte; if = 0, received BREAK condition
// error condition is cleared in ERI routine
nop();
}
else if (args->event == RSCI_EVT_PARITY_ERR)
{
// from ERI interrupt; receiver parity error occurred
// error char is in args->byte
// error condition is cleared in ERI routine
nop();
}
}

The following shows an example template for the callback function in SSPI mode.
void sspiCallback(void *p_args)
{
rsci_cb_args_t *args;
args = (rsci_cb_args_t *)p_args;
if (args->event == RSCI_EVT_XFER_DONE)
{
// data transfer completed
nop();
}
else if (args->event == RSCI_EVT_XFER_ABORTED)
{
// data transfer aborted
nop();
}
else if (args->event == RSCI_EVT_OVFL_ERR)
{
// from ERI interrupt; receiver overflow error occurred
// error char is in args->byte
// error condition is cleared in ERI interrupt routine
nop();
}
}

The following shows an example template for the callback function in manchester mode.
void MancCallback(void *p_args)
{
rsci_cb_args_t *args;

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 23 of 58
Mar.15.25

args = (rsci_cb_args_t *)p_args;
if (args->event == RSCI_EVT_RX_CHAR)
{
//from RXI interrupt; character placed in queue is in args->byte
nop();
}
#if RSCI_CFG_TEI_INCLUDED
else if (args->event == RSCI_EVT_TEI)
{
// from TEI interrupt; transmitter is idle
// possibly disable external transceiver here
nop();
}
#endif
else if (args->event == RSCI_EVT_RXBUF_OVFL)
{
// from RXI interrupt; receive queue is full
// unsaved char is in args->byte
// will need to increase buffer size or reduce baud rate
nop();
}
else if (args->event == RSCI_EVT_OVFL_ERR)
{
// from ERI interrupt; receiver overflow error occurred
// error char is in args->byte
// error condition is cleared in ERI routine
nop();
}
else if (args->event == RSCI_EVT_FRAMING_ERR)
{
// from ERI interrupt; receiver framing error occurred
// error char is in args->byte; if = 0, received BREAK condition
// error condition is cleared in ERI routine
nop();
}
else if (args->event == RSCI_EVT_PARITY_ERR)
{
// from ERI interrupt; receiver parity error occurred
// error char is in args->byte
// error condition is cleared in ERI routine
nop();
}
else if (args->event == RSCI_EVT_MANCHESTER_CODE_ERR)
{
// from ERI interrupt; Manchester code error occurred
// error char is in args->byte
// error condition is cleared in ERI routine
nop();
}
else if (args->event == RSCI_EVT_RECEIVE_SYNC_ERR)
{
// from ERI interrupt; receive sync error occurred
// error char is in args->byte;
// error condition is cleared in ERI routine
nop();
}
else if (args->event == RSCI_EVT_START_BIT_ERR)
{
// from ERI interrupt; start bit error occurred
// error char is in args->byte
// error condition is cleared in ERI routine

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 24 of 58
Mar.15.25

nop();
}
else if (args->event == RSCI_EVT_PREFACE_ERR)
{
// from ERI interrupt; preface error occurred
// error char is in args->byte
// error condition is cleared in ERI routine
nop();
}
}

This FIT module calls the callback function specified by the user when a receive error interrupt occurs, when
1-byte data is received in asynchronous or manchester mode, when transmissions/receptions for the
specified number of bytes have been completed in clock synchronous or SSPI mode, and when a transmit
end interrupt occurs.

Note that if the FIFO function is enabled in asynchronous mode, the callback function is executed when
receptions for the maximum number of times specified with RSCI_CFG_CHn_RX_FIFO_THRESH have
been completed or 15 etu (1) has elapsed from the stop bit of the last received data.

The callback function is set by specifying the address of the callback function to the fourth parameter of
R_RSCI_Open(). When the callback function is called, the following parameters are set.

typedef struct st_rsci_cb_args // Arguments of the callback function
{
rsci_hdl_t hdl; // Handle upon an event occurrence
rsci_cb_evt_t event; // Event which triggered the event occurred
uint8_t byte; // Receive data upon an event occurrence
uint8_t num; // Receive data size (valid only when FIFO is
used)
} rsci_cb_args_t;

typedef enum e_rsci_cb_evt // Event for the callback function
{
/* Async/Manc Events */
RSCI_EVT_TEI, // TEI interrupt occurred; transmitter is idle
RSCI_EVT_RX_CHAR, // received a character; already placed in queue
RSCI_EVT_RXBUF_OVFL, // rx queue is full; can't save anymore data
RSCI_EVT_FRAMING_ERR, // receiver hardware framing error
RSCI_EVT_PARITY_ERR, // receiver hardware parity error

/* Async Events */
RSCI_EVT_RX_CHAR_MATCH, // received a matched character; already placed in
queue

/* SSPI/Sync Events */
RSCI_EVT_XFER_DONE, // transfer completed
RSCI_EVT_XFER_ABORTED, // transfer aborted

/* Manc Events */
RSCI_EVT_MANCHESTER_CODE_ERR, // receiver hardware manchester code error
RSCI_EVT_RECEIVE_SYNC_ERR, // receiver hardware receive sync error
RSCI_EVT_START_BIT_ERR, // receiver hardware start bit error
RSCI_EVT_PREFACE_ERR, // receiver hardware preface error

/* Common Events */
RSCI_EVT_OVFL_ERR // receiver hardware overrun error
} rsci_cb_evt_t;

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 25 of 58
Mar.15.25

Since the argument is passed as a void pointer, arguments of the callback function must be the pointer
variable of type void, for example, when using the argument value within the callback function, it must be
type-casted.

Note 1. etu (Elementary Time Unit): 1-bit transfer period

When the following events occur, a received data stored in the argument of the callback function becomes
undefined value:

 RSCI_EVT_TEI

 RSCI_EVT_XFER_DONE

 RSCI_EVT_XFER_ABORTED

 RSCI_EVT_OVFL_ERR (when FIFO function enabled)

 RSCI_EVT_PARITY_ERR (when FIFO function enabled)

 RSCI_EVT_FRAMING_ERR (when FIFO function enabled)

 RSCI_EVT_MANCHESTER_CODE_ERR (when Manchester mode is used)

 RSCI_EVT_RECEIVE_SYNC_ERR (when Manchester mode is used)

 RSCI_EVT_START_BIT_ERR (when Manchester mode is used)

 RSCI_EVT_PREFACE_ERR (when Manchester mode is used)

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 26 of 58
Mar.15.25

2.13 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for
details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 27 of 58
Mar.15.25

2.14 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 28 of 58
Mar.15.25

3. API Functions

R_RSCI_Open()
This function applies power to the RSCI channel, initializes the associated registers, enables interrupts, and
provides the channel handle for use with other API functions. This function must be called before calling any
other API functions.

Format
rsci_err_t R_RSCI_Open (

uint8_t const chan,

 rsci_mode_t const mode,

 rsci_cfg_t * const p_cfg,

 void (* const p_callback)(void *p_args),

 rsci_hdl_t * const p_hdl

)

Parameters
uint8_t const chan
 Channel to initialize.

rsci_mode_t const mode
 Operational mode (see enumeration below)

rsci_cfg_t * const p_cfg
 Pointer to configuration union, structure elements (see below) are specific to mode

p_callback
 Pointer to function called from interrupt when an RXI or receiver error is detected or for transmit end (TEI)
condition
 Refer to 2.12, Callback Function for details.

rsci_hdl_t * const p_hdl
 Pointer to a handle for channel (value set here)

Confirm the return value from R_RSCI_Open is “RSCI_SUCCESS” and then set the first parameter for the
other APIs except R_RSCI_GetVersion(). Refer to 2.10, Parameters.

The following RSCI modes are currently supported by this driver module. The mode specified determines the
union structure element used for the p_cfg parameter.
typedef enum e_rsci_mode // RSCI operational modes
{
 RSCI_MODE_OFF=0, // channel not in use
 RSCI_MODE_ASYNC, // Asynchronous
 RSCI_MODE_SSPI, // Simple SPI
 RSCI_MODE_SYNC, // Synchronous
 RSCI_MODE_MANC, // Manchester
 RSCI_MODE_MAX // End of modes currently supported
} rsci_mode_t;

#defines shown on the next page indicate configurable options for Asynchronous mode used in its
configuration structure. These values correspond to bit definitions in the SRC1 and SCR3 registers specify
the data length, the parity function, and the STOP bit. The SCR3.CKE and the SCR2.BBR are set using the
clock source (8x/16x of the internal/external clock) specified with clk_src of the rsci_uart_t structure and the
bit rate specified with baud_rate of the rsci_uart_t structure. Please note this does not guarantee the

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 29 of 58
Mar.15.25

specified bit rate (there may be some errors depending on the setting). In addition, when using the channel
10 and 11 in the Synchronous mode or SSPI mode with the FIFO feature, you will not be able to set high-
speed bit rate than PCLKA/8. (For example, if PCLKA is 120 MHz, it is possible to set the bit rate of equal to
or less than 15 Mbps.)

The following shows the union for p_cfg:

typedef union
{
 rsci_uart_t async;
 rsci_sync_sspi_t sync;
 rsci_sync_sspi_t sspi;
 rsci_manc_t manc;
} rsci_cfg_t;

The following shows the structure used for settings in Asynchronous mode:

typedef struct st_rsci_uart
{
 uint32_t baud_rate; // ie 9600, 19200, 115200
 uint8_t clk_src; // use RSCI_CLK_INT/EXT8X/EXT16X
 uint8_t data_size; // use RSCI_DATA_nBIT
 uint8_t parity_type; // use RSCI_ODD/EVEN/NONE_PARITY
 uint8_t stop_bits; // use RSCI_STOPBITS_1/2
 bool msb_first;
 bool invert_data;
 uint8_t int_priority; // interrupt priority; 1=low, 15=high
} rsci_uart_t;

The following shows the definitions of the structure (rsci_uart_t) members used in Asynchronous mode:

/* Definitions for the sck_src member. */
#define RSCI_CLK_INT 0x00 // use internal clock for baud rate generation
#define RSCI_CLK_EXT_8X 0x03 // use external clock 8x baud rate
#define RSCI_CLK_EXT_16X 0x02 // use external clock 16x baud rate

/* Definitions for the data_size member. */
#define RSCI_DATA_7BIT 0x30 // 7-bit length (LSB is fixed)
#define RSCI_DATA_8BIT 0x20 // 8-bit length

/* Definitions for the parity_type member. */
#define RSCI_ODD_PARITY 0x01 // Odd parity
#define RSCI_EVEN_PARITY 0x00 // Even parity
#define RSCI_NONE_PARITY 0x02 // No parity

/* Definitions for the stop_bits member.
#define RSCI_STOPBITS_2 0x01 // 2-stop bit
#define RSCI_STOPBITS_1 0x00 // 1-stop bit

The following shows the structure used for settings in SSPI and Synchronous modes:

typedef struct st_rsci_sync_sspi
{
 rsci_spi_mode_t spi_mode; // clock polarity and phase; unused for sync
 uint32_t bit_rate; // ie 1000000 for 1Mbps
 bool msb_first;
 bool invert_data;
 uint8_t int_priority; // rxi,eri interrupt priority; 1=low,
15=high

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 30 of 58
Mar.15.25

} rsci_sync_sspi_t;

The following shows the enumeration used for spi_mode of the rsci_sync_sspi_t structure in SSPI or
Synchronous mode:

typedef enum e_rsci_spi_mode
{
 RSCI_SPI_MODE_OFF = 4, /* channel is in synchronous mode */
 RSCI_SPI_MODE_0 = 0x00, /* SCR3 Register CPHA=0, CPOL=0; Mode 0: 00 */
 RSCI_SPI_MODE_1 = 0x01, /* SCR3 Register CPHA=1, CPOL=0; Mode 1: 01 */
 RSCI_SPI_MODE_2 = 0x02, /* SCR3 Register CPHA=0, CPOL=1; Mode 2: 10 */
 RSCI_SPI_MODE_3 = 0x03 /* SCR3 Register CPHA=1, CPOL=1; Mode 3: 11 */
} rsci_spi_mode_t;

The following shows the structure used for settings in Manchester mode:

typedef struct st_rsci_manc
{
 uint32_t baud_rate; // ie 9600, 19200, 115200
 uint8_t data_size; // use RSCI_DATA_nBIT
 uint8_t parity_type; // use RSCI_ODD/EVEN/NONE_PARITY
 uint8_t start_bits; // use RSCI_STARTBITS_1/3
 uint8_t stop_bits; // use RSCI_STOPBITS_1/2
 bool msb_first;
 bool invert_data;
 uint8_t int_priority; // interrupt priority; 1=low, 15=high
} rsci_manc_t;

The following shows the definitions of the structure (rsci_manc_t) members used in Manchester mode:

/* Definitions for the data_size member. */
#define RSCI_DATA_7BIT 0x30 // 7-bit length (LSB is fixed)
#define RSCI_DATA_8BIT 0x20 // 8-bit length

/* Definitions for the parity_type member. */
#define RSCI_ODD_PARITY 0x01 // Odd parity
#define RSCI_EVEN_PARITY 0x00 // Even parity
#define RSCI_NONE_PARITY 0x02 // No parity

/* Definitions for the stop_bits member.
#define RSCI_STOPBITS_2 0x01 // 2-stop bit
#define RSCI_STOPBITS_1 0x00 // 1-stop bit

/* Definitions for the start_bits member.
#define RSCI_STARTBITS_3 0x01 // 3-start bit
#define RSCI_STARTBITS_1 0x00 // 1-start bit

Return Values
[RSCI_SUCCESS] /* Successful; channel initialized */
[RSCI_ERR_BAD_CHAN] /* Channel number is invalid for part*/
[RSCI_ERR_OMITTED_CHAN] /* Corresponding RSCI_CHx_INCLUDED is invalid (0) */
[RSCI_ERR_CH_NOT_CLOSED] /* Channel currently in operation; Perform R_RSCI_Close() first*/
[RSCI_ERR_BAD_MODE] /* Mode specified not currently supported*/
[RSCI_ERR_NULL_PTR] /* p_cfg pointer is NULL*/
[RSCI_ERR_INVALID_ARG] /* An element of the p_cfg structure contains an invalid value. */
[RSCI_ERR_QUEUE_UNAVAILABLE] /* Cannot open transmit or receive queue or both (Asynchronous or

Manchester mode) */

Properties

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 31 of 58
Mar.15.25

Prototyped in file “r_rsci_rx_if.h”

Description
Initializes an RSCI channel for a particular mode and provides a Handle in *p_hdl for use with other API
functions. RXI and ERI interrupts are enabled in all modes. TXI is enabled in Asynchronous or Manchester
mode.

Example: Asynchronous Mode
 rsci_cfg_t config;
 rsci_hdl_t Console;
 rsci_err_t err;

 config.async.baud_rate = 115200;
 config.async.clk_src = RSCI_CLK_INT;
 config.async.data_size = RSCI_DATA_8BIT;
 config.async.parity_type = RSCI_NONE_PARITY;
 config.async.stop_bits = RSCI_STOPBITS_1;
 config.async.msb_first = false;
 config.async.data_invert = false;
 config.async.int_priority = 2; // 1=lowest, 15=highest

 err = R_RSCI_Open(RSCI_CH10, RSCI_MODE_ASYNC, &config, MyCallback,
&Console);

Example: SSPI Mode
 rsci_cfg_t config;
 rsci_hdl_t sspiHandle;
 rsci_err_t err;

 config.sspi.spi_mode = RSCI_SPI_MODE_0;
 config.sspi.bit_rate = 1000000; // 1 Mbps
 config.sspi.msb_first = true;
 config.sspi.invert_data = false;
 config.sspi.int_priority = 4;
 err = R_RSCI_Open(RSCI_CH10, RSCI_MODE_SSPI, &config, sspiCallback,
&sspiHandle);

Example: Synchronous Mode
 rsci_cfg_t config;
 rsci_hdl_t syncHandle;
 rsci_err_t err;

 config.sync.spi_mode = RSCI_SPI_MODE_OFF;
 config.sync.bit_rate = 1000000; // 1 Mbps
 config.sync.msb_first = true;
 config.sync.invert_data = false;
 config.sync.int_priority = 4;
 err = R_RSCI_Open(RSCI_CH10, RSCI_MODE_SYNC, &config, syncCallback,
&syncHandle);

Example: Manchester Mode
 rsci_cfg_t config;
 rsci_hdl_t Console;
 rsci_err_t err;

 config.manc.baud_rate = 115200;
 config.manc.data_size = RSCI_DATA_8BIT;
 config.manc.parity_type = RSCI_NONE_PARITY;
 config.manc.stop_bits = RSCI_STOPBITS_1;

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 32 of 58
Mar.15.25

 config.manc.stop_bits = RSCI_STARTBITS_1;
 config.manc.msb_first = false;
 config.manc.data_invert = false;
 config.manc.int_priority = 2; // 1=lowest, 15=highest

 err = R_RSCI_Open(RSCI_CH10, RSCI_MODE_MANC, &config, MancCallback,
&Console);

Special Notes:
The driver calculates the optimum values for SCR2.BRR, SCR2.ABCS, and SCR2.CKS using
BSP_PCLKA_HZ and BSP_PCLKB_HZ as defined in mcu_info.h of the board support package. This
however does not guarantee a low bit error rate for all peripheral clock/baud rate combinations.

If an external clock is used in Asynchronous mode, the pin direction must be selected before calling the
R_RSCI_Open() function, and the pin function and mode must be selected after calling the R_RSCI_Open()
function. The following is an example initialization for RX671 channel 10:

Before the R_RSCI_Open() function call

 PORT8.PDR.BIT.B0 = 0; // set SCK010 pin direction to input (dflt)

After the R_RSCI_Open() function call

 MPC.P80PFS.BYTE = 0x2C; // Pin Func Select P80 SCK010
 PORT8.PMR.BIT.B0 = 1; // set SCK pin mode to peripheral

For settings of the pins used for communications, the pin directions and their outputs must be selected
before calling the R_RSCI_Open() function, and the pin functions and modes must be selected after calling
the R_RSCI_Open() function.
An example for initializing channel 10 for SSPI on the RX671 is as follows:

Before the R_RSCI_Open() function call

 PORT8.PODR.BIT.B2 = 0; // set line low
 PORT8.PODR.BIT.B1 = 0; // set line low
 PORT8.PDR.BIT.B0 = 1; // set clock pin direction to output
 PORT8.PDR.BIT.B2 = 1; // set MOSI pin direction to output
 PORT8.PDR.BIT.B1 = 0; // set MISO pin direction to input

After the R_RSCI_Open() function call

 MPC.P82PFS.BYTE = 0x2C; // Pin Func Select P82 MOSI
 MPC.P81PFS.BYTE = 0x2C; // Pin Func Select P81 MISO
 MPC.P80PFS.BYTE = 0x2C; // Pin Func Select P80 SCK010
 PORT8.PMR.BIT.B2 = 1; // set MOSI pin mode to peripheral
 PORT8.PMR.BIT.B1 = 1; // set MISO pin mode to peripheral
 PORT8.PMR.BIT.B0 = 1; // set clock pin mode to peripheral

When using Asynchronous or Manchester mode, two bytes queues are used for one channel. Adjust the
number of byte queues as necessary. Refer to the application note "BYTEQ Module Using Firmware
Integration Technology (R01AN1683)" for details.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 33 of 58
Mar.15.25

R_RSCI_Close()
This function removes power from the RSCI channel and disables the associated interrupts.

Format
rsci_err_t R_RSCI_Close (

rsci_hdl_t const hdl

)

Parameters
rsci_hdl_t const hdl
 Handle for channel
 Set hdl when R_RSCI_Open() is successfully processed.

Return Values
[RSCI_SUCCESS] /* Successful; channel closed */
[RSCI_ERR_NULL_PTR] /* hdl is NULL */

Properties
Prototyped in file “r_rsci_rx_if.h”

Description
Disables the RSCI channel designated by the handle and enters module-stop state.

Example
rsci_hdl_t Console;
 ...
err = R_RSCI_Open(RSCI_CH10, RSCI_MODE_ASYNC, &config, MyCallback, &Console);
 ...
err = R_RSCI_Close(Console);

Special Notes:
This function will abort any transmission or reception that may be in progress.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 34 of 58
Mar.15.25

R_RSCI_Send()
Initiates transmit if transmitter is not in use. Queues data for later transmit when in Asynchronous or
Manchester mode.

Format
rsci_err_t R_RSCI_Send (

rsci_hdl_t const hdl,

 uint8_t *p_src,

 uint16_t const length

)

Parameters
rsci_hdl_t const hdl
 Handle for channel
 Set hdl when R_RSCI_Open() is successfully processed.

uint8_t* p_src
 Pointer to data to transmit

uint16_t const length
 Number of bytes to send

Return Values
[RSCI_SUCCESS] /* Transmit initiated or loaded into queue

(Asynchronous/Manchester) */
[RSCI_ERR_NULL_PTR] /* hdl value is NULL */
[RSCI_ERR_BAD_MODE] /* Mode specified not currently supported */
[RSCI_ERR_INSUFFICIENT_SPACE] /* Insufficient space in queue to load all data

(Asynchronous/Manchester) */
[RSCI_ERR_XCVR_BUSY] /* Channel currently busy (SSPI/Synchronous) */

Properties
Prototyped in file “r_rsci_rx_if.h”

Description
In asynchronous or manchester mode, this function places data into a transmit queue if the transmitter for
the RSCI channel referenced by the handle is not in use. In SSPI and Synchronous modes, no data is
queued and transmission begins immediately if the transceiver is not already in use.

Note that the toggling of Slave Select lines when in SSPI mode is not handled by this driver. The Slave
Select line for the target device must be enabled prior to calling this function.

Also, toggling of the CTS/RTS pin in Synchronous/Asynchronous/Manchester mode is not handled by this
driver.

Example: Asynchronous/Manchester Mode
 #define STR_CMD_PROMPT "Enter Command: "
 rsci_hdl_t Console;
 rsci_err_t err;

 err = R_RSCI_Send(Console, STR_CMD_PROMPT, sizeof(STR_CMD_PROMPT));

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 35 of 58
Mar.15.25

 // Cannot block for this transfer to complete. However, can use TEI
interrupt
 // to determine when there is no more data in queue left to transmit.

Example: SSPI Mode
 rsci_hdl_t sspiHandle;
 rsci_err_t err;
 uint8_t flash_cmd,sspi_buf[10];

 // SEND COMMAND TO FLASH DEVICE TO PROVIDE ID */
 FLASH_SS = SS_ON; // enable gpio flash slave select
 flash_cmd = SF_CMD_READ_ID;

 R_RSCI_Send(sspiHandle, &flash_cmd, 1);
 while (RSCI_SUCCESS != R_SCI_Control(sspiHandle, SCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

 /* READ ID FROM FLASH DEVICE */
 R_RSCI_Receive(sspiHandle, sspi_buf, 5);
 while (RSCI_SUCCESS != R_RSCI_Control(sspiHandle, RSCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

 FLASH_SS = SS_OFF; // disable gpio flash slave select

Example: Synchronous Mode
 #define STRING1 "Test String"
 rsci_hdl_t lcdHandle;
 rsci_err_t err;

 // SEND STRING TO LCD DISPLAY AND WAIT TO COMPLETE */
 R_RSCI_Send(lcdHandle, STRING1, sizeof(STRING1));

 while (RSCI_SUCCESS != R_RSCI_Control(lcdHandle, RSCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

Special Notes:
None.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 36 of 58
Mar.15.25

R_RSCI_Receive()
In Asynchronous or Manchester mode, fetches data from a queue which is filled by RXI interrupts. In other
modes, initiates reception if transceiver is not in use.

Format
rsci_err_t R_RSCI_Receive (

rsci_hdl_t const hdl,

 uint8_t *p_dst,

 uint16_t const length

)

Parameters
rsci_hdl_t const hdl
 Handle for channel
 Set hdl when R_RSCI_Open() is successfully processed.

uint8_t* p_dst
 Pointer to buffer to load data into

uint16_t const length
 Number of bytes to read

Return Values
[RSCI_SUCCESS] /* Requested number of bytes were loaded into p_dst

(Asynchronous/Manchester) Clocking in of data initiated
(SSPI/Synchronous)

[RSCI_ERR_NULL_PTR] /* hdl value is NULL
[RSCI_ERR_BAD_MODE] /* Mode specified not currently supported
[RSCI_ERR_INSUFFICIENT_DATA] /* Insufficient data in receive queue to fetch all data

(Asynchronous/Manchester)
[RSCI_ERR_XCVR_BUSY] /* Channel currently busy (SSPI/Synchronous)

Properties
Prototyped in file “r_rsci_rx_if.h”

Description
In Asynchronous or Manchester mode, this function gets data received on an RSCI channel referenced by
the handle from its receive queue. This function will not block if the requested number of bytes is not
available. In SSPI/Synchronous modes, the clocking in of data begins immediately if the transceiver is not
already in use. The value assigned to RSCI_CFG_DUMMY_TX_BYTE in r_rsci_config.h is clocked out while
the receive data is being clocked in.

If any errors occurred during reception, the callback function specified in R_RSCI_Open() is executed.
Check an event passed with the argument of the callback function to see if the reception has been
successfully completed. Refer to 2.12, Callback Function for details.

Note that the toggling of Slave Select lines when in SSPI mode is not handled by this driver. The Slave
Select line for the target device must be enabled prior to calling this function.

Example: Asynchronous/Manchester Mode
 rsci_hdl_t Console;
 rsci_err_t err;

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 37 of 58
Mar.15.25

 uint8_t byte;

 /* echo characters */
 while (1)
 {
 while (RSCI_SUCCESS != R_RSCI_Receive(Console, &byte, 1))
 {
 }
 R_RSCI_Send(Console, &byte, 1);
 }

Example: SSPI Mode
 rsci_hdl_t sspiHandle;
 rsci_err_t err;
 uint8_t flash_cmd,sspi_buf[10];

 // SEND COMMAND TO FLASH DEVICE TO PROVIDE ID */

 FLASH_SS = SS_ON; // enable gpio flash slave select
 flash_cmd = SF_CMD_READ_ID;

 R_RSCI_Send(sspiHandle, &flash_cmd, 1);
 while (RSCI_SUCCESS != R_RSCI_Control(sspiHandle, RSCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

 /* READ ID FROM FLASH DEVICE */
 R_RSCI_Receive(sspiHandle, sspi_buf, 5);
 while (RSCI_SUCCESS != R_RSCI_Control(sspiHandle, RSCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

 FLASH_SS = SS_OFF; // disable gpio flash slave select

Example: Synchronous Mode
 rsci_hdl_t sensorHandle;
 rsci_err_t err;
 uint8_t sensor_cmd,sync_buf[10];

 // SEND COMMAND TO SENSOR TO PROVIDE CURRENT READING */

 sensor_cmd = SNS_CMD_READ_LEVEL;

 R_RSCI_Send(sensorHandle, &sensor_cmd, 1);
 while (RSCI_SUCCESS != R_RSCI_Control(sensorHandle,
RSCI_CMD_CHECK_XFER_DONE, NULL))
 {
 }

 /* READ LEVEL FROM SENSOR */
 R_RSCI_Receive(sensorHandle, sync_buf, 4);
 while (RSCI_SUCCESS != R_RSCI_Control(sensorHandle,
RSCI_CMD_CHECK_XFER_DONE, NULL))
 {
 }

Special Notes:
See section 2.12 Callback Function for values passed to arguments of the callback function.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 38 of 58
Mar.15.25

In Asynchronous mode, when data match detected, received data stored in a queue and notify to user by
callback function with event RSCI_EVT_RX_CHAR_MATCH.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 39 of 58
Mar.15.25

R_RSCI_SendReceive()
For Synchronous and SSPI modes only. Transmits and receives data simultaneously if the transceiver is not
in use.

Format
rsci_err_t R_SCI_SendReceive (

rsci_hdl_t const hdl,

 uint8_t *p_src,

 uint8_t *p_dst,

 uint16_t const length

)

Parameters
rsci_hdl_t const hdl
 Handle for channel
 Set hdl when R_RSCI_Open() is successfully processed.

uint8_t* p_src
 Pointer to data to transmit

uint8_t* p_dst
 Pointer to buffer to load data into

uint16_t const length
 Number of bytes to send

Return Values
[RSCI_SUCCESS] /* Data transfer initiated */
[RSCI_ERR_NULL_PTR] /* hdl value is NULL */
[RSCI_ERR_BAD_MODE] /* Channel mode not SSPI or Synchronous */
[RSCI_ERR_XCVR_BUSY] /* Channel currently busy */

Properties
Prototyped in file “r_rsci_rx_if.h”

Description
If the transceiver is not in use, this function clocks out data from the p_src buffer while simultaneously
clocking in data and placing it in the p_dst buffer.

Note that the toggling of Slave Select lines for SSPI is not handled by this driver. The Slave Select line for
the target device must be enabled prior to calling this function.

Also, toggling of the CTS/RTS pin in Synchronous/Asynchronous mode is not handled by this driver.

Example: SSPI Mode
 rsci_hdl_t sspiHandle;
 rsci_err_t err;
 uint8_t in_buf[2] = {0x55, 0x55}; // init to illegal values

 /* READ FLASH STATUS USING SINGLE API CALL */

 // load array with command to send plus one dummy byte for clocking in
status reply

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 40 of 58
Mar.15.25

 uint8_t out_buf[2] = {SF_CMD_READ_STATUS_REG, RSCI_CFG_DUMMY_TX_BYTE };

 FLASH_SS = SS_ON;

 err = R_RSCI_SendReceive(sspiHandle, out_buf, in_buf, 2);
 while (RSCI_SUCCESS != R_RSCI_Control(sspiHandle, RSCI_CMD_CHECK_XFER_DONE,
NULL))
 {
 }

 FLASH_SS = SS_OFF;

 // in_buf[1] contains status

Special Notes:
See section 2.12 Callback Function for values passed to arguments of the callback function.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 41 of 58
Mar.15.25

R_RSCI_Control()
This function configures and controls the operating mode for the RSCI channel.

Format
rsci_err_t R_RSCI_Control (

rsci_hdl_t const hdl,

 rsci_cmd_t const cmd,

 void *p_args

)

Parameters
rsci_hdl_t const hdl
 Handle for channel
 Set hdl when R_RSCI_Open() is successfully processed.

rsci_cmd_t const cmd
 Command to run (see enumeration below)

void *p_args
 Pointer to arguments (see below) specific to command, casted to void *

The valid cmd values are as follows:
typedef enum e_rsci_cmd // RSCI Control() commands
{
 /* All modes */
 RSCI_CMD_CHANGE_BAUD, /* change baud/bit rate */
#if ((RSCI_CFG_CH10_FIFO_INCLUDED) || (RSCI_CFG_CH11_FIFO_INCLUDED))
 RSCI_CMD_CHANGE_TX_FIFO_THRESH, /* change TX FIFO threshold */
 RSCI_CMD_CHANGE_RX_FIFO_THRESH, /* change RX FIFO threshold */
#endif
#if defined(BSP_MCU_RX671)
 RSCI_CMD_SET_RXI_PRIORITY, /* change RXI priority level */
 RSCI_CMD_SET_TXI_PRIORITY, /* change TXI priority level */
#endif
 RSCI_CMD_XFER_LSB_FIRST, /* start from LSB bit when sending */
 RSCI_CMD_XFER_MSB_FIRST, /* start from MSB bit when sending */
 RSCI_CMD_INVERT_DATA, /* logic level of send/receive data is
invert */

 /* Async commands */
 RSCI_CMD_EN_NOISE_CANCEL, /* enable noise cancellation */
 RSCI_CMD_EN_TEI, /* RSCI_CMD_EN_TEI is obsolete command,
 but it exists only for compatibility
with older version. */
 RSCI_CMD_OUTPUT_BAUD_CLK, /* output baud clock on the SCK pin */
 RSCI_CMD_START_BIT_EDGE, /* detect start bit as falling edge of
RXDn pin
 (default detect as low level on RXDn
pin) */
 RSCI_CMD_GENERATE_BREAK, /* generate break condition */
 RSCI_CMD_COMPARE_RECEIVED_DATA, /* Compare received data with comparison
data */

 /* Async/Manc commands */
 RSCI_CMD_TX_Q_FLUSH, /* flush transmit queue */
 RSCI_CMD_RX_Q_FLUSH, /* flush receive queue */

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 42 of 58
Mar.15.25

 RSCI_CMD_TX_Q_BYTES_FREE, /* get count of unused transmit queue
bytes */
 RSCI_CMD_RX_Q_BYTES_AVAIL_TO_READ, /* get num bytes ready for reading */

 /* Async/Sync/Manc commands*/
 RSCI_CMD_EN_CTS_IN, /* enable CTS input (default RTS output)
*/

 /* SSPI/Sync commands */
 RSCI_CMD_CHECK_XFER_DONE, /* see if send, rcv, or both are done;
RSCI_SUCCESS if yes */
 RSCI_CMD_ABORT_XFER,

 /* SSPI commands */
 RSCI_CMD_CHANGE_SPI_MODE, /* change clock polarity and phase in
SSPI mode */
 RSCI_CMD_CHECK_TX_DONE, /* see if tx requests complete;
RSCI_SUCCESS if yes */
 RSCI_CMD_CHECK_RX_DONE, /* see if rx request complete in sync
mode; RSCI_SUCCESS if yes */
 RSCI_CMD_CHECK_RX_SYNC_DONE,

 /*Sampling/transition timing adjust commands*/
 RSCI_CMD_RX_SAMPLING_ENABLE,
 RSCI_CMD_RX_SAMPLING_DISABLE,
 RSCI_CMD_TX_TRANSITION_TIMING_ENABLE,
 RSCI_CMD_TX_TRANSITION_TIMING_DISABLE,
 RSCI_CMD_SAMPLING_TIMING_ADJUST,
 RSCI_CMD_TRANSITION_TIMING_ADJUST,

 /* Manchester commands */
 RSCI_CMD_START_BIT_PATTERN_LOW_TO_HIGH, /* start bit is a low to high */
 RSCI_CMD_START_BIT_PATTERN_HIGH_TO_LOW, /* start bit is a high to low */
 RSCI_CMD_EN_SYNC, /* enable sync, start bit pattern
set with SYNC bit in TDR */
 RSCI_CMD_SET_TRASMIT_PREFACE_LENGTH, /* set preface length in transmit
data */
 RSCI_CMD_SET_RECEIVE_PREFACE_LENGTH /* set preface length in received
frames */
} rsci_cmd_t;

Commands other than the following command do not require arguments and take FIT_NO_PTR for p_args.

The argument for RSCI_CMD_CHANGE_BAUD is a pointer to the rsci_baud_t variable containing the new
bit rate desired. The rsci_baud_t structure is shown below.
typedef struct st_rsci_baud
{
 uint32_t pclk; // peripheral clock speed; e.g. 24000000 is 24 MHz
 uint32_t rate; // e.g. 9600, 19200, 115200
} rsci_baud_t;

The argument for RSCI_CMD_TX_Q_BYTES_FREE and RSCI_CMD_RX_Q_BYTES_AVAIL_TO_READ is
a pointer to a uint16_t variable to hold a count value.

The argument for RSCI_CMD_CHANGE_SPI_MODE is a pointer to the enumeration (rsci_sync_sspi_t)
variable containing the new mode desired.

The argument for RSCI_CMD_SET_TXI_PRIORITY and RSCI_CMD_SET_RXI_PRIORITY (for MCU which
can specify different priority levels for TXI and RXI) is a pointer to a uint8_t variable to hold the priority level.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 43 of 58
Mar.15.25

Return Values
[RSCI_SUCCESS] /* Successful; channel initialized */
[RSCI_ERR_NULL_PTR] /* hdl or p_args pointer is NULL (when required) */
[RSCI_ERR_BAD_MODE] /* Mode specified not currently supported */
[RSCI_ERR_INVALID_ARG] /* The cmd value or an element of p_args contains an invalid value. */

Properties
Prototyped in file “r_rsci_rx_if.h”

Description
This function is used for configuring special hardware features such as changing driver configuration and
obtaining driver status.

The CTS/ RTS pin functions as RTS by default hardware control. By issuing an RSCI_CMD_EN_CTS_IN,
the pin functions as CTS.

Example: Asynchronous Mode
 rsci_hdl_t Console;
 rsci_cfg_t config;
 rsci_baud_t baud;
 rsci_err_t err;
 uint16_t cnt;

 R_RSCI_Open(RSCI_CH10, RSCI_MODE_ASYNC, &config, MyCallback, &Console);
 R_RSCI_Control(Console, RSCI_CMD_EN_NOISE_CANCEL, NULL);
 R_RSCI_Control(Console, RSCI_CMD_EN_TEI, NULL);
 ...
 /* reset baud rate due to low power mode clock switching */
 baud.pclk = 8000000; // 8 MHz
 baud.rate = 19200;
 R_RSCI_Control(Console, RSCI_CMD_CHANGE_BAUD, (void *)&baud);
 ...
 /* after sending several messages, determine how much space is left in tx
queue */
 R_RSCI_Control(Console, RSCI_CMD_TX_Q_BYTES_FREE, (void *)&cnt);
 ...
 /* check to see if there is data sitting in the receive queue */
 R_RSCI_Control(Console, RSCI_CMD_RX_Q_BYTES_AVAIL_TO_READ, (void *)&cnt);

Example: SSPI Mode
 rsci_cfg_t config;
 rsci_spi_mode_t mode;
 rsci_hdl_t sspiHandle;
 rsci_err_t err;

 config.sspi.spi_mode = RSCI_SPI_MODE_0;
 config.sspi.bit_rate = 1000000; // 1 Mbps
 config.sspi.msb_first = true;
 config.sspi.invert_data = false;
 config.sspi.int_priority = 4;
 err = R_RSCI_Open(RSCI_CH10, RSCI_MODE_SSPI, &config, sspiCallback,
&sspiHandle);
 ...
 ...
 // for changing to slave device which operates in a different mode
 mode = RSCI_SPI_MODE_3;
 R_RSCI_Control(sspiHandle, RSCI_CMD_CHANGE_SPI_MODE, (void *)&mode);

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 44 of 58
Mar.15.25

Example: Manchester Mode
 rsci_hdl_t Console;
 rsci_cfg_t config;
 rsci_baud_t baud;
 rsci_err_t err;
 uint16_t cnt;

 R_RSCI_Open(RSCI_CH10, RSCI_MODE_MANC, &config, MancCallback, &Console);
 R_RSCI_Control(Console, RSCI_CMD_START_BIT_PATTERN_HIGH_TO_LOW, NULL);
 ...
 /* reset baud rate due to low power mode clock switching */
 baud.pclk = 8000000; // 8 MHz
 baud.rate = 19200;
 R_RSCI_Control(Console, RSCI_CMD_CHANGE_BAUD, (void *)&baud);
 ...
 /* after sending several messages, determine how much space is left in tx
queue */
 R_RSCI_Control(Console, RSCI_CMD_TX_Q_BYTES_FREE, (void *)&cnt);
 ...
 /* check to see if there is data sitting in the receive queue */
 R_RSCI_Control(Console, RSCI_CMD_RX_Q_BYTES_AVAIL_TO_READ, (void *)&cnt);

Special Notes:
When RSCI_CMD_CHANGE_BAUD is used, the optimum values for SCR2.BRR, SCR2.ABCS, and
SCR2.CKS is calculated based on the bit rate specified. This however does not guarantee a low bit error
rate for all peripheral clock/baud rate combinations.

If the command RSCI_CMD_EN_CTS_IN is to be used, the pin direction must be selected before calling the
R_RSCI_Open() function, and the pin function and mode must be selected after calling the R_RSCI_Open()
function. The following is an example initialization for RX671 channel 10:

Before the R_RSCI_Open() function call

PORTC.PDR.BIT.B4 = 0; // set CTS/RTS pin direction to input (dflt)

After the R_RSCI_Open() function call

MPC.PC4PFS.BYTE = 0x2C; // Pin Func Select PC4 CTS
PORTC.PMR.BIT.B4 = 1; // set CTS/RTS pin mode to peripheral

If the command RSCI_CMD_OUTPUT_BAUD_CLK is to be used, the pin direction must be selected before
calling the R_RSCI_Open() function, and the pin function and mode must be selected after calling the
R_RSCI_Open() function.
The following is an example initialization for RX671 channel 10:

Before the R_RSCI_Open() function call

 PORT8.PDR.BIT.B0 = 1; // set SCK010 pin direction to output

After the R_RSCI_Open() function call

 MPC.P80PFS.BYTE = 0x2C; // Pin Func Select P80 SCK010
 PORT8.PMR.BIT.B0 = 1; // set SCK010 pin mode to peripheral

If the command RSCI_CMD_EN_SYNC is to be used, enable it using SYNC(Sync Pulse Select) bit in TDR.
If the Start Bit pattern is set with SYNC bit (Data or Command Sync), the value setting of Start Bit Length is
automatically changed to 3 bits length.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 45 of 58
Mar.15.25

The commands listed below can be executed during transmission. Do not execute the other commands
during transmission.

 RSCI_CMD_TX_Q_BYTES_FREE

 RSCI_CMD_RX_Q_BYTES_AVAIL_TO_READ

 RSCI_CMD_CHECK_XFER_DONE

 RSCI_CMD_ABORT_XFER

When this function is executed, the TXD pin temporarily becomes Hi-Z. Use any of the following methods to
prevent the TXD pin from becoming Hi-Z.

When the RSCI_CMD_GENERATE_BREAK command is used:

 Connect the TXD pin to Vcc via a resistor (pull-up).

When a command other than above is used:

Perform one of the following methods:

 Connect the TXD pin to Vcc via a resistor (pull-up).

 Switch the pin function of the TXD pin to general I/O port before the RSCI_Control function is
executed. Then switch it back to peripheral function after the RSCI_Control function has been
executed.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 46 of 58
Mar.15.25

R_RSCI_GetVersion()
This function returns the driver version number at runtime.

Format
uint32_t R_RSCI_GetVersion (void)

Parameters
None

Return Values
Version number.

Properties
Prototyped in file “r_rsci_rx_if.h”

Description
Returns the version of this module. The version number is encoded such that the top 2 bytes are the major
version number and the bottom 2 bytes are the minor version number.

Example
uint32_t version;
 ...
version = R_RSCI_GetVersion();

Special Notes:
None.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 47 of 58
Mar.15.25

4. Pin Setting
To use the RSCI FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document.

Please perform the pin setting after calling the R_RSCI_Open function.

When performing the pin setting in the e2 studio, the Pin Setting feature of the the Smart Configurator can be
used. When using the Pin Setting feature, a source file is generated according to the option selected in the
Pin Setting window in the Smart Configurator. Then pins are configured by calling the function defined in the
source file. Refer to Table 4.1 Function Output by the Smart Configurator for details.

Table 4.1 Function Output by the Smart Configurator

MCU Used Function to be Output Remarks
All MCUs R_RSCI_PinSet_RSCIx x: Channel number

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 48 of 58
Mar.15.25

5. Demo Projects
Demo projects include function main() that utilizes the FIT module and its dependent modules (e.g. r_bsp).
This FIT module includes the following demo projects.

5.1 rsci_demo_rskrx671, rsci_demo_rskrx671_gcc
This is a simple demo of the RX671 Serial Communications Interface (RSCI) for the RSKRX671 starter kit
(FIT module "r_rsci_rx"). In the demo project, the MCU communicates with the terminal through the RSCI
channel configured as the UART. The RS232 interface is not on the RSKRX671 in the demo, thus the USB
virtual COM interface is used as serial interface for RSKRX671. A PC running the terminal emulation
application is required for communicating with the user.

Setup and Execution
1. Build this sample application, download it to the RSK board, and execute the application using a

debugger.

2. Connect the serial port on the RSK board to the serial port on the PC.

This demo program uses the USB virtual COM interface. In this case, connect the serial port to the USB
port on the PC where the Renesas USB serial device driver is installed.

3. Open the terminal emulation program on the PC and select the serial COM port allocated to the USB
serial virtual COM interface on the RSK.

4. Configure the terminal serial settings so that they correspond to the settings in this sample application
listed below:
115200 bps, 8-bit data, no parity, 1 stop bit, no flow control

5. The software waits for receiving characters from the terminal.
When the terminal program on the PC is ready, press a key on the keyboard in the PC’s terminal window
and check the version number of the FIT module output on the terminal.

6. This application is in echo mode. A given key input to the terminal is received by the RSCI driver and
then the application returns the characters to the terminal.

Boards Supported
RSKRX671

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 49 of 58
Mar.15.25

6. Appendices
6.1 Confirmed Operation Environment
This section describes confirmed operation environment for the RSCI FIT module.

Table 6.1 Confirmed Operation Environment (Rev.1.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 21.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.1.00
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

Table 6.2 Confirmed Operation Environment (Rev.1.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 21.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.1.10
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 50 of 58
Mar.15.25

Table 6.3 Confirmed Operation Environment (Rev.2.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 21.10.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202102
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.00
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

Table 6.4 Confirmed Operation Environment (Rev.2.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 22.4.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.10
Board used Renesas Starter Kit+ for RX660 (product No.: RTK556609HCxxxxxBJ)

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 51 of 58
Mar.15.25

Table 6.5 Confirmed Operation Environment (Rev.2.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 22.7.0
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202202
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.20
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671EDCxxxxxBJ)

Table 6.6 Confirmed Operation Environment (Rev.2.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.30
Board used Renesas Flexible Motor Control Kit for RX26T (Part Number:

RTK0EMXE70S00020BJ)

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 52 of 58
Mar.15.25

Table 6.7 Confirmed Operation Environment (Rev.2.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.40
Board used -

Table 6.8 Confirmed Operation Environment (Rev.2.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-01.1
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202311
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.50
Board used Renesas Flexible Motor Control Kit for RX26T (Part Number:

RTK0EMXE70S00020BJ)

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 53 of 58
Mar.15.25

Table 6.9 Confirmed Operation Environment (Rev.2.60)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-07
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202405
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.60
Board used Evaluation Kit for RX261 (product No.: RTK5EK2610S00011BJ)

Table 6.10 Confirmed Operation Environment (Rev.2.70)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2024-10
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.06.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.70
Board used Renesas Starter Kit+ for RX671 (product No.: RTK55671xxxxxxxxxx)

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 54 of 58
Mar.15.25

Table 6.11 Confirmed Operation Environment (Rev.2.71)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2025-01
IAR Embedded Workbench for Renesas RX 5.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202411
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 5.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.71
Board used -

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 55 of 58
Mar.15.25

6.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using this FIT module, the board support package FIT module (BSP module) must also be added
to the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_rsci_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error: ERROR - Unsupported
channel chosen in r_rsci_config.h.

A: The setting in the file “r_rsci_rx_config.h” may be wrong. Check the file “r_rsci_rx_config.h”. If there is
a wrong setting, set the correct value for that. Refer to 2.8, Configuration Overview for details.

(4) Q: Transmit data is not output from the TXD pin.

A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be
performed. Refer to 4. “Pin Setting” for details.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 56 of 58
Mar.15.25

7. Reference Documents
User’s Manual: Hardware
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools
RX Family C/C++ Compiler CC-RX User's Manual (R20UT3248)

The latest version can be downloaded from the Renesas Electronics website.

Related Technical Updates
This module reflects the content of the following technical updates.

TN-RX*-A0275A/E

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 57 of 58
Mar.15.25

Revision History

Rev.

Date

Description
Page Summary

1.00 Mar.31.21 — First release.
1.10 Sep.13.21 39

40

Program

Updated and added new demo project
Added RSKRX671 to “5. Demo Projects”
6.1 Confirmed Operation Environment:
Added Table for Rev.1.10.
Fixed setting of transfer data direction in async mode.

2.00 Dec.03.21 1-40
25, 27, 37

46

Program

Added support for Manchester mode.
Added support for transfer data direction and data invert in
Async mode.
6.1 Confirmed Operation Environment:
Added Table for Rev.2.00.
Added support for transfer data direction and data invert in
Async mode.
Added support for Manchester mode.

2.10 Mar.31.22 1, 8
13-15
47

Program

Added support for RX660.
Added code size corresponding to RX660.
6.1 Confirmed Operation Environment:
Added Table for Rev.2.10.
Added support for RX660.

2.20 Jul.29.22 48

Program

6.1 Confirmed Operation Environment:
Added Table for Rev.2.20.
Updated demo projects

2.30 Aug.15.22 1, 8, 10, 11
13, 15, 17
50

Program

Added support for RX26T.
Added code size corresponding to RX26T.
6.1 Confirmed Operation Environment:
Added Table for Rev.2.30.
Added support for RX26T.

2.40 Jun.30.23 1
25, 46

51

Program

Added support for RX26T-256KB
Deleted the description of FIT configurator from "2.13 Adding
the FIT Module to Your Project", "4. Pin Settings"
6.1 Confirmed Operation Environment:
Added Table for Rev.2.40.
Added support for RX26T-256KB

2.50 Mar.29.24 51

53
Program

6.1 Confirmed Operation Environment:
Added Table for Rev.2.50.
Added TN-RX*-A0275A/E to “Related Technical Update”.
Fixed RSCI (CH8, CH9) hardware bug for RX26T as per
Renesas Technical Update TN-RX*-A0275A/E Rev.1.00.

2.60 Jun.28.24 1, 8, 10, 11
14, 16, 18
53

Program

Added support for RX260, RX261.
Added code size corresponding to RX260, RX261.
6.1 Confirmed Operation Environment:
Added Table for Rev.2.60.
Added support for RX260, RX261.
Added the source code to check unsupported channel for the
supported device.
Updated support command RSCI_CMD_SET_TXI_PRIORITY
and RSCI_CMD_SET_RXI_PRIORITY in R_RSCI_Control()
for RX260, RX261.

RX Family RSCI Module Using Firmware Integration Technology

R01AN5759ES0271 Rev.2.71 Page 58 of 58
Mar.15.25

Rev.

Date

Description
Page Summary

2.70 Dec.31.24 5
11

47

53

Program

Added a description of nested interrupt.
Added new macros RSCI_CFG_CHn_EN_TXI_NESTED_INT,
RSCI_CFG_CHn_EN_RXI_NESTED_INT,
RSCI_CFG_CHn_EN_TEI_NESTED_INT and
RSCI_CFG_CHn_EN_ERI_NESTED_INT to support nested
Interrupt.
4. Pin Setting:
Modified the following setting procedure:
Please perform the pin setting after calling the R_RSCI_Open
function.
6.1 Confirmed Operation Environment:
Added Table for Rev.2.70.
Added support nested interrupt.

2.71 Mar.15.25 54 6.1 Confirmed Operation Environment:
Added Table for Rev.2.71.

 Program Updated FIT Disclaimer and Copyright.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 RSCI FIT Module
	1.2 Overview of the RSCI FIT Module
	1.3 API Overview
	1.4 Limitations
	1.5 Using the FIT RSCI module
	1.5.1 Using FIT RSCI module in C++ project

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Limitations
	2.3.1 RAM Location Limitations

	2.4 Supported Toolchain
	2.5 Interrupt Vector
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.9 Code Size
	2.10 Parameters
	2.11 Return Values
	2.12 Callback Function
	2.13 Adding the FIT Module to Your Project
	2.14 “for”, “while” and “do while” statements

	3. API Functions
	R_RSCI_Open()
	R_RSCI_Close()
	R_RSCI_Send()
	R_RSCI_Receive()
	R_RSCI_SendReceive()
	R_RSCI_Control()
	R_RSCI_GetVersion()

	4. Pin Setting
	5. Demo Projects
	5.1 rsci_demo_rskrx671, rsci_demo_rskrx671_gcc

	6. Appendices
	6.1 Confirmed Operation Environment
	6.2 Troubleshooting

	7. Reference Documents
	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

