RE N ESAS Application Note

RH850 Introducing Methods of Debugging Devices
Incorporating an Initially Stopped Core and Devices in

Standby Mode R20ANO558E.J0100
Rev.1.00
2020.01.08

Introduction

Devices of the RH850 family have a standby mode for controlling the power they consume and some
products incorporate an initially stopped core*.

This application note describes the debugging methods for devices that incorporate an initially stopped core
and applications that include transitions to standby mode.

Note: “Initially stopped core” refers to a CPU core that is not activated by release from the reset state.
“Initially stopped state” refers to the state in which an initially stopped core has not yet been activated.

The initially
stopped core is
activated.

CPU1

Inactive

| want to be able to tell if the initially stopped core has correctly been activated by the program for the active CPU core.

| want to be able to start debugging of the program for the initially stopped core at the point of the core’s activation.

| want to have the program for the active CPU core be able to measure the execution time for activation of the initially stopped core.

Figure 1 Requests for the Debugging of Applications for Devices that Incorporate an Initially
Stopped Core

MCU (run mode)
CPUO CPU1
Active Active

\
| want to be able to tell whether the program has caused a correct transition of the device to standby mode.

MCU (run mode)

CPUO
Active

i)

| want to be able to re-start debugging of the program at the point where the MCU returns from standby mode.

| want to know the execution time of a program that runs on a device that makes a transition to standby mode.

Figure 2 Requests for the Debugging of Applications that Include Transitions to Standby Mode

R20AN0558EJ0100 Rev.1.00 Page 1 of 50
Jan.08.20

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

Target Devices
RH850/F1KM-S1
RH850/F1KM-S4
RH850/F1KH-D8

RH850/E2x (no standby modes)
RH850/U2A

R20AN0558EJ0100 Rev.1.00 Page 2 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

Contents
L © V7= TR 7
1.1 Debugging Specifications for the Initial Setting of the Debugger...........ccccoiiiiiiini e 8
1.2 Debugging Devices with an Initially Stopped Core and Devices in Standby Modeccccceeevciienenes 9
2. Setting up the ENVIFONMENTuuiiiiiii e e e e e 11
2.1 System Configuration and Required ENVIrONMENt.............oooiiiiiiiiii e 11
211 System ConfIQUIAtIONiiii ettt e e e e e e b e e e nr e e e 11
2.1.2 Required ENVIFONMENT. ... ittt e oo e ettt e e e e e e e et eeeae e e e e s nneneeeeaeeeaaannneneeeaaeeaanns 12
2.2 Turning on the Emulator and User SyStem 12
3. Settings for Debugging AppPliCAtiONS..........uuiiiiiiiiiiiiiiii e ————— 13
R Tt B = 1 1] o To TN g T O R PUUPPPRRRR 13
R I = 11 To T o T 1Y/ I PR UOPPPPRPRR 13
4. Debugging MethOAScoiiiiiiiiiii e 14
4.1 Debugging Method for Applications Running on Devices Incorporating an Initially Stopped Core 14
4.1.1 Confirming that the Initially Stopped Core is in the Initially Stopped Statecccccciiiiiiiiii. 15
4.1.2 Activating the Initially STOPPEd COreoooiiiiieee et e e e stee e e e st e e e e snaeeaeens 16
4.1.3 Confirming that the Time until the Initially Stopped Core is Activated Satisfies the Requirements in
Terms of Time ReESIHCONSeeiiiie e e e e e e e e e e e eeeeaeeeana 18
4.1.4 Confirming the Response to the Initially Stopped Core to a Reset..........cccoeeiiiiiiiiiiiieeee e, 19
4.2 Debugging Method for Applications that Include Transitions to Standby Modes............cccccoeviinneen... 20
g B (] o 31 1Y o o L= USRS 22
4.2.1.1 Starting Debugging Immediately after the Device has Made the Transition to Run Mode from Stop
1Y Fo o PSPPSRI 24
4.2.1.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in Stop Mode......... 25
4.2.2 DEEP STOP MOUE ...ttt e e a et e ettt e e et e e e e an bt e e e e an b et e e e anbe e e e e anreeeeaas 26
4.2.2.1 Starting Debugging Immediately after the Device has Made the Transition to Run Mode from Deep
(o] o1 1Y/ [o [PPSR 28
4.2.2.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in Deep Stop Mode at
the Time of the Transition to Run Mode from Deep Stop MOdeccccvvvviivieei i 29
T O3 [o (0 1 I 1Y (o o [RSP RR 30
4.2.3.1 Starting Debugging Immediately after the Device has Made the Transition to Cyclic Run Mode from
=TT oIS (o o N Y, oo [P 32
4.2.3.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in Deep Stop Mode at
the Time of the Transition to Cyclic Run Mode from Deep Stop Mode..........cccceevvieveeiiiineeeiieneeee 34
4.2.3.3 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in Cyclic Run Mode
... 35
A S O3 o o) (o o 1 1Yo Yo L= SRS UERURRR 36
4.2.41 Starting Debugging Immediately after the Device has Made the Transition to Cyclic Run Mode from
CYCHC STOP MOUE ... ettt e et e ab et e e e bb et e e sabre e e e annneas 38
R20ANO558EJ0100 Rev.1.00 Page 3 of 50

Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.4.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in Cyclic Stop Mode

... 39
4.2.5 CycClic DiSALIE MOGE......ccciiiiiie ittt ee e e et e e e ea et e e e snte e e e e sntaeeeeanbeeeeeansaeeeeanteeeesanreeaeaas 40
T o111 530 o] g O = U (o o SRR 42
5.1 Executing a Program to Cause the Device to Enter Stop Mode or Cyclic Stop Mode..........ccccceeeeeennn. 42
5.2 Executing a Program to Cause the Device to Enter Deep Stop Modecoooiiiiiiiiiiiiiiei e 42
5.3 Debugging an Initially Stopped Core in Devices with the ICU-M Core Enabled...............coccccoiieen. 43
5.4 Debugging Standby Modes in Devices with the ICU-M Core Enabledoooooiiiiiiiiii 43
LR T o [0 o (8o B T I 1= o TH o o T [T SUPPPPRRRR 44
5.6 Operations Related to Setting and Deleting Hardware Breakpoints............ccccccooviiiiiiiiiiiiiccciiiecceeeee 45
5.7 State of a Hardware Breakpoint Set for an Initially Stopped Core at the Time of Downloading a
[oo =T o H P PPPPR PO 46
NV 1=T 10 T o 53 o RSN 47
R20ANO558EJ0100 Rev.1.00 Page 4 of 50

Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

Terminology

Some specific words used in this application note are defined below.

Integrated development environment (IDE):

This tool provides powerful support for the development of embedded applications for Renesas
microcomputers. It has an emulator debugger function allowing the emulator to be controlled from the host
machine via an interface. Furthermore, it permits a range of operations from editing a project to building and
debugging it to be performed within the same application. In addition, it supports version management.

CS+:

This is an integrated development environment from Renesas.

MULTI:

This is the integrated development environment from Green Hills Software.

Emulator debugger:

This means a software tool that is started up from the integrated development environment, and controls the
emulator and enables debugging.

Host machine:

This means a personal computer used to control the emulator.

Target device (MCU):

This means the device to be debugged.

User system:

This means a user's application system in which the MCU to be debugged is used.

User system interface:

This means the interface that the E1/E20/E2/IE850A emulator connects to the target device.

User system interface cable:

This means a cable that the E1/E20/E2/IE850A emulator connects to the target device.

ICU-M:

This is an abbreviation of “Intelligent Cryptographic Unit/Master”’. The RH850 family includes devices that
incorporate an ICU-M core as a security CPU core. The ICU-M core can be switched to enabled or disabled
by a setting in an option byte.

R20AN0558EJ0100 Rev.1.00 Page 5 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

Configuration of Manuals
The documents related to this application note consist of the following.

e E1/E20 Emulator User’'s Manual, E2 Emulator User's Manual, and IE850A Emulator User's Manual

e E1/E20 Emulator, E2 Emulator, IE850A Additional Documents for User’'s Manual

e User's manual and help for the emulator debugger

o Application Note for RH850 Introducing Methods of Debugging Devices Incorporating an Initially Stopped
Core and Devices in Standby Mode (this document)

(1) E1/E20 Emulator User’'s Manual, E2 Emulator User’s Manual, and IE850A Emulator User’s Manual
These user’s manuals have the following contents.
— Components of the emulator
— Hardware specifications of the emulator
— Connection to the emulator and the host machine and user system

(2) E1/E20 Emulator, E2 Emulator, IE850A Additional Documents for User’'s Manual
These documents describe the features of the debugger, items dependent on the given MCU, and give
notes on usage.

(3) User’s manual and help for the emulator debugger
The user’'s manual and help for the emulator debugger describe the functions of the E1/E20/E2/IE850A
emulator debugger and the operating instructions.

(4) Application Note for RH850 Introducing Methods of Debugging Devices Incorporating an Initially Stopped
Core and Devices in Standby Mode (this document)
Although some RH850 family devices include more than two cores, this application note covers how to
debug those RH850 devices that incorporate an initially stopped core and synchronously debug programs
that cause transitions of RH850 family devices to standby mode.

R20AN0558EJ0100 Rev.1.00 Page 6 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

1. Overview
The RH850 family includes devices that incorporate an initially stopped core and a standby mode.

An initially stopped core is a CPU core that is activated by a register operation rather than automatically on
release from a reset. An option-byte setting can be used to specify a CPU core as being activated on release
from a reset or as an initially stopped core. For details, refer to the hardware manual for the device.
Hereafter, the descriptions in this document are on the assumption that a core is set as an initially stopped
core and so enters the initially stopped state on release from a reset.

r

Areset is released.

The initially

stoppedcoreis |
activated. | The initially stopped core is not activated on release from a reset.

The BOOTCTRL The initially

i The initially stopped core is activated by a register operation.
register is written. - stoggﬁgtce%re S y siopp y ° P

Figure 1-1 Non-Operation of an Initially Stopped Core on Release from a Reset and the Activation
Sequence

The standby modes are used to control the power consumed by the device. There are four types of standby
mode: stop, deep stop, cyclic run, and cyclic stop. Transitions between standby modes occur due to register
operations or wakeup resources as shown in Figure 1-2. For details, refer to the hardware manual for the
device.

An initially stopped core is generally in run mode.

Writing to registers Wakeup resources
Deep stop Cyclic run
Run mode
mode mode

Wakeup resources Writing to registers

Writing to registers Wakeup resources Writing to registers Wakeup resources

Transitions between standby modes occur due Cyclic stop
to register operations or wakeup resources. mode

Stop mode

Figure 1-2 Transition between Standby Modes and Normal Operation (Run Mode)

R20AN0558EJ0100 Rev.1.00 Page 7 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

1.1 Debugging Specifications for the Initial Setting of the Debugger

For the initial settings of the debugger, when the user uses the synchronous debugging facility* for
applications that run on devices incorporating an initially stopped core or include transitions to standby mode,
the respective specifications are that the debugger activates the initially stopped core when debugging is
started and that caution is required regarding the timing with which inserted breaks will occur. Thus, since
the initial operation of the initially stopped core is not actual operation, debugging of normal operation is not
possible. Debugging of operation during standby mode is also not possible. For details, refer to the E1/E20
Emulator, E2 Emulator, IE850A Additional Document for User's Manual.

Note: Synchronous debugging is used to all CPU cores run or have a break in execution at the same time in
terms of program execution and break generation. Debugging that involves the execution or
generation of breaks only in a selected CPU core is called asynchronous debugging.

General initial state of the device Initial state during debugging

MCU MCU
CPUO CPU1 CPUO CPU1
Active Inactive Active Active

The debugger activates the initially stopped core.

Figure 1-3 Differences between the Initial State of the Device and the Initial State for Synchronous
Debugging

Reset %

Active (run) Active (run)
Generating a break is prohibited.

e BOOTCTRL
register is set.

20

The initially stopped

CPUO
I ‘ core is activated.
CPU1 Active (run) Initially stopped state Active (run)
|

Generating a break is prohibited in the state
where there is an initially stopped core and
it is still in the initially stopped state.

Figure 1-4 Debugging Specifications in the State where an Initially Stopped Core of a Device is in
the Initially Stopped State for the Initial Setting of the Debugger

R20AN0558EJ0100 Rev.1.00 Page 8 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

A forced break is prohibited for a CPU core during the execution of a program in cyclic run mode.

MCU (cyclic run mode)

CPUO
Cyclic run

A forced break is prohibited.

Figure 1-5 Debugging Specifications in Cyclic Run Mode for the Initial Setting of the Debugger

1.2 Debugging Devices with an Initially Stopped Core and Devices in Standby
Mode

When the settings are made for a debugger to debug a device that has an initially stopped core or is running
a program that includes transitions to standby mode, the user can confirm the current state of the initially
stopped core and debug the actual operation of the application. The user can also confirm the standby mode
of the current device and debug applications which operate on the device in standby mode.

This application note describes the method of synchronous debugging for users who want to debug
applications that run on devices incorporating an initially stopped core or include transitions to standby mode.
This application note also describes how to confirm the current state of the CPU core during debugging and
start debugging immediately after a state transition with the use of examples of applications and programs
which include transitions of the state of the device, confirm that the requirements regarding time restriction
have been satisfied. It also lists points for caution on debugging of devices with an initially stopped core and
applications that include transitions to standby mode.

General initial state of the device Initial state during debugging

MCU MCU
CPUO CPU1 CPUO CPU1
Active Inactive Active Inactive

When a reset is released, CPU1 can be debugged while it is still in the inactive state which is the general
initial state of the device.

Figure 1-6 Initial State of the Device when a Device with an Initially Stopped Core or Program that
Includes Transitions to Standby Mode is to be Debugged

R20AN0558EJ0100 Rev.1.00 Page 9 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

€ OO CTRL
Reset%' Break% Re-execution % reglster is set.
CPUO Active (run) Active (run) Active (break) Actlve (run)

The initially stopped
core is activated.

CPU1 Active (run) Initially stopp Active (run)

Generation of a break or re-execution of the program is
possible for the other CPU even if an initially stopped
core is in the initially stopped state.

Figure 1-7 Debugging in the State where a CPU Core Enters the Initially Stopped State when
Debugging is of a Device with an Initially Stopped Core or a Program that Includes Transitions to
Standby Mode

Debugging in cyclic run mode proceeds in the same way as in run mode.

MCU (cyclic run

Forced break

Execution or stepped execution

Breakpoint

Figure 1-8 Debugging in Cyclic Run Mode when Debugging is of a Device with an Initially Stopped
Core or a Program that Includes Transitions to Standby Mode

R20AN0558EJ0100 Rev.1.00 Page 10 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

2. Setting up the Environment
This chapter describes setting up the environment for debugging an application that runs on a device
incorporating an initially stopped core or includes transitions to standby mode.

2.1 System Configuration and Required Environment
This section describes the system configuration and required environment.

21.1 System Configuration
Figure 2-1 and Figure 2-2 show the system configuration.

User system
IDE interface cable
USE interface) /
cable e NG /
) TR B
/ \ o n
Praaaat saanan 3,1_/\ \/o“"?ﬂ)/’

Host machine EZ emulatar main unit ser system

Figure 2-1 System Configuration (E1/E20/E2 Emulator)

IDE IEBS50A [_
O e
ser system
interface cable
e = USB interface
A e e cable
/. et e IEB50A main unit
Host machine User system
AC adapter

5

Figure 2-2 System Configuration (IE850A Emulator)

R20AN0558EJ0100 Rev.1.00 Page 11 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

2.1.2 Required Environment
Table 2-1 shows the required environment.

Table 2-1 Required Environment

Item

Detail

[Target devices]

[Emulators]

environment (and
versions)

RH850/F1KM-S1 E1 emulator
. RH850/F1KM-S4 E20 emulator
Target device and RH850/F1KH-D8 E2 emulator
emulator -
[Target devices] [Emulators]
RH850/E2x E2 emulator
RH850/U2A IE850A emulator
Integrated Renesas V8.03.00 and later versions
development CS+

Green Hills Software
MULTI

Installations with 850eserv2
support*®

Note: For details, ask Green Hills Software or your local Renesas Electronics sales office or distributor.

2.2 Turning on the Emulator and User System
The following describes how to start the emulator and user system.

(1) Connect the A plug of the USB interface cable to the USB interface connector of the host machine.

(2) Connect the mini-B plug of the USB interface cable to the USB interface connector of the

E1/E20/E2/IE850A emulator.
(3) For the E1/E20/E2 emulator, the power of the emulator is turned on by connecting the emulator to the
host machine with a USB interface cable.
(4) For the IEB50A emulator, connect the AC adapter to the IEB50A emulator. Turning on the power switch

turns on the emulator.

(5) Turn on the user system.

R20AN0558EJ0100 Rev.1.00

Jan.08.20

RENESAS

Page 12 of 50

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

3. Settings for Debugging Applications

This chapter describes how to set the integrated development environment for synchronous debugging of
the actual operation of applications or applications that includes transitions to standby mode on device
incorporating an initially stopped core or standby mode.

With this setting, the initially stopped core stays in the initially stopped state following release from a reset
and the actual operation can be synchronously debugged. It also allows synchronously debugging of an
application that includes transitions to standby mode.

3.1 Setting in CS+

In CS+, select the emulator for the debug tool to be used. Select [Yes] for [Debug the initial stop state and
the standby mode] on the [Connect Settings] tabbed page of the [Property] panel for the debug tool.

After the setting was made, select [Build & Download] from the [Debug] menu and start and download the
emulator debugger.

Imtiahize HAM when connecting Tes

isconnecting from the target syst Mo
Debug the initial stop state and the standby mode Yes v]
W pansion

|z tha F? avnanzinn interfmees Manss

Figure 3-1 Setting for Debugging Devices with Cores in the Initially Stopped State and Operation
Including Transitions to Standby Mode in CS+

3.2 Setting in MULTI

In MULTI, specify “-initstop” as an option for starting the emulator debugger.

This option sets up the connection with 850eserv2.

connect 850eserv2 -rh850 —e21pd4=default -df=.¥DR7F702Z12.DVF ...

Figure 3-2 Setting for Debugging Devices with Cores in the Initially Stopped State and Operation
Including Transitions to Standby Mode in MULTI

R20AN0558EJ0100 Rev.1.00 Page 13 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4. Debugging Methods

This chapter describes the methods of synchronous debugging of applications that operate on devices
incorporating an initially stopped core and execution that includes transitions to standby mode.

4.1 Debugging Method for Applications Running on Devices Incorporating an
Initially Stopped Core

This section describes the method of synchronous debugging of applications that operate on devices
incorporating an initially stopped core. The following shows an example of debugging operations for an

application.
e BOOTCTRL
Reset% Break& Stepped& register is set.
execution 0°
Stepped Active (break)

CPUO Active (break) execution

CPU1

Debugging facilities other than tracing, timers, and performance measurement must only be used
after the initially stopped core has been activated.

% Re—executionI % Reset

Active (run) Active (run)

Active (run)

The initially stopped core is
activated.

Initially stopped state Active (break) Active (run) Initially stopped state

J I

N
. Y

Figure 4-1 Example of Applications that Run on a Device Incorporating an Initially Stopped Core
(Example Application 1) and Descriptions of Debugging Operations

The user can confirm whether the initially stopped core is currently in the initially stopped or active state and
start debugging immediately after the core has been activated. The user can also confirm the requirement in
terms of the time restriction of waiting for activation of the initially stopped core by measuring this time.

If you want to acquire tracing information or measure the execution time of an initially stopped core, specify
the facilities related to tracing, timers, and performance measurement before executing the program. Only
use the other debugging facilities after the initially stopped core has been activated.

For the example above, the following describes the items of debugging and the names of the relevant
sections.

¢ Confirming that the initially stopped core is in the initially stopped state
— Refer to section 4.1.1, Confirming that the Initially Stopped Core is in the Initially Stopped State.

e Confirming that the initially stopped core has been activated
o Starting debugging at the point where the initially stopped core has been activated
— Refer to section 4.1.2, Activating the Initially Stopped Core.

e Checking the time until the initially stopped core is activated after release from a reset

— Refer to section 4.1.3, Confirming that the Time until the Initially Stopped Core is Activated Satisfies
the Requirements in Terms of Time Restrictions.

¢ Confirming that the initially stopped core enters the initially stopped state after a reset is issued
— Refer to section 4.1.4, Confirming the Response to the Initially Stopped Core to a Reset.

R20AN0558EJ0100 Rev.1.00 Page 14 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.1.1 Confirming that the Initially Stopped Core is in the Initially Stopped State

This section describes how to confirm that the initially stopped core is in the initially stopped state. The user
can confirm that the initially stopped core is in the initially stopped state in the following way.

The user can confirm that the initially stopped core is in the initially stopped state.

OO CTRL
Reset% Break Steppe & reglster is se
n

executio

}& Re-execu’(ionI % Reset

CPUO ve (break) fx‘:fjﬁ)dn Active (break) Active (run) Active (run)
The initially stopped core is
activated.
CPU1 Initially stopped state Active (break) Active (run) Initially stopped state

A

J I
Y .
Debugging facilities other than tracing, timers, and performance measurement must only be used
after the initially stopped core has been activated.

Figure 4-2 Confirming the Initially Stopped State in Example Application 1

The user can confirm that the initially stopped core is in the initially stopped state by using the debugger to
acquire this information. The displays in each debugger after the state is identified are shown below.

e (CS+
CS+ shows “Initial Stop” as the state of an initially stopped core in the initially stopped state.

CS+ shows only the state of the selected CPU core. If you want to confirm the states of the other CPU
core, switch the CPU core.

il |] 3 F? Full-screen Fa

Line 22/337 Column1 Insert lapanese (Shift-115) CF'LI'I ~ Host IIIEFE%K |I"|Itla|5t0p g 0x00000000 == RH350 E2 @Notmeasued fir _ll")

Figure 4-3 Display in CS+ Indicating that an Initially Stopped Core is in the Initially Stopped State

e MULTI
MULTI shows “0x100” (numerals) and “FETCH-STOP” (a string) to indicate that an initially stopped core
is in the initially stopped state.
In MULTI, issue the cpustatus command to confirm the states of all CPU cores.

850eserv2> cpustatus

CPUO CPU status (0x0):

CPUO is not in the initially stopped state but is active.

Core is Stopped, PC=0xXXXX

CPUl CPU status [(OXlOO): FETCH-STOP]

Core is Stopped, PC=0x0

CPU2 CPU status |(0x100): FETCH-STOP |

Core is Stopped, PC=0x0

CPU3 CPU status[(OxlOO): FETCH-STOP]

Core is Stopped, PC=0x0

Figure 4-4 Display in MULTI Indicating that an Initially Stopped Core is in the Initially Stopped State

R20AN0558EJ0100 Rev.1.00 Page 15 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

Activating the Initially Stopped Core

This section describes how to confirm the state of the device when the initially stopped core has been
activated and start debugging the application immediately after having done so. With the method shown
below, the user can confirm that the initially stopped core is in the active state and start debugging at that
point after having done so.

The user can confirm that the initially stopped core has been activated and start debugging of a program immediately after having done so.

e BOOTCTRL
Reset%l Break& Stepped register is set. % Re-execution % Reset
execution o° |

CPUO Active (run) Active (break) Sebred Active (break) Active (run)

execution

Active (run)

The initially stopped core is
activated.

CPU1 Initially stopped state Active (break) Active (run)

[J I
. Y .

Debugging facilities other than tracing, timers, and performance measurement must only be used
after the initially stopped core has been activated.

Initially stopped state

Figure 4-5 Activating the Initially Stopped Core in Example Application 1

Figure 4-6 shows an example of a program that activates the initially stopped core. Execution of this program
by CPUO in the example of Figure 4-5 activates the initially stopped core. For details on registers and
programming, refer to the hardware manual for the device.

14

15 000100kE | xEnid main (woid)

16 =

17 000100kE |‘@ SYSCTRL.BOOTCTRL. UTWT 32 = Ox0000000F ;

18

19 oontooke oo || for (330 {

20 ;

21 1

27 1)) -
o3 The program is executed by CPUO in the example of an application.

Figure 4-6 Example of a Program for Activating the Initially Stopped Core

When you want to start debugging at the point where the initially stopped core has been activated, change
the selected CPU core to the initially stopped core that has been activated after step-executing programming
of the BOOTCTRL register of CPUO with the above example of a program.

R20AN0558EJ0100 Rev.1.00 Page 16 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

The displays in each debugger after the state is identified are shown below.

The indicators of the state when the initially stopped core has been activated are the same as those for a
non-initially stopped CPU core that is active.

o (CS+
In CS+, the indicator of the state when the initially stopped core has been activated and selected is the same
as that for a non-initially stopped CPU core that is active.

CS+ shows only the state of the selected CPU core. If you want to confirm the states of the other CPU core,
switch the CPU core.

Fa |] F3 I8 Full-screen n e
O

Line 22/337 Column1 | Insert Japanese [Shift-JIS)f | CPUT |~ ost IE BREAK :]

00000000 |EERHBSOEZ (7} 184212 s 5 1D

Figure 4-7 Displaying the State in CS+ of the Initially Stopped Core having been Activated so that it
is Operating

o MULTI
In MULTI, the part of the list of states when the initially stopped cores have been activated and selected is
the same as that for a non-initially stopped CPU core that is active.

In MULTI, issue the cpustatus command to confirm the states of all CPU cores.

850eserv2> cpustatus

CPUO CPU status (0x0):

CPUOQ is also active.

Core is Stopped, PC=0xXXXX

CPUL CPU status[(0x0) :]

Core is Running

CPU2 CPU status[(OxO):]

Core is Running

CPU3 CPU status[(OxO):]

Core is Running

Figure 4-8 Displaying the State in MULTI with the Initially Stopped Cores Activated and Operating

R20AN0558EJ0100 Rev.1.00 Page 17 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.1.2 Confirming that the Time until the Initially Stopped Core is Activated Satisfies the
Requirements in Terms of Time Restrictions

This section describes how to measure the time from CPUO being activated following release from a reset

until the program run by CPUO activates the initially stopped core, which starts executing a program.

Through the following methods, the user can confirm that the time until the initially stopped core is activated

after the device has been activated satisfies the requirements in terms of time restrictions.

The user can confirm that the time until the initially stopped core is activated.

e BOOTCTRL
register is set.
Ioo

Active (break)

% Re-executionI % Reset

Active (run)

Active (run) Active (run)

The initially stopped core is
activated.

Initially stopped state Active (break) Active (run) Initially stopped state

Y

Debugging facilities other than tracing, timers, and performance measurement must only be used
after the initially stopped core has been activated.

Figure 4-9 Time until the Initially Stopped Core is Activated in Example Application 1

Using the timer facility of the debugger, specify the condition for the start of time measurement as the reset
vector address of CPUO or the start of the execution of a program from the reset break state, and specify the
end of time measurement as being immediately after programming of the BOOTCTRL register. Executing the
program after the jump to the reset vector address of CPUO or the start of the execution of a program by
CPUO allows measuring the time by which the initially stopped core is activated after release from a reset.

If the time until the initially stopped core is activated does not satisfy the requirements in terms of time
restrictions, the user can confirm the times taken by the parts of the program until the initially stopped core is
activated by measuring the times from the start to end of time measurement or using the display from tracing
of times taken for processing. This clarifies how long each part of processing by the program is taking.

A bootzsm H mainle A maindz [bootlasm [boot2asm - x| == e b
B % @G @ =m0 |,
838 | = ~ | f5h- i H‘jjj,,n . SR R
T | B5 Em eninsasusrs) | BEZO0Y) (ES/TFLA J-RAETEVIL =5 TUF D TELA T-2 ZOM A
';A dirkz [Hla 2177 D0RDOMinD0<000ns000n=085ne | 38 108 SYSCTRL.CLKR 1 SPID=0
- " 1170 naind oSG if ((SYSCTRL.CLUD_PLLS.IN
® oo | EZE%T.F%")(M'“W”Z = be0ooomors \ s 00001004 +144 andi 032, 12, 1 PID=0
37 omioosa | If ((SYSOTAL.PLLS.UINTEZ & Ox00000002) == Cxonogf| |27 aind c 150 I (sl M.
38 break: 2179-1 0:00010029 +148 bz _naint0:8
35 2179-2 naind . clisd SYSCTRLLCLAD_PLLC.UINTAZ =
10 j 2176-2 [00R00nin00s000Ns000Ns00Tns | 3 0:0001008¢ +13 wovhi 098, 1
41 2178 naind o6 i ((svsmm CLED_PLLS, UIN
49 00010062 | SYSCTRL.GLKOPLLG.UINTEZ = 0x00000002; 2179 00001000 Idow 0128 [r2] 108 SPID=0
4 for(is) [2180 || 00R00nin00s000Ns000us08Tns [95 108 SYSCTRLLOLKR | SPID=
44 oooioorz | if LD _PLLS.UINTS2 & 0x00000002) == 2181 maind. ci56 if ((SYSCTRL.CLKD_PLLS.UIN
45 bredc; 2181 0x000100a4 +184 andi 02, r2, 1 SPID=D
“® , ! 2181-1 naind clis6 iF ((SrSTTRLLLEE PLLS. LN
2181-1 0:00010008 +148 bz _naint0:88
48 oooiooen | SYSCTRL /C#5C_CPUC. UINTZZ = 0%00000000; 1510 inDoold SYSTTRL.CLKD. PLLDLUINTR? =
49 for(; . i
i SYSCTRL CHEC PLS _ | [1e1-2 | 00n0onin00s000ns000us007ns | 3 0:0001008c +38 wovhi D98, 1
o oonigose | if e ST e U & 000000001 == O, 5 naind. cs6 i ((wsmm CLD, ms[m;«
! 2182 00001000 Id.v 01281 jull} SPID=D
E 1 ! 2183 || 00R00nin00<000nsO00us08Tns | 95 i SYSOTRL. CLKR & SPID=D
54 oooio0ss | SYSOTRL.CLKD_PLLC.UINTS2 = 000000001 ; 2164 mainl. c56 If ((SYSCTRL.CLKD_PLLS.UIN
55 Fori) (2184 000010004 +ad andi O, t, 1 SPID-0
56 om0100a0 | it (s (VD FLLS.UINT32 & Ox00000002) == of |[2184-1 naind. cs6 if ((SYSCTRL.CLKD_PLLS.UIN
57 break; 2184-1 000010033 +48 b2 _naint0s8h
58 } 2184-2 naind. ci5e if ((svsmm oL LS Ut
59 H 2184-2 000010083 +50 0798, 1
60 2184-3 naind. ci5e if ((svsmm cmn s um
) 00010000 | SYSCTRL RESFC-UINTS2 = OxFFFFFFFF; 1184-3 0:000100ae +154 .
2184-4 naind. clfs1 ST RESFRS TS = o
8 00010068 | SYSCTRL BOOTOTRL.UINTSE = 0x0000000F ; 11644 0200010060 v tp, Dl it
o 2185 || 00h00nind0s0DEns0DOpsDi2ne | 1 iz SYSCTRL. RESUMBSUSRFSFID=0
gg ggg}gggﬁ 2 S:tg#l() o3 2188 main0. o1 SYSCTRL.RESFC.UINTAZ = 0xFF
HE 0x000100b4 + sPID=0
g; 00010024 Bt DeeplT (P 20y /RN O3 2186-1 naind.cies SYSETRL E[I[ITETRL UIMTSZ 3
B9 omiones | For(sd 2188-1 000010066 st.w SYSCTRL.B(13
0 ; z
7 \ i J o

0-hiZH SECPULTAR #FOR gy pp—3 BIAAU- AR

Figure 4-10 Result of Tracing a Program in CS+ until the Initially Stopped Core is Activated

R20AN0558EJ0100 Rev.1.00
Jan.08.20

RENESAS

Page 18 of 50

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.1.3 Confirming the Response to the Initially Stopped Core to a Reset

When the user or program applies a reset while the initially stopped core is active, the initially stopped core
returns to its initially stopped state.

A reset returns the initially stopped core to its initially stopped state.

e BOOTCTRL
Reset% Break& Stepped& register is set.
execution 0°
Active (break) Stepped Active (break) Active (run) Active (run)

execution

CPUO

CPU1
Y

Debugging facilities other than tracing, timers, and performance measurement must only be used
after the initially stopped core has been activated.

Active (run)

The initially stopped core is
activated.

Initially stopped state Active (break) Active (run) Initially stopped state

A

J I

Figure 4-11 The State after a Reset in Example Application 1

For details on the display of states, refer to section 4.1.1, Confirming that the Initially Stopped Core is in the
Initially Stopped State.

R20AN0558EJ0100 Rev.1.00 Page 19 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2 Debugging Method for Applications that Include Transitions to Standby Modes

This section describes the method of synchronous debugging of applications that in the case of transitions to
standby modes on devices that incorporating them. The following shows an example of debugging
operations for an application.

CPUO Run - Run , Deep stop Cyclic run — Cyclic run Deep stop Run

~—
CPU1 Run ‘ Run Deep stop Cyclic disable Deep stop .

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

IWe recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-12 Example of Applications that Include Transitions to Standby Modes (Example
Application 2) and Descriptions of Debugging Operations

The user can confirm the current standby mode. Debugging can start immediately after transitions from stop
mode, deep stop mode, or cyclic stop mode to run mode or cyclic run mode. In addition, the user can also
confirm that requirements in terms of time restrictions have been satisfied by measuring times over which the
cores of the device are in a standby mode.

As is the case in run mode, the user can start debugging when the device is in cyclic run mode, but flash
memory is not accessible.

When the device is in stop mode, deep stop mode, or cyclic stop mode, the user can only acquire state
information. No other debugging facilities are available. When using hardware break and software break
facilities, be sure to set breakpoints for a CPU core only when it is in run mode or cyclic run mode.

A CPU core in cyclic disable mode does not operate; the CPU core only activates when it returns to run
mode through deep stop mode. We recommend that the user neither select nor debug a CPU core in cyclic
disable mode.

For the example above, the following describes the items of debugging and the names of the relevant
sections.

¢ Confirming that the device has made the transition to stop mode
e Starting debugging at the point where the device has made the transition to run mode from stop mode
e Checking the times over which the device is in stop mode
— Refer to sections 4.2.1, Stop Mode, 4.2.1.1, Starting Debugging Immediately after the Device has
Made the Transition to Run Mode from Stop Mode, and 4.2.1.2, Confirming Satisfaction of the
Requirements in Terms of Restrictions on Time in Stop Mode.

¢ Confirming that the device has made the transition to deep stop mode
e Starting debugging at the point where the device has made the transition to run mode from deep stop
mode
e Checking the times from the device entering deep stop mode until the transition to run mode
— Refer to sections 4.2.2, Deep Stop Mode, 4.2.2.1, Starting Debugging Immediately after the Device
has Made the Transition to Run Mode from Deep Stop Mode, and 4.2.2.2, Confirming Satisfaction of
the Requirements in Terms of Restrictions on Time in Deep Stop Mode at the Time of the Transition to
Run Mode from Deep Stop Mode.

R20AN0558EJ0100 Rev.1.00 Page 20 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

Confirming that the device has made the transition to cyclic run mode

Starting debugging at the point where the device has made the transition to cyclic run mode from deep

stop mode

Checking the times from the device entering deep stop mode until the transition to cyclic run mode

Checking the times over which the device is in cyclic run mode

— Refer to sections 4.2.3, Cyclic Run Mode, 4.2.3.1, Starting Debugging Immediately after the Device
has Made the Transition to Cyclic Run Mode from Deep Stop Mode, 4.2.3.2, Confirming Satisfaction of
the Requirements in Terms of Restrictions on Time in Deep Stop Mode at the Time of the Transition to
Cyclic Run Mode from Deep Stop Mode, and 4.2.3.3, Confirming Satisfaction of the Requirements in
Terms of Restrictions on Time in Cyclic Run Mode.

Confirming that the device has made the transition to cyclic stop mode

Starting debugging at the point where the device has made the transition to cyclic run mode from cyclic

stop mode

Checking the times over which the device is in cyclic stop mode

— Refer to sections 4.2.4, Cyclic Stop Mode, 4.2.4.1, Starting Debugging Immediately after the Device
has Made the Transition to Cyclic Run Mode from Cyclic Stop Mode, and 4.2.4.2, Confirming
Satisfaction of the Requirements in Terms of Restrictions on Time in Cyclic Stop Mode.

R20AN0558EJ0100 Rev.1.00 Page 21 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.1 Stop Mode

This section describes how to cause a transition of a device to stop mode and confirm that the device is in
stop mode. The user can confirm that the device is in stop mode in the following way.

The user can confirm thai‘the device has entered stop mode.

CPUO Run “ Run Deep stop Cyclic run - Cyclic run Deep stop Run

e ——
CPU1 Run - Run Deep stop Cyclic disable Deep stop 3
\ J \ A A J
Y Y Y

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-13 Confirming Stop Mode in Example Application 2

Figure 4-14 shows an example of a program that causes a transition to stop mode. When CPUQ in the
example of an application shown in Figure 4-13 executes this program, the device enters stop mode. For
details on registers and programming, refer to the hardware manual for the device.

| B4

110 00010156 SYoCTRL.GTECKCPROT LUINTSZ = [ASASASON ;

11 0001015a SYSCTRL.STBCOSTPT.UINTSZ = 0x00000001 ;

112

113 for::) {

114 0001015e | if (BYSCTRL.STECOSTRT.UINTSZ == (000000000 {
115 break:

116 h The program is executed by CPUO in the above example
1 13 h of an application.

Figure 4-14 Example of a Program that Causes a Transition to Stop Mode

The user can confirm that the device is in stop mode by identifying the state. The displays in each debugger
after the state is identified are shown below.

e (CS+
CS+ shows “Stop” as the state to indicate that the device is in stop mode.

ra H g i Full-screen o i

Line 110/140 Column 1 Insert lapanese (Shit-JIS} [CPUD [v] Run -JRUN (2 Running EORHBS0EZ (f) Measuring ¥y (D)

Figure 4-15 Displaying the State of the Device as Stop Mode in CS+

R20AN0558EJ0100 Rev.1.00 Page 22 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

e MULTI

MULTI shows “0x8” (numerals) and “HARDWARE STOP” (a string) to indicate that the state of the device
is stop mode. Since the device is in this standby mode, the indicator for stop mode is also displayed for
CPUO.

850eserv2> cpustatus

CPUO

Core

CpPU1

Core

CPU2

Core

CPU3

Core

CPU status[(OxS):

HARDWARE

STOP

is Running

CPU status [(Ox8) :

HARDWARE

STOP

is Running

CPU status[(OxS):

HARDWARE

STOP

is Running

CPU status[(OxS):

HARDWARE

STOP

is Running

Figure 4-16 Displaying the State of the Device as Stop Mode in MULTI

R20AN0558EJ0100 Rev.1.00
Jan.08.20

RENESAS

Page 23 of 50

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.1.1 Starting Debugging Immediately after the Device has Made the Transition to Run

Mode from Stop Mode

This section describes how to generate a break in the CPU core immediately after the device has entered
run mode due to wakeup resources after having been in stop mode. With the method shown below, the user
can confirm the state of the device immediately after it has made the transition to run mode from stop mode
and start debugging of an application immediately after the device enters run mode.

The user can start debugging at the point of the device’s transition to run mode from stop mode.

CPUO Run - Run Deep stop Cyclic run _ Cyclic run Deep stop Run

N— —

CPU1 Run - Run Deep stop Cyclic disable
\ J \ v A

Deep stop .
A

J

Y Y

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-17 Transition to Run Mode from Stop Mode in Example Application 2

Figure 4-18 shows an example of the debugging of a program where a break occurs at the point of the CPU
core’s transition to run mode from stop mode. When the CPU core has made the transition to run mode from
stop mode, the program is executed after checking the value of the STBCOSTPT register. To start debugging
at the point where the CPU core has entered run mode, set a breakpoint after checking the STBCOSTPT
register before the CPU core enters stop mode. This enables the generation of a break at the point where

the CPU core has entered run mode.

1L
110
11

112
113
114
115
116
17
118
119
120

00010156
noo1015a

noo1015e

000016

SYSCTRL.STBCRCPROT.UINTS2 = (keABA54501;
SYSCTRL.STECOSTRT.UINTZZ = Ox00000001 ;

for(s:) |
if (SYSCTRL.STEBCOSTRT.UINTIZ2 == Dw00000000)

bireaks
1

A break occurs immediately after CPUOQ’s transition to run mode from stop mode.

Figure 4-18 Example of a Break Following the Device’s Transition to Run Mode from Stop Mode

R20AN0558EJ0100 Rev.1.00

Jan.08.20

Page 24 of 50
RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.1.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in
Stop Mode

This section describes how to measure the time the device is in stop mode before returning to run mode.
With the method shown below, the user can confirm that the requirements in terms of restrictions on time in
stop mode have been satisfied.

The user can confirm the time while the device is in stop mode.

CPUO Run q Run Deep stop Cyclic run _ Cyclic run Deep stop Run

)
CPU1 Run - Run Deep stop Cyclic disable Deep stop .

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-19 Confirming the Time in Stop Mode in Example Application 2

Use the timer facility of the debugger to specify the start of time measurement as the program address that
causes the transition to stop mode and the end of time measurement as the program address immediately
after the device has returned to run mode from stop mode. Executing the program will provide a
measurement of the time from the program on CPUO placing the device in stop mode until the device enters
run mode.

R20AN0558EJ0100 Rev.1.00 Page 25 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.2 Deep Stop Mode

This section describes how to cause a transition of a device to deep stop mode and confirm that the device is
in deep stop mode. The user can confirm that the device is in deep stop mode in the following way.

The user can confirm that the device has entered deep stop mode.

CPUO Run - Run , Deep stop Cyclic run _ Cyclic run Deep stop Run

~—
CPU1 Run ‘ Run Deep stop Cyclic disable Deep stop .

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-20 Confirming Deep Stop Mode in Example Application 2

Figure 4-21 shows an example of a program that causes a transition to deep stop mode. When CPUQO in the
example of an application shown in Figure 4-20 executes this program, the device enters deep stop mode.
For details on registers and programming, refer to the hardware manual for the device.

aa

a0 0o1Mece BYSCTRL.STECHCPROT.UINT 32 = (xA5454501 :

h oooTodz SYSCTRL.STECOPSC.UTNTIZ = Oe00000002 3

a2

gi 00010148 | for(53) {; The program is executed by CPUQ in the
g5] above example of an application.

Figure 4-21 Example of a Program that Causes a Transition to Deep Stop Mode

The user can confirm that the device is in deep stop mode by identifying the state. The displays in each
debugger after the state is identified are shown below.

e (CS+
CS+ shows “Deep Stop” as the state to indicate that the device is in deep stop mode.

ra H g i Full-screen o i

Line 132/140 Column1 Insert Japanese (Shift-JIS) |CPUD |~ || Run IEIF:Llr-. Deep Stop |, Running == RH850 E2 @Measuing ji’ ,Cﬂ

Figure 4-22 Displaying the State of the Device as Deep Stop Mode in CS+

R20AN0558EJ0100 Rev.1.00 Page 26 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

e MULTI

MULTI shows “0x200” (numerals) and “DEEP-STOP” (a string) to indicate that the state of the device is
deep stop mode. Since the device is in this standby mode, the indicator for deep stop mode is also

displayed for CPUO.

850eserv2> cpustatus

CPUO CPU status [(0x200):

DEEP-STOP

Core is Running

CPUl CPU status[(Ox200) :

DEEP-STOP

Core is Running

CPU2 CPU status[(OxZOO) :

DEEP-STOP

Core is Running

CPU3 CPU status[(0x200):

DEEP-STOP

Core is Running

Figure 4-23 Displaying the State of the Device as Deep Stop Mode in MULTI

R20AN0558EJ0100 Rev.1.00

Jan.08.20

RENESAS

Page 27 of 50

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.2.1 Starting Debugging Immediately after the Device has Made the Transition to Run
Mode from Deep Stop Mode

This section describes how to generate a break in the CPU core immediately after the device has entered
run mode due to wakeup resources after having been in deep stop mode. With the method shown below, the
user can confirm the state of the device immediately after it has made the transition to run mode from deep
stop mode and start debugging of an application immediately after the device enters run mode.

The user can start debugging at the point of the device’s transition to run mode from deep stop mode.

CPUO Deep stop Cyclic run Cyclic run Deep stop
e
CPU1 Run - Run Deep stop Cyclic disable Deep stop 3
\ J \ > A v A " J

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-24 Transition to Run Mode from Deep Stop Mode in Example Application 2

Figure 4-25 shows an example of the debugging of a program where a break occurs at the point of the CPU
core’s transition to run mode from deep stop mode. When the CPU core has made the transition to run mode
from deep stop mode, the reset that was applied to initiate release from deep stop mode leads to the start of
program execution from the reset vector address. The reset vector address depends on RBASE. In the
example of debugging of the program, RBASE is set to 0x00000000. To start debugging at the point where
the CPU core has entered run mode, set a breakpoint at the reset vector address before the CPU core
enters deep stop mode. This enables the generation of a break at the point where the CPU core has entered
run mode.

17 o
18 : exception wector table

19 e

20 .sect ion TRESET FEOT, text

21 .align 512

2 |IIIIIIIIIIIIIZIIZIIZIIII| |i',‘f';. ir3? _ start ; RESET

gi 0000000k A break occurs immediately after CPUOQ’s transition to run mode from deep stop mode.
] 0oo0anin S¥NCR

2B ooonoom 2 ir3? _Dummy ; SYSERR

a3

Figure 4-25 Example of a Break Following the Device’s Transition to Run Mode from Deep Stop
Mode

The deep stop reset generated by the transition of the device to run mode from deep stop mode makes the
initially stopped core enter the initially stopped state. For the debugging of an initially stopped core, refer to
section 4.1, Debugging Method for Applications Running on Devices Incorporating an Initially Stopped Core.

R20AN0558EJ0100 Rev.1.00 Page 28 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.2.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in
Deep Stop Mode at the Time of the Transition to Run Mode from Deep Stop Mode

This section describes how to measure the time the device is in deep stop mode before returning to run
mode. With the method shown below, the user can confirm that the requirements in terms of restrictions on
time in deep stop mode have been satisfied by the time of the device’s return to run mode.

The user can confirm the time while the device is in deep stop mode before its return to run mode.

CPUO Run ‘ Run Deep stop Cyclic run - Cyclic run Deep stop Run

)
CPU1 Run ‘ Run Deep stop Cyclic disable Deep stop .

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-26 Confirming the Time in Deep Stop Mode until the Device Enters Run Mode in Example
Application 2

Use the timer facility of the debugger to specify the start of time measurement as the program address that
causes the transition to deep stop mode and the end of time measurement as the reset vector address
immediately after the device has returned to run mode from deep stop mode. Executing the program will
provide a measurement of the time from the program on CPUQO placing the device in deep stop mode until
the device enters run mode.

R20AN0558EJ0100 Rev.1.00 Page 29 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.3 Cyclic Run Mode

This section describes how to cause a transition of a device to cyclic run mode and confirm that the device is
in cyclic run mode. The user can confirm that the device is in cyclic run mode in the following way. In
addition, as is the case in run mode, the user can start debugging when the device is in cyclic run mode, but
flash memory is not accessible.

The user can confirm that the device has entered cyclic run mode. Debugging is also possible in cyclic run mode.
A

A

CPUO Run - Run Deep stop Cyclic run - Cyclic run Deep stop Run

%(_/
CPU1 Run - Run , Deep stop Cyclic disable
Hf—/ \ Y A Y A Y d

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-27 Confirming Cyclic Run Mode in Example Application 2

Figure 4-28 shows an example of a program that causes a transition to cyclic run mode. In this example, an
interrupt from TAUJ2 is specified as the wakeup resource. When CPUO in the example of an application
shown in Figure 4-27 executes this program, the device enters deep stop mode, the interrupt from TAUJ2
specified as the wakeup resource is issued, and the device enters cyclic run mode. For details on registers
and programming, refer to the hardware manual for the device.

When the device enters cyclic run mode, CPU1 is activated in RH850/F1KM-S1 series, F1KM-S4 series, and
F1KH-D8 series devices. Only CPUQ is activated in other RH850 family devices. The activated CPU core
starts executing code from the first address of the retention RAM. When the CPU core is to operate in cyclic
run mode, download the program to the retention RAM in advance. For details on downloading programs to
the retention RAM, refer to the user’'s manual and help system for the emulator debugger.

1 &nl

124 a0a1016e SYSCTRL.MUFCO A2 = DxFFFFFFFF ;

125 ooo1o1?a oYSCTRL . WUFMSKD _A2 = OxFFFFFFFF;

126 oooionie s¥aCTRL.WUFCT _A2 = DxFFFFFFFF;

127 oooiote4 SYECTRL . WUFMSKY _A2 = OxFFFFFFF3;

128

129 ooo1018e SY¥SCTRL.CLEKCPROT T UINT 32 = DeASASASOL

130 oooi1o1a4 s¥aCTRL HEOSCETPM . UINTEZ = 0x00000001 ;

131

132 ana101aa SYSCTRL.STBCRCPROT.UINTS2 = (xASASAS01;

133 0oo1018e o5 O Rl BLOREC LTINS - D OOAONO0T

134 The program is executed by CPUO in the above example of an
135 oooi0taz | for(;:] application.

136 The device enters cyclic run mode in response to the interrupt for
1 EZ h TAUJ2 after the earlier transition to deep stop mode.

Figure 4-28 Example of a Program that Causes a Transition to Cyclic Run Mode

R20AN0558EJ0100 Rev.1.00 Page 30 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

The user can confirm that the device is in cyclic run mode by identifying the state. The displays in each
debugger after the state is identified are shown below.

e (CS+
CS+ shows “Cyclic RUN” as the state to indicate that the device is in cyclic run mode.

Fa |] £ FI? Full-screen £ Fa

Line 17/68 Column 1 Insert Japanese (Shift-)IS) | CPUD |~ | Run IE RUN Cyclic Run Running @I RHE50 E2 '@MEESLHHD {“‘i .'E)

Figure 4-29 Displaying the State of the Device as Cyclic Run Mode in CS+

e MULTI
MULTI shows “0x400” (numerals) and “CYCLE-RUN” (a string) to indicate that the state of the device is
cyclic run mode. Since the device is in this standby mode, the indicator for cyclic run mode is also
displayed for CPUO.

850eserv2> cpustatus

CPUO CPU status[(0x400): CYCLE-RUN]

Core is Running

CPUl CPU status (0x1000): CYCLE-STOP INVALID

Core is Running

CPU2 CPU status (0x1000): CYCLE-STOP INVALID

Core is Running

CPU3 CPU status (0x1000): CYCLE-STOP INVALID

Core is Running

Figure 4-30 Displaying the State of the Device as Cyclic Run Mode in MULTI

R20AN0558EJ0100 Rev.1.00 Page 31 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.3.1 Starting Debugging Immediately after the Device has Made the Transition to Cyclic
Run Mode from Deep Stop Mode

This section describes how to generate a break in the CPU core immediately after the device has entered
cyclic run mode due to wakeup resources after having been in deep stop mode. With the method shown
below, the user can confirm the state of the device immediately after it has made the transition to cyclic run
mode from deep stop mode and start debugging of an application immediately after the device enters cyclic
run mode.

The user can start debugging at the point of the device’s transition to cyclic run mode from deep stop mode.

-

CPUO Run ‘ Run Deep stop , Cyclic run ‘ Cyclic run Deep stop Run

e
CPU1 Run - Run Deep stop Cyclic disable Deep stop 3
\ J \ > A v A " J

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-31 Transition to Cyclic Run Mode from Deep Stop Mode in Example Application 2

Figure 4-32 shows an example of the debugging of a program where a break occurs at the point of the CPU
core’s transition to cyclic run mode from deep stop mode. When the CPU core has made the transition to
cyclic run mode from deep stop mode, the program is executed at the first address of the retention RAM. To
start debugging at the point where the CPU core has entered cyclic run mode, set a breakpoint at the first
address of the retention RAM before the CPU core enters deep stop mode. This enables the generation of a
break at the point where the CPU core has entered cyclic run mode.

A break occurs immediately after CPUOQ’s transition to cyclic run mode from deep stop mode.

I

18 fedooooo S |-E|:||d Cyclic_malnyold)

149 =

20 fedlnooa | SYSCTRL.RESFC.UINTAZ = OxFFFFFFFF;
21

22 fedlole SetOvel icSTOPMode (0 ;

23 felOOO12 Set DeepSTOPMade 2RUN () ;

oA

Figure 4-32 Example of a Break Following the Device’s Transition to Cyclic Run Mode from Deep
Stop Mode

R20AN0558EJ0100 Rev.1.00 Page 32 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

The debuggers show that the device is in cyclic run mode and that a break occurred when the state was
identified.
e (CS+

In CS+, the state indicator changes from “RUN” to “BREAK”. The display of “Cyclic RUN” does not
change. The PC value is the first address of the retention RAM.

Fa |] £ FI? Full-screen e Fa

Line 17/68 Column 1 Insert Japanese (Shift-JIS) |CPUD |« HDSt[IEIE-F.E.'—'kK IC}'CIiC Run I Oncfe 800000]:E'RHBSC' E2 -,3; 1005 5 ‘.‘Vf .'*B

Figure 4-33 Display for the State having Changed to “BREAK” in Cyclic Run Mode for CS+

e MULTI

In MULTI, the state indicator changes from “Core is Running” to “Core is Stopped”. The display of
“CYCLE-RUN” does not change. The PC value is the first address of the retention RAM.

850eserv2> cpustatus

CPUO CPU status [(0x400): CYCLE-RUN |

[Core is Stopped, PC=0xfe800000]

CPULl CPU status (0x1000): CYCLE-STOP INVALID

Core is Running

CPU2 CPU status (0x1000): CYCLE-STOP INVALID

Core is Running

CPU3 CPU status (0x1000): CYCLE-STOP INVALID

Core is Running

Figure 4-34 Display for the State having Changed to “Core is Stopped” in Cyclic Run Mode for
MULTI

R20AN0558EJ0100 Rev.1.00 Page 33 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.3.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in
Deep Stop Mode at the Time of the Transition to Cyclic Run Mode from Deep Stop
Mode

This section describes how to measure the time the device is in deep stop mode from cyclic run mode. With

the method shown below, the user can confirm that the requirements in terms of restrictions on time in deep
stop mode have been satisfied by the time of the device’s return to cyclic run mode.

The user can confirm the time while the device is in deep stop mode before its return to cyclic run mode.

CPUO Run ‘ Run Deep stop Cyclic run - Cyclic run Deep stop Run

e ——
CPU1 Run - Run Deep stop Cyclic disable Deep stop 3
\ J \ A A J
Y Y Y

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-35 Confirming the Time in Deep Stop Mode until the Device Enters Cyclic Run Mode in
Example Application 2

Use the timer facility of the debugger to specify the start of time measurement as the program address that
causes the transition to deep stop mode and the end of time measurement as the first address of the
retention RAM immediately after the device has returned to cyclic run mode from deep stop mode. Executing
the program will provide a measurement of the time from the program on CPUQ placing the device in deep
stop mode until the device enters cyclic run mode.

R20AN0558EJ0100 Rev.1.00 Page 34 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.3.3 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in
Cyclic Run Mode

This section describes how to measure the execution time of a program in cyclic run mode. With the method
shown below, the user can confirm that the requirements in terms of restrictions on time in cyclic run mode
have been satisfied.

The user can confirm the time while the device is in cyclic run mode.

CPUO Run ‘ Run Deep stop Cyclic run - Cyclic run Deep stop Run

e

CPU1 Run ‘ Run Deep stop Cyclic disable Deep stop .

Y Y N
In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-36 Confirming the Time in Cyclic Run Mode in Example Application 2

Use the timer facility of the debugger to specify the start of time measurement as the first address of the
retention RAM that causes the transition to cyclic run mode and the end of time measurement as the
program address where the device has returned to cyclic stop mode from cyclic run mode or to deep stop
mode from cyclic run mode. Executing the program will provide a measurement of the time from the program
on CPUO placing the device in cyclic run mode until the device enters cyclic stop mode or deep stop mode.

If the time in cyclic run mode does not satisfy the requirements in terms of time restrictions, the user can
confirm the times taken by the parts of the program in cyclic run mode by measuring the times from the start
to end of time measurement or using the display from tracing of times taken for processing. This clarifies how
long each part of processing by the program is taking.

fboot0ssm [mainds (=] mansc [bootlasm A bootZasm - x| s
NLLB Lo o ol i ERAN: X o [T 5 (B8] 1
8o ~n| 73 -
e — Eil (h:mn:s,ms.ux,ns)\ W(ZOy2) TEE/7F LA J 2/ETRY I =5 IUF D TELA F-8 2o
(EMRNES v [EHE 73 1xFe300042 o -0x878bde, P00
n Hinclud - 13-1 maing. cff4? \f (SVKETRL STBCOSTRT. UINTE
12 inetude - iacerine 19-1 0xFe300043 +48 I 0x17e0[r2] 106
- 20 00h00m in00s000ms000psE82ne 287 pul SYSCTRL.STER 1 SPID=0
}i ;g:g gztgég;g?ggamggiw()’); 21 i3 cif42 M (svxcm STBCOSTRT. UINTE .
15 vaid Ovcl ic_maln(vo 21 Dxfea00de cup 030, r2 SFID=0
18 r 3 1 21-1 main3. cff4z M (svxcm STEEHSTPT ulNTI
17 f800000 vaid Ovel ic_wain(void) 211 1xfe30004e Settyel ict
18 = 21-2 maind. cfl41 i (svscm smcnsm o
13 feB00002 | SYSCTAL-RESFG.UINTZ2 = OxFFFFFFFF; 212 | 00h00min00s000ns000usOSins 36 OxFedindz 2 -0x678bde,
20 o1 maind. cfi41 w (S1SCTRL STECASTPT U
21 feB0000e ‘ Set Oyl icSTOPMade () 5 22 0xfeB00048 Idow 0xi7ed[r2 107 SPID=0
gg feg00012 SetDeepSTCPHadRZRUN () 5 23 00h00m in00s000ns0d0us077ns - 31 07 SYSCTRL.STER SPID=0
24 maind. cfl41 7 (SYSCTRL. STBCOSTPT. UINT!
gg fe00016 | for(ad 24 Oxfe80004c 52 cup 0x0, r2 SPID=D
o ' i 24-1 maind. cfl47 i (svscm.smcnsm.umz
24-1 Oxfedlide Settycl ict
i ! 24-2 maind. cfi4? s smcnsm UINT:
2 void SelOye | icSTOPHade(void) 24-2 | 00h00min00s000ns000us030ns | 36 OxFedlngg 2 -0xB78bde,
an a{ o5 waind. cfl47 w (150 STEGISTPT. DI
31 o5 Oxfedlndg Id.n D176 lr2 8 SPID-0
32 feB00018 SYSCTRLMUFCI 42 = OxFFFFFFFF; 26 00hD0n in00S000ns000us077ns | 81 8 SYSETRL. STER 1 SPID-0
33 f2800026 SYSCTRLYUFNSRI_A2 = OxFFFFFFF3: o7 naind. cfi47 7 (SYSOTRL. STAGOSTPT. UINTE
a4 o7 OxfeB0004e 62 cup 020, r2 SPID-0
a5 £2800030 SYSCTRL.CLEKOPROT 1 UINT32 = DxASABASOI ; o7-1 waind. cfi47 i (SVSDTRL.STEEHSTPT.U!NTI
38 fe800028 SYSCTRL-HSOSCSTPH-UINTZZ = 0xD00000D1 ; 27-1 OxfeBl00de Setbycl ict
% FeB0003 SHSCTRL.STBCKCPROT.UINTS2 = (x£5454501 H e i . STEE"WT o
300032, - . = & d 272 || 00h00min00s000nsO0Sus307ns | 723 OxFedlngg 2 -0xB78bde,
gg fe80003e ‘ SYSCTRL.STBCOSTPT.UINTSZ = 0x00000001 ; o3 wind. cfi47 ‘f (SYSOTRL. STHCOSIPT. DTNI¢
I For(i) | 28 OxFedlnndg Idon 0176 [r2 b} SPID=0
e - 29 00h00n in00s000n=000us087ns)| 35 bt} SYSETRL. STER 0 SPID=0
g% feB00042 | it (svsclﬁtﬂamsm.ulmaz == 0x00000000) { o\) i o2 1 (SYSCTRL. STEGOSTPT. UINTC
1] ’ 30 OxfeBl004s 62 cue 0:0, r2 SPID=0
5 } 30-1 o 7 (SYSOTRL. ST
46 3 +54
a feB000S0 5 |}
4 < >
DAH \ vaid et DaReRTOPN RO RIN (vt 1) _J o) e @CFULYRS M OR gy -3 TA~sh F@ARY

Figure 4-37 Result of Tracing a Program in CS+ in Cyclic Run Mode

R20AN0558EJ0100 Rev.1.00 Page 35 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.4 Cyclic Stop Mode

This section describes how to cause a transition of a device to cyclic stop mode and confirm that the device
is in cyclic stop mode. The user can confirm that the device is in cyclic stop mode in the following way.

The user can confirm that the device has entered cyclic stop mode.

Deep stop Cyclic run Cyclic run Deep stop

e ——
CPU1 Run - Run Deep stop Cyclic disable Deep stop 3
\ J \ A A J
Y Y Y

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-38 Confirming Cyclic Stop Mode in Example Application 2

Figure 4-39 shows an example of a program that causes a transition to cycle stop mode. Since the program
is executed from the retention RAM when the CPU core is in cyclic run mode, a program must be
downloaded to the retention RAM. When CPUO in the example of an application shown in Figure 4-38
executes this program, the device enters cyclic stop mode. For details on registers and programming, refer
to the hardware manual for the device.

4

a7 feB0003a SYECTRL.STECMCPROTLUINTE2 = DueASASARON;

38 feb0003e EYSCTRLGETBCOSTPT LUINTSZ = 000000001 5

34

40 fortszd {

41 feB00042 | if (BYSCTRL.STBCOSTPT.UINTE2 == Dx00000000% {

42 b ek

43 1 The program in the retention RAM is executed by
jlg T I ' CPUO in the above example of an application.

Figure 4-39 Example of a Program that Causes a Transition to Cyclic Stop Mode

The user can confirm that the device is in cyclic stop mode by identifying the state. The displays in each
debugger after the state is identified are shown below.

e (CS+
CS+ shows “Cyclic Stop” as the state to indicate that the device is in cyclic stop mode.

Fa |] Fa FMP Full-screen al Fi2

Line 17/6% Column1 Insert Japanese (Shift-JIS) |CPUD |~ | Run EIF:L'IE Cyclic Stop [» Running BERHBS0E2Z (1) Measuring ¥ O

Figure 4-40 Displaying the State of the Device as Cyclic Stop Mode in CS+

R20AN0558EJ0100 Rev.1.00 Page 36 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

e MULTI

MULTI shows “0x800” (numerals) and “CYCLE-STOP” (a string) to indicate that the state of the device is
cyclic stop mode. Since the device is in this standby mode, the indicator for cyclic stop mode is displayed
for CPUO.

850eserv2> cpustatus

CPUO CPU Status[(OXSOO): CYCLE-STOP]

Core is Running

CPUl CPU status (0x1000): CYCLE-STOP INVALID

Core is Running

CPU2 CPU status (0x1000): CYCLE-STOP INVALID

Core is Running

CPU3 CPU status (0x1000): CYCLE-STOP INVALID

Core is Running

Figure 4-41 Displaying the State of the Device as Cyclic Stop Mode in MULTI

R20AN0558EJ0100 Rev.1.00 Page 37 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.41 Starting Debugging Immediately after the Device has Made the Transition to Cyclic
Run Mode from Cyclic Stop Mode

This section describes how to generate a break in the CPU core immediately after the device has entered
cyclic run mode due to wakeup resources after having been in cyclic stop mode. With the method shown
below, the user can confirm the state of the device immediately after it has made the transition to cyclic run
mode from cyclic stop mode and start debugging of an application immediately after the device enters cyclic
run mode.

The user can start debugging at the point of the device’s transition to cyclic run mode from cyclic stop mode.

A
CPUO Run ‘ Run Deep stop Cyclic run _‘ Cyclic run Deep stop Run
Y
CPU1 Run - Run Deep stop Cyclic disable Deep stop 3
\ J \ o A . A ~ J

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-42 Transition to Cyclic Run Mode from Cyclic Stop Mode in Example Application 2

Figure 4-43 shows an example of the debugging of a program where a break occurs at the point of the CPU
core’s transition to cyclic run mode from cyclic stop mode. When the CPU core has made the transition to
cyclic run mode from cyclic stop mode, the program is executed after checking the value of the STBCOSTPT
register. To start debugging at the point where the CPU core has entered cyclic run mode, set a breakpoint
after checking the STBCOSTPT register before the CPU core enters cyclic stop mode. This enables the
generation of a break at the point where the CPU core has entered cyclic run mode.

dh
at fedlin3a SYSCTRLGTECRCPROT.UINT3Z = OxASASASON:
38 feBl003e SYSCTRL.STECOSTRT.UINTSZ = 0x00000001;

40 for(ssd {

41 fedlondz | if (EYSCTRL.STBCOSTPT.UINT3Z == (000000007 {
47 break:

43 L

44 A break occurs immediately after CPUOQ’s transition to cyclic run mode from cyclic stop mode.

45 feaonosno |55 |}
a7

Figure 4-43 Example of a Break Following the Device’s Transition to Cyclic Run Mode from Cyclic
Stop Mode

R20AN0558EJ0100 Rev.1.00 Page 38 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.4.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in
Cyclic Stop Mode

This section describes how to measure the time the device is in cyclic stop mode before returning to cyclic
run mode. With the method shown below, the user can confirm that the requirements in terms of restrictions
on time in cyclic stop mode have been satisfied.

The user can confirm the time while the device is in cyclic stop mode.

CPUO Run ‘ Run Deep stop Cyclic run — Cyclic run Deep stop Run

)
CPU1 Run ‘ Run Deep stop Cyclic disable Deep stop .

In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.
When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

I We recommend that the user neither select nor debug a CPU core in cyclic disable mode. I

Figure 4-44 Confirming the Time in Cyclic Stop Mode in Example Application 2

Use the timer facility of the debugger to specify the start of time measurement as the program address that
causes the transition to cyclic stop mode and the end of time measurement as the program address
immediately after the device has returned to cyclic run mode from cyclic stop mode. Executing the program
will provide a measurement of the time from the program on CPUOQ placing the device in cyclic stop mode
until the device enters cyclic run mode.

R20AN0558EJ0100 Rev.1.00 Page 39 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

4.2.5 Cyclic Disable Mode
This section describes how to confirm that the CPU core is in cyclic disable mode. The user can confirm that
the CPU core is in cyclic disable mode in the following way.

The user can confirm that the CPU (ﬂe is in cyclic disable mode.

Deep stop

Cyclic run

Cyclic run

Deep stop

CPUO
2/ Initially
. Initial
CPU1 Run Stop Run Deep stop Cyclltﬁ'l'sable Deep stop]
A J

W_/ N Y A Y Y
In stop mode, deep stop mode, and cyclic stop mode, only identifying the current state is possible.

When hardware break and software break facilities are to be used, be sure to set breakpoints for the
CPU core only when it is in run mode or cyclic run mode.

| We recommend that the user neither select nor debug a CPU core in cyclic disable mode. |

Figure 4-45 Confirming Cyclic Disable Mode in Example Application 2

The user can confirm that the CPU core is in cyclic disable mode by identifying the state. The displays in
each debugger after the state is identified are shown below.

e (CS+
CS+ shows “Cyclic Disable” as the state to indicate that the CPU core is in cyclic disable mode.

||FH ||:||F5' |Flﬂ Full-screen P’?? |P:?E |

I iCPU1 % lRun »RUN | CydicDisable |C» Running EERHES0E2 ({) Measuring ¥§ /O
Figure 4-46 Displaying the State of the CPU Core as Cyclic Disable Mode in CS+

R20AN0558EJ0100 Rev.1.00 Page 40 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

e MULTI
MULTI shows “0x1000” (numerals) and “CYCLE-STOP INVALID” (a string) to indicate that the state of the
CPU core is cyclic disable mode. Since the device is in this standby mode, the indicator for cyclic disable
mode is for CPUs other than CPUO.

850eserv2> cpustatus
CPUO CPU status (0x400): CYCLE-RUN

Core is Running

CPUL CPU status [(OxlOOO): CYCLE-STOP INVALID]

Core is Running

CPU2 CPU Status[(OxlOOO): CYCLE-STOP INVALID]

Core is Running

CPU3 CPU Status[(OxlOOO): CYCLE-STOP INVALID]

Core is Running

Figure 4-47 Displaying the State of the CPU Core as Cyclic Disable Mode in MULTI

R20AN0558EJ0100 Rev.1.00 Page 41 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

5. Points for Caution

This chapter describes points for caution in the debugging of devices incorporating an initially stopped core
and devices that enter standby modes.

5.1 Executing a Program to Cause the Device to Enter Stop Mode or Cyclic Stop
Mode

The following items are prohibited: starting the execution of a program after having written to the
STBCOSTPT register, stepped execution of writing to the STBCOSTPT register, and setting a breakpoint
within the loop for confirming the value of the STBCOSTPT register.

When debugging writing to the STBCOSTPT register, after a break has occurred in the processing before
writing to the STBCOSTPT register, execute a program that causes the device to enter stop mode or cyclic
stop mode.

1L :

10 pooto1se % SYSCTRL .STRCKCPROT.UINTSZ = DxASASASO] ;| ioouton of @ program
11 00010152 | SYSOTRL.STECOSTRT.UINTSZ = 0x00000001; | ocourred during writing
112 to the STBCOSTPT
113 _ for(z:) register is prohibited.
114 00010158 | if (SYSOTRL.STECOSTPT.UINTSZ =="mromoooomT—

115 break:

116 }

17 }

112

Figure 5-1 Example of a Break which Occurs before Writing to the STBCOSTPT Register

5.2 Executing a Program to Cause the Device to Enter Deep Stop Mode

The following items are prohibited: starting the execution of a program after having written to the STBCOPSC
register, stepped execution of writing to the STBCOPSC register, and setting a breakpoint within the
unconditional loop to occur after writing to the STBCOPSC register.

When debugging writing to the STBCOPSC register, after a break has occurred in the processing before
writing to the STBCOPSC register, execute a program that causes the device to enter deep stop mode.

1l

152 oooio19s |5 SYSCTAL .STECKCPROT. UINTAZ = Oxd CXScution ofa program
133 0o01019e : s¥oCTRL.STBCOPSC.UINTIZ = Dx000 occurred during writing
134) to the STBCOPSC

135 0oo0taZ : far(s:id register is prohibited.
136 :

157 }

100

Figure 5-2 Example of a Break which Occurs before Writing to the STBCOPSC Register

R20AN0558EJ0100 Rev.1.00 Page 42 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

5.3 Debugging an Initially Stopped Core in Devices with the ICU-M Core Enabled

For devices with the ICU-M core enabled, the ICU-M core is active by default on release form a reset, so all
CPU cores are initially stopped cores. To make the initially stopped cores operate in this situation, they must
be activated from the ICU-M core. Activating the initially stopped cores can be done by writing code for
processing by the ICU-M core to activate the initially stopped cores or use the debugger to make selected
register operations in the ICU-M core. An option byte can also be used to set whether the CPU cores are
activated on release from a reset in devices that have an ICU-M core.

For main-core debugging, where only the CPU core or cores are to be debugged and the ICU-M core is not,
although the ICU-M core is present, all CPU cores are initially stopped cores which enter the initially stopped
state on release from a reset. Thus the ICU-M core cannot be debugged and debugging of devices is
impossible. When the CPU cores are to be debugged in main-core debugging, write code for processing to
activate the initially stopped cores in the program for the ICU-M core. For an example of the required
program, refer to section 4.1.2, Activating the Initially Stopped Core. Since the program for the ICU-M core
will be running during main-core debugging, the initially stopped cores are activated when the ICU-M core
executes the required processing, which enables debugging of the device.

5.4 Debugging Standby Modes in Devices with the ICU-M Core Enabled

Synchronous debugging of devices that have been entered in standby mode is not possible for devices with
the ICU-M core enabled. For this reason, debugging of cyclic run mode is not possible in devices with the
ICU-M core enabled. Since the ICU-M core need not be operating in the debugging of a program in cyclic run
mode, disable the ICU-M core to proceed with the debugging.

Even if a device with the ICU-M core enabled has entered standby mode, synchronous debugging becomes
possible again when the device is returned to run mode by a program which was in progress.

R20AN0558EJ0100 Rev.1.00 Page 43 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

5.5 Hot Plug-in Debugging

When the device is in cyclic run mode or cyclic stop mode, hot plug-in connection is not possible. Since hot
plug-in connection is possible when the device is in run mode, stop mode, or deep stop mode, retry the hot
plug-in connection after having placed the device in one of those modes.

If the device enters a standby mode during hot plug-in connection, the hot plug-in connection will fail. In such
cases, retry the hot plug-in connection.

While the program is running immediately after a hot plug-in connection (hereafter referred to as “the hot
plug-in run state”), only the following debugging facilities are available. If you wish to use other debugging
facilities, generate a break to cause the device to make a transition to the break state from the hot plug-in run
state.

Reading or writing RAM areas

Reading or writing peripheral 1/O registers
Forced break*

e Forced reset*

Note: If a core of the device is an initially stopped core which is still in the initially stopped state or has
entered stop mode, deep stop mode, or cyclic stop mode, the forced break and forced reset facilities
are not available. Figure 5-3 shows the error message which appears in CS+ when the user attempts
to use the forced break facility while a core of a device in the hot plug-in run state is an initially
stopped core which is still in the initially stopped state. Figure 5-4 shows the error message which
appears in MULTI when the user attempts to use the forced break facility while a core of a device in
the hot plug-in run state is an initially stopped core which is still in the initially stopped state. If you
wish to use the forced break and forced reset facilities, check the states of the CPU cores.

Errcr(E0209003) *

; Q Stopping program failed.
i [Direct Emor Cause]

Processing was stopped without any break request because state is initial stop (E1203158)

+ Create contact info QK Help

Figure 5-3 Error Message in Response to an Attempt to Use the Forced Break Facility in a Device
which Has an Initially Stopped Core in the Initially Stopped State (CS+)

0x0cb6:status err

(break request is canceled by fetch-stop)

Figure 5-4 Error Message in Response to an Attempt to Use the Forced Break Facility in a Device
which Has an Initially Stopped Core in the Initially Stopped State (MULTI)

R20AN0558EJ0100 Rev.1.00 Page 44 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

5.6 Operations Related to Setting and Deleting Hardware Breakpoints

When a CPU core is active and starts execution of a program, the debugger cannot set hardware
breakpoints for an initially stopped core in the initially stopped state or a CPU core in cyclic disable mode.
When the initially stopped core is activated or the CPU core is activated from cyclic disable mode during the
execution of a program by another CPU, a break may not occur even if the instruction at an address which
has been set has set as a hardware breakpoint for the newly activated CPU core is executed. Figure 5-5
shows an example of such operation. A break will occur at a hardware breakpoint that has been set for the
CPU core in the case of an initially stopped core that has been activated or a CPU core that is no longer in
cyclic disable mode.

With regard to the setting of hardware breakpoints, refer to sections 4.1 and 4.2. When an initially stopped
core is activated or a CPU core is activated from cyclic disable mode, generate a break, set the hardware
breakpoint, and start executing the program. The hardware breakpoint will have been set for the CPU core.

Operation by the user A hardware breakpoint is set for the CPU core.

Active CPU core ' The initially stop[&ed core is
)) activated.
CPU core in cyclic run mode The CPU core enters run mode.

Initially stopped core in the initially
stoppedstate
CPU corein cyclicdisable mode

The CPU core is active.
The CPU core enters run mode.

No break occurs.
The hardware breakpoint is Hardware breakpoint

not (or cannot be) set for the
CPU core.

Figure 5-5 Example of Operation where a Hardware Breakpoint is Not Set for the CPU Core so a
Break Does Not Occur

If a break is inserted while an initially stopped core is in the initially stopped state or the CPU core enters the
cyclic disable state during execution of a program, the debugger will be unable to delete the specified
hardware breakpoint when program execution is to be resumed. Thus, when the user restarts execution of
the program while ignoring the breakpoint that has been specified and the initially stopped core is activated
or the CPU core is activated from the cyclic disable mode during the execution of a program, the hardware
breakpoint which was not deleted will be effective so that a break occurs. Figure 5-6 shows an example of
such operation.

Execution is resumed while P
Operation by the user Break B T A hardware breakpoint is deleted
breakpoint. from the CPU core.
] Aresetic applied. \ 4 The initially stopped core is Relay break
Active CPU core The CPU corc enters cyclic activated.
run niode. The CPU core enters run mode. A
The CPU core enters initially
Initially stopped core (active) stopped state. A The CPU core is active.
CPU core in run mode The CPU core enters cyclic The CPU core enters run mode.
disable mode. Abreak occurs.
/
The hardware breakpoint is set The hardware breakpoint is not (or Hardware breakpoint
for the CPU core. cannot be) deleted from the CPU core.

Figure 5-6 Example of Operation where a Hardware Breakpoint for a CPU Core is Not Deleted so a
Break that was Not Intended Occurs

R20AN0558EJ0100 Rev.1.00 Page 45 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

5.7 State of a Hardware Breakpoint Set for an Initially Stopped Core at the Time of
Downloading a Program

If set to do so, the debugger applies a reset to the device following the downloading of a program. After that,
an initially stopped core will enter the initially stopped state.

In CS+ and MULTI, a hardware breakpoint that was set for an initially stopped core in the active state the last
time a program was being executed before downloading of a program will remain set. A hardware breakpoint
which was set after the final execution before downloading of a program will not be set for the device.

The address to which the program has been written is set as a hardware breakpoint for the device. Even if
the program has been modified before downloading, the hardware breakpoint for the program which before it
was modified remains in place for the device.

Figure 5-7 shows an example of the operation. The hardware breakpoint which was set in the program that
has now been modified remains set for the device by the debugger when the program is re-executed after
the initially stopped core is activated and a break occurs.

Downloading

Operation by the user Break & program s A hardware break is set.
modified.
o Aresetis applied.
Imtla”y(:gt’i?/z)ed COIE L——& The CPU core enters
(2) At this point, the hardware breakpoint =R S

is not set for the CPU core.

(1) A hardware breakpoint is
set for the CPU core. The hardware breakpoint which was set

for the CPU core is set at the address
specified at point (1) but the setting at
point (2) is not actually made for the
CPU core.

Figure 5-7 State where a Hardware Breakpoint is Set after Downloading a Program in CS+ and
MULTI

R20AN0558EJ0100 Rev.1.00 Page 46 of 50
Jan.08.20 RENESAS

RH850 Introducing Methods of Debugging Devices Incorporating an Initially
Stopped Core and Devices in Standby Mode

Revision History

Rev.

Date

Description

Page

Summary

1.00

Jan.08.20

First edition issued

R20AN0558EJ0100 Rev.1.00

Jan.08.20

RENESAS

Page 47 of 50

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi. (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for
each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for
Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:
www.renesas.com www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	Introduction
	Terminology
	Configuration of Manuals
	1. Overview
	1.1 Debugging Specifications for the Initial Setting of the Debugger
	1.2 Debugging Devices with an Initially Stopped Core and Devices in Standby Mode

	2. Setting up the Environment
	2.1 System Configuration and Required Environment
	2.1.1 System Configuration
	2.1.2 Required Environment

	2.2 Turning on the Emulator and User System

	3. Settings for Debugging Applications
	3.1 Setting in CS+
	3.2 Setting in MULTI

	4. Debugging Methods
	4.1 Debugging Method for Applications Running on Devices Incorporating an Initially Stopped Core
	4.1.1 Confirming that the Initially Stopped Core is in the Initially Stopped State
	4.1.2 Confirming that the Time until the Initially Stopped Core is Activated Satisfies the Requirements in Terms of Time Restrictions
	4.1.3 Confirming the Response to the Initially Stopped Core to a Reset

	4.2 Debugging Method for Applications that Include Transitions to Standby Modes
	4.2.1 Stop Mode
	4.2.1.1 Starting Debugging Immediately after the Device has Made the Transition to Run Mode from Stop Mode
	4.2.1.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in Stop Mode

	4.2.2 Deep Stop Mode
	4.2.2.1 Starting Debugging Immediately after the Device has Made the Transition to Run Mode from Deep Stop Mode
	4.2.2.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in Deep Stop Mode at the Time of the Transition to Run Mode from Deep Stop Mode

	4.2.3 Cyclic Run Mode
	4.2.3.1 Starting Debugging Immediately after the Device has Made the Transition to Cyclic Run Mode from Deep Stop Mode
	4.2.3.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in Deep Stop Mode at the Time of the Transition to Cyclic Run Mode from Deep Stop Mode
	4.2.3.3 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in Cyclic Run Mode

	4.2.4 Cyclic Stop Mode
	4.2.4.1 Starting Debugging Immediately after the Device has Made the Transition to Cyclic Run Mode from Cyclic Stop Mode
	4.2.4.2 Confirming Satisfaction of the Requirements in Terms of Restrictions on Time in Cyclic Stop Mode

	4.2.5 Cyclic Disable Mode

	5. Points for Caution
	5.1 Executing a Program to Cause the Device to Enter Stop Mode or Cyclic Stop Mode
	5.2 Executing a Program to Cause the Device to Enter Deep Stop Mode
	5.3 Debugging an Initially Stopped Core in Devices with the ICU-M Core Enabled
	5.4 Debugging Standby Modes in Devices with the ICU-M Core Enabled
	5.5 Hot Plug-in Debugging
	5.6 Operations Related to Setting and Deleting Hardware Breakpoints
	5.7 State of a Hardware Breakpoint Set for an Initially Stopped Core at the Time of Downloading a Program

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

