Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8S Family

Generating PWM Output by Using Buffer Operation of the TPU

Introduction

This application note discusses how to generate PWM waveform output by using the buffer operation of the output-compare function of the 16-bit timer pulse unit (TPU).

Target Device

H8S/2339

Contents

1.	Specifications	. 2
2.	Applicable Conditions	. 2
3.	Description of Functions	. 3
4.	Description of Operation	. 5
5.	Description of Software	. 7
6.	Flowchart	10

1. Specifications

- As shown in figure 1, a PWM waveform with varied high- and low-pulse widths is output.
- The period of output PWM pulses can be set within the range from approximately 102 ns to 3.33 ms (the value that can be set in the buffer register ranges from H'0001 to H'FFFF) when the operating frequency is 19.6608 MHz.

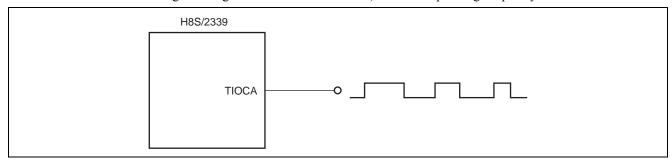


Figure 1 Example of PWM Waveform Output by TPU Buffer Operation

2. Applicable Conditions

Table 1 Applicable Conditions

Item	Contents	
Operating frequency	Input clock:	19.6608 MHz
	System clock:	19.6608 MHz
	Peripheral module clock:	19.6608 MHz
	Bus master clock:	19.6608 MHz
Operating mode	Mode 6 (MD2 = 1, MD1 = 1,	MD0 = 0)
Development tool	HEW Version 3.01 (release 1	
C/C++ compiler H8S, H8/300 SERIES C/C++ Compiler Version 6.0.00.005		
	(from Renesas Technology C	Corp.)
Compile option	-cpu = 2000a:24, -code = ma	chinecode, -optimize = 1

3. Description of Functions

Figure 2 shows a block diagram of the 16-bit timer pulse unit (TPU), and the following describes the registers of the TPU.

- Timer Control Register (TCR0)

 TCR sets the clearing condition and clock source of the timer counter, TCNT, for each channel.
- Timer Mode Register (TMDR0)

 TMDR sets the operating mode, normal operation or buffer operation, for each channel.
- Timer I/O Control Registers (TIOR0H and TIOR0L)
 TIOR controls output signals by setting the initial output value and output value in compare-match/input-capture operation for each TGR.
- Timer Interrupt Enable Register (TIER0)
 TIER enables or disables interrupts for each channel.
- Timer Status Register (TSR0)
 TSR indicates the statuses for each channel.
- Timer Counter (TCNT0)

 TCNT is a 16-bit counter that can be read or written to. Access to this counter must be in 16-bit units.
- Timer General Registers (four registers from TGR0A to TGR0D)

 TGR0A to TGR0D are 16-bit readable/writable registers that are used for output compare or input capture. Access to these registers must be in 16-bit units.
- Timer Start Register (TSTR)
 TSTR selects to start or stop the operation of TCNTs for channels 0 to 5.

Note The register names with "0" in the above description are channel 0 registers. Each channel has a set of such registers.

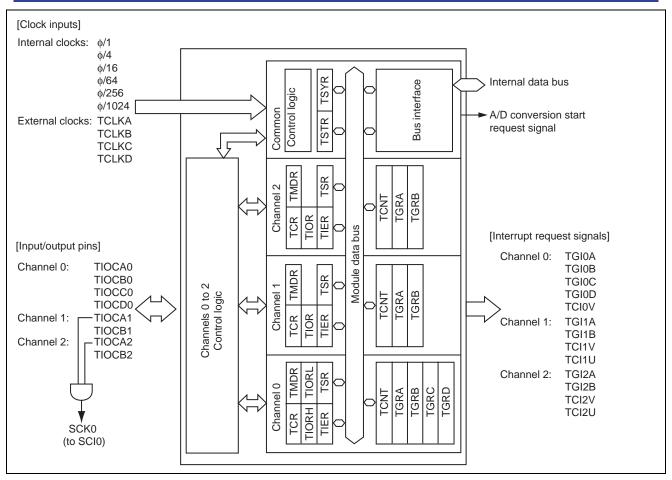


Figure 2 Block Diagram of TPU

4. Description of Operation

Figure 3 illustrates the operation of this sample task. PWM waveform is output based on TPU buffer operation through the hardware and software processing shown in the figure.

- 1. Channel 0 is set to PWM mode 1, and TGRA and TGRC are set to perform buffer operation. TCNT is cleared on compare-match B. A high level is output on compare-match A, and a low level on compare-match B.
- 2. When compare-match A occurs, output signal goes high and the value in the buffer register TGRC is transferred to TGRA at the same time. This operation is repeated each time a compare-match A occurs.
- 3. Although TGR0C is only set to H'0450 in this sample task, PWM pulses with different duty cycles can be output continuously by rewriting the TGR0C buffer (for example, H'0520 as is shown in the figure).

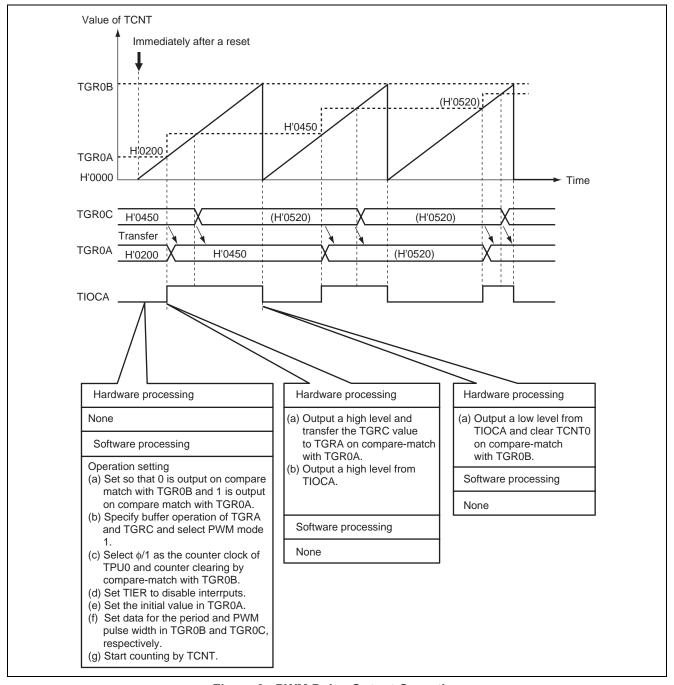


Figure 3 PWM Pulse Output Operation

5. Description of Software

5.1 Module

Table 2 describes the module of this sample task.

Table 2 Description of Module

Module Name	Label Name	Functions
Main routine	tpubfm	Selects buffer operation of TGRA and TGRC and outputs
		PWM waveform in PWM mode 1.

5.2 Arguments

Table 3 Description of Arguments

		Data		
Label	Description	Length	Used in	I/O
pul_cyc1	The value of this argument is placed in TGR0B to set the counter reset period. This period is determined by: Period (ns) = (timer value +1) \times clock (ϕ) period	1 word	Main routine	Input
pul_cyc2	The value of this argument is placed in TGR0C, which stores the data that is transferred to TGR0A on comparematch A. PWM high-pulse width (ns) = period – (pul_cyc2 +1)	1 word	Main routine	Input

5.3 Internal Registers

Table 4 Description of Internal Registers

Register Name		Function	Address	Setting
TSR0	TCFV	Timer Status Register (Overflow Flag)	H'FFFFD5	0
		TCFV = 0 indicates that TCNT has not overflowed.	Bit 4	
		TCFV = 1 indicates that TCNT has overflowed.		
(TCNT value has changed from H'FFFF to H'0000.)				
TGFB Timer Status Register (Input Capture/Output Compare Flag B)		H'FFFFD5	0	
		TGFB = 0 indicates TCNT ≠ TGFB.	Bit 1	
TGFB = 1 indicates TCNT = TGFB.				
TGFA Timer Statu		Timer Status Register (Input Capture/Output Compare Flag A)	H'FFFFD5	0
TGFA = 0 indicates TCNT ≠ TGFA.		Bits 0		
TGFA = 1 indicates TCNT = TGFA.				

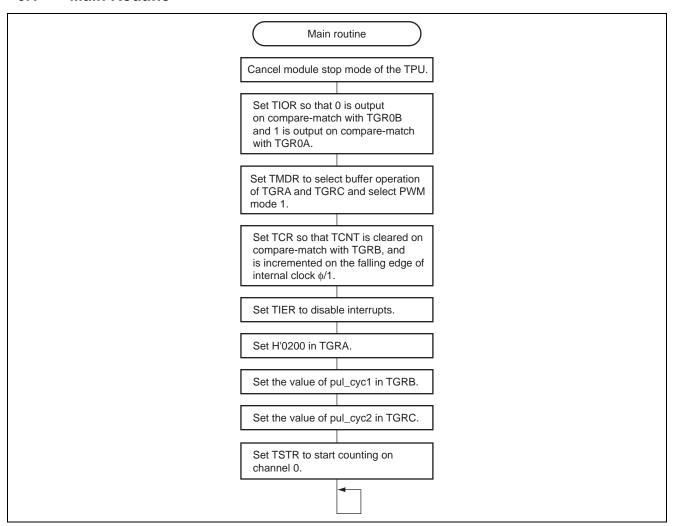
Generating PWM Output by Using Buffer Operation of

Register Name		Function	Address	Setting
TMDR0	BFB	Timer Mode Register (Buffer Operation B)	H'FFFFD1	0
		BFB = 0 selects normal operation of TGRB.	Bit 5	
		BFB = 1 selects buffered operation of TGRB and TGRD.		
	BFA	Timer Mode Register (Buffer Operation A)	H'FFFFD1	1
		BFA = 0 selects normal operation of TGRA.	Bit 4	
		BFA = 1 selects buffered operation of TGRA and TGRC.		
	MD3	Timer Mode Register (Mode 3 to 0)	H'FFFFD1	0,0,1,0
	MD2	When MD3 to MD0 = 0000, the TPU operates in normal mode.	Bits 3 to 0	
	MD1	When MD3 to MD0 = 0010, the TPU operates in PWM mode 1.		
	MD0			
TCR0	CCLR1	Timer Control Register (Counter Clear 1, 0)	H'FFFFD0	1,0
	CCLR0	When CCLR1 and CCLR0 = 00, clearing of TCNT is disabled.	Bits 6,5	
		When CCLR1 and CCLR0 = 10, TCNT is cleared on compare-		
		match or input capture of TGRB.		
	CKEG1	Timer Control Register (Clock Edge 1, 0)	H'FFFFD0	0,1
	CKEG0	When CKEG1 and CKEG0 = 00, TCNT counts the rising edges.	Bits 4,3	
		When CKEG1 and CKEG0 = 01, TCNT counts the falling edges.		
	TPSC2	Timer Control Register (Timer Prescaler 2, 1, 0)	H'FFFFD0	0,0,0
	TPSC1	When TPSC2 to TPSC0 = 000, the clock source of TCNT is $\phi/1$.	Bits 2 to 0	
	TPSC0	When TPSC2 to TPSC0 = 111, TCNT counts overflow or underflow of TCNT2.		
TGR0A		Timer General Register A	H'FFFFD8	H'0200
		16-bit register that is used for output compare or input capture	Bits 15 to 0	
TGR0B		Timer General Register B	H'FFFFDA	H'0600
		16-bit register that is used for output compare or input capture	Bits 15 to 0	
TGR0C		Timer General Register C	H'FFFFDC	H'0450
		16-bit register that is used for output compare or input capture	Bits 15 to 0	
TIOR0H	IOB3	Timer I/O Control Register (I/O Control B3 to B0)	H'FFFFD2	0,1,0,1
	to	These bits set the output level on compare-match with TGRB.	Bits 7 to 4	
	IOB0			
	IOA3	Timer I/O Control Register (I/O Control A3 to A0)	H'FFFFD2	0,0,1,0
	to	These bits set the output level on compare-match with TGRA.	Bits 3 to 0	
	IOA0			

H8S Family Generating PWM Output by Using Buffer Operation of

Register Name		Function		Setting
TIER0	TTGE	Timer Interrupt Enable Register (A/D Conversion Start Request Enable) When TTGE = 0, generation of A/D conversion start requests is	H'FFFFD4 Bit 7	0
		disabled.		
		When TTGE = 1, generation of A/D conversion start requests is enabled.		
	TCIEV	Timer Interrupt Enable Register (Overflow Interrupt Enable)	H'FFFFD4	0
		When TCIEV = 0, interrupt requests (TCIV) by the TCFV flag are disabled.	Bit 4	
		When TCIEV= 1, interrupt requests (TCIV) by the TCFV flag are enabled.		
	TGIED	Timer Interrupt Enable Register (TGFD Interrupt Enable D)	H'FFFFD4	0
		When TGIED = 0, interrupt requests (TGID) by the TGFD flag are disabled.	Bit 3	
		When TGIED = 1, interrupt requests (TGID) by the TGFD flag are enabled.		
	TGIEC	Timer Interrupt Enable Register (TGFD Interrupt Enable C)	H'FFFFD4	0
		When TGIEC = 0, interrupt requests (TGIC) by the TGFC flag are disabled.	Bit 2	
		When TGIEC = 1, interrupt requests (TGIC) by the TGFC flag are enabled.		
	TGIEB	Timer Interrupt Enable Register (TGFD Interrupt Enable B)	H'FFFFD4	0
		When TGIEB = 0, interrupt requests (TGIB) by the TGFB flag are disabled.	Bit 1	
		When TGIEB = 1, interrupt requests (TGIB) by the TGFB flag are enabled.		
	TGIEA	Timer Interrupt Enable Register (TGFD Interrupt Enable A)	H'FFFFD4	0
		When TGIEA = 0, interrupt requests (TGIA) by the TGFA flag are disabled.	Bit 0	
		When TGIEA = 1, interrupt requests (TGIA) by the TGFA flag are enabled.		
TSTR		Timer Start Register	H'FFFFC0	H'01
		A bit of this register starts/stops the operation of TCNT for the corresponding channel (channels 0 to 5).	Bits 5 to 0	

5.4 RAM Usage


Table 5 Description of RAM

Label Name	Function (Setting Used in This Sample Task)	Data Length	Used In
pul_cyc1	Stores the data to be set in TGR0B. (H'0600)	1 word	Main routine
pul_cyc2	Stores the data to be set in TGR0C. (H'0450)		

Flowchart

6.1 **Main Routine**

RENESASGenerating PWM Output by Using Buffer Operation of

Revision Record

		Descript	ion	
Rev.	Date	Page	Summary	
1.00	Mar.09.05	_	First edition issued	
-				
-				

H8S Family Generating PWM Output by Using Buffer Operation of

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.