

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06B0484-0200/Rev.2.00 August 2006 Page 1 of 79

H8S Family
Rewriting Flash Memory in User Program Mode Using Asynchronous Serial
Communication

Introduction
Data to be rewritten in the flash memory on the master side is written to the flash memory on the slave side. Data to be
rewritten is transferred using asynchronous serial communication.

Target Device
H8S/2268

Contents

1. Specifications .. 2

2. Applicable Conditions ... 3

3. Detailed Specifications.. 4

4. Principles of Operation.. 8

5. Sequence Diagram ... 15

6. Slave Main Program ... 20

7. Programming/Erasing Control Program on Slave Side .. 24

8. Asynchronous Serial Communication Program .. 53

9. Program Listings ... 65

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 2 of 79

1. Specifications
(1) The user program mode is used to rewrite flash memory.
(2) The slave flash memory is programmed with the rewrite data in master flash memory.
(3) The rewrite data is transferred using asynchronous serial communication on SCI channel 0 (SCI_0).
(4) The flash memory rewrite start command is sent from the master to the slave side when switch 0 (SW0) on the

master side is turned on, and rewriting of the slave flash memory begins.
(5) On both the master and slave sides LED1 is off and LED2 is lit during the flash memory rewrite operation, and

LED1 is lit and LED2 is off after flash memory rewrite completes.
(6) The IRQ0 pin is connected to switch 0 (SW0) on the master side.
(7) Output ports are connected to LED1 and LED2 on the master side.
(8) On the slave side, LED1 is connected to output pin P10 and LED2 to output pin P11.
(9) A configuration example of the on-board rewrite circuit is shown in figure 1.

LED1 LED2

Flash

memory

Rewrite

data

Master (transfer source)

P10

P11

LED1 LED2

IRQ0

Flash

memory

Slave (transfer destination):
H8S/2268F

Serial data communication

SW0

PF3

FWE

Figure 1 Configuration Example of On-Board Rewrite Circuit

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 3 of 79

2. Applicable Conditions
Compile conditions applied in this application note are as follows.

Please note that exact time such as wait may not be given in some cases due to different versions of compiler or how
source programs are created.

Threfore, please be sure to check the codes output after compiling.

Table 1 Applicable Conditions

Item Description
Operating frequency Input clock: 10 MHz

System clock: 10 MHz
Peripheral module clock: 10 MHz

Operating mode Mode 7 (MD2 = 1, MD1 = 1, FWE = 0)
On-board
programming board

User programming mode (MD2 = 1, MD1 = 1, FWE = 1)

C/C++ compiler Manufactured by Renesas Technology Corp.
H8S, H8/300 Series C/C++ Compiler Ver.6.01.01

Compiler options -cpu=2000a, -code = machinecode, -optimize=1, -regparam=3
-speed=(register,shift,struct,expression)

Table 2 Section Settings

Address Section Name Description
H'000000 CV1 Reset routine
H'001000 P Main program area
H'000400 PASSCI Asynchronous serial communications program area
H'001000 DSMPL1 Sample data table 1
H'004000 DSMPL2 Sample data table 2
H'007FF6 DSMPL3 Sample data table 3
H'008000 PCPYFZRAM Area in RAM for storage of the program for transferring the

programming/erasure programs
H'008100 FZTAT

PFZTAT
DFZTAT
FZEND

Programming/erasure program area (*)

H'FFB000 RAM
PRAM
DRAM

Destination in RAM for transfer of programming/erasure program (*)

Note: * Specifying ROM-support option
The ROM-support option of the linker must be set if programs are to be transferred from ROM to
RAM and executed from RAM. An example of the ROM-support option setting for this sample task
is given below.
rom=PFZTAT=PRAM,
DFZTAT=DRAM

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 4 of 79

3. Detailed Specifications

3.1 On-Board Programming Operation Conditions
• Device: HD64F2268 (H8S/2268F)
• CPU operation: User program mode
• Operating voltage: 3.3 V
• Operating frequency: 10 MHz

3.2 On-Board Programming Mode
• User Program Mode

It is a prerequisite that the programming/erasing control program, rewrite start command receive program, RAM
transfer program, and FWE control determination program be written beforehand to the flash memory of the slave
MCU in the boot mode or writer mode.

3.3 Programming Method
• The rewrite data is received from the transfer source and used to rewrite the flash memory.
• Data from the transfer source is transferred by asynchronous serial communication using SCI channel 0 (SCI_0).

The master is the transfer source and the slave the transfer destination.

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 5 of 79

3.4 Flowchart of Rewrite Procedure

H8S/2268F

flash memory rewrite

Rewrite start command

received from transfer source?

Transfer programming/

erasing program from internal flash

memory

Initiate programming/

erasing program from RAM

Erase blocks of flash memory

to be erased

Receive rewrite data from transfer

source, rewrite flash memory

Reset the MCU and initiate application

from flash memory

Yes

No

Set FWE pin

Clear FWE pin

Figure 2 User Program Mode Rewrite Procedure

3.5 Master-Slave Connection Diagram

Master Slave: H8S/2268F

RxD

TxD

Vss

RxD0

TxD0

Vss

Figure 3 Master-Slave Connection Diagram

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 6 of 79

3.6 Communication Specifications
Table 3 Communication Specifications

Item Description
Transfer speed 31,250 bps
Communication type Asynchronous serial communication
Data bits 8
Stop bits 1
Parity No

3.7 Communication Commands
Table 4 Communication Commands

Communication Command Description
H'00 Normal transfer (command name: OK command)
H'01 Transfer error (command name: NG command)
H'11 Transmit start request
H'55 Rewrite start command
H'66 FWE pin setting command
H'77 Erase command
H'88 Programming command

3.8 Memory Mapping
The flash memory erase blocks of the H8S/2268F are listed in table 5.

Table 5 Flash Memory Erase Blocks

Block (Size) Address
EB0 (4 Kbytes) H'000000 to H'000FFF
EB1 (4 Kbytes) H'001000 to H'001FFF
EB2 (4 Kbytes) H'002000 to H'002FFF
EB3 (4 Kbytes) H'003000 to H'003FFF
EB4 (4 Kbytes) H'004000 to H'004FFF
EB5 (4 Kbytes) H'005000 to H'005FFF
EB6 (4 Kbytes) H'006000 to H'006FFF
EB7 (4 Kbytes) H'007000 to H'007FFF
EB8 (32 Kbytes) H'008000 to H'00FFFF
EB9 (64 Kbytes) H'010000 to H'01FFFF
EB10 (64 Kbytes) H'020000 to H'02FFFF
EB11 (64 Kbytes) H'030000 to H'03FFFF

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 7 of 79

Memory maps during normal operation of the H8S/2268F and during the flash memory rewrite operation are shown in
figure 4.

Erase
block

Memory
address

Normal operation
Flash memory

rewrite operation

H'000000 Vector table Vector tableEB0

H'000100 Main program
• Rewrite start command
 received

Main program

EB1

EB2

EB3

EB4

EB5

EB6

EB7

H'001000

H'002000

H'003000

H'004000

H'005000

H'006000

H'007000

Rewrite target area
• Data table of main
 program

H'008000EB8

H'008100

EB9

EB10

Internal
flash

memory

EB11

H'010000

H'020000

H'030000

Not used

Transfer

Internal RAM

H'FFB000

H'FFEFBF

• Programming/erasing
 control program
• FWE control
 determination program

• RAM transfer program

• Programming/erasing
 control program
• FWE control determination
 program

Rewrite data area
• Data table received
 from master side

Figure 4 Memory Maps (Slave)

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 8 of 79

4. Principles of Operation

4.1 Normal Operation
(1) Normally, application accesses the data table in flash memory. The data table is received from the master side and

rewritten.
(2) The programming/erasing control program, rewrite start command receive program, RAM transfer program, and

FWE control determination program are written beforehand to the slave flash memory.
(3) Data is transferred between the master and slave sides by asynchronous serial communication using SCI channel 0

(SCI_0).
(4) On the slave side LED1 is connected to output pin P10 and LED2 to output pin P11. LED1 and LED2 are off when

P10 and P11 are high level. When P10 and P11 are low level LED1 and LED2 light.

Main application

Rewrite start
command receive

program

RAM
transfer program

Data table
for rewrite target

Programming/
erasing control

program

Flash memory

RAM

Flash memory

New data table
for programming

target

Transfer source (master)
Transfer destination (slave):

H8S/2268F

LED1

LED2

IRQ0

LED1

LED2

Data transfer cable

PF3

FWE

Figure 5 Normal Operation

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 9 of 79

4.2 Preparation for On-Board Rewriting
(1) The rewrite start command H'55 is sent from the master when a rising edge of the IRQ0 signal is detected.
(2) At this point LED1 is off and LED2 is lit on the master.

Rewrite start command "H'55" Main application

Rewrite start
command receive

program

RAM
transfer program

Data table
for rewrite target

Programming/
erasing control

program

Flash memory

RAM

Flash memory

New data table
for programming

target

Transfer source (master)
Transfer destination (slave):

H8S/2268F

LED1

LED2

IRQ0

LED1

LED2

Off

Lit

(1)

(2)

Data transfer cable

(1) (1)

PF3

FWE

Figure 6 Preparation for On-Board Rewriting

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 10 of 79

4.3 Start of On-Board Rewriting
(1) The RAM transfer program is initiated when the slave receives the H'55 command, and the programming/erasing

control program is transferred to internal RAM.
(2) At this point LED1 is off and LED2 is lit on the slave.

Off

Lit

Off

Lit

Main application

Rewrite start
command receive

program

RAM
transfer program

Data table for
rewrite target

Programming/
erasing control

program

Flash memory

RAM

Flash memory

New data table
for programming

target

Transfer source (master)
Transfer destination (slave):

H8S/2268F

LED1

LED2

IRQ0

LED1

LED2

Data transfer cable

Programming/
erasing control

program

(1) (1) Transfer

(2)

PF3

FWE

Figure 7 Start of On-Board Rewriting

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 11 of 79

4.4 Startup of Programming/Erasing Control Program
(1) After transfer by the RAM transfer program completes, operation branches to the programming/erasing control

program stored in RAM.

RAM

Transfer source (master)

Flash memory Data transfer cable

New data table
for programming

target

Transfer destination (slave):
H8S/2268F

LED2LED2

LED1 LED1

IRQ0

(1) Branch

Lit

Off

PF3

FWE

Lit

Off

Flash memory

Main application

Rewrite start
command receive

program

Data table
for rewrite target

RAM
transfer program

Programming/
erasing control

program

Programming/
erasing control

program

Figure 8 Startup of Programming/Erasing Control Program

4.5 Setting of FWE Pin
(1) The FWE pin setting command H'66 is received from the transfer source.
(2) The programming/erasing control program controls PF3 to set the FWE pin to 1.

RAM

Transfer source (master)

Data transfer cable

FWE pin setting command
 "H'66"

Flash memory

New data table
for programming

target

Transfer destination (slave):
H8S/2268F

Flash memory

Main application

Rewrite start
command receive

program

Data table
for rewrite target

RAM
transfer program

Programming/
erasing control

program

LED2

LED1 LED1

LED2

IRQ0 (2)

Off

Lit

PF3

FWE

(1)

Off

Lit

Programming/
erasing control

program

Figure 9 Setting of FWE Pin

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 12 of 79

4.6 Erasing Flash Memory
(1) The erase command H'77 is received from the master.
(2) The programming/erasing control program erases the target block of flash memory.

Erase command "H'77" Main application

Rewrite start

command receive

program

RAM

transfer program

Programming/

erasing control

program

Programming/

erasing control

program(2) Erase

Flash memory

Transfer source (master)

Flash memory

New data table

for programming

target

Transfer destination (slave):

H8S/2268F

LED1 LED1

LED2

PF3

FWE

LED2

IRQ0

Data transfer cable

(1)

Off

Lit

Off

Lit

RAM

Figure 10 Erasing Flash Memory

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 13 of 79

4.7 Programming Flash Memory
(1) The program command H'88 is received from the transfer source.
(2) The programming/erasing control program receives the new data table from the transfer source and writes it to flash

memory.
(3) After programming completes LED1 is lit and LED2 is off on both the master and slave sides.

Program command "H'88"

Flash memoryFlash memory

New data table
for programming

target

Transfer source (master)
Transfer destination (slave):

H8S/2268F

IRQ0

LED1

LED2

LED1

LED2

Data transfer cable

(1)

Off

Lit

Off

Lit

(3)

PF3

FWE

Main application

Rewrite start
command receive

program

(2) New data table

RAM
transfer program

Programming/
erasing control

program

Programming/
erasing control

program

RAM

Figure 11 Programming Flash Memory

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 14 of 79

4.8 Clearing the FWE Pin
(1) The programming/erasing control program controls PF3 to clear the FWE pin to 0.

RAM

Transfer source (master)

Flash memory Data transfer cable

New data table
for programming

target

LED1

LED2

LED1

LED2

IRQ0
(1)

Off

Lit

Off

Lit

PF3

FWE

Transfer destination (slave):
H8S/2268F

Flash memory

Main application

Rewrite start
command receive

program

RAM
transfer program

Programming/
erasing control

program

Programming/
erasing control

programNew data table

Figure 12 Clearing the FWE Pin

4.9 Initiating the Program
(1) The device is reset and the new application, which accesses the new data table, is initiated.

RAM

LED2

LED1 LED1

LED2

IRQ0

(1)

PF3

FWE

Transfer source (master)

Flash memory Data transfer cable

New data table
for programming

target

Transfer destination (slave):
H8S/2268F

Flash memory

Main application

Rewrite start
command receive

program

RAM
transfer program

Programming/
erasing control

program

Programming/
erasing control

programNew data table

Figure 13 Initiating the Program

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 15 of 79

5. Sequence Diagram
(1) Normal Operation

Master Slave

Receive 1 byte

Transfer programming/
erasing control program
from flash memory to
internal RAM

Branch to programming/
erasing control program
in internal RAM

Transmit OK [H'00]

ON

OFF

1 byte

H'55

Switch 0
(SW0) ON?

LED1 off
LED2 lit

H'55 received?

LED1 off
LED2 lit

≠H'55

=H'55

H'66 received?

Receive 1 byte
1 byte

H'66

Error handling=H'66

≠H'66

Error handling

No

OK command

Error handling

No

OK command

Transmit rewrite start
command H'55

Start of rewriting

Set FWE pin

Transmit OK [H'00]

To erase processing

OK command?

Transmit FWE pin setting
command H'66

OK command?

To erase processing

Receive 1 byte

Receive 1 byte

Execute main application

Figure 14 Normal Operation

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 16 of 79

(2) Erase Processing

Master

Transmit erase command
H'77 and erase block
count sequentially

Slave

Receive 2 bytes
2 bytes

H'77 H'01 to H'0C

1st. byte
==H'77?

Error handling

Transmit OK[H'00]Receive 1 byte

OK command?

Transmit start address
of erase block
4 bytes × erase block count

Receive start address
of erase block

FLSHE=1

Is received data
a start address?

Erase target block

Erased normally?

Error handling

Error handling

Transmit OK[H'00]Receive 1 byte

OK command?

Error handling

To programming position/
size receive processing

To programming position/
size receive processing

All erase blocks complete?

≠H'77

Not a start address

No

OK command

Erased
normally

Erase error

No

End

To next block

Error handling

=H'77

OK command

Start address

Figure 15 Erase Processing

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 17 of 79

(3) Programming Position/Size Reception Processing

Master

Transmit program

command H'88

Slave

Receive 1 byte

1 byte

H'88

H'88 received?

Error handling

Transmit OK[H'00]Receive 1 byte

OK command?

Transmit programming

start address and size

Receive programming

start address and size

8 bytes

Is received programming

size H'0000?
Error handling

Transmit OK[H'00]Receive 1 byte

Error handling

To programming

processing

≠H'88

OK command

=H'88

Error handling

No

Address Size

Are all 7 lower bits of

received start address 0?

Error handling

Yes

No

All 0

=H'0000

OK command?

OK command

No

To programming

processing

≠H'0000

Figure 16 Programming Position/Size Reception Processing

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 18 of 79

(4) Programming Processing

Master Slave

Transmit programming
data transmit request
command H'11

1 byte

H'11

Transmit 128 bytes Receive 128 bytes

Transmit OK[H'00]Receive 1 byte

OK command?

Error handling

No

All data received and
programmed?

More than 128 bytes

Programming error

Receive 1 byte

H'11 received?

Error handling

≠H'11

Is programming
data to be transmitted

128 bytes or less?

Is received
programming data
128 bytes or less?

All data transmitted?

Program 128 bytes

Programmed
normally?

Error handling

LED1 lit
LED2 off

LED1 lit
LED2 off

1 3

2
4

1

Transmit remaining data Receive remaining data

3

2 4

=H'11

128 bytes or less 128 bytes or less

Programmed
normally

To next data

EndEnd

To next data

OK command

More than 128 bytes

Figure 17 Programming Processing

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 19 of 79

(5) Error Handling

Master Slave

LED1 lit

LED2 lit

LED1 lit

LED2 lit

Transmit NG command H'01Receive NG command

Figure 18 Error Handling

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 20 of 79

6. Slave Main Program

6.1 Hierarchy
The slave main program, which is run from flash memory, executes the user application programs (main applications),
receives rewrite start commands, and transfers the programming/erasing control program from flash memory to internal
RAM. The hierarchy of the routines used by the slave main program is shown in figure 19.

Communication processing

main com_init

rcv1byte

FZMAIN

copyfzram

trsnbyte

*

Note: * Called from asynchronous serial communication program.

Figure 19 Hierarchy of Slave Main Program

6.2 List of Functions
Table 6 Functions of Slave Main Program

Function Description
main Executes main applications, receives rewrite start commands, transfers

programming/erasing control program from flash memory to internal RAM
copyfzram Transfers programming/erasing control program from flash memory to internal RAM
FZMAIN Programming/erasing control program

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 21 of 79

6.3 Description of Functions
(1) main() Function

(a) Specifications
void main (void)

(b) Principles of Operation
• Executes user application programs (main applications)
• Receives rewrite start commands
• Transfers programming/erasing control program from flash memory to internal RAM
• Branches to programming/erasing control program

(c) Arguments
• Input values: None
• Output values: None

(d) Global Variables
None

(e) Subroutines Used
com_init(): Initializes communication settings
SLrcv1byte(): Receives 1 byte of data
copyfzram(): Transfers programming/erasing control program to internal RAM
FZMAIN(): Branches to programming/erasing control program

(f) Internal Registers Used

Table 7 Registers Used by main() Function

Register
Bit
Name Description Address Set Value
 Module stop control register D H'FFFC60 — MSTPCRD
MSTPD6 Used by sample main application. Bit 6 —

P7DDR Port 7 data direction register
Used by sample main application.

H'FFFE36 —

P7DR Port 7 data register
Used by sample main application.

H'FFFF06 —

 Port 7 register H'FFFFB6 — P0RT7
P70 Port 70

Used by sample main application.
Bit 0 —

P1DDR Port 1 data direction register
• P1DDR = H'03: P11 and P10 set as output pins

H'FFFE30 H'03

 Port 1 data register H'FFFF00 —
P11DR Port 11 data register

• P11DR = 0: P11 output level low
• P11DR = 1: P11 output level high

Bit 1 0
P1DR

P10DR Port 10 data register
• P10DR = 0: P10 output level low
• P10DR = 1: P10 output level high

Bit 0 1

 Serial status register_0 H'FFFF7C — SSR_0
RDRF Receive data register full

• RDRF = 0: No received data stored in RDR_0
• RDRF = 1: Received data stored in RDR_0

Bit 6 —

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 22 of 79

(g) Flowchart

Note: * Main applications are sample programs that are not related to flash

 memory programming. In this example such main applications are

 specified in the two locations indicated above.

main()

P10DR = 1 (LED1 off)

P11DR = 0 (LED2 lit)

Main application

≠H'55

*

*

tmp=H'55?

Evaluate received data?

tmp = SLrcv1byte()

Receive 1 byte

com_init()

Initialize communications

settings

=H'55

RDRF == 1?

Received?

tmp = 0

RDRF=1

RDRF=0

Main application

copyfzram()

RAM transfer program

FZMAIN()

Branches to programming/

erasing control program in

internal RAM

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 23 of 79

(2) copyfzram() Function
(a) Specifications

void copyfzram (void)
(b) Principles of Operation

Transfers the flash memory programming/erasing control program to internal RAM
(c) Arguments

• Input values: None
• Output values: None

(d) Global Variables
None

(e) Subroutines Used
None

(f) Internal Registers Used
None

(g) Flowchart

memcpy()

Copy to Y_BGN data from

X_BGN to X_END

Copy start address of flash

memory programming/erasing

control program to X_BGN

Copy end address of flash

memory of programming/

erasing control program to

X_END

Copy RAM address to transfer

flash memory programming/

erasing control program to

Y_BGN

copyfzram

END

(3) FZMAIN() Function

Calls the main routine of the programming/erasing control program.

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 24 of 79

7. Programming/Erasing Control Program on Slave Side

7.1 Hierarchy
The programming/erasing control program erases flash memory in block units, receives flash memory programming
data, and programs flash memory. The hierarchy of the routines used by the programming/erasing control program is
shown in figure 20. With the exception of the FZMAIN() function, the subroutines used perform either communication
processing or flash memory programming/erasing processing.

FZMAIN

trs1byte

rcv1byte

rcvnbyte

ferase

blk1_erase

fwrite128

ferasevf

blk_check

fwritevf

fwrite

rcv1byte

Communications processing

Flash memory programming/erasing processing

fwe_check

*

Note: * Called from asynchronous serial communication program.

Figure 20 Hierarchy of Programming/Erasing Control Program

7.2 List of Functions
Table 8 Functions of Programming/Erasing Control Program

Function Description
FZMAIN Main routine of programming/erasing control program
fwe_check Controls and determines state of FWE pin
blk_check Determines the bit number of the block to be erased from erase start address
blk1_erase Erases designated blocks of flash memory
ferase Erases designated blocks
ferasevf Verifies erase of designated blocks
fwrite128 Verifies write of 128 bytes
fwrite Writes to target address
fwritevf Verifies target address, creates overwrite data

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 25 of 79

7.3 List of Constants
Table 9 List of Constants

Constant Value Description
OK H'00 Normal return value
NG H'01 Error return value
WNG H'02 Write error
MAXBLK1 H'0C Total number of flash memory blocks (12)
OW_COUNT H'06 Overwrite count
WLOOP1 1 × MHZ/KEISU1 + 1 = 4 (H'04) WAIT statement execution count, 1-µs WAIT
WLOOP2 2 × MHZ/KEISU1 + 1 = 7 (H'07) WAIT statement execution count, 2-µs WAIT
WLOOP4 4 × MHZ/KEISU1 + 1 = 14 (H'0E) WAIT statement execution count, 4-µs WAIT
WLOOP5 5 × MHZ/KEISU1 + 1 = 17 (H'11) WAIT statement execution count, 5-µs WAIT
WLOOP10 10 × MHZ/KEISU1 + 1 = 34 (H'22) WAIT statement execution count, 10-µs WAIT
WLOOP20 20 × MHZ/KEISU1 + 1 = 67 (H'43) WAIT statement execution count, 20-µs WAIT
WLOOP50 50 × MHZ/KEISU1 + 1 = 167 (H'A7) WAIT statement execution count, 50-µs WAIT
WLOOP100 100 × MHZ/KEISU1 + 1 = 334 (H'14E) WAIT statement execution count, 100-µs WAIT
TIME10 10 × MHZ/KEISU1 + 1 = 34 (H'22) WAIT statement execution count, 10-µs WAIT
TIME30 30 × MHZ/KEISU1 + 1 = 101 (H'65) WAIT statement execution count, 30-µs WAIT
TIME200 200 × MHZ/KEISU1 + 1 = 667 (H'29B) WAIT statement execution count, 200-µs WAIT
TIME10000 (10000/KEISU1) × MHZ + 1 = 33334 (H'8236) WAIT statement execution count, 10-ms WAIT

Note: MHZ:10 ⋅ ⋅ ⋅ Operating frequency of 10 MHz
KEISU1:3 ⋅ ⋅ ⋅ Minimum number of state per loop in for statements.

7.4 RAM Usage
The stack memory used by the FZMAIN function is listed in table 10. Additional stack memory is used for program
operation, but the precise amount differs depending on factors such as the version of the compiler used and the option
settings.

Table 10 RAM Usage

Data Stack Memory Used
Programming data 128 bytes
Overwrite data 128 bytes
Additional programming data 128 bytes

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 26 of 79

7.5 Description of Functions
(1) FZMAIN() Function

(a) Specifications
void FZMAIN(void)

(b) Principles of Operation
• Controls and determines state of FWE pin
• Erases flash memory
• Receives flash memory programming data
• Programs flash memory
• Start by reset after programming completes

(c) Arguments
• Input values: None
• Output values: None

(d) Global Variables
None

(e) Subroutines Used
fwe_check(): Controls and determines the state of FWE pin
rcv1byte(): Receives 1 byte of data
rcvnbyte(): Receives n bytes of data
trs1byte():Transmits 1 byte of data
fwrite128(): Writes 128 bytes, verifies write
blk_check(): Determines bit number of the block to be erased from the erase start address
blk1_erase(): Erases designated blocks of flash memory

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 27 of 79

(f) Internal Registers Used

Table 11 Registers Used by FZMAIN() Function

Register Bit Name Description Address Set Value
 Port 1 data register H'FFFF00 —
P11DR Port 11 data register

• P11DR = 0: P11 output level low
• P11DR = 1: P11 output level high

Bit 1 1
P1DR

P10DR Port 10 data register
• P10DR = 0: P10 output level low
• P10DR = 1: P10 output level high

Bit 0 0

 Timer control/status register_0 H'FFFF74 H'00
OVF Overflow flag

• OVF = 0: No TCNT_0 overflow
• OVF = 1: TCNT_0 overflow occurred

Bit 7 0

WT/ IT Timer mode select
• WT/ IT = 0: Interval timer
• WT/ IT = 1: Watchdog timer

Bit 6 0

TME Timer enable
• TME = 0: TCNT_0 count start
• TME = 1: TCNT_0 count halt

Bit 5 0

TCSR_0 *1

CKS2
CKS1
CKS0

Clock select 2 to 0
• CKS2 = 0, CKS1 = 0, CKS0 = 0: φ/2 clock input

selected for TCNT_0

Bit 2
Bit 1
Bit 0

CKS2 = 0
CKS1 = 0
CKS0 = 0

TCNT_0 *2 Timer counter
• 8-bit up-counter

H'FFFF74 H'FF

 Reset control/status register H'FFFF76 H'5F RSTCSR *3
RSTE Reset enable

• RSTE = 0: No MCU internal reset when TCNT_0
overflow occurs

• RSTE = 1: MCU internal reset when TCNT_0
overflow occurs

Bit 6 1

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 28 of 79

Table 11 Registers Used by FZMAIN() Function (cont.)

Register Bit Name Description Address Set Value
 Flash memory power control register H'FFFFAC H'80 FLPWCR
PDWND Power-down disable

• PDWND = 0: Transition to power-down modes for
flash memory enabled

• PDWND = 1: Transition to power-down modes for
flash memory disabled

Bit 7 1

Notes: 1. The method for writing to TCSR_0 is different from that for general registers.
• Writing is accomplished by word transfer with H'FFFF74 as the target.
• The value of the upper byte is H'A5 and the lower byte is the programming data.
• In this function, the value written is as follows:
 TCSR_0 = H'A500

 2. The method for writing to TCNT_0 is different from that for general registers.
• Writing is accomplished by word transfer with H'FFFF74 as the target.
• The value of the upper byte is H'5A and the lower byte is the programming data.
• In this function, the value written is as follows:
 TCNT_0 = H'5AFF

 3. The method for writing to RSTCSR is different from that for general registers.
• Writing is accomplished by word transfer with H'FFFF76 as the target.
• When writing to the RSTE bit, the value of the upper byte is H'5A and the lower byte is the

programming data.
• In this function, the value written is as follows:
 RSTCSR = H'5A5F

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 29 of 79

(g) Flowcharts

FZMAIN()

trs1byte()

Transmit OK

ERRCASE

Error handling

trs1byte()

Transmit OK

≠H'66

=H'66

1

tmp=rcv1byte()

Receive 1 byte

tmp≠H'66?

Received data ≠ H'66?

FLPWCR = H'80

Disable transition to

power-down modes for flash

memory

fwe_check()

Set to FWE pin

RSTCSR = H'5A5F

Set to reset the MCU when

watchdog timer (WDT)

overflow occurs

TCSR_0 = H'A500

Halt WDT

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 30 of 79

tmp ← rcvndt[1] × 4

rcvndt[0]≠H'77?
1st. byte ≠ H'77?

rcvndt[]←rcvnbyte()
Receive 2 bytes
rcvndt[0]:
 Erase command H'77
rcvndt[1]:
 Total number of blocks to
be erased

ERRCASE
Error handling

trs1byte()
Transmit OK

E_ADR[]←rcvnbyte()
Receive tmp bytes of erase
start address

i = 0

i<rcvndt[1]
Erase blocks complete?

trs1byte()
Transmit OK

4

≠H'77

=H'77

Yes, specified
number of blocks
all erased

rtn≠OK?
Erase OK?

ERRCASE
Error handling

rtn=OK
Normal erase

2

3

2

3

i++

rtn≠OK

1

rtn = blk1_erase()
Erase 1 block

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 31 of 79

4

ERRCASE
Error handling

trs1byte()
Transmit OK

Lower 7 bits of received
write start address≠0?

rcv.wtdt←rcvnbyte()
Write start address
Write size
Receive total 8 bytes

ERRCASE
Error handling

rcv.lw.restsize=0?

ERRCASE
Error handling

=H'0000

trs1byte()
Transmit OK

5

tmp←rcv1byte()
Receive 1 byte

All 0

>H'0000

≠H'88

=H'88

tmp≠H'88?
Received data≠H'88?

≠0

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 32 of 79

5

rcv.lw.restsize≠0
Programming data remaining?

rtn≠OK?
Write error?

ERRCASE
Error handling

rtn≠OK
Write error

trs1byte()
Transmit OK

trs1byte()
Transmit H'11
(transmit start request)

rtn=fwrite128()
Write 128 bytes of data

rcv.lw.ad_tmp += 128
Move flash memory write
address 128 bytes

Remaining programming
data 128 bytes or less?

memset()
Copy H'FF to 128 bytes from
start of W_BUF[]

rcvnbyte()
Receive in W_BUF[] data
equivalent to remaining
programming data size
(restsize)

rcv.lw.restsize = 0

P10DR = 0 (LED1 lit)
P11DR = 1 (LED2 off)

Set and startup watchdog timer
(WDT) to perform reset
TCNT=H'5AFF
TCSR=H'A578

Reset start

rtn=OK
Normal write

rcvnbyte()
Receive 128 bytes of data in
W_BUF[]

rcv.lw.restsize=0
Programming complete

Programming data remaining
rcv.lw.restsize≠0

rcv.lw.restsize -= 128

Yes

More than 128 bytes

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 33 of 79

ERRCASE
Error handling

trs1byte()
Transmit NG

P10DR = 0 (LED1 lit)
P11DR = 0 (LED2 lit)

(2) fwe_check() Function

(a) Specifications
void fwe_check(void)

(b) Principles of Operation
• Controls and determines the state of FWE pin

(c) Arguments
None

(d) Global Variables
None

(e) Subroutines Used
None

(f) Internal Registers Used

Table 12 Registers Used by fwe_check() Function

Register Bit Name Description Address Set Value
 Serial control register X H'FFFDB4 H'08 SCRX
FLSHE Flash memory control register enable

• FLSHE = 0: Disables access to flash memory
control registers (FLMCR1, FLMCR2, EBR1,
EBR2)

• FLSHE = 1: Enables access to flash memory
control registers (FLMCR1, FLMCR2, EBR1,
EBR2)

Bit 3 1

 IRQ enable register H'FFFF14 H'00 IER
IRQ3E IRQ3 enable

• IRQ3E = 0: Disables IRQ3 interrupt requests
• IRQ3E = 1: Enables IRQ3 interrupt requests

Bit 3 0

 Port F data direction register H'FFFF3E H'08 PFDDR
PF3DDR Port F3 data direction register

• PF3DDR = 0: Set PF3 to input
• PF3DDR = 1: Set PF3 to output

Bit 3 1

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 34 of 79

Table 12 Registers Used by fwe_check() Function (cont.)

Register Bit Name Description Address Set Value
 RAM emulation register H'FFFEDB H'00 RAMER
RAMS RAM select

• RAMS = 0: Disables RAM emulation
• RAMS = 1: Enables RAM emulation

Bit 3 0

 Port F data register H'FFFF0E H'08 PFDR
PF3DR Port F3 data register

• PF3DR = 0: PF3 output level low
• PF3DR = 1: PF3 output level high

Bit 3 1

 A/D control register H'FFFF99 H'00 ADCR
TRGS1
TRGS0

Timer trigger select 1 and 0
• TRGS1 = 0, TRGS0 = 0: Starts A/D conversion

by software

Bit 7
Bit 6

TRGS1 = 0
TRGS0 = 0

 Flash memory control register 1 H'FFFEA8 — FLMCR1
FWE Flash write enable

• FWE = 0: FWE input pin outputs low level
• FWE = 1: FWE input pin outputs high level

Bit 7 —

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 35 of 79

(g) Flowchart

fwe_check()

IER=H'00
Disable IRQ3 interrupts

tmp = FWE
Read FWE input pin

END

ADCR=H'00
Start A/D conversion by
software

PFDDR=H'08
Set PF3 as output pin

PFDR=H'08
Set PF3 to 1 and FWE to 1

SCRX=H'08
Set FLSHE to 1 to enable
access to FLMCR1, FLMCR2,
EBR1, and EBR2

RAMER=H'00
Disable RAM emulation

tmp==0?
Is value of FWE 1?

=1

=0

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 36 of 79

(3) blk1_erase() Function
(a) Specifications

char blk1_erase(
unsigned long ers_ad,
unsigned char ET_COUNT

)
(b) Principles of Operation

• Determines the bit number of the block to be erased from the erase start address
• Erases designated blocks of flash memory

(c) Arguments
• Input values:

ers_ad: Erase start address
ET_COUNT: Maximum erase count

• Output values:
Return value: Result flag (OK = H'00, NG = H'01)

(d) Global Variables
None

(e) Subroutines Used
blk_check(): Determines the bit number of the block to be erased from the erase start address
ferase(): Erases designated blocks
ferasevf(): Verifies erase of designated blocks

(f) Internal Registers Used

Table 13 Registers Used by blk1_erase() Function

Register Bit Name Description Address Set Value
 Flash memory control register 1 H'FFFFA8 — FLMCR1
SWE1 Software write enable

• SWE1 = 0: Disable flash memory
programming/erasing

• SWE1 = 1: Enables flash memory
programming/erasing

Bit 6 1

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 37 of 79

(g) Flowchart

blk1_erase()

Set SWE1 bit in FLMCR1 to 1

Initial verify
rtn = ferasevf();

i = 0

No

No

Yes

No

Yes

Yes

Clear SWE1 bit in FLMCR1
to 0

ferase()

rtn = ferasevf()

i++

rtn=OK

rtn≠OK

END

100µs elapsed?

rtn==OK?

i <
ET_COUNT?

1µs elapsed?

rtn==OK?
Is received erase address

correct?

rtn=OK
Address is correct

rtn≠OK

rtn = blk_check()
Confirm received erase
address E_ADR[] and fetch
erase start and end
addresses and erase block
number

return(rtn)

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 38 of 79

(4) blk_check() Function
(a) Specifications

char blk_check(
unsigned long eck_ad,
unsigned long *eck_st,
unsigned long *eck_ed,
unsigned char *blk_no

)
(b) Principles of Operation

• Determines the bit number of the block to be erased from the erase start address
• Determines if received erase start address is correct by comparison with BLOCKADR[] and returns the

result flag, erase start address, erase end address, and bit numbers of the erase target blocks
(c) Arguments

• Input values:
eck_ad: Erase start address
*eck_st: Verified erase start address
*eck_ed: Verified erase end address
*blk_no: Bit number of the erase target block

• Output values:
Return values: Result flag (OK = H'00, NG = H'01)
*eck_st: Verified erase start address
*eck_ed: Verified erase end address
*blk_no: Bit number of the erase target block

(d) Global Variables
BLOCKADR[]: Stores the start addresses of blocks in flash memory
unsigned long BLOCKADR[13] ={ /* Erase Block Address */

H'000000, /* EB0 4KBYTE */
H'001000, /* EB1 4KBYTE */
H'002000, /* EB2 4KBYTE */
H'003000, /* EB3 4KBYTE */
H'004000, /* EB4 4KBYTE */
H'005000, /* EB5 4KBYTE */
H'006000, /* EB6 4KBYTE */
H'007000, /* EB7 4KBYTE */
H'008000, /* EB8 32KBYTE */
H'010000, /* EB9 64KBYTE */
H'020000, /* EB10 64KBYTE */
H'030000, /* EB11 64KBYTE */
H'040000, /* End Block Address */
};

(e) Subroutines Used
None

(f) Internal Registers Used
None

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 39 of 79

(g) Flowchart

blk_check()

No

Yes

i = 0

END

Store bit number of erase
target block
*blk_no=i

Store erase start address
*eck_st = BLOCKADR[i]

i++

Store erase end address
*eck_ed = BLOCKADR[i]-1

END

Yes

No

return(OK)

eck_ad≠
BLOCKADR[i]?

i > MAXBLK1?

return(NG)

i++

(5) ferase() Function

(a) Specifications
void ferase(unsigned char e_blk_no)

(b) Principles of Operation
• Erases a designated block in flash memory

(c) Arguments
• Input values:

e_blk_no: Erase target block number
• Output values:

None
(d) Global Variables

None
(e) Subroutines Used

None
(f) Internal Registers Used

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 40 of 79

Table 14 Registers Used by ferase() Function

Register Bit Name Description Address Set Value
 Flash memory control register 1 H'FFFFA8 —
ESU1 Erase setup

• ESU1 = 0: Clears erase setup state
• ESU1 = 1 when FWE1 = 1 and SWE1 = 1:

Enters erase setup state

Bit 5 1
FLMCR1

E1 Erase
• E1 = 0: Clears the erase mode
• E1 = 1 when SWE1 = 1 and ESU1 = 1: : Enters

the erase mode

Bit 1 1

EBR1 EB7
 :
 :
EB0

Erase block register 1
• Setting a bit from EB7 to EB0 to 1 enables

erasing of the corresponding block of flash
memory

H'FFFFAA —

EBR2 EB11
EB10
EB9
EB8

Erase block register 2
• Setting a bit from EB11 to EB8 to 1 enables

erasing of the corresponding block of flash
memory

H'FFFFAB —

 Timer control/status register_0 H'FFFF74 H'7F
OVF Overflow flag

• OVF = 0: No TCNT_0 overflow
• OVF = 1: TCNT_0 overflow

Bit 7 0

WT/ IT Timer mode select
• WT/ IT = 0: Interval timer
• WT/ IT = 1: Watchdog timer

Bit 6 1

TME Timer enable
• TME = 0: TCNT_0 count start
• TME = 1: TCNT_0 count halt

Bit 5 1

TCSR_0 *1

CKS2
CKS1
CKS0

Clock select 2 to 0
• CKS2 = 1, CKS1 = 1, CKS0 = 1: φ/131,072 clock

input selected for TCNT_0

Bit 2
Bit 1
Bit 0

CKS2 = 1
CKS1 = 1
CKS0 = 1

Notes: *1. The method for writing to TCSR_0 is different from that for general registers.
• Writing is accomplished by word transfer with H'FFFF74 as the target.
• The value of the upper byte is H'A5 and the lower byte is the programming data.
• In this function, the value written is as follows:
 TCSR_0 = H'A57F

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 41 of 79

(g) Flowchart

ferase()

END

Set ESU1 bit in FLMCR1 to 1

E1 = 1
Set E1 bit in FLMCR1 to 1

E1 = 0
Clear E1 bit in FLMCR1 to 0

Clear ESU1 bit in FLMCR1 to 0

TCSR_0 = H'A500
Halt watchdog timer_0

EBR1 = 0
EBR2 = 0

EBR1 = (tmp << e_blk_no)
Set erase block in EBR1 to 1

tmp=1

EBR2 = (tmp << e_blk_no)
Set erase block in EBR2 to 1

blk_no = e_blk_no - 8
blk_no<8
Block to be erased is among
EB0 to EB7

Yes

No

Yes

No

Yes

No

Yes

No

blk_no≥8
Block to be erased is among
EB8 to EB11

TCSRW_0 = H'A57F
Set and start watchdog timer_0
Operating clock: φ/131,072

e_blk_no<8
Determine block to be

erased?

100 µs elapsed?

10 ms elapsed?

10 µs elapsed?

10 µs elapsed?

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 42 of 79

(6) ferasevf() Function
(a) Specifications

char ferasevf(
unsigned short *evf_st,
unsigned short *evf_ed

)
(b) Principles of Operation

• Verifies erase of designated blocks in flash memory
(c) Arguments

• Input values:
evf_st: Erase start address
evf_ed: Erase end address

• Output values:
 Return value: Result flag (OK = H'00, NG = H'01)

(d) Global Variables
None

(e) Subroutines Used
None

(f) Internal Registers Used

Table 15 Registers Used by ferasevf() Function

Register Bit Name Description Address Set Value
 Flash memory control register 1 H'FFFFA8 — FLMCR1
EV1 Erase verify

• EV1 = 0: Cancels the erase verify mode
• EV1 = 0: Enters the erase verify mode

Bit 3 1

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 43 of 79

(g) Flowcharts

ead[j*2] = H'FF
Dummy write H'FF to verify
address

ferasevf ()

Set EV1 bit in FLMCR1 to 1

≠H'FFFF

< evf_ed
Yes

=H'FFFF

&evf_st[j] < evf_ed?
Determine end address

evf_st[j]≠H'FFFF?

j++

rtn = OK

rtn = NG

i<WLOOP2
Elapsed time < 2 µs?

i = 0

i++

Yes

No

i<WLOOP20
Elapsed time < 20 µs?

i = 0

i++

Yes

No

j = 0

ead = *evf_st
Set verify start address in ead

≥evf_ed
No

1

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 44 of 79

END

Clear EV1 bit in FLMCR1 to 0

return(rtn)

i<WLOOP4
Elapsed time<4 µs?

i = 0

Yes

No

1

(7) fwrite128() Function

(a) Specifications
char fwrite128(

unsigned char *wt_buf,
unsigned char *wt_adr,
unsigned short WT_COUNT

)
(b) Principles of Operation

• Programs and verifies 128 bytes of data
(c) Arguments

• Input values:
*wt_adr: Write address
*wt_buf: 128 bytes of programming data
WT_COUNT: Maximum number of writes

• Output values:
Return value: Result flag (OK = H'00, NG = H'01)
*wt_adr: Write address
*wt_buf: 128 bytes of programming data

(d) Global Variables
None

(e) Subroutines Used
fwrite: Writes to the target address
fwritevf: Verifies the target address, creates overwrite data

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 45 of 79

(f) Internal Registers Used

Table 16 Registers Used by fwrite128() Function

Register Bit Name Description Address Set Value
 Flash memory control register 1 H'FFFFA8 — FLMCR1
SWE1 Software write enable

• SWE1 = 0: Disables flash memory
programming/erasing

• SWE1 = 1: Enables flash memory
programming/erasing

Bit 6 1

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 46 of 79

(g) Flowchart

rtn≠NG

Yes

No

fwrite128()

Copy 128 bytes from w_buf[]
to BUFF[]

Set SWE1 bit in FLMCR1 to 1

Set programming wait time
TM = TIME30

j = 0

Initial programming
fwrite(TM)

Initial programming verify
rtn = fwritevf()

rtn = fwritevf()

fwrite(TIME10) TM=WAIT200

j++

Clear SWE1 bit in FLMCR1
to 0

END

1

rtn=NG

1

rtn=NG

rtn≠NG

j≥WT_COUNT

j<WT_COUNT

1 µs elapsed?

j≥OW_COUNT

j<OW_COUNT

rtn==NG

100 µs elapsed?

rtn ≠ NG ?

j<WT_COUNT

j<6?(OW_COUNT)

return(rtn)

1

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 47 of 79

(8) fwrite() Function
(a) Specifications

void fwrite(
unsigned char *buf,
unsigned char *w_adr,
unsigned char ptime

)
(b) Principles of Operation

Writes to target address
(c) Arguments

• Input values:
*buf: Write start address (overwrite data or additional programming data)
*w_adr: Write address
ptime: Setting time for the P1 bit (10 µs, 30 µs, or 2,000 µs)

• Output values:
None

(d) Global Variables
None

(e) Subroutines Used
None

(f) Internal Registers Used

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 48 of 79

Table 17 Registers Used by fwrite() Function

Register Bit Name Description Address Set Value
 Flash memory control register 1 H'FFFFA8 —
PSU1 Program setup

• PSU1 = 0: Program setup canceled
• PSU1 = 1: Transition to program setup state

Bit 4 1
FLMCR1

P1 Program
• P1 = 0: Cancels the program mode
• P1 = 1 when SWE1 = 1 and PSU1 = 1: Enters the

program mode

Bit 0 1

 Timer control/status register 0 H'FFFF74 H'79
OVF Overflow flag

• OVF = 0: No TCNT_0 overflow
• OVF = 1: TCNT_0 overflow

Bit 7 0

WT/ IT Timer mode select
• WT/ IT = 0: Interval timer
• WT/ IT = 1: Watchdog timer

Bit 6 1

TME Timer enable
• TME = 0: TCNT_0 count start
• TME = 1: TCNT_0 count halt

Bit 5 1

TCSR_0 *1

CKS2
CKS1
CKS0

Clock select 2 to 0
• CKS2 = 0, CKS1 = 0, CKS0 = 1: φ/64 clock input

selected for TCNT_0

Bit 2
Bit 1
Bit 0

CKS2 = 0
CKS1 = 0
CKS0 = 1

Notes: *1. The method for writing to TCSR_0 is different from that for general registers.
• Writing is accomplished by word transfer with H'FFFF74 as the target.
• The value of the upper byte is H'A5 and the lower byte is the programming data.
• In this function, the value written is as follows:
 TCSR_0 = H'A579

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 49 of 79

(g) Flowchart

fwrite()

i = 0

Set PSU1 bit in FLMCR1 to 1

50 µs elapsed?

END

w_adr[i] = buf[i]
Write 1 byte of overwrite
address or additional
programming address to write
address

i++

P1=1
Set P1 bit in FLMCR1 to 1

ptime
(10,30,200 µs)

WAIT?

P1=0
Clear P1 bit in FLMCR1 to 0

Clear PSU1 bit in FLMCR1
to 0

Yes

No

Yes

No
End programming

TCSR_0 = H'A579
Set and start watchdog
timer_0
Operating clock: φ/64

i<128
Is total programming data

< 128 bytes?

TCSR_0 = H'A500
Halt watchdog timer_0

5µs elapsed?

5 µs elapsed?

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 50 of 79

(9) fwritevf() Function
(a) Specifications

char fwritevf(
unsigned short *owbuff,
unsigned short *buff,
unsigned short *wvf_buf,
unsigned short *wvf_adr

)
(b) Principles of Operation

• Verifies target address and creates overwrite data
(c) Arguments

• Input values:
*owbuff: 128 bytes of additional programming data
*buff: 128 bytes of overwrite data
*wvf_buf: 128 bytes of programming data
* wvf_adr: Write address

• Output values:
*owbuff: 128 bytes of additional programming data
*buff: 128 bytes of overwrite data
*wvf_buf: 128 bytes of programming data
* wvf_adr: Write address

(d) Global Variables
None

(e) Subroutines Used
None

(f) Internal Registers Used

Table 18 Registers Used by fwritevf() Function

Register Bit Name Description Address Set Value
 Flash memory control register 1 H'FFFFA8 — FLMCR1
PV1 Program-verify

• PV1 = 0: Cancels the program-verify mode
• PV1 = 1: Enters the program-verify mode

Bit 2 1

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 51 of 79

(g) Flowcharts

fwritevf()

Set PV1 bit in FLMCR1 to 1

wad[j*2] = H'FF
Dummy write H'FF to verify
address

j = 0

owbuff[j]=buff[j]|wvf_adr[j]
Calculate additional programming
data
Verify data and overwrite data OR
condition

buff[j]=~wvf_adr[j]|wvf_buf[j]
Calculate overwrite data
Verify data NOT condition and
programming data OR condition

tmp = ~wvf_adr[j]&wvf_buf[j]
Error check

tmp=0

tmp≠0

i<WLOOP4
Elapsed time<4µs?

j<128/2
Verifying of 128 bytes completed?

tmp≠0?

j<128/2

j≥128/2
Verify end

1

i=0

i++

i<WLOOP2
Elapsed time<2µs?

i++

j++

i=0

Yes

No

Yes

No

wad = *wvf_adr
Set verify address in wad

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 52 of 79

rtn = NG

END

Clear PV1 bit in FLMCR1 to 0

j = 0

rtn = OK

j++

rtn = WNG

tmp=0

tmp≠0

j≥128/2

j<128/2

=H'FFFF

≠H'FFFF

buff[j]≠H'FFFF

tmp=0?

j < 128/2

return(rtn)

1

i=0

i<WLOOP2
Elapsed time<2µs?

i++

Yes

No

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 53 of 79

8. Asynchronous Serial Communication Program

8.1 Hierarchy
The asynchronous serial communication program performs processing of communications with the master side.

trs1byte

rcv1bytercvnbyte

trsnbyte

com_init

Figure 21 Hierarchy of Asynchronous Serial Communication Program

8.2 List of Functions
Table 19 Functions of Asynchronous Serial Communication Program

Description Function
com_init Initializes asynchronous serial communication
rcv1byte Receives 1 byte of data
rcvnbyte Receives n bytes of data
trs1byte Transmits 1 byte of data
trsnbyte Transmits n bytes of data

8.3 Description of Functions
(1) com_init() Function

(a) Specifications
void com_init(void)

(b) Principles of Operation
• Initializes asynchronous serial communication

(c) Arguments
• Input values: None
• Output values: None

(d) Global Variables
None

(e) Subroutines Used
None

(f) Internal Registers Used

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 54 of 79

Table 20 Registers Used by com_init() Function

Register Bit Name Description Address Set Value
 Module stop control register B H'FFFDE9 H'7F MSTPCRB
MSTPB7 Serial communication interface 0

• MSTPB7 = 0: Clear module stop mode for SCI_0
• MSTPB7 = 1: Enter module stop mode for SCI_0

Bit 7 0

 Serial mode register 0 H'FFFF78 H'00
C/ A Communication mode

• C/ A = 0: Asynchronous communication mode
• C/ A = 1: Clock synchronous communication

mode

Bit 7 0

CHR Character length
• CHR = 0: 8-bit data length selected for

asynchronous communication mode
• CHR = 1: 7-bit data length selected for

asynchronous communication mode

Bit 6 0

PE Parity enable
• PE = 0: Disables appending and checking of

parity bits during transmission in asynchronous
communication mode

• PE = 1: Enables appending and checking of
parity bits during transmission in asynchronous
communication mode

Bit 5 0

O/ E Parity mode
• O/ E = 0: Even parity for appending and

checking of parity bits
• O/ E = 1: Odd parity for appending and checking

of parity bits

Bit 4 0

STOP Stop bit length
• STOP = 0: Stop bit length of 1 bit selected for

asynchronous communication mode
• STOP = 1: Stop bit length of 2 bits selected for

asynchronous communication mode

Bit 3 0

MP Multiprocessor mode
• MP = 0: Disables multiprocessor

communications function
• MP = 1: Enables multiprocessor communications

function

Bit 2 0

SMR_0

CKS1
CKS0

Clock select 1 and 0
• CKS1 = 0, CKS0 = 0: φclock selected as clock

source for internal baud rate generator

Bit 1
Bit 0

CKS1 = 0
CKS0 = 0

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 55 of 79

Table 20 Registers Used by com_init() Function (cont.)

Register Bit Name Description Address Set Value
BRR_0 Bit rate register 0

• BRR = H'09: Selects 31250-bps transmit bit rate
matching operating clock selected by CKS1 and
CKS0 in SMR_0

H'FFFF79 H'09

 Serial control register H'FFFF7A —
TE Transmit enable

• TE = 0: Disables transmit operation
• TE = 1: Enables transmit operation

Bit 5 0

RE Receive enable
• RE = 0: Disables receive operation
• RE = 1: Enables receive operation

Bit 4 0

SCR_0

CKE1
CKE0

Clock enable 1 and 0
• CKE1 = 0, CKE0 = 0: Selects internal clock as

clock source in asynchronous communication
mode and sets SCK0 as I/O port

Bit 1
Bit 0

CKE1 = 0
CKE0 = 0

 Serial status register 0 H'FFFF7C —
TDRE Transmit data register empty

• TDRE = 0: Transmit data written to TDR_0 has
not been transferred to TSR_0

• TDRE = 1: Transmit data has not been written to
TDR_0 or transmit data written to TDR_0 has
been transferred to TSR_0

Bit 7 —

RDRF Receive data register full
• RDRF = 0: No received data stored in RDR_0
• RDRF = 1: Received data stored in RDR_0

Bit 6 —

ORER Overrun error
• ORER = 0: Indicates reception is in progress or

has completed
• ORER = 1: Indicates an overrun error occurred

during reception

Bit 5 0

FER Framing error
• FER = 0: Indicates reception is in progress or

has completed
• FER = 1: Indicates a framing error occurred

during reception

Bit 4 0

PER Parity error
• PER_0 = 0: Indicates reception is in progress or

has completed
• PER_0 = 1: Indicates a parity error occurred

during reception

Bit 3 0

SSR_0

TEND Transmit end
• TEND_0 = 0: Indicates transmission is in

progress
• TEND_0 = 1: Indicates transmission has ended

Bit 2 —

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 56 of 79

Table 20 Registers Used by com_init() Function (cont.)

Register Bit Name Description Address Set Value
 Smart card mode register H'FFFF7E H'F2 SCMR
SMIF Smart card interface mode select

• SMIF = 0: Normal asynchronous mode or clock
synchronous mode
• SMIF = 1: Smart card interface mode

Bit 0 0

 Serial expansion mode register 0 H'FFFDF8 H'00
ABCS Asynchronous basic clock select

• ABCS = 0: Frequency of basic clock for 1-bit
interval is 16 times the transfer rate in
asynchronous mode

• ABCS = 1: Frequency of basic clock for 1-bit
interval is 8 times the transfer rate in
asynchronous mode

Bit 3 0
SEMR_0

ACS2
ACS1
ACS0

Asynchronous clock source select
• ACS2 = 0, ACS1 = 0, ACS0 = 0: External clock

input selected as asynchronous clock source

Bit 2
Bit 1
Bit 0

ACS2=0
ACS1=0
ACS0=0

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 57 of 79

(g) Flowchart

com_init()

SCR_0 &= H'CF
Disable transmission and reception

SCR_0 &= H'FC
Set internal clock as clock source

SMR_0 = H'00
Asynchronous mode
8-bit data length
No parity
1 stop bit
Internal baud rate generator
= φ clock

SEMR_0 = H'00
Set frequency of basic clock for
1-bit interval to 16 times the
transfer rate

i ≥ 270?
Wait 1-bit interval(26.04µs)

 or more

i = 0

Clear ORER, FER, and PER in
SSR_0 to 0

i++

END

SCR_0 = H'30
Enable transmission and reception

i<270

MSTPCRB &= H'7F
Cancel module stop mode for
SCI_0

SCMR = H'F2
Operate in asynchronous mode or
clock synchronous mode

BRR_0 = 7
Set transfer speed to 38400 bps

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 58 of 79

(2) rcv1byte() Function
(a) Specifications

unsigned char rcv1byte(void)
(b) Principles of Operation

Receives 1 byte of asynchronous serial data
(c) Arguments

• Input values: None
• Output values: 1 byte received data

(d) Global Variables
None

(e) Subroutines Used
None

(f) Internal Registers Used

Table 21 Registers Used by rcv1byte() Function

Register Bit Name Description Address Set Value
 Serial status register 0 H'FFFF7C —
RDRF Receive data register full

• RDRF = 0: No received data stored in RDR_0
• RDRF = 1: Received data stored in RDR_0

Bit 6 —

ORER Overrun error
• ORER = 0: Indicates reception is in progress or

has completed
• ORER = 1: Indicates an overrun error occurred

during reception

Bit 5 —

FER Framing error
• FER = 0: Indicates reception is in progress or

has completed
• FER = 1: Indicates a framing error occurred

during reception

Bit 4 —

SSR_0

PER Parity error
• PER_0 = 0: Indicates reception is in progress or

has completed
• PER_0 = 1: Indicates a parity error occurred

during reception

Bit 3 —

RDR_0 Receive data register 0
• 8-bit register that stores received data

H'FFFF7D —

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 59 of 79

(g) Flowchart

rcv1byte()

tmp = RDRF

tmp = RDR_0
Write received data

END

SSR&=H'38
ORER or FER or PER

=1?

tmp == 0 ?

Yes
ORER or FER
 or PER=1

No

No

tmp = 0
Yes

RDRF = 0
Clear RDRF flag

return(tmp(received data))

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 60 of 79

(3) rcvnbyte() Function
(a) Specifications

void rcvnbyte(
unsigned char *ram
unsigned char dtno,

)
(b) Principles of Operation

Receives n bytes of asynchronous serial data
(c) Arguments

• Input values:
*ram: RAM start address for storing received data
dtno: Number of bytes of received data

• Output values: 1-byte received data
*ram: received data

(d) Global Variables
None

(e) Subroutines Used
rcv1byte: Receives 1 byte of asynchronous serial data

(f) Internal Registers Used
None

(g) Flowchart

rcvnbyte()

dtno=0 ?
Finished to specified

byte?
*ram = rcv1byte()

 Receive 1 byte and copy to
RAM

*ram ++

END

dtno --

dtno>0

dtno=0

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 61 of 79

(4) trs1byte() Function
(a) Specifications

void trs1byte(unsigned char tdt)
(b) Principles of Operation

Transmits 1 byte of asynchronous serial data
(c) Arguments

• Input values:
tdt: 1-byte transmit data

• Output values: None
(d) Global Variables

None
(e) Subroutines Used

None
(f) Internal Registers Used

Table 22 Registers Used by trs1byte() Function

Register Bit Name Description Address Set Value
TDR_0 Transmit data register 0

• 8-bit register that stores transmit data
H'FFFF7B —

 Serial status register 0 H'FFFF7C —
TDRE Transmit data register empty

• TDRE = 0: Indicates transmit data written to
TDR_0 has not been transferred to TSR_0

• TDRE = 1: Indicates transmit data has not been
written to TDR_0 or transmit data written to
TDR_0 has been transferred to TSR_0

Bit 7 —
SSR_0

TEND Transmit end
• TEND = 0: Indicates transmission is in progress
• TEND = 1: Indicates transmission has ended

Bit 2 —

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 62 of 79

(g) Flowchart

trs1byte()

TDRE==0?

TDR_0 = tdt

TDRE = 0

TEND==0?

END

No, data is not in TDR_0

Yes, data remains in TDR_0

No, transmission ended

Yes, transmission is in
progress

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 63 of 79

(5) trsnbyte() Function
(a) Specifications

void trsnbyte(unsigned char *tdt, unsigned char dtno)
(b) Principles of Operation

Transmits n bytes of asynchronous serial data
(c) Arguments

• Input values:
*tdt: Start address of transmit data
dtno: Size of transmission

• Output values: None
(d) Global Variables

None
(e) Subroutines Used

None
(f) Internal Registers Used

Table 23 Registers Used by trsnbyte() Function

Register Bit Name Description Address Set Value
TDR_0 Transmit data register 0

• 8-bit register that stores transmit data
H'FFFF7B —

 Serial status register 0 H'FFFF7C —
TDRE Transmit data register empty

• TDRE = 0: Indicates transmit data written to
TDR_0 has not been transferred to TSR_0

• TDRE = 1: Indicates transmit data has not been
written to TDR_0, or transmit data written to
TDR_0 has been transferred to TSR_0

Bit 7 —
SSR_0

TEND Transmit end
• TEND = 0: Indicates transmission is in progress
• TEND = 1: Indicates transmission has ended

Bit 2 —

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 64 of 79

(g) Flowchart

trsnbyte()

dtno=0 ?
Finished to specified

byte?

END

dtno>0

dtno=0

TEND==0?

No, transmission ended

Yes,
transmission is in
progress

TDRE==0?

TDR_0 = *tdt

No,
data is not in TDR

Yes,
data remains in TDR

dtno --

*tdt++

TDRE = 0

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 65 of 79

9. Program Listings

9.1 Slave Main Program
/**/
/* */
/* H8S/2268F */
/* Flash Memory Write/Erase Application Note */
/* */
/* Communication Interface */
/* : Asynchronous Serial Interface */
/* Function */
/* : Slave Main Program */
/* */
/* External Clock : 10MHz */
/* Internal Clock : 10MHz */
/* Sub Clock : 32.768kHz */
/* */
/**/
#include <machine.h>
#include "string.h"

/**/
/* Symbol Definition */
/**/
struct BIT {
unsigned char b7:1; /* bit7 */
unsigned char b6:1; /* bit6 */
unsigned char b5:1; /* bit5 */
unsigned char b4:1; /* bit4 */
unsigned char b3:1; /* bit3 */
unsigned char b2:1; /* bit2 */
unsigned char b1:1; /* bit1 */
unsigned char b0:1; /* bit0 */
};
#define SSR_0_BIT (*(volatile struct BIT *)0xFFFF7C) /* Serial Status Register */
#define RDRF_0 SSR_0_BIT.b6 /* Receive Data Register Full */
#define LPCR *(volatile unsigned char *)0xFFFC30 /* LCD Port Control Register */
#define LCR *(volatile unsigned char *)0xFFFC31 /* LCD Control Register */
#define LCR2 *(volatile unsigned char *)0xFFFC32 /* LCD Control Register 2 */
#define LCDRAM (volatile unsigned char *)0xFFFC4A /* LCD RAM */
#define MSTPCRD *(volatile unsigned char *)0xFFFC60 /* Module Stop Control Registers D */
#define P1DDR *(volatile unsigned char *)0xFFFE30 /* Port 1 Data Direction Register */
#define P1DR *(volatile unsigned char *)0xFFFF00 /* Port 1 Data Register */
#define P1DR_BIT (*(volatile struct BIT *)0xFFFF00) /* Port 1 Data Register */
#define P11DR P1DR_BIT.b1 /* Port 11 */
#define P10DR P1DR_BIT.b0 /* Port 10 */
#define P7DDR *(volatile unsigned char *)0xFFFE36 /* Port 7 data direction register */
#define P7DR *(volatile unsigned char *)0xFFFF06 /* Port 7 data register */
#define PORT7 *(volatile unsigned char *)0xFFFFB6 /* Port 7 register */
#define PORT7_BIT (*(volatile struct BIT *)0xFFFFB6) /* Port 7 register */
#define P70 PORT7_BIT.b0 /* Port 70 */

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 66 of 79

/**/
/* Function define */
/**/
extern void FZMAIN (void);
void main (void);
void copyfzram (void);
extern void com_init (void);
extern void trsnbyte (unsigned char *tdt, unsigned char dtno);
extern unsigned char rcv1byte (void);
extern unsigned char SAMPLEDT1[10]; /* 0x001000 - 0x001005 Sample Data */
extern unsigned char SAMPLEDT2[10]; /* 0x005000 - 0x005005 Sample Data */
extern unsigned char SAMPLEDT3[10]; /* 0x02FFAA - 0x02FFFF Sample Data */

/**/
/* Vector Address */
/**/
#pragma section V1 /* VECTOR SECTOIN SET */
void (*const VEC_TBL1[])(void) = {
main /* 00 Reset */
};

#pragma entry main(sp=0x00FFEFC0)
#pragma section /* P */
/**/
/* Main Program */
/**/
void main (void)
{
unsigned char tmp;
unsigned char tmp2;
unsigned char swcnt;

set_ccr(0x80);
set_exr(0x00);

MSTPCRD = 0xBF; /* module stop mode is cleared */

P7DDR = 0xF0;
P7DR = 0xE0;
P1DDR = 0xFF;
P1DR = 0xFF;

com_init(); /* Comunication Initialize */

swcnt = 0; /* User Application Program Sample */
do{
 if(swcnt == 1){
 trsnbyte(&SAMPLEDT1[0], 10);
 }
 else if(swcnt == 2){
 trsnbyte(&SAMPLEDT2[0], 10);
 }
 else if(swcnt == 3){
 trsnbyte(&SAMPLEDT3[0], 10);
 }

 swcnt++;
 if(swcnt > 3){
 swcnt = 1;
 }

 do{
 tmp2 = P70;
 tmp = RDRF_0;
 tmp2 = tmp2&(~tmp);
 }while(tmp2);

 if(tmp != 0) /* Data Receive? */
 tmp = rcv1byte();

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 67 of 79

}while(tmp != 0x55); /* Flash Memory Erase/Write Start? */
/*------- Flash Memory Write Mode -------------*/
P1DDR = 0x03;
P10DR = 1; /* LED1 OFF */
P11DR = 0; /* LED2 ON */

copyfzram();

FZMAIN(); /* Flash Memory Write Main Program */
}

#pragma section CPYFZRAM /* VECTOR SECTOIN SET */
/**/
/* Copy FZTAT to RAM */
/**/
void copyfzram (void)
{
 char *X_BGN;
 char *X_END;
 char *Y_BGN;

 X_BGN = __sectop("FZTAT"); /* Flash , Ram Address Copy */
 X_END = __secend("FZEND");
 Y_BGN = __sectop("RAM");

memcpy(Y_BGN,X_BGN,X_END-X_BGN); /* Flash -> RAM Copy */
}

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 68 of 79

9.2 Slave Programming/Erasing Control Program
/**/
/* */
/* H8S/2268F */
/* Flash Memory Write/Erase Application Note */
/* */
/* Communication Interface */
/* : Asynchronous Serial Interface */
/* Function */
/* : Slave Flash Memory Write/Erase Control Program */
/* */
/* External Clock : 10MHz */
/* Internal Clock : 10MHz */
/* Sub Clock : 32.768kHz */
/* */
/**/
#pragma section FZTAT

#include <machine.h>
#include "string.h"

/**/
/* Symbol Definition */
/**/
struct BIT {
unsigned char b7:1; /* bit7 */
unsigned char b6:1; /* bit6 */
unsigned char b5:1; /* bit5 */
unsigned char b4:1; /* bit4 */
unsigned char b3:1; /* bit3 */
unsigned char b2:1; /* bit2 */
unsigned char b1:1; /* bit1 */
unsigned char b0:1; /* bit0 */
};

#define FLMCR1 *(volatile unsigned char *)0xFFFFA8 /* Flash Memory Control Register 1 */
#define FLMCR1_BIT (*(volatile struct BIT *)0xFFFFA8) /* Flash Memory Control Register 1 */
#define FWE FLMCR1_BIT.b7 /* Flash Write Enable */
#define SWE1 FLMCR1_BIT.b6 /* Software Write Enable */
#define ESU1 FLMCR1_BIT.b5 /* Erase Setup */
#define PSU1 FLMCR1_BIT.b4 /* Program Setup */
#define EV1 FLMCR1_BIT.b3 /* Erase Verify */
#define PV1 FLMCR1_BIT.b2 /* Program Verify */
#define E1 FLMCR1_BIT.b1 /* Erase */
#define P1 FLMCR1_BIT.b0 /* Program */
#define FLMCR2 *(volatile unsigned char *)0xFFFFA9 /* Flash Memory Control Register 2 */
#define FLMCR2_BIT (*(volatile struct BIT *)0xFFFFA9) /* Flash Memory Control Register 2 */
#define FLER FLMCR2_BIT.b7 /* FLER */
#define EBR1 *(volatile unsigned char *)0xFFFFAA /* Erase Block Register 1 */
#define EBR2 *(volatile unsigned char *)0xFFFFAB /* Erase Block Register 2 */
#define RAMER *(volatile unsigned char *)0xFFFEDB /* RAM Emulation Register */
#define FLPWCR *(volatile unsigned char *)0xFFFFAC /* Flash Memory Power Control Register */
#define SCRX *(volatile unsigned char *)0xFFFDB4 /* Serial Control Register X */
#define SCRX_BIT (*(volatile struct BIT *)0xFFFDB4) /* Serial Control Register X */
#define FLSHE SCRX_BIT.b3 /* Flash Memory Control Register Enable */
#define TCSRW_0 *(volatile unsigned short *)0xFFFF74 /* Timer Control/Status Register W */
#define TCNTW_0 *(volatile unsigned short *)0xFFFF74 /* Timer Counter W */
#define RSTCSR *(volatile unsigned short *)0xFFFF76 /* Timer Control/Status Register W */
#define P1DDR *(volatile unsigned char *)0xFFFE30 /* Port 1 Data Direction Register */
#define P1DR *(volatile unsigned char *)0xFFFF00 /* Port 1 Data Register */
#define P1DR_BIT (*(volatile struct BIT *)0xFFFF00) /* Port 1 Data Register */
#define P11DR P1DR_BIT.b1 /* Port 11 */
#define P10DR P1DR_BIT.b0 /* Port 10 */
#define IER *(volatile unsigned char *)0xFFFE14 /* IRQ Enable Register */
#define ADCR *(volatile unsigned char *)0xFFFF99 /* A/D Control Register */
#define PFDDR *(volatile unsigned char *)0xFFFE3E /* Port F Data Direction Register */
#define PFDR *(volatile unsigned char *)0xFFFF0E /* Port F Data Register */

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 69 of 79

/**/
/* Function define */
/**/
void FZMAIN (void);
void fwe_check (void);
char blk1_erase (unsigned long ers_ad, unsigned char ET_COUNT);
char blk_check (unsigned long eck_ad,unsigned long *eck_st, unsigned long *eck_ed, unsigned char *blk_no);
void ferase (unsigned char e_blk_no);
char ferasevf (unsigned short *evf_st, unsigned short *evf_ed);
char fwrite128 (unsigned char *wt_buf, unsigned char *wt_adr, unsigned short WT_COUNT);
void fwrite (unsigned char *buf, unsigned char *w_adr, unsigned short ptime);
char fwritevf (unsigned short *owbu ff, unsigned short *buff , un signed s hort *wvf_buf, unsigned s hort
*wvf_adr);
extern unsigned char rcv1byte (void);
extern void rcvnbyte (unsigned char *ram, unsigned char dtno);
extern void trs1byte (unsigned char tdt);

/**/
/* ROM define */
/**/

/****** WAIT TIME ***/
#define MHZ 10 /* 20MHZ */
#define KEISU1 3 /* 1Loop 3Step <-- DEC.B(1)+BNE(2) */
#define KEISU2 5 /* 1Loop 5Step <-- INC.W(1)+CMP.W(2)+BCS(2) */
#define WLOOP1 1*MHZ/KEISU1+1 /* LOOP WAIT TIME */
#define WLOOP2 2*MHZ/KEISU1+1
#define WLOOP4 4*MHZ/KEISU1+1
#define WLOOP5 5*MHZ/KEISU1+1
#define WLOOP10 10*MHZ/KEISU1+1
#define WLOOP20 20*MHZ/KEISU1+1
#define WLOOP50 50*MHZ/KEISU2+1
#define WLOOP100 100*MHZ/KEISU2+1
#define TIME10 10*MHZ/KEISU1+1 /* WRITE WAIT TIME */
#define TIME30 30*MHZ/KEISU1+1 /* WRITE WAIT TIME */
#define TIME200 200*MHZ/KEISU2+1 /* WRITE WAIT TIME */
#define TIME10000 10000*MHZ/KEISU2+1 /* ERASE WAIT TIME */

/****** Fixed number definition ******************************/
unsigned long BLOCKADR[13] ={ /* Erase Block Address */
0x000000, /* EB0 4KBYTE */
0x001000, /* EB1 4KBYTE */
0x002000, /* EB2 4KBYTE */
0x003000, /* EB3 4KBYTE */
0x004000, /* EB4 4KBYTE */
0x005000, /* EB5 4KBYTE */
0x006000, /* EB6 4KBYTE */
0x007000, /* EB7 4KBYTE */
0x008000, /* EB8 32KBYTE */
0x010000, /* EB9 64KBYTE */
0x020000, /* EB10 64KBYTE */
0x030000, /* EB11 64KBYTE */
0x040000 /* End Block Address */
};

#define MAXBLK1 12
#define OK 0
#define NG 1
#define WNG 2
#define OW_COUNT 6 /* Over Write Count */
/**/
/* Flash Memory Write Main Program */
/**/
void FZMAIN (void)
{
 char rtn;
 unsigned char i,tmp;

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 70 of 79

unsigned char rcvndt[2];
 unsigned long E_ADR[12];
 unsigned char W_BUF[128]; /* Write Data Area */
 union{
 unsigned char wtdt[8];
 struct{
 unsigned long ad_tmp;
 unsigned long restsize;
 }lw;
 }rcv;

 trs1byte(OK); /* SEND OF OK Code */

 tmp = rcv1byte(); /* Recive 1byte Data -> RAM Area */
 if(tmp != 0x66)
 goto ERRCASE;

 FLPWCR = 0x80; /* flash power-down modes disabled */
 fwe_check(); /* Set FWE */

 trs1byte(OK); /* SEND OF OK Code */
 RSTCSR = 0x5A5F; /* LSI Reset if WDT overflows */
 TCSRW_0 = 0xA500; /* WDT STOP */

/*------- Erase -------------------------------*/
 rcvnbyte(rcvndt, 2); /* RECEIVE ERASE BLOCK NUMBER */
 if(rcvndt[0] != 0x77) /* Recive Code = 0x77? */
 goto ERRCASE;

 trs1byte(OK); /* SEND OF OK Code */

 tmp = rcvndt[1] << 2;
 rcvnbyte((unsigned char*)E_ADR, tmp); /* Recive ERASE BLOCK Address */

 for(i = 0; i < rcvndt[1]; i++){
 rtn = blk1_erase(E_ADR[i], 3); /* 1 block Erase */
 if(rtn != OK)
 goto ERRCASE;
 }

 trs1byte(OK); /* SEND OF OK Code */
/*------- Write Address / Size Recive --------*/

 tmp = rcv1byte(); /* Recive 1byte Data -> RAM Area */
 if(tmp != 0x88)
 goto ERRCASE;

 trs1byte(OK); /* SEND OF OK Code */

 rcvnbyte(rcv.wtdt, 8); /* Recive Write Top Address & Size */
 if(rcv.wtdt[3] & 0x7F)
 goto ERRCASE;

 if(rcv.lw.restsize == 0x0000){
 goto ERRCASE;
 }

 trs1byte(OK); /* SEND OF OK Code */

/*------- 128 byte Flash Memory Write ---------*/

 while(rcv.lw.restsize != 0){
 trs1byte(0x11); /* SEND OF Request */

 if(rcv.lw.restsize <= 128){ /* Receive WriteData from HOST */
 memset(W_BUF,0xFF,128); /* INITIALIZE RECEIVE BUFFER (0xFF) */
 rcvnbyte(W_BUF,(unsigned char)rcv.lw.restsize); /* "restsize" byte Receive */

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 71 of 79

 rcv.lw.restsize = 0;
 }
 else{
 rcvnbyte(W_BUF, 128); /* 128byte Receive */
 rcv.lw.restsize -= 128;
 }

 rtn = fwrite128(W_BUF, (unsigned char*)rcv.lw.ad_tmp, 1000);
 if(rtn != OK)
 goto ERRCASE;

 rcv.lw.ad_tmp = rcv.lw.ad_tmp + 128;
 }

 trs1byte(OK); /* SEND OF OK Code */
 P10DR = 0; /* LED1 ON */
 P11DR = 1; /* LED2 OFF */

 TCNTW_0 = 0x5AFF; /* INITIZLIZED WDT COUNT */
 TCSRW_0 = 0xA578; /* WDT START phi/2 */

 while(1); /* OK End */

/*------- Error Case --------------------------*/
ERRCASE: /* Error Case */
 trs1byte(NG);
 P10DR = 0; /* LED1 ON */
 P11DR = 0; /* LED2 ON */
 while(1);
}

/**/
/* FWE Check */
/**/
void fwe_check (void)
{
 unsigned char tmp;

 IER = 0x00; /* IRQ3 Disable */
 ADCR = 0x00; /* ADTRG OFF */
 PFDDR = 0x08; /* PF3 Output Setting */

 PFDR = 0x08; /* Set PF3 / Set FEW */
 SCRX = 0x08; /* FLSHE=1 */
 RAMER = 0x00; /* RAM Emulation Register OFF */

 do{
 tmp = FWE;
 }while(tmp==0); /* FWE Set? */
}

/**/
/* Flash Memory 1 block Erase */
/**/
char blk1_erase (unsigned long ers_ad, unsigned char ET_COUNT)
{
 char rtn;
 unsigned char i;
 unsigned short j;
 unsigned char block_no;
 unsigned long ers_st,ers_ed;

 rtn = blk_check(ers_ad,&ers_st,&ers_ed,&block_no); /* CHECK BLOCK START ADDRESS */

 if(rtn == OK){
 SWE1 = 1; /* Set the SWE1 bit */
 for(i = 0; i < WLOOP1; i++); /* Need to wait 1 usec */

 rtn = ferasevf((unsigned short*)ers_st, /* Erase Verify */

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 72 of 79

 (unsigned short*)ers_ed);

 for(i = 0; i < ET_COUNT; i++){ /* Count Check (Max Erase count) */
 if(!rtn)
 break;
 ferase(block_no); /* Erase */
 rtn = ferasevf((unsigned short*)ers_st, /* Erase Verify */
 (unsigned short*)ers_ed);
 }

 SWE1 = 0; /* Clear the SWE1 bit */
 for(j = 0; j < WLOOP100; j++); /* Need to wait 100 usec */
 }

 return(rtn);
}
/**/
/* Erase Block Check Routin */
/**/
char blk_check (unsigned long eck_ad,unsigned long *eck_st, unsigned long *eck_ed, unsigned char *blk_no)
{
 unsigned char i;

 for(i = 0; eck_ad != BLOCKADR[i]; i++){ /* COMPARE BLOCK_START_ADDRESS */
 if(MAXBLK1 < i) /* BLOCK NUMBER MAX? */
 return(NG); /* ERASE BLOCK ADDRESS ERROR */
 }

 blk_no = i; / ERASE BLOCK NUMBER */
 eck_st = BLOCKADR[i]; / ERASE START ADDRESS */
 i++;
 eck_ed = BLOCKADR[i]-1; / ERASE END ADDRESS */

 return(OK);
}

/**/
/* Erase */
/**/
void ferase (unsigned char e_blk_no)
{
 unsigned char i;
 unsigned short j;
 unsigned char tmp;

 tmp = 1;
 if(e_blk_no < 8){
 tmp <<= e_blk_no;
 EBR1 = tmp; /* Set the EBR1 Erase Block bit */

 }
 else{
 e_blk_no = e_blk_no - 8;
 tmp <<= e_blk_no;
 EBR2 = tmp; /* Set the EBR2 Erase Block bit */
 }

 TCSRW_0 = 0xA57F; /* WDT START phi/13072 */

 ESU1 = 1; /* Set the ESU1 bit */
 for(j = 0; j < WLOOP100; j++); /* Need to wait 100 usec */

 E1 = 1; /* Set the E1 bit (ERASE) */
 for(j = 0; j < TIME10000; j++); /* Need to wait 10 msec */

 E1 = 0; /* Clear the E1 bit */
 for(i = 0; i < WLOOP10; i++); /* Need to wait 10 usec */

 ESU1 = 0; /* Clear the ESU1 bit */

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 73 of 79

 for(i = 0; i < WLOOP10; i++); /* Need to wait 10 usec */

 TCSRW_0 = 0xA500; /* WDT STOP */

 EBR1 = 0;
 EBR2 = 0;
}

/**/
/* Erase Verify */
/**/
char ferasevf (unsigned short *evf_st, unsigned short *evf_ed)
{
 char rtn;
 unsigned char i;
 unsigned short j;
 unsigned char *ead;

 EV1 = 1; /* Set the EV bit */
 for(i = 0; i < WLOOP20; i++); /* Need to wait 20 usec */

 rtn = OK;
 ead = (unsigned char*)evf_st;
 for(j = 0; &evf_st[j] < evf_ed; j++){
 ead[j*2] = 0xFF; /* Perform dummy write */
 for(i = 0; i < WLOOP2; i++); /* Need to wait 2 usec */
 if(evf_st[j] != 0xFFFF){ /* Verify */
 rtn = NG; /* NG flag set */
 break;
 }
 }

 EV1 = 0; /* Clear the EV bit */
 for(i = 0; i < WLOOP4; i++); /* Need to wait 4 usec */

 return(rtn); /* OK flag set */
}

/**/
/* Flash Memory 128 byte Write */
/**/
char fwrite128 (unsigned char *wt_buf, unsigned char *wt_adr, unsigned short WT_COUNT)
{
 char rtn;
 unsigned char i;
 unsigned short j;
 unsigned short TM;
 unsigned char OWBUFF[128]; /* Over Write Data Area */
 unsigned char BUFF[128]; /* Retry Write Data Area */

 memcpy(BUFF,wt_buf,128); /* W_BUF -> BUFF BLOCK COPY */
 SWE1 = 1; /* Set the SWE1 bit */
 for(i = 0; i < WLOOP1; i++); /* Need to wait 1 usec */

 rtn = fwritevf((unsigned short *)OWBUFF, /* 1st Program Verify */
 (unsigned short *)BUFF,
 (unsigned short *)wt_buf,
 (unsigned short *)wt_adr);
 if(rtn == NG){ /* 1st Verify END */
 TM = TIME30; /* Input P Palse(30 usec) */
 for(j = 0; j < WT_COUNT; j++){
 fwrite(BUFF,wt_adr,TM); /* Input P Palse(10,30,200 usec) */
 rtn = fwritevf((unsigned short *)OWBUFF,
 (unsigned short *)BUFF,
 (unsigned short *)wt_buf,
 (unsigned short *)wt_adr);

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 74 of 79

 if(j < OW_COUNT){ /* Count Check(additive Write Count) */
 fwrite(OWBUFF,wt_adr,TIME10); /* Input P Palse(10 usec) */
 }
 else{
 TM = TIME200; /* Input P Palse(200 usec) */
 }

 if(rtn != NG){
 break; /* NG Write Over Error */
 }
 }
 }

 SWE1 = 0; /* Clear the SWE1 bit */
 for(j = 0; j < WLOOP100; j++); /* Need to wait 100 usec */
 return(rtn);
}

/**/
/* Flash Memory Write */
/**/
void fwrite (unsigned char *buf, unsigned char *w_adr, unsigned short ptime)
{
 unsigned char i;
 unsigned short j;

 for(i = 0; i < 128; i++){ /* 128 byte repeat */
 w_adr[i] = buf[i]; /* Rewrite data dummy write */
 }

 TCSRW_0 = 0xA579; /* WDT START phi/64 */

 PSU1 = 1; /* Set the PSU1 bit */
 for(j = 0; j < WLOOP50; j++); /* Need to wait 50 usec */

 P1 = 1; /* Set the P1 bit */
 for(j = 0; j < ptime; j++); /* Writing Time 10/30/200 usec */

 P1 = 0; /* Clear the P1 bit */
 for(i = 0; i < WLOOP5; i++); /* Need to wait 5 usec */

 PSU1 = 0; /* Clear the PSU1 bit */
 for(i = 0; i < WLOOP5; i++); /* Need to wait 5 usec */

 TCSRW_0 = 0xA500; /* WDT STOP */
}

/**/
/* Flash Memory Verify */
/**/
char fwritevf (unsigned short *owbu ff, unsigned short *buff , un signed s hort *wvf_buf, unsigned s hort
*wvf_adr)
{
 char rtn;
 unsigned char i;
 unsigned char j;
 unsigned short tmp;
 unsigned char *wad;

 PV1 = 1; /* Set the PV1 bit */
 for(i = 0; i < WLOOP4; i++); /* Need to wait 4 usec */

 wad = (unsigned char*)wvf_adr;
 for(j = 0; j < 128/2; j++){
 wad[j*2] = 0xFF; /* Dummy Write */
 for(i = 0; i < WLOOP2; i++); /* Need to wait 2 usec */

 owbuff[j] = buff[j] | wvf_adr[j];

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 75 of 79

 tmp = ~wvf_adr[j];
 buff[j] = tmp | wvf_buf[j];

 tmp = tmp & wvf_buf[j]; /* Error Check */
 if(tmp != 0)
 break;
 }

 PV1 = 0; /* PV1 bit Clear */
 for(i = 0; i < WLOOP2; i++); /* Need to wait 2 usec */

 if(tmp == 0){
 rtn = OK;
 for(j = 0; j < 128/2; j++){ /* 128 byte OK? */
 if(buff[j] != 0xFFFF){ /* Error Check */
 rtn = NG;
 break;
 }
 }
 }

 else{
 rtn = WNG; /* Write Error */
 }

 return(rtn);
}

#pragma section FZEND

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 76 of 79

9.3 Asynchronous Serial Communication Program
/**/
/* */
/* H8S/2268F */
/* SCI Program */
/* */
/* External Clock : 10MHz */
/* Internal Clock : 10MHz */
/* Sub Clock : 32.768kHz */
/* */
/**/
#pragma section ASSCI

#include <machine.h>

/**/
/* Symbol Definition */
/**/
struct BIT {
unsigned char b7:1; /* bit7 */
unsigned char b6:1; /* bit6 */
unsigned char b5:1; /* bit5 */
unsigned char b4:1; /* bit4 */
unsigned char b3:1; /* bit3 */
unsigned char b2:1; /* bit2 */
unsigned char b1:1; /* bit1 */
unsigned char b0:1; /* bit0 */
};

#define SMR_0 *(volatile unsigned char *)0xFFFF78 /* Serial Mode Register */
#define BRR_0 *(volatile unsigned char *)0xFFFF79 /* Bit Rate Register */
#define SCR_0 *(volatile unsigned char *)0xFFFF7A /* Serial Control Register 3 */
#define SCR_0_BIT (*(volatile struct BIT *)0xFFFF7A) /* Serial Control Register 3 */
#define TE_0 SCR_0_BIT.b5 /* Transmit Enable */
#define RE_0 SCR_0_BIT.b4 /* Receive Enable */
#define CKE1_0 SCR_0_BIT.b1 /* Clock Enable 1 */
#define CKE0_0 SCR_0_BIT.b0 /* Clock Enable 0 */
#define TDR_0 *(volatile unsigned char *)0xFFFF7B /* Transmit Data Register */
#define SSR_0 *(volatile unsigned char *)0xFFFF7C /* Serial Status Register */
#define SSR_0_BIT (*(volatile struct BIT *)0xFFFF7C) /* Serial Status Register */
#define TDRE_0 SSR_0_BIT.b7 /* Transmit Data Register Empty */
#define RDRF_0 SSR_0_BIT.b6 /* Receive Data Register Full */
#define ORER_0 SSR_0_BIT.b5 /* Overrun Erorr */
#define FER_0 SSR_0_BIT.b4 /* Framing Erorr */
#define PER_0 SSR_0_BIT.b3 /* Parity Erorr */
#define TEND_0 SSR_0_BIT.b2 /* Transmit End */
#define RDR_0 *(volatile unsigned char *)0xFFFF7D /* Receive data Register */
#define SCMR *(volatile unsigned char *)0xFFFF7E /* Smart Card Mode Register */
#define SEMR_0 *(volatile unsigned char *)0xFFFDF8 /* Serial Expansion Mode Register */
#define MSTPCRB *(volatile unsigned char *)0xFFFDE9 /* Module Stop Control Registers C */

/**/
/* Communication Initialize */
/**/
void com_init (void)
{
 unsigned short i;

 MSTPCRB &= 0x7F; /* module stop mode is cleared */

 SCR_0 &= 0xCF; /* TE,RE=0 */
 SCR_0 &= 0xFC; /* CKE1,CKE0=0 */
 SMR_0 = 0x00; /* Initialize Serial Mode Register */
 SCMR = 0xF2; /* Don't use Smart Card */
 SEMR_0 = 0x00; /* 1bit-interval base clock is */
 /* 16times the transfer rate. */
 BRR_0 = 7; /* 38400 bps phi=10MHz */

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 77 of 79

 for(i = 0; i < 270; i++); /* Dummy Loop ,26.04us over Wait */

 i = SSR_0;
 SSR_0 &= 0xC7; /* ORER,FER,PER=0 */

 SCR_0 = 0x30; /* TE=1,RE=1 */
}

/**/
/* Receive 1 byte */
/**/
unsigned char rcv1byte (void)
{
 unsigned char tmp;

 do{
 tmp = RDRF_0;
 if(SSR_0 & 0x38) /* ORER/FER/PER = 1 ? */
 while(1); /* Receive Error */
 }while(tmp == 0); /* End Serial Receiving */

 tmp = RDR_0; /* Read Receive data */
 RDRF_0 = 0; /* Clear RDRF bit */

 return(tmp);
}

/**/
/* Receive N byte */
/**/
void rcvnbyte (unsigned char *ram, unsigned char dtno)
{
 while(dtno--){ /* dtno = 0 ? */
 ram = rcv1byte(); / 1byte Receive Data -> RAM */
 *ram++;
 }
}

/**/
/* Transmit 1 byte */
/**/
void trs1byte (unsigned char tdt)
{
 while(TDRE_0 == 0); /* End Serial Transmitting */
 TDR_0 = tdt;
 TDRE_0 = 0;
 while(TEND_0 == 0); /* End Serial Transmitting */
}

/**/
/* Transmit N byte */
/**/
void trsnbyte (unsigned char *tdt, unsigned char dtno)
{
 while(dtno--){
 while(TDRE_0 == 0); /* End Serial Transmitting */
 TDR_0 = *tdt;
 TDRE_0 = 0;

 *tdt++;
 }

 while(TEND_0 == 0); /* End Serial Transmitting */
}

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 78 of 79

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision Record
Description

Rev.

Date Page Summary

1.00 Mar.09.05 — First edition issued
2.00 Aug.29.06 3, 25 New addition and content correction

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

H8S Family
Rewriting Flash Memory in User Program Mode

Using Asynchronous Serial Communication

REJ06B0484-0200/Rev.2.00 August 2006 Page 79 of 79

1. These materials are intended as a reference to assist our customers in the selection of the Renesas

Technology Corp. product best suited to the customer's application; they do not convey any license

under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or

a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-

party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or

circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and

algorithms represents information on products at the time of publication of these materials, and are

subject to change by Renesas Technology Corp. without notice due to product improvements or

other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or

an authorized Renesas Technology Corp. product distributor for the latest product information

before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising

from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means,

including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,

diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total

system before making a final decision on the applicability of the information and products. Renesas

Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the

information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or

system that is used under circumstances in which human life is potentially at stake. Please contact

Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when

considering the use of a product contained herein for any specific purposes, such as apparatus or

systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in

whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must

be exported under a license from the Japanese government and cannot be imported into a country

other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the

country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products

contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and

more reliable, but there is always the possibility that trouble may occur with them. Trouble with

semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate

measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or

(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

 2006. Renesas Technology Corp., All rights reserved.

	Cover
	1. Specifications
	2. Applicable Conditions
	3. Detailed Specifications
	3.1 On-Board Programming Operation Conditions
	3.2 On-Board Programming Mode
	3.3 Programming Method
	3.4 Flowchart of Rewrite Procedure
	3.5 Master-Slave Connection Diagram
	3.6 Communication Specifications
	3.7 Communication Commands
	3.8 Memory Mapping

	4. Principles of Operation
	4.1 Normal Operation
	4.2 Preparation for On-Board Rewriting
	4.3 Start of On-Board Rewriting
	4.4 Startup of Programming/Erasing Control Program
	4.5 Setting of FWE Pin
	4.6 Erasing Flash Memory
	4.7 Programming Flash Memory
	4.8 Clearing the FWE Pin
	4.9 Initiating the Program

	5. Sequence Diagram
	6. Slave Main Program
	6.1 Hierarchy
	6.2 List of Functions
	6.3 Description of Functions

	7. Programming/Erasing Control Program on Slave Side
	7.1 Hierarchy
	7.2 List of Functions
	7.3 List of Constants
	7.4 RAM Usage
	7.5 Description of Functions

	8. Asynchronous Serial Communication Program
	8.1 Hierarchy
	8.2 List of Functions
	8.3 Description of Functions

	9. Program Listings
	9.1 Slave Main Program
	9.2 Slave Programming/Erasing Control Program
	9.3 Asynchronous Serial Communication Program

	Website and Support
	Revision Record
	Keep safety first in your circuit designs!
	Notes regarding these materials

