
 Application Note

R01AN6115EJ0100 Rev.1.00 Page 1 of 35
Mar.14.22

RL78/G14
Analog Input/Output (Arduino API)
Introduction
This application note describes how to control LED light brightness by PWM output according to the analog
input from an ambient light sensor in the program description (such as Arduino language) using the
RL78/G14 Fast Prototyping Board (FPB).

Target Device
RL78/G14

When applying the sample program covered in this application note to another microcomputer, modify the
program according to the specifications for the target microcomputer and conduct an extensive evaluation of
the modified program.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 2 of 35
Mar.14.22

Contents

1. Specifications .. 3
1.1 Program Execution Environment ... 3
1.2 Program (Sketch) Configuration .. 6
1.3 Preparations for Project Startup .. 6
1.4 Definitions in the Program (sketch) ... 7
1.5 Initial Setting Processing ... 8
1.6 Main Processing Part .. 8
1.7 Ambient Light Sensor Control ... 9

2. Operating Conditions ... 9

3. Related Application Notes.. 9

4. Hardware ... 10
4.1 Example of Hardware Configuration ... 10
4.2 List of Pins Used .. 10

5. Software .. 11
5.1 Summary of Operation .. 11
5.2 List of Constants .. 12
5.3 List of Variables ... 12
5.4 List of Functions .. 13
5.5 Specification of Functions ... 15
5.6 Flowcharts ... 30
5.6.1 Initial setting function ... 30
5.6.3 Processing function to obtain the PWM signal duty ratio from the current value of the ambient light

sensor .. 33

6. Sample Code ... 34

7. Reference Documents ... 34

Revision History .. 35

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 3 of 35
Mar.14.22

1. Specifications

This application note provides the program description (such as Arduino language) using the FPB, where the
ambient light sensor value is read by an analog input and the analog PWM signal that controls LED light
brightness is output.

When the switch is pressed or at intervals of 10 seconds, the ambient light sensor output value converted to
a voltage value by a resistor is read by the A/D converter. LED light brightness is adjusted based on control
of the PWM duty ratio according to the read result.

Due to a wide dynamic range (0.2 μA to 2 mA with illuminance 0.1 lux to 1000 lux) of the ambient light
sensor (NJL7302L-F3) output current, load resistors 51 kΩ and 1 kΩ must be switched. This sample code
uses a load resistor of 1 kΩ to comply with illuminance 10 lux to 1000 lux.

Table 1-1 lists peripheral functions to be used.

Table 1-1 Peripheral Function and Use

Peripheral Function Use
Digital input Reads switch (SW_USR) status.
Digital output Selects ambient light sensor sensitivity.
A/D Converter Measures ambient light sensor output.
Timer array unit Generates a PWM signal by software. (D5 pin)
Timer RD Generates a PWM signal by hardware. (D6 pin)
Timer array unit Measures elapsed time.

1.1 Program Execution Environment
In this application note, a program in an Arduino language is executed in a development environment
specific to the RL78 family. A conceptual diagram of the program execution environment is shown in Figure
1.1.

Arduino language program (sketch)

Function library for an Arduino language (Arduino API)

RL78 family development environment

Hardware (FPB)

Figure 1.1 Program execution environment

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 4 of 35
Mar.14.22

Library functions that can be used in this application note are shown in Table1.2 to Table1.4.

Table1.2 Library functions (1/3)

Item Library Function Function

Digital I/O pinMode(pin, mode) Specifies the operation mode (input mode/output mode/input
mode with internal pull-up resistor enabled) for the pin
specified by “pin”.

digitalWrite (pin, value) Sets the pin specified by “pin” to the state specified by “value”
(high level/low level).

digitalRead(pin) Reads out the state of the pin specified by “pin”.

Time control millis() Returns, in millisecond units, the time from the start of
program execution to the present time.

micros() Returns, in microsecond units, the time from the start of
program execution to the present time.

delay (ms) Stops the program for the specified time in millisecond units.

delayMicroseconds (us) Stops the program for the specified time in microsecond units.

Analog I/O analogRead(pin) Converts the signal from the analog input pin to a digital signal
and reads the digital signal.

analogWrite(pin, value) Outputs the PWM signal of the specified duty ratio (0 to 255)
from the analog output pin.

analogReference(type) Specifies the analog input reference voltage.

Table1.3 Library functions (2/3)

Item Library Function Function

I2C control

(Wire)

Wire.begin() Initializes IICA0 and connects to the I2C bus as the master.

Wire.requestFrom
(saddr7, bytes, stop)

Wire.requestFrom
(saddr7, bytes)

Receives data with the size specified by "bytes" from the
specified slave.

The Wire.available() function is used to obtain the number of
bytes and the Wire.read() function is used to read data.

Wire.beginTransmission
(saddr7)

Prepares for sending data to the specified slave.

Then, the Wire.write() function is used to enqueue data and the
Wire.endTransmission() function is used to send the data.

Wire.endTransmission
(stop)

Sends data from the queue to the slave, and then ends
processing.

Wire.write(data) Enqueues data that is to be sent to the slave.

Wire.available() Uses the Wire.read() function to check the number of bytes that
can be read.

Wire.read() Reads receive data from the slave.

Note: The slave function of the I2C bus is not supported. For some functions, a limit is placed on the
arguments that can be specified or the number of arguments that can be specified.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 5 of 35
Mar.14.22

Table1.4 Library functions (3/3)

Item Library Function Function

Simplified IIC
control

(Wire1)

Wire1.begin() Initializes IIC00 (Wire1) connected to Pmod connector
1 and connects to the I2C bus as the master.

Wire1.requestFrom(saddr7,
bytes, stop)

Wire1.requestFrom(saddr7,
bytes)

Receives data with the size specified by "bytes" from
the specified slave.

The Wire1.available() function is used to obtain the
number of bytes and the Wire1.read() function is used
to read data.

Wire1.beginTransmission(saddr7) Prepares for sending data to the specified slave.

Then, the Wire1.write() function is used to enqueue
data and the Wire1.endTransmission() function is
used to send the data.

Wire1.endTransmission(stop) As Wire1, sends data from the queue to the slave,
and then ends processing.

Wire1.write(data) Enqueues data that is to be sent to the slave of Wire1.

Wire1.available() Uses the Wire1.read() function to check the number of
bytes that can be read.

Wire1.read() Dequeues data that was received from the slave of
Wire1.

Simplified IIC
control

(Wire2)

Wire2.begin() Initializes IIC00 (Wire2) connected to Pmod connector
1 and connects to the I2C bus as the master.

Wire2.requestFrom(saddr7,
bytes, stop)

Wire2.requestFrom(saddr7,
bytes)

Receives data with the size specified by "bytes" from
the specified slave.

The Wire2.available() function is used to obtain the
number of bytes and the Wire2.read() function is used
to read data.

Wire2.beginTransmission(saddr7) Prepares for sending data to the specified slave.

Then, the Wire2.write() function is used to enqueue
data and the Wire2.endTransmission() function is
used to send the data.

Wire2.endTransmission(stop)

As Wire2, sends data from the queue to the slave,
and then ends processing.

Wire2.write(data) Enqueues data that is to be sent to the slave of Wire2.

Wire2.available() Uses the Wire2.read() function to check the number of
bytes that can be read.

Wire2.read() Dequeues data that was received from the slave of
Wire2.

Note: The slave function of the I2C bus is not supported. For some functions, a limit is placed on the
arguments that can be specified or the number of arguments that can be specified.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 6 of 35
Mar.14.22

1.2 Program (Sketch) Configuration
Subfolders are prepared for each integrated development environment below the folder (workspace) in which
the project is stored. In the folders for each of the integrated development environments the files are stored
that are used in the RL78 family development environment.

In each sketch subfolder, AR_SKETCH.c is stored which is the Arduino language program (sketch). When
viewing or modifying sketch, the "AR_SKETCH.c" file in the sketch subfolder is used.

1.3 Preparations for Project Startup
A folder or zip file (in the case of e2studio) compliant with three integrated development environments can be
generated by decompressing the stored archive (zipped sample code). Use the folder or zip file best suited
for the integrated development environment to be used.

For details, refer to the following application note.

RL78 Family Arduino API Introduction Guide (R01AN5413)

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 7 of 35
Mar.14.22

1.4 Definitions in the Program (sketch)
Definitions in the program (sketch) are indicated in Figure 1.2.

Figure 1.2 Program definition details

1) The “swPin” pin to control the onboard switch (SW_USR) is set to 18 and assigned to D18. The A0 pin
(ANALOGPin0) is specified for measuring the analog output of the ambient light sensor. The A2 pin
(ANALOGPin2) and A3 pin (ANALOGPin3) are specified for measuring the selection circuit reference
voltage. Furthermore, the control pins to specify the measurement range of the ambient light sensor are
set to 0 and 1 and assigned to D0 and D1. In addition, D5 (software PWM) and D6 (hardware PWM) are
assigned as analog PWM signal output pins that control LED brightness.

2) Next, 16-bit variable “old_time” is defined to check elapsed time (milliseconds), 16-millisecond counter
“count16ms” is defined to count 10 seconds, and checking variable “sw_work” is defined to check switch
status. Furthermore, two-dimensional array “ad_value” that stores measured values sent from the
sensor is defined. The number of measurements is counted by variable “ad_time”.

1)

2)

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 8 of 35
Mar.14.22

1.5 Initial Setting Processing
The initial settings section of the program (sketch) is shown in Figure 1.3.

In this figure, the switch input pin is designated for input and the ambient light sensor control pins are
designated for output as a setup function.

Figure 1.3 Initial setting processing section

1.6 Main Processing Part
The leading section of the main processing, which is executed repeatedly, is shown in Figure 1.4. When
preparations for project startup have been set correctly, the sketch will be downloaded, then executed until
the leading section of the main processing.

Figure 1.4 The leading section of the main process

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 9 of 35
Mar.14.22

1.7 Ambient Light Sensor Control
The 10-bit A/D converter does not have sufficient accuracy due to the wide dynamic range (0.2 μA to 2 mA

with illuminance 0.1 lux to 1000 lux) of the ambient light sensor (NJL7302L-F3) output current. For this
reason, it is necessary to use a 1-kΩ load resistor within an illuminance range of 10 lux to 1000 lux and a 51-
kΩ load resistor within an illuminance range of 0.1 lux to 20 lux.

In this sample code, LED light brightness is controlled by PWM output according to the analog input from
the ambient light sensor. The PWM duty ratio is linearly controlled (256 divisions) from 100% (50 lux) to 0%
(500 lux).

2. Operating Conditions
The operation of the sample code provided with this application note has been tested under the following
conditions.

Table 2.1 Operating conditions

Item Description
Microcontroller used RL78/G14 (R5F104MLAFB：RL78G14_FPB)
Operating frequency  High-speed on-chip oscillator clock (fIH): 32 MHz

 CPU/peripheral hardware clock: 32 MHz
Operating voltage 3.3 V (can be operated at 2.75 V to 5.5 V)

LVD operation: Reset mode
LVD detection voltage (VLVD)

At rising edge: 2.81 V typ. (2.76 V to 2.87 V)
At falling edge: 2.75 V typ. (2.70 V to 2.81 V)

Integrated development
environment

Renesas Electronics
CS+ for CC V8.05.00

Renesas Electronics
e² studio V7.7.0

IAR Systems
IAR Embedded Workbench for RL78

C compiler Renesas Electronics
CC-RL V1.10.00

IAR Systems
IAR C/C++ Compiler v4.20.1 for RL78

3. Related Application Notes
The application notes related to this application note are shown below.

Refer to these together with this application note.

RL78 Family Arduino API Introduction Guide (R01AN5413)

RL78/G14 Onboard LED Flashing Control (Arduino API) (R01AN5384)

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 10 of 35
Mar.14.22

4. Hardware
4.1 Example of Hardware Configuration

Figure 4.1 shows the hardware that is used in this application note.

Figure 4.1 Hardware configuration example
Note 1: Metal oxide film resistor

Note 2: This conceptual diagram is simplified in order to summarize the connections.

 As the power supply voltage, 3.3 V is supplied via USB.

4.2 List of Pins Used
Table 4.1 shows the pins used and their functions.

Table 4.1 Pins used and their functions

Pin Port Name I/O Function
D0 P143 Output Low-illuminance selection signal
D1 P144 Output High-illuminance selection signal
D5 P77 Output PWM (software) signal
D6 P10 Output PWM signal
A0 P26 Analog Input Illuminance signal input
A2 P24 Analog Input Comparison voltage input for high illuminance
A3 P23 Analog Input Comparison voltage input for low illuminance
D18 P137 Input Switch (SW_USR) input

RL78/G14 FPB

Arduino connector

3V3

A0

A2
A3

D0
D1

D5
D6

Ambient light
sensor

LED

1kΩ Note 1 51kΩ Note 1

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 11 of 35
Mar.14.22

5. Software
5.1 Summary of Operation
In this application note, when the main processing (loop) starts upon completion of the initial pin settings,
ambient light sensor measurement starts. Measurement is performed four times. The duty ratio of the LED
drive PWM signal is calculated from the average value of four measured values, and then the duty ratio is
output from the analog output pin as a PWM signal.

Subsequently, measurement is performed at intervals of 10 seconds or at each press of the switch.

Details are explained in (1) to (2) below.

(1) Use the "setup" function to specify the settings of the pins to be used.
 Specify the onboard SW_USR switch read pin (swPin) for digital input.

 Specify the pins to set the load resistor of the ambient light sensor (D1 and D0 pins) for digital output.

(2) Use the "loop" function to perform the main processing.
 Obtain 12 bits (bit15 to bit4) (in units of 16 milliseconds) of elapsed time (milliseconds) from startup.

 Check whether the obtained data has changed from the old data (old_time).

 If the data remains unchanged, terminate the processing and return to the beginning of the loop
function.

 If the data has changed (16 milliseconds passed), update the old data (old_time) to the obtained data.

 Count up the 10-second (625) counter for activating the sensor.

 Check the state of the switch connected to D18.

 If the switch has not been pressed and 10 seconds have not passed, the beginning of the loop
function is resumed.

 When the switch has been pressed or 10 seconds have passed, measure the illuminance.

 Apply the load resistance of the ambient light sensor to start measurement.

 Wait until the data becomes stable (approximately 16 milliseconds).

 Measure the sensor output voltage using the analog input (A0 pin) and the load resistor drive
voltage using the analog input (A2 pin) four times respectively, and then calculate the average
values.

 Disconnect the load resistor.

 Calculate the current value from the obtained voltage.

 Calculate the illuminance from the current value.

 Calculate the duty ratio of the LED drive PWM signal from the obtained illuminance value, and
then set the duty ratio in the analog output function.

 The beginning of the loop function is resumed.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 12 of 35
Mar.14.22

5.2 List of Constants
Table 5.1 shows constants that are used in the sample code.

Table 5.1 Constants used in sample code

Constant Name Setting Value Description
swPin 18 SW_USR read pin number

high_range 1 High-illuminance selection pin number
low_range 0 Low-illuminance selection pin number
sensorin 0 Ambient light sensor voltage input pin number

sensorrefh 2 Ambient light sensor high-illuminance load drive voltage input pin
number

sensorrefl 3 Ambient light sensor low-illuminance load drive voltage input pin
number

pwm_s 5 PWM using pin 5
pwm_h 6 PWM using pin 6

DEFAULT 0 A/D reference voltage = VDD
INTERNAL 1 A/D reference voltage = internal reference voltage
EXTERNAL 2 A/D reference voltage = external power voltage
SECOND10 625 Number of 16-millisecond pulses for measuring 10 seconds

5.3 List of Variables
 Table 5.2 lists global variables.

 Table 5.2 Global variables

Type Variable Name Description Function used
unsigned int old_time Elapsed time (milliseconds) from the

previous startup
loop()

Int count16ms 16-millisecond counter for counting 10
seconds

loop()

char sw_work For checking switch status loop()
unsigned int ad_value[2][4] Buffer for four analog conversion results loop()
char ad_time For counting the number of analog

conversions
loop()

unsigned char g_dachannel [6] PWM control data (for input) analogWrite(),
r_tau0_channel0_interrupt()

unsigned char g_da_time[3] Software PWM control data r_tau0_channel0_interrupt()

注 Arduino の API ではなく internal の processing function 名で示しています

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 13 of 35
Mar.14.22

5.4 List of Functions
Table 5.3 to Table 5.4 shows a list of functions.

Table 5.3 List of functions (1/2)

Function Name Overview
loop Main processing (sketch)
setup Initialization function (sketch)
get_PWM_duty Calculates the PWM output duty ratio from the current value of the ambient light

sensor.
pinMode Specifies the operation mode (input mode, output mode, or input mode with an

internal pull-up resistor enabled) for the pin.
digitalWrite Outputs data to the pin.
digitalRead Reads the pin state.
micros Returns the time in microseconds from the start of program execution to the

present time.
millis Returns the time in milliseconds from the start of program execution to the

present time.
delay Stops the program for the time specified in milliseconds.
delayMicroseconds Stops the program for the time specified in microseconds.
analogRead Reads the value of the specified analog pin.
analogWrite Outputs the analog value (PWM signal) from the specified pin.
analogReference Specifies the reference voltage for A/D conversion of analog input.
Wire.begin Initializes the I2C library and connects it as the master.
Wire.requestFrom Starts reading data from the specified slave. The read operation is processed as

an interrupt.
Wire_requestFromS Starts reading data from the specified slave. The read operation is processed as

an interrupt. It is possible to specify that stop conditions are generated when
reception is completed.
This is an internal processing function for Wire.requestFrom.

Wire_requestFromsub This is an internal processing function for Wire.requestFrom.
Wire.available Returns the number of bytes that can be read by using Wire.read from the

reception buffer.
Wire.read Reads data from the reception buffer.
Wire.beginTransmission Prepares for sending data to the specified slave.
Wire.write Writes the send data to the transmission buffer.
Wire_writec Adds one-character data to the transmission buffer.

This is an internal processing function for Wire.write.
Wire_writeb Adds a data block to the transmission buffer.

This is an internal processing function for Wire.write.
Wire.endTransmission Actually sends the send data that is set in the buffer via the I2C bus. It is

possible to specify that stop conditions are generated when transmission is
completed.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 14 of 35
Mar.14.22

Table 5.4 List of functions (2/2)

Function Name Overview
Wire1.begin Initializes the I2C library of Pmod connector 1 and connects it as the master.
Wire1.requestFrom Starts reading data from the specified slave. The read operation is processed as

an interrupt.
Wire1_requestFromS Starts reading data from the specified slave. The read operation is processed as

an interrupt. It is possible to specify that stop conditions are generated when
reception is completed.
This is an internal processing function for Wire1.requestFrom.

Wire1_requestFromsub This is an internal processing function for Wire1.requestFrom.
Wire1.available Returns the number of bytes that can be read by using Wire1.read from the

reception buffer.
Wire1.read Reads data from the reception buffer.
Wire1.beginTransmission Prepares for sending data to the specified slave.
Wire1.write Writes the send data to the transmission buffer.
Wire1_writec Adds one-character data to the transmission buffer.

This is an internal processing function for Wire1.write.
Wire1_writeb Adds a data block to the transmission buffer.

This is an internal processing function for Wire1.write.
Wire1.endTransmission Actually sends the send data that is set in the buffer via the I2C bus. It is

possible to specify that stop conditions are generated when transmission is
completed.

Wire2.begin Initializes the I2C library of Pmod connector 2 and connects it as the master.
Wire2.requestFrom Starts reading data from the specified slave. The read operation is processed as

an interrupt.
Wire2_requestFromS Starts reading data from the specified slave. The read operation is processed as

an interrupt. It is possible to specify that stop conditions are generated when
reception is completed.
This is an internal processing function for Wire2.requestFrom.

Wire2_requestFromsub This is an internal processing function for Wire2.requestFrom.
Wire2.available Returns the number of bytes that can be read by using Wire2.read from the

reception buffer.
Wire2.read Reads data from the reception buffer.
Wire2.beginTransmission Prepares for sending data to the specified slave.
Wire2.write Writes the send data to the transmission buffer.
Wire2_writec Adds one-character data to the transmission buffer.

This is an internal processing function for Wire2.write.
Wire2_writeb Adds a data block to the transmission buffer.

This is an internal processing function for Wire2.write.
Wire2.endTransmission Actually sends the send data that is set in the buffer via the I2C bus. It is

possible to specify that stop conditions are generated when transmission is
completed.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 15 of 35
Mar.14.22

5.5 Specification of Functions
The function specifications of the sample code are shown below.

[Function name] loop
Overview Main function
Header AR_LIB_PORT.h, AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h,

AR_SKETCH.h, r_cg_userdefine.h, LCD_LIB.h
Declaration void loop(void);
Description Upon activation, this function checks the elapsed time from startup and checks

switch status at intervals of 16 milliseconds. When the switch is depressed or one
minute has passed, the sensor (HS3001) is activated. After approximately 48
milliseconds have passed after startup, this function reads the measurement result
from the sensor, calculates temperature and humidity, and then displays the
calculation result on the LCD.

Argument None
Return value None

[Function name] setup
Overview Initialization function
Header AR_LIB_PORT.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void setup(void);
Description This function sets up the pins and A/D converter used by the program (sketch).
Argument None
Return value None

[Function name] get_PWM_duty
Overview This function calculates the PWM signal duty ratio from the current value of the

ambient light sensor.
Header r_cg_macrodriver.h, r_cg_userdefine.h
Declaration uint8_t get_PWM_duty (uint16_t value);
Description The duty ratio (0 to 255) of the 255-cycle PWM signal is calculated from the 10-bit

data specified by the argument.
Argument uint16_t value : Current value of the ambient light sensor
Return value uint8_t : Duty ratio (0 to 255)

[Function name] pinMode
Overview Function to set the pin function
Header AR_LIB_PORT.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration void pinMode(uint8_t pin,uint8_t mode);
Description The pin indicated by the first argument is set to the mode indicated by the second

argument.
Argument uint8_t pin

uint8_t mode
Number of the pin to be specified
Specifies the pin mode with
OUTPUT/INPUT/INPUT_PULLUP

Return value None

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 16 of 35
Mar.14.22

[Function Name] digitalWrite
Overview Function to output digital data to a pin
Header AR_LIB_PORT.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration void digitalWrite(uint8_t pin, uint8_t value);
Description The data indicated by the second argument is output to the pin indicated by the first

argument.
Argument uint8_t pin :

uint8_t value :
Number of the pin for data output
Data to output (HIGH/LOW)

Return value None

[Function Name] digitalRead
Overview Function to read out digital data from a pin
Header AR_LIB_PORT.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration uint8_t digitalRead(uint8_t pin);
Description The state of the pin specified by the argument is read out
Argument uint8_t pin : Number of the pin to be read out
Return value uint8_t : Data that was red out (HIGH/LOW)

[Function Name] micros
Overview Function to obtain the elapsed time in microsecond units
Header AR_LIB_TIME.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration uint32_t micros(void);
Description Returns the time elapsed from startup, in microsecond units.
Argument None
Return value uint32_t Elapsed time in microsecond units

[Function name] millis
Overview Function to obtain the elapsed time in millisecond units
Header AR_LIB_TIME.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration uint32_t millis (void);
Description Returns the time elapsed from startup, in millisecond units.
Argument None
Return value uint32_t : Elapsed time in millisecond units

[Function Name] delay
Overview A function that waits for a certain length of time in milliseconds
Header AR_LIB_TIME.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration uint32_t delay(uint32_t time);
Description This function waits for the length of time specified for an argument in milliseconds.
Argument uint32_t time Wait time (in milliseconds)
Return value None

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 17 of 35
Mar.14.22

[Function Name] delayMicroseconds
Overview A function that waits for a certain length of time in microseconds
Header AR_LIB_TIME.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration void delayMicroseconds(uint32_t time);
Description This function waits for the length of time specified for an argument in microseconds.
Argument uint32_t time Wait time (in microseconds)
Return value None

[Function Name] analogRead
Overview Analog input function
Header AR_LIB_ANALOG.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration uint16_t analogRead (uint8_t pin);
Description This function converts the analog voltage of the pin specified by the argument to a

digital voltage, and then returns the A/D conversion result.
Argument uint8_t Pin to be converted
Return value uint16_t A/D conversion result

[Function Name] analogWrite
Overview Analog output function
Header AR_LIB_ANALOG.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration void analogWrite (uint8_t pin, value);
Description This function outputs the PWM signal of the specified duty ratio to the pin specified

by the argument.
Argument uint8_t

uint8_t
Output pin
Value to be output

Return value None A/D conversion result

[Function Name] analogReference
Overview Analog reference voltage setting function
Header AR_LIB_ANALOG.h, r_cg_macrodriver.h, r_cg_userdefine.h
Declaration void analogReference (uint8_t type);
Description This function specifies the A/D conversion reference voltage.
Argument uint8_t Reference voltage setting

DEFAULT: VDD = reference voltage
INTERNAL: Internal reference voltage
EXTERNAL: ADREF pin voltage

Return value None

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 18 of 35
Mar.14.22

[Function Name] Wire.begin
Overview Function that prepares for using the I2C bus
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void Wire.begin(void);
Description This function initializes IICA0 as a preparation for using the I2C bus.
Argument None
Return value None

[Function Name] Wire.requestFrom
Overview Function that prepares for receiving data from the slave
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void Wire.requestFrom(uint8_t saddr7, uint16_t bytes, uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

[Function Name] Wire_requestFromS
Overview Function that prepares for receiving data from the slave
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void Wire_requestFromS(uint8_t saddr7, uint16_t bytes);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it issues the
stop condition and releases the bus.
(This function is used for the internal processing of Wire.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes

7-bit slave address
Number of bytes to be received

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 19 of 35
Mar.14.22

[Function Name] Wire_requestFromSub
Overview Internal function that prepares for receiving data from the slave
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void Wire_requestFromSub(uint8_t saddr7, uint16_t bytes , uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.
(This function is an internal function for Wire.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value None
Remarks g_status: Communication status

If the value that is set is 0x50, startup is successful. Afterward, the value changes
to 0x60 (now receiving), and then to 0x70 (reception completed).

The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:
startup failed
g_erflag: Error flag

0x00: normal, 0x01: buffer overflow, 0x04: other errors
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

[Function Name] Wire.available
Overview Function that returns the number of bytes that can be read
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration uint8_t Wire.available(void);
Description This function uses the Wire.requestFrom function to receive data and then returns

the number of bytes of the data stored in a buffer.
Argument None
Return value uint8_t Number of bytes that can be read from the buffer

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 20 of 35
Mar.14.22

[Function Name] Wire.read
Overview Function that reads data from the receive buffer
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration uint8_t Wire.read(void);
Description This function reads data from the buffer.
Argument None
Return value uint8_t Data read from the buffer (or 0x00)

[Function Name] Wire.beginTransmission
Overview Function that prepares for sending data to the slave
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration void Wire.beginTransmission(uint8_t saddr7);
Description This function converts the slave address to an 8-bit address, stores it in the "sladdr8"

variable, and then issues the start condition to secure the bus.
Argument uint8_t saddr7 7-bit slave address
Return value uint8_t 0x00: Normal

0x04: Other errors
Remarks g_erflag: Communication status

If the value that is set is 0x00, startup is successful.
If the value is 0x04, the function failed to secure the I2C bus.

[Function Name] Wire.write
Overview Function that sets the send data
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration uint8_t Wire.write(uint8_t data); uint8_t Wire.write(uint8_t *buff, uint8_t bytes);
Description This function stores one character specified for argument 1 or the data block

specified for argument 2 in the send buffer.
Argument 1 uint8_t data Data to be sent
Argument 2 uint8_t *buff

uint8_t byte
Data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire_writec
Overview Function that sets the send data
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, r_cg_userdefine.h
Declaration uint8_t Wire_writec(uint8_t data);
Description This function stores one character specified for argument 1.

(This function is an internal function that processes 1 character in the Wire.write
function.)

Argument uint8_t data Data to be sent
Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 21 of 35
Mar.14.22

[Function Name] Wire_writeb
Overview Function that sets the send data
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, and r_cg_userdefine.h
Declaration uint8_t Wire_writeb(uint8_t *buff, uint8_t bytes);
Description This function stores the data of the block specified for an argument in the send

buffer.
(This function is an internal function that processes a block in the Wire.write
function.)

Argument uint8_t *buff
uint8_t bytes

Address of the data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire.endTransmission
Overview Function that sends data to the slave
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE.h, and r_cg_userdefine.h
Declaration void Wire_ endTransmission(uint8_t STOP);
Description This function sends data from the send buffer to the slave.
Argument uint8_t STOP Processing performed when sending is completed:

0: Issues the restart condition to secure the bus.
1: Releases the bus.

Return value uint8_t Result of sending:
0: Success
1: The number of bytes exceeded the buffer size.
2: NACK was replied to the slave address.
3: NACK was replied to the send data.
4: Other errors

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 22 of 35
Mar.14.22

[Function Name] Wire1.begin
Overview Function that prepares for using the I2C bus of PMOD1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1.begin(void);
Description This function initializes IICA0 as a preparation for using the I2C bus.
Argument None
Return value None

[Function Name] Wire1.requestFrom
Overview Function that prepares for receiving data from the slave using the I2C bus of PMOD1

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1.requestFrom(uint8_t saddr7, uint16_t bytes, uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 23 of 35
Mar.14.22

[Function Name] Wire1_requestFromS
Overview Function that prepares for receiving data from the slave using the I2C bus of PMOD1

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1_requestFromS(uint8_t saddr7, uint16_t bytes);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it issues the
stop condition and releases the bus.
(This function is used for the internal processing of Wire1.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes

7-bit slave address
Number of bytes to be received

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

[Function Name] Wire1_requestFromSub
Overview Internal function that prepares for receiving data from the slave using the I2C bus of

PMOD1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1_requestFromSub(uint8_t saddr7, uint16_t bytes, uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.
(This function is an internal function for Wire1.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value None
Remarks g_status: Communication status

If the value that is set is 0x50, startup is successful. Afterward, the value changes
to 0x60 (now receiving), and then to 0x70 (reception completed).

The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:
startup failed
g_erflag: Error flag

0x00: normal, 0x01: buffer overflow, 0x04: other errors
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 24 of 35
Mar.14.22

[Function Name] Wire1.available
Overview Function that returns the number of bytes that can be read from the receive buffer of

Wire1.
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration uint8_t Wire1.available(void);
Description This function uses the Wire1.requestFrom function to receive data and then returns

the number of bytes of the data stored in a buffer.
Argument None
Return value uint8_t Number of bytes that can be read from the buffer

[Function Name] Wire1.read
Overview Function that reads data from the receive buffer
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration uint8_t Wire1.read(void);
Description This function reads data from the buffer.
Argument None
Return value uint8_t Data read from the buffer (or 0x00)

[Function Name] Wire1.beginTransmission
Overview Function that prepares for sending data to the slave on the I2C bus of the Pmod1

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1.beginTransmission(uint8_t saddr7);
Description This function converts the slave address to an 8-bit address, stores it in the "sladdr8"

variable, and then issues the start condition to secure the bus.
Argument uint8_t saddr7 7-bit slave address
Return value uint8_t 0x00: Normal

0x04: Other errors
Remarks g_erflag: Communication status

If the value that is set is 0x00, startup is successful.
If the value is 0x04, the function failed to secure the I2C bus.

[Function Name] Wire1.write
Overview Function that sets the send data to the slave on the I2C bus of the Pmod1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration uint8_t Wire1.write(uint8_t data); uint8_t Wire1.write(uint8_t *buff, uint8_t bytes);
Description This function stores one character specified for argument 1 or the data block

specified for argument 2 in the send buffer.
Argument 1 uint8_t data Data to be sent
Argument 2 uint8_t *buff

uint8_t byte
Data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 25 of 35
Mar.14.22

[Function Name] Wire1_writec
Overview Function that sets the send data to the slave on the I2C bus of the Pmod1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration uint8_t Wire1_writec(uint8_t data);
Description This function stores one character specified for argument 1.

(This function is an internal function that processes 1 character in the Wire1.write
function.)

Argument uint8_t data Data to be sent
Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire1_writeb
Overview Function that sets the send data to the slave on the I2C bus of the Pmod1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration uint8_t Wire1_writeb(uint8_t *buff, uint8_t bytes);
Description This function stores the data of the block specified for an argument in the send

buffer.
(This function is an internal function that processes a block in the Wire1.write
function.)

Argument uint8_t *buff
uint8_t bytes

Address of the data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire1.endTransmission
Overview Function that sends data to the slave on the I2C bus of the Pmod1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE1.h, r_cg_userdefine.h
Declaration void Wire1_ endTransmission(uint8_t STOP);
Description This function sends data from the send buffer to the slave.
Argument uint8_t STOP Processing performed when sending is completed:

0: Issues the restart condition to secure the bus.
1: Releases the bus.

Return value uint8_t Result of sending:
0: Success
1: The number of bytes exceeded the buffer size.
2: NACK was replied to the slave address.
3: NACK was replied to the send data.
4: Other errors

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 26 of 35
Mar.14.22

[Function Name] Wire2.begin
Overview Function that prepares for using the I2C bus of PMOD1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2.begin(void);
Description This function initializes IICA0 as a preparation for using the I2C bus.
Argument None
Return value None

[Function Name] Wire2.requestFrom
Overview Function that prepares for receiving data from the slave using the I2C bus of PMOD1

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2.requestFrom(uint8_t saddr7, uint16_t bytes, uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 27 of 35
Mar.14.22

[Function Name] Wire2_requestFromS
Overview Function that prepares for receiving data from the slave using the I2C bus of PMOD1

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2_requestFromS(uint8_t saddr7, uint16_t bytes);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it issues the
stop condition and releases the bus.
(This function is used for the internal processing of Wire2.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes

7-bit slave address
Number of bytes to be received

Return value uint8_t 0x00: Normal
0x01: Buffer overflow
0x04: Other errors

Remarks g_status: Communication status
If the value that is set is 0x50, startup is successful. Afterward, the value changes

to 0x60 (now receiving), and then to 0x70 (reception completed).
The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:

startup failed
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

[Function Name] Wire2_requestFromSub
Overview Internal function that prepares for receiving data from the slave using the I2C bus of

PMOD1 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2_requestFromSub(uint8_t saddr7, uint16_t bytes, uint8_t stop);
Description This function issues the start condition and sends the slave address so that data can

be received under the conditions specified by using arguments. The subsequent
processing is performed as forms of interrupts. When this function ends, it performs
the processing specified by the third argument.
(This function is an internal function for Wire2.requestFrom.)

Argument uint8_t saddr7
uint16_t bytes
uint8_t stop

7-bit slave address
Number of bytes to be received
Processing to be performed when the function ends (If
this argument is omitted, the function releases the bus.)
0: Issues the restart condition. (The bus is held.)
1: Issues the stop condition. (The bus is released.)

Return value None
Remarks g_status: Communication status

If the value that is set is 0x50, startup is successful. Afterward, the value changes
to 0x60 (now receiving), and then to 0x70 (reception completed).

The other values are as follows: 0x81: buffer error, 0x84: no data received, 0x8F:
startup failed
g_erflag: Error flag

0x00: normal, 0x01: buffer overflow, 0x04: other errors
Processing that starts communication with the I2C bus must not be performed

during execution of this function.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 28 of 35
Mar.14.22

[Function Name] Wire2.available
Overview Function that returns the number of bytes that can be read from the receive buffer of

Wire2.
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration uint8_t Wire2.available(void);
Description This function uses the Wire2.requestFrom function to receive data and then returns

the number of bytes of the data stored in a buffer.
Argument None
Return value uint8_t Number of bytes that can be read from the buffer

[Function Name] Wire2.read
Overview Function that reads data from the receive buffer
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration uint8_t Wire2.read(void);
Description This function reads data from the buffer.
Argument None
Return value uint8_t Data read from the buffer (or 0x00)

[Function Name] Wire2.beginTransmission
Overview Function that prepares for sending data to the slave on the I2C bus of the Pmod2

connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2.beginTransmission(uint8_t saddr7);
Description This function converts the slave address to an 8-bit address, stores it in the "sladdr8"

variable, and then issues the start condition to secure the bus.
Argument uint8_t saddr7 7-bit slave address
Return value uint8_t 0x00: Normal

0x04: Other errors
Remarks g_erflag: Communication status

If the value that is set is 0x00, startup is successful.
If the value is 0x04, the function failed to secure the I2C bus.

[Function Name] Wire2.write
Overview Function that sets the send data to the slave on the I2C bus of the Pmod2 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration uint8_t Wire2.write(uint8_t data); uint8_t Wire2.write(uint8_t *buff, uint8_t bytes);
Description This function stores one character specified for argument 1 or the data block

specified for argument 2 in the send buffer.
Argument 1 uint8_t data Data to be sent
Argument 2 uint8_t *buff

uint8_t byte
Data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 29 of 35
Mar.14.22

[Function Name] Wire2_writec
Overview Function that sets the send data to the slave on the I2C bus of the Pmod2 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration uint8_t Wire2_writec(uint8_t data);
Description This function stores one character specified for argument 1.

(This function is an internal function that processes 1 character in the Wire2.write
function.)

Argument uint8_t data Data to be sent
Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire2_writeb
Overview Function that sets the send data to the slave on the I2C bus of the Pmod2 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration uint8_t Wire2_writeb(uint8_t *buff, uint8_t bytes);
Description This function stores the data of the block specified for an argument in the send

buffer.
(This function is an internal function that processes a block in the Wire2.write
function.)

Argument uint8_t *buff
uint8_t bytes

Address of the data block to be sent
Number of bytes to be sent

Return value uint8_t Number of bytes stored in the buffer
Remarks If the value of "g_erflag" is 0x01, the send buffer has overflowed. If the value is 0x04,

the function failed to secure the I2C bus.

[Function Name] Wire2.endTransmission
Overview Function that sends data to the slave on the I2C bus of the Pmod2 connector
Header AR_LIB_TIME.h, r_cg_macrodriver.h, AR_LIB_WIRE2.h, r_cg_userdefine.h
Declaration void Wire2_ endTransmission(uint8_t STOP);
Description This function sends data from the send buffer to the slave.
Argument uint8_t STOP Processing performed when sending is completed:

0: Issues the restart condition to secure the bus.
1: Releases the bus.

Return value uint8_t Result of sending:
0: Success
1: The number of bytes exceeded the buffer size.
2: NACK was replied to the slave address.
3: NACK was replied to the send data.
4: Other errors

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 30 of 35
Mar.14.22

5.6 Flowcharts
5.6.1 Initial setting function
Figure 5.1 shows the flowchart of the initial setting.

Figure 5.1 Initial setting function

setup

Internal switch control pin
setting

pinMode()

Illuminance selection pin
setting

i M d ()

Set the “swPin” pin to INPUT.

Set the D0 and D1 pins to OUTPUT.

A/D reference voltage setting
analogReference()

Set the analog reference voltage to VDD.

return

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 31 of 35
Mar.14.22

5.6.2 Main Processing Function
Figure 5.2 to Figure 5.3 show a flowchart of the main processing function.

Figure 5.2 Main Function (1/2)

loop

A

Read elapsed time (milliseconds) from bit15 to bit4.
Variable “time_work” ← “millis() & 0x0FFF0”

Update the previous time.

Reading elapsed time
millis()

Changed from the
previous value?

No

Yes H

When the time change is within 16 milliseconds from
the previous time, no processing is required.

Variable “old_time” ← variable “time_work”

Count 16 milliseconds.

Variable “count16ms” ← “count16ms” + 1

0x01 0x02

B

Read switch status. Shift variable “sw_work” 1 bit to the left.
Variable “sw_work” ← “sw_work” ＋ “swPin”

Extract switch status change.

Variable “sw_data” ← “sw_work & 0x03”: Lower-order
2 bits are extracted.

Edge detected?

No

Yes

Set the measurement start flag.

Variable “m_time” ← 0x01: Measurement start flag set

10 seconds passed?

No

Yes

Set the measurement start flag.

Variable “m_time” ← 0x01: Measurement start flag set

Clear the 10-second counter.

Variable “count16ms” ← 0x0000: Counter clear

Start flag

Others

C

Extracted value = 0x02: A switch pressing edge present

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 32 of 35
Mar.14.22

Figure 5.3 Main Function (2/2)

A C

Connect a load resistor and start measurement.

Update the measurement flag.

Variable “m_time” ← 0x02

Activating ambient light sensor
 digitalWrite()

Ambient light sensor activation processing (m_time = 1)

B Ambient light sensor measurement result read
processing (m_time = 2)

Read the sensor output. Reading sensor data
analogRead(sensorin)

Measured data input
work = 0,work =16,+1

Read measurement results (counter “work”: 0 to 3).

Read the voltage at the lower end of the load
resistor.

Reading resistor data (lower end)
analogRead(sensorefh)

Measured data input

Isolating ambient light sensor
 digitalWrite()

Isolate the load resistor and terminate measurement.
終

Calculate load resistor voltage.

Calculate the voltage between both ends of the load
resistor.

Calculate load resistor current.

Calculating analog output
value

Calculate the analog output duty ratio to the
obtained current value.

Calculate current value (µA) from the voltage
between both ends of the load resistor obtained from
the four measurement results.

return

Set brightness according to measurement result.

Analog output
analogWrite()

Output the PWM signal of the obtained duty ratio to
the two pins.

Clear the measurement flag.

Variable “m_time” ← 0x00

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 33 of 35
Mar.14.22

5.6.3 Processing function to obtain the PWM signal duty ratio from the current value of the
ambient light sensor

Figure 5.4 shows a flowchart of the processing function to obtain the PWM signal duty ratio from the current
value of the ambient light sensor.

Figure 5.4 Processing function to obtain the PWM signal duty ratio from the current value of the
ambient light sensor

Remark: To simplify the calculation, the upper-limit value is set to 1020 (µA) and the difference from this

value is calculated. Right-shift the calculation result by two bits so that a value from 0 to 1020 falls
within a range of 0 to 255.

When the brightness is too high, set the PWM
duty ratio to 0%.

Variable “int_work” ← (10202040 - current value)

Variable “work” ← (variable “int_work” >> 2)

get_PWM_duty

Current value ≥ 1 mA

No

Yes

Set PWM duty ratio to 0.

Calculate the difference from
1 mA.

Divide the difference by 4 to fall
within a range of 0 to 255.

return

Return variable “work”.

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 34 of 35
Mar.14.22

6. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents
RL78/G14 User's Manual: Hardware (R01UH0186)
RL78 family User's Manual: Software (R01US0015)
RL78/G14 Fast Prototyping Board User’s Manual (R20UT4573)
(The latest versions can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest versions can be downloaded from the Renesas Electronics website.)

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

RL78/G14 Analog Input/Output (Arduino API)

R01AN6115EJ0100 Rev.1.00 Page 35 of 35
Mar.14.22

Revision History

Rev. Date
Description
Page Summary

1.00 2022.3.14 — First Edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	1.1 Program Execution Environment
	1.2 Program (Sketch) Configuration
	1.3 Preparations for Project Startup
	1.4 Definitions in the Program (sketch)
	1.5 Initial Setting Processing
	1.6 Main Processing Part
	1.7 Ambient Light Sensor Control

	2. Operating Conditions
	3. Related Application Notes
	4. Hardware
	4.1 Example of Hardware Configuration
	4.2 List of Pins Used

	5. Software
	5.1 Summary of Operation
	5.2 List of Constants
	5.3 List of Variables
	5.4 List of Functions
	5.5 Specification of Functions
	5.6 Flowcharts
	5.6.1 Initial setting function
	5.6.2 Main Processing Function
	5.6.3 Processing function to obtain the PWM signal duty ratio from the current value of the ambient light sensor

	6. Sample Code
	7. Reference Documents
	Website and Support
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

