

R8C/56E Group

Timer RC Input Capture Function

R01AN0985EJ0100 Rev.1.00 June 29, 2012

Abstract

This document describes a setting example of the input capture function in timer RC.

Products

R8C/56E Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1.	Specifications	2
2.	Operation Confirmation Conditions	3
3. 3	Hardware 3.1 Pin Used	
	Software	
4	4.1 Operation Overview	
4	4.2 Required Memory Size	4
4	4.3 Variables	4
4	4.4 Functions	5
4	4.5 Function Specifications	5
4	4.6 Flowcharts	6
	4.6.1 Main Processing	6
	4.6.2 System Clock Setting	7
	4.6.3 Initial Setting of Timer RC	
5.	Sample Code	9
6.	Reference Documents	9

1. Specifications

The timer RC counter value is captured at both rising and falling edges of an input signal to the TRCIOA_0 pin and the pulse width (high or low) is measured. The captured values are stored in internal RAM.

Table 1.1 lists the Peripheral Function and Its Application and Figure 1.1 shows the Operation Overview.

Table 1.1	Peripheral	Function and Its	Application
-----------	------------	-------------------------	-------------

Peripheral Function	Application
Input capture function in timer RC	Measure the pulse width (high or low) of an input signal to TRCIOA_0 pin

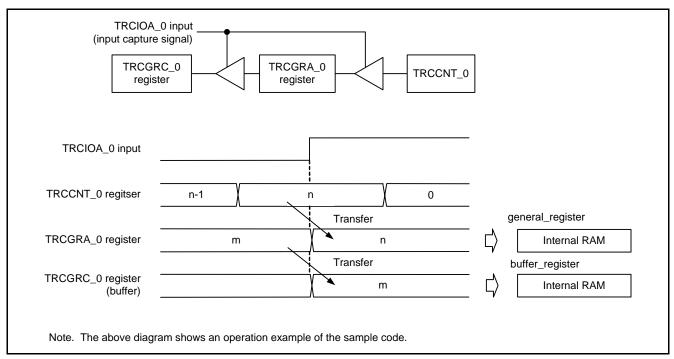


Figure 1.1 Operation Overview

2. Operation Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Item	Contents	
MCU used	R8C/56E Group	
Operating frequencies	• XIN: 20 MHz	
	System clock: 20 MHz	
	CPU clock: 20 MHz	
Operating voltage	5.0 V (2.7 and 5.5 V)	
Integrated development	Renesas Electronics Corporation	
environment	High-performance Embedded Workshop Version 4.09.00.007	
C compiler	Renesas Electronics Corporation	
	M16C Series, R8C Family C Complier V.5.45 Release 01	
	Compile options	
	-D_UART0c -finfo -dir "\$(CONFIGDIR)" -R8C	
	(Default setting is used in the integrated development environment.)	

Table 2.1	Operation Confirmation Conditions
-----------	--

3. Hardware

3.1 Pin Used

Table 3.1 lists the Pin Used and Its Function.

Table 3.1	Pin Used and Its Function
-----------	---------------------------

Pin Name	I/O	Function
P1_1/TRCIOA_0	Input	Signal input for timer RC

4. Software

4.1 **Operation Overview**

- (1) Perform initial setting of timer RC by a program.
- (2) Set the CTS bit in the TRCMR_0 register to 1 to start the timer RC count.
- (3) When a rising or falling edge is detected from the TRCIOA_0 pin, the value in the TRCGRA_0 register is transferred to the TRCGRC_0 register and the value in the TRCCNT_0 register is transferred to the TRCGRA_0 register. Then, the TRCCNT_0 register is cleared to 0000h and the IMFA bit in the TRCSR_0 register becomes 1.
- (4) Read the IMFA bit by a program. If it is set to 1, the value in the TRCGRA_0 register is stored in the general_register and the value in the TRCGRC_0 register is stored in the buffer_register.

Table 4.1 lists the Timer RC Setting.

Item	Setting
Timer RC channel	Channel 0
Operation mode	Timer mode: Input capture function
Input capture register	TRCGRA_0 register
Buffer register	TRCGRC_0 register
Input edge	Both (rising and falling) edges
Counter clear function	Used
Digital filter function	Not used
Interrupts	Not used

Table 4.1 Timer RC Setting

4.2 Required Memory Size

Table 4.2 lists the Required Memory Size.

Table 4.2 Required Memory Size	y Size
--------------------------------	--------

Memory Used	Size	Remarks
ROM	195 bytes	In the r01an0985_src.c.module
RAM	4 bytes	In the r01an0985_src.c.module
Maximum user stack usage	10 bytes	
Maximum interrupt stack usage	0 bytes	

Note: The required memory size varies depending on the C compiler version and compile options.

4.3 Variables

Table 4.3 lists the Global Variables.

Туре	Variable Name	Contents	Function Used
unsigned short	general_register	Store the value captured at the TRCGRA_0 register.	main
unsigned short	buffer_register	Store the value captured at the TRCGRC_0 register.	main

Table 4.3 Global Variables

4.4 Functions

Table 4.4 lists the Functions.

Table 4.4 Functions

Function Name	Outline
mcu_init	System clock setting
timer_rc_init	Initial setting of timer RC

4.5 Function Specifications

The following tables list the sample code function specifications.

ncu_init			
Outline	System clock setting		
Header	None		
Declaration	void mcu_init(void)		
Description	Set the system clock.		
Arguments	None		
Returned Value	None		

timer_rc_init			
Outline	Initial setting of timer RC		
Header	None		
Declaration	void timer_rc_init(void)		
Description	Perform initial setting to use the input capture function in timer RC.		
Arguments	None		
Returned Value	None		

4.6 Flowcharts

4.6.1 Main Processing

Figure 4.1 shows the Main Processing.

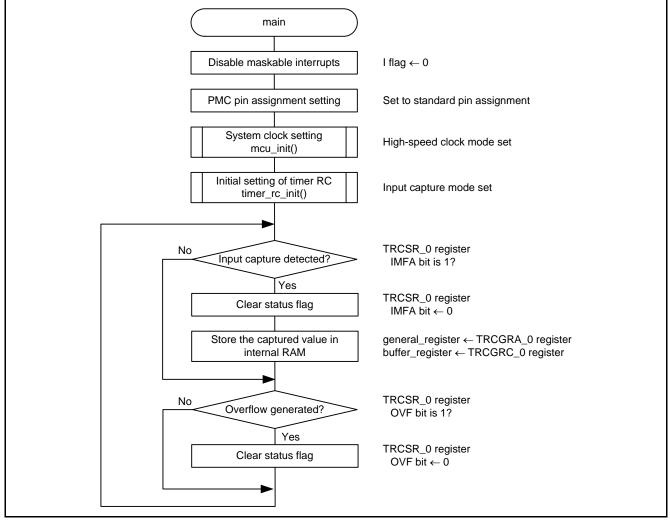


Figure 4.1 Main Processing

4.6.2 System Clock Setting

Figure 4.2 shows the System Clock Setting.

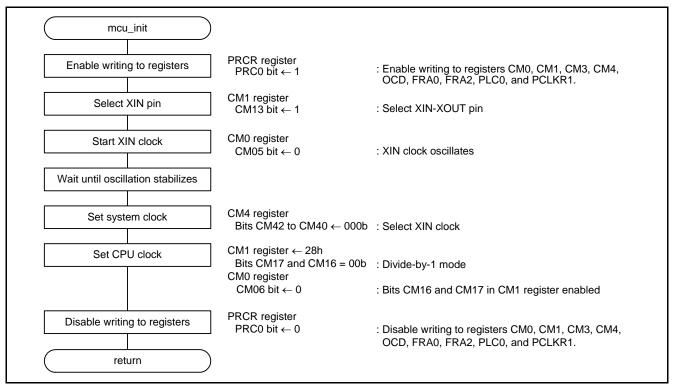


Figure 4.2 System Clock Setting

4.6.3 Initial Setting of Timer RC

Figure 4.3 shows the Initial Setting of Timer RC.

timer_rc_init		
Set timer RC to normal operation	MSTCR2 register MSTTRC_0 bit ← 0	: Timer RC_0 normal operation
Stop timer RC count	TRCMR_0 register CTS bit $\leftarrow 0$: Count stops
Set timer RC pins	TRCCLKSR register ← 00h Bits TRCCLK_0SEL2 to TRCCLK_0SEL0 = 000b TRCCLK_1SEL bit = 0	: TRCCLK_0 pin not used : TRCCLK_1 pin not used
	TRC_0SR0 register ← 01h Bits TRCIOA_0SEL2 to TRCIOA_0SEL0 = 001b Bits TRCIOB_0SEL2 to TRCIOB_0SEL0 = 000b	: Assign TRCIOA_0 pin to P1_1. : TRCIOB_0 pin not used
Set P1_1 to input mode	PD1 register ← 00h PD1_1 bit = 0	
Set TRCMR_0 register	TRCMR_0 register PWMB bit $\leftarrow 0$ PWMC bit $\leftarrow 0$ PWMD bit $\leftarrow 0$ PWM2 bit $\leftarrow 1$ BUFEA bit $\leftarrow 1$: Timer mode : Timer mode : Timer mode : TRCGRC_0 register is used as a buffer register for TRCGRA_0.
Set TRCDF_0 register	TRCDF_0 register DFA bit ←0	: Digital filter function not used
Set TRCCR1_0 register	TRCCR1_0 register Bits CKS2 to CKS0 ← 000b CCLR bit ←1	: f1 is set as the count source : TRCCNT_0 counter is cleared at input capture.
Set TRCIOR0_0 register	TRCIOR0_0 register Bits IOA1 and IOA0 ← 10b IOA2 bit ←1 IOA3 bit ←1	: Both edges of TRCIOA_0 pin input : Input capture : Set TRCIOA_0 pin input to input capture
Clear TRCCNT_0 register	TRCCNT_0 register \leftarrow 00h	
Disable interrupts	TRCIER_0 register ← 70h	: Disable all interrupts to timer RC
Set TRCSR_0 register	TRCSR_0 register IMFA bit ← 0 OVF bit ←0	: Clear input capture/compare match A flag. : Clear timer overflow flag
Start count	TRCMR_0 register CTS bit ←1	: Count starts
return		

Figure 4.3 Initial Setting of Timer RC

5. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

6. Reference Documents

User's Manual: Hardware R8C/56E Group User's Manual: Hardware Rev.1.00 The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website http://www.renesas.com

Inquiries http://www.renesas.com/contact/

REVISION HISTORY R8C/56E Group Application Note Timer RC Input Capture Function

Rev.	Date		Description
		Page	Summary
1.00	June 29, 2012	—	First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

- 1. Handling of Unused Pins
 - Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

- 3. Prohibition of Access to Reserved Addresses
 - Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for which it is not intended. Renesas Electronics shall not be in any way liable for any application for which the product is not intended by Nenesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

 Tel: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

 Tel: +1-905-989-5441, Fax: +1-905-988-3220

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tel: +49-215-85100, Fax: +44-1628-585-900

 Renesas Electronics Europe GmbH

 Arcadiastrase 10, 40472 Dusseldorf, Germany

 Tel: +92-21-65030, Fax: +44-1628-585-900

 Renesas Electronics China) Co., Ltd.

 The Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China

 Tel: +96-21-55, Fax: +86-10-8235-7679

 Renesas Electronics (Shanghai) Co., Ltd.

 Unit 1204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China

 Tel: +862-7877-1818, Fax: +862-2886-7789

 Renesas Electronics Hong Kong Limited

 Unit 1201-151, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tel: +852-2886-9318, Fax: +852 2886-9022/9044

 Renesas Electronics Taiwan Co., Ltd.

 137, No. 363, Fu Shing Month Road, Taipei, Taiwan

 138, No. 353, Fu Shing North Road, Taipei, Taiwan

 <td