
 APPLICATION NOTE

R01AN0745EJ0100 Rev.1.00 Page 1 of 49
May 21 2013

R8C/33T Group
Touch API Reference (R8C/33T Group)

Summary
Touch panel microcomputer R8C/3xT group builds hardware (SCU: sensor control unit) that perceives the contact of
the human body by measuring the stray capacity generated between the touch electrode and the human body into.

This specifications described the external specification concerning API(Application Program Interface) for the touch
processing.

Target device
R8C/33T group

Contents

1. Summary ... 2

2. Source & Header Files .. 3

3. Touch API List ... 4

4. Macro definition ... 7

5. Basic API Reference ... 16

6. User API Reference .. 37

7. Touch API Hierarchy Chart ... 45

8. Supplementary explanation ... 46

R01AN0745EJ0100
Rev.1.00

May 21 2013

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 2 of 49
May 21 2013

1. Summary

1.1 Touch API Overview
Touch API is comprised of "Base API" and "User API". "Base API" controls SCU measurement and Judgement
process for touch in R8C/33T Group. "User API" supports the acquisition of information and the settings by user.

1.2 Touch API function
Touch API functions are as follows.

- SCU interrupt process

- Moving addition value of count from SCU measurement calculation

- SCU measurement startup

- Judgement process for touch or not

- Drift correction

- Automatic calibration

- Multi Touch Canceller

- Wheel position detection

- Slider position detection

- Getting touch position on touch key

- Getting touch position on slider/wheel

- Start/Stop of SCU measurement

- Drift correction setting

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 3 of 49
May 21 2013

2. Source & Header Files
The source files and the header files constituting Touch API are as follows.

Table 2-1 Source & Header Files List

No File name Remarks
1 touch_control.c This file defines Base API for Touch key.
2 touch_user_API.c This source file defines User API.
3 touch_interrupt.c This file defines SCU interrupt process.
4 slider_control.c This file defines Base API for Slider position detection.
5 wheel_control.c This file defines Base API for Wheel position detection.
6 touch_control.h This file is a header file for touch_control.c.
7 touch_user_API.h This file is a header file for touch_user_API.c.
8 touch_interrupt.h This file is a header file for touch_interrupt.c.
9 slider_control.h This file is a header file for slider_control.c.
10 wheel_control.h This file is a header file for wheel_control.c.

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 4 of 49
May 21 2013

3. Touch API List

Table 3-1 Macro definition List

Chapt
er.

Macro name Remarks

4.1 SCU_INV_NOISE Conditional compilation to switch the countermeasure
against the inverter noise for SCU

4.2 MULTI_CANCEL Conditional compilation to build Multi Touch Canceller
4.3 MULTI_START_CH Start channel of Multi Touch Canceller
4.4 MULTI_END_CH End channel of Multi Touch Canceller
4.5 SLIDER_USE Conditional compilation to build a Slider module
4.6 WHEEL_USE Conditional compilation to build a Wheel module
4.7 MAX_CH Maximum channel number
4.8 DF_TSIERn *1 Initial value for SCU Input Enable Registers
4.9 DF_CHxx_REF *2 Initial value of Reference count value
4.10 DF_CHxx_THR *2 Initial value of Threshold count value for judgement of

touch or not
4.11 DF_CHxx_HYS *2 Initial value of Hysteresis value of the threshold count
4.12 DF_MSA_DATA Initial value of Maximum successive ON count
4.13 DF_ACCUMULATION Initial value of Accumulated judgement count
4.14 DF_DCI_DRIFT Initial value of Drift correction interval
4.15 WORKBENCH_HEWSVR_ENABLE Conditional compilation to build a control module for

communication with Workbench using HewTargetServer
4.16 SUPPORT_UART Conditional compilation to build a control module for

communication with Workbench using UART
*1. Certainly set all DF_TSIERn. (n = 0, 1, 2)
*2. xx = “00” - the biggest numerical value of Touch CH.

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 5 of 49
May 21 2013

Table 3-2 Base API List

Chapter API name Remarks
5.1 void TouchDtcInitialSet(void); Initialization of DTC registers
5.2 void TouchDataInitial(void); Initialization of RAM related to touch operation
5.3 uint8_t CheckReadFlashData(void) Reading function from DATA FLASH
5.4 void TouchDataInitial2(void); RAM is initialized based on the data obtained from the

DATA FLASH
5.5 void ScuInitial(void); Initialization of SCU registers
5.6 void ScuInterrup(void); SCU Interrupt handling function
5.7 void ScuMeasure(void); Judgement for touch or not control
5.8 void CheckWriteStatusFlashData(void); Writing function to DATA FLASH
5.9 void FtAddMakeAve(void); Moving addition value of count calculation
5.10 uint8_t SetTouchSensor(void); SCU measurement boot control
5.11 void MakeCthr(void); Threshold count value calculation
5.12 void MultiCancel(void); *3 Multi Touch Canceller control
5.13 void OnOffJudgement(void); Judgement for touch or not
5.14 void Slider(void); *4 Slider position detection
5.15 void SWheel(void); *5 Wheel position detection
5.16 void CorrectSub(uint16_t s_dci1); Drift correction control
5.17 void MsrCalibration(void); Calibration control

*3. When MULTI_CANCEL is defined, you can use MultiCancel ().
*4. When SLIDER_USE is defined, you can use Slider ().
*5. When WHEEL_USE is defined, you can use SWheel ().

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 6 of 49
May 21 2013

Table 3-3 User API List

Chapter API name Remarks
6.1 TOUCH_ONOFF_STATUS_E

GetTouchOnOff(void);
Get the status of touch position in Touch key

6.2 TOUCH_ONOFF_STATUS_E
GetWheelPosition(void); *6

Get the status of touch position in Wheel

6.3 TOUCH_ONOFF_STATUS_E
GetSliderPosition(void); *7

Get the status of touch position in Slider

6.4 MODE_SCU_MEASURE_E
SetScuMode(SCU_MODE_E mode);

Start/Stop SCU Measurement

6.5 uint8_t SetScuDcen(DRIFT_ENABLE_E sw); Set Touch CH having an effect of Drift correction.
*6. When WHEEL_USE is defined, you can use GetWheelPosition ().
*7. When SLIDER_USE is defined, you can use GetSliderPosition ().

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 7 of 49
May 21 2013

4. Macro definition
Change Macro definition defined in touch_control.h according to your application.

4.1 SCU_INV_NOISE

Remarks
Select the SCU Setting from the followings.

- Normal setting. Operation clock is 5 MHz.
- Custom setting (Countermeasure against the inverter noise). Operation clock is 20 MHz.

Example
- Normal settings

 // #define SCU_INV_NOISE // Comment-out

 or

 #undef SCU_INV_NOISE // SCU_INV_NOISE is disabled using #undef

- Custom settings (Countermeasure against the inverter noise)

 #define SCU_INV_NOISE // SCU_INV_NOISE is enabled

4.2 MULTI_CANCEL

Remarks
This macro is conditional compilation to build a control module for Multi Touch Canceller. When
MULTI_CANCEL is defined, user can use the API of Multi Touch Canceller. Specify the influence range of
Multi Touch Canceller to MULTI_START_CH and MULTI_END_CH.

Note
Multi Touch Canceller prohibits the simultaneous touch of touch keys more than two.

Example
- Multi Touch Canceller is disabled.

 // #define MULTI_CANCEL // Comment-out

 or

 #undef MULTI_CANCEL // MULTI_CANCEL is disabled using #undef

- Multi Touch Canceller is enabled.

 #define MULTI_CANCEL // MULTI_CANCEL is enabled

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 8 of 49
May 21 2013

4.3 MULTI_START_CH

Remarks
Define the start channel of touch keys processed by Multi Touch Canceller.

Note
Define MULTI_START_CH to meet the following conditions.
 MULTI_START_CH < MULTI_END_CH

Value range
0 – 16: R8C/33T

0 – 20: R8C/3JT

Example
- Start channel of Multi Touch Canceller

#define MULTI_START_CH 24

4.4 MULTI_END_CH

Remarks
Define the end channel of touch keys processed by Multi Touch Canceller.

Note
Define MULTI_END_CH to meet the following conditions.
 MULTI_START_CH < MULTI_END_CH

Value range
1 – 17: R8C/33T

1 – 21: R8C/3JT

Example
- End channel of Multi Touch Canceller

#define MULTI_END_CH 35

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 9 of 49
May 21 2013

4.5 SLIDER_USE

Remarks
This macro is conditional compilation to build a control module for Slider position detection. When
SLIDER_USE is defined, user can use the API of Slider position detection.

Example
- Slider function is disabled.

 // #define SLIDER_USE // Comment-out

 or

 #undef SLIDER_USE // SLIDER_USE is disabled using #undef

- Slider function is enabled.

 #define SLIDER_USE // SLIDER_USE is enabled

4.6 WHEEL_USE

Remarks
This macro is conditional compilation to build a control module for Wheel position detection. When
WHEEL_USE is defined, user can use the API of Wheel position detection.

Example
- Wheel function is disabled.

 // #define WHEEL_USE // Comment-out

 or

 #undef WHEEL_USE // WHEEL_USE is disabled using #undef

- Wheel function is enabled.

 #define WHEEL_USE // WHEEL_USE is enabled

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 10 of 49
May 21 2013

4.7 MAX_CH

Remarks
Define numerical value that added one to the largest number of Touch CH.

Value range
0： Do not use

1 – 17: R8C/33T

1 – 21: R8C/3JT

Example
- Using channel-0, channel-3, channel-4, channel 6 as touch electrode.

#define MAX_CH 7 // CH6(largest number of Touch CH) + 1.

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 11 of 49
May 21 2013

4.8 DF_TSIERn

Remarks
Select a use of Touch CH from Touch sensor pin and I/O port.

Note
n = 0, 1, 2
Relationship between the bit pattern and Touch CH is as follows.

Table 4-1 DF_TSIER0

b7 b0

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

Table 4-2 DF_TSIER1

b7 b0

CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8

Table 4-3 DF_TSIER2

b7 b0

* * CH21 * CH20 * CH19 * CH18 * CH17 CH16

* Set to 0 at the time of use of R8C/33T.

Value range
0： I/O port

1: Touch sensor pin

Example
- Using channel-0, channel-3, channel-4, channel 6 as touch electrode.

#define DF_TSIER0 0x5b

#define DF_TSEER1 0x00

#define DF_TSIER2 0x00

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 12 of 49
May 21 2013

4.9 DF_CHxx_REF

Remarks
Define the initial value of the reference count value according to Touch CH to use as a Touch electrode.

Note
- xx expresses two columns of channel numbers.

Value range
0 - 65535

Example
- Reference count value of channel-8

#define DF_CH08_REF 308

- Reference count value of channel-16

#define DF_CH16_REF 316

4.10 DF_CHxx_THR

Remarks
Define the initial value of the Threshold count value for judgement of touch or not according to Touch CH
to use as a Touch electrode.

Note
- xx expresses two columns of channel numbers.

Value range
0 - 65535

Example
- Threshold count value of channel-8

#define DF_CH08_THR 58

- Threshold count value of channel-16

#define DF_CH16_THR 66

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 13 of 49
May 21 2013

4.11 DF_CHxx_HYS

Remarks
Define the initial value of the hysteresis value of the threshold count according to Touch CH to use as a
Touch electrode.

Note
- xx expresses two columns of channel numbers.

Value range
0 - 65535

Example
- Hysteresis value of channel-8

#define DF_CH08_HYS 4

- Hysteresis value of channel-16

#define DF_CH16_HYS 5

4.12 DF_MSA_DATA

Remarks
Define the initial value of MSA.

Note
When the touch judgement is continued, the judgement becomes forcibly non-touch judgement.

Value range
0: MSA does not function.

1 - 255: MSA functions.

Example
- MSA does not function

#define DF_MSA_DATA 0

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 14 of 49
May 21 2013

4.13 DF_ACCUMULATION

Remarks
Define the initial value of ACD Off to On and ACD On to Off.

Note
- ACD Off to On

When a count value drops the threshold count value the N times, the count value is judged touch. (N is the
value of ACD Off to On)

- ACD On to Off
When a count value exceeds the threshold count value the N times, the count value is judged non-touch.
(N is the value of ACD On to Off)

Example
- ACD Off to On = 0Ah, ACD On to Off = 05h

#define DF_ACCUMULATION 0x050A

4.14 DF_DCI_DRIFT

Remarks
Define the initial value of the interval to execute Drift correction.

Note
Drift correction corrects the reference count value according to environment.

Value range
0 - 65535

Example
- Drift correction interval is 32

#define DF_DCI_DRIFT 32

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 15 of 49
May 21 2013

4.15 WORKBENCH_HEWSVR_ENABLE

Remarks
This macro is conditional compilation to build a control module for communication with Workbench using
HewTargetServer.

Example
- Communication function with Workbench using HewTargetServer is disabled.

 // #define WORKBENCH_HEWSVR_ENABLE // Comment-out

 or

 #undef WORKBENCH_HEWSVR_ENABLE // WORKBENCH_HEWSVR_ENABLE is disabled using
#undef

- Communication function with Workbench using HewTargetServer is enabled.

 #define WORKBENCH_HEWSVR_EANBLE // WORKBENCH_HEWSVR_ENABLE is enabled

4.16 SUPPORT_UART

Remarks
This macro is conditional compilation to build a control module for communication with Workbench using
UART.

Example
- Communication control module is disabled.

 // #define SUPPORT_UART // Comment-out

 or

 #undef SUPPORT_UART // SUPPORT_UART is disabled using #undef

- Communication control module is enabled.

 #define SUPPORT_UART // SUPPORT_UART is enabled

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 16 of 49
May 21 2013

5. Basic API Reference

5.1 TouchDtcInitialSet

Remarks
Touch API uses DTC to transfer measured value from registers to RAM.
The main settings about DTC are as follows.

Table 5-1 DTC Registers and Settings

Item Setting value
Transfer mode Repeat
Destination address control Add
DTC block size 4 byte
DTC transfer control MAX_CH
DTC Activation SCU DTC activation

Notes
Notes on DTC is as follows.

The lower 8 bits of the initial value for the repeat area address must be 00h.

Refer to [13.5.5 Repeat Mode] in “R8C/33T Group User’s Manual: Hardware”(R01UH0240EJ) or “R8C/33T
Group User’s Manual: Hardware” (R01UH0241EJ) for detail.

Requirements
- Call this API from a initialization routine.
- Call this API before ScuInitial().

Declaration
void TouchDtcInitialSet(void)

Parameters
nothing

Return value
nothing

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 17 of 49
May 21 2013

Examples
void main(void)

{

 ：

 TouchDtcInitialSet();

 TcuInitial();

 ：

 while(1){ // Main Loop

 ：

 ScuMeasure();

 ：

 }

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 18 of 49
May 21 2013

5.2 TouchDataInitial

Remarks

This API initializes global variables used in touch API.

Requirements
- Call this API from a initialization routine.
- Call this API before ScuInitial().

Declaration
void TouchDataInitial(void)

Parameters
nothing

Return value
nothing

Examples
void main(void)

{

 ：

 TouchDataInitial();

 ScuInitial();

 ：

 while(1){ // Main Loop

 ：

 ScuMeasure();

 ：

 }

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 19 of 49
May 21 2013

5.3 CheckReadFlashData

Remarks
This API reads data to be used in Touch API from DATA FLASH, and stores the data to RAM. An initial
value of ROM table is set in RAM if there is no data in Data Flash. The RAM to store the data read from
DATA FLASH is as follows.

Table 5-2 the RAM to store the data read from DATA FLASH

RAM Remarks
Ch_para_Ref[MAX_CH] Reference count value
Ch_para_Thr[MAX_CH] Threshold count value for judgement of touch or not
Ch_para_Hys[MAX_CH] Hysteresis value of the threshold count
Msa The value of Maximum successive ON count
Mode Function mode
Acd The value of Accumulated judgement count
Dci The value of Drift correction interval
chaxA_selectdata[3] The value of CHxA (0: CHxA0, 1: CHxA1)
Athr Threshold value of Multi Touch Canceller

Requirements
- Call this API from a initialization routine.
- Call this API before TouchDataInitial2() and after ScuInitial().

Declaration
uint8_t CheckReadFlashData (void)

Parameters
nothing

Return value
nothing

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 20 of 49
May 21 2013

Examples
void main(void)

{

 ：

 result = CheckReadFlashData();

 TouchDataInitial2();

 ScuInitial();

 ：

 while(1){ // Main Loop

 ：

 ScuMeasure();

 ：

 }

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 21 of 49
May 21 2013

5.4 TouchDataInitial2

Remarks
This API initializes global variables to store values saved in DATA FLASH.

Requirements
- Call this API from a initialization routine.
- Call this API before ScuInitial() and after CheckReadFlashData().

Declaration
void TouchDataInitial2(void)

Parameters
nothing

Return value
nothing

Examples
void main(void)

{

 ：

 result = CheckReadFlashData();

 TouchDataInitial2();

 ScuInitial();

 ：

 while(1){ // Main Loop

 ：

 ScuMeasure();

 ：

 }

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 22 of 49
May 21 2013

5.5 ScuInitial

Remarks
This API sets SCU registers. The SCU measurement supports “Normal measurement” (Operation clock is
5MHz) and “Custom measurement” (Countermeasure against noise is implemented. Operation clock is
20MHz). Please refer to [4.1 SCU_INV_NOISE] about the change of the Normal measurement and the
Custom measurement.
The setting of SCU registers is as follows.

Table 5-3 SCU Registers and Settings

Item Normal measurement Custom measurement
Count source f4 (5 MHz - f1 clock divided by 4) f1 (20 MHz)
SCU interruption Enable Enable
PRE measurement None None
Random measurement None None
Majority measurement None None
SCU measurement start trigger Software trigger Software trigger
Period 1 128 cycles 128 cycles
Period 2 1 cycle 8 cycles
Period 3 1 cycle 4 cycles
Period 4 1 cycle 1 cycle
Period 5 1 cycle Skip
Period 6 1 cycle 6 cycles
Measurement mode Scan mode Scan mode
Channel select MAX_CH - 1 MAX_CH - 1
Transfer destination address Scudata Scudata
Secondary counter 7 times 32 times
SCU interrupt level level 1 level 1

Requirements
- Call this API from a initialization routine.
- Call this API before starting of SCU measurement.

Declaration
void ScuInitial(void)

Parameters
nothing

Return value
nothing

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 23 of 49
May 21 2013

Examples
void main(void)

{

 ：

 ScuInitial();

 SetTouchSensor();

 ：

 while(1){ // Main Loop

 ：

 ScuMeasure();

 ：

 }

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 24 of 49
May 21 2013

5.6 ScuInterrupt

Remarks
This API is a interrupt process for a interrupt that is generated after SCU measurement finishes and
updates SCU Measurement Mode. Usually, this API is called when SCU Measurement Mode is
MD_SCU_RUN (SCU measurement is running), and changes SCU Measurement Mode into
MD_SCU_FINISH (SCU measurement finish).
When SCU Measurement Mode is MD_SCU_STOP (SCU is stopped), this API does not change the SCU
Measurement Mode. When SCU Measurement Mode is not MD_SCU_RUN and is not MD_SCU_STOP,
this API changes the SCU Measurement Mode into MD_SCU_READY (SCU measurement is ready) and
starts SCU measurement.

Requirements
- SCU interrupt is generated after SCU measurement finishes.
- This API clears SCU interrupt request flag to generate the SCU interrupt again.

Declaration
void ScuInterrupt(void)

Parameters
nothing

Return value
nothing

Examples
#pragma INTERRUPT ScuInterrupt

void ScuInterrupt (void)

{

 if(md_scu_measure == MD_SCU_RUN){

 md_scu_measure = MD_SCU_FINISH;

 }else

 if(md_scu_measure == MD_SCU_STOP){

 md_scu_measure = MD_SCU_STOP;

 }else{

 md_scu_measure = MD_SCU_READY;

 SetTouchSensor();

 }

 scucr0_addr.bit.scue = OFF;

 scufr_addr.bit.sif = OFF;

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 25 of 49
May 21 2013

5.7 ScuMeasure

Remarks
This API controls the following functions.

FtAddMakeAve: Moving addition value of count calculation
SetTouchSensor: SCU measurement start
MakeCthr: Threshold count value calculation
MultiCancel: Multi Touch Canceller control
OnOffJudgement: Judgement for touch or not
Slider: Slider position detection
SWheel: Wheel position detection
CorrectSub: Drift correction control
MsrCalibration: Auto calibration

Requirements
- This API is called from main() and works when SCU Measurement Mode is finishes.
- When primary counter overflows, this API does not execute the judgement process for touch and Drift

correction. Then this API re-starts SCU measurement and auto calibration.

Declaration
void ScuMeasure(void)

Parameters
nothing

Return value
nothing

Examples
void main(void)

{

 while(1){

 ：

 ScuMeasure();

 ：

 }

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 26 of 49
May 21 2013

5.8 CheckWriteStatusFlashData

Remarks
This API writes data to be used in Touch API to DATA FLASH. Please refer to [5.3 CheckReadFlashData]
about the RAM to store the data read from DATA FLASH.

Requirements
This API is called from main() and works when Workbench requested an update of DATA FLASH

Declaration
void CheckWriteStatusFlashData(void)

Parameters
nothing

Return value
nothing

Examples
void main(void)

{

 while(1){

 ：

 CheckWriteStatusFlashData();

 ：

 }

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 27 of 49
May 21 2013

5.9 FtAddMakeAve

Remarks
This API executes the “Moving addition value of count” to SCU measurement result and calculates count
values.

Requirements
- When SCU Measurement Mode is MD_SCU_FINISH, this API is called from ScuMeasure()
- Call this API before MakeCthr().

Declaration
void FtAddMakeAve(void)

Parameters
nothing

Return value
nothing

Examples
void ScuMeasure(void)

{

 FtAddMakeAve();

 ：

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 28 of 49
May 21 2013

5.10 SetTouchSensor

Remarks
This API starts SCU measurement. This API changes SCU Measurement Mode into MD_SCU_RUN after
SCU measurement starts.

Requirements
- When SCU Measurement Mode is MD_SCU_READY, this API starts SCU measurement .
- When a start of SCU measurement failed, this API returns 0(SCU measurement stop).

Declaration
uint8_t SetTouchSensor(void)

Parameters
nothing

Return value
- 0 SCU measurement is stopped
- 1 SCU measurement is started

Examples
void ScuMeasure(void)

{

 ：

 md_scu_measure = MD_SCU_READY;

 SetTouchSensor();

 ：

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 29 of 49
May 21 2013

5.11 MakeCthr

Remarks
This API calculates a Dcount and the threshold count value for judgement touch or not. Dcount is
differences between reference count value and count value.

Requirements
- When SCU Measurement Mode is MD_SCU_FINISH, this API is called from ScuMeasure().
- Call this API after FtAddMakeAve().

Declaration
void MakeCthr(void)

Parameters
nothing

Return value
nothing

Examples
void ScuMeasure(void)

{

 ：

 FtAddMakeAve();

 MakeCthr();

 ：

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 30 of 49
May 21 2013

5.12 MultiCancel

Remarks
This API executes Multi Touch Canceller. Define the target of the Multi Touch Canceller to
MULTI_START_CH and MULTI_END_CH, and define MULTI_CANCEL to build a control module for Multi
Touch Canceller.

Requirements
- When SCUMeasurement Mode is MD_SCU_FINISH, this API is called from ScuMeasure().
- Call this API after MakeCtrh() and before OnOffJudgement().

Declaration
void MultiCancel(void)

Parameters
nothing

Return value
nothing

Examples
void ScuMeasure(void)

{

 ：

 MakeCthr();

 MultiCancel();

 OnOffJugment();

 ：

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 31 of 49
May 21 2013

5.13 OnOffJudgement

Remarks
This API judges touch or non-touch of the touch key and stores the judgement results to BDATA.

Requirements
- When SCU Measurement Mode is MD_SCU_FINISH, this API is called from ScuMeasure().
- Call this API after MakeCthr().

Declaration
void OnOffJudgement(void)

Parameters
nothing

Return value
nothing

Examples
void ScuMeasure(void)

{

 ：

 MakeCthr ();

 ：

 OnOffJudgement();

 ：

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 32 of 49
May 21 2013

5.14 Slider

Remarks
This API detects the touch position on the slider. Change the number of the Touch CH constructing the
slider and resolution according to target system. This API supports two types of resolution, and stores the
decoded result of the basic resolution to “sldposition_raw”, and stores the decoded result of the user
resolution to “sldposition_r”.

Figure 5-1 Slider Image

Requirements
- When SCU Measurement Mode is MD_SCU_FINISH, this API is called from ScuMeasure().
- Call this API after OnOffJudgement().
- Add slider_control.c and slider_control.h to your application software and define SLIDER_USE to build a

control module for Slider().

Declaration
void Slider(void)

Parameters
nothing

Return value
nothing

Examples
void ScuMeasure(void)

{

 ：

 OnOffJudgement();

 ：

 Slider();

 ：

}

CH0 CH3 CH4 CH5CH1 CH2

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 33 of 49
May 21 2013

5.15 SWheel

Remarks
This API detects the touch position on the wheel. This API divides the wheel into 72 parts and shows a
touch position with numerical value (1 - 72). WPOSn (n is from 1 to 4) expresses Touch CH.
This API supports two types of resolution, and stores the decoded result of the basic resolution to
“diff_angle_4ch”, and stores the decoded result of the user resolution to “wheel_sw”.
Refer to an application note for the details about the wheel control.

Figure 5-2 Wheel Image

Requirements
- When SCU Measurement Mode is MD_SCU_FINISH, this API is called from ScuMeasure().
- Call this API after OnOffJudgement().
- Add wheel_control.c and wheel_control.h to your application software and define WHEEL_USE to build

a control module for SWheel().

Declaration
void SWheel(void)

Parameters
nothing

Return value
nothing

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 34 of 49
May 21 2013

Examples
void ScuMeasure(void)

{

 ：

 OnOffJudgement();

 ：

 SWheel();

 ：

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 35 of 49
May 21 2013

5.16 CorrectSub

Remarks
This API executes Drift correction, and stores the reference count value to Nref[].

Requirements
- When SCU Measurement Mode is MD_SCU_FINISH, this API is called from ScuMeasure().
- Call this API after OnOffJudgement().

Declaration
void CorrectSub(uint16_t s_dci1)

Parameters
s_dci1 Specifies interval of Drift correction execution

Return value
nothing

Examples
void ScuMeasure(void)

{

 ：

 OnOffJudgement();

 CorrectSub(s_dci);

 ：

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 36 of 49
May 21 2013

5.17 MsrCalibration

Remarks
This API executes auto calibration.

Requirements
- When SCU Measurement Mode is MD_SCU_FINISH and Auto calibration does not finishes, this API is

called from ScuMeasure().

Declaration
void MsrCalibration(void)

Parameters
nothing

Return value
nothing

Examples
void ScuMeasure(void)

{

 ：

 if (meascal == 0) { // Calibration flag is false

 ：

 }else{ // Calibration flag is true

 MsrCalibration();

 }

 ：

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 37 of 49
May 21 2013

6. User API Reference

6.1 GetTouchOnOff

Remarks
This API returns reference status of BDATA. BDATA is a global variable to store On/Off status of Touch
CH. When this API returns DATA_OK, the reference of BDATA is possible.

Declaration
TOUCH_ONOFF_STATUS_E GetTouchOnOff(void);

Parameters
nothing

Return value
- DATA_OK (0x00) Reference of BDATA is possible
- STOP_MODE (0xFE) SCU measurement stops
- OVER_MODE (0xFE) Overflow error
- CALIB_MODE (0xFD) Auto calibration functions

Examples
void main(void)

{

 ：

 If(DATA_OK == GetTouchOnOff()){

 Check_touch_onoff(); // Function made by user

 }

 ：

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 38 of 49
May 21 2013

BDATA
- BDATA has information that Touch CH is On or Off by a bit unit.
- When a value of the bit is zero, it is shown that the corresponding Touch CH is touched.
- The relations of each bit and Touch CH are as follows.

Declaration
TOUCH_EXTERN WORD_ACS_T BDATA[3];

- BDATA[0]
b7 b0

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

- BDATA[1]

b7 b0

CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8

- BDATA[2]

b7 b0

* * CH21 * CH20 * CH19 * CH18 * CH17 CH16

* Not use at the time of use of R8C/33T.

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 39 of 49
May 21 2013

6.2 GetWheelPosition

Remarks
This API returns reference status of diff_angle_4ch and wheel_sw. diff_angle_4ch is a global variable to
store an angle that a wheel is touched. wheel_sw is a global variable to store touch position on the wheel.
When this API returns DATA_OK, the reference of diff_angle_4ch and wheel_sw is possible.

Declaration
TOUCH_ONOFF_STATUS_E GetWheelPosition(void);

Parameters
nothing

Return value
- DATA_OK (0x00) Reference of diff_angle_4ch and wheel_sw is possible
- STOP_MODE (0xFE) SCU measurement stops
- OVER_MODE (0xFE) Overflow error
- CALIB_MODE (0xFD) Auto calibration functions

Examples
void main(void)

{

 :

 If(DATA_OK == GetWheelPosition()){

 Check_wheel_positoin(); // Function made by user

 }

 :

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 40 of 49
May 21 2013

diff_angle_4ch
- diff_angle_4ch stores an angle when the wheel was traced with a finger.
- The range of the angle value is from zero to 360.
- When the value is zero, it is shown that the wheel is not touched.

Declaration
WHEEL_EXTERN uint32_t diff_angle_4ch;

wheel_sw
- wheel_sw stores the touch position on the wheel.
- The range of the position value is from zero to 72.
- When the value is zero, it is shown that the wheel is not touched.

Declaration
WHEEL_EXTERN uint16_t wheel_sw;

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 41 of 49
May 21 2013

6.3 GetSliderPosition

Remarks
This API returns reference status of sldposition_raw and sldposition_r. sldposition_raw and sldposition_r
are global variables to store touch position on the slider. When this API returns DATA_OK, the reference
of sldposition_raw and sldposition_r is possible.

Declaration
TOUCH_ONOFF_STATUS_E GetSliderPosition(void);

Parameters
nothing

Return value
- DATA_OK (0x00) Reference of sldposition_raw and sldposition_r is possible
- STOP_MODE (0xFE) SCU measurement stops
- OVER_MODE (0xFE) Overflow error
- CALIB_MODE (0xFD) Auto calibration functions

Examples
void main(void)

{

 :

 If(DATA_OK == GetSliderPosition()){

 Check_slider_positoin(); // Function made by user

 }

 :

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 42 of 49
May 21 2013

sldposition_raw
- sldposition_raw stores touch position on the slider.
- When the value of sldposition_raw is 0xFFFFFFFF, it is shown that the slider is not touched.

Declaration
SLIDER_EXTERN uint32_t sldposition_raw;

sldposition_r
- sldposition_r stores touch position on the slider.
- When the value of sldposition_r is 0xFFFF, it is shown that the slider is not touched.

Declaration
SLIDER_EXTERN uint16_t sldposition_r;

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 43 of 49
May 21 2013

6.4 SetScuMode

Remarks
This API starts and stops SCU measurement.

Requirements
- When the stop of SCU measurement was requested during the executing of SCU measurement, this API

aborts the SCU measurement.
- When the start of SCU measurement is requested during the executing of SCU measurement, SCU

measurement and the other processing (Judgement for touch or not, Drift correction, etc.) are continued.

Declaration
MODE_SCU_MEASURE_E SetScuMode(SCU_MODE_E mode);

Parameters
mode Specifies start or stop of SCU measurement.

MDRQ_SCU_STOP (0x00) - This value requests the start of SCU measurement
MDRQ_SCU_START (0x01) - This value requests the stop of SCU measurement.

Return value
- MD_SCU_STOP (0x00) SCU measurement stops
- MD_SCU_READY (0x01) SCU measurement is ready
- MD_SCU_RUN (0x02) SCU measurement is running
- MD_SCU_FINISH (0x03) SCU measurement finishes

Examples
void main(void)

{

 MODE_SCU_MEASURE_E scu_mode;

 :

 scu_mode = SetScuMode(MDRQ_SCU_START);

 :

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 44 of 49
May 21 2013

6.5 SetScuDcen

Remarks
This API validates Drift correction every each Touch CH.

Requirements
- The setting by this API is eflected from the next processing of Drift correction.

Declaration
uint8_t SetScuDcen(DRIFT_ENABLE_E sw);

Parameters
 Specifies a method to validate Drift correction.

DC_NON（0x00000000）：Drift correction is invalid with all Touch CH.
→ 0x00000000 set

DC_ALL（0xFFFFFFFF）：Drift correction is valid with all Touch CH.
→ Nhen.DWORD set

Return value
nothing

Examples
void main(void)

{

 :

 SetScuDcen(DC_ALL);

 :

}

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 45 of 49
May 21 2013

7. Touch API Hierarchy Chart
Visually details the relationship of Touch API.

Figure 7-1 Touch API Hierarchy Chart

User Application

Tscu_mode

SetTscuMode

Slider position

GetSliderPosition

Wheel position

GetWheelPosition

Sensor On/Off

GetTouchOnOff

Drift On/Off

SetTscuDcen

Slider
Position

Detection

Wheel
Position

Detection

Touch
position

Detection

Drift Correction

Measurement value
output

Reference Value
CalculationAuto Calibration

S/W Noise Filter

TSCU Driver

H/W Noise Filter

H/W interface LayerH/W interface Layer

Application LayerApplication Layer

Functional Implementation interface LayerFunctional Implementation interface Layer

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 46 of 49
May 21 2013

8. Supplementary explanation
Visually details the flowchart about SCU measurement by hardware and Judgement process for touch or not by
software.

8.1 ScuMeasure flowchart

Figure 8-1 ScuMeasure flowchart

Yes

No

Yes

TscuMeasure

TSUC
measurement has

been finished

Calibration flag is
true

TSCU measurement
startup

"Moving addition value
of count" Calculation

Threshold value
Calculation

Judgement of touch
process

Wheel position
detection process

Slider position
detection process

END

Calibration process

No

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 47 of 49
May 21 2013

8.2 Timing chart of Touch detection
Timing chart about Touch detection is as follows.

Figure 8-2 Timing chart

SCU Measurement Mode

MD _ SCU _ FINISH

Main process

Touch sensing
Touch interrupt

Main loop process cycle

" Moving addition value of
count " Calculation

(S / W)

SCU Measurement
(H / W)

Set 1 to
SCUSTRT

Touch detection
Drift correction

(S / W)

MD _ SCU _ RUN MD _ SCU _ FINISH

MD _ SCU _ READY

SCU
Interrupt

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 48 of 49
May 21 2013

8.3 SCU Measurement Mode

The relationship between SCU Measurement Mode and the Base API process is as follows.

1. When SCU Measurement Mode is MD_SCU_FINISH, the Base API executes the Moving addition value of count.
2. The process of Moving addition value of count saves the result of SCU measurement. Then the Base API changes

SCU Measurement Mode to MD_SCU_READY, and starts SCU measurement.
3. The Base API sets one to SCUSTRT in SCU Control Register 0. Then the Base API changes SCU Measurement

Mode to MD_SCU_RUN.
4. The Base API executes the Judgement process for touch or not, and Drift correction.
5. SCU measurement is finished, and SCU interrupt occurs. The SCU interrupt process changes SCU Measurement

Mode to MD_SCU_FINISH.

* You can change a timing of the process-3.

Figure 8-3 Touch process waveform

High and Low edge of

Main loop process

Judgement of

Touch process

SCU

measurement

R8C/33T Group Touch API Reference (R8C/33T Group)

R01AN0745EJ0100 Rev.1.00 Page 49 of 49
May 21 2013

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

Revision Record

Rev.

Date

Description
Page Summary

1.00 May.21.2013 — Numbering change(Content is as same as R010748EJ0100)

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different type numbers may differ

because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and

 equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial

 implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

 use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement

 possibility of physical injury, and injury or damage caused by fire in

 redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to

 products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas

 regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

liability for malfunctions or damages arising out of the

safety measures to guard them against the

life support devices or systems, surgical

http://www.renesas.com

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Arcadiastrasse 10, 40472 D
Tel: +49-211-65030, Fax: +49-211-6503-1327

üsseldorf, Germany

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Canada Limited

Renesas Electronics Europe Limited

Renesas Electronics America Inc.

Renesas Electronics (China) Co., Ltd.

Renesas Electronics (Shanghai) Co., Ltd.

Renesas Electronics Europe GmbH

Renesas Electronics Taiwan Co., Ltd.

Renesas Electronics Singapore Pte. Ltd.

Renesas Electronics Hong Kong Limited

Renesas Electronics Korea Co., Ltd.

Renesas Electronics Malaysia Sdn.Bhd.

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

Electronics products or technology described in this document, you should comply with the applicable export control laws and

	1. Summary
	1.1 Touch API Overview
	1.2 Touch API function

	2. Source & Header Files
	3. Touch API List
	4. Macro definition
	4.1 SCU_INV_NOISE
	4.2 MULTI_CANCEL
	4.3 MULTI_START_CH
	4.4 MULTI_END_CH
	4.5 SLIDER_USE
	4.6 WHEEL_USE
	4.7 MAX_CH
	4.8 DF_TSIERn
	4.9 DF_CHxx_REF
	4.10 DF_CHxx_THR
	4.11 DF_CHxx_HYS
	4.12 DF_MSA_DATA
	4.13 DF_ACCUMULATION
	4.14 DF_DCI_DRIFT
	4.15 WORKBENCH_HEWSVR_ENABLE
	4.16 SUPPORT_UART

	5. Basic API Reference
	5.1 TouchDtcInitialSet
	5.2 TouchDataInitial
	5.3 CheckReadFlashData
	5.4 TouchDataInitial2
	5.5 ScuInitial
	5.6 ScuInterrupt
	5.7 ScuMeasure
	5.8 CheckWriteStatusFlashData
	5.9 FtAddMakeAve
	5.10 SetTouchSensor
	5.11 MakeCthr
	5.12 MultiCancel
	5.13 OnOffJudgement
	5.14 Slider
	5.15 SWheel
	5.16 CorrectSub
	5.17 MsrCalibration

	6. User API Reference
	6.1 GetTouchOnOff
	6.2 GetWheelPosition
	6.3 GetSliderPosition
	6.4 SetScuMode
	6.5 SetScuDcen

	7. Touch API Hierarchy Chart
	8. Supplementary explanation
	8.1 ScuMeasure flowchart
	8.2 Timing chart of Touch detection
	8.3 SCU Measurement Mode

	Website and Support
	Revision Record
	General Precautions in the Handling of MPU/MCU Products

