

RL78/G11

R01AN3617EJ0100 Rev. 1.00 Feb. 03, 2017

Power Supply Voltage Monitoring IAR

Introduction

This application note explains how to implement power supply voltage monitoring when selecting an internal reference voltage as the positive-side reference voltage of the A/D converter.

Target Device

RL78/G11

When applying the sample program covered in this application note to another microcomputer, modify the program according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified program.

Contents

1.	Specifications	3
1.1	Approaches to Measuring Power Supply Voltage	
1.2	Analog Input Voltage Measurement Method	4
1.3	Evaluation of Conversion Result	
1.4	Acquiring Data Flash Library	
2.	Conditions for Confirming Operations	5
3.	Related Application Notes	5
4.	Hardware Descriptions	
4.1	Hardware Configuration Example	6
4.2	List of Pins Used	6
5.	Software Descriptions	7
5.1	Operation Summary	7
5.2	List of Option Byte Settings	
5.3	List of Constants.	8
5.4	List of Variables	g
5.5	List of Functions	g
5.6	Function Specifications	10
5.7	Flowcharts	12
5.7		
5.7	7.2 System Function	
5.7		
5.7	· ·	
5.7		
5.7	· · · · · · · · · · · · · · · · · · ·	
5.7	· · · · · · · · · · · · · · · · · · ·	
5.7		
	7.9 Initial Setting for "main"	
	7.10 A/D Voltage Comparator Operation Enable Function	
	7.11 A/D Conversion Start Function	
	7.12 A/D Conversion Stop Function	
	7.13 A/D Conversion End Interrupt Processing	
	7.14 12-Bit Interval Timer Start Function	
	7.15 12-Bit Interval Timer Stop Function	
	7.16 TAU0 Channel 1 Operation Start Function	
	7.17 TAU0 Channel 1 Operation Stop Function	
6.	Sample Code	48
7	Deference Desuments	40

Specifications

1.1 Approaches to Measuring Power Supply Voltage

In this application note, an internal reference voltage is selected as the positive-side reference voltage of the A/D converter, and an external input voltage that has been resistively divided is measured using the A/D converter.

Table 1.1 shows the peripheral functions to be used and their usage. Figure 1.1 shows the basic circuit under measurement.

Table 1.1 Peripheral Functions to be Used and Their Usage

Peripheral Function	Usage		
A/D converter	Measures resistive-divided power supply voltages.		
12-bit interval timer	Triggers A/D conversion.		
Timer array unit channel 1	Drives the LED. (0.5 sec period)		

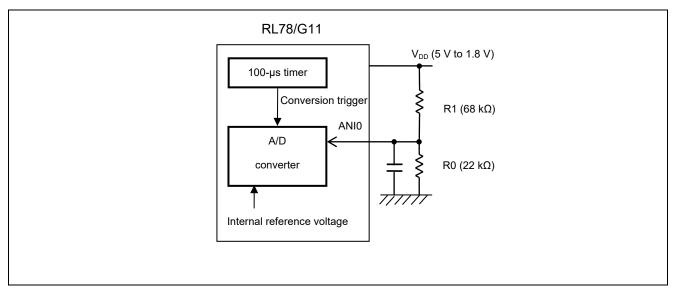


Figure 1.1 Basic Circuit

The input voltage to the ANI0 pin must be at or below the internal reference voltage (typ. 1.45 V). Hence a voltage obtained by resistive dividing of the power supply voltage is input to the ANI0 pin, as in figure 1.1.

In this application note, when the power supply voltage has fallen to 2.2 V or below, that is, when the voltage input to the ANI0 pin is at 0.54 V or lower, the voltage is judged to be low.

Moreover, in order to achieve the above specifications, the RL78/G11 is used in LS mode at an operating frequency of 8 MHz.

1.2 Analog Input Voltage Measurement Method

When selecting an internal reference voltage as the positive-side reference voltage of the A/D converter, while in the conversion-stopped state (ADCS = 0, ADCE = 0), set (ADREFP1, ADREFP0) = (1, 0). Then, after waiting for a stabilization wait time of at least 5 μ s, set ADCE=1. In this application note, a hardware trigger wait mode is used, and so there is no need to count to the reference voltage stabilization wait time count B. Select ANI0 in the ADS register and wait for the A/D conversion start trigger.

In this application note, 8-bit resolution is selected. Further, it is assumed that power supply voltage changes are not sudden, and interrupts by a 12-bit interval timer at every 100 µs are used as the trigger for starting A/D conversion.

1.3 Evaluation of Conversion Result

In this application note, when the power supply voltage falls to 2.2 V or lower, that is, when the voltage input to the ANI0 pin drops to 0.54 V or below, the voltage is judged to be low. The internal reference voltage is typical 1.45 V, and so when the A/D conversion result is 0x5F or lower, an A/D conversion end interrupt is generated.

Moreover, after the A/D conversion end interrupt has been generated, the TO01 output causes an LED to blink.

1.4 Acquiring Data Flash Library

Before compiling, download the latest version of the data flash library, and copy the library files to a folder below the folder r01an3617_ad of this sample code.

Copy "pfdl.h", "pfdl.inc", "pfdl types.h" and "pfdl.a" to the "lib" folder.

The data flash library can be obtained from the Renesas Electronics website.

Please contact a Renesas Electronics sales office for details.

2. Conditions for Confirming Operations

The sample code operations described in this application note are confirmed under the following conditions.

Table 2.1 Operation Check Conditions

Item	Description
Microcontroller used	RL78/G11 (R5F1056A)
Operating frequency	- High-speed on-chip oscillator (HOCO) clock: 8 MHz - CPU/peripheral hardware clock: 8 MHz
Operation voltage	3 V (Operation is possible over a voltage range of 1.8 V to 5 V.) LVD operation (V _{LVD}): Reset mode MIN. 1.8 V
Integrated development environment (IAR)	IAR Embedded Workbench IDE V7.4.1.4269 from IAR Systems.
C compiler (IAR)	IAR C/C++ Compiler for Renesas RL78 V2.21.1.1833 from IAR Systems.
Data flash library (Type, Ver)	FDLRL78 Type04, Ver.1.05 (for IAR V2) ^{Note}

Note: The latest version should be downloaded and evaluated before usage.

3. Related Application Notes

The application notes related to this application note are listed below for reference.

RL78/G13 Data Flash Library Type04 CC-RL (R01AN2827E) Application Note

4. Hardware Descriptions

4.1 Hardware Configuration Example

Figure 4.1 shows an example of the hardware configuration described in this application note.

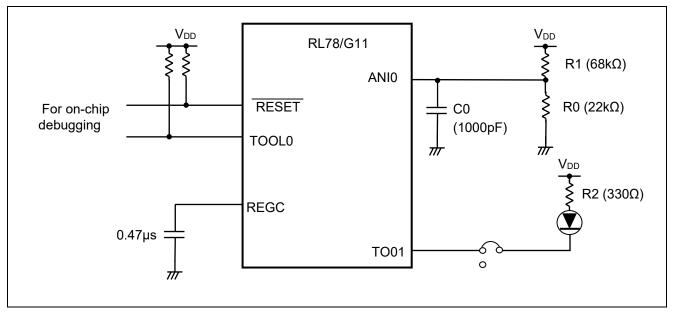


Figure 4.1 Hardware Configuration

- Cautions: 1. This circuit diagram is simplified in order to show a summary of connections. When actually creating the circuit, pin processing and the like should be optimized and the circuit designed so as to satisfy the required electrical characteristics (input-only ports should be each connected to V_{DD} or V_{SS} via a resistor).
 - 2. V_{DD} should be made equal to or higher than the reset release voltage (V_{LVD}) set using LVD.

4.2 List of Pins Used

Table 4.1 lists the pins used and their functions.

Table 4.1 Pins Used and their Functions

Pin Name	I/O	Function
P20/ANI0/AVREFP/IVREF1	Input	Analog input port
P30/ANI21/KR1/TI00/TO01/INTP3/SCK11/	Output	Output for LED1 control
SCL11/PCLBUZ0/TKBO1/SDAA0		

5. Software Descriptions

5.1 Operation Summary

In this application note, an internal reference voltage is selected as the positive-side reference voltage of the A/D converter, and an external input voltage that has been resistively divided is measured using the A/D converter.

A voltage input to the ANI0 pin every 100 µs is A/D-converted.

When the A/D conversion result falls to 0x5F or lower (when the power supply voltage is 2.2 V or below), an A/D conversion end interrupt is generated.

When the A/D conversion end interrupt is generated, the conversion result at that time is written to data flash memory. Also, the TO01 output is used to cause the LED1 to blink with a 0.5 s period.

- (1) Set the initial A/D converter settings.
- <A/D converter>
- The P20/ANI0 pin is used for analog input.
- Select mode is used to select the A/D conversion channel.
- The one-shot conversion mode is used as the A/D conversion operation mode.
- The hardware trigger wait mode is used as the A/D conversion trigger mode.
- (2) The voltage input to the ANI0 pin every 100 μs is A/D-converted. As the hardware trigger signal, a 12-bit interval timer interrupt signal is used.
- (3) When the A/D conversion result falls to 0x5F or lower, an A/D conversion end interrupt (INTAD) is generated.
- (4) When the A/D conversion end interrupt is generated, the conversion result at that time is written to data flash memory. Further, the TO01 output is used to cause the LED1 to blink with a 0.5 sec period.

R01AN3617EJ0100 Rev. 1.00 Feb. 03, 2017

5.2 List of Option Byte Settings

Table 5.1 shows the settings of the option bytes.

Table 5.1 Option Byte Settings

Address	Setting Value	Description
000C0H	11101111B	Watchdog timer is stopped.
		(Counting stopped after a reset release)
000C1H	00111111B	LVD reset mode; 1.88 V (1.84 V to 1.88 V)
000C2H	11101010B	HS mode; High-speed on-chip oscillator: 8 MHz
000C3H	10000100B	On-chip debugging is enabled.

5.3 List of Constants

Table 5.2 lists the constants used in sample codes.

Table 5.2 Constants Used in Sample Codes

Constant	Setting	Content
TARGET_BLOCK	0	Target block for writing Note
BLOCK_SIZE	0x400	Size of one block (byte)
WRITE_SIZE	1	Size of write data (byte)
MAX_VALUE	0xFF	Maximum value of data flash write data
MAX_ADDRESS	(TARGET_BLO	Maximum value of data flash write address
	CK+1) *	
	BLOCK_SIZE -1	
PFDL_NG	1	Abnormal termination of data flash library
		processing
FDL_FRQ	8	Frequency setting [MHz]
FDL_VOL	0x00	Voltage mode (full-speed mode)

Note: The valid range for TARGET_BLOCK is 0 to 3. If a value outside this range is set, an error occurs during build. The relation between the setting for TARGET_BLOCK and the block for writing is described below.

- 0: The block for writing is block 0 of data flash memory (address 0xF1000 to 0xF13FF)
- 1: The block for writing is block 1 of data flash memory (address 0xF1400 to 0xF17FF)
- 2: The block for writing is block 2 of data flash memory (address 0xF1800 to 0xF1BFF)
- 3: The block for writing is block 3 of data flash memory (address 0xF1C00 to 0xF1FFF)

5.4 List of Variables

Table 5.3 lists the global variables.

Table 5.3 Global Variables

Туре	Variable Name	Contents	Function Used
uint8_t	g_result_buffer	AD conversion result storage buffer	main
			r_adc_interrupt
uint8_t	g_read_value	Read value	R_FDL_Read
			R_FDL_ExecuteWrite
uint8_t	g_write_value	Write value	main
			R_FDL_Read
			R_FDL_ExecuteWrite
			R_FDL_Write
			r_adc_interrupt
uint16_t	g_write_address	Target address for writing	R_FDL_BlankCheck
			R_FDL_Read
			R_FDL_Write
			R_FDL_ChangeAddress

5.5 List of Functions

Table 5.4 lists the functions used.

Table 5.4 Functions

Function Name	Summary
R_ADC_Set_OperationOn	Enables A/D voltage comparator operation
R_ADC_Start	Starts A/D conversion.
R_ADC_Stop	Stops A/D conversion.
r_adc_interrupt	Processes A/D conversion end interrupt.
R_IT_Start	Starts 12-bit interval timer.
R_IT_Stop	Stops 12-bit interval timer.
R_TAU0_Channel1_Start	TAU0 channel 1 operation start setting
R_TAU0_Channel1_Stop	TAU0 channel 1 operation stop setting

5.6 Function Specifications

The following gives the specifications of the functions used in the sample code.

[Function name] R_ADC_Set_OperationOn

Summary Enables A/D voltage comparator operation.

Header r_cg_adc.h, r_cg_userdefine.h

Declaration void R_ ADC_Set_OperationOn(void)

Description Enables A/D voltage comparator operation.

Arguments None

Return values None
Remarks None

[Function name] R_ADC_Start

Summary Starts A/D conversion.

Header r_cg_adc.h, r_cg_userdefine.h

Declaration void R_ ADC_Start(void)

Description Starts A/D conversion.

Arguments None

Return values None
Remarks None

[Function name] R_ADC_Stop

Summary Stops A/D conversion.

Header r_cg_adc.h, r_cg_userdefine.h

Declaration void R_ ADC_Stop(void)

Description Stops A/D conversion.

Arguments None

Arguments None
Return values None
Remarks None

[Function name] r adc interrupt

Summary Processes A/D conversion end interrupt.

Header r_cg_adc.h, r_cg_userdefine.h

Declaration static void __near r_adc_interrupt_error(void)

Description This interrupt processing is performed when A/D conversion result is 0x5f or lower.

Arguments None
Return values None
Remarks None

[Function name] R_IT_Start

Summary Starts 12-bit interval timer.

Header r_cg_it.h, r_cg_userdefine.h

Declaration void R_IT_Start (void)

Description Starts 12-bit interval timer operation.

Arguments None

Return values None

Remarks None

[Function name] R_IT_Stop

Summary Stops 12-bit interval timer.

Header r_cg_it.h, r_cg_userdefine.h

Declaration void R_TAU0_Channel1_Stop (void)

Description Stops 12-bit interval timer operation.

Arguments None

Return values None

Remarks None

[Function name] R_TAU0_Channel1_Start

Summary TAU0 channel 1 operation start setting
Header r_cg_tau.h, r_cg_userdefine.h

Declaration void R_TAU0_Channel1_Start (void)

Description Cancels TAU0 channel 1 interrupt mask.

Arguments None

Return values None

Remarks None

[Function name] R_TAU0_Channel1_Stop

Summary TAU0 channel 1 operation stop setting
r_cg_tau.h, r_cg_userdefine.h

Declaration void R_TAU0_Channel1_Stop (void)

Description Masks TAU0 channel 1 interrupts.

Arguments None

Return values None

Remarks None

5.7 Flowcharts

Figure 5.1 shows the overall flow of the process described in this application note.

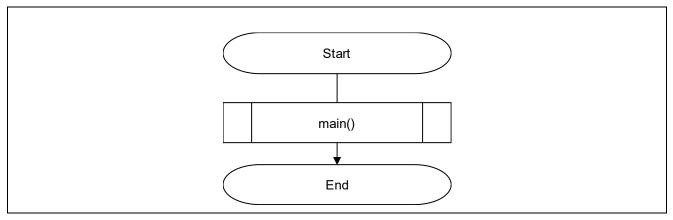


Figure 5.1 Overall Flow

Note: The start-up routine is executed before and after the initial setting function.

5.7.1 Initial Setting Function

Figure 5.2 shows the flowchart of the initial setting function.

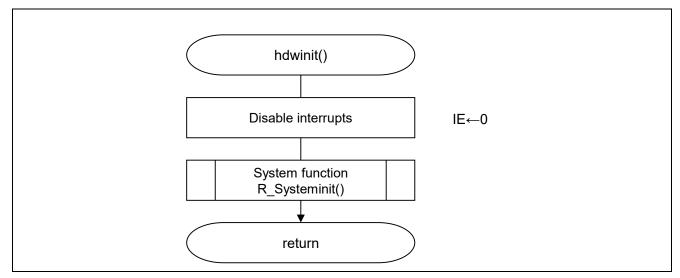


Figure 5.2 Initial Setting Function

5.7.2 System Function

Figure 5.3 shows the flowchart of the system function.

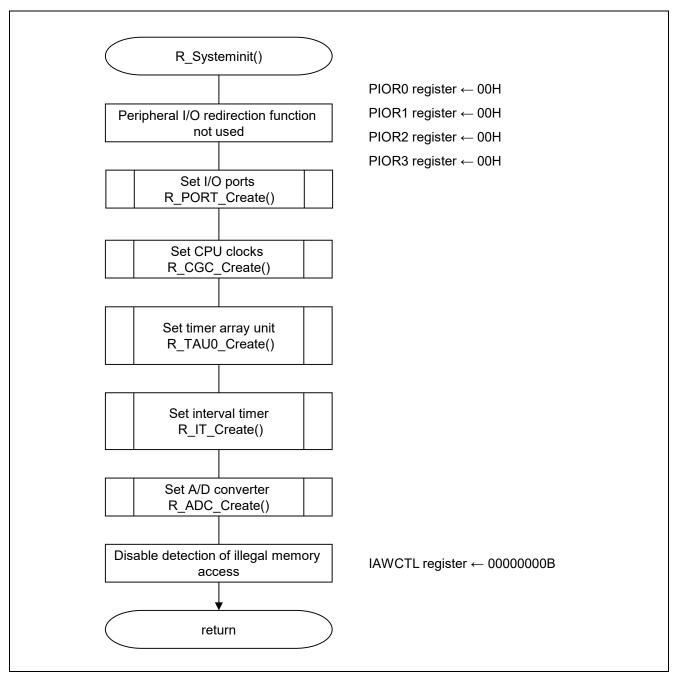


Figure 5.3 System Function

5.7.3 Setting I/O Ports

Figure 5.4 shows the flowchart for setting the I/O ports.

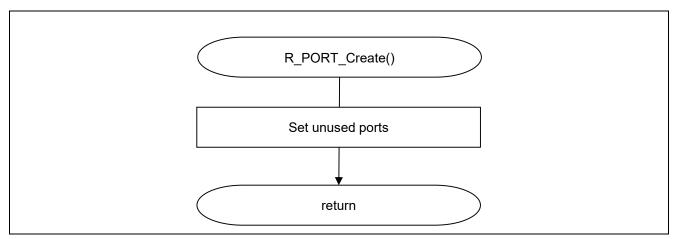


Figure 5.4 Setting I/O Ports

Note: For settings of unused ports, refer to the RL78/G11 User's Manual: Hardware.

Caution: Unused ports should be designed so that the electrical characteristics are satisfied by appropriately treating the pertinent pins. Separately connect unused input-only ports to V_{DD} or V_{SS} via a resistor.

5.7.4 Setting CPU Clocks

Figure 5.5 shows the flowchart for setting the CPU clocks.

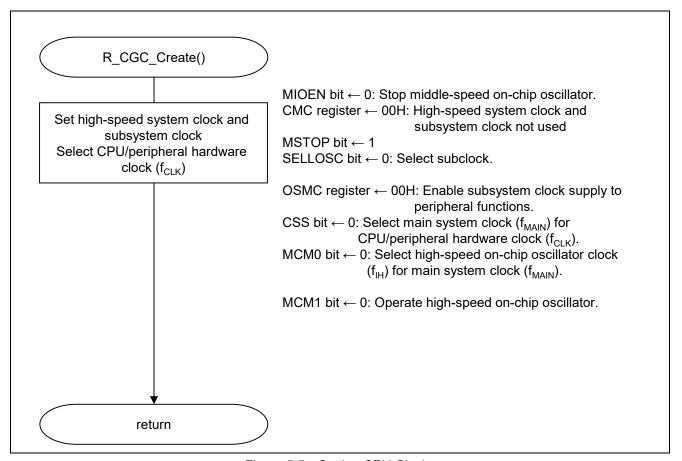


Figure 5.5 Setting CPU Clocks

5.7.5 Setting A/D Converter

Figure 5.6 shows the flowchart for setting the A/D converter.

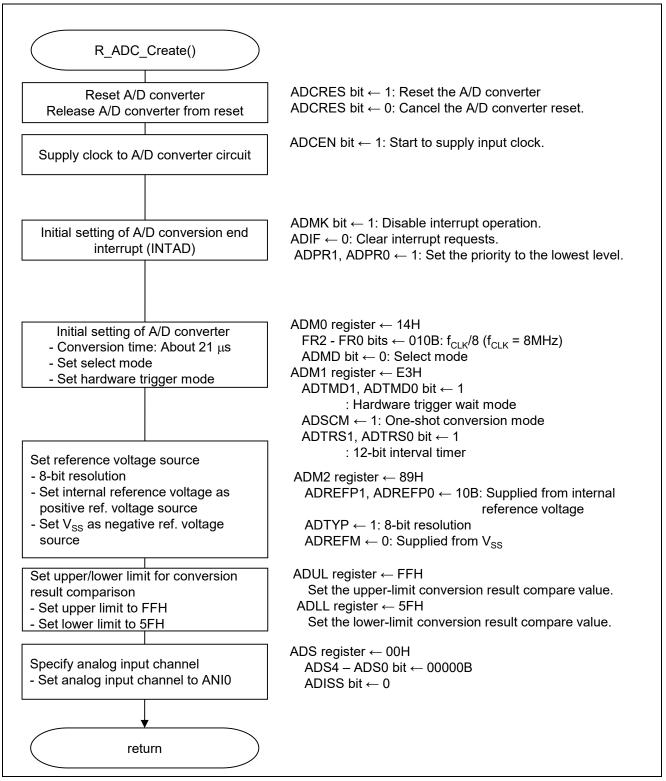


Figure 5.6 Setting A/D Converter

Controlling reset of A/D converter

- Peripheral reset control register 0 (PRR0)

Control reset of the A/D converter.

Symbol: PRR0

7	6	5	4	3	2	1	0
0	0	ADCRES	0	0	SAU0RES	0	TAU0RES
0	0	1/0	0	0	х	0	Х

Bit 5

ADCRES	Reset control of A/D converter A/D converter reset release			
0				
1	A/D converter reset state			

Starting clock supply to A/D converter

- Peripheral enable register 0 (PER0)

Start supplying clock to the A/D converter.

Symbol: PER0

7	6	5	4	3	2	1	0
RTCEN	0	ADCEN	0	0	SAU0EN	0	TAU0EN
Х	0	1	0	0	Х	0	Х

Bit 5

ADCEN	Control of A/D converter input clock supply				
0	Stops input clock supply.				
1	Enables input clock supply.				

Setting A/D conversion time and operation mode

- A/D converter mode register 0 (ADM0) Control the A/D conversion operation. Set the A/D conversion channel select mode.

Symbol: ADM0

7	6	5	4	3	2	1	0
ADCS	ADMD	FR2	FR1	FR0	LV1	LV0	ADCE
Х	0	0	1	0	1	0	х

Bit 6

ADMD	Specification of A/D conversion channel selection mode
0	Select mode
1	Scan mode

Symbol: ADM0

ĺ	Х	0	0	1	0	1	0	Х
I	ADCS	ADMD	FR2	FR1	FR0	LV1	LV0	ADCE
	7	6	5	4	3	2	1	0

Bits 5 to 1

ADM0				Mode	Conv	A/D	No. of			Conv	ersion time s	selection		
FR2	FR1	FR0	LV1	LV2		clock (f _{AD})	power supply stabili- zation wait clock	conv. clock (Sampling clock)	Conv. time	f _{CLK} = 1 MHz	f _{CLK} = 4 MHz	f _{cLK} = 8 MHz	f _{CLK} = 16 MHz	f _{CLK} = 24 MHz
0	0	0	1	0	Low- voltage1	f _{CLK} /64	2 f _{AD}	19 f _{AD} (number of	1344/f _{CLK}	Setting prohibited	Setting prohibited	Setting prohibited	84µs	56µs
0	0	1				f _{CLK} /32]	Sampling	672/f _{CLK}			84µs	42µs	28µs
0	1	0				f _{CLK} /16		clock:	336/f _{CLK}		84µs	42µs	21µs	14µs
0	1	1				f _{CLK} /8		7 f _{AD})	168/f _{CLK}		42µs	21µs	10.5µs	7µs
1	0	0				f _{CLK} /6			126/f _{CLK}		31.25µs	15.75µs	7.875µs	5.25µs
1	0	1				f _{CLK} /5			105/f _{CLK}	105µs	26.25µs	13.125µs	10.5µs	4.375µs
1	1	0				f _{CLK} /4			84/f _{CLK}	84µs	21µs	10.5µs	5.25µs	3.5µs
1	1	1				f _{CLK} /2			42/f _{CLK}	43µs	10.5µs	5.25µs	2.625µs	1.75µs
0	0	0	1	1	Low- Voltage2	f _{CLK} /64	2 f _{AD}	17 f _{AD} (Samp-	1216/f _{CLK}	Setting prohibited	Setting prohibited	Setting prohibited	76µs	50.667µs
0	0	1				f _{CLK} /32		ling clock:	608/f _{CLK}			76µs	38µs	25.333µs
0	1	0				f _{CLK} /16		5 f _{AD})	304/f _{CLK}		76µs	38µs	19µs	12.667µs
0	1	1				f _{CLK} /8			152/f _{CLK}		38µs	19µs	9.5µs	6.333µs
1	0	0				f _{CLK} /6			114/f _{CLK}		28.5µs	14.25µs	7.125µs	4.75µs
1	0	1				f _{CLK} /5			95/f _{CLK}	96µs	23.75µs	11.875µs	5.938µs	3.958µs
1	1	0				f _{CLK} /4			76/f _{CLK}	76µs	19µs	9.5µs	4.75µs	3.167µs
1	1	1				f _{CLK} /2			38/f _{CLK}	38µs	9.5µs	4.75µs	2.375µs	Setting prohibited

Setting A/D conversion trigger mode

A/D converter mode register 1 (ADM1)
 Select the A/D conversion trigger mode.
 Specify the A/D conversion operation mode
 Select the hardware trigger signal.

Symbol: ADM1

7	6	5	4	3	2	1	0
ADTMD1	ADTMD0	ADSCM	0	0	0	ADTRS1	ADTRS0
1	1	1	0	0	0	1	1

Bits 7 and 6

ADTMD1	ADTMD0	Selection of A/D conversion trigger mode			
0	X	Software trigger mode			
1	0	lware trigger no-wait mode			
1	1	Hardware trigger wait mode			

Bit 5

ADSCM	Specification of A/D conversion mode						
0	quential conversion mode						
1	One-shot conversion mode						

Bits 1 and 0

ADTRS1	ADTRS0	Selection of hardware trigger signal
0	0	End of timer channel 1 count or capture interrupt signal (INTTM01)
0	1	Event signal selected by ELC
1	0	Real-time clock 2 interrupt signal (INTRTC)
1	1	12-bit interval timer interrupt signal (INTIT)

Setting reference voltage source

- A/D converter mode register 2 (ADM2)

Select the A/D converter positive-side reference voltage source.

Select the A/D converter negative-side reference voltage source.

Check the conversion result upper-limit/lower-limit value

Set SNOOZE mode.

Select A/D conversion resolution.

Symbol: ADM2

7	6	5	4	3	2	1	0
ADREFP1	ADREFP0	ADREFM	0	ADRCK	AWC	0	ADTYP
1	0	0	0	1	0	0	1

Bits 7 and 6

ADREFP1	ADREFP0	Selection of + side reference voltage source of A/D converter					
0	0	lied from V _{DD}					
0	1	pplied from AV _{REFP} /ANI0					
1	0	olied from internal reference voltage (1.45 V)					
1	1	Setting prohibited					

Bit 5

ADREFM	Selection of – side reference voltage source of A/D converter					
0	upplied from Vss					
1	Supplied from AV _{REFM} /ANI1					

Bit 3

ADRCK	Checking upper limit and lower limit conversion result values
0	Interrupt signal (INTAD) is generated when the ADLL register ≤ the ADCR register ≤ the ADUL
	register.
1	Interrupt signal (INTAD) is generated when ADCR register < ADLL register, ADUL register < ADCR register.

Bit 2

Ī	AWC	Specification of SNOOZE mode
	0	Do not use the SNOOZE mode function.
	1	Use the SNOOZE mode function.

Bit 0

ADTYP	Selection of A/D conversion resolution					
0	10-bit resolution					
1	8-bit resolution					

Setting upper limit and lower limit values for conversion result comparison

- Conversion result comparison upper limit setting register (ADUL)
 Conversion result comparison lower limit setting register (ADLL)
 Set the upper limit and lower limit conversion result compare values.

Symbol: ADUL

ı	1	1	1	1	1	1	1	1
ı	ADUL7	ADUL6	ADUL5	ADUL4	ADUL3	ADUL2	ADUL1	ADUL0
	7	6	5	4	3	2	1	0

Symbol: ADLL

7	6	5	4	3	2	1	0
ADLL7	ADLL6	ADLL5	ADLL4	ADLL3	ADLL2	ADLL1	ADLL0
0	1	0	1	1	1	1	1

Setting input channel

Analog input channel specification register (ADS)
 Specify the input channel of analog voltage to be converted.

Symbol: ADS

0	X	X	0	0	0	0	0
ADISS	0	0	ADS4	ADS3	ADS2	ADS1	ADS0
7	6	5	4	3	2	1	0

Bits 7, 4 to 0

ADISS	ADS4	ADS3	ADS2	ADS1	ADS0	Analog input channel	Input source
0	0	0	0	0	0	ANI0	P20/ANI0/AV _{REFP} pin
0	0	0	0	0	1	ANI1	P21/ANI1/AV _{REFM} pin
0	0	0	0	1	0	ANI2	P22/ANI2 pin
0	0	0	0	1	1	ANI3	P23/ANI3 pin
0	1	0	0	0	0	ANI16	P01/ANI16 pin
0	1	0	0	0	1	ANI17	P00/ANI17 pin
0	1	0	0	1	0	ANI18	P33/ANI18 pin
0	1	0	0	1	1	ANI19 Note	P32/ANI19 pin
0	1	0	1	0	0	ANI20	P31/ANI20 pin
0	1	0	1	0	1	ANI21	P30/ANI21 pin
0	1	0	1	1	0	ANI22	P56/ANI22 pin
0	1	0	1	1	1	_	PGAOUT
1	0	0	0	0	0	_	Temperature sensor output voltage
1	0	0	0	0	1	_	Internal reference voltage (1.45V)
		Other than	the above	!		Setting prohibit	red

Note: 25-pin and 24-pin products only

Setting A/D conversion end interrupt

- Interrupt request flag register (IF1H)
- Clear interrupt request flags.

 Interrupt mask flag register (MK1H)

 Disable interrupt processing.

Symbol: IF1H

	7	6	5	4	3	2	1	0
	0	DOCIF	CMPIF1	CMPIF0	KRIF	TMKAIF	RTCIF	ADIF
ı	0	х	х	х	х	х	х	0

Bit 0

ADIF	Interrupt request flag
0	No interrupt request signal is generated
1	Interrupt request is generated, interrupt request status

Symbol: MK1H

	7	6	5	4	3	2	1	0
	0	DOCMK	CMPMK1	CMPMK0	KRMK	TMKAMK	RTCMK	ADMK
1	х	х	х	х	х	х	х	1

Bit 0

ADMK	Interrupt servicing control					
0	Interrupt servicing enabled					
1	Interrupt servicing disabled					

5.7.6 Setting Timer Array Unit

Figure 5.7 shows the flowchart for setting the timer array unit.

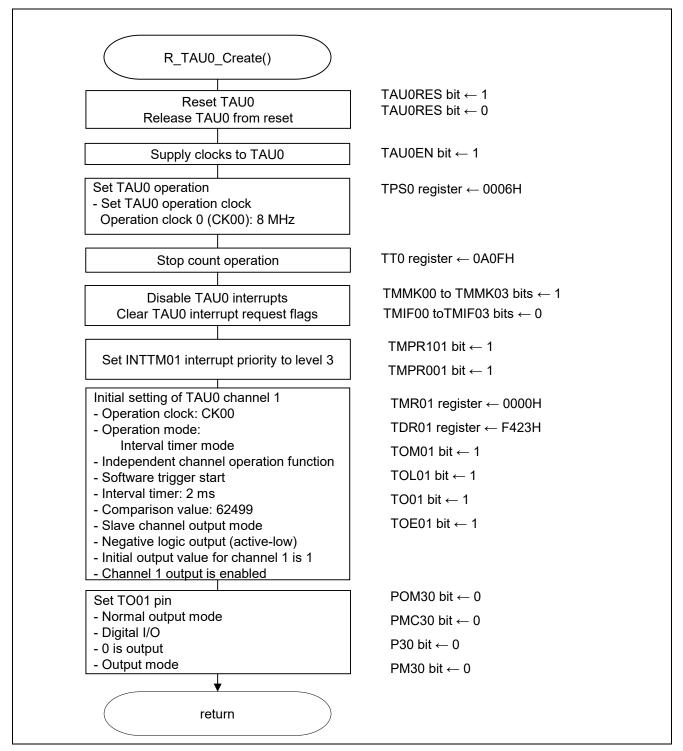


Figure 5.7 Setting Timer Array Unit

Controlling reset of timer array unit 0

- Peripheral reset control register 0 (PRR0) Control reset of the timer array unit 0.

Symbol: PRR0

	7	6	5	4	3	2	1	0
	0	IICA1RES	ADCRES	IICA0RES	0	SAU0RES	0	TAU0RES
ĺ	0	х	Х	х	0	х	0	1/0

Bit 0

TAU0RES	Reset control of timer array unit 0					
0	imer array unit reset release					
1	Timer array unit reset state					

Starting clock supply to timer array unit 0

- Peripheral enable register 0 (PER0) Start clock supply to timer array unit 0.

Symbol: PER0

	7	6	5	4	3	2	1	0
	0	IICA1EN	ADCEN	IICA0EN	0	SAU0EN	0	TAU0EN
1	х	х	х	х	0	х	0	1

Bit 0

TAU0EN	Control of timer array unit 0 input clock supply
0	Stops input clock supply.
1	Enables input clock supply.

Setting timer clock frequency

- Timer clock select register 0 (TPS0) Select the operation clock for timer array unit 0.

Symbol: TPS0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	PRS0		0	0	PRS0	_				PRS0				PRS0
	ŭ	31 30	30	Ů		21	20	13	12	11	10	03	02	01	00
Х	Х	х	х	х	Х	х	Х	Х	Х	х	Х	0	1	1	0

Bits 3 to 0

PRS	PRS	PRS	PRS		Se	lection of ope	ration clock (C	K00)	
003	002	001	000		f _{CLK} = 2MHz	f _{CLK} = 5MHz	f _{CLK} = 10MHz	f _{CLK} = 20MHz	f _{CLK} = 24MHz
0	0	0	0	f_{CLK}	2 MHz	5 MHz	10 MHz	20 MHz	24 MHz
0	0	0	1	f _{CLK} /2	1 MHz	2.5 MHz	5 MHz	10 MHz	12 MHz
0	0	1	0	$f_{CLK}/2^2$	500 kHz	1.25 MHz	2.5 MHz	5 MHz	6 MHz
0	0	1	1	$f_{CLK}/2^3$	250 kHz	625 kHz	1.25 MHz	2.5 MHz	3 MHz
0	1	0	0	f _{CLK} /2 ⁴	125 kHz	312.5 kHz	625 kHz	1.25 MHz	1.5 MHz
0	1	0	1	$f_{CLK}/2^5$	62.5 kHz	156.2 kHz	313kHz	625 kHz	750 kHz
0	1	1	0	f _{CLK} /2 ⁶	31.25 kHz	78.1 kHz	156 kHz	313 kHz	375 kHz
0	1	1	1	f _{CLK} /2 ⁷	15.62 kHz	39.1 kHz	39.1 kHz 78.1 kHz		187.5 kHz
1	0	0	0	f _{CLK} /2 ⁸	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	93.8 kHz
1	0	0	1	f _{CLK} /2 ⁹	3.91 kHz	9.76 kHz	19.5 kHz	39.1 kHz	46.9 kHz
1	0	1	0	f _{CLK} /2 ¹⁰	1.95 kHz	4.88 kHz	9.77 kHz	19.5 kHz	23.4 kHz
1	0	1	1	f _{CLK} /2 ¹¹	976 Hz	2.44 kHz	4.88 kHz	9.77 kHz	11.7 kHz
1	1	0	0	f _{CLK} /2 ¹²	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz	5.86 kHz
1	1	0	1	f _{CLK} /2 ¹³	244 Hz	610 Hz	1.22 kHz	2.44 kHz	2.93 kHz
1	1	1	0	$f_{CLK}/2^{14}$	122 Hz	305 Hz	610 Hz	1.22 kHz	1.46 kHz
1	1	1	1	$f_{CLK}/2^{15}$	61 Hz	153 Hz	305 Hz	610 Hz	732 Hz

Setting channel 0 operation mode

Timer mode register 01 (TMR01)
 Select the operation clock (f_{MCK}).
 Select the count clock.
 Set the software trigger start.
 Select the operation mode.

Symbol: TMR01

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	ccs	0	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
011	010		01		012	011	010	011	010			013	012	011	010
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits 15 and 14

CKS011	CKS010	Selection of operation clock (f _{MCK}) of channel 0									
0	0	eration clock CK00 set by timer clock select register 0 (TPS0)									
0	1	Operation clock CK02 set by timer clock select register 0 (TPS0)									
1	0	Operation clock CK01 set by timer clock select register 0 (TPS0)									
1	1	Operation clock CK03 set by timer clock select register 0 (TPS0)									

Bit 12

CCS01	Selection of count clock (f _{TCLK}) of channel 0
0	Operation clock (f _{MCK}) specified by the CKS010 and CKS011 bits
1	Valid edge of input signal from the TI01 pin

Bit 11

SPLIT01	Selection of 8 or 16-bit timer operation for channel 1						
	Operates as 16-bit timer.						
0	(Operates in independent channel operation function or as slave channel in						
	simultaneous channel operation function)						
1	Operates as 8-bit timer.						

RENESAS

Symbol: TMR01

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	ccs	0	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
011	010		01		012	011	010	011	010			013	012	011	010
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits 10 to 8

STS012	STS011	STS010	Setting of start trigger or capture trigger of channel 1
0	0	0	Only software trigger start is valid (other trigger sources are unselected).
0	0	1	Valid edge of the Tl01 pin input is used as both the start trigger and capture trigger.
0	1	0	Both the edges of the TI01 pin input are used as a start trigger and a capture trigger.
1	0	0	Interrupt signal of the master channel is used (when the channel is used as a slave channel with the simultaneous channel operation function).
1 1 0		0	INTTM01 of the master channel is used as a start trigger, and the edge of the TImp pin input of the slave channel; is used as a end trigger (capture trigger).
Oth	er than abo	ve	Setting prohibited

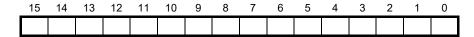
Bits 7 and 6

CIS011	CIS010	Selection of TI01 pin input valid edge						
0	0	Falling edge						
0	0 1 Rising edge							
1	0	Both edges (when low-level width is measured)						
ı	U	Start trigger: Falling edge, Capture trigger: Rising edge						
4	4	Both edges (when high-level width is measured)						
	I	Start trigger: Rising edge, Capture trigger: Falling edge						

Symbol: TMR01

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	ccs	0	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
011	010		01		012	011	010	011	010			013	012	011	010
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits 3 to 0


MD 013	MD 012	MD 011	Operation mode of channel 1	Corresponding function	Count operation of TCR			
0	0	0	Interval timer mode	Interval timer/square wave output/divider function/PWM output (master)	Counting down			
0	1	0	Capture mode	Input pulse interval measurement	Counting up			
0	1	1	Event counter mode	External event counter	Counting down			
1	0	0	One-count mode	Delay counter/One-shot pulse output/PWM output (slave)	Counting down			
1	1	0	Capture & one-count mode	Measurement of high-/low-level width of input signal	Counting up			
	ther th above							
The c	The operation of each mode varies depending on D010 bit (see table below).							

Operation mode (Value set by the MD003 to MD001 bits (see table above))	MD010	TCR counting operation
- Interval timer mode (0, 0, 0) - Capture mode (0, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
	1	Timer interrupt is generated when counting is started (timer output also changes).
- Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
- One-count mode (1, 0, 0)	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated.
	1	Start trigger is valid during counting operation. At that time, interrupt is generated.
- Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time, interrupt is not generated.

Setting interval timer frequency

- Timer data register 01 (TDR01) Set the interval timer comparison value.

Symbol: TDR01

Timer interrupt (INTTM01) generation = (TDR01 setting value + 1) x counting clock frequency

Setting timer output mode

- Timer output mode register 0 (TOM0) Set master/slave.

Symbol: TOM0

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ī	0	0	0	0	0	0	0	0	0	0	0	0	TOM	TOM	ТОМ	0
													03	02	01	
I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Bit 1

TOM01	Control of timer output mode of channel 1
0	Master channel output mode
1	Slave channel output mode

Setting timer output level

- Timer output level register 0 (TOL0) Set the timer output level.

Symbol: TOL0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	TOL	TOL	TOL	0
												03	02	01	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Bit 1

TOL01	Control of timer output level of channel 1
0	Positive logic output (active-high)
1	Negative logic output (active-low)

Setting timer output

- Timer output register 0 (TO0)

Enable/disable timer output for each channel.

Symbol: TO0

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	TO03	TO02	TO01	TO00
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Bit 1

TO01	Timer output of channel 1
0	Timer output value is 0.
1	Timer output value is 1.

Enabling timer output

- Timer output enable register 0 (TOE0)

Enable/disable timer output of each channel.

Symbol: TOE0

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	TOE 02	TOE 01	TOE 00
I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Bit 1

TOE01	Timer output enable/disable of channel 0
0	Timer output is disabled. Timer operation is not applied to the TM01 bit and the output is fixed. Writing to the TO01 bit is enabled and the level set in the TO01 bit is output from the TO01 pin.
1	Timer output is enabled. Timer operation is applied to the TO01 bit and an output waveform is generated. Writing to TO01 bit is ignored.

Note: For details of register settings, refer to the RL78/G11 User's Manual: Hardware.

RENESAS

Setting pins

- Port output mode register (POM3)

Select the pin output mode.

Port mode control register (PMC3)
 Select digital I/O or analog input for the pin.

- Port register (P3)

Set the pin output latch value.

- Port mode register (PM3)

Select input or output mode for the pin.

Symbol: POM3

	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	POM30
I	0	0	0	0	0	0	0	0

Bit 0

POM30	P30 pin output mode selection
0	Normal output mode
1	N-ch open drain output mode

Symbol: PMC3

7	6	5	4	3	2	1	0
0	0	0	0	0	0	PMC31	PMC30
0	0	0	0	0	0	х	0

Bit 0

PMC30	P30 pin digital I/O/analog input selection
0	Digital I/O (alternate function other than analog input)
1	Analog input

Symbol: P3

7	6	5	4	3	2	1	0
0	0	0	0	P33	P32	P31	P30
0	0	0	0	0	0	0	0

Bit 0

P30	P30 pin output data control
0	Output 0.
1	Output 1.

Symbol: PM3

7	6	5	4	3	2	1	0
0	0	0	0	PM33	PM32	PM31	PM30
0	0	0	0	0	0	0	0

Bit 0

PM30	P30 pin I/O mode selection
0	Output mode
1	Input mode

5.7.7 Setting 12-Bit Interval Timer

Figure 5.8 shows the flowchart for setting the 12-bit interval timer.

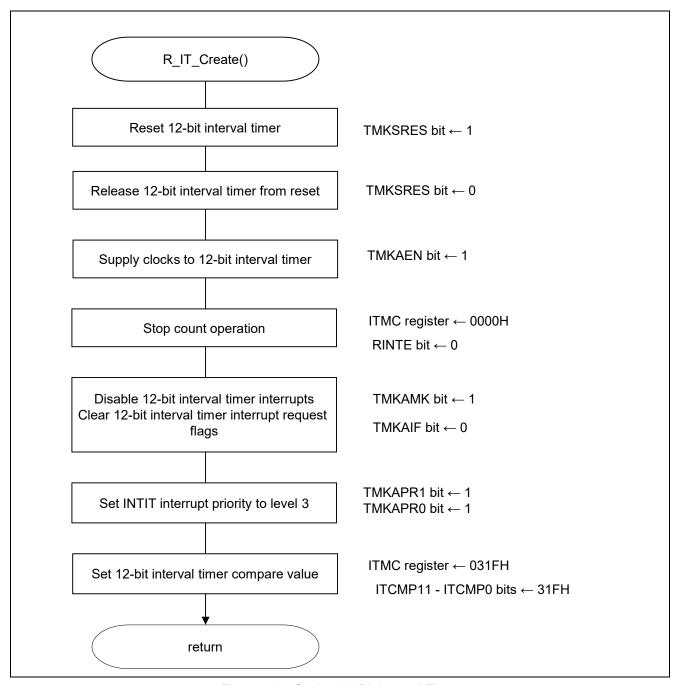


Figure 5.8 Setting 12-Bit Interval Timer

Controlling reset of 12-bit interval timer

Peripheral reset control register 2 (PRR2)
 Control reset of the 12-bit interval timer.
 Symbol: PRR2

ĺ	1/0	0	х	0	0	0	0	0
	TMKARES	0	DOCRES	0	0	0	0	0
	7	6	5	4	3	2	1	0

Bit 7

TMKARES	Reset control of 12-bit interval timer			
0	2-bit interval timer reset release			
1	12-bit interval timer reset state			

Starting clock supply to 12-bit interval timer

Peripheral enable register 2 (PER2)
 Start clock supply to the 12-bit interval timer.

Symbol: PER2

7	6	5	4	3	2	1	0
TMKAEN	FMCEN	DOCEN	0	0	0	0	0
1	х	х	0	0	0	0	0

Bit 7

TMKAEN	Control of 12-bit interval timer input clock supply			
0	Stops input clock supply.			
1	Enables input clock supply.			

Setting 12-bit interval timer operation

12-bit interval timer control register (ITMC)
 Start or stop the 12-bit interval timer operation.
 Set the 12-bit interval timer compare value.

Symbol: ITMC

15	14	13	12	11-0
RINTE	0	0	0	ITCMP11-ITCMP0
0	0	0	0	31FH

Bit 15

RINTE	12-bit interval timer operation control
0	Count operation stopped
1	Count operation started

Bits 11 to 0

ITCMP11 to ITCMP0	Specification of 12-bit interval timer compare value
001H	These bits generate a fixed-cycle interrupt (counter clock cycles x
	(ITCMP setting + 1)).
31FH	
FFFH	
000H	Setting prohibited
Example interrupt cycles when 001H or FFFH is specified for ITCMP11 to ITCMP0	
- ITCMP11 to ITCMP0 = 001H, count clock: when f _{SUB} = 32.768 kHz	
$1/32.768$ [kHz] x (1 + 1) = 0.06103515625 [ms] \cong 61.03 [μ s]	
- ITCMP11 to ITCMP0 = FFFH, count clock: when f _{SUB} = 32.768 kHz	
1/32.768 [kHz] x (4095 + 1) = 125 [ms]	

RENESAS

Setting interrupts

- Interrupt request flag register (IF1H) Clear interrupt request flags.
- Interrupt mask flag register (MK1H) Cancel interrupt mask.

Symbol: IF1H

	7	6	5	4	3	2	1	0
F	PIF011	PIF10	PIF9	PIF8	PIF7	KRIF	TMKAIF	ADIF
	Х	х	х	х	х	х	0	х

Bit 1

TMKAIF	Interrupt request flag
0	No interrupt request signal is generated
1	Interrupt request is generated, interrupt request status

Symbol: MK1H

7	6	5	4	3	2	1	0
PMK11	PMK10	PMK9	PMK8	PMK7	KRMK	TMKAMK	ADMK
Х	х	х	х	х	х	0	х

Bit 1

TMKAMK	Interrupt servicing control			
0	Interrupt servicing enabled			
1	Interrupt servicing disabled			

Note: For details of register settings, refer to the RL78/G11 User's Manual: Hardware.

5.7.8 Main Functions

Figures 5.9 and 5.10 show the flowcharts of the main functions.

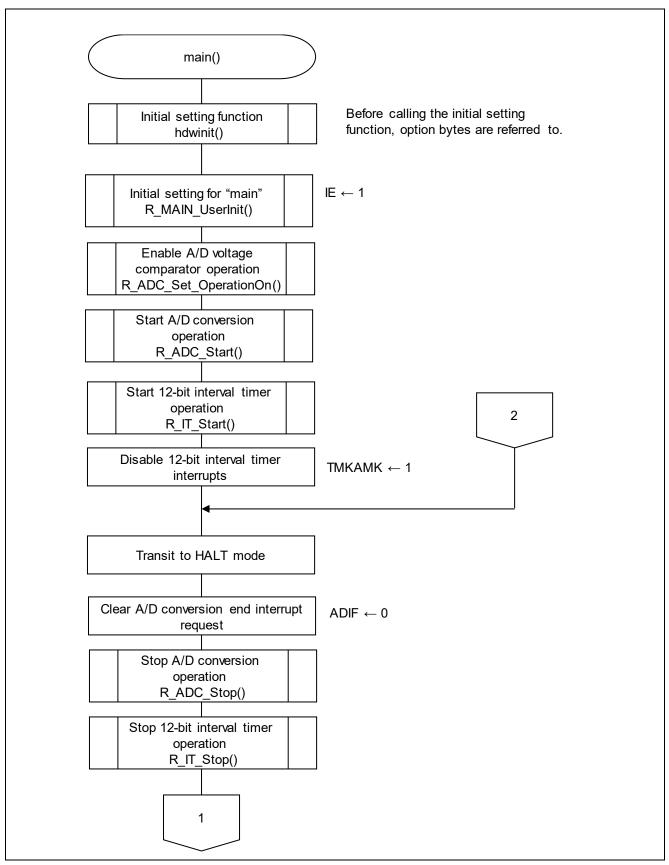


Figure 5.9 Main Functions (1/2)

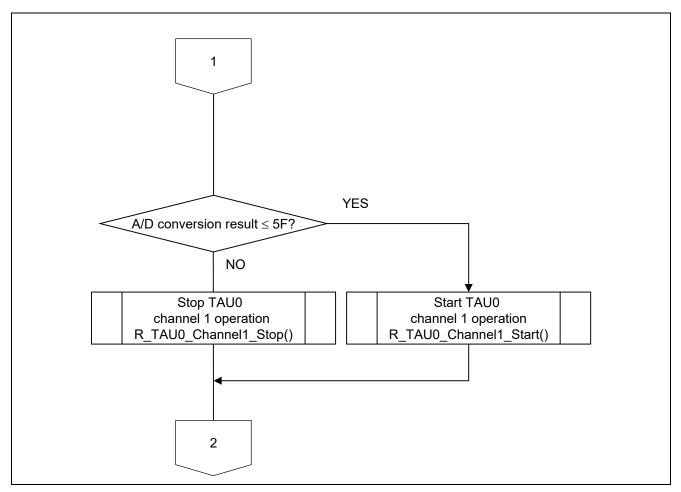


Figure 5.10 Main Functions (2/2)

5.7.9 Initial Setting for "main"

Figure 5.11 shows the flowchart of the initial setting for "main".

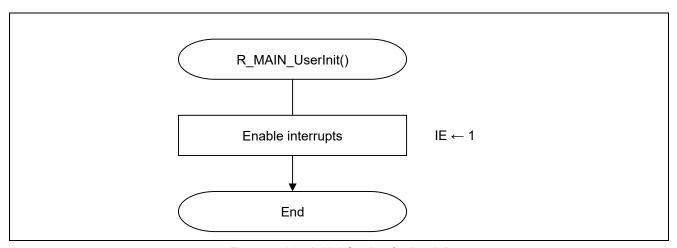


Figure 5.11 Initial Setting for "main"

5.7.10 A/D Voltage Comparator Operation Enable Function

Figure 5.12 shows the flowchart of the A/D voltage comparator operation enable function.

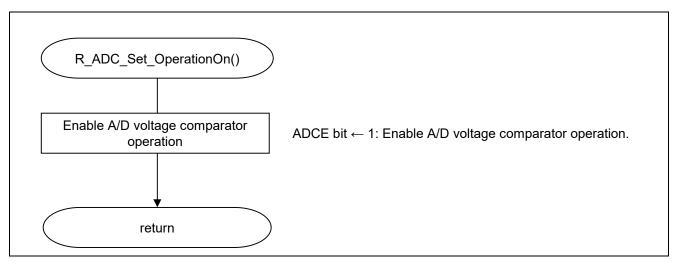


Figure 5.12 A/D Voltage Comparator Operation Enable Function

5.7.11 A/D Conversion Start Function

Figure 5.13 shows the flowchart of the A/D conversion start function.

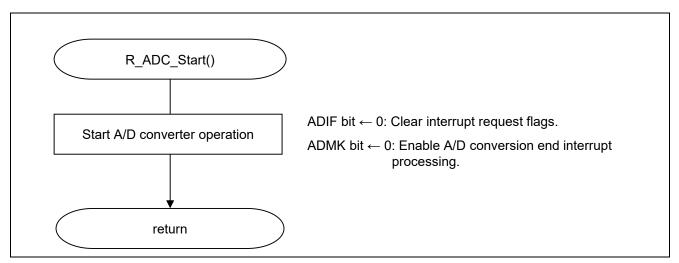


Figure 5.13 A/D Conversion Start Function

5.7.12 A/D Conversion Stop Function

Figure 5.14 shows the flowchart of the A/D conversion stop function.

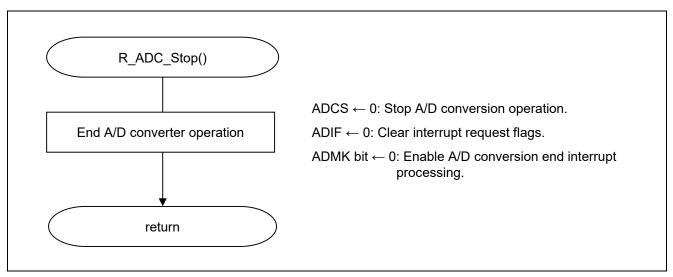


Figure 5.14 A/D Conversion Stop Function

5.7.13 A/D Conversion End Interrupt Processing

Figure 5.15 shows the flowchart of the A/D conversion end interrupt processing function.

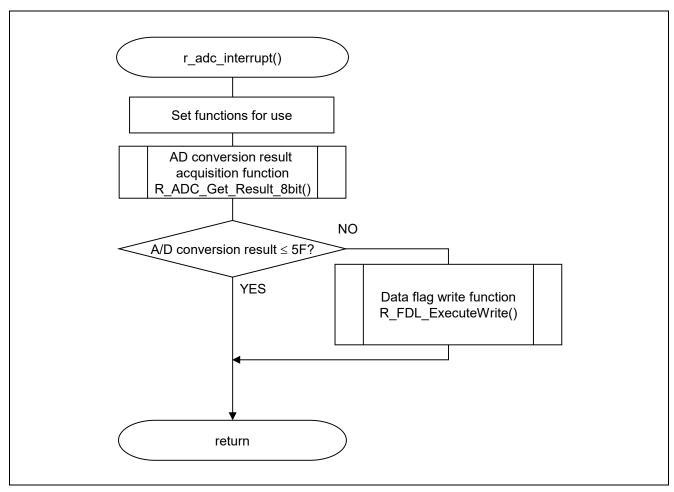


Figure 5.15 A/D Conversion End Interrupt Processing Function

5.7.14 12-Bit Interval Timer Start Function

Figure 5.16 shows the flowchart of the 12-bit interval timer start function.

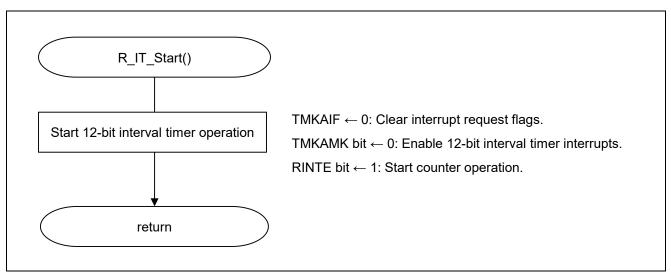


Figure 5.16 12-Bit Interval Timer Start Function

5.7.15 12-Bit Interval Timer Stop Function

Figure 5.17 shows the flowchart of the 12-bit interval timer stop function.

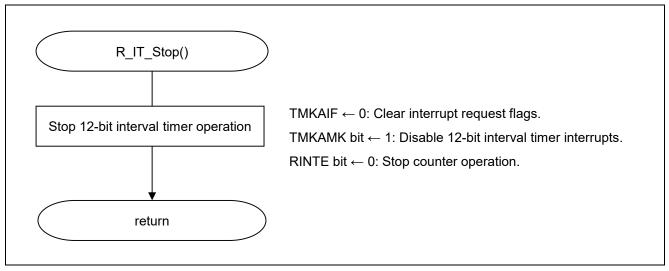


Figure 5.17 12-Bit Interval Timer Stop Function

5.7.16 TAU0 Channel 1 Operation Start Function

Figure 5.18 shows the flowchart of the TAU0 channel 1 operation start function.

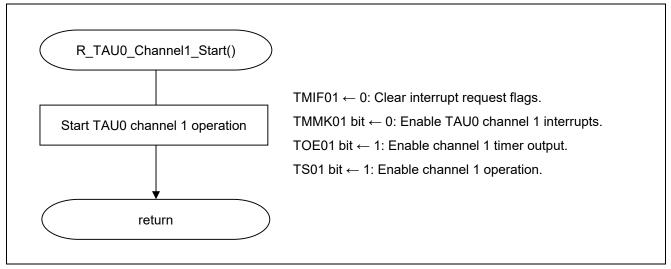


Figure 5.18 TAU0 Channel 1 Operation Start Function

5.7.17 TAU0 Channel 1 Operation Stop Function

Figure 5.19 shows the flowchart of the TAU0 channel 1 operation stop function.

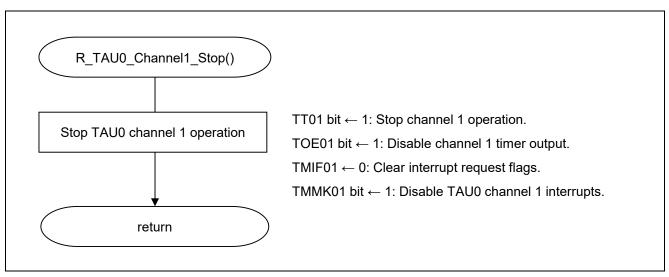


Figure 5.19 TAU0 Channel 1 Operation Stop Function

6. Sample Code

The user can get the sample code from the Renesas Electronics website.

7. Reference Documents

RL78/G11 User's Manual: Hardware (R01UH0637E)

RL78 Family User's Manual: Software (R01US0015E)

(Get the latest version from the Renesas Electronics website.)

Technical Updates/Technical News

(Get the latest information from the Renesas Electronics website.)

Website and Support

Renesas Electronics Website http://japan.renesas.com/

Inquiries

http://japan.renesas.com/inquiry

Davisian History	RL78/G11			
Revision History	Power Supply Voltage Monitoring IAR			

Rev.	Date	Revision Contents			
Nev.		Page	Description		
1.00	Feb. 03, 2017	Newly created.			

すべての商標および登録商標は、それぞれの所有者に帰属します。

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual

34 The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- 3/4 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

3/4 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

34 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

- 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the
- 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.3.0-1 November 2016)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 p Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141