

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

H8S/2218 USB Function Module
Human Interface Devices (HID)
Class
Application Note

16

A
pplication N

ote

Rev.1.00 2003.10

Renesas 16-Bit Single-Chip
Microcomputer
H8S Family / H8S/2200 Series

Rev. 1.00, 10/03, page ii of vi

Rev. 1.00, 10/03, page iii of vi

Cautions

Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products

better and more reliable, but there is always the possibility that trouble may occur with them.
Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the

Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for
the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various
means, including the Renesas Technology Corp. Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products.
Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss
resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product
distributor when considering the use of a product contained herein for any specific purposes,
such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or
undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they
must be exported under a license from the Japanese government and cannot be imported into a
country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or
the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

Rev. 1.00, 10/03, page iv of vi

Preface

These application notes describe the HID class firmware that uses the USB Function Module in
the H8S/2218. They are provided to be used as a reference when the user creates USB Function
Module firmware.

These application notes describe a system configuration example for HID class communications
based on the USB Function Module, and do not guarantee the contents of the configuration.

In addition to these application notes, the manuals listed below are also available for reference
when developing applications.

[Related manuals]

• Universal Serial Bus Specification Revision 1.1

• Universal Serial Bus Device Class Definition for Human Interface Devices (HID)

• H8S/2218 Group, H8S/2212 Group Hardware Manual

• H8S/2218 Solution Engine CPU Board (MS2218CP01) Instruction Manual

[Caution] The sample programs described in these application notes do not include firmware
related to bulk transfer, which is a USB transfer type. When using this transfer type
(see section 14.5.6 to section 14.5.7 of the H8S/2218 Group, H8S/2212 Group
Hardware Manual), the user needs to create the programs for it.

Also, the hardware specifications of the H8S/2218 and H8S/2218 Solution Engine,
which will be necessary when developing the system described above, are described
in these application notes, but more detailed information is available in the
H8S/2218 Group, H8S/2212 Group Hardware Manual and the H8S/2218 Solution
Engine Instruction Manual.

[Trademark] Microsoft Windows 95, Microsoft Windows 98, Microsoft Windows Me,
Microsoft Windows 2000, and Microsoft Windows XP are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Rev. 1.00, 10/03, page iii of vi

Contents

Section 1 Overview... 1

Section 2 Overview of the USB Human Interface Devices (HID) Class 3
2.1 HID Class..3
2.2 Subclass Code ...3
2.3 Protocol Code..3
2.4 Descriptors for HID Class...4
2.5 HID Descriptor..4
2.6 Report Descriptor..5

2.6.1 Main Items ...6
2.6.2 Global Items...10
2.6.3 Local Items ..11
2.6.4 Sample Report Descriptor..12
2.6.5 Description of Report Descriptor ...13

2.7 Physical Descriptor ...15
2.8 HID Data Transfer Format ..15
2.9 Class Commands...16

Section 3 Development Environment ... 19
3.1 Hardware Environment ...19
3.2 Software Environment ..21

3.2.1 Sample Program...21
3.2.2 Compiling and Linking ..21

3.3 Loading and Executing the Program...23
3.3.1 Loading the Program..24
3.3.2 Executing the Program...24

3.4 Demonstrating Pseudo Mouse Operation (Cursor Movements)..25

Section 4 Overview of the Sample Program... 27
4.1 State Transition Diagram ..27
4.2 USB Communication State ...28
4.3 File Structure...29
4.4 Purposes of Functions ...30

Section 5 Sample Program Operation... 35
5.1 Main Loop...35
5.2 Types of Interrupts ..36

5.2.1 Method of Branching to Different Transfer Processes...38
5.3 USB Operating Clock Stabilization Interrupt ...39

Rev. 1.00, 10/03, page iv of vi

5.4 Interrupt on Cable Connection (VBUS).. 40
5.5 Bus Reset Interrupt (BRST).. 41
5.6 Control Transfers .. 42

5.6.1 Setup Stage .. 43
5.6.2 Data Stage .. 45
5.6.3 Status Stage.. 47

5.7 Interrupt Transfers .. 49
5.7.1 Interrupt-In Transfers... 49

5.8 Mouse Data Generation .. 51

Section 6 Analyzer Data ..55
6.1 Control Transfer when Device is Connected .. 55
6.2 Interrupt-In Transfer of HID Data... 60

Rev. 1.00, 10/03, page 1 of 58

Section 1 Overview

This application note describes how to use the USB Function Module that is built into the
H8S/2218, and contain examples of firmware programs.

The features of the USB Function Module contained in the H8S/2218 are listed below.

• An on-chip UDC (USB Device Controller) conforming to USB 1.1
• Automatic processing of USB protocol
• Automatic processing of USB standard commands for endpoint 0 (some commands need to be

processed through the firmware)
• Full-speed (12 Mbps) transfer supported
• Various interrupt signals needed for USB transmission and reception are generated.
• An on-chip bus transceiver

Endpoint Configurations

Endpoint Name Name Transfer Type
Max. Packet
Size

FIFO Buffer
Capacity

DMA
Transfer

Endpoint 0 EP0s Setup 8 bytes 8 bytes

EP0i Control-in 64 bytes 64 bytes

EP0o Control-out 64 bytes 64 bytes

Endpoint 1 EP1 Bulk-in 64 bytes 64 x 2 (128 bytes) Possible

Endpoint 2 EP2 Bulk-out 64 bytes 64 x 2 (128 bytes) Possible

Endpoint 3 EP3 Interrupt (in) 64 bytes 64 bytes (variable)

Rev. 1.00, 10/03, page 2 of 58

Figure 1.1 shows an example of a system configuration.

H8S/2218 Solution Engine

W indows
XP,2000,M E

USBƒ zƒ XƒgPC

USBƒ P [ƒ uƒ ‹

Figure 1.1 System Configuration Example

This system is configured of the H8S/2218 Solution Engine manufactured by Hitachi ULSI
Systems Co., Ltd. (hereafter referred to as the MS2218CP) and a PC containing Windows Me/
Windows 2000/Windows XP operating system.

This system is an HID class firmware that automatically generates pseudo mouse data on the
MS2218CP board and outputs the mouse data (hereafter called the HID data) to the host PC
through the USB.

It is also possible to use the USB HID class device driver that comes as an accessory with the
operating systems listed above.

This system offers the following features.

1. The sample program can be used to evaluate the USB module of the H8S/2218 quickly.
2. The sample program supports USB control transfer and interrupt transfer.
3. An E10A can be used, enabling efficient debugging.

USB host PC

Windows® Me/

Windows® 2000/

Windows® XP

USB cable

H8S/2218 Solution Engine

Rev. 1.00, 10/03, page 3 of 58

Section 2 Overview of the USB Human Interface Devices
(HID) Class

This section describes the USB Human Interface Devices (HID) Class.

We hope that it will provide a convenient reference for use when developing USB HID class
devices. For more detailed information on standards, please see the following:

• Device Class Definition for Human Interface Devices (HID) Version 1.11
• HID Usage Tables Version 1.11

2.1 HID Class

USB HID class is a class of standards that apply to devices through which humans operate PCs.
Typical examples include mouse devices, keyboards, and joysticks.

To notify the host PC of this class of function, the bInterfaceClass filed of the Interface descriptor
must be 0x03.

2.2 Subclass Code

Subclasses were intended to be used to identify the specific protocols of different HID class
devices. However, as there are many types of devices used by humans, subclass protocol
definitions are impractical, and subclasses are not used to define most protocols in the HID class.
Instead, the protocol is identified by the Report descriptor in HID class devices.

As for BIOS-support devices (boot devices), a simple method to identify the protocol is needed.
For this purpose, subclasses are used to indicate devices that support the predefined protocol (boot
protocol) for mouse devices or keyboards (that is, devices that can be used for boot devices).

To notify the host PC that the device supports the boot protocol, the bInterfaceSubClass filed of
the Interface descriptor must be 0x01.

2.3 Protocol Code

When a device supports the boot protocol (subclass code other than 0), a protocol code is used to
indicate the device type. The protocol code is 0x01 for a keyboard, and 0x02 for a mouse.
Specifying the device type by the protocol code indicates that the device can use the protocol for
the device type.

To notify the host PC of the device type, the bInterfaceProtocol filed of the Interface descriptor
must be a value corresponding to the device type.

Rev. 1.00, 10/03, page 4 of 58

2.4 Descriptors for HID Class

HID class function devices need an HID descriptor, a Report descriptor, and a Physical descriptor
(optional) in addition to descriptor information that other USB function devices need. Figure 2.1
shows the HID device descriptor configuration.

Device descriptor String descriptor

Physical descriptorReport descriptor

Configuration descriptor

Interface descriptor

Endpoint descriptor HID descriptor

Figure 2.1 Descriptor Configuration

2.5 HID Descriptor

The HID descriptor combines the Report descriptor and Physical descriptor (optional). Table 2.1
shows the format of the HID descriptor.

Table 2.1 HID Descriptor

Field Size (bytes) Description
bLength 1 Descriptor size (fixed to 0x09)

bDescriptorType 1 Descriptor type (fixed to 0x21)

bcdHID 2 HID version in BCD

bCountryCode 1 Country ID for devices specific to a particular country (0
unless necessary)

bNumDescriptors 1 Number of class descriptors

bDescriptorType 1 Type of class descriptor (0x22 for HIDREPORT)

wDescriptorLength 2 Size of Report descriptor

Rev. 1.00, 10/03, page 5 of 58

2.6 Report Descriptor

The Report descriptor specifies the format of data to be transferred between the host PC and the
device. Unlike other descriptors, the Report descriptor has no standardized format, but the length
and contents of the Report descriptor vary depending on the device�s report or the number of data
fields required for the device�s report.

The Report descriptor consists of items that provide information about the device. There are two
types of items, short and long items. The following describes the short item.

Bits:

Parts:

Byte:

bType and bSize indicate the following meaning.

39 to 8

[data]

item type
bType Value

00
01
10
11

Main
Global
Local

Reserve

00
01
10
11

0 byte
1 byte
2 bytes
4 bytes

Type bSize Value Data Size

4 to 1

7654

bTag

32

bType

0

10

bSize

item size

Figure 2.2 Report Descriptor Item

An item consists of four fields: data, item tag, item type, and itemSize. The item uses these fields
to indicate the information.

There are three item types: Main, Global, and Local. The Main item type (defining or grouping the
data fields in a Report descriptor) has five types of item tags, the Global item type (describing
data) has 12, and the Local item type (defining the characteristics) has ten.

By combining these item tags, the Report descriptor specifies the format of data to be transferred
between the host PC and the device.

Rev. 1.00, 10/03, page 6 of 58

2.6.1 Main Items

Table 2.2 shows five item tags for the Main item type.

Table 2.2 Item Tags for Main Item Type

Item Tag bTag bType bSize Description
Input 1000 00 nn Describes information about data provided by

one or more physical controls

Output 1001 00 nn Defines output data field

Feature 1011 00 nn Describes device configuration information that
can be sent to the device

Collection 1010 00 nn Starts collecting relations between two or more
data item tags (Input, Output, or Feature)

End Collection 1100 00 nn Ends collecting relations between two or more
data item tags (Input, Output, or Feature) in
response to Collection

Rev. 1.00, 10/03, page 7 of 58

Input Item Tag: The input item tag has eight parameters (data fields), which are set in 1-bit units,
as shown in table 2.3.

Table 2.3 Input Item Tag Parameters

Bit Value Contents Description
0 Data The item reports data0

1 Constant The item reports a constant

0 Array The item reports an array data field1

1 Variable The item reports a variable

0 Absolute The item reports an absolute value2

1 Relative The item reports a relative value from the last report

0 No Wrap The value reported by the item does not roll over3

1 Wrap The value reported by the item rolls over (for example,
for a dial to output a value from 0 to 10, if dialing is
continued, 0 is output after 10)

0 Linear The item reports the state of the target control linearly4

1 Non Linear The item processes raw data and does not report the
state of the target linearly

0 Preferred State The item has a state to which it returns when it is not
controlled by the user

5

1 No Preferred The item does not have a state to which it returns when it
is not controlled by the user

0 No Null position The item has a state in which it does not send
meaningful data

6

1 Null state The item does not have a state in which it does not send
meaningful data

7 0 Reserved Reserved

0 Bit Field The item issues a bit field8

1 Buffered Bytes The item issues a stream fixed to 1-byte size

9-31 0 Reserved Reserved

Rev. 1.00, 10/03, page 8 of 58

Output and Feature Item Tags: The output and feature item tags have nine parameters (data
fields), which are the same as the input item tag except bit 7, as shown in table 2.4.

Table 2.4 Output and Feature Item Tag Parameters

Bit Value Contents Description
1-6 Same as the input item tag

7 0 Non Volatile The item value cannot change with or without host
interactions

1 Volatile The item value can change with or without host
interactions

8-31 Same as the input item tag

Rev. 1.00, 10/03, page 9 of 58

Collection Item Tag: The collection item tag has eight parameters (data fields), which are set in
one byte, as shown in table 2.5.

Table 2.5 Collection Item Tag Parameters

Value Contents Description
0x00 Physical Used for data items collected into one. This is used for

devices which need to associate correct or sensed data with a
single point.
It does not indicate that data comes from a single device such
as a keyboard. It indicates that the device reports multiple
sensor positions and data comes from different sensors.

0x01 Application Identifies the Usage only used for the application level. It
indicates that the collection is a functionally subordinate group
of an HID device or a complex device. The operating system
uses the Usage associated with this collection to link to the
application or driver that controls the device.

0x02 Logical Used when data items compose a composite data structure.

0x03 Report Defines a logical collection that includes all fields.
A report ID is included in this collection. An application can
easily determine whether to support a certain function of the
device.

0x04 Named Array Used when data items compose a composite data structure
and it is named.

0x05 Usage Switch A logical collection that modifies the meaning of the included
Usage.
It identifies the Usage applied for logical collection to modify
the purpose of the Usage being collected.

0x06 Usage Modifier Modifies the meaning of the Usage attached to the including
collection. The Usage typically defines a single operating
mode for control, which enables the operating method of
control to be expanded.

0x07-7F Reserved Reserved.

0x80-FF Vendor-defined. Defined by the vendor.

Rev. 1.00, 10/03, page 10 of 58

2.6.2 Global Items

Table 2.6 shows 12 item tags for the Global item type.

Table 2.6 Item Tags for Global Item Type

Item Tag bTag bType bSize Description
Usage Page 0000 01 nn A value specifying the current Usage Page. It

defines the index to the item usage.

Logical Minimum 0001 01 nn The minimum value to be reported by a variable
or array item. For example, the mouse that
reports an X position value from 0 to 128 will
have a minimum logical value of 0.

Logical Maximum 0010 01 nn The maximum value to be reported by variable
or array items. For example, the mouse that
reports an X position value from 0 to 128 will
have a maximum logical value of 128.

Physical Minimum 0011 01 nn Minimum value of physical range for a variable
item

Physical Maximum 0100 01 nn Maximum value of physical range for a variable
item

Unit Exponent 0101 01 nn Unit exponent in base 10

Unit 0110 01 nn Unit value

Report Size 0101 01 nn Unsigned value that specifies the report field
size in bits

Report ID 1000 01 nn Unsigned value that specifies the report ID

Report Count 1001 01 nn Specifies the number of data fields for the item.
An unsigned integer specifies how many fields
can be included in the report for the particular
item (accordingly, how many bits are added to
the report).

Push 1010 01 nn Places a copy of the Global Item state table in
the stack

Pop 1011 01 nn Replaces the item state table with the top data
in the stack.

Rev. 1.00, 10/03, page 11 of 58

2.6.3 Local Items

Table 2.7 shows ten item tags for the Local item type.

Table 2.7 Item Tags for Local Item Type

Item Tag bTag bType bSize Description
Usage 0000 10 nn A value specifying the current Usage. It defines

the index to the items usage.

Usage Minimum 0001 10 nn Defines the start of Usage associated with an
array or a bitmap.

Usage Maximum 0010 10 nn Defines the end of Usage associated with an
array or a bitmap.

Designator Index 0011 10 nn Determines the body part used for control.

Designator
Minimum

0100 10 nn Defines the start index to the designator
associated with an array or a bitmap.

Designator
Maximum

0101 10 nn Defines the end index to the designator
associated with an array or a bitmap.

String Index 0111 10 nn Index to the String descriptor, which enables the
string to be associated with a particular item or
control

String Minimum 1000 10 nn Specifies the first string index when associating
a group of sequential strings to the control in an
array or a bitmap.

String Maximum 1001 10 nn Specifies the end string index when associating
a group of sequential strings to the control in an
array or a bitmap.

Delimiter 1010 10 nn Defines the start or end of a set of Local items.

Rev. 1.00, 10/03, page 12 of 58

2.6.4 Sample Report Descriptor

Figure 2.3 shows the Report descriptor of this sample program.

Usage Page (Generic Desktop),
Usage (Mouse),
Collection (Application),

: 05 01
: 09 02
: A1 01
: 09 01
: A1 00
: 05 09
: 19 01
: 29 03
: 15 00
: 25 01
: 95 03
: 75 01
: 81 02
: 95 01
: 75 05
: 81 01
: 05 01
: 09 30
: 09 31
: 09 38
: 15 81
: 25 7F
: 75 08
: 95 03
: 81 06
: C0
: C0End Collection

Usage (Pointer),
Collection (Physical),

End Collection,

Usage Page (Buttons),
Usage Minimum (01),
Usage Maximum (03),
Logical Minimum (0),
Logical Maximum (1),
Report Count (3),
Report Size (1),
Input (Data, Variable, Absolute), ; 3 button bits
Report Count (1),
Report Size (5),
Input (Constant), ; 5 bit padding
Usage Page (Generic Desktop),
Usage (X),
Usage (Y),
Usage (Wheel),
Logical Minimum (-127),
Logical Maximum (127),
Report Size (8),
Report Count (3),
Input (Data, Variable, Relative), ; 2 position bytes (X & Y)

Figure 2.3 Report Descriptor

Rev. 1.00, 10/03, page 13 of 58

2.6.5 Description of Report Descriptor

Table 2.8 shows the Report descriptor used by the sample program.

Table 2.8 Report Descriptor

Item
Value
(hex.)

Item
Classification Description

Usage Page (Generic
Desktop Control)

0x05 01 Global A value specifying the Usage Page. 0x01
indicates Generic Desktop Control.

Usage (Mouse) 0x09 02 Local Index to the item Usage. 0x02 indicates
Mouse. The operating system links the device
as a mouse to the active application or driver.
The Usage type of Mouse is Collection
Application.

Collection (Application) 0xA1 01 Main Notifies the application of Pointer as a mouse.

Usage (Pointer) 0x09 01 Local Index to the item Usage. 0x01 indicates
Pointer. The Usage type of Pointer is
Collection Physical.

Collection (Physical) 0xA1 00 Main Collects multiple sensor positions (button, X
axis, Y axis, and rotary control) to one as a
pointer.

Usage Page (Button) 0x05 09 Global A value specifying the Usage Page. 0x09
indicates Button.

Usage Minimum (1) 0x19 01 Local Defines that the Usage associated with an
array or a bitmap starts from 1.

Usage Maximum (3) 0x29 03 Local Defines that the Usage associated with an
array or a bitmap ends at 3.

Logical Minimum (0) 0x15 00 Global The minimum value to be reported by the item
is 0.

Logical Maximum (1) 0x25 01 Global The maximum value to be reported by the item
is 1.

Report Count (3) 0x95 03 Global Indicates the number of data fields to be used
for the item. This example indicates that three
report fields are to be used.

Report Size (1) 0x75 01 Global Indicates the report field size. This example
indicates that 1-bit field is to be used.

Input (Data, Variable,
Absolute)

0x81 02 Main Indicates the type of input item. This example
indicates that the input is variable data and
reports an absolute value.

Rev. 1.00, 10/03, page 14 of 58

Item
Value
(hex.)

Item
Classification Description

Report Count (1) 0x95 01 Global Indicates the number of data fields to be used
for the item. This example indicates that one
report field is to be used.

Report Size (5) 0x75 05 Global Indicates the report field size. This example
indicates that 5-bit field is to be used.

Input (Constant) 0x81 01 Main Indicates the type of input item. This example
indicates that the input reports a constant.

Usage Page (Generic
Desktop Control)

0x05 01 Global A value specifying the Usage Page. 0x01
indicates Generic Desktop Control.

Usage (X) 0x09 30 Local Index to the item Usage. 0x30 indicates X. The
controller reports X-direction values, and when
the controller moves from left to right from the
user's viewpoint, a value increases linearly.

Usage (Y) 0x09 31 Local Index to the item Usage. 0x31 indicates Y. The
controller reports Y-direction values, and when
the controller moves from the far side to the
near side from the user's viewpoint, a value
increases linearly.

Usage (Wheel) 0x09 38 Local Index to the item Usage. 0x38 indicates
Wheel. It is different from a dial; it is a rotary
control that generates a variable value when
rotated. When the controller rotates toward the
front (the far side from the user), a value
increases.

Logical Minimum (-127) 0x15 81 Global The minimum value to be reported by the item
is -127.

Logical Maximum (127) 0x25 7F Global The maximum value to be reported by the item
is 127.

Report Size (8) 0x75 08 Global Indicates the report field size. This example
indicates that 8-bit field is to be used.

Report Count (3) 0x95 03 Global Indicates the number of data fields to be used
for the item. This example indicates that three
report fields are to be used.

Input (Data, Variable,
Relative)

0x81 06 Main Indicates the type of input item. This example
indicates that the input is variable data and
reports the change from the last input.

End Collection 0xC0 Main Indicates the end of collection of data set
(physical).

End Collection 0xC0 Main Indicates the end of collection of data set
(application).

Rev. 1.00, 10/03, page 15 of 58

2.7 Physical Descriptor

The physical descriptor provides information about the human body (or a specific part of the
human body) that is controlling the device. This descriptor is optional, and it is omitted in the
sample program.

2.8 HID Data Transfer Format

HID data is transferred between the host PC and the USB function module mainly through
interrupt transfers (control transfers are also available).

The boot device can use two types of protocols: report protocol and boot protocol. Other devices
can only use one protocol: report protocol.

The format of data transfer used by the report protocol is described by a Report descriptor. The
format used by the boot protocol is prescribed in the USB standard.

The default protocol for the boot device is the report protocol, but a class command can select
either the boot or report protocol. Figure 2.4 shows the report protocol format used by the sample
program.

Bits:

Parts:

Byte:

7 to 3

00000

1 2 3

2 1

0

0

Wheel
button

Right
button

Left
button

X axis Y axis Wheel

Figure 2.4 Report Protocol Format

Rev. 1.00, 10/03, page 16 of 58

2.9 Class Commands

Class commands are defined by each USB class. They use control transfer.

There are six commands for the USB HID class. Table 2.9 shows the class commands.

Table 2.9 Class Commands

bRequest Field Value Command Meaning of Command
0x01 GET_REPORT Transfers HID data from the device to the host

PC through control transfer

0x02 GET_IDLE Returns the current value for the rate of time
for which interrupt transfer stops

0x03 GET_PROTOCOL Reports the current active protocol (boot
protocol or report protocol)

0x09 SET_REPORT Transfers HID data from the host PC to the
device through control transfer

0x0A SET_IDLE Specifies the rate of time for which interrupt
transfer stops

0x0B SET_PROTOCOL Specifies the active protocol (boot protocol or
report protocol)

Notes: 1. All devices must support GET_REPORT.
2. Boot devices must support GET_PROTOCOL and SET_PROTOCOL.

When the GET_REPORT command is received, the function sends HID data to the host through
the data stage of control transfer. The report type must be specified in the upper one byte of the
wValue field in the setup data and the report ID in the lower one byte of the wValue field.

When the GET_IDLE command is received, the function returns the time for which interrupt
transfer stops. The time should be expressed in time rate in 4-ms units. The host specifies the ID
for the report that the host requests in the lower one byte of the wValue field in the setup data. If
this value is 0, the time rates for all interrupt transfers of the target device are returned.

When the GET_PROTOCOL command is received, the function returns the current active
protocol (boot protocol or report protocol) to the host through the data state of control transfer.
Value 0 indicates the boot protocol, and value 1 indicates the report protocol.

When the SET_REPORT command is received, the function receives HID data through the data
stage of control transfer. However, the function may ignore the command from the host.

When the SET_IDLE command is received, the function stops interrupt transfer for the time
specified in the upper one byte of the wValue field in the setup data. The time is expressed in time
rate in 4-ms units. The lower one byte of the wValue field specifies the report ID. If this value is

Rev. 1.00, 10/03, page 17 of 58

not 0, the transfer of the specified report ID is stopped. If this value is 0, all interrupt transfers of
the target device are stopped.

When the SET_PROTOCOL command is received, the function specifies the protocol (boot
protocol or report protocol) to be used from that time on. The protocol is specified in the wValue
filed in the setup data (value 0 indicates the boot protocol and value 1 indicates the report
protocol). Note that the report protocol is the default protocol of the function.

Rev. 1.00, 10/03, page 18 of 58

Rev. 1.00, 10/03, page 19 of 58

Section 3 Development Environment

This section looks at the development environment used to develop this system. The devices
(tools) listed below were used when developing the system.

• H8S/2218 Solution Engine (hereafter called the MS2218CP; type number: MS2218CP01)
manufactured by Hitachi ULSI Systems Co., Ltd.

• E10A Emulator manufactured by Renesas Technology Corp.
• PC (Windows 95/Windows98/WindowsMe/Windows 2000/Windows XP) equipped

with a PCMCIA, PCI, ISA, or USB slot
• PC (WindowsMe/Windows 2000/Windows XP) to serve as the USB host
• USB cable
• Debugging Interface (hereafter called the HDI) manufactured by Renesas Technology Corp.
• High-Performance Embedded Workshop (hereafter called the HEW) manufactured by Renesas

Technology Corp.

3.1 Hardware Environment

Figure 3.1 shows device connections.

H8S/2218 Solution Engine

Windows
XP,2000,ME

USBƒ zƒ XƒgPC

E10A PC

ACƒ Aƒ _ƒ vƒ ̂

USBƒ P [ƒ uƒ ‹

Figure 3.1 Device Connections

Windows® Me/

Windows® 2000/

Windows® XP

AC adapter

USB cable
USB host PC

E10A PC
H8S/2218 Solution Engine

Rev. 1.00, 10/03, page 20 of 58

1. MS2218CP
Some DIP switch and jumper settings on the MS2218CP board must be changed from those at
shipment. Before turning on the power, ensure that the switches and jumpers are set as follows.
There is no need to change any other switches and jumpers.

Table 3.1 Switch and Jumper Settings

At Shipment After Change Function
SW1-1 Off SW1-1 On

SW1-2 Off SW1-1 Off

SW1-3 Off SW1-1 Off

Selects operation mode 6

SW1-5 Off SW1-1 On Selects the E10A emulator mode

J-3 Closed J-3 Open Selects the USB self-powered mode

J-9 Closed J-9 Open Selects the big endian mode.

2. USB host PC
A PC with WindowsMe/Windows 2000/Windows XP installed, and with a USB port, is
used as the USB host. This system uses the HID class device driver installed as a standard part
of the WindowsMe/Windows 2000/Windows XP system, and so there is no need to
install new drivers.

3. E10A
The PCMCIA is used for the communication interface between the E10A PC and the E10A
emulator.
The E10A card should be inserted into a PC card slot and connected to the MS2218CP via an
interface cable. After connection, start the HDI and perform emulation.

Rev. 1.00, 10/03, page 21 of 58

3.2 Software Environment

A sample program, as well as the compiler and linker used, are explained.

3.2.1 Sample Program

Files required for the sample program are all stored in the H8S2218 folder. When this entire folder
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are shown in figure 3.2 below.

H8S2218

CatHidTypedef.h
SetHidInfo.h
SysMemMap.h

CatProTypedef.h
SetMacro.h

CatTypedef.h
SetSystemSwich.h

h8s2218.h
SetUsbInfo.h

DoControl.c
DoRequest.c

DoHidDataFormat.c
StartUp.c

DoInterrupt.c
UsbMain.c

DoMouse.c
DoRequest HIDClass.c

ch38iop (folder)
sct.src
debugger.HDT

dwfinf (folder)

debugger.MOT
debugger.hds

log.txt
debugger.MAP
debugger.ABS

ReadMe.txt
debugger.HDW
BuildOfHew.bat

InkSet1.sub

Figure 3.2 Files Included in the Folder

3.2.2 Compiling and Linking

The sample program is compiled and linked using the following software.

High-Performance Embedded Workshop Version 1.0 (release 9) (hereafter HEW)

When HEW is installed in C:\Hew*, the procedure for compiling and linking the program is as
follows.

First, a folder named Tmp should be created below the C:\Hew folder for use in compiling (figure
3.3).

C:\

\Hew

\Tmp

Figure 3.3 Creating a Working Folder

Rev. 1.00, 10/03, page 22 of 58

Next, the folder in which the sample program is stored (H8S2218) should be copied to C:\Usr (or
can be copied to any location, then "C:\Usr\h8s2218" written in the debugger.hds file should be
modified to the path to the copied folder). In addition to the sample program, this folder contains a
batch file named BuildOfHew.bat. This batch file sets the path, specifies compile options,
specifies a log file indicating the compile and linking results, and performs other operations. When
BuildOfHew.bat is executed, compiling and linking are performed. As a result, an executable file
named debugger.MOT, which is a file in the Motorola S-type format, is created within the folder.
At the same time, a map file named debugger.MAP and a log file named log.txt are created. The
map file indicates the program size and addresses of variables. The compile results (whether there
are any errors etc.) are recorded in the log file. (Figure 3.4)

Note: * If HEW is installed in a folder other than C:\Hew, the compiler path setting and
settings for environment variables used by the compiler in BuildOfHew.bat, as well as
the library settings in InkSet1.sub, must be changed. Here the compiler path setting
should be changed to the path of ch38.exe, the setting for the environment variable
ch38 used by the compiler should be set to the folder of machine.h, and the setting of
ch38tmp should specify the work folder for the compiler. The library setting should
specify the path of c8s26a.lib.

Batch file

BuildOfHew.bat
Execution

Execution result

debugger.ABS

debugger.MOT

debugger.MAP

log.txt

H8S2218

Figure 3.4 Compile Results

Rev. 1.00, 10/03, page 23 of 58

3.3 Loading and Executing the Program

Figure 3.5 shows the memory map for the sample program.

Interrupt transfer area

Stack area

Empty area

Empty area

Vector area

P, C, and D areas

B and R areas

0000 0000

0000 01BF

0000 0200

0000 1CE1

00FF FFC0

00FF FFCF

00FF EC50
00FF EE85

00FF FFFF

00FF C000
00FF EC50

448 bytes

6882 bytes

11345 bytes

565 bytes

16 bytes

Note: The memory map differs according to the compiler version,
compiling conditions, firmware upgrade, etc.

Figure 3.5 Memory Map

As shown in figure 3.5, this sample program allocates areas for vectors, P, C, and D to the on-chip
flash memory area in area 0, and the stack, B, and R areas to the on-chip RAM. These memory
allocations are specified by the InkSet1.sub file in the H8S2218 folder. When modifying the
program allocation, this file must be modified.

Rev. 1.00, 10/03, page 24 of 58

3.3.1 Loading the Program

In order to load the sample program into the MS2218CP, the following procedure is used.

• Insert the E10A into the E10A PC in which the HDI has been installed.
• Connect the E10A to the MS2218CP via an E10A cable.
• Turn on the power to the MS2218CP to start up the machine.
• Execute debugger.hds in the H8S2218 folder.
• When the operating frequency is asked, enter the frequency of the installed crystal resonator

(16 or 24 MHz)
• When the registry is asked, enter 0.

Through the above procedure, the E10A starts operation.

3.3.2 Executing the Program

In order to execute the program which was loaded in section 3.3.1 above, the program counter
(PC) must be set appropriately.

Select Register Window from the View menu to open the Registers window. On double-clicking
the numerical area of the register (PC) in the window, a dialog box appears, and the register value
can be changed. Use this dialog box to set the PC to H'0000 0200.

After making the above settings, select Go from the Run menu to write the program to the on-chip
flash memory and execute it.

Rev. 1.00, 10/03, page 25 of 58

3.4 Demonstrating Pseudo Mouse Operation (Cursor Movements)

The sample program demonstrates pseudo mouse operation (cursor movements) without a mouse
connected.

While the program is running, connect series-B connector of the USB cable to the MS2218CP,
and series-A connector to the USB host PC. After control transfer is completed, the human
interface devices and USB human interface devices are displayed in the device manager window,
and the host PC recognizes the MS2218CP as a mouse device.

After the MS2218CP is connected to the host PC, pressing switches SW5 to SW12 generates data
of mouse movements.

Pressing SW5 generates data for the left mouse button pressed, and SW6 for the right mouse
button pressed. Pressing SW8 demonstrates pointer movements. Pressing SW9 generates data for
pointer movement downward in the Y direction, SW10 for pointer movement upward in the Y
direction, SW11 for pointer movement toward right in the X direction, and SW12 for pointer
movement toward left in the X direction. The MS2218CP outputs pseudo mouse data in response
to interrupt-in transfer from the host PC. As a result, the cursor on the USB host PC automatically
starts moving.

Rev. 1.00, 10/03, page 26 of 58

Rev. 1.00, 10/03, page 27 of 58

Section 4 Overview of the Sample Program

In this section, features of the sample program and its structure are explained. This sample
program is an HID class firmware, which runs on the MS2218CP and generates mouse data to
emulate mouse movements. The sample program initiates USB transfers by means of tokens from
the host PC. Of the interrupts from modules in the H8S/2218, there are three interrupts related to
the USB function module: EXIRQ0, EXIRQ1, and IRQ6, but in this sample program, only
EXIRQ0 is used.

Features of this program are as follows.

• Control transfer can be performed.
• Interrupt-in transfer can be used to send pseudo mouse data to the host PC.

4.1 State Transition Diagram

Figure 4.1 shows a state transition diagram for this sample program. In this sample program, as
shown in figure 4.1, there are transitions between four states.

Reset state

Mouse data
generation state

Stationary state

Immediately after the power supply has been turned on,
the system is in reset state. After the initial settings have
been completed, it returns to the stationary state.

Control transfer

Interrupt transport

USB communication state

Initial settings completed

Timer interrupt generated

USB communication
completed

Interrupt generated
(EXIRQ0)

Figure 4.1 State Transition Diagram

• Reset State
Upon power-on reset and manual reset, this state is entered. In the reset state, the H8S/2218
mainly performs initial settings.

• Stationary State
When initial settings are completed, a stationary state is entered in the main loop.

Rev. 1.00, 10/03, page 28 of 58

• USB Communication State
In the stationary state, when an interrupt from the USB module occurs, this state is entered. In
the USB communication state, data transfer is performed by a transfer method according to the
type of interrupt. The interrupts used in this sample program are indicated by interrupt flag
registers 0, 1, and 3 (UIFR0, UIFR1, and UIFR3), and there are nine interrupt types in all.
When an interrupt factor occurs, the corresponding bits in UIFR0, UIFR1, or UIFR3 are set to
1.

• Mouse Data Generation State
In the stationary state, when a compare match interrupt from 16-bit timer TGRA_2 occurs, this
state is entered. In the mouse data generation state, mouse data is generated by pressing
switches on the board or is automatically generated without a mouse connected. A compare
match interrupt occurs every 16 ms or 10 ms.

4.2 USB Communication State

The USB communication state can be further divided into two states according to the transfer type
(see figure 4.2). When an interrupt occurs, first there is a transition to the USB communication
state, and then there is further branching to a transfer state according to the interrupt type. The
branching method is explained in section 5, Sample Program Operation.

USB communication state

In
te

rr
up

t-
in

 tr
an

sf
er

C
on

tr
ol

 tr
an

sf
er

DoControl.c
DoRequest.c
DoRequestHIDClass.c

DoInterrupt.c

Figure 4.2 USB Communication State

Rev. 1.00, 10/03, page 29 of 58

4.3 File Structure

This sample program consists of eight source files and nine header files. The overall file structure
is shown in table 4.1. Each function is arranged in one file by transfer method or function type.

Table 4.1 File Structure

File Name Principle Role
StartUp.c Microcomputer default settings

UsbMain.c
Judging the causes of interrupts
Sending and receiving packets

DoControl.c Executing control transfer

DoInterrupt.c Executing interrupt-in transfer

DoRequest.c Processing setup commands issued by the host

DoRequestHIDClass.c Processing HID class commands

DoHidDataFormat.c Formatting HID data to be transferred

DoMouse.c Generating mouse data

CatHidTypedef.h Defining types and structures specific to HID class

CatProType.h Declaring prototypes

CatTypedef.h Defining the basic structures used in USB firmware

h8s2218.h Defining H8S/2218 registers

SetHidInfo.h Default settings of variables needed to support HID class

SetMacro.h Defining macros

SetSystemSwitch.h System operation settings

SetUsbInfo.h Default settings of variables needed to support USB firmware

SysMemMap.h Defining MS2218CP memory map addresses

Rev. 1.00, 10/03, page 30 of 58

4.4 Purposes of Functions

Tables 4.2 to 4.9 show functions contained in each file and their purposes.

Table 4.2 UsbMain.c

File in Which Stored Function Name Purpose

BranchOfInt Discriminates interrupt factors, and calls function
according to interrupt

GetPacket Writes data transferred from the host controller to
RAM

GetPacket4
Writes data transferred from the host controller to
RAM in longwords (ring buffer supported, not used
by this sample program)

GetPacket4S
Writes data transferred from the host controller to
RAM in longwords (ring buffer not supported, high-
speed version)

PutPacket Writes data for transfer to the host controller to the
USB module

PutPacket4
Writes data for transfer to the host controller to the
USB module in longwords (ring buffer supported,
not used by this sample program)

PutPacket4S
Writes data for transfer to the host controller to the
USB module in longwords (ring buffer not
supported, high-speed version)

SetControlOutContents Overwrites data with that sent from the host

SetUsbModule Makes USB module initial settings

ActBusReset Clears FIFO on receiving bus reset

ActBusVcc Pulls up D+ and controls USB module when the
USB cable is connected or disconnected

ConvRealn Reads data of a specified byte length from a
specified address

UsbMain.c

ConvReflexn Reads data of a specified byte length from
specified addresses, in reverse order

In UsbMain.c, interrupt factors are discriminated by the USB interrupt flag registers, and functions
are called according to the interrupt type. Also, packets are sent and received between the host
controller and function modules.

Rev. 1.00, 10/03, page 31 of 58

Table 4.3 StartUp.c

File in Which Stored Function Name Purpose

SetPowerOnSection
Sets BSC, terminals, and interrupt controller,
calls initialization routines, and shifts to the
main loop

_INITSCT Copies variables that have default settings to
the RAM work area

InitMemory Allocates memory areas

StartUp.c

InitSystem Specifies the USB clock, system interrupt
masks, and timers

When a power-on reset or manual reset is carried out, the SetPowerOnSection of the StartUp.c file
is called. At this point, initial settings for the H8S/2218 registers or USB clock are performed.

Table 4.4 DoRequest.c

File in Which Stored Function Name Purpose

DecStandardCommands Decodes command issued by host controller,
and processes standard commandsDoRequest.c

DecVenderCommands Processes vendor commands

During control transfer, commands sent from the host controller are decoded and processed. In this
sample program, a vendor ID of 045B is used. When the customer develops a product, the
customer should obtain a vendor ID at the USB Implementers' Forum. Because vendor commands
are not used, DecVenderCommands does not perform any action. In order to use a vendor
command, the customer should develop a program.

Table 4.5 DoRequestHIDClass.c

File in Which Stored Function Name Purpose
DecHIDClassCommands Processes HID class commands

DoRequestHIDClass.c
ActIdleCount This is called by an SOF interrupt, and counts

the time for which interrupt transfer stops

These functions carry out processing according to the HID class commands (GET_REPORT,
GET_IDLE, GET_PROTOCOL, SET_REPORT, SET_IDLE, and SET_PROTOCOL).

The GET_REPORT command sends HID data from the device to the host PC through control
transfer.
The GET_IDLE command returns the rate for the time for which interrupt transfer stops.
The GET_PROTOCOL command returns the current active protocol (boot protocol or report
protocol).

Rev. 1.00, 10/03, page 32 of 58

The SET_REPORT command sends HID data from the host PC to the device through control
transfer, but this sample program does not support out-direction communications of HID data and
only receives data.
The SET_IDLE command specifies the rate for the time for which interrupt transfer stops.
The SET_PROTOCOL command specifies the active protocol (boot protocol or report protocol).

Table 4.6 DoControl.c

File in Which Stored Function Name Purpose
ActControl Controls the setup stage of control transfer

ActControlIn
Controls the data stage and status stage of control-in
transfer (transfer in which the data stage is in the IN
direction)

ActControlOut
Controls the data stage and status stage of control-out
transfer (transfer in which the data stage is in the OUT
direction)

DoControl.c

ActControlInOut Sorts the data stage and status stage of control transfers
and direct them to ActControlIn and ActControlOut.

When control transfer interrupt SETUP TS is generated, ActControl obtains the command, and
decoding is carried out by DecStandardCommands to determine the transfer direction. Next, when
control transfer interrupt EP0o TS, EP0i TR, or EP0i TS is generated, ActControlInOut calls either
ActControlIn or ActControlOut depending on the transfer direction, and the data stage and status
stage are carried out by the called function.

Table 4.7 DoInterrupt.c

File in Which Stored Function Name Purpose

DoInterrupt.c ActInterruptIn
On receiving the in-token of the interrupt transfer, gets
data from the data transfer buffer as soon as FIFO has
an empty space and prepares for interrupt transfer

On receiving the in-token of the interrupt transfer from the host PC, this function prepares next
data to be sent as soon as the interrupt transfer buffer becomes empty.

Rev. 1.00, 10/03, page 33 of 58

Table 4.8 DoHidDataFormat.c

File in Which Stored Function Name Purpose

ActMakeHidData

A program interface for HID data
communications.
Calls ActInterruptIn if interrupt transfer stops
after ActReportProtocol is called.DoHidDataFormat.c

ActReportProtocol
Arranges transfer data according to the format
specified by the Report descriptor, and writes
the data to the transmit buffer.

These functions prepare HID data to be transmitted to the host PC.

Table 4.9 DoMouse.c

File in Which Stored Function Name Purpose

MousePushedDataInput
This is initiated by a timer interrupt, and determines
whether to perform key scan or to generate data for
mouse movements.

MousePushedDataInput1 Performs key scan and generates mouse data.DoMouse.c

MousePushedDataInput2 Generates data for mouse movements according to
the time counted by the timer.

DoMouse.c uses a timer interrupt and generates mouse data.

Figure 4.3 shows the interrelationship between the functions explained in tables 4.2 to 4.9. The
upper-side functions can call the lower-side functions. Also, multiple functions can call the same
function. In the stationary state, SetPowerOnSection calls other functions, and in the USB
communication state which occurs on an interrupt, BranchOfInt calls other functions. Figure 4.3
shows the hierarchical relation of functions; there is no order for function calling. For information
on the order in which functions are called, please refer to the flow charts of section 5, Sample
Program Operation.

Rev. 1.00, 10/03, page 34 of 58

SetPowerOnSection

InitSystem_INITSCT

ActControl

ConvReflexn

PutPacket

GetPacket

InitMemory

BranchOfInt

ActInterruptIn

ActInterruptIn

ActInterruptIn

ActBusReset SetUsbModule ActBusVcc ActIdleCount

ActControlInOut

ActControlOut ActControlInGetPacket4SDecStandardCommands

DecHIDClassCommandsDecVenderCommands

SetControlOutContents PutPacket

ActReportProtocol

ActMakeHidData

Mouse Pushed Data Input 1 Mouse Pushed Data Input 2

Mouse Pushed Data Input

Figure 4.3 Interrelationship between Functions

Rev. 1.00, 10/03, page 35 of 58

Section 5 Sample Program Operation

In this section, the operation of the sample program is explained, relating it to the operation of the
USB function module.

5.1 Main Loop

When the microcomputer is in the reset state, the internal state of the CPU and the registers of on-
chip peripheral modules are initialized. Next, the function SetPowerOnSection in StartUp.c is
called, and the CPU is initialized. Figure 5.1 is a flow chart for the SetPowerOnSection function
operation.

START

Microcomputer
default settings

RAM is
cleared

Variables
are initialized

Constant
status

(inifinite loop)

StartUp.c <SetPowerOnSection>

After the various default settings have been
entered, the program enters the stationary
mode.

Figure 5.1 Main Loop

Rev. 1.00, 10/03, page 36 of 58

5.2 Types of Interrupts

As explained in section 4, the interrupts used in this sample program are indicated by the interrupt
flag registers 0, 1, and 3 (UIFR0, UIFR1, and UIFR3); there are a total of nine types of interrupts.
When an interrupt factor occurs, the corresponding bits in the interrupt flag registers are set to 1,
and an EXIRQ0 interrupt request is sent to the CPU. In the sample program, the interrupt flag
registers are read as a result of this interrupt request, and the corresponding USB communication
is performed. Figure 5.2 shows the interrupt flag registers and their relation to USB
communication.

Rev. 1.00, 10/03, page 37 of 58

USB interrupt flag register 0 (UIFR0)

USB interrupt flag register 1 (UIFR1)

USB interrupt flag register 3 (UFIR3)

Bit:

Bit name:

Bit:

Bit name:

Bit:

Bit name:

USB clock
stabilization detection

Interrupt transferBus reset Control transfer

Not used

Cable connectionNot usedIdle time count

Not used

Note: This sample program does not support bulk transfers.

BRST

SOF SETC SPRSs SPRSi VBUSs VBUSi

Setup
TS

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
EP1
ALL

EMPTYs

EP2
READY

EP1
TR

EP1
EMPTY

CK48
READY

EP3
TS

EP3
TR

EP0o
TS

EP0i
TR

EP0i
TS

7 6 5 4 3 2 1 0

Figure 5.2 Types of Interrupt Flags

Rev. 1.00, 10/03, page 38 of 58

5.2.1 Method of Branching to Different Transfer Processes

In this sample program, the transfer method is determined by the type of interrupt from the USB
module. Branching to each transfer method is executed by BranchOfInt in UsbMain.c. Table 5.1
shows the relations between the types of interrupts and the functions called by BranchOfInt.

Table 5.1 Interrupt Types and Functions Called on Branching

Register Name Bit Bit Name Name of Function Called

7 BRST ActBusReset

6

5 EP3 TR

4 EP3 TS ActInterruptIn

3 EP0o TS ActControlInOut

2 EP0i TR ActControlInOut

1 EP0i TS ActControlInOut

UIFR0

0 SETUP TS ActControl

7 CK48 READY SetUSBModule

6 SOF ActIdleCount

5 SETC

4

3 SPRSs

2 SPRSi

1 VBUSs

UIFR3

0 VBUSi ActBusVcc

The EP0iTS and EP0oTS interrupts are used both for control-in and control-out transfer. Hence in
order to manage the direction and stage of control transfer, the sample program has three states:
TRANS_IN, TRANS_OUT, and WAIT. For details, refer to section 5.6, Control Transfers.

In the H8S/2218 Group, 2212 Group hardware manual, operation of the USB function module
when an interrupt occurs, and a summary of operation on the application side are described. From
the next section, details of application-side firmware are explained for each USB transfer method.

Rev. 1.00, 10/03, page 39 of 58

5.3 USB Operating Clock Stabilization Interrupt

This interrupt occurs when the USB operating clock (48 MHz) stabilization time is automatically
counted after USB module stop is canceled. After receiving the interrupt, the sample program
waits for USB cable connection.

USB function module

USB operating clock
 stabilization time waited?

USB operating clock stabilization
interrupt generated

EXIRQ0
interrupt

generated

SetUSBModule

Sample program

NO

YES

USB interface reset canceled
UCTLR/UIFRST = 0

Wait for USB cable connection

UIFR3/CK48Ready = 0

Power-on reset state canceled

USB operating clock
oscillation started

Wait for USB operating clock
stabilization

USB interface is ready

Interrupt settings

USB operating clock selected
UCTLR/UCKS3-0 written

USB module stop canceled
MSTPCRB/MSTPB = 0

Interrupt settings

Figure 5.3 USB Operating Clock Stabilization Interrupt

Rev. 1.00, 10/03, page 40 of 58

5.4 Interrupt on Cable Connection (VBUS)

This interrupt occurs when the cable of the USB function module is connected to the host
controller. On the application side, after completion of initial microcomputer settings, a general-
purpose output port is employed to pull-up the USB data bus D+. By means of this pull-up, the
host controller recognizes that the device has been connected. (Figure 5.4)

USB function module

USB cable
connected/disconnected

USB cable status
checked

All FIFOs cleared UDC core reset

UDC core reset

Wait for UBC cable
connection

EPINFO automatically
loaded to UDC core

Wait for bus reset signal

EXIRQ0 interrupt
 generated

VBUSi flag cleared

D+ pull-up enabled

UDC core reset
canceled

D+ pull-up disabled

ActBusVcc

Sample program

Connected Disconnected

VBUS interrupt generated

USB module initialization
completed

Figure 5.4 Interrupt on Cable Connection

Rev. 1.00, 10/03, page 41 of 58

5.5 Bus Reset Interrupt (BRST)

When the host controller detects that a device has been connected to the USB data bus, it outputs a
bus reset signal. When receiving this bus reset signal, the USB function module generates a bus
reset interrupt.

USB function module

Bus reset received
from the host

BRST interrupt
generated

Wait for setup token

 All endpoint stall
canceled

EXIRQ0 interrupt
generated

 BRST flag cleared

 All FIFOs cleared

ActBusReset

 Sample program

Figure 5.5 Bus Reset Interrupt

Rev. 1.00, 10/03, page 42 of 58

5.6 Control Transfers

In control transfers, bits 0, 1, and 3 of the interrupt flag registers are used. Control transfers can be
divided into two types according to the direction of data in the data stage (figure 5.6). In the data
stage, data transfers from the host controller to the USB function module are control-out transfers,
and transfers in the opposite direction are control-in transfers.

Control-out transfers

Control-in transfers

Host controller USB function module

USB function moduleHost controller

Data (Data stage)

(Data stage)Data

Figure 5.6 Control Transfers

Control transfers consist of three stages: setup, data (no data is possible), and status (figure 5.7).
Further, the data stage consists of multiple bus transactions.

In control transfers, stage changes are recognized through the reversal of the data direction. Hence
the same interrupt flag is used to call a function to perform control-in or control-out transfers
(table 5.1). For this reason, the firmware must use states to manage the type of control transfer
currently being performed, whether control-in or control-out (figure 5.7), and must call the
appropriate function. States in the data stage (TRANS_IN and TRANS_OUT) are determined by
commands received in the setup stage.

Rev. 1.00, 10/03, page 43 of 58

SETUP (0)

Setup stage Data stage

...

...

Status stage

Control-in

Firmware state

Control-out

Firmware state

No data

Firmware state

IN (1) IN (0)

DATA0 DATA1 DATA0

IN (0/1)

DATA0/1

OUT (1)

DATA1

WAITWAIT TRANS_IN

SETUP (0) OUT (1) OUT (0)

DATA0 DATA1 DATA0

OUT (0/1)

DATA0/1

IN (1)

DATA1

WAITWAIT TRANS_OUT

SETUP (0)

DATA0

IN

DATA1

WAITWAIT TRANS_OUT

Figure 5.7 Status in Control Transfers

5.6.1 Setup Stage

In the setup stage, the host and function modules exchange commands. For both control-in and
control-out transfer, the firmware goes into the WAIT state. Depending on the type of command
issued, discrimination between control-in transfer and control-out transfer is performed, and the
state of the firmware in the data stage (TRANS_IN or TRANS_OUT) is determined.

• Command for control-in transfers: GetDescriptor (Standard command)

Figure 5.8 shows operation of the sample program in the setup stage. The figure on the left shows
operation of the USB function module.

Rev. 1.00, 10/03, page 44 of 58

USB function module

Setup token received

Data stage

8-byte command data
received at EP0s

Application processing
command?

Setup command receive
complete flag set

(UIFR0/SETUP TS = 1)

BranchOfInt

Automatic
processing

by USB module

YES

ActControl

SETUP TS flag cleared
EP0i TR flag cleared

EP0o/EP0i FIFO cleared

State changed to WAIT

Read pointer and write pointer to
the command buffer initialized

DecStandardCommands

NO

NO

NO

NO

NO

NONO

NO

Sample program

 EXIRQ0 interrupt
generated

GetPacket4S
Data read

from EP0s FIFO

EP0s read complete bit set to 1
(UTRG/EP0s RDFN=1)

DecVender
Commands Dec HIDClass

Commands

Vendor command?

Class command?

Supported standard
command to be processed?

Get and Set Descriptor
processing prepared

State changed
to TRANS_OUT

State changed
to TRANS_IN

State changed
to STALL

Interrupt enable bit set to 1
for control-in transfer

Interrupt enable bit set to 1
for control-out transfer

IN direction?

NO
MaxPacketSize?

PutPacket
Data written

to FIFO

EP0i and EP0o
interrupts masked

EP0i TS
interrupt masked

EP0 STALL
bit set to 1

Supported
command?

Supported
command?

YES

YES

YES

YES

YES

YES

YES

Firmware in STALL state?

Status stage

YES

Data stage

Figure 5.8 Setup Stage

Rev. 1.00, 10/03, page 45 of 58

5.6.2 Data Stage

In the data stage, the host and function module exchange data. The firmware state becomes
TRANS_IN for control-in transfers, and TRANS_OUT for control-out transfers, according to the
result of decoding of the command in the setup stage. Figures 5.9 and 5.10 show the operation of
the sample program in the data stage of control transfer.

USB function module Sample program

In-token received

Data sent to host

Valid data in
FP0i FIFO?

EP0i transmit flag set
(UIFR0/EP0iTS = 1)

UTRG0/EP0s RDFN
set to 1?

YES

YES

ActControlIn

UIFR0/EP0i TS interrupt
flag cleared

EP0i TS interrupt flag
masked

Data written to
UEDR0i data register

EP0i packet enable bit set to 1
(UTRG0/EP0i PKTE = 1)

PutPacket

NO

NO

NO

YES

NO

 EXIRQ0 interrupt
generated

ACK

NAK

NAK

 Receive complete
 interrupt?

(UIFR0/EP0o TS)

MaxPacketSize?

Status stage

Return

YES

ActControlInOut

NO

YES

Firmware in
TRANS_OUT state?

When data direction changes,
data stage is completed and

status stage is entered.

BranchOfInt

Control-out transfer
(figure 5.10)

Figure 5.9 Data Stage (Control-In Transfer)

Rev. 1.00, 10/03, page 46 of 58

USB function module

Out-token received

Out-token received

EP0o receive complete flag set
(UIFR0/EP0o TS = 1)

Data received from host

Any space
in EP0o FIFO?

Any space
in EP0o FIFO?

YES

YES

ActControlOut

 EP0o receive complete
flag cleared

(UIFR0/EP0o TS = 0)

Data read from EP0o
receive data size register

(UESZ0o)

Data read from
data register (UEDR0o)

EP0o read complete bit set to 1
(UTRG0/EP0o RDFN = 1)

GetPacket

YES

NO

NO

Sample program

EXIRQ0
interrupt
generated

ACK

NAK

NAK

Receive complete
interrupt?

(UIFR0/EP0o TS)

Status stage

 When data direction changes,
data stage is completed and

status stage is entered.

NO

ActControlInOut

YES

NO

Firmware in
TRANS_OUT state?

When firmware state is
TRANS_OUT

BranchOfInt

Control-in transfer
(figure 5.9)

Figure 5.10 Data Stage (Control-Out Transfer)

Rev. 1.00, 10/03, page 47 of 58

5.6.3 Status Stage

The status stage begins with a token for the opposite direction from the data stage. That is, in
control-in transfer, the status stage begins with an out-token from the host controller; in control-
out transfer, it begins with an in-token from the host controller. Figures 5.11 and 5.12 show the
operation of the sample program in the status stage of control transfer.

USB function module

Out-token received

Control transfer end

EP0o receive complete flag set
(UIFR0/EP0o TS = 1)

0 byte received from host

ActControlIn

EP0o-related interrupt
flags excluding SETUP

flag cleared

Firmware state
changed to WAIT

EP0o receive complete
flag set to 1

(UTRG0/EP0o RDFN = 1)

Control-in transfer end

NO

Sample program

ACK

Receive complete
interrupt?

(UIFR0/EP0o TS)

Data stage

EXIRQ0
 interrupt
generated

ActControlInOut

NO

YES

YES

Firmware in
TRANS_OUT state?

When firmware state is
TRANS_IN

BranchOfInt

Control-out transfer
(figure 5.12)

Figure 5.11 Status Stage (Control-In Transfer)

Rev. 1.00, 10/03, page 48 of 58

USB function module

In-token received

When firmware state is
TRANS_OUT

Control transfer end

EP0i transmit complete
flag set

(UIFR0/EP0i TS = 1)

0 byte sent to host
ActControlOut

EP0i transmit complete
flag cleared

(UIFR0/EP0i TS = 0)

Firmware state
changed to WAIT

 EP0i transfer request
flag cleared

(UIFR0/EP0i TR = 0)

Data (received at data stage)
written

EP0i packet enable
bit set to 1

(UTRG0/EP0i PKTE = 1)

YES

YES

YES

NO

NO

NO

Sample programEXIRQ0
interrupt

generated

ACK

NAK

Receive complete
interrupt?

(UIFR0/EP0o TS)

Receive complete
interrupt?

(UIFR0/EP0i TR)

Data stage

Valid data in
EP0i FIFO?

ActControlInOut

NO

Firmware in
TRANS_OUT state?

BranchOfInt

Control-in transfer
(figure 5.11)

YES

SetControlOutContents

Figure 5.12 Status Stage (Control-Out Transfer)

Rev. 1.00, 10/03, page 49 of 58

5.7 Interrupt Transfers

Interrupt transfers can also be classified into two types according to the direction of data
transmission. Data transfers from the USB function module to the host controller are interrupt-in
transfers, and transfers in the opposite direction are interrupt-out transfers. The H8S/2218 only
supports interrupt-in transfers (figure 5.13).

Host controller USB function module

Data

Figure 5.13 Interrupt Transfers

5.7.1 Interrupt-In Transfers

In interrupt-in transfers, bit 4 (EP3TS) of interrupt flag register 0 is used. On receiving an in-token
from the USB host controller, the USB function module sends the NAK handshake and sets the
EP3TR flag if no valid data is found in the EP3 FIFO. If valid data is found in the FIFO, the USB
function module sends data to the USB host controller, and sets the EP3TS flag when receiving
the ACK handshake from the USB host controller.

After the EP3TS flag is set, the USB function module executes the ActInterruptIn function. When
there is HID data to be sent, this function writes the data to USB endpoint data register 3 (UEDR3)
and waits for an in-token to be sent from the USB host controller. At this point, the firmware is in
either WAIT or TRANS_IN state. Figure 5.14 shows operation of the sample program in interrupt-
in transfer. The figure on the left shows operation of the USB function module.

Rev. 1.00, 10/03, page 50 of 58

USB function module Sample program

In-token received

Data sent to host

Valid data
in EP3 FIFO?

YES

ActInterrputIn

State changed
to TRANS_IN

State changed
to WAIT

Data written to
transmit register and sent

NO

YES

NO

EXIRQ0 interrupt
generated

ACK

NAK

Any data
to send?

BranchOfInt

EP3 transfer request set
(UIFR0/EP3 TS=1)

PutPacket

UIFR0/EP3 TS
interrupt flag cleared

Figure 5.14 Interrupt-In Transfer

Rev. 1.00, 10/03, page 51 of 58

5.8 Mouse Data Generation

As no mouse can be connected to the MS2218CP, the sample program generates pseudo data (HID
data) of the USB mouse by using SW5 to SW12 on the MS2218CP to emulate USB mouse
operation.

To generate HID data, a 16-bit timer interrupt in the H8S/2218 is used to perform key scan for
SW5 to SW12 on the MS2218CP.

• Pressing SW5 generates data for the left mouse button pressed

• Pressing SW6 generates data for the right mouse button pressed

• Pressing SW8 reads pointer movement data from the data table and demonstrates pointer
movements (demonstration mode)

• Pressing SW9 generates data for pointer movement downward in the Y direction

• Pressing SW10 generates data for pointer movement upward in the Y direction

• Pressing SW11 generates data for pointer movement toward right in the X direction

• Pressing SW12 generates data for pointer movement toward left in the X direction

The data generated by these switches is passed to the ActMakeHidData function, and the HID data
is sent to the host PC by using interrupt transfer. Figure 5.15 shows HID data generation of the
sample program.

Rev. 1.00, 10/03, page 52 of 58

ActMakeHidData

ActMakeHidData

ActMakeHidData

MousePushedDataInput2

MousePushedDataInput

MousePushedDataInput1

NO

NO

NO

YES

NO

NO

YES

YES

YES

YES

Mouse movement data
generated

Execution changed to
demonstration mode

Execution changed to
manual operation mode

Data written
 to transfer buffer

Return

Return

Timer interrupt generated

Data generated
according to

the pressed switch
Data 0 generated

Data written to
transfer buffer

Data written
to transfer buffer

Executing
in demonstration

mode?

Executing
in demonstration

mode?

SW8
pressed?

SW5, 6, or 9 to 12
 pressed?

Data other than 0
processed in the last

operation?

Figure 5.15 Mouse Data Generation

Rev. 1.00, 10/03, page 53 of 58

Section 6 Analyzer Data

In this section, we look at how measurement is carried out with the USB Advisor, a USB protocol
analyzer manufactured by CATC (http://www.catc.com), using the USB function module in the
H8S/2218, and at what happens to the data as it actually flows along the bus. The following gives
the description for control transfer when a device is connected and interrupt-in transfer of HID
data as examples.

Note: The Packet # found in front of each packet is the packet number used when measuring.
The Idle found at the end of each packet indicates the idle between packets.

6.1 Control Transfer when Device is Connected

Figure 6.1 shows the measurement made, with a device connected to the host controller, while
shifting from the power-on state (the power is supplied to Vbus) until the configuration state
(device is ready for being used).

Though the packet scheduling may differ depending on the host controller, the command flow to
the configuration state is always the same.

ƒ
Rƒ
“ƒ
gƒ

[ƒ
‹“
]‘
—iG
e
t_D

e
sc
ripto

r(D
e
vic
e
)
j

ƒ tƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €(1ms)

©ƒ Zƒbƒgƒ Aƒbƒ vƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

ƒ Zƒbƒgƒ Aƒbƒ v

ƒ Xƒ e [ƒ W

ƒ f [ƒ ̂

ƒ Xƒ e [ƒ W

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

ªƒ f [ƒ ƒ̂ pƒ Pƒbƒg(18byte)

DeviceDescriptor î• ñ ©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

©ƒ Aƒ Eƒgƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0byte)

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒŠƒ Zƒbƒg‚ ª“ ü‚è‚ Ü‚ ·

¦Ž Ÿ €‚ É‘ ±‚ «‚ Ü‚ · c
c

← Setup token packet

← Data packet

← ACK handshake packet

← ACK handshake packet

← ACK handshake packet

← Data packet (0 byte)

← Out-token packet

← In-token packet

← Reset input

Continued on next page

↑ Data packet (18 bytes)
 (Device Descriptor information)

Setup
stage

Data
stage

Status
stage

Frame
(1 ms)

Frame
(1 ms)

C
on

tro
l t

ra
ns

fe
r (

G
et

_D
es

cr
ip

to
r (

D
ev

ic
e)

)

Frame (1 ms)

�
�

Rev. 1.00, 10/03, page 54 of 58

ƒ
Rƒ
“ƒ
gƒ

[ƒ
‹“
]‘
—iS
e
t_A

ddre
ss

j

¦‚±‚ ÌŠ ÔSOFƒ pƒ Pƒbƒg‚ Ì‚ Ý‚ ª‘ ±‚ «‚ Ü‚ · c
c

©ƒ Zƒbƒgƒ Aƒbƒ vƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

ƒtƒ Œ [ƒ €

(1ms) ƒ Zƒbƒgƒ Aƒbƒ v

ƒ Xƒ e [ƒ W

ƒtƒ Œ [ƒ €

(1ms)

ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W
©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0byte)

y’ ẑ È ~ƒ Aƒhƒ Œƒ Xƒ Xƒ e [ƒg‚ É‘ Ĵ Ú‚µ‚ Ü‚ ·
¦‚±‚ ÌŠ ÔSOFƒ pƒ Pƒbƒg‚ Ì‚ Ý‚ ª‘ ±‚ «‚ Ü‚ · c

c

©ƒ Zƒbƒgƒ Aƒbƒ vƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

ªƒ f [ƒ ƒ̂ pƒ Pƒbƒg(18byte)

DeviceDescriptor î• ñ ©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Aƒ Eƒgƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0byte)

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒ Zƒbƒgƒ Aƒbƒ v

ƒ Xƒ e [ƒ W

ƒ f [ƒ ̂

ƒ Xƒ e [ƒ W

ƒtƒ Œ [ƒ €

(1ms) ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

ƒ
Rƒ
“ƒ
gƒ

[ƒ
‹“
]‘
—iG
e
t_D

e
sc
ripto

r(D
e
vic
e
)
j

ƒ tƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €(1ms)

ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

ƒ f [ƒ ̂

ƒ Xƒ e [ƒ W

ƒ Zƒbƒgƒ Aƒbƒ v

ƒ Xƒ e [ƒ W

©ƒ Zƒbƒgƒ Aƒbƒ vƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(9byte)

ConfigurationDescriptor î• ñ
©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Aƒ Eƒgƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0byte)

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

ƒ
Rƒ
“ƒ
gƒ

[ƒ
‹“
]‘
—iG
e
t_D

e
sc
ripto

r(C
on
figuratio

n
)
j

Setup
stage

Data
stage

Status
stage

Frame
(1 ms)

Frame
(1 ms)

Frame
(1 ms)

Setup
stage

Data
stage

Status
stage

Frame
(1 ms)

Frame
(1 ms)

Frame
(1 ms)

← Setup token packet

← Setup token packet

← Setup token packet

← In-token packet

← In-token packet

← In-token packet

← Out-token packet

← ACK handshake packet

← ACK handshake packet

← ACK handshake packet

← ACK handshake packet

← ACK handshake packet

← ACK handshake packet

← ACK handshake packet

← ACK handshake packet

← Data packet (9 bytes)
 (Configuration Descriptor
 information)

↑ Data packet (18 bytes)
 (Device Descriptor information)

← Data packet

← Data packet (0 byte)

← Data packet

← Data packet

← Out-token packet

← Data packet (0 byte)

Frame (1 ms)

Setup
stage

Frame
(1 ms)

Status
stage

Frame
(1 ms)

Only SOF packets continue in this period.

Only SOF packets continue in this period.

Transits to address state, hereafter.

C
on

tro
l t

ra
ns

fe
r (

G
et

_D
es

cr
ip

to
r (

D
ev

ic
e)

)
C

on
tro

l t
ra

ns
fe

r (
G

et
_D

es
cr

ip
to

r (
C

on
fig

ur
at

io
n)

)
C

on
tro

l t
ra

ns
fe

r (
Se

t_
Ad

dr
es

s)

← Data packet (0 byte)

�
�

�
�

Rev. 1.00, 10/03, page 55 of 58

ƒ
Rƒ
“ƒ
gƒ

[ƒ
‹“
]‘
—iG
e
t_D

e
sc
ripto

r(C
on
figuratio

n
)
j

©ƒ Zƒbƒgƒ Aƒbƒ vƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

ªƒ f [ƒ ƒ̂ pƒ Pƒbƒg(34byte)

ConfigurationDescriptor î• ñ ©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Aƒ Eƒgƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0byte)

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

ƒ f [ƒ ̂

ƒ Xƒ e [ƒ W

ƒ Zƒbƒgƒ Aƒbƒ v

ƒ Xƒ e [ƒ W

ƒtƒ Œ [ƒ €(1ms)

¦‚±‚ ÌŠ ÔSOFƒ pƒ Pƒbƒg‚ Ì‚ Ý‚ ª‘ ±‚ «‚ Ü‚ · c
c

©ƒ Zƒbƒgƒ Aƒbƒ vƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

ªƒ f [ƒ ƒ̂ pƒ Pƒbƒg(18byte)

DeviceDescriptor î• ñ ©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Aƒ Eƒgƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0byte)

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Zƒbƒgƒ Aƒbƒ vƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(9byte)

ConfigurationDescriptor î• ñ
©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Aƒ Eƒgƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0byte)

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €(1ms)

ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

ƒ f [ƒ ̂

ƒ Xƒ e [ƒ W

ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

ƒ f [ƒ ̂

ƒ Xƒ e [ƒ W

ƒ Zƒbƒgƒ Aƒbƒ v

ƒ Xƒ e [ƒ W

ƒ Zƒbƒgƒ Aƒbƒ v

ƒ Xƒ e [ƒ W

ƒ
Rƒ
“ƒ
gƒ

[ƒ
‹“
]‘
—iG
e
t_D

e
sc
ripto

r(C
on
figuratio

n
)
j

ƒ
Rƒ
“ƒ
gƒ

[ƒ
‹“
]‘
—iG
e
t_D

e
sc
ripto

r(D
e
vic
e
)
j

C
on

tro
l t

ra
ns

fe
r (

G
et

_D
es

cr
ip

to
r (

C
on

fig
ur

at
io

n)
)

C
on

tro
l t

ra
ns

fe
r (

G
et

_D
es

cr
ip

to
r (

D
ev

ic
e)

)

•
•
•
•
•
•
•
•
•G

et_D
escriptor•C

onfiguration
•
•

Frame (1 ms)

← Setup token packet

← Setup token packet

← Setup token packet

← Data packet

← Data packet

← Data packet

← ACK handshake packet

← ACK handshake packet

← ACK handshake packet

← ACK handshake packet

← ACK handshake packet

← In-token packet

← In-token packet

← In-token packet

Only SOF packets continue in this period.

↑ Data packet (34 bytes)
 (Configuration
 Descriptor information)

← ACK handshake packet

← Data packet (0 byte)

← Out-token packet

← ACK handshake packet

← ACK handshake packet

← Data packet (0 byte)

← Out-token packet

← Data packet (0 byte)
← Out-token packet

← ACK handshake packet

�
�

Setup
stage

Status
stage

Setup
stage

Data
stage

Status
stage

Setup
stage

Status
stage

Frame
(1 ms)

Frame
(1 ms)

Frame
(1 ms)

Frame
(1 ms)

Frame
(1 ms)

Frame
(1 ms)

Frame
(1 ms)

Frame (1 ms)

Data
stage

Frame
(1 ms)

Data
stage

Frame
(1 ms)

C
on

tro
l t

ra
ns

fe
r (

G
et

_D
es

cr
ip

to
r (

C
on

fig
ur

at
io

n)
)

↑ Data packet (18 bytes)
(Device Descriptor information)

← Data packet (9 bytes)
 (Configuration Descriptor
 information)

Rev. 1.00, 10/03, page 56 of 58

ƒ
Rƒ
“ƒ
gƒ

[ƒ
‹“
]‘
—iG
e
t_D

e
sc
ripto

r(C
on
figuratio

n
)
j

©ƒ Zƒbƒgƒ Aƒbƒ vƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

ªƒ f [ƒ ƒ̂ pƒ Pƒbƒg(34byte)

ConfigurationDescriptor î• ñ ©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Aƒ Eƒgƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0byte)

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)
ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

ƒ f [ƒ ̂

ƒ Xƒ e [ƒ W

ƒ Zƒbƒgƒ Aƒbƒ v

ƒ Xƒ e [ƒ W

©ƒ Zƒbƒgƒ Aƒbƒ vƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0byte)

©ƒ Zƒbƒgƒ Aƒbƒ vƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0byte)

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €(1ms)

ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

ƒ Zƒbƒgƒ Aƒbƒ v

ƒ Xƒ e [ƒ W

ƒ Zƒbƒgƒ Aƒbƒ v

ƒ Xƒ e [ƒ W

ƒ
Rƒ
“ƒ
gƒ

[ƒ
‹“
]‘
—iS
e
t_Idle

j
ƒ
Rƒ
“ƒ
gƒ

[ƒ
‹“
]‘
—iS
e
t_C

o
n
figuratio

n
j

¦‚±‚ ÌŠ ÔSOFƒ pƒ Pƒbƒg‚ Ì‚ Ý‚ ª‘ ±‚ «‚ Ü‚ ·

c
c

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©NAKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

¦Ž Ÿ €‚ É‘ ±‚ «‚ Ü‚ ·

C
on

tro
l t

ra
ns

fe
r (

G
et

_D
es

cr
ip

to
r (

C
on

fig
ur

at
io

n)
)

C
on

tro
l t

ra
ns

fe
r (

Se
t_

C
on

fig
ur

at
io

n)
C

on
tro

l t
ra

ns
fe

r (
Se

t_
Id

le
)

Setup
stage

Status
stage

Frame
(1 ms)

Frame
(1 ms)

Data
stage

Frame
(1 ms)

Setup
stage

Frame
(1 ms)

Status
stage

Frame
(1 ms)

Frame
(1 ms)

Setup
stage

Frame
(1 ms)

Status
stage Frame

(1 ms)

Frame (1 ms)

← Setup token packet

Data packet

← ACK handshake packet

← ACK handshake packet

← In-token packet

↑ Data packet (34 bytes)
 (Configuration
 Descriptor information)

← ACK handshake packet

← Out-token packet

← Setup token packet

← Data packet

← ACK handshake packet

← ACK handshake packet

← Data packet (0 byte)
← In-token packet

Only SOF packets continue in this period.

← Setup token packet

← Data packet

← ACK handshake packet

← ACK handshake packet

← In-token packet

← Data packet (0 byte)

← In-token packet

← NAK handshake packet

Continued on next page

�
�

← Data packet (0 byte)

Rev. 1.00, 10/03, page 57 of 58

ƒ
Rƒ
“ƒ
gƒ

[ƒ
‹“
]‘
—iG
e
t_D

e
sc
ripto

r(R
e
po
rt)

j

©ƒ Zƒbƒgƒ Aƒbƒ vƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

ªƒ f [ƒ ƒ̂ pƒ Pƒbƒg(52byte)

ReportDescriptor î• ñ ©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Aƒ Eƒgƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0byte)

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €

(1ms) ƒ f [ƒ ̂

ƒ Xƒ e [ƒ W

ƒ Zƒbƒgƒ Aƒbƒ v

ƒ Xƒ e [ƒ W

ƒtƒ Œ [ƒ €

(1ms)

ƒtƒ Œ [ƒ €(1ms)

ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

Figure 6.1 Control Transfer when Device is Connected

← Setup token packet

← Data packet

← ACK handshake packet

← ACK handshake packet

← ACK handshake packet

← Data packet (0 byte)

← Out-token packet

← In-token packet

↑ Data packet (52 bytes)
 (Report
 Descriptor information)

C
on

tro
l t

ra
ns

fe
r (

G
et

_D
es

cr
ip

to
r (

R
ep

or
t))

Setup
stage

Data
stage

Status
stage

Frame
(1 ms)

Frame
(1 ms)

Frame (1 ms)

Frame
(1 ms)

Rev. 1.00, 10/03, page 58 of 58

6.2 Interrupt-In Transfer of HID Data

Figure 6.2 shows the measurement results when HID data is sent from the device to the USB host
controller through interrupt-in transfer. In response to the interrupt-in transfer from the USB host
controller, the device returns a NAK if no data can be sent. If there is data to be sent, the device
sends 4-byte HID data. On receiving HID data, the USB host controller issues an ACK.

¦‘ — M‰ Â” \ƒ f [ƒ ‚̂ ª” - ¶‚ ·‚ é‚ Ü‚Å

ã‹ L‚ Ìƒ pƒ^ [ƒ “‚ ª‘ ±‚ «‚ Ü‚ ·
c
c

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©NAKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©NAKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

©NAKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

¦‘ — Mƒ f [ƒ ‚̂ ª” - ¶‚ ·‚ é‚ Ü‚ Å ã‹ L‚ Ìƒ p

ƒ^ [ƒ “‚ ª‘ ±‚ «‚ Ü‚ ·

c
c

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(4byte)

©ACKƒ nƒ “ƒhƒVƒ F [ƒNƒ pƒ Pƒbƒg

©ƒ Cƒ “ƒg [ƒNƒ “ƒ pƒ Pƒbƒg

Figure 6.2 Interrupt-In Transfer of HID Data

← In-token packet

← NAK handshake packet

← In-token packet

← NAK handshake packet

← In-token packet

← NAK handshake packet

← In-token packet

← Data packet (4 bytes)

← ACK handshake packet

The above pattern continues until
transmit data is generated.

The above pattern continues until
transmit data is generated.

�
�

�
�

H8S/2218 USB Function Module
Human Interface Devices (HID) Class Application Note

Publication Date: Rev.1.00, October 20, 2003
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Technical Documentation & Information Department
 Renesas Kodaira Semiconductor Co., Ltd.

2003 Renesas Technology Corp. All rights reserved. Printed in Japan.

Colophon 1.0

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501
Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd.
FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

RENESAS SALES OFFICES

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

H8S/2218 USB Function Module
Human Interface Devices (HID) Class

REJ06B0212-0100Z

Application Note

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	Section 2 Overview of the USB Human Interface Devices (HID) Class
	2.1	HID Class
	2.2	Subclass Code
	2.3	Protocol Code
	2.4	Descriptors for HID Class
	2.5	HID Descriptor
	2.6	Report Descriptor
	2.6.1	Main Items
	2.6.2	Global Items
	2.6.3	Local Items
	2.6.4	Sample Report Descriptor
	2.6.5	Description of Report Descriptor

	2.7	Physical Descriptor
	2.8	HID Data Transfer Format
	2.9	Class Commands

	Section 3 Development Environment
	3.1	Hardware Environment
	3.2	Software Environment
	3.2.1	Sample Program
	3.2.2	Compiling and Linking

	3.3	Loading and Executing the Program
	3.3.1	Loading the Program
	3.3.2	Executing the Program

	3.4	Demonstrating Pseudo Mouse Operation (Cursor Movements)

	Section 4 Overview of the Sample Program
	4.1	State Transition Diagram
	4.2	USB Communication State
	4.3	File Structure
	4.4	Purposes of Functions

	Section 5 Sample Program Operation
	5.1	Main Loop
	5.2	Types of Interrupts
	5.2.1	Method of Branching to Different Transfer Processes

	5.3	USB Operating Clock Stabilization Interrupt
	5.4	Interrupt on Cable Connection (VBUS)
	5.5	Bus Reset Interrupt (BRST)
	5.6	Control Transfers
	5.6.1	Setup Stage
	5.6.2	Data Stage
	5.6.3	Status Stage

	5.7	Interrupt Transfers
	5.7.1	Interrupt-In Transfers

	5.8	Mouse Data Generation

	Section 6 Analyzer Data
	6.1	Control Transfer when Device is Connected
	6.2	Interrupt-In Transfer of HID Data

	Colophon
	Address List
	Back Cover

