
 APPLICATION NOTE

R01AN5815EJ0100 Rev.1.00 Page 1 of 66
Jun.18.21

RL78/G23
Self-Programming Using Boot Swapping via UART communications

Introduction
This application note gives the outline of self-programming via UART communications.

This application note explains how the flash self-programming code (Renesas Flash Driver RL78 Type01)
is used to rewrite the boot area in flash memory and perform boot swapping.

Target Device
RL78/G23

When applying the sample program covered in this application note to another microcomputer, modify the
program according to the specifications for the target microcomputer and conduct an extensive evaluation of
the modified program.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 2 of 66
Jun.18.21

Contents

1. Specifications .. 4
1.1 Outline ... 4
1.1.1 Outline of the Flash Self-Programming Code (Renesas Flash Driver RL78 Type01) 4
1.1.2 Code Flash Memory .. 5
1.1.3 Flash Memory Self-Programming ... 7
1.1.4 Boot Swap Function .. 7
1.1.5 Flash Memory Reprogramming ... 9
1.1.6 Flash Shield window .. 10
1.1.7 Communication Specifications .. 10
1.1.8 How to obtain the flash self-programming code .. 11
1.2 Operation Outline .. 12

2. Operation Check Conditions .. 14

3. Description of the Hardware .. 15
3.1 Hardware Configuration Example ... 15
3.2 List of Pins to be Used .. 16

4. Software Explanation ... 17
4.1 List of Option Byte Settings ... 17
4.2 Startup routine settings ... 18
4.2.1 Definition of the section for the stack area (.stack_bss) ... 18
4.2.2 Deploying the Rewrite Programs in the RAM Area ... 19
4.3 On-chip Debug Security ID .. 20
4.4 Resources Used by the Sample Program ... 20
4.4.1 List of Sections in the ROM Area .. 20
4.4.2 List of Sections in the RAM Area .. 20
4.5 List of Constants .. 21
4.6 Enumerated type ... 22
4.7 List of Variables ... 22
4.8 List of Functions .. 23
4.9 Function Specifications ... 25
4.10 Flowcharts ... 32
4.10.1 Main Processing .. 32
4.10.2 Initialization Processing for RFD RL78 Type01 .. 34
4.10.3 START Command Processing .. 35
4.10.4 WRITE Command Processing .. 36
4.10.5 END Command Processing .. 37
4.10.6 Range Erase Processing for the Code Flash Memory .. 38
4.10.7 Block Erase Processing for the Code Flash Memory ... 39
4.10.8 Write-and-verify Processing for the Code Flash Memory ... 40
4.10.9 Write Processing for the Code Flash Memory .. 41
4.10.10 Verify Processing for the Code Flash Memory .. 42
4.10.11 Sequence End Processing for the Code Flash Memory ... 43
4.10.12 Sequence End Processing for the Extra Area ... 45

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 3 of 66
Jun.18.21

4.10.13 Boot Swapping Execution Processing .. 47
4.10.14 Callback Processing at a Reception Completion Interrupt for UART0 ... 49
4.10.15 Callback Processing at a Sending Completion Interrupt for UART0... 50
4.10.16 Command Reception Processing by UART0 .. 51
4.10.17 Command Analysis Processing by UART0 ... 52
4.10.18 Data Reception Processing by UART0 ... 53
4.10.19 Data Sending Processing by UART0 .. 54
4.10.20 Normal Response Sending Processing by UART0 ... 55
4.10.21 Callback Processing at a Sending Completion Interrupt for IICA0 ... 56
4.10.22 Callback Processing at a Sending Error Interrupt for IICA0 .. 57
4.10.23 Processing to Initialize the LCD Module ... 58
4.10.24 Processing to Clear Display for the LCD Module .. 59
4.10.25 Processing to Send Strings to the LCD Module .. 60
4.10.26 Command Sending Processing for the LCD Module .. 61
4.10.27 Processing to Send Data to the LCD Module ... 62
4.10.28 Communication End Flag Setting for the LCD Module ... 63
4.10.29 Communication End Wait Processing for the LCD Module .. 64

5. Sample code .. 65

6. Reference Documents ... 65

Revision History .. 66

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 4 of 66
Jun.18.21

1. Specifications

 Outline
First, the sample program displays the current program version on the LCD module. Then, when it

receives the START command via UART communications, it turns LED1 on (flash memory is being
accessed) and enters the code flash programming mode. After that, the sample program erases the data that
has been written to the code flash memory's boot cluster 1 (04000H to 07FFFH) and waits for the WRITE
command.

When the sample program receives the WRITE command together with the rewrite data, it rewrites the
contents of boot cluster 1. When the sample program completes rewriting and receives the END command, it
turns LED1 off. If all processing performed before this point in time has terminated normally, the sample
program generates an internal reset and performs boot swapping. After the sample program restarts, it
displays the version of the new (rewritten) program on the LCD module.

Table 1-1 Peripheral Functions to be Used and their Uses
Peripheral Function Use

Serial array unit UART0 Obtain of rewrite data
Serial interface IICA0 Communication with LCD module

1.1.1 Outline of the Flash Self-Programming Code (Renesas Flash Driver RL78 Type01)
The flash self-programming code is software for rewriting the data in the code flash memory installed on

the sample program.

The contents of the code flash memory can be rewritten by calling the flash self-programming code from a
user program.

To perform self-programming, the C or assembly language function corresponding to the self-programming
initialization processing or function to be used must be run from a user program.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 5 of 66
Jun.18.21

1.1.2 Code Flash Memory
The configuration of the RL78/G23 (R7F100GLG) code flash memory is shown below.

Figure 1-1 Code Flash Memory Configuration

Caution: When the boot swap function is used, the option byte area (000C0H to 000C3H) in boot cluster 0 is

swapped with the option byte area (040C0H to 040C3H) in boot cluster 1. Accordingly, place the
same values in the area (040C0H to 040C3H) as those in the area (000C0H to 000C3H) when
using the boot swap function.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 6 of 66
Jun.18.21

The features of the RL78/G23 code flash memory are summarized below.

Table 1-2 Features of the Code Flash Memory

Item Description
Minimum unit of erasure and
verification

1 block (2048 bytes)

Minimum unit of programming 1 word (4 bytes)
Security functions

Block erasure, programming, and boot cluster 0 reprogramming
protection are supported.
(They are enabled at shipment)
It is possible to disable reprogramming and erasure outside the specified
window only at flash memory self-programming time using the flash
shield window.
Security settings programmable using the flash self-programming code
(Renesas Flash Driver RL78 Type01)

Caution: The boot cluster 0 reprogramming protection setting and the security settings for outside the flash
shield window are disabled during flash memory self-programming.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 7 of 66
Jun.18.21

1.1.3 Flash Memory Self-Programming
The RL78/G23 is provided with the flash self-programming code for flash memory self-programming. Flash

memory self-programming is accomplished by calling functions of the flash self-programming code from the
reprogramming program.

The flash self-programming code for the RL78/G23 controls flash memory reprogramming using a
sequencer (a dedicated circuit for controlling flash memory). The code flash memory cannot be referenced
while control by the sequencer is in progress. When the user program needs to be run while the sequencer
control is in progress, therefore, it is necessary to relocate part of the segments for the flash self-
programming code and the reprogramming program in RAM when erasing or reprogramming the code flash
memory or making settings for the security flags. If there is no need to run the user program while the
sequencer control is in progress, it is possible to keep the flash self-programming code and reprogramming
program on ROM (code flash memory) for execution.

1.1.4 Boot Swap Function
When reprogramming of the area where vector table data, the basic functions of the program, and flash

self-programming code are allocated fails due to a temporary power blackout or a reset caused by an
external factor, the data that is being reprogrammed will be corrupted, as the result of which the restarting of
the user program or reprogramming cannot be accomplished when a reset is subsequently performed. This
problem is be avoided by the introduction of the boot swap function.

The boot swap function swaps between boot cluster 0 which is the boot program area and boot cluster 1
which is the target of boot swapping. A new program is written into boot cluster 1 before reprogramming is
attempted. This boot cluster 1 is swapped with boot cluster 0 and boot cluster 1 is designated as the boot
program area. In this configuration, even when a temporary power blackout occurs while the boot program
area is being reprogrammed, the system boot will start at boot cluster 1 on the next reset start, thus ensuring
the normal execution of the programs.

The outline image of boot swapping is shown in the figure below.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 8 of 66
Jun.18.21

Below is an image of boot swapping.

Figure 1-3 Outline of Boot Swapping

(3) Setting the boot swap bit
 Call the r_RequestBootSwap function to invert the state of the boot flag.
 When a temporary power blackout or reset occurs after the state of the boot flag is
 inverted, the programs will run normally because the system boot is started by the new
 boot program whose reprogramming has been completed.

Erased

Old boot program

(1) Erasing boot cluster 1
 Call the r_CF_EraseBlock function to erase boot cluster 1 (blocks 8 to 15).

Boot cluster 1

Boot cluster 0

New boot program

Old boot program

(4) When a reset occurs
 When a reset occurs, boot clusters 0 and 1 are swapped.

Boot cluster 1

Boot cluster 0
Boot swap

New boot program writing

Old boot program

(2) Writing the new boot program into boot cluster 1
 Call the r_CF_WriteData function to write the new boot program into boot cluster 1 and call the
 r_CF_VerifyData function to verify boot cluster 1.
 The steps that have been performed up to here ensure that the programs will run
 normally even when the programming of the new boot program fails due to a temporary
 power blackout or reset because the system boot is started by the old boot program.

Boot cluster 1

Boot cluster 0

Old boot program

New boot program

(5) Boot swapping completed

Boot cluster 0

Boot cluster 1

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 9 of 66
Jun.18.21

1.1.5 Flash Memory Reprogramming
This subsection describes the outline image of reprogramming using the flash memory self-programming

technique. The flash memory self-programming program is located in boot cluster 0.

In this application note, the rewrite target is limited to the boot area.

Figure 1-4 Outline of Flash Memory Reprogramming

Write

Erase

User program

Boot program

1FFFFH

08000H

07FFFH

04000H

03FFFH

00000H
Boot cluster 0

Boot cluster 1

(1) Erasing the block to be reprogrammed

(2) Writing and verifying the block to be reprogrammed

User program

New boot program

Boot program

1FFFFH

08000H

07FFFH

04000H

03FFFH

00000H
Boot cluster 0

Boot cluster 1

(3) Repeat the cycle of erasing, writing, and verifying the block up to the last block.

New user program

New boot program

Boot program

1FFFFH

08000H

07FFFH

04000H

03FFFH

00000H

Boot swap

(4) Rewriting the boot flag and resetting

User program

Boot program

1FFFFH

08000H

07FFFH

04000H

03FFFH

00000H
Boot cluster 0

Boot cluster 1

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 10 of 66
Jun.18.21

1.1.6 Flash Shield window
The flash shield window is one of security mechanisms used for flash memory self-programming. It

disables the write and erase operations on the areas outside the designated window only during flash
memory self-programming.

The figure below shows the outline image of the flash shield window on the area of which the start block is
08H and the end block is 0FH.

Figure 1-5 Outline of the Flash Shield Window

1FFFFH

08000H

07FFFH

04000H

03FFFH

00000H Block 00H

Block 07H

Block 08H(start block)

Block 1FH(end block)

Block 20H

Block 3FH

Flash shield range
(programming disabled)

Window range
(programming enabled)

Flash shield range
(programming disabled)

1.1.7 Communication Specifications
This application note explains how to perform self-programming via UART communications. The sample

program performs the processing corresponding to the received command (START, WRITE, or END). If the
processing terminates normally, the sample program sends 01H, which indicates normal response. If the
processing terminates abnormally, the sample program displays "ERROR!" on the LCD module and
terminates processing without sending data. The following shows the UART communication settings and the
specifications of each command.

Table 1-2 UART Communication Settings

Data bit length [bit] 8
Data transfer direction LSB first
Parity setting No parity
Transfer rate [bps] 115200

 START command

When the sample program receives the START command, it initializes the self-programming settings. If
the processing terminates normally, the sample program sends 01H, which indicates normal response. If the
processing terminates abnormally, the sample program does not send data.

START code
(01H)

Date length
(0002H)

Command
(02H)

Date
(None)

Checksum
(1 byte)

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 11 of 66
Jun.18.21

 WRITE command

When the sample program receives the WRITE command, it writes the received data to the flash memory.
At this time, the sample program verifies the written data every 256 bytes. If the processing terminates
normally, the sample program sends 01H, which indicates normal response. If the processing terminates
normally, the sample program does not send data.

START code
(01H)

Date length
(0102H)

Command
(03H)

Date
(256 byte)

Checksum
(1 byte)

 END command

When the sample program receives the END command, it sends 01H as notification of response. The
sample program then reverses the boot flag. If the processing terminates normally, the sample program
generates a reset and performs boot swapping. If the processing terminates abnormally, it does not perform
boot swapping.

START code
(01H)

Date length
(0002H)

Command
(04H)

Date
(None)

Checksum
(1 byte)

 Abnormal termination

The sample program displays "ERROR!" on the LCD module and terminates processing.

 Checksum calculation method

The checksum is calculated by using the "32-bit addition calculation method".

The low-order 8 bits of the results of sequentially adding a value by one byte from 00000000H is used as
the checksum for the command or data.

1.1.8 How to obtain the flash self-programming code
Before starting compilation, download the latest version of the flash self-programming code (Renesas

Flash Driver RL78 Type01) and copy the file to the RFD_RL78_TYPE1 folder.

You can obtain the flash self-programming code from the following URL:

https://www.renesas.com/us/en/document/scd/renesas-flash-driver-rl78-type-01-rl78g23

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 12 of 66
Jun.18.21

 Operation Outline
This application note explains how to perform self-programming via UART communications.

(1) Initial settings

Initial port settings

・ Set P53 as the output port (initial value: high level, LED1 turned off).

Initial settings of the serial array unit:

・ Use channels 0 and 1 for a UART.

・ Use the P12/TxD0 pin for data output. Use the P11/RxD0 pin for data input.

・ Set the operation clock for CK00. Set the clock source for fCLK/2.

・ Set an interrupt source for the transfer completion interrupt.

・ Specify the following settings: No parity bit, transfer order = LSB first, stop bit length = 1 bit, data
length = 8 bits

・ Set non-reverse (standard) sending.

・ Set the baud rate to 115,200 bps.

Initial settings of the IICA serial interface:

・ Use the IICA0 (P60/SCLA0 and P61/SDAA0 pins).

・ Set the operation clock of the IICA0 for fCLK/2.

・ Set the local address for 10H.

・ Set the operation mode to "standard".

・ Set the transfer click to 80,000 bps.

・ Permit the INTIICA0 interrupt.

Initial settings of the LCD module and display of the current program version:

・ Display the string of the LCD_STRING constant on the LCD module.

Initialization of Renesas Flash Driver RL78 Type01

(2) Processing of the START command

・ Set the P53 pin to low output level and turn LED1 (flash memory being accessed) on.

・ Use the r_CF_EraseBlock function to erase the data of boot cluster 1 (04000H to 07FFFH).
If the processing terminates normally, the sample program sends 01H, which indicates normal
response.
If the processing terminates abnormally, the sample program does not send data.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 13 of 66
Jun.18.21

(3) Processing of the WRITE command

・ Receive the data to be written (256 bytes).

・ Use the r_CF_WriteData function to write the received data to the write-destination address.

Increase the write-destination address by the size of written data.

・ Use the r_CF_VerifyData function to verify the written data against the received data every 256
bytes.

・ If the processing terminates normally, the sample program sends 01H, which indicates normal
response.
If the processing terminates abnormally, the sample program does not send data.

(4) Processing of the END command

・ Set the P53 pin to high level output and turn LED1 (flash memory being accessed) off.

・ Send 01H, which indicates normal response.

・ Use the r_RequestBootSwap function to reverse the value of the boot flag.
If ret_value is normal, the sample program generates an internal reset.
The generated internal reset will exchange boot clusters 0 and 1.
If the processing terminates normally, the sample program reverses the boot flag to generate a
reset and performs boot swapping. If the processing terminates abnormally, the sample program
does not perform boot swapping.

(5) Handling of abnormal termination

・ The sample program displays "ERROR!" on the LCD module and terminates processing.

Note 1: If data has already been completely written up to the last address (07FFFH) of boot cluster 1, the
sample program writes no more data even when a new WRITE command is received.

Note 2: When the sample program receives the END command (04H), it always sends 01H, which
indicates normal response, and sets the P52 to high level output (LED1 turned off). The
r_RequestBootSwap function is run to perform boot swapping.

Note 3: If self-programming does not terminate normally, the sample program displays "ERROR!" on the
LCD module and performs no subsequent processing.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 14 of 66
Jun.18.21

2. Operation Check Conditions
The sample code described in this application note has been checked under the conditions listed in the

table below.

Table 2-1 Operation Check Conditions

Item Description
Microcontroller used RL78/G23 (R7F100GLG)
Operating frequency High-speed on-chip oscillator (fIH): 32MHz
Operating voltage 3.3 V (can be operated at 3.1 V to 5.5 V)

LVD operations (VLVD): Reset mode
At rising edge TYP. 1.90 V
At falling edge TYP. 1.86 V

Integrated development
environment (CS+)

CS+ for CC V8.05.00 from Renesas Electronics Corp.

C compiler (CS+) CC-RL V1.10.00 from Renesas Electronics Corp.
Integrated development
environment (e2 studio)

e2studio V2021-04(21.4.0) from Renesas Electronics Corp.

C compiler (e2 studio) CC-RL V1.10.00 from Renesas Electronics Corp.
Integrated development
environment (IAR)

IAR Embedded Workbench for Renesas RL78 V4.21.1 from IAR Systems
Corp.

C compiler (IAR) IAR C/C++ Compiler for Renesas RL78 V4.21.1 from IAR Systems Corp.
Board support package
(BSP)

V1.0.1 from Renesas Electronics Corp.

Board to be used RL78/G23-64p Fast Prototyping Board, RTK7RLG230CLG000BJ

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 15 of 66
Jun.18.21

3. Description of the Hardware

 Hardware Configuration Example
Figure 3-1 shows an example of the hardware configuration used for this application note.

Figure 3-1 Hardware Configuration

VDD

VDD
RESET

P60/SCLA0

P40/TOOL0

VDD

For on-chip debugger

RL78/G23

REGC

EVSS

VSS

EVDD

P61/SDAA0

LCD module SCL

LCD module SDA

P12/TxD0

P11/RxD0

P53

LED1

EVDD

UART Transmission

UART Reception

Cautions: 1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified

accordingly. When designing and implementing an actual circuit, provide proper pin treatment
and make sure that the hardware's electrical specifications are met (connect the input-only
ports separately to VDD or VSS via a resistor).

 2. VDD must be held at not lower than the reset release voltage (VLVD0) that is specified as LVD0.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 16 of 66
Jun.18.21

 List of Pins to be Used
Table 3-1 lists pins to be used and their functions.

Table 3-1 Pins to be Used and their Functions

Pin name I/O Description
P12//TxD0 Output Pin for sending UART serial data
P11/ RxD0 Input Pin for receiving UART serial data
P53 Output Pin used to turn on or off LED1, which indicates the access

status of flash memory
P60/SCLA0、P61/SDAA0 Input/Output Pin used for I2C communication with the LCD module

Caution In this application note, only the pins used are processed. When actually creating a circuit,
perform pin processing appropriately and design it so that it satisfies the electrical characteristics.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 17 of 66
Jun.18.21

4. Software Explanation

 List of Option Byte Settings
Table 4-1 summarizes the settings of the option bytes.

Table 4-1 Option Byte Settings

Address Setting Description
000C0H/040C0H 11101111B Disables the watchdog timer.

(Stops counting after the release from the reset
status.)

000C1H/040C1H 11111110B LVD operations (VLVD): Reset mode
At rising edge TYP. 1.90 V
At falling edge TYP. 1.86 V

000C2H/040C2H 11101000B HS mode
High-speed on-chip oscillator clock: 32MHz

000C3H/040C3H 10000101B Enables the on-chip debugger

The option bytes of the RL78/G23 comprise the user option bytes (000C0H to 000C2H) and on-chip debug
option byte (000C3H).

The option bytes are automatically referenced and the specified settings are configured at power-on time
or the reset is released. When using the boot swap function for self-programming, it is necessary to set the
same values that are set in 000C0H to 000C3H also in 040C0H to 040C3H because the bytes in 000C0H to
000C3H are swapped with the bytes in 040C0H to 040C3H.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 18 of 66
Jun.18.21

 Startup routine settings
4.2.1 Definition of the section for the stack area (.stack_bss)

In the sample program, the data to be written to boot cluster 1 is saved in a local variable. Because local
variables are placed in stack areas, you need to modify "cstart.asm" so that any stack area of your choice is
secured and the stack area is initialized.

;$IF (__RENESAS_VERSION__ < 0x01010000) Add ‘;’ to the first line and comment out
;---
; stack area
;---
; !!! [CAUTION] !!!
; Set up stack size suitable for a project.
.SECTION .stack_bss, BSS
_stackend:
 .DS 0x200
_stacktop:
;$ENDIF Add ‘;’ to the first line and comment out
 ・
 ・
 ・
 ・
 ;--
 ; setting the stack pointer
 ;--
;$IF (__RENESAS_VERSION__ >= 0x01010000) Add ‘;’ to the first line and comment out
; MOVW SP,#LOWW(__STACK_ADDR_START) Add ‘;’ to the first line and comment out
;$ELSE ; for CC-RL V1.00 Add ‘;’ to the first line and comment out
 MOVW SP,#LOWW(_stacktop)
;$ENDIF Add ‘;’ to the first line and comment out

 ;--
 ; initializing stack area
 ;--
;$IF (__RENESAS_VERSION__ >= 0x01010000) Add ‘;’ to the first line and comment out
; MOVW AX,#LOWW(__STACK_ADDR_END) Add ‘;’ to the first line and comment out
;$ELSE ; for CC-RL V1.00 Add ‘;’ to the first line and comment out
 MOVW AX,#LOWW(_stackend)
;$ENDIF Add ‘;’ to the first line and comment out
 CALL !!_stkinit

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 19 of 66
Jun.18.21

4.2.2 Deploying the Rewrite Programs in the RAM Area
Deploy the programs that will be used to rewrite boot cluster 1 in the RAM area. These programs are

deployed in the sections listed in Table 4-2.

Table 4-2 Section Information

Section Name Deployment-
destination section

name

Item to Be Deployed

RFD_CMN_f RFD_CMN_fR Program section for the common flash memory control API
function

RFD_CF_f RFD_CF_fR Program section for the code flash memory API function
RFD_EX_f RFD_EX_fR Program section for the extra area control API function
SMP_CMN_f SMP_CMN_fR Program section for the common flash memory control sample

function
SMP_CF_f SMP_CF_fR Program section for the code flash memory control sample

function

To deploy the preceding sections in the RAM area, you need to add processing to "cstart.asm".

In "cstart.asm", add code for the processing after the following lines:

 ;--
 ; ROM data copy
 ;--

The code to be added is as follows:

 ; copy .text to RAM (section-name)
 MOV C,#HIGHW(STARTOF(section-name))
 MOVW HL,#LOWW(STARTOF(section-name))
 MOVW DE,#LOWW(STARTOF(Placement section name))
 BR $.L12_TEXT
.Lm1_TEXT:
 MOV A,C
 MOV ES,A
 MOV A,ES:[HL]
 MOV [DE],A
 INCW DE
 INCW HL
 CLRW AX
 CMPW AX,HL
 SKNZ
 INC
.Lm2_TEXT:
 MOVW AX,HL
 CMPW AX,#LOWW(STARTOF(section-name) + SIZEOF(section-name))
 BNZ $.L11_TEXT

 In section-name, specify the name of the section to be deployed.
 Add the preceding code for each section that needs to be deployed.

 For m, set any number of your choice. Specify a different number for each section.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 20 of 66
Jun.18.21

 On-chip Debug Security ID
The RL78/G23 has the on-chip debug security ID area allocated to addresses 000C4H to 000CDH of flash

memory to preclude the memory contents from being sneaked by the unauthorized third party.

When using the boot swap function for self-programming, it is necessary to set the same values that are
set in 000C4H to 000CDH also in 040C4H to 040CDH because bytes in 000C4H to 000CDH are swapped
with the bytes in 040C4H to 040CDH.

 Resources Used by the Sample Program
4.4.1 List of Sections in the ROM Area

Table 4-3 lists the sections that are deployed in the ROM area and used by the sample program.

Table 4-3 List of Sections in the ROM Area

Section Name Item to Be Deployed
RFD_CMN_f Program section for the common flash memory control API function
RFD_CF_f Program section for the code flash memory control API function
RFD_EX_f Program section for the extra area control API function
RFD_DF_f Program section for the data flash memory control API function
SMP_CMN_f Program section for the common flash memory control sample function
SMP_CF_f Program section for the code flash memory control sample function

4.4.2 List of Sections in the RAM Area
Table 4-4 lists the sections that are deployed in the RAM area and used by the sample program.

Table 4-4 List of Sections in the RAM Area

Section Name Items to Be Deployed
RFD_DATA_n Data section for RFD RL78 Type01
RFD_CMN_fR Program section for the common flash memory control API function
RFD_CF_fR Program section for the code flash memory control API function
RFD_EX_fR Program section for the extra area control API function
SMP_CMN_fR Program section for the common flash memory control sample function
SMP_CF_fR Program section for the code flash memory control sample function

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 21 of 66
Jun.18.21

 List of Constants
Table 4-5 lists the constants for the sample program.

Table 4-5 Constants for the Sample Program

Constant Setting Description
LED_ON 00H LED ON
LED_OFF 01H LED OFF
START_WRITE_ADDRESS 00004000H Write start address
END_WRITE_ADDRESS 00007FFFH Write end address
WRITE_DATA_SIZE 0100H Size of data to be written to the code flash memory (256

bytes)
CF_BLOCK_SIZE 0800H Block size of the code flash memory (2,048 bytes)
BT1_START_ADDRESS 00004000H Start address of boot cluster 1
BT1_END_ADDRESS 00007FFFH End address of boot cluster 1
CPU_FREQUENCY 32 CPU operating frequency
COMMAND_START 02H Command code: START
COMMAND_WRITE 03H Command code: WRITE
COMMAND_END 04H Command code: END
COMMAND_ERROR FFH Command code: ERROR
VALUE_U08_MASK1_FSQ_
STATUS_ERR_ERASE

01H Error status mask value for the execution result of the flash
memory sequencer
bit0: Erase command error

VALUE_U08_MASK1_FSQ_
STATUS_ERR_WRITE

02H Error status mask value for the execution result of the flash
memory sequencer
bit1: Write command error

VALUE_U08_MASK1_FSQ_
STATUS_ERR_BLANKCHE
CK

08H Error status mask value for the execution result of the flash
memory sequencer
bit3: Blank check command error

VALUE_U08_MASK1_FSQ_
STATUS_ERR_CFDF_SEQ
UENCER

10H Error status mask value for the execution result of the flash
memory sequencer
bit4: Code/data flash area sequencer error

VALUE_U08_MASK1_FSQ_
STATUS_ERR_EXTRA_SE
QUENCER

20H Error status mask value for the execution result of the flash
memory sequencer
bit5: Extra area sequencer error

VALUE_U08_SHIFT_ADDR
_TO_BLOCK_CF

11 Constant used for bit shifting performed to calculate the block
number of Code Flash

VALUE_U08_SHIFT_ADDR
_TO_BLOCK_DF

8 Constant used for bit shifting performed to calculate the block
number of Data Flash

VALUE_U01_MASK0_1BIT 0 1-bit mask value
VALUE_U01_MASK1_1BIT 1 1-bit mask value
VALUE_U08_MASK0_8BIT 00H 8-bit mask value
VALUE_U08_MASK1_8BIT FFH 8-bit mask value

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 22 of 66
Jun.18.21

 Enumerated type
Table 4-6 shows the definition of the enumeration used in the sample program.

Table 4-6 enum e_ret (Enumerated variable name: e_ret_t)

Symbol Name Setting Description
ENUM_RET_STS_OK 00H Normal status
ENUM_RET_ERR_CFDF_SEQUENCER 10H Code/data flash area sequencer error
ENUM_RET_ERR_EXTRA_SEQUENCER 11H Extra area sequencer error
ENUM_RET_ERR_ERASE 12H Erase error
ENUM_RET_ERR_WRITE 13H Write error
ENUM_RET_ERR_BLANKCHECK 14H Blank error
ENUM_RET_ERR_CHECK_WRITE_DATA 15H Error in comparison between the written and read

values
ENUM_RET_ERR_MODE_MISMATCHED 16H Mode mismatch error
ENUM_RET_ERR_PARAMETER 17H Parameter error
ENUM_RET_ERR_CONFIGURATION 18H Device configuration error

 List of Variables
Table 4-7 shows the definition of the global variables used in the sample program.

Table 4-7 Global Variables

Type Variable Name Description Function Used
uint8_t f_UART0_sendend Flag indicating that data

sending by the UART0 was
completed

r_Send_nByte
r_Config_UART0_callback_sendend

uint8_t f_UART0_receiveend Flag indicating that data
reception by the UART0 was
completed

r_Receive_nByte
r_Config_UART0_callback_receiveend

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 23 of 66
Jun.18.21

 List of Functions
Table 4-8 and Table 4-9 lists the functions that are used in this sample program.

Table 4-8 List of Functions (1/2)

Function Name Outline
r_rfd_initialize Initialization processing for RFD RL78 Type01
r_cmd_start START command processing
r_cmd_write WRITE command processing
r_cmd_end END command processing
r_CF_RangeErase Range erase processing for the code flash memory
r_CF_EraseBlock Block erase processing for the code flash memory
r_CF_WriteVerifySequence Write-and-verify processing for the code flash memory
r_CF_WriteData Write processing for the code flash memory
r_CF_VerifyData Verify processing for the code flash memory
r_CheckCFDFSequencerEnd Sequence end processing for the code flash memory
r_CheckExtraSequencerEnd Sequence end processing for the extra area
r_RequestBootSwap Boot swapping execution processing
r_Config_UART0_callback_sendend Callback processing at a sending completion interrupt for

UART0
r_Config_UART0_callback_receiveend Callback processing at a reception completion interrupt for

UART0
r_RecvPacket Command reception processing by UART0
r_ReceivePacketAnalyze Command analysis processing by UART0
r_Receive_nByte Data reception processing by UART0
r_Send_nByte Data sending processing by UART0
r_SendACK Normal response sending processing by UART0
r_Config_IICA0_callback_master_sendend Callback processing at a sending completion interrupt for

IICA0
r_Config_IICA0_callback_master_error Callback processing at a sending error interrupt for IICA0
r_LCM_init Processing to initialize the LCD module
r_LCM_clear Processing to clear display for the LCD module
r_LCM_send_string Processing to send strings to the LCD module
r_LCM_send_command Command sending processing for the LCD module
r_LCM_send_data Processing to send data to the LCD module
r_LCM_turn_sendend_on Communication end flag setting for the LCD module
r_LCM_wait_sendend Communication end wait processing for the LCD module

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 24 of 66
Jun.18.21

Table 4-9 List of Functions (2/2)

R_RFD_InitNote Initialization processing for RFD RL78 Type01
R_RFD_SetFlashMemoryModeNote Flash memory control mode change processing
R_RFD_EraseCodeFlashReqNote Code flash memory erase processing
R_RFD_WriteCodeFlashReqNote Code flash memory write processing
R_RFD_CheckCFDFSeqEndStep1Note Processing to check whether the code/data flash area sequencer

has terminated
R_RFD_CheckCFDFSeqEndStep2Note Processing to check whether the command was terminated by

clearing the flash memory sequencer control register
R_RFD_GetSeqErrorStatusNote Processing to obtain error information generated by the

code/data flash area sequencer command or extra area
sequencer command

R_RFD_ClearSeqRegisterNote Processing to clear the register that controls the code/data flash
area sequencer or extra area sequencer

R_RFD_CheckExtraSeqEndStep1Note Processing to confirm that the extra area sequencer has
terminated

R_RFD_CheckExtraSeqEndStep2Note Processing to check whether the command was terminated by
clearing the extra area sequencer control register

R_RFD_GetSecurityAndBootFlagsNote Processing to obtain the security flag and boot area switching
flag

R_RFD_SetDataFlashAccessModeNote Processing to set whether to permit or prohibit access to the
data flash memory

R_RFD_SetExtraBootAreaReqNote Boot area switching flag write processing
R_RFD_ForceResetNote Internal CPU reset request

Note: This is an API function defined for the flash self-programming code. For details about the API function,
see the "RL78 Family Renesas Flash Driver RL78 Type01 User's Manual".

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 25 of 66
Jun.18.21

 Function Specifications
This section describes the specifications for the functions that are used in the sample program.

r_rfd_initialize
Synopsis Initialization processing for RFD RL78 Type01
Header r_rfd_common_api.h、r_rfd_code_flash_api.h、r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_rfd_initialize(void);
Explanation This function initializes RFD RL78 Type01.
Arguments None

Return value ENUM_RET_STS_OK: Normal status
ENUM_RET_ERR_CONFIGURATION: Device configuration error
ENUM_RET_ERR_PARAMETER: Parameter error

r_cmd_start
Synopsis START command processing
Header r_rfd_common_api.h、r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_cmd_start(void);
Explanation This function performs processing required when the START command is

received.
Arguments None

Return value ENUM_RET_STS_OK: Normal status
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_cmd_write
Synopsis WRITE command processing
Header r_rfd_common_api.h、r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_cmd_write(uint32_t* write_start_addr, uint8_t
__near * write_data);

Explanation This function performs processing required when the WRITE command is
received.

Arguments uint32_t i_u32_start_addr: Write start address
uint8_t __near * inp_u08_write_data: Write data

Return value ENUM_RET_STS_OK: Normal status
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_cmd_end
Synopsis END command processing
Header r_rfd_common_api.h、r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_cmd_end(void);
Explanation This function performs processing required when the END command is received. If

this function terminates normally, an internal reset occurs and the CPU is
restarted.

Arguments None
Return value ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 26 of 66
Jun.18.21

r_CF_RangeErase
Synopsis Range erase processing for the code flash memory
Header r_rfd_common_api.h、r_rfd_code_flash_api.h、r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_RangeErase(uint32_t start_addr, uint32_t
end_addr);

Explanation This function erases data in the code flash memory.
Data is erased in blocks. The blocks in the range of addresses specified for
arguments will be erased.

Arguments uint32_t start_addr: Erase start address
uint32_t end_addr: Erase end address

Return value ENUM_RET_STS_OK: Normal status
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_CF_EraseBlock
Synopsis Block erase processing for the code flash memory
Header r_rfd_common_api.h、r_rfd_code_flash_api.h、r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_EraseBlock(uint32_t start_addr);
Explanation This function erases data in the code flash memory.

A block of data is erased. The block that includes the address specified for an
argument will be erased.

Arguments uint32_t start_addr: Erase start address
Return value ENUM_RET_STS_OK: Normal status

ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_ERASE: Erase error

r_CF_WriteVerifySequence
Synopsis Write-and-verify processing for the code flash memory
Header r_rfd_common_api.h、r_rfd_code_flash_api.h、r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_WriteVerifySequence(uint32_t start_addr,
uint16_t write_data_length, uint8_t __near * write_data);

Explanation This function writes data to the code flash memory and verifies the written data.
Arguments uint32_t i_u32_start_addr: Write start address

uint16_t i_u16_write_data_length: Write size
uint8_t __near * inp_u08_write_data: Write data

Return value ENUM_RET_STS_OK: Normal status
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_WRITE: Write error
ENUM_RET_ERR_CHECK_WRITE_DATA: Error in comparison between the
written and read values

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 27 of 66
Jun.18.21

r_CF_WriteData
Synopsis Write processing for the code flash memory
Header r_rfd_common_api.h、r_rfd_code_flash_api.h、r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_WriteData(uint32_t i_u32_start_addr, uint16_t
i_u16_write_data_length, uint8_t __near * inp_u08_write_data);

Explanation This function writes data to the code flash memory.
Arguments uint32_t i_u32_start_addr: Write start address

uint16_t i_u16_write_data_length: Write size
uint8_t __near * inp_u08_write_data: Write data

Return value ENUM_RET_STS_OK: Normal status
ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error
ENUM_RET_ERR_WRITE: Write error

r_CF_VerifyData
Synopsis Verify processing for the code flash memory
Header r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CF_VerifyData(uint32_t start_addr, uint16_t
data_length, uint8_t __near * write_data);

Explanation This function verifies the data written to the code flash memory.
Arguments uint32_t start_addr: Verify start address

uint16_t data_length: Data size
uint8_t __near * write_data: Comparison data

Return value ENUM_RET_STS_OK: Normal status (match)
ENUM_RET_ERR_CHECK_WRITE_DATA: Error in comparison between the
written and read values (Mismatch)

r_CheckCFDFSequencerEnd
Synopsis Sequence end processing for the code flash memory
Header r_rfd_common_api.h、r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CheckCFDFSequencerEnd(void);
Explanation This function confirms that the code flash memory sequence has terminated.
Arguments None

Return value ENUM_RET_STS_OK: Normal status
ENUM_RET_ERR_CFDF_SEQUENCER: Code/data flash area sequencer error
ENUM_RET_ERR_ERASE: Erase error
ENUM_RET_ERR_WRITE: Write error
ENUM_RET_ERR_BLANKCHECK: Blank error

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 28 of 66
Jun.18.21

r_CheckExtraSequencerEnd
Synopsis Sequence end processing for the extra area
Header r_rfd_common_api.h、r_cg_userdefine.h

Declaration R_RFD_FAR_FUNC e_ret_t r_CheckExtraSequencerEnd (void);
Explanation This function confirms that the extra memory sequence has terminated.
Arguments None

Return value ENUM_RET_STS_OK: Normal status
ENUM_RET_ERR_EXTRA_SEQUENCER: Code/data flash area sequencer error
ENUM_RET_ERR_ERASE: Erase error
ENUM_RET_ERR_WRITE: Write error
ENUM_RET_ERR_BLANKCHECK: Blank error

r_RequestBootSwap
Synopsis Boot swapping execution processing
Header r_rfd_common_api.h、r_rfd_extra_area_api.h 、r_cg_userdefine.h

Declaration e_ret_t r_RequestBootSwap(void);
Explanation After a reset is performed, this function enables the boot swapping settings, and

then generates an internal reset to restart the CPU.
Arguments None

Return value ENUM_RET_ERR_MODE_MISMATCHED: Mode mismatch error

r_Config_UART0_callback_sendend()
Synopsis Callback processing at a sending completion interrupt for UART0
Header r_cg_macrodriver.h、Config_IICA0.h、LCM_driver.h

Declaration static void r_Config_UART0_callback_sendend(void);
Explanation This is a callback function that is called at a sending completion interrupt for

UART0.
Arguments None

Return value None

r_Config_UART0_callback_receiveend
Synopsis Callback processing at a reception completion interrupt for UART0
Header r_cg_macrodriver.h、Config_IICA0.h、LCM_driver.h

Declaration static void r_Config_UART0_callback_receiveend(void);
Explanation This is a callback function that is called at a reception completion interrupt for

UART0.
Arguments MD_STATUS flag: Error type

Return value None

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 29 of 66
Jun.18.21

r_RecvPacket
Synopsis Command reception processing by UART0
Header r_cg_macrodriver.h、r_cg_userdefine.h

Declaration MD_STATUS r_RecvPacket(uint8_t *data, uint16_t *length);
Explanation This function uses UART0 to perform command reception processing.

This function waits until reception of a packet of data is completed.
Arguments uint8_t *data: Address of receive data buffer

uint16_t *length: Address of area storing receive data length
Return value MD_OK: Normal status [reception completion]

COMMAND_ERROR: Parameter error

r_ReceivePacketAnalyze
Synopsis Command analysis processing by UART0
Header r_cg_userdefine.h

Declaration uint8_t r_ReceivePacketAnalyze(uint8_t *rxbuf, uint16_t rxlength);
Explanation This function checks the checksum of received data.

If the checksum matches, the function obtains the command code in the received
data.

Arguments uint8_t *rxbuf: Address of receive data buffer
uint16_t rxlength: Address of area storing receive data length

Return value COMMAND_START: Receive START command
COMMAND_WRITE: Receive WRITE command
COMMAND_END: Receive END command
COMMAND_ERROR: Checksum error or command code error

r_Receive_nByte
Synopsis Data reception processing by UART0
Header Config_UART0.h、Config_WDT.h

Declaration MD_STATUS r_Receive_nByte(uint8_t *rx_buff, const uint16_t rx_num);
Explanation This function performs reception processing by UART0.

This function waits until reception of the number of characters specified for an
argument is completed.

Arguments uint8_t *rx_buff: Address of receive data buffer
const uint16_t rx_num: Number of characters received

Return value MD_OK: Normal status [reception completion]
MD_ARGERROR: Parameter error

r_Send_nByte
Synopsis Data sending processing by UART0
Header Config_UART0.h、Config_WDT.h

Declaration MD_STATUS r_Send_nByte(uint8_t *tx_buff, const uint16_t tx_num);
Explanation This function performs sending processing by UART0.

This function waits until sending of the number of characters specified for an
argument is completed.

Arguments uint8_t *tx_buff: Address of send data buffer
const uint16_t tx_num: Number of characters to send

Return value MD_OK: Normal status [reception completion]
MD_ARGERROR: Parameter error

r_SendACK
Synopsis Normal response sending processing by UART0

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 30 of 66
Jun.18.21

Header Config_UART0.h、Config_WDT.h
Declaration MD_STATUS r_SendACK (void);
Explanation This function uses UART0 to perform sending processing for normal response

(01H).
Arguments None

Return value MD_OK: Normal status [sending completion]
MD_ARGERROR: Parameter error

r_Config_IICA0_callback_master_sendend

Synopsis Callback processing at a sending completion interrupt for IICA0
Header r_cg_macrodriver.h、Config_IICA0.h、LCM_driver.h

Declaration static void r_Config_IICA0_callback_master_receiveend(void);
Explanation This is a callback function that is called at a sending completion interrupt for IICA0.
Arguments None

Return value None

r_Config_IICA0_callback_master_error
Synopsis Callback processing at a sending error interrupt for IICA0
Header r_cg_macrodriver.h、Config_IICA0.h、LCM_driver.h

Declaration static void r_Config_IICA0_callback_master_error(MD_STATUS flag);
Explanation This is a callback function that is called at a sending error interrupt for IICA0.
Arguments MD_STATUS flag: Error type

Return value None

r_LCM_init
Synopsis Processing to initialize the LCD module
Header LCM_driver.h、Config_IICA0.h

Declaration void r_LCM_init(void);
Explanation This function initializes the LCD module.
Arguments None

Return value None

r_LCM_clear
Synopsis Processing to clear display for the LCD module
Header LCM_driver.h、Config_IICA0.h

Declaration void r_LCM_clear(void);
Explanation This function sends the Clear Display command to the LCD module.
Arguments None

Return value None

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 31 of 66
Jun.18.21

r_LCM_send_string
Synopsis Processing to send strings to the LCD module
Header LCM_driver.h、Config_IICA0.h

Declaration void r_LCM_send_string(uint8_t * const str, lcm_position_t pos);
Explanation This function displays the character string passed by using the "str" argument on

the LCD module.
A line can also be displayed by using the "pos" argument.

Arguments uint8_t * const str: Character string to be displayed
lcm_position_t pos: Displayed at the top with LCM_POSITION_TOP

Displayed at the bottom with LCM_POSITION_BOTTOM.
Return value None

r_LCM_send_command
Synopsis Command sending processing for the LCD module
Header LCM_driver.h、Config_IICA0.h

Declaration void r_LCM_send_command(uint8_t command);
Explanation This function sends the command passed by using the "command" argument to

the LCD module.
Arguments uint8_t command: Command to send to LCD module

Return value None

r_LCM_send_data
Synopsis Processing to send data to the LCD module
Header LCM_driver.h、Config_IICA0.h

Declaration void r_LCM_send_data(uint8_t data);
Explanation This function sends the data passed by using the "data" argument to the LCD

module.
Arguments uint8_t data: Data to be sent to the LCD module

Return value None

r_LCM_turn_sendend_on
Synopsis Communication end flag setting for the LCD module
Header LCM_driver.h、Config_IICA0.h

Declaration void r_LCM_turn_sendend_on(void);
Explanation This function sets (for g_LCM_is_sendend) the flag that indicates the end of IIC

communication with the LCD module.
Arguments None

Return value None

r_LCM_wait_sendend
Synopsis Communication end wait processing for the LCD module
Header LCM_driver.h、Config_IICA0.h

Declaration static void r_LCM_wait_sendend(void);
Explanation This function waits until IIC communication with the LCD module ends, and then

waits for the command execution wait time (5 ms).
Arguments None

Return value None

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 32 of 66
Jun.18.21

 Flowcharts
4.10.1 Main Processing

Figure 4-1 to Figure 4-2 shows the flowchart for main processing.

Figure 4-1 Main Processing (1/2)

main

Start operation of UART:
R_Config_UART0_Start()

Permit interrupts:
EI()

Initialize LCD
Display version information on LCD

A

Initialize RL78 RFD Type01:
r_rfd_initialize()

IE = 1

r_LCM_init
r_LCM_clear
r_LCM_send_string

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 33 of 66
Jun.18.21

Figure 4-2 Main Processing (2/2)

Was processing ended normally?

LED1 (P53): Turned off

YES

NO

Was a packet received?

A

YES

NO

Error display on LCD:
Error!

Analyze packet data:
r_ReceivePacketAnalyze
(recv_buff, recv_length)

Which command was received?

Check the operation mode

START command processing:
r_cmd_start()

COMMAND_START

Operation mode

WRITE command processing:
r_cmd_write(&write_start_address,

&recv_buff[4])

COMMAND_WRITE

Operation mode

END command processing:
r_cmd_end()

COMMAND_END

Normal mode

Write mode

Write mode

Normal mode

Write mode

Normal mode

：While(1) loop

r_LCM_clear
r_LCM_send_string

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 34 of 66
Jun.18.21

4.10.2 Initialization Processing for RFD RL78 Type01
Figure 4-3 shows the flowchart for initialization processing for RFD RL78 Type01.

Figure 4-3 Initialization Processing for RFD RL78 Type01

r_rfd_initialize()

Is HOCO active?

Initialize RL78 RFD Type01:
R_RFD_Init(CPU_FREQUENCY)

Was initialization ended normally?

return

Set the error status for "ret_value" because
HOCO is inactive

Initialization of RFD failed
Set the error status for "ret_value"

YES

NO

YES

NO

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 35 of 66
Jun.18.21

4.10.3 START Command Processing
Figure 4-4 shows the flowchart for START command processing.

Figure 4-4 START Command Processing

r_cmd_start()

LED1 (P53): Turned on

Prohibit interrupts:
DI()

Range erase processing for the code flash memory:
r_CF_RangeErase(BT1_START_ADDRESS,

BT1_END_ADRESS)

Permit interrupts:
EI()

Was erase processing ended normally?

Normal response sending processing:
r_SendACK

return

YES

NO

IE = 0

IE = 1

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 36 of 66
Jun.18.21

4.10.4 WRITE Command Processing
Figure 4-5 shows the flowchart for WRITE command processing.

Figure 4-5 WRITE Command Processing

r_cmd_write(write_start_addr, *write_data)

Prohibit interrupts:
DI()

Write-and-verify processing for the code flash
memory:

r_CF_WriteVerifySequence(*write_Start_addr,WRIT
E_DATA_SIZE,write_data)

Was write-and-verify
processing ended normally?

Normal response sending processing:
r_SendACK

return

YES

NO

Write-destination address is...
Outside boot cluster 1

Inside boot cluster 1

Permit interrupts:
EI()

IE = 0

IE = 1

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 37 of 66
Jun.18.21

4.10.5 END Command Processing
Figure 4-6 shows the flowchart for END command processing.

Figure 4-6 END Command Processing

r_cmd_end()

Boot swapping execution processing:
r_RequestBootswap()

return

Normal response sending processing:
r_SendACK

LED1 (P53): Turned off

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 38 of 66
Jun.18.21

4.10.6 Range Erase Processing for the Code Flash Memory
Figure 4-7 shows the flowchart for range erase processing for the code flash memory.

Figure 4-7 Range Erase Processing for the Code Flash Memory

r_CF_RangeErase(start_addr,end_addr)

return

Is erasure of the blocks in the
specified range incomplete?

Was block erasure ended normally?

YES

YES

NO

NO

Block erasure for the code flash memory:
r_CF_EraseBlock(erase_addr)

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 39 of 66
Jun.18.21

4.10.7 Block Erase Processing for the Code Flash Memory
Figure 4-8 shows the flowchart for block erase processing for the code flash memory.

Figure 4-8 Block Erase Processing for the Code Flash Memory

r_CF_EraseBlock(start_addr)

return

Was the mode change ended normally?

Is the status set for "ret_value" normal?

YES

YES

NO

NO

Set the error status for "ret_value"

NO

Processing to end the code flash memory sequencer:
r_CheckCFDFSequencerEnd

Was block erasure ended normally?

Set the error status for "ret_value"

Was the mode change ended normally?

Set the error status for "ret_value"YES

Start erasing blocks:
R_RFD_EraseCodeFlashReq(block_number)

NO

YES

Place the flash memory sequencer in flash
programming mode:

R_RFD_SetFlashMemoryMode(R_RFD_ENUM_FL
ASH_MODE_CODE_PROGRAMMING)

Obtain the erase-target block numbers

Place the flash memory sequencer in normal
operation mode:

R_RFD_SetFlashMemoryMode(R_RFD_ENUM_FL
ASH_MODE_UNPROGRAMMABLE)

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 40 of 66
Jun.18.21

4.10.8 Write-and-verify Processing for the Code Flash Memory
Figure 4-9 shows the flowchart for write-and-verify processing for the code flash memory.

Figure 4-9 Write-and-verify Processing for the Code Flash Memory

r_CF_WriteVerifySequens(write_start_addr,
write_data_length, *write_data)

return

Was the write ended normally?

YES

ret_value: Error status

Code flash memory write processing:
r_CF_WriteData(write_start_addr,

write_data_length, write_data)

Code flash memory verification processing:
r_CF_VerifyData(write_start_addr,

write_data_length, write_data)

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 41 of 66
Jun.18.21

4.10.9 Write Processing for the Code Flash Memory
Figure 4-10 shows the flowchart for write processing for the code flash memory.

Figure 4-10 Write processing for the Code Flash Memory

r_CF_WriteData(start_addr, write_data_length,
write_data)

return

Was the mode change ended normally?

Is the status set for "ret_value" normal?

YES

YES

NO

ret_value: Error status

Set the error status for "ret_value"

Is there data that has not been written yet?

Start writing 4-byte data:
R_RFD_WriteCodeFlashReq(start_addr + count,

&write_data[count])

YES

Processing to end the code flash memory sequencer:
r_CheckCFDFSequencerEnd()

Was the data write ended normally?

Set the error status for "ret_value"

Was the mode change ended normally?

Set the error status for "ret_value"

YES

NO

YES

Place the flash memory sequencer in flash
programming mode:

R_RFD_SetFlashMemoryMode(R_RFD_ENUM_FL
ASH_MODE_CODE_PROGRAMMING)

ret_value: Error status

NO

Place the flash memory sequencer in normal
operation mode:

R_RFD_SetFlashMemoryMode(R_RFD_ENUM_FL
ASH_MODE_UNPROGRAMMABLE)

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 42 of 66
Jun.18.21

4.10.10 Verify Processing for the Code Flash Memory
Figure 4-11 shows the flowchart for verify processing for the code flash memory.

Figure 4-11 Verify Processing for the Code Flash Memory

r_CF_VerifyData(start_addr, data_length, *write_data)

return

Was verification of the data of the
specified size ended normally?

The written data and the value
in the code flash memory are...

Set the error status for "ret_value"

Increment the address

NO

Identical

YES

Different

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 43 of 66
Jun.18.21

4.10.11 Sequence End Processing for the Code Flash Memory
Figure 4-12 to Figure 4-13 shows the flowchart for sequence end processing for the code flash memory.

Figure 4-12 Sequence End Processing for the Code Flash Memory (1/2)

r_CheckCFDFSequencerEnd()

Obtain the error status:
R_RFD_GetSeqErrorStatus(&status_flag)

A

Wait for completion of processing:
R_RFD_CheckCFDFSeqEndStep1()

Wait for completion of processing:
R_RFD_CheckCFDFSeqEndStep2()

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 44 of 66
Jun.18.21

Figure 4-13 Sequence End Processing for the Code Flash Memory (2/2)

A

VALUE_U08_MASK1_FSQ_STATUS_ERR_CFDF_SEQUENCER

VALUE_U08_MASK1_FSQ_STATUS_ERR_ERASE

VALUE_U08_MASK1_FSQ_STATUS_ERR_WRITE

VALUE_U08_MASK1_FSQ_STATUS_ERR_BLANKCHECK

return

What is the value of the error status (FSASTL)?

Set ENUM_RET_ERR_CFDF_SEQUENCER (0x10)
for "ret_value"

Set ENUM_RET_ERR_ERASE (0x12) for
"ret_value"

Set ENUM_RET_ERR_WRITE (0x13) for "ret_value"

Set ENUM_RET_ERR_BLANKCHECK (0x14) for
"ret_value"

Set ENUM_RET_STS_OK (0x00) for "ret_value"

Initialize the register that controls the sequencer:
R_RFD_ClearSeqRegister()

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 45 of 66
Jun.18.21

4.10.12 Sequence End Processing for the Extra Area
Figure 4-14 to Figure 4-15 shows the flowchart for sequence end processing for the extra area.

Figure 4-14 Sequence End Processing for the Extra Area (1/2)

r_CheckExtraSequencerEnd

Obtain the error status:
R_RFD_GetSeqErrorStatus(&status_flag)

A

Wait for completion of processing:
R_RFD_CheckExtraSeqEndStep1()

Wait for completion of processing:
R_RFD_CheckExtraSeqEndStep2()

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 46 of 66
Jun.18.21

Figure 4-15 Sequence End Processing for the Extra Area (2/2)

A

VALUE_U08_MASK1_FSQ_STATUS_ERR_EXTRA_SEQUENCER

VALUE_U08_MASK1_FSQ_STATUS_ERR_ERASE

VALUE_U08_MASK1_FSQ_STATUS_ERR_WRITE

VALUE_U08_MASK1_FSQ_STATUS_ERR_BLANKCHECK

return

What is the value of the
error status (FSASTL)?

Set ENUM_RET_ERR_EXTRA_SEQUENCER (0x10)
for "ret_value"

Set ENUM_RET_ERR_ERASE (0x12) for "ret_value"

Set ENUM_RET_ERR_WRITE (0x13) for "ret_value"

Set ENUM_RET_ERR_BLANKCHECK (0x14) for
"ret_value"

Set ENUM_RET_STS_OK (0x00) for "ret_value"

Initialize the register that controls the sequencer:
R_RFD_ClearSeqRegister()

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 47 of 66
Jun.18.21

4.10.13 Boot Swapping Execution Processing
Figure 4-16 to Figure 4-17 shows the flowchart for boot swapping execution processing.

Figure 4-16 Boot Swapping Execution Processing (1/2)

r_RequestBootSwap()

What is the boot area that is currently set?

Select boot cluster 0 at the next startup:
next_boot_cluster = R_RFD_ENUM_BOOT_CLUSTER_0

BTFLG = 1: Boot cluster 1 is set.

Obtain the information about the security flag and boot flag:
R_RFD_GetSecurityAndBootFlags(&f_security_boot)

Select boot cluster 1 at the next startup:
next_boot_cluster = R_RFD_ENUM_BOOT_CLUSTER_1

Set the error status for "ret_value"

BTFLG = 0: Boot cluster 0 is set.

Place the flash memory sequencer
in flash programming mode:

R_RFD_SetFlashMemoryMode(R_RFD_ENUM_FLAS
H_MODE_CODE_PROGRAMMING)

Was the mode change ended normally?

YES

NO

Set the access permission status of the data flash memory:
R_RFD_SetDataFlashAccessMode(R_RFD_ENUM_DF_ACC

ESS_ENABLE)

A

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 48 of 66
Jun.18.21

Figure 4-17 Boot Swapping Execution Processing (2/2)

return

Request boot swapping after a reset:
R_RFD_SetExtraBootAreaReq(next_boot_cluster)

YES

Internal reset:
R_RFD_ForceReset

NO

Place the flash memory sequencer
in normal operation mode:

R_RFD_SetFlashMemoryMode(R_RFD_ENUM_FLAS
H_MODE_UNPROGRAMMABLE)

Is the status set for "ret_value" normal? ret_value : Error status

YES

Was the mode change ended normally?

Set the error status for "ret_value"
YES

NO

Is the status set for "ret_value" normal?

Set the access prohibition status for the data flash memory:
R_RFD_SetDataFlashAccessMode(R_RFD_ENUM_DF_ACC

ESS_DISABLE)

A

Sequence end processing for the extra area:
r_CheckExtraSequencerEnd()

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 49 of 66
Jun.18.21

4.10.14 Callback Processing at a Reception Completion Interrupt for UART0
Figure 4-18 shows the flowchart for callback processing at a reception completion interrupt for UART0.

Figure 4-18 Callback Processing at a Reception Completion Interrupt for UART0

r_Config_UART0_callback_receiveend()

return

Set 1 for the reception completion flag f_UART0_receiveend = 1

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 50 of 66
Jun.18.21

4.10.15 Callback Processing at a Sending Completion Interrupt for UART0
Figure 4-19 shows the flowchart for callback processing at a sending completion interrupt for UART0.

Figure 4-19 Callback Processing at a Sending Completion Interrupt for UART0

r_Config_UART0_callback_sendend()

return

Set 1 for the sending completion flag f_UART0_sendend = 1

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 51 of 66
Jun.18.21

4.10.16 Command Reception Processing by UART0
Figure 4-20 shows the flowchart for command reception processing by UART0.

Figure 4-20 Command Reception Processing by UART0

r_RecvPacket(*data, *length)

return

Was reception ended normally
or was the received data 0x01?

YES

NO

Receive the start code:
r_Receive_nByte(data, 1)

Was reception ended normally?

YES

NO

Receive "command + data + checksum":
r_Receive_nByte(data + 3, *length)

Was reception ended normally?

YES

NO

Assign the COMMAND_ERROR value to "ret"

Receive the length data:
r_Receive_nByte(data + 1, 2)

Was reception ended normally?

Assign the COMMAND_ERROR value to "ret"

Was reception ended normally?

YES

NO

Assign the COMMAND_ERROR value to "ret"

YES

NO

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 52 of 66
Jun.18.21

4.10.17 Command Analysis Processing by UART0
Figure 4-21 shows the flowchart for command analysis processing by UART0.

Figure 4-21 Command Analysis Processing by UART0

r_ReceivePacketAnalyze(rxbuf, rxlength)

Are the checksum calculation result
and the received data identical?

YES

NO

Calculate the checksum

What is the received command code?

Assign the command code to "ret"

COMMAND_START

Assign the command code to "ret"

COMMAND_WRITE

Assign the command code to "ret"

COMMAND_END

Receive a code other than START, WRITE, and END
Assign the error status to "ret"

return

Checksum error
Assign the error status to "ret"

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 53 of 66
Jun.18.21

4.10.18 Data Reception Processing by UART0
Figure 4-22 shows the flowchart for data reception processing by UART0.

Figure 4-22 Data Reception Processing by UART0

r_Receive_nByte(*rx_buff, rx_num)

return

Was sending ended normally with
the sending completion flag set to 0?

YES

NO

Clear the reception completion flag

Receive data:
R_Config_UART0_Receive(rx_buff, rx_num)

f_UART0_receiveend = 0

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 54 of 66
Jun.18.21

4.10.19 Data Sending Processing by UART0
Figure 4-23 shows the flowchart for data sending processing by UART0.

Figure 4-23 Data Sending Processing by UART0

r_Send_nByte(*tx_buff, tx_num)

return

Was sending ended normally with
the sending completion flag set to 0?

YES

NO

Clear the sending completion flag

Send data:
R_Config_UART0_Send(tx_buff, tx_num)

f_UART0_sendend = 0

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 55 of 66
Jun.18.21

4.10.20 Normal Response Sending Processing by UART0
Figure 4-23 shows the flowchart for normal response sending processing by UART0.

Figure 4-24 Normal Response Sending Processing by UART0

r_SendACK()

Send data:
r_Send_nByte(&send_buff, 1)

return

Create a response notification:
send_buff

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 56 of 66
Jun.18.21

4.10.21 Callback Processing at a Sending Completion Interrupt for IICA0
Figure 4-25 shows the flowchart for callback processing at a sending completion interrupt for IICA0.

Figure 4-25 Callback Processing at a Sending Completion Interrupt for IICA0

r_Config_IICA0_callback_master_sendend()

r_LCM_turn_sendend_on()

return

Create stop conditions SPT0 ← 1

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 57 of 66
Jun.18.21

4.10.22 Callback Processing at a Sending Error Interrupt for IICA0
Figure 4-26 shows the flowchart for callback processing at a sending error interrupt for IICA0.

Figure 4-26 Callback Processing at a Sending Error Interrupt for IICA0

r_Config_IICA0_callback_master_error(flag)

r_LCM_turn_sendend_on()

return

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 58 of 66
Jun.18.21

4.10.23 Processing to Initialize the LCD Module
Figure 4-27 shows the flowchart for processing to initialize the LCD module.

Figure 4-27 Processing to Initialize the LCD Module

r_LCM_init()

r_LCM_send_command(
_0x08_LCM_COMMAND_DISPLAY_ONOFF |
LCM_CONFIG_DISPLAY_ONOFF_PARAMS)

r_LCM_send_command(
_0x04_LCM_COMMAND_ENTRY_MODE_SET |
LCM_CONFIG_ENTRY_MODE_SET_PARAMS)

r_LCM_send_command(
_0x20_LCM_COMMAND_FUNCTION_SET |
LCM_CONFIG_FUNCTION_SET_PARAMS)

return

Set the Function Set parameters

Set the Display ON/OFF Control
parameters

Set the Entry Mode Set parameters

Set 0 for g_LCM_is_sendend

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 59 of 66
Jun.18.21

4.10.24 Processing to Clear Display for the LCD Module
Figure 4-28 shows the flowchart for processing to clear display for the LCD module.

Figure 4-28 Processing to Clear Display for the LCD Module

r_LCM_clear()

r_LCM_send_command(
_0x00_LCM_COMMAND_CLEAR_DISPLAY)

return

Send the Clear Display command

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 60 of 66
Jun.18.21

4.10.25 Processing to Send Strings to the LCD Module
Figure 4-29 shows the flowchart for processing to send strings to the LCD module.

Figure 4-29 Processing to Send Strings to the LCD Module

NO

YES

NO

YES

r_LCM_send_string(str, pos)

R_LCM_send_command(
_0x80_LCM_COMMAND_SET_DDRAM_ADDRESS | pos)

return

Send the "Set DDRAM Address"
command and set the position specified
for "pos" as the drawing start poin.

Set 0 for control variable "i"

r_LCM_send_data(i-th character of the string in "str")

Is "i" smaller than the number of
characters that can be displayed?

Increment the "i" value

Is "i" smaller than the number of
characters specified for "str"?

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 61 of 66
Jun.18.21

4.10.26 Command Sending Processing for the LCD Module
Figure 4-30 shows the flowchart for command sending processing for the LCD module.

Figure 4-30 Command Sending Processing for the LCD Module

r_LCM_send_command(command)

Send the command to LCM:
 R_Config_IICA0_Master_Send(

LCM-slave-address, temporary-buffer, temporary-
buffer-size, LCM_CONFIG_WAIT_COUNT)

return

Prepare a temporary buffer, and then sequentially
deploy "_0x00_LCM_CONTROL_BYTE_RS_LOW"

and a command

In the LCD module specifications, 0x00
indicates that a command follows.

r_LCM_wait_sendend()

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 62 of 66
Jun.18.21

4.10.27 Processing to Send Data to the LCD Module
Figure 4-31 shows the flowchart for processing to send data to the LCD module.

Figure 4-31 Processing to Send Data to the LCD Module

r_LCM_send_data(data)

Send the data to LCM:
 R_Config_IICA0_Master_Send(

LCM-slave-address, temporary-buffer, temporary-
buffer-size, LCM_CONFIG_WAIT_COUNT)

return

Prepare a temporary buffer, and then sequentially
deploy "_0x00_LCM_CONTROL_BYTE_RS_HIGH"

and data

In the LCD module specifications,
0x80 indicates that data follows.

r_LCM_wait_sendend()

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 63 of 66
Jun.18.21

4.10.28 Communication End Flag Setting for the LCD Module
Figure 4-32 shows the flowchart for communication end flag setting for the LCD module.

Figure 4-32 Communication End Flag Setting for the LCD Module

r_LCM_turn_sendend_on()

return

Turn on g_LCM_is_sendend

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 64 of 66
Jun.18.21

4.10.29 Communication End Wait Processing for the LCD Module
Figure 4-33 shows the flowchart for communication end wait processing for the LCD module.

Figure 4-33 Communication End Wait Processing for the LCD Module

NO

YES

r_LCM_wait_sendend(str, pos)

return

Clear "g_LCM_is_sendend"

Wait while repeating NOP()

Is "g_LCM_is_sendend" on?

According to the LCD module
specifications, a wait of at least 5 ms is
required after the sending.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 65 of 66
Jun.18.21

5. Sample code
Sample code can be downloaded from the Renesas Electronics website.

6. Reference Documents
RL78/G23 User’s Manual: Hardware (R01UH0896J)
RL78 family user's manual software (R01US0015J)
The latest versions can be downloaded from the Renesas Electronics website.

Technical update
The latest versions can be downloaded from the Renesas Electronics website.

All trademarks and registered trademarks are the property of their respective owners.

RL78/G23 Self-Programming Using Boot Swapping via UART communications

R01AN5815EJ0100 Rev.1.00 Page 66 of 66
Jun.18.21

Revision History

Rev. Date
Description

Page Summary
1.00 Jun. 18. 21 ― First Edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	1.1 Outline
	1.1.1 Outline of the Flash Self-Programming Code (Renesas Flash Driver RL78 Type01)
	1.1.2 Code Flash Memory
	1.1.3 Flash Memory Self-Programming
	1.1.4 Boot Swap Function
	1.1.5 Flash Memory Reprogramming
	1.1.6 Flash Shield window
	1.1.7 Communication Specifications
	1.1.8 How to obtain the flash self-programming code

	1.2 Operation Outline

	2. Operation Check Conditions
	3. Description of the Hardware
	3.1 Hardware Configuration Example
	3.2 List of Pins to be Used

	4. Software Explanation
	4.1 List of Option Byte Settings
	4.2 Startup routine settings
	4.2.1 Definition of the section for the stack area (.stack_bss)
	4.2.2 Deploying the Rewrite Programs in the RAM Area

	4.3 On-chip Debug Security ID
	4.4 Resources Used by the Sample Program
	4.4.1 List of Sections in the ROM Area
	4.4.2 List of Sections in the RAM Area

	4.5 List of Constants
	4.6 Enumerated type
	4.7 List of Variables
	4.8 List of Functions
	4.9 Function Specifications
	4.10 Flowcharts
	4.10.1 Main Processing
	4.10.2 Initialization Processing for RFD RL78 Type01
	4.10.3 START Command Processing
	4.10.4 WRITE Command Processing
	4.10.5 END Command Processing
	4.10.6 Range Erase Processing for the Code Flash Memory
	4.10.7 Block Erase Processing for the Code Flash Memory
	4.10.8 Write-and-verify Processing for the Code Flash Memory
	4.10.9 Write Processing for the Code Flash Memory
	4.10.10 Verify Processing for the Code Flash Memory
	4.10.11 Sequence End Processing for the Code Flash Memory
	4.10.12 Sequence End Processing for the Extra Area
	4.10.13 Boot Swapping Execution Processing
	4.10.14 Callback Processing at a Reception Completion Interrupt for UART0
	4.10.15 Callback Processing at a Sending Completion Interrupt for UART0
	4.10.16 Command Reception Processing by UART0
	4.10.17 Command Analysis Processing by UART0
	4.10.18 Data Reception Processing by UART0
	4.10.19 Data Sending Processing by UART0
	4.10.20 Normal Response Sending Processing by UART0
	4.10.21 Callback Processing at a Sending Completion Interrupt for IICA0
	4.10.22 Callback Processing at a Sending Error Interrupt for IICA0
	4.10.23 Processing to Initialize the LCD Module
	4.10.24 Processing to Clear Display for the LCD Module
	4.10.25 Processing to Send Strings to the LCD Module
	4.10.26 Command Sending Processing for the LCD Module
	4.10.27 Processing to Send Data to the LCD Module
	4.10.28 Communication End Flag Setting for the LCD Module
	4.10.29 Communication End Wait Processing for the LCD Module

	5. Sample code
	6. Reference Documents

