PCB Design Guidelines for MIPI-CSI, MIPI-DSI and USB2.0

RZ/G2L PBGA 15.0/21.0sq
RZ/G2LC PBGA 13.0sq
RZ/G2UL PBGA 13.0sq
RZ/V2L PBGA 15.0/21.0sq
RZ/Five PBGA 13.0/11.0sq
RZ/A3UL PBGA 13.0sq
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of such data, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or claims incurred by you or any third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Trains; automobiles; ships; traffic control; traffic lights; large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to, unauthorized access to, or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.) and ensure that all suitability conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as degradation of failure rate at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging or degradation, or other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disperses of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters
TOYOSU FORESEA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

(Rev.5.0-1 October 2020)

© 2022 Renesas Electronics Corporation. All rights reserved.
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
 A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
 Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
 The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
 Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
 Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
 After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses
 Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
 Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
Table of Contents

1. Guidelines for MIPI-CSI and MIPI-DSI
 (RZ/G2L, RZ/G2LC, RZ/G2UL (not supported MIPI-DSI), RZ/V2L and
 RZ/A3UL (not supported MIPI-DSI)) .. 5
 1.1 Guidelines for signal lines topology (Tx, Rx) 5
 1.2 Guidelines for PCB signal lines ... 7
 1.3 Guidelines for power line Topology (Tx, Rx) 8
 1.4 Guidelines for PCB power line ... 9

2. Guidelines for USB2.0
 (RZ/G2L, RZ/G2LC, RZ/G2UL, RZ/V2L, RZ/Five and RZ/A3UL) 10
 2.1 Guidelines for PCB signal line of USB2.0 10
 2.2 Guidelines for power lines .. 10

3. Guidelines for Modelling ... 11

Appendix A Concept of Loop Inductance .. 12
Appendix B Terminal processing for USB2.0 .. 13
Appendix C Processing of unused terminals for USB2.0 14
Appendix D EMI / ESD Protection ... 16

REVISION HISTORY .. 17
1. Guidelines for MIPI-CSI and MIPI-DSI (RZ/G2L, RZ/G2LC, RZ/G2UL (not supported MIPI-DSI), RZ/V2L and RZ/A3UL (not supported MIPI-DSI))

1.1 Guidelines for signal lines topology (Tx, Rx)

Please refer to the MIPI D-PHY specification ver2.1 regarding the transmitter and receiver specifications.

![Diagram of signal lines topology](image)

Figure 1.1 Signal lines topology of MIPI-CSI and MIPI-DSI
Table 1.1 Guidelines for PCB signal lines of MIPI-CSI and MIPI-DSI

<table>
<thead>
<tr>
<th>items</th>
<th>Guidelines</th>
<th>Fig.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line impedance</td>
<td>√: Differential 1000Ω ± 20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line length difference</td>
<td>△: As same length as possible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line length difference</td>
<td>△: Line length is as short as possible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line bending</td>
<td>Recommended: external angle 45° (Prohibition: >45°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line layer</td>
<td>Between Diff. Clock and Diff. Data</td>
<td>Same layer</td>
<td></td>
</tr>
<tr>
<td>Numbers of via</td>
<td>Between Diff. Clock and Diff. Data</td>
<td>Same via number (number is as few as possible)</td>
<td></td>
</tr>
<tr>
<td>Line spacing</td>
<td>between each pos. and neg.</td>
<td>S (min. of PCB design criterion)</td>
<td>1,(1)</td>
</tr>
<tr>
<td>Line spacing</td>
<td>Between Diff. and next Diff.</td>
<td>≥ 3S</td>
<td>2,(6)</td>
</tr>
<tr>
<td>Line spacing</td>
<td>Between Diff. and GND shields</td>
<td>≥ S</td>
<td>1,(2)</td>
</tr>
<tr>
<td>Line spacing</td>
<td>Between Diff. and other high speed / low speed signal</td>
<td>≥ 3S</td>
<td></td>
</tr>
<tr>
<td>Line spacing</td>
<td>Between Diff. and Continuous Ground Plane</td>
<td>≥ S</td>
<td>1,(3)</td>
</tr>
<tr>
<td>Line width</td>
<td>≥ S</td>
<td>1,(4)</td>
<td></td>
</tr>
<tr>
<td>Return path</td>
<td>√: Placed Continuous Ground Plane under Diff.</td>
<td>1,(5)</td>
<td>—</td>
</tr>
<tr>
<td>Return path</td>
<td>Placed gnd through-hole next to signal through-hole</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Return path</td>
<td>Placed gnd vias symmetrically next to Diff.</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1. These sizes are reference. These can be changed to the designer side actual value.
1.2 Guidelines for PCB signal lines

Please design with priority √ items. However, Clock-Data skew could be relaxed depending on the timing spec. Please refer to MIPI D-PHY specification version 2.1 in detail.

![Signal Lines Example 1](image1)

![Signal Lines Example 2](image2)
1.3 Guidelines for power line Topology (Tx, Rx)

Figure 1.4 Power line Topology of MIPI-CSI and MIPI-DSI
1.4 Guidelines for PCB power line

Supply the power from DSI_VDD18 and CSI_VDD18 with the ground as the common VSS plane of the PCB.

Table 1.2 Guidelines for PCB power lines of MIPI-CSI and MIPI-DSI

<table>
<thead>
<tr>
<th>items</th>
<th>TX</th>
<th>RX</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rpcb (≤ 30mΩ)</td>
<td>≤ 30mΩ</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Lpcb (≤ 2.8nH/5ch)</td>
<td>≤ 2.8nH/5ch</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td>C1 (nearest the chip)</td>
<td>0.1μF</td>
<td>0.1μF</td>
<td>3</td>
</tr>
</tbody>
</table>

Note 1. Be as small as possible the power line inductance to C1 from the PKG pins. Refer to Appendix (Concept of Loop inductance).

Note 2. Value of Lpcb does not contain the component of C1.

Note 3. Place C1 nearer the PKG pins to prevent the ripple noise by transient current. Place bypass capacitor between the respective power supply planes and solder balls.
2. **Guidelines for USB2.0 (RZ/G2L, RZ/G2LC, RZ/G2UL, RZ/V2L, RZ/Five and RZ/A3UL)**

2.1 **Guidelines for PCB signal line of USB2.0**

<table>
<thead>
<tr>
<th>Items</th>
<th>Guidelines</th>
<th>Fig.</th>
</tr>
</thead>
</table>
| Line impedance | √: Differential 90Ω ± 10%
 | Single-end 45Ω ± 10% | — |
| Line length difference | Between Diff. Clock and Diff. Data
 | as same length as possible
 | Line length is as short as possible | — |
| Line bending | Recommended : external angle 45° (Prohibition: >45°) | — |
| Line layer | Between Diff. Clock and Diff. Data
 | Same layer
 | Note: Recommended: top layer without any vias
 | Same via number (number is as few as possible) | — |
| Numbers of via | Between Diff. Clock and Diff. Data
 | Placed Continuous Ground Plane under Diff.
 | Placed gnd through-hole next to signal through-hole
 | Placed gnd vias symmetrically next to Diff. | 1,5 |

Note: Do not use SSC (Spread Spectrum Clock) for the reference clock.

RREF resister position and wiring

1. RREF resister is located near to IC, and RREF resister wiring are designed below 0.5 Ω.
2. RREF resister is NOT located with capacitor in parallel.
3. RREF resister and wiring is NOT cross or located near to other signal wiring.
4. The layer under RREF resister and wiring is needed to be GND plane to protect noise contamination.

2.2 **Guidelines for power lines**

(1) Analog power supply

1. USB_AVDD18 and USB_VDD18 are needed to be connect with 1.8V analog power supply pattern.
2. The wiring impedance of an analog power supply is needed to be small as much as possible.
3. An analog power supply is to be separated from a digital power supply through an inductor and ferrite, or additional ceramic capacitors located near or connected directly to the power supply pins of the IC.
4. Analog power supply pattern is NOT near to other signal wiring.

(2) Digital power supply

1. USB_VDD33 is connect with 3.3V digital power supply pattern.
2. The wiring impedance of digital power supply is needed to be small as much as possible.

(3) GND wiring

1. USB_VSS is connected with USB GND or GND plane.
2. The wiring impedance of GND is needed to be small as much as possible.
3. USB GND or GND plane is NOT located near to other signal wiring.
3. **Guidelines for Modelling**

Please perform a simulation with a frequency range up to 10 GHz in the case of extracting S parameters.
Appendix A Concept of Loop Inductance

The target inductance can be obtained by calculating loop inductance from the VDD balls of the package to the VSS balls of the package taken as an ideal GND in the way shown in the figure below. In this case, include the equivalent series inductance (ESL) component of the bypass capacitor placed close to the LSI chip.

![Diagram of loop inductance](image)

Figure A.1 Concept of loop inductance
Appendix B Terminal processing for USB2.0

The below figures are show configurations of external parts in case of 1 port. The values of the capacitors and their configurations are considered recommended examples. Please change the values and configurations in response to any noise frequency and noise levels.

Figure B.1 Configuration of external parts in case of 1 port (left: with separation inductor, right: without separation inductor)

Precautions regarding parts used

1. Please deploy a reference resister with a value of 1.8kΩ between USB_RREF and VSS.
2. Please separate USB_VDDD18 by using inductor or ferrite*1, or by additionally deploying ceramic capacitor*2. Also, please do NOT locate noise source near to VSS.
3. Please populate decoupling capacitors between each power supply and VSS for safe operation. Also, please populate ceramic capacitors near to the SoC. Electrolytic capacitor may be placed far from SoC.

Table B.1 List of part used

<table>
<thead>
<tr>
<th>Pin name</th>
<th>Target parts</th>
<th>values</th>
<th>accuracy</th>
<th>Breakdown voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB_RREF–VSS</td>
<td>Resister</td>
<td>1.8kΩ (mandatory)</td>
<td>±1%</td>
<td>Above 1/16W</td>
</tr>
<tr>
<td>USB_VDDD33–VSS</td>
<td>Ceramic capacitor</td>
<td>0.1μF (recommended)</td>
<td>±25%</td>
<td>Above 8V</td>
</tr>
<tr>
<td>VDD–VSS</td>
<td>Ceramic capacitor</td>
<td>0.1μF (recommended)</td>
<td>±25%</td>
<td>Above 8V</td>
</tr>
<tr>
<td>USB_VDDD18–GND</td>
<td>2.2μF (recommended)</td>
<td>±25%</td>
<td>Above 8V</td>
<td></td>
</tr>
<tr>
<td>USB_VDDD18–GND</td>
<td>10μF (recommended)*2</td>
<td>±25%</td>
<td>Above 8V</td>
<td></td>
</tr>
<tr>
<td>VDD–VSS</td>
<td>Electrolytic capacitor</td>
<td>47μF (recommended)</td>
<td>±25%</td>
<td>Above 8V</td>
</tr>
<tr>
<td>USB_VDDD18–VSS</td>
<td>inductance (DC resister is recommended below 150mΩ)</td>
<td>±20%</td>
<td>Above 300mA</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C Processing of unused terminals for USB2.0

1. DP/DM terminals are to be connected to GND through 10 kΩ.
2. USB_RREF is left open.
3. USB_VDD18 is to be connected to the 1.8 V power supply. However, it’s unnecessary to separate the digital power supply from the analog power supply.
4. USB_VDD33 is connected VSS.
5. Please assert the internal signal whose bit name is dirpd, and power down the VDD.
6. Please control USB_PWRRDY in accordance with the sequence that is shown as Figure C.2.

Figure C.1 Configuration of external parts

Note 1. Do NOT connect USB_VDD18 with VSS because it means that internal circuit is floating and through current may occur.

Note 2. It’s no problem that the output of an external regulator that supplies USB_VDD33 is 0V for a setting of OFF. Also, it’s possible to connect USB_VDD33 with a 3.3V power supply. However, please be careful because a current value of about 500μA (Typ) is generated regularly.

Note 3. Please clamp VDD or VSS when there is an input internal signal that status is open except dirpd.
7. Timing constraints of PWRRDY

![USB_PWRRDY timing chart](image)

Figure C.2 USB_PWRRDY timing chart
Appendix D EMI / ESD Protection

Notes on EMI/ESD protection are described below.

- When components for EMI/ESD protection such as coils and diodes are mounted on the USB transmission lines, they should be allocated near the USB transmission lines and the wiring should be as short as possible.

- The components for the EMI/ESD protection must be USB 2.0 High-Speed compliant. Also, by mounting EMI/ESD protection components, an inconsistent impedance may occur on the USB transmission lines, and the waveform may become distorted. Components for use should be selected after thorough evaluation.

Figure D.1 shows an example connection when the components for EMI/ESD protection are used.

![Connection example when components for EMI/ESD protection are used](image-url)
REVISION HISTORY

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>Dec 10, 2020</td>
<td>—</td>
<td>First edition issued</td>
</tr>
<tr>
<td>0.20</td>
<td>Jul 30, 2021</td>
<td>9</td>
<td>Added Note in Table 2.1</td>
</tr>
<tr>
<td>0.30</td>
<td>Sep 30, 2021</td>
<td>1, 5, 10</td>
<td>Added product (RZ/G2LC and RZ/G2UL)</td>
</tr>
<tr>
<td>1.00</td>
<td>Oct 05, 2021</td>
<td>1, 5, 10</td>
<td>Added RZ/V2L</td>
</tr>
<tr>
<td>1.01</td>
<td>May 20, 2022</td>
<td>1, 10</td>
<td>Added RZ/Five</td>
</tr>
<tr>
<td>1.02</td>
<td>May 30, 2022</td>
<td>1, 5, 10</td>
<td>Added RZ/A3UL</td>
</tr>
</tbody>
</table>

RZ/G2L, RZ/G2LC, RZ/G2UL, RZ/V2L, RZ/Five, RZ/A3UL
PCB Design Guidelines for MIPI-CSI, MIPI-DSI and USB2.0
RZ/G2L, RZ/G2LC, RZ/G2UL, RZ/V2L, RZ/Five, RZ/A3UL