

RA2E1 グループ

センサ&タッチレスキーデモサンプルソフトウェア

要旨

本アプリケーションノートでは、RA2E1 センサ&タッチレスキーデモボードのデモソフトウェアについて説明します。

動作確認デバイス

RA2E1 グループ

関連ドキュメント

- 1. RA2E1 グループ センサ&タッチレスキーデモボード(r12an0113jj0100-ra2e1)
- 2. HS300x Datasheet (https://www.renesas.com/jp/ja/document/dst/hs300x-datasheet)
- 3. ZMOD4410 Programming Manual (https://www.renesas.com/jp/ja/document/mas/zmod4410-programming-manual-read-me?language=en)

目次

1.	概要	3
2.	動作確認済環境	3
3.	機能詳細	4
3.1	静電容量タッチセンサによる非接触ボタン(タッチレスキー)操作	4
3.2	HS3001 による、温度、湿度測定	4
3.3	ZMOD4410 による室内空気質(IAQ)測定	4
3.4	サーモセンサによる温度測定	4
4.	ソフトウェア仕様	5
4.1	ソフトウェア構造	5
4.2	ファイル構成	8
4.3	ZMOD4410 ライブラリ入手方法	9
4.4	定数一覧	. 10
4.5	グローバル変数一覧	. 12
4.6	関数一覧	. 13
4.7	全体処理フロー	. 14
4.8	UART コマンド処理フロー	. 15
4.9	タッチレスボタン操作処理フロー	. 16
4.10	センサ測定処理フロー	. 17
4.11	AUTO モード時の処理フロー	. 18
4.12	データフロー	. 19
改訂	記録	.21

1. 概要

本ソフトウェアは、静電容量タッチセンサによる非接触ボタン(タッチレスキー)操作と I2C 通信を使用したセンサ制御の結果に応じて LED、ブザー、UART 出力(UART-USB 変換)を行います。詳細は、RA2E1 グループ センサ&タッチレスキーデモボード(R12AN0113JJ0100)を参照してください。

図 1.1 に動作イメージ図を示します。

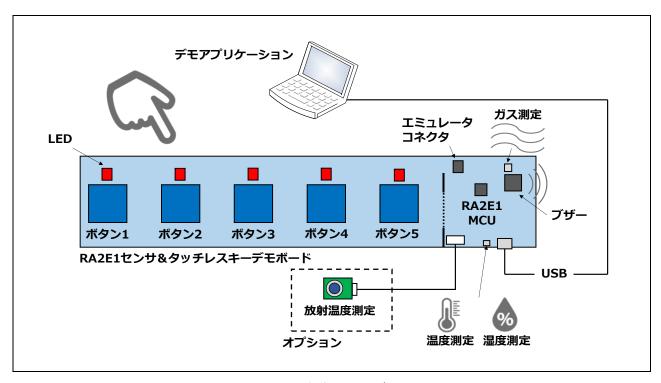


図 1.1 動作イメージ図

2. 動作確認済環境

本ソフトウェアの動作確認済環境を表 2.1 に示します。

項目内容デモボードRTK0EA0005D00001BJ使用マイコンRA2E1動作周波数48MHz動作電圧5V統合開発環境e² Studio 2021-01CコンパイラGCC 9.2.1FSP2.3.0

表 2.1 動作確認済環境

3. 機能詳細

本ソフトウェアの機能は、以下の通りです。

- 1. 静電容量タッチセンサによる、非接触ボタン(タッチレスキー)操作
- 2. HS3001 による、温度、湿度測定
- 3. ZMOD4410 による室内空気質(IAQ)測定
- 4. サーモセンサによる温度測定
- 3.1 静電容量タッチセンサによる非接触ボタン(タッチレスキー)操作

MCUに内蔵されている、CTSU2を使用します。

ボタンの上 15mm 程度の距離に指を近づけると ON 判定となりブザー出力します。

モードに応じて LED 表示します。

3.2 HS3001による、温度、湿度測定

MCUに内蔵されている、I2Cを使用します。

温度、湿度を小数点以下1桁まで測定しUART送信します。

3.3 ZMOD4410 による室内空気質(IAQ)測定

MCUに内蔵されている、I2Cを使用します。

室内空気質(IAQ)を小数点以下1桁まで測定しUART送信します。

3.4 サーモセンサによる温度測定

MCUに内蔵されている、I2Cを使用します。

測定対象物の表面温度縦横 4x4 の 16 データを小数点以下 1 桁まで測定し UART 送信します。

4. ソフトウェア仕様

4.1 ソフトウェア構造

ソフトウェア構造図を図 4.1 に示します。

RA スマート・コンフィグレータを使用し、FSP の下記モジュールを追加してアプリケーションを作成しています。

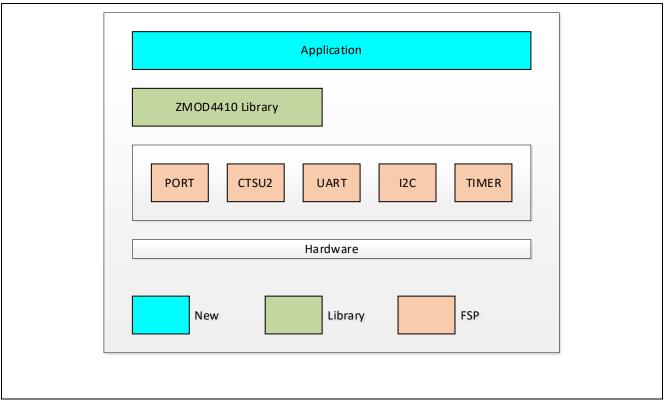
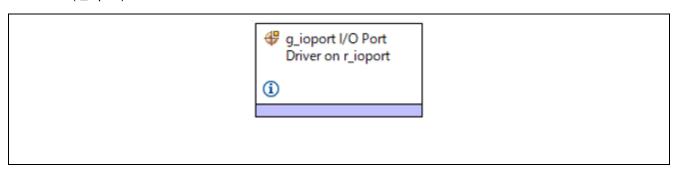
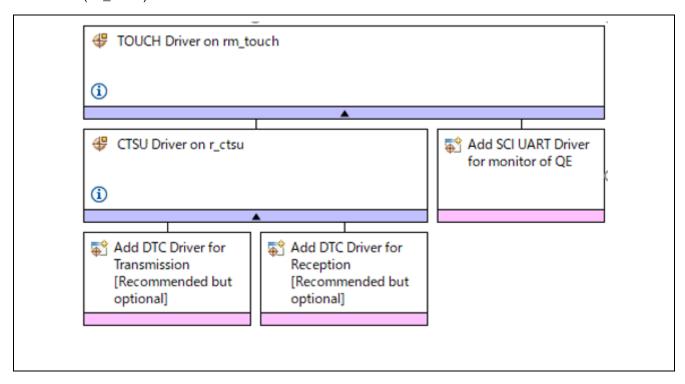
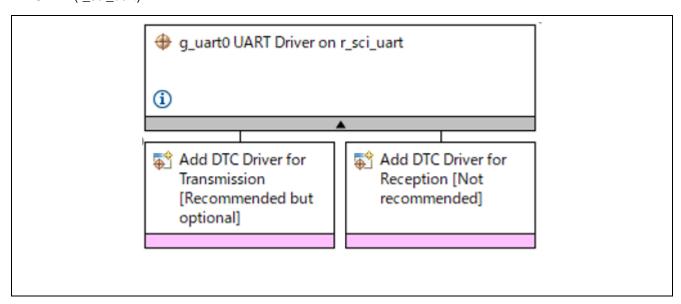
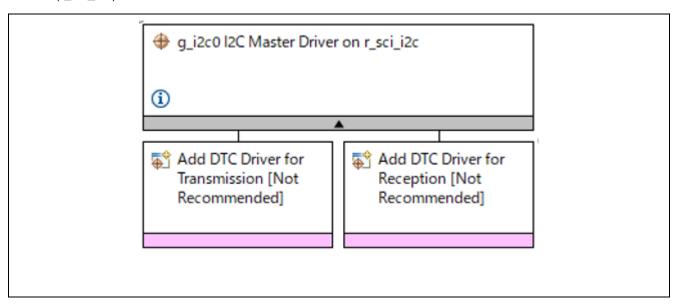
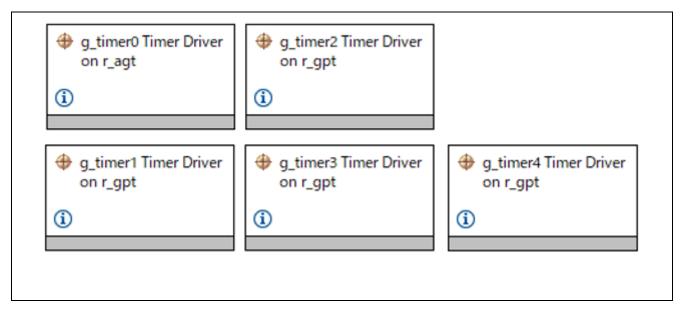




図 4.1 ソフトウェア構造図


PORT (r_ioport)


CTSU2 (rm_touch)


UART (r_sci_uart)

I2C (r_sci_i2c)

TIMER (r_agt, r_gpt)

4.2 ファイル構成

図 4.1 にソースファイルツリーを示します。

FSP のファイル及びライブラリは省略します。

図 4.1 ソースファイルツリー

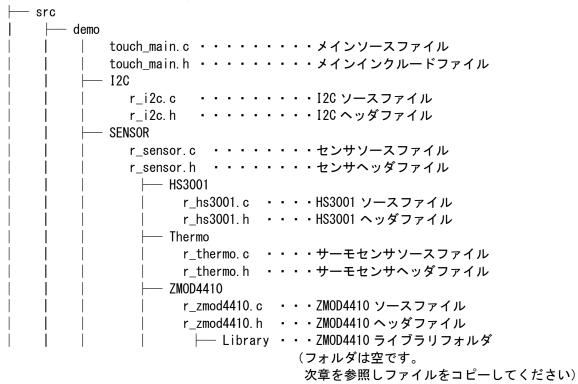


表 4.1 にソースファイルを示します。

表 4.1 ソースファイル

ファイル名	内容	
touch_main.c	メインソースファイル	
r_i2c.c	I2C ソースファイル	
r_sensor.c	センサメインソースファイル	
r_hs3001.c	HS3001 ソースファイル	
r_thermo.c	サーモセンサソースファイル	
r_zmod4410.c	ZMOD4410 ソースファイル	

表 4.2 にヘッダファイルを示します。

表 4.2 ヘッダファイル

ファイル名	内容
voice_main.h	メインヘッダファイル
r_i2c.h	I2C ヘッダファイル
r_sensor.h	センサメインヘッダファイル
r_hs3001.h	HS3001 ヘッダファイル
r_thermo.h	サーモセンサヘッダファイル
r_zmod4410.h	ZMOD4410 ヘッダファイル

4.3 ZMOD4410 ライブラリ入手方法

ZMOD4410 用ライブラリを下記よりダウンロードしてください。

<u>https://www.renesas.com/us/ja/products/sensor-products/gas-sensors/zmod4410-indoor-air-quality-sensor-platform</u>

ダウンロードするライブラリは、下記です。

ZMOD4410 - 2nd Gen - Air Quality & eCO2 Firmware - Recommended for New Designs

ダウンロードしたライブラリを解凍し、下記のファイルを Library フォルダにコピーしてください。

表 4.3 ライブラリファイル

フォルダ名	ファイル名
REN_ZMOD4410-AirQuality-eCO2-FW-2nd-Gen-	iaq_2nd_gen.h
2p1p2_SWR_20201019	lib_iaq_2nd_gen.a
¥Renesas_ZMOD4410_IAQ_2nd_Gen_Example_2.1.2	lib_zmod4xxx_cleaning.a
¥Renesas_ZMOD4410_IAQ_2nd_Gen_Example	zmod4xxx_cleaning.h
¥ZMOD4410_Firmware¥gas-algorithm-libraries	_
¥iaq_2nd_gen¥Arm Cortex-M¥M23¥arm-none-eabi-gcc¥	
REN_ZMOD4410-AirQuality-eCO2-FW-2nd-Gen-	zmod4xxx.c
2p1p2_SWR_20201019	zmod4xxx.h
¥Renesas_ZMOD4410_IAQ_2nd_Gen_Example_2.1.2	zmod4xxx_types.h
¥Renesas_ZMOD4410_IAQ_2nd_Gen_Example	zmod4410_config_iaq2.h
¥ZMOD4410_Firmware¥zmod4xxx_example¥src¥	

4.4 定数一覧

表 4.4 に定数一覧を示します。

表 4.4 定数一覧

定数名	設定値	内容
VD_PRV_INFINITE_LOOP	while(1)	Error Loop
VD_PRV_STS_ERR	(-1)	Error code
VD_PRV_BTN_MD_OFF	(0x0001)	Run mode Off
VD_PRV_BTN_MD_LOW	(0x0002)	Run mode Low
VD_PRV_BTN_MD_MID	(0x0003)	Run mode Middle
VD_PRV_BTN_MD_HI	(0x0004)	Run mode Hi
VD_PRV_BTN_MD_AUTO	(0x0005)	Run mode Auto
VD_PRV_AUTO_MD_0	(0x0010)	Run mode Auto_0
VD_PRV_AUTO_MD_1	(0x0020)	Run mode Auto_1
VD_PRV_AUTO_MD_2	(0x0030)	Run mode Auto_2
VD_PRV_AUTO_MD_3	(0x0040)	Run mode Auto_3
VD_PRV_AUTO_MD_4	(0x0050)	Run mode Auto_4
LED		
VD_PRV_LED_ON	(0)	LED On
VD_PRV_LED_OFF	(1)	LED Off
VD_PRV_LED_POW	(0x0001)	LED Pow bit
VD_PRV_LED_LOW	(0x0002)	LED Low bit
VD_PRV_LED_MID	(0x0004)	LED Middle bit
VD_PRV_LED_HI	(0x0008)	LED Hi bit
VD_PRV_LED_AUTO	(0x0010)	LED Auto bit
VD_PRV_LED_MD_OFF	(0)	LED mode off bit
VD_PRV_LED_MD_LOW	(0x0003)	LED mode low bit
VD_PRV_LED_MD_MID	(0x0005)	LED mode middle bit
VD_PRV_LED_MD_HI	(0x0009)	LED mode hi bit
VD_PRV_LED_MD_A0	(0x0011)	LED mode auto0 bit
VD_PRV_LED_MD_A1	(0x0013)	LED mode auto1 bit
VD_PRV_LED_MD_A2	(0x0015)	LED mode auto2 bit
VD_PRV_LED_MD_A3	(0x0019)	LED mode auto3 bit
VD_PRV_LED_MD_A4	(0x0019)	LED mode auto4 bit
CTSU		
VD_PRV_BTN_1	(1)	Button1 bit
VD_PRV_BTN_2	(2)	Button2 bit
VD_PRV_BTN_3	(3)	Button3 bit
VD_PRV_BTN_4	(4)	Button4 bit
VD_PRV_BTN_5	(0)	Button5 bit
VD_PRV_BTN_POW	(0x0002)	Button Pow
VD_PRV_BTN_LOW	(0x0004)	Button Low
VD_PRV_BTN_MID	(0x0008)	Button Middle
VD_PRV_BTN_HI	(0x0010)	Button Hi
VD_PRV_BTN_AUTO	(0x0001)	Button Auto
VD_PRV_BTN_BIT_POW	(0x0001)	Button bit Pow
VD_PRV_BTN_BIT_LOW	(0x0002)	Button bit Low
VD_PRV_BTN_BIT_MID	(0x0004)	Button bit Middle
VD_PRV_BTN_BIT_HI	(0x0008)	Button bit Hi
VD_PRV_BTN_BIT_AUTO	(0x0010)	Button bit Auto
	· /	<u>.</u>

BUZZER		
VD_PRV_BZ_POW	(22943)	Buzzer Count Pow (1046Hz)
VD_PRV_BZ_LOW	(20441)	Buzzer Count Low (1174Hz)
VD_PRV_BZ_MID	(18208)	Buzzer Count Middle (1318Hz)
VD_PRV_BZ_HI	(17190)	Buzzer Count Hi (1396Hz)
VD_PRV_BZ_AUTO	(15314)	Buzzer Count Auto (1567Hz)
VD_PRV_BZ_A0	(22943)	Buzzer Count Auto_0
VD_PRV_BZ_A1	(20441)	Buzzer Count Auto_1
VD_PRV_BZ_A2	(18208)	Buzzer Count Auto_2
VD_PRV_BZ_A3	(17190)	Buzzer Count Auto_3
VD_PRV_BZ_A4	(15314)	Buzzer Count Auto_4
VD_PRV_BZ_CNT_1	(1)	Buzzer Count (N * 100ms)
TOOL		
VD_PRV_MODE_RUN	(1)	Send Enable
VD_PRV_MODE_STOP	(0)	Send Disable
VD_PRV_DATA_HEAD	(0x88)	Data Head Mark
VD_PRV_SEND_LEN	(57)	Send length
VD_PRV_SEND_TIME	(5)	Send Interval (N * 20ms)
UART		
VD_PRV_WAIT	(1)	Wait Send Complete
VD_PRV_NO_WAIT	(0)	No Wait Send Complete
VD_PRV_KEY_ERR	(0xff)	Error
VD_PRV_KEY_CR	(0x0d)	CR ASCII CODE
VD_PRV_KEY_LF	(0x0a)	LF ASCII CODE
VD_PRV_UART_RX_MAX	(64)	Receive Buffer Size
VD_PRV_UART_CMD_MAX	(64)	Command Buffer Size
THERMO Sensor		
VD_PRV_THR_R_LEN	(35)	Receive Data Length
VD_PRV_THR_DATA_OFS	(2)	Data Offset
VD_PRV_THR_DATA_CNT	(16)	Data Count
VD_PRV_THR_THR	(400)	Thresh (40.0°C)
VD_PRV_THR_LVL1	(0)	Level1 Count
VD_PRV_THR_LVL2	(2)	Level2 Count
VD_PRV_THR_LVL3	(4)	Level3 Count
GAS Sensor		
VD_PRV_IAQ_LVL1	(1.99f)	Level1 Thresh
VD_PRV_IAQ_LVL2	(2.99f)	Level2 Thresh
VD_PRV_IAQ_LVL3	(3.99f)	Level3 Thresh
VD_PRV_IAQ_LVL4	(4.99f)	Level4 Thresh

4.5 グローバル変数一覧

表 4.5 にグローバル変数を示します。

表 4.5 グローバル変数

変数名	型	説明
gs_timer1_cnt	int16_t	Timer1 count
gs_timer3_cnt	int16_t	Timer3 count
gs_timer4_cnt	int16_t	Timer4 count
gs_sts_prev	int16_t	Status previous
gs_btn_mode	int16_t	Run mode
gs_btn_mode_prev	int16_t	Run mode previous
gs_btn_nml_prev	int16_t	Normal mode previous
gs_btn_prev	int16_t	Button previous
gs_auto_mode_prev	int16_t	Auto mode previous
gs_iaq_fdata	float	IAQ float data
gs_iaq_idata	int16_t	IAQ int data
gs_temp_idata	int16_t	Temperature int data
gs_humi_idata	int16_t	Humidity int data
gs_btn_data	uint16_t	Button data
gs_data_num	int16_t	Send data number
Command		
gs_mode_flg	uint16_t	Send mode flag
CTSU		
gs_btn_status	uint64_t	Button status
gs_btn_dif	uint16_t[]	Button difference data
UART		
_gs_uart_rx_len	int16_t	Receive length
gs_uart_rd_idx	int16_t	Buffer Read index
_gs_uart_wr_idx	int16_t	Buffer Write index
_gs_uart_cmd_len	int16_t	Command length
_gs_uart_rx_buf	uint8_t[]	Receive Buffer
gs_uart_cmd_buf	uint8_t[]	Command Buffer
gs_send_time	int16_t	Send Interval
gs_send_buf	uint8_t[]	Send Buffer
gs_thr_data	uint8_t[]	Thermo sensor data Buffer

4.6 関数一覧

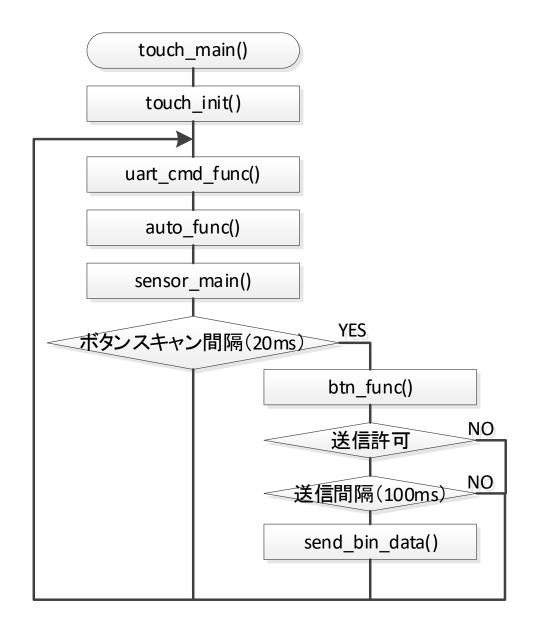
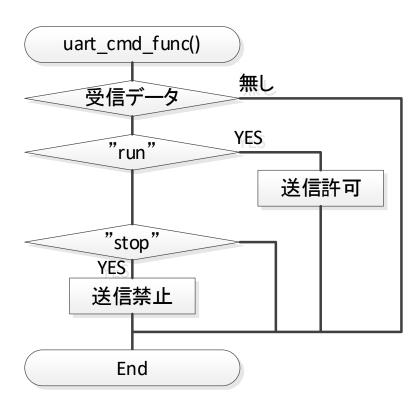
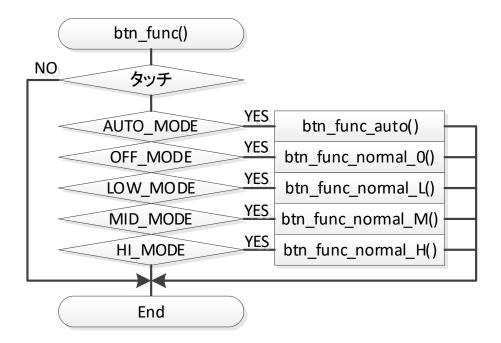

表 4.6 に関数の一覧を示します。

表 4.6 関数一覧

関数名	処理概要		
touch_main	Main function		
touch_init	Initialize		
touch_loop	Main loop		
btn_func	Button function		
btn_func_normal_0	Normal mode Off function		
btn_func_normal_L	Normal mode Low function		
btn_func_normal_M	Normal mode Middle function		
btn_func_normal_H	Normal mode High function		
btn_func_auto	Auto mode function		
btn_bit_set	Button bit set		
btn_check	Button check		
normal_mode_func	Normal mode function		
auto_func	Auto mode function		
auto_mode0_func	Auto mode0 function		
auto_mode1_func	Auto mode1 function		
auto_mode2_func	Auto mode2 function		
auto_mode3_func	Auto mode3 function		
auto_mode4_func	Auto mode4 function		
led_set	LED data set		
buzzer_start	Buzzer (buzzer wave) start		
timer_open	Timer initialize		
timer4_wait	Timer4 (20ms wait timer) start		
timer3_stop	Timer3 (300ms buzzer timer) stop		
ctsu_open	CTSU initialize		
ctsu_getkey	Get key code		
uart_open	UART initialize		
uart_cmd_func	UART command function		
uart_getchr	UART Get Key code		
uart_putmsg	UART Send message		
uart_wait_tx_end	UART Wait Send complete		
cmd_chk	Command check		
send_bin_data	Send binary data		
thermo_data_cnt	Thermo sensor data count		
thermo_data_clr	Thermo sensor data count clear		


4.7 全体処理フロー

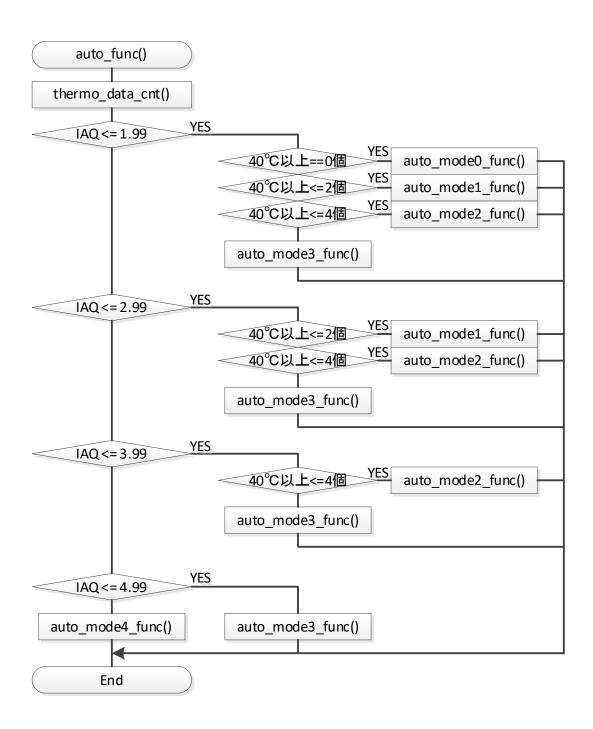
全体処理のフローを以下に示します。


4.8 UART コマンド処理フロー

UART コマンド処理のフローを以下に示します。

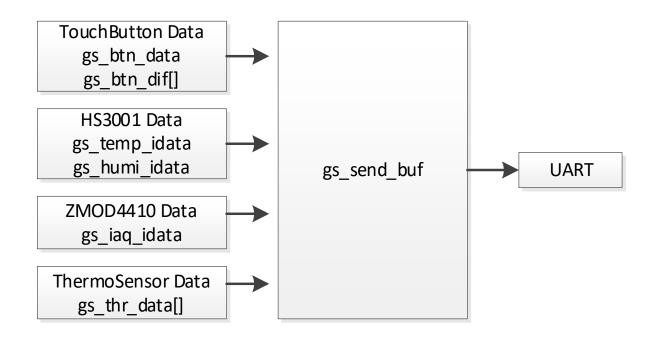
4.9 タッチレスボタン操作処理フロー

タッチレスボタン操作処理のフローを以下に示します。


4.10 センサ測定処理フロー

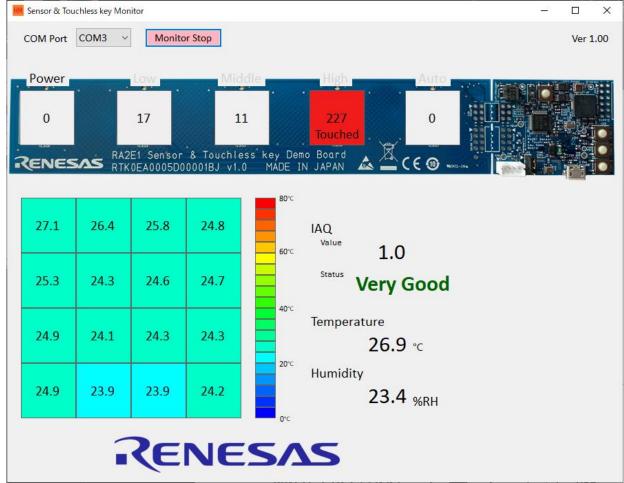
センサ測定処理のフローを以下に示します。

4.11 AUTO モード時の処理フロー


AUTO モード時の処理のフローを以下に示します。

4.12 データフロー

データフロ一図を以下に示します。


ボタンのデータ、センサのデータを送信用バッファにコピーし、100ms 毎に UART に送信します。

送信データのフォーマットは、下記の通りです。

OFFSET	内容	バイト数	説明
0	Data Head Mark	1	データの先頭を表すデータ (0x88)
1	Data Number	1	0x00 ~ 0xFF をループ
2	Button Status	1	ボタンの状態:下記ビットが1の時タッチ状態
			Bit0:ボタン1、Bit1:ボタン2、Bit2:ボタン3、
			Bit3:ボタン4、Bit4:ボタン5
3	Mode	1	OFF(0x01), LOW(0x02), MID(0x03), HI(0x04),
			AUTO_MODE0(0x15), AUTO_MODE1(0x25),
			AUTO_MODE2(0x35), AUTO_MODE3(0x45),
			AUTO_MODE4(0x55)
4	Button1 Data	2	DIFF 值 (0~65535)
6	Button2 Data	2	DIFF 值 (0~65535)
8	Button3 Data	2	DIFF 值 (0~65535)
10	Button4 Data	2	DIFF 值 (0~65535)
12	Button5 Data	2	DIFF 值 (0~65535)
14	温度	2	小数点以下 1 桁のデータを 1 0 倍した値(例: 12.3℃ の場合 123)
16	湿度	2	小数点以下 1 桁のデータを 1 0 倍した値 (例: 45.6% の場合 456)
18	IAQ	2	小数点以下 1 桁のデータを 1 0 倍した値(例: 12.3 の場合 123)
20	Dummy	1	予備
21	サーモセンサデータ	1	以降のデータ(サーモセンサのデータ)のバイト数(35)
22	PTAT	2	サーモセンサデータ
			小数点以下 1 桁のデータを 1 0 倍した値(例:12.3℃ の場合 123)
24	P00 Data - P15 Data	32	サーモセンサデータ
		(2 * 16)	小数点以下 1 桁のデータを 1 0 倍した値(例:12.3℃ の場合 123)
56	PEC	1	サーモセンサデータ チェックサム
	合計バイト数	57	

送信データは、下図のような PC 上のアプリケーションでの使用を想定しています。 M Sensor & Touchless key Monitor

本アプリケーションの詳細は、センサ&タッチレスキーデモ評価ツール「Sensor & Touchless key Monitor」(R20AN0614JJ0100)を参照ください。

改訂記録

		改訂内容		
Rev.	発行日	ページ	ポイント	
1.00	Feb.11.21	-	初版発行	

製品ご使用上の注意事項

ここでは、マイコン製品全体に適用する「使用上の注意事項」について説明します。個別の使用上の注意事項については、本ドキュメントおよびテクニカルアップデートを参照してください。

1. 静電気対策

CMOS 製品の取り扱いの際は静電気防止を心がけてください。CMOS 製品は強い静電気によってゲート絶縁破壊を生じることがあります。運搬や保存の際には、当社が出荷梱包に使用している導電性のトレーやマガジンケース、導電性の緩衝材、金属ケースなどを利用し、組み立て工程にはアースを施してください。プラスチック板上に放置したり、端子を触ったりしないでください。また、CMOS 製品を実装したボードについても同様の扱いをしてください。

2. 電源投入時の処置

電源投入時は、製品の状態は不定です。電源投入時には、LSIの内部回路の状態は不確定であり、レジスタの設定や各端子の状態は不定です。外部 リセット端子でリセットする製品の場合、電源投入からリセットが有効になるまでの期間、端子の状態は保証できません。同様に、内蔵パワーオン リセット機能を使用してリセットする製品の場合、電源投入からリセットのかかる一定電圧に達するまでの期間、端子の状態は保証できません。

3. 電源オフ時における入力信号

当該製品の電源がオフ状態のときに、入力信号や入出力プルアップ電源を入れないでください。入力信号や入出力プルアップ電源からの電流注入により、誤動作を引き起こしたり、異常電流が流れ内部素子を劣化させたりする場合があります。資料中に「電源オフ時における入力信号」についての記載のある製品は、その内容を守ってください。

4. 未使用端子の処理

未使用端子は、「未使用端子の処理」に従って処理してください。CMOS製品の入力端子のインピーダンスは、一般に、ハイインピーダンスとなっています。未使用端子を開放状態で動作させると、誘導現象により、LSI周辺のノイズが印加され、LSI内部で貫通電流が流れたり、入力信号と認識されて誤動作を起こす恐れがあります。

5. クロックについて

リセット時は、クロックが安定した後、リセットを解除してください。プログラム実行中のクロック切り替え時は、切り替え先クロックが安定した後に切り替えてください。リセット時、外部発振子(または外部発振回路)を用いたクロックで動作を開始するシステムでは、クロックが十分安定した後、リセットを解除してください。また、プログラムの途中で外部発振子(または外部発振回路)を用いたクロックに切り替える場合は、切り替え先のクロックが十分安定してから切り替えてください。

6. 入力端子の印加波形

入力ノイズや反射波による波形歪みは誤動作の原因になりますので注意してください。CMOS 製品の入力がノイズなどに起因して、V_{IL} (Max.) から V_{IH} (Min.) までの領域にとどまるような場合は、誤動作を引き起こす恐れがあります。入力レベルが固定の場合はもちろん、V_{IL} (Max.) から V_{IH} (Min.) までの領域を通過する遷移期間中にチャタリングノイズなどが入らないように使用してください。

7. リザーブアドレス(予約領域)のアクセス禁止

リザーブアドレス (予約領域) のアクセスを禁止します。アドレス領域には、将来の拡張機能用に割り付けられている リザーブアドレス (予約領域) があります。これらのアドレスをアクセスしたときの動作については、保証できませんので、アクセスしないようにしてください。

8. 製品間の相違について

型名の異なる製品に変更する場合は、製品型名ごとにシステム評価試験を実施してください。同じグループのマイコンでも型名が違うと、フラッシュメモリ、レイアウトパターンの相違などにより、電気的特性の範囲で、特性値、動作マージン、ノイズ耐量、ノイズ幅射量などが異なる場合があります。型名が違う製品に変更する場合は、個々の製品ごとにシステム評価試験を実施してください。

ご注意書き

- 1. 本資料に記載された回路、ソフトウェアおよびこれらに関連する情報は、半導体製品の動作例、応用例を説明するものです。回路、ソフトウェアおよびこれらに関連する情報を使用する場合、お客様の責任において、お客様の機器・システムを設計ください。これらの使用に起因して生じた損害 (お客様または第三者いずれに生じた損害も含みます。以下同じです。)に関し、当社は、一切その責任を負いません。
- 2. 当社製品または本資料に記載された製品データ、図、表、プログラム、アルゴリズム、応用回路例等の情報の使用に起因して発生した第三者の特許 権、著作権その他の知的財産権に対する侵害またはこれらに関する紛争について、当社は、何らの保証を行うものではなく、また責任を負うもので はありません。
- 3. 当社は、本資料に基づき当社または第三者の特許権、著作権その他の知的財産権を何ら許諾するものではありません。
- 4. 当社製品を組み込んだ製品の輸出入、製造、販売、利用、配布その他の行為を行うにあたり、第三者保有の技術の利用に関するライセンスが必要となる場合、当該ライセンス取得の判断および取得はお客様の責任において行ってください。
- 5. 当社製品を、全部または一部を問わず、改造、改変、複製、リバースエンジニアリング、その他、不適切に使用しないでください。かかる改造、改変、複製、リバースエンジニアリング等により生じた損害に関し、当社は、一切その責任を負いません。
- 6. 当社は、当社製品の品質水準を「標準水準」および「高品質水準」に分類しており、各品質水準は、以下に示す用途に製品が使用されることを意図 しております。

標準水準: コンピュータ、OA 機器、通信機器、計測機器、AV 機器、家電、工作機械、パーソナル機器、産業用ロボット等

高品質水準:輸送機器(自動車、電車、船舶等)、交通制御(信号)、大規模通信機器、金融端末基幹システム、各種安全制御装置等 当社製品は、データシート等により高信頼性、Harsh environment 向け製品と定義しているものを除き、直接生命・身体に危害を及ぼす可能性のあ る機器・システム(生命維持装置、人体に埋め込み使用するもの等)、もしくは多大な物的損害を発生させるおそれのある機器・システム(宇宙機 器と、海底中継器、原子力制御システム、航空機制御システム、プラント基幹システム、軍事機器等)に使用されることを意図しておらず、これら の用途に使用することは想定していません。たとえ、当社が想定していない用途に当社製品を使用したことにより損害が生じても、当社は一切その 責任を負いません。

- 7. あらゆる半導体製品は、外部攻撃からの安全性を 100%保証されているわけではありません。当社ハードウェア/ソフトウェア製品にはセキュリティ対策が組み込まれているものもありますが、これによって、当社は、セキュリティ脆弱性または侵害(当社製品または当社製品が使用されているシステムに対する不正アクセス・不正使用を含みますが、これに限りません。) から生じる責任を負うものではありません。当社は、当社製品または当社製品が使用されたあらゆるシステムが、不正な改変、攻撃、ウイルス、干渉、ハッキング、データの破壊または窃盗その他の不正な侵入行為(「脆弱性問題」といいます。) によって影響を受けないことを保証しません。当社は、脆弱性問題に起因しまたはこれに関連して生じた損害について、一切責任を負いません。また、法令において認められる限りにおいて、本資料および当社ハードウェア/ソフトウェア製品について、商品性および特定目的との合致に関する保証ならびに第三者の権利を侵害しないことの保証を含め、明示または黙示のいかなる保証も行いません。
- 8. 当社製品をご使用の際は、最新の製品情報(データシート、ユーザーズマニュアル、アプリケーションノート、信頼性ハンドブックに記載の「半導体デバイスの使用上の一般的な注意事項」等)をご確認の上、当社が指定する最大定格、動作電源電圧範囲、放熱特性、実装条件その他指定条件の範囲内でご使用ください。指定条件の範囲を超えて当社製品をご使用された場合の故障、誤動作の不具合および事故につきましては、当社は、一切その責任を負いません。
- 9. 当社は、当社製品の品質および信頼性の向上に努めていますが、半導体製品はある確率で故障が発生したり、使用条件によっては誤動作したりする場合があります。また、当社製品は、データシート等において高信頼性、Harsh environment 向け製品と定義しているものを除き、耐放射線設計を行っておりません。仮に当社製品の故障または誤動作が生じた場合であっても、人身事故、火災事故その他社会的損害等を生じさせないよう、お客様の責任において、冗長設計、延焼対策設計、誤動作防止設計等の安全設計およびエージング処理等、お客様の機器・システムとしての出荷保証を行ってください。特に、マイコンソフトウェアは、単独での検証は困難なため、お客様の機器・システムとしての安全検証をお客様の責任で行ってください。
- 10. 当社製品の環境適合性等の詳細につきましては、製品個別に必ず当社営業窓口までお問合せください。ご使用に際しては、特定の物質の含有・使用を規制する RoHS 指令等、適用される環境関連法令を十分調査のうえ、かかる法令に適合するようご使用ください。かかる法令を遵守しないことにより生じた損害に関して、当社は、一切その責任を負いません。
- 11. 当社製品および技術を国内外の法令および規則により製造・使用・販売を禁止されている機器・システムに使用することはできません。当社製品および技術を輸出、販売または移転等する場合は、「外国為替及び外国貿易法」その他日本国および適用される外国の輸出管理関連法規を遵守し、それらの定めるところに従い必要な手続きを行ってください。
- 12. お客様が当社製品を第三者に転売等される場合には、事前に当該第三者に対して、本ご注意書き記載の諸条件を通知する責任を負うものといたします
- 13. 本資料の全部または一部を当社の文書による事前の承諾を得ることなく転載または複製することを禁じます。
- 14. 本資料に記載されている内容または当社製品についてご不明な点がございましたら、当社の営業担当者までお問合せください。
- 注 1. 本資料において使用されている「当社」とは、ルネサス エレクトロニクス株式会社およびルネサス エレクトロニクス株式会社が直接的、間接的 に支配する会社をいいます。
- 注 2. 本資料において使用されている「当社製品」とは、注1において定義された当社の開発、製造製品をいいます。

(Rev.5.0-1 2020.10)

本社所在地

〒135-0061 東京都江東区豊洲 3-2-24 (豊洲フォレシア)

www.renesas.com

商標について

ルネサスおよびルネサスロゴはルネサス エレクトロニクス株式会社の 商標です。すべての商標および登録商標は、それぞれの所有者に帰属 します。

お問合せ窓口

弊社の製品や技術、ドキュメントの最新情報、最寄の営業お問合せ窓 口に関する情報などは、弊社ウェブサイトをご覧ください。

www.renesas.com/contact/