

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

RES06B0004-0100/Rev.1.00 September 2004 Page 1 of 41

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

Introduction
This application note provides an overview of the I2C bus interface. It also demonstrates how to integrate and interface
multiple I2C devices to the H8/38024 SLP series through software control of its two general I/O pins:

• Microchip 24AA16 16-Kbytes I2C Serial EEPROM (read/write)
• Maxim MAX6626 12-bit Temperature Sensor (read/write)
• MAX6953EPL 2-wire Interfaced 4-digit 5 × 7 Matrix LED Display Driver (write only)

Target Device
H8/38024

Contents

1. I2C Interface Overview .. 2

2. Microchip 24AA16 E2PROM ... 3

3. I2C Temperature Sensor ... 8

4. I2C 4-Digit 5 × 7 Matrix LED Display Driver .. 12

5. Code Listing .. 17

6. Hardware Design .. 38

7. References.. 39

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 2 of 41

1. I2C Interface Overview
The I2C bus uses a two-wire interface consisting of a serial data line (SDA) and a serial clock line (SCL) to exchange
information between devices connected to the bus. Each device on the bus has its own unique address and can operate
as a transmitter or receiver (depending on its particular function). Devices are further categorized as masters or slaves.
A master is defined as a device that initiates, controls (generates all framing and clock signals), and terminates a
transfer whereas a slave is any device addressed by the master.

It is noted that different I2C devices will have slightly different protocols. This application note describes an I2C
interface comprising of a bus master (the H8/38024 SLP MCU) and three slave devices (Microchip 24AA16 16-Kbytes
I2C Serial EEPROM, Maxim MAX6626 12-bit temperature sensor and MAX6953EPL 2-wire interfaced 4-digit 5 × 7
Matrix LED Display Driver). In this simple interface, the temperature converted from the MAX6626 will be displayed
and can also be stored in the E2PROM. Note that the I2C interface is simulated using software to control two general
I/O pins (P70→SDA & P80→SCL) of the H8/38024 SLP MCU. The SDA and SCL pins of these devices are directly
connected to P70 and P80 of the MCU respectively. Figure 1 shows the system block diagram.

Figure 1 System Block Diagram

The address of each device is summarized in table 1 (This discussion is limited to the I2C 7-bit addressing mode). Each
device has a unique 7-bit I2C address so that the master knows which device it is communicating with. Typically, the
upper address lines are fixed while the lower address lines are set by hardware. For the case of three lower address
lines (A2, A1, A0), there are up to eight different combinations. Therefore, up to a maximum of eight identical devices
can be interfaced on the same bus. To interface another I2C device, the SDA and SCL pins must be connected to the
bus with a unique address assigned to it.

Table 1 Device Addresses

Device Address (Hexadecimal)
Microchip 24AA16 EEPROM A0 – Block 0

A2 – Block 1
A4 – Block 2
A6 – Block 3
A8 – Block 4
AA – Block 5
AC – Block 6
AE – Block 7

MAX6626 Temperature Sensor 90
MAX6953 LED Driver B0

The features of these three slave devices and the software description together with the hardware design will be covered
in the following sections.

H8/38024
SLP MCU

24AA16
EEPROM

MAX6626
Temperature

Sensor

MAX6953
 LED Driver

SCL (P80)

SDA (P70)

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 3 of 41

2. Microchip 24AA16 E2PROM
The diagram below will illustrate the read data when 0x0D (RETURN) is send at various baud rates.

Figure 2 Microchip 24AA16 E2PROM Block Diagram

2.1 Bus Protocol
Transferring data on the I2C bus is controlled (and framed) via two unique bus states generated by the bus master.
These bus states are the start and stop bit conditions. When the bus is free, both lines are high.

The start condition is defined the high-to-low level transition on the SDA while the SCL line is high. The stop
condition is defined as the low-to-high level transition on the SDA while the SCL line is high. Data must always be
valid (stable) on the SDA line while the SCL is high. The SDA line is only allowed to change during the low period of
SCL. One data bit is transmitted per the SCL clock pulse.

Following the start condition, the first 8 bit (1 byte) sent in a bus message is a 7-bit slave address field along with a data
direction or R/W bit. The data direction bit (the least significant bit) controls whether the master transmits (0 = write) or
receives (1 = read) data from the addressed slave.

The acknowledge bit is a low-level signal placed on the SDA line by the receiving device (master or slave) during the
master-transmitted acknowledge clock pulse (the ninth high SCL clock pulse of the byte transmission). If the slave is
busy and unable to receive data or the master needs to signal the end of data transfer, a non-acknowledge is sent (the
SDA is high during the ninth high SCL clock pulse time).

Following the start and slave address transmission, data is exchanged between the master and receiver as required.
Upon exchange of the final byte and its acknowledge, the master issues the stop condition to end bus usage.

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 4 of 41

Figure 3 Data Transfer Sequence

2.1.1 Device Addressing
A control byte is the first byte received following the start condition from the master device. For the 24AA16, the first
four bits of the control code are set to 1010 binary for both read and write operations. The next three bits are the block
select bits (B2, B1, B0), used by the master device to select which 256-word block of memory to be accessed. These
bits are in effect the three most significant bits of the word address. It should be noted that the protocol limits the size
of the memory to eight blocks of 256 words; therefore the protocol can support only one 24AA16 per system. The last
bit of the control byte defines the operation to be performed. When setting to ‘1’, a read operation is selected. When
setting to ‘0’, a write operation is selected. Following the start condition, the 24AA16 monitors the SDA bus to check
the device type identifier being transmitted. Upon reception of the 1010 code, the slave device outputs an acknowledge
signal on the SDA line. Depending on the state of the R/W bit, the 24AA16 will select the read or write operation.

Figure 4 Control Byte

2.1.2 Bit Transfer and Data Validity
The number of data bytes, transferred from the transmitter to the receiver between the start and stop conditions, is
determined by the master. Each byte (eight bits) is transferred serially with the most significant bit first followed by an
acknowledge bit. The state of the data line represents valid data when, after the start condition, the data line is stable
for the duration of the high period of the clock signal. The data on the line must be changed during the low period of
the clock signal. There is one clock pulse per bit of data.

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 5 of 41

2.1.3 Acknowledge
Each receiving device, when addressed, is obliged to generate acknowledge after the reception of each byte. The
master device must generate an extra clock pulse associated with this acknowledge bit. For the 24AA16, it does not
generate any acknowledge bits if an internal programming cycle is in progress.

2.2 Write Operation
Write operations are initiated when the R/W bit of the slave address is set to ‘0’. There are two types of write
operations, byte and page writes.

2.2.1 Byte Write
Byte operations allow a random EEPROM address to be written. Byte-write operations require the following
transmissions:

• Start condition (Master)
• EEPROM device address with R/W = 0 (master)
• Acknowledge bit (EEPROM)
• Target EEPROM word address to be written (master)
• Acknowledge bit (EEPROM)
• Data byte to be written (master)
• Acknowledge bit (EEPROM)
• Stop condition (master)

Figure 5 Byte Write

2.2.2 Page Write
Page write operations allow up to 16 bytes to be written to the EEPROM. During these page writes, the EEPROM
automatically increments its internal address pointer between bytes.

Figure 6 Page Write

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 6 of 41

2.3 Read Operation
Three types of read operations are supported: Current address, random, and sequential read. Read operations begin just
like write operations, except that the R/W bit is set to 1 for the device address byte.

2.3.1 Current Address Read
In the current address read mode, the data is read from the location of the most recent access. This read transmission
type sequence appears as follows:

• Start condition (master)
• EEPROM device address with R/W = 1 (master)
• Acknowledge bit (EEPROM)
• Data byte to be read (EEPROM bytes sent from the addressed slave’s most recent pointed-to memory location

incremented by 1)
• Non-acknowledge bit (master)
• Stop condition (master)

Figure 7 Current Address Read

2.3.2 Random Read
The random read mode is begun with a dummy byte write cycle (the master sends a start condition followed by the
device address and target word address) followed by the current address read mode cycle as described previously.

Figure 8 Random Read

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 7 of 41

2.3.3 Sequential Read
The sequential read mode is initiated with a random read. Instead of the master terminating the read after a single byte
exchange (with non-acknowledge), the master responds with valid acknowledge after each received data byte. The
acknowledge instructs the slave EEPROM to continue the read operation and transmit out the next data byte. The
sequential reads continue until terminated by the master via issuance of non-acknowledge on the most recent byte read
followed by the stop condition.

Figure 9 Sequential Read

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 8 of 41

3. I2C Temperature Sensor
The MAX6626 comprises a temperature sensor, programmable over-temperature alarm, and an I2C-compatible serial
interface. The temperature of the die is converted into digital values using the internal A/D converter. The converted
result is stored in a temperature register, which is readable at any time through the serial interface. A dedicated alarm
output (OT) is activated if the conversion result exceeds the value in the programmable high-temperature register. It
also comes with a programmable fault queue, which sets the number of faults that must occur, before the alarm
activates. This prevents spurious alarms in noisy environments. The device functions as a slave and supports
byte/word-read/write commands. The functional block diagram is shown in figure 10.

Figure 10 Block Diagram of Temperature Sensor

3.1 Addressing
Four separate addresses can be configured with the ADD pin, allowing up to four MAX6626s to be connected on the
same bus. The table summarizes the different address selection. In this interface, the ADD pin is connected to GND
and the address is set to 90 (hexadecimal).

Table 2 ADD Connection

ADD Connection I2C-Compatible Address
GND 100 1000
VS 100 1001
SDA 100 1010
SCL 100 1011

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 9 of 41

3.2 Control Registers
Operations are defined with the following registers:

(1) The Pointer register is addressed first to determine the register to be acted on.

Table 3 Pointer Register

D7 D6 D5 D4 D3 D2 D1 D0 Register
0 0 Temperature
0 1 Configuration
1 0 TLOW

0 0 0 0 0 0

1 1 THIGH

(2) The Temperature (TEMP) register is a 12-bit read-only resister, which contains the latest temperature data. The

register length is 16 bits with the unused bits masked to 0. The digital temperature is in °C using two complement
formats with the LSB corresponding to 0.0625°C.

Table 4 Temperature Register

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2-D0
MSB
(Sign)

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

LSB Unused
0

Figure 11 Reading of 2-byte Registers (TEMP, THIGH and TLOW)

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 10 of 41

(3) The Configuration register is an 8-bit read/write resister that contains the fault queue depth, temperature alarm
polarity select, interrupt mode select and shutdown control bits. Refer to table 5 for the bit structure.

Table 5 Configuration Register

D4 D3 D2 D1 D0 D7 D6 D5
Fault Queue
Depth

OT Polarity Comparator or
Interrupt Mode

Shutdown
No. of
Faults

0 0 1
0 1 2
1 0 4

t 0 0

1 1

0: Active low
1: Active high

0: Comparator
1: Interrupt

0: Normal Operation
1: Shutdown

6

Figures 12 and 13 show the timing diagrams for a read from and write to the configuration register respectively.

Figure 12 Read from Configuration Register

Figure 13 Write to Configuration Register

(1) The High-Temperature (THIGH) register is a 9-bit read/write resister which contains the value that triggers the over-

temperature alarm. The Low-Temperature (TLOW) register is a 9-bit read/write resister. It contains the value to
which the temperature must fall before the over-temperature alarm is de-asserted in comparator mode. Refer to
table 6 for the bit structure of these two registers. The timing diagrams for reading from and writing to are shown in
figures 11 and 14 respectively.

Table 6 THIGH and TLOW Registers

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
MSB Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB 0 0 0 0 0 0 0
Notes: 1. D15: MSB is the sign bit
 2. D6 to D0: will read all zeros and cannot be written
 3. LSB = 0.5°C

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 11 of 41

Figure 14 THIGH and TLOW Write

3.3 Temperature Conversion
An on-chip bandgap reference produces a signal proportional to absolute temperature (PTAT), as well as the
temperature-stable reference voltage necessary for the A/D conversion. The resolution of the digitized PTAT signal is
0.0625°C with the rate of conversion at 133 ms. The temperature register contains the value of the most recently
completed conversion.

3.4 Over-Temperature Alarm
The polarity and modes (interrupt and comparator) of the dedicated over-temperature output pin (OT) are
programmable through the configuration register. The fault queue depth defines the alarm activity.

• The programmable fault queue eliminates spurious alarm activity in noisy environments by setting the number of
consecutive out-of-tolerance temperature readings that must occur before the OT alarm is triggered. The out-of-
tolerance refers to the temperature reading above THIGH or below TLOW.

• In the comparator mode, the OT is asserted when the number of consecutive conversions exceeding the value of the
THIGH register is equal to the fault queue depth. The OT will be de-asserted when the number of consecutive
conversions below TLOW is equal to the fault queue depth. For example, THIGH, TLOW, and the fault queue depth are
set to +75°C, +50°C, and 4 respectively. The OT will not assert until four consecutive conversions exceed +75°C.
Similarly, the OT will not be de-asserted until four consecutive conversions are below +50°C. The Comparator
mode allows autonomous clearing of the OT fault without the intervention of master and is ideal for driving a
cooling fan.

• In the interrupt mode, the OT pin asserts an alarm for the under-temperature fault as well as the over-temperature
fault, depending on certain conditions. If the fault queue is cleared at power-up, the IC looks for a THIGH fault after
which it will then monitor for a TLOW fault. After the TLOW fault, it will then monitor for the THIGH fault. This
process will be repeated if the OT is properly de-asserted each time. Once either fault has occurred, it remains
active until de-asserted by a read of any register. The device will then monitor for a fault of the opposite type. For
example, The HIGH, TLOW and fault queue depth are set to +75°C, +50°C and 4 respectively. The OT will not assert
until four consecutive conversions exceed +75°C. The OT will then de-assert upon reading the temperature register.
The OT will then assert again after four consecutive conversions below +50°C.

3.5 Shutdown
In the shutdown mode, the temperature register is set to H’8000 and the A/D converter is turned off (reducing the
device current to 1 µA). Upon exiting from shutdown, the value of the temperature register is H’8000 until the
completion of the first temperature conversion.

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 12 of 41

4. I2C 4-Digit 5 × 7 Matrix LED Display Driver
The MAX6953 is a serially interfaced display driver that can drive four digits of 5 × 7 cathode-row dot-matrix displays.
It includes an ASCII 104-character font, multiplex scan circuitry, column and row drivers, static RAM to store each
digit as well as font data for 24 user-definable characters. The segment current for the LEDs is set by an internal digit-
by-digit digital brightness control. It also features a low-power shutdown mode, segment blinking, and a test mode that
forces all LEDs to be on. Figure 15 shows the functional block diagram for the LED driver.

Figure 15 Block Diagram for the MAX6953

4.1 Serial Addressing
The MAX6953 operates as a slave that sends and receives data through an I2C-compatible 2-wire interface. The serial
data (SDA) and clock (SCL) lines are used to achieve bi-directional communication between the master (the H8/38024)
and the slave (the MAX6953). The master initiates all data transfers to and from the MAX6953, and also generates the
SCL clock for the synchronization of data transfer.

4.2 Start and Stop Conditions
Both the SCL and SDA remain high when the interface is not busy. The master signals the beginning of transmission
with the start (S) condition by the high to low transition on the SDA while the SCL is high. When the master has
finished communicating with the slave, it issues the stop (P) condition by the low to high transition on the SDA while
the SCL is high. Another bus transmission can then begin.

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 13 of 41

Figure 16 Start and Stop Conditions

4.3 Bit Transfer
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable while the SCL is high.

Figure 17 Bit Transfer

4.4 Acknowledge
The acknowledge bit is a clocked 9th bit that the recipient uses to handshake receipt of each data byte. Refer to figure
18. Thus, each transferred byte effectively requires 9 bits. The master generates the 9th clock pulse, and the recipient
pulls down the SDA such that the SDA line is stable low during the high period of the acknowledge clock pulse. When
the master is transmitting to the MAX6953, the acknowledge bit is generated by the MAX6953. When the MAX6953
is transmitting to the master, the master generates the acknowledge bit because the master is the recipient.

Figure 18 Acknowledge

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 14 of 41

4.5 Slave Address
The MAX6953 has a 7-bit slave address. The 8th bit following the 7-bit slave address is the R/W bit. It is low for a
write command and high for a read command. The first 3 bits (A6, A5, & A4) of the MAX6953 slave address are
always 101. The address input pins AD1 and ADO determine the slave address bits A3, A2, A1, and A0. These two
input pins can be connected to GND, V+, SDA or SCL. Table 7 lists all the possible connections for AD1 and AD0
and the correspondingly addresses assigned to the MAX6953. Note that addresses A0 to AE (hexadecimal) have
already been assigned to the EEPROM, the address B0 is allocated to the MAX6953.

Figure 19 Slave Address

Table 7 MAX6953 Device Map

Pin Device Address
AD1 AD0 A6 A5 A4 A3 A2 A1 A0
GND GND 1 0 1 0 0 0 0
GND V+ 1 0 1 0 0 0 1
GND SDA 1 0 1 0 0 1 0
GND SCL 1 0 1 0 0 1 1
V+ GND 1 0 1 0 1 0 0
V+ V+ 1 0 1 0 1 0 1
V+ SDA 1 0 1 0 1 1 0
V+ SCL 1 0 1 0 1 1 1

SDA GND 1 0 1 1 0 0 0
SDA V+ 1 0 1 1 0 0 1
SDA SDA 1 0 1 1 0 1 0
SDA SCL 1 0 1 1 0 1 1
SCL GND 1 0 1 1 1 0 0
SCL V+ 1 0 1 1 1 0 1
SCL SDA 1 0 1 1 1 1 0
SCL SCL 1 0 1 1 1 1 1

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 15 of 41

4.6 Writing Message Format
A write to the MAX6953 comprises the transmission of the slave address with the R/W set to zero followed by at least
one byte of information. The first byte of information is the command byte, which determines the register to be written
to by the next byte. If the stop condition is detected after the command byte is received, then no further action other
than the storage of the command byte is taken (figure 20).

Figure 20 Command Byte Received

All bytes received after the command byte are data bytes. The first data byte goes into the internal register of the
MAX6953 selected by the command byte (figure 21).

Figure 21 Command and Single Data Byte Received

If multiple data bytes are transmitted before the stop condition is detected, these bytes are generally stored in the
subsequent MAX6953 internal registers because the command byte address generally auto-increments (refer to table 8
and figure 22).

Figure 22 n Data Bytes Received

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 16 of 41

Table 8 Command Address Auto-increment Rules

4.7 Reading Message Format
The MAX6953 is read using the MAX6953’s internally stored command byte as an address pointer, the same way the
stored command byte is used as an address pointer for a write. The pointer generally auto-increments after each data
byte is read using the same rules described in table 8. Thus, the read is initiated by performing the write (figure 20).
The master can now read n consecutive bytes from the MAX6953, with the first data byte being read from the register
addressed by the initialized command byte (figure 22).

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 17 of 41

5. Code Listing
The functions are listed in these two C source files:

• I2C.c
 Contains the main function
 Performs initialization of the Serial Communication Interface (SCI) and temperature sensor
 Tests the EEPROM, temperature sensor, and the LED driver

• RW.c

 Contains the general functions to emulate the SDA and SCL

The flowchart of the main function is shown in figure 23. The following steps are performed:

(1) Initialization of the SCI (2400 bps, 1 stop bit, parity disabled), temperature sensor, and LED driver.
(2) Test EEPROM: Perform byte write, byte read, page write, read from current, and sequential addresses. The test

results are transmitted to the PC via the SCI.
(3) Read temperature, transmit to PC via the SCI, and then display on digits 1, 2, and 3.
(4) Display ‘0’ to ‘9’ on digit 0.
(5) Repeat steps 2 to 4.

Figure 23 Flowchart of Main Function

Main Function

1. Test EEPROM
2. Get Temperature
3. Test LED Driver

Initialize the following:
a. SCI
b. Temperature Sensor
c. LED Driver

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 18 of 41

/***/
/* */
/* FILE :I2C.c */
/* DATE :Fri, Dec 27, 2002 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/38024F */
/* */
/* This file is generated by Renesas Project Generator (Ver.2.1). */
/* */
/***/

#include "iodefine.h"
#include "i2c.h"
#include <stdio.h>
#include <machine.h>

//--

//Device Addresses
#define EEPROM_ADDR 0xA0 //B'10100000x
#define T_SENSOR_ADDR 0x90 //B'10010000x
#define LED_DRIVER_ADDR 0xB0 //B'10110000x

//--

//LED Driver Registers
#define DIGIT_0 0x60
#define DIGIT_1 0x61
#define DIGIT_2 0x62
#define DIGIT_3 0x63

#define DIGIT_0_1_INT_REG 0x01
#define DIGIT_2_3_INT_REG 0x02

//--

/*
 main()

 a. Initializes Serial Communication Interface (SCI) for debugging
 b. Initializes temperature sensor
 c. Initializes LED driver
 d. Repeat the following
 1. Test the EEPROM
 2. Obtain temperature reading
 3. Test the LED Driver
*/

void main(void)
{
 init_sci();

 init_temp_sensor();

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 19 of 41

 init_led_driver();

 PutStr("\r\nBeep Beep Beep");

 while(1)
 {
 test_eeprom();
 test_temp_sensor();
 test_led_matrix();
 wait(5); //short delay
 }
}

//--

/*
 test_led_matrix() – display 0 to 9 on Digit 0
*/

void test_led_matrix(void)
{
 char display_char;

 for (display_char = '0' ; display_char <= '9' ; display_char++)
 {
 LEDprint(display_char, DIGIT_0);
 wait(10); //short delay
 }
}

//--

/*
 test_eeprom()

 a. byte write
 b. byte read
 c. page write
 d. current address read
 e. sequential address read
*/

void test_eeprom(void)
{
 unsigned char buf[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF};

 unsigned char return_byte;
 unsigned char *ptr;

 PutStr("\r\n\nEEPROM Testing:");

 //Byte Write
 PutStr("\r\nByte Write");

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 20 of 41

 if (I2cWrite(EEPROM_ADDR, buf, 1, 0x00) != OP_DONE)
 PutStr(" -> Fail!");
 else
 PutStr(" -> OK");

 //Need to check if write is complete
 if (CheckWriteReady() == 1)
 {
 //Byte Read
 PutStr("\r\nByte Read");
 return_byte = I2cRead(EEPROM_ADDR, ptr, 1, 0x00);
 }

 //Page Write
 PutStr("\r\nPage Write");
 if (I2cWrite(EEPROM_ADDR, buf, 16, 0x00) != OP_DONE)
 PutStr(" -> Fail!");
 else
 PutStr(" -> OK");

 //Need to check if write is complete
 if (CheckWriteReady() == 1)
 {
 //Current Address Read
 PutStr("\r\nCurrent Address Read");
 return_byte = I2cCurrentRead(EEPROM_ADDR, buf, 0x00);

 //Sequential Read
 PutStr("\r\nSequential Read");
 return_byte = I2cRead(EEPROM_ADDR, ptr, 16, 0x00);
 }
}

//--

/*
 test_temp_sensor()

 a. Get temperature reading
 b. Convert from binary to floating point
 c. Transmit temperature to PC via SCI
 d. Display temperature on Digits 1, 2 and 3
*/

void test_temp_sensor(void)
{
 unsigned char return_byte;
 unsigned char tens, ones, tenths;

 unsigned int return_code;

 float degree;

 //read from temperature sensor

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 21 of 41

 return_code = I2cRead_T_Sensor(T_SENSOR_ADDR, 0x00);

 if (return_code == 0x8000)
 PutStr("SHUT DOWN!");
 else
 PutStr("\r\n\nTemperature : ");

 degree = ConvertBinary2Temp(return_code);

 //For example, temperature = 37.1 degree
 //tens = 3, ones = 7 & tenths = 1
 tens = 0;
 ones = 0;
 tenths = 0;

 while (degree >= 10)
 {
 tens++;
 degree -= 10;
 }

 while (degree >= 1)
 {
 ones++;
 degree -= 1;
 }

 while (degree >= 0.1)
 {
 tenths++;
 degree -= 0.1;
 }

 //Transmit to PC via SCI
 char_put(tens + 0x30);
 char_put(ones + 0x30);
 char_put(0x2E); //decimal point
 char_put(tenths + 0x30);

 //Display on dot-matrix LED
 LEDprint(tens + 0x30, DIGIT_1);
 LEDprint(ones + 0x30, DIGIT_2);
 LEDprint(tenths + 0x30, DIGIT_3);
}

//--

/*
 init_temp_sensor()
*/

void init_led_driver(void)
{
 unsigned char return_byte;

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 22 of 41

 //Configure MAX6953 driver: wake from shutdown mode
 SendStartBit();
 SendByte((LED_DRIVER_ADDR) & 0xfe);
 SendByte(0x04); //configuration register
 SendByte(0x01); //select normal operation as power-on default -> shutdown
 SendStopBit();

 //Set the intensity register for digits 0 & 1 to 6/16 duty cycle
 //Set the intensity register for digits 2 & 3 to 6/16 duty cycle
 //Write 0x66 to both 0x01 and 0x02 reg of MAX6953EPL
 SendStartBit();
 SendByte((LED_DRIVER_ADDR) & 0xfe); //Send Slave Address byte
 SendByte(DIGIT_0_1_INT_REG); //Send COMMAND byte
 SendByte(0x66); //Send data byte 00-min, FF-max
 SendStopBit(); //Send stop bit
 SendStartBit();
 SendByte((LED_DRIVER_ADDR) & 0xfe); //Send Slave Address byte
 SendByte(DIGIT_2_3_INT_REG); //Send COMMAND byte
 SendByte(0x66); //Send data byte 00-min, FF-max
 SendStopBit(); //Send stop bit
}

//--

/*
 init_temp_sensor()
*/

void init_temp_sensor(void)
{
 unsigned char return_byte;

 SendStartBit();
 SendByte((T_SENSOR_ADDR) & 0xfe); //Send slave address byte
 SendByte(0x01); //Configuration Register of sensor
 SendByte(0x00); //Wake up device
 SendStopBit(); //Send stop bit

 SendStartBit();
 SendByte((T_SENSOR_ADDR) & 0xfe); //Send slave address byte
 SendByte(0x01); //Configuration Register of sensor
 SendStopBit();

 SendStartBit();
 SendByte((T_SENSOR_ADDR) | 0x01); //Read from Configuration Register
 return_byte = GetByte();
 SendStopBit();

 //THIGH = 80 degrees
 //TLOW = 0 degrees
 SendStartBit();
 SendByte((T_SENSOR_ADDR) & 0xfe); //Send Slave Address byte
 SendByte(0x03); //Set Max Temperature of Sensor
 SendByte(0x50); //msbByte

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 23 of 41

 SendByte(0x00); //lsbByte
 SendStopBit(); //Send stop bit

 SendStartBit();
 SendByte((T_SENSOR_ADDR) & 0xfe); //Send slave address byte
 SendByte(0x02); //Set Min Temperature of Sensor
 SendByte(0x00); //msbByte
 SendByte(0x00); //lsbByte
 SendStopBit(); //Send stop bit
}

//--

/*
 This routine is written for MAXIM 12-bit Temperature Sensors.
 MAX6626 is a 12-bit i2c compatible sensors.

 input:
 unsigned char slave_addr - refer to the address preset
 unsigned char ptr_reg - refer to the pointer register
 0x00 temperature
 0x01 configuration
 0x02 high-temperature
 0x03 low-temperature

 return:
 unsigned int - current temperature in 16bits
*/

unsigned int I2cRead_T_Sensor(unsigned char slave_addr, unsigned char ptr_reg)
{
 unsigned int theWORD;
 unsigned char msbBYTE, lsbBYTE;

 if (CheckBusState() != TRUE)
 return(BUS_BUSY);

 SendStartBit();

 //Send slave address with write command

if (SendByte((slave_addr) & 0xfe) != LOW) return(NO_RESPONSE);

 //Send Pointer byte

if (SendByte(ptr_reg) != LOW)
 return(NO_RESPONSE);

 SendStopBit(); //Send STOP bit

 SendStartBit();

 //Send slave address with read command
 if (SendByte((slave_addr) | 0x01) != LOW)
 return(NO_RESPONSE);

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 24 of 41

 msbBYTE = GetByte();

 SendBit(LOW); //Ack it low!

 lsbBYTE = GetByte();

 SendStopBit(); //Send STOP bit

 theWORD = (unsigned int)msbBYTE << 8;
 theWORD = theWORD + lsbBYTE;

 return(theWORD);
}

//--

/*
 ConvertBinary2Temp() Converts temperature from binary to floating point
*/

float ConvertBinary2Temp(unsigned int temp)
{
 float degree;
 float scaleMX;
 int temp1;

 scaleMX = 0.0625;

 temp1 = temp & 0x7FFF; //throw away signed bit
 temp1 = temp1>>4; //get rid of last 4 bits(lsb)

 degree = (float)temp1 * scaleMX;

 return(degree);
}

//--

/*
 LEDprint(): Display on the matrix LED.
*/

void LEDprint(char character, unsigned char digit_position)
{
 unsigned char error_code;

error_code = I2cMatrixLEDdriver(LED_DRIVER_ADDR, digit_position,
 character);

}

//--

/*
 This routine is used for MAXIM Matrix LED Display Driver.

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 25 of 41

 MAX6953 is a 2-wire I2C interface driver.

 slave_addr is the address preset for MAX6953.

 command_byte refer to the command instruction to be given to MAX6953.

 data_byte refer to the 8-bit data
*/

unsigned char I2cMatrixLEDdriver(unsigned char slave_addr, unsigned char
 command_byte, unsigned char data_byte)
{
 /*
 Command Address:

 StartBit [S] -> Slave Address (7bit + 1 R/W bit) -> ACK (MAX6953) ->
 COMMAND Byte -> ACK (MAX6953) -> DATA byte -> ACK (MAX6953) -> StopBit [P]

 Refer to MAX6953 data sheet for command and data instruction
 */

 //Check if I2C bus is busy
 if (CheckBusState() != TRUE)
 return(BUS_BUSY);

 SendStartBit(); //Send start bit
 //Send slave address and write command
 if (SendByte((slave_addr) & 0xfe) != LOW)
 return(NO_RESPONSE);

 if (SendByte(command_byte) != LOW) //Send COMMAND byte
 return(NO_RESPONSE);

 if (SendByte(data_byte) != LOW) //Send DATA byte
 return(NO_RESPONSE);

 SendStopBit(); //Send stop bit
}

//--

/*
 init_sci() : Sets up the Serial Communication Interface for debugging
*/

void init_sci(void)
{
 //SCR3 : |TIE|RIE|TE|RE|MPIE|TEIE|CKE1|CKE0|
 //TIE : Transmit interrupt enable
 //RIE : Receive interrupt enable
 //TE : Transmit enable
 //RE : Receive enable
 //MPIE : Multiprocessor interrupt enable
 //TEIE : Transmit end interrupt enable

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 26 of 41

 //CKE1 : Clock enable 1
 //CKE0 : Clock enable 0

 //CKE1 = CKE0 = 0
 //asynchronous mode, internal clock source, SCK32 functions as I/O port
 P_SCI3.SCR3.BYTE &= 0x00; //clear TE & RE

 //SMR : |COM|CHR|PE|PM|STOP|MP|CKS1|CKS0| : |0|0|0|0|0|0|0|0|
 //COM : Communication Mode : 0 : asynchronous mode
 //CHR : Character Length : 0 : character length = 8 bits
 //PE : Parity Enable : 0 : parity bit addition and checking disabled
 //PM : Parity Mode : 0 : even parity (no effect since no parity)
 //STOP: Stop Bit Length : 0 : 1 stop bit
 //MP : Multiprocessor Mode : 0 : multiprocessor comm function disabled
 //|CKS1|CKS0| : Clock Select: |0|0| : clock source for baud rate gen = clk
 P_SCI3.SMR.BYTE = 0x00;

 //For clk = 10MHz, bit rate = 2400 bps, n = 0, N = 64
 P_SCI3.BRR = 64;

 //minimum of 1-bit delay = 417ns
 nop();
 nop();
 nop();

 //SPCR : |---|---|SPC32|---|SCINV3|SCINV2|---|---| : |1|1|1|0|0|0|0|0|
 //SPC32 = 1 : P42 functions as TXD32 output pin
 //need to set TE bit in SCR3 after setting this bit to 1
 //SCINV3 = 0 : TXD32 output data is not inverted
 //SCINV2= 0 : RXD32 input data is not inverted
 //Bits 7 and 6 are reserved and always read as 1
 //Bits 4, 1 and 0 are reserved and only 0 can be written to these bits
 P_SCI3.SPCR.BYTE = 0xE0;

 P_SCI3.SCR3.BYTE |= 0x30; //Set TE & RE
}

//--

/*
 char_put() : Transmits a character to the PC for debugging purposes.
*/

void char_put(char OutputChar) //Serial Port
{
 //SSR : |TDRE|RDRF|OER|FER|PER|TEND|MPBR|MPBT|
 //TDRE : transmit data register empty
 //RDRF : receive data register full
 //OER : overrun error
 //FER : framing error
 //PER : parity error
 //TEND : transmit end
 //MPBR : Multiprocessor bit receive
 //MPBT : Multiprocessor bit transfer

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 27 of 41

 while ((P_SCI3.SSR.BIT.TDRE) == 0); //Wait for TDRE = 1

 P_SCI3.TDR = OutputChar;
}

//--

/*
 PutStr() : Transmits a string of characters to the PC for debugging
purposes.
*/

void PutStr(char *str)
{
 while (*str != 0)
 {
 char_put(*str++);
 }
}

//--

/*
 wait(): Generates a software delay.
*/

void wait(unsigned int time)
{
 unsigned int i, j;

 for (i = 0 ; i < time ; i++)
 {
 for (j = 0 ; j < 3500 ; j++)
 {
 }
 }
}

//--

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 28 of 41

/***/
/* */
/* FILE :RW.c */
/* DATE :Fri, Dec 27, 2002 */
/* DESCRIPTION :Function Program */
/* CPU TYPE :H8/38024F */
/* */
/* This file is generated by Renesas Project Generator (Ver.2.1). */
/* */
/***/

//---

#include "i2c.h"
#include "iodefine.h"

//---

/*
 SclIn()
 Defines the SCL as an input pin and checks the port status (low or high).
*/

unsigned char SclIn(void)
{
 SCL_IO_REG &= SCL_IO_RESET_BIT; //Set to Input

 if (SCL_DATA_REG & SCL_DATA_SET_BIT) //Check pin status
 {
 return(HIGH);
 }
 else
 {
 return(LOW);
 }
}

//---

/*
 SdaIn()
 Defines the SDA as an input pin and checks the port status (low or high).
*/

unsigned char SdaIn(void)
{
 SDA_IO_REG &= SDA_IO_RESET_BIT; //Set to Input

 if (SDA_DATA_REG & SDA_DATA_SET_BIT)
 {
 return(HIGH); //Check pin status
 }
 else
 {

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 29 of 41

 return(LOW);
 }
}

//---

/*
 SclOut()
 Defines the SCL pin as an output pin and sets it to the level
 determined by the parameter.
*/

void SclOut(unsigned char status)
{
 if (status == LOW)
 {
 SCL_DATA_REG = 0; //Drive Port LOW
 }
 else
 {
 SCL_DATA_REG = 1; //Drive Port High
 }

 SCL_IO_REG |= SCL_IO_SET_BIT; //Set to output
}

//---

/*
 SdaOut()

Defines the SDA as an output pin and sets it to the level determined by the
parameter.

*/

void SdaOut(unsigned char status)
{
 if (status == LOW)
 {
 SDA_DATA_REG = 0; //Drive Port LOW
 }
 else
 {
 SDA_DATA_REG = 1; //Drive Port High
 }

 SDA_IO_REG |= SDA_IO_SET_BIT; //Set to output
}

//---

/*
 Delay()
 Provide an internal minimum delay time to bridge the undefined
 region of a falling edge of SCL to avoid unintended generation

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 30 of 41

 of unwanted signal.
*/

void Delay(void)
{
 unsigned char i = 0;

 while (i < 20)
 {
 i++;
 }
}

//---

void Delay2x(void)
{
 Delay();
 Delay();
}

//---
//All codes below here are independent with hardware, such as microprocessor,
//I/O port, or etc.

/*
 CheckBusState()
Determine whether the I2C bus is free (both SCL and SDA = HIGH) or in busy
state.
*/

unsigned char CheckBusState(void)
{
 if ((SclIn() == HIGH) && (SdaIn() == HIGH))
 {
 return(TRUE);
 }
 else
 {
 return(FALSE);
 }
}

//---

/*
 SendStartBit(): Issues a START condition
*/

void SendStartBit(void)
{
 Delay();
 SdaOut(LOW);
 Delay2x();

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 31 of 41

 Delay2x();
 Delay2x();
 Delay2x();
 SclOut(LOW);
 Delay();
}

//---

/*
 SendBit(): Send out data in bit format
*/

void SendBit(unsigned char data_byte)
{
 SclOut(LOW);

 Delay();

 if (data_byte != 0)
 {
 SdaOut(HIGH);
 }
 else
 {
 SdaOut(LOW);
 }

 Delay();

 SclOut(HIGH);

 while (SclIn() != HIGH) {} //wait for slow device to release clock

 Delay2x();
}

//---

/*
 GetBit(): Receive data input in bit format
*/

unsigned char GetBit(void)
{
 unsigned char temp;

 SclOut(LOW);
 temp = SdaIn();
 Delay2x();
 SclOut(HIGH);
 while (SclIn() != HIGH) {} //wait for slow device to release clock
 Delay();
 temp = SdaIn();

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 32 of 41

 Delay();
 return(temp);
}

//---

/*
 GetAck():
 Getting ACK is similar to GetBit, but this is critical operation since
 master must pull SDA high before it finds out whether there is a ACK
 (SDA is low) or not.
*/

unsigned char GetAck(void)
{
 unsigned char temp;

 SclOut(LOW);
 Delay();
 SdaOut(HIGH);
 temp = SdaIn();
 Delay();
 SclOut(HIGH);
 while (SclIn() != HIGH) {} //wait for slow device to release clock
 Delay();
 temp = SdaIn();
 Delay();
 return(temp);
}

//---

/*
 SendByte(): Send out a byte starting with most significant bit (MSB) first.
*/

unsigned char SendByte(unsigned char data_byte)
{
 unsigned char i;
 unsigned char mask;

 mask = 0x80; //send out MSB first

 for (i = 0 ; i < 8 ; i++)
 {
 SendBit(data_byte & mask);
 mask >>= 1;
 }

 return(GetAck());
}

//---

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 33 of 41

/*
 GetByte(): Get a byte of data starting with most significant bit (MSB)
*/

unsigned char GetByte(void)
{
 unsigned char temp1, temp2;
 unsigned char i,mask;

 mask = 0x80;

 temp2 = 0;

 for (i = 0; i < 8 ; i++)
 {
 temp1 = GetBit() * mask;
 temp2 += temp1;
 mask >>= 1;
 }
 return(temp2);
}

//---

/*
 SendStopBit(): Send a STOP condition to terminate the operation
*/

void SendStopBit(void)
{
 SclOut(LOW);
 Delay();
 SdaOut(LOW);
 Delay();
 SclOut(HIGH);
 Delay2x();
 SdaOut(HIGH);
}

//---

/*
 I2cWrite()

 a. Byte Write
 1. Start Bit
 2. Control Byte
 3. Ack
 4. Word Address
 5. Ack
 6. Data
 7. Ack
 8. Stop Bit

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 34 of 41

 b. Page Write
 1. Start Bit
 2. Control Byte
 3. Ack
 4. Word Address
 5. Ack
 6. Data(n)
 7. Ack
 8. Data(n + 1)
 9. Ack
 ...
 10. Data(n + 15)
 11. Ack
 12. Stop Bit
*/

unsigned char I2cWrite(unsigned char slave_addr, unsigned char *buf_ptr,
 unsigned char length, unsigned char word_addr)
{
 unsigned int i;

 if (CheckBusState() != TRUE)
 {
 PutStr(" -> BUS_BUSY!");
 return(BUS_BUSY);
 }
 SendStartBit();

 //Send address and write command
 if (SendByte((slave_addr) & 0xfe) != LOW)
 {
 PutStr(" -> NO_RESPONSE-1");
 return(NO_RESPONSE);
 }

 //Send word address
 if (SendByte(word_addr) != LOW)
 {
 PutStr(" -> NO_RESPONSE-2");
 return(NO_RESPONSE);
 }

 for (i = 0 ; i < length ; i++)
 {
 //Write data
 if (SendByte(*buf_ptr++) != LOW)
 {
 PutStr(" -> ERR_RESPONSE");
 return(ERR_RESPONSE);
 }
 }

 SendStopBit();

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 35 of 41

 return(OP_DONE);
}

//---

unsigned char I2cRead(unsigned char slave_addr, unsigned char *buf_ptr,
 unsigned char length, unsigned char word_addr)
{
 unsigned char i = 0, j = 0;
 unsigned char ref_data[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,
 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD,
 0xEE, 0xFF};
 unsigned char DataBuffer[256];
 unsigned char error = 0;

 if (CheckBusState() != TRUE)
 {
 PutStr(" -> BUS_BUSY");
 return(BUS_BUSY);
 }

 SendStartBit();

 //Send dummy address and write command
 if (SendByte((slave_addr) & 0xfe) != LOW)
 {
 PutStr(" -> NO_RESPONSE-1!");
 return(NO_RESPONSE);
 }

 //Send high word address
 if (SendByte(word_addr) != LOW)
 {
 PutStr(" -> NO_RESPONSE-2!");
 return(NO_RESPONSE);
 }

 SdaOut(HIGH); //Pull-up SDA line

 SendBit(HIGH);

 SendStartBit();

 //Send address and read command
 if (SendByte((slave_addr) | 0x01) != LOW)
 {
 PutStr(" -> NO_RESPONSE-3!");
 return(NO_RESPONSE);
 }

 for (i = 0 ; i < length - 1 ; i++)
 {
 DataBuffer[i] = GetByte(); //read data
 SendBit(LOW); //ack it low

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 36 of 41

 }

 //Get last data byte and ack high
 DataBuffer[length - 1] = GetByte();
 SendBit(HIGH);
 SendStopBit();

 for (i = 0 ; i < length ; i++)
 {
 if (DataBuffer[i] != ref_data[word_addr + i])
 {
 error++;
 }
 }

 if (error)
 {
 PutStr(" -> Incorrect Data!");
 }
 else
 {
 PutStr(" -> OK");
 }

 return(OP_DONE);
}

//---

unsigned char I2cCurrentRead(unsigned char slave_addr,
 unsigned char *buf_ptr,
 unsigned char word_addr)
{
 unsigned char ref_data[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,
 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD,
 0xEE, 0xFF};

 SendStartBit();

 //Send address and read command
 if (SendByte((slave_addr) | 0x01) != LOW)
 {
 PutStr(" -> NO_RESPONSE!");
 return(NO_RESPONSE);
 }

 *buf_ptr = GetByte(); //get data and ack high

 SendBit(HIGH);
 SendStopBit();

 if (*buf_ptr != ref_data[word_addr])
 {
 PutStr(" -> Incorrect Data!");

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 37 of 41

 }
 else
 {
 PutStr(" -> OK");
 }

 return(OP_DONE);
}

//---

/*
 Since Microchip devices such as 24AA16 will not acknowledge during
 the internal write cycle, this can be used to determined when this
 cycle is complete so that the master can proceed with next operation.

 Acknowledge Polling
 a. Send write command
 b. Send stop condition to initiate write cycle
 c. Send start bit
 d. Send control byte with r/w_n = 0
 e. If device acknowledge, goto f. Else go to c
 f. Ready for next operation

 Note that (c) to (e) - internal write cycle
*/

char CheckWriteReady(void)
{
 unsigned int i = 0;

 while (i < 4)
 {
 SendStartBit();

 if (SendByte((0xa0) | 0x00) == LOW)
 {
 SendStopBit();
 return (1);
 }

 SendStopBit();

 i++;
 }

 return (0);
}

//---

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 38 of 41

6. Hardware Design

O
1
0

O
4

O
9

D
i
g
i
t

0

O
2
0

R
1

5
6
K

0
8
0
5

S
D

A

O
8

U
4

5
x
7
 D

o
t
M

a
tr

ix
 L

E
D

D
O

T
M

A
T

R
IX

L
E

D

12

34

5

6
7 8 9

1
0

1
1

1
2

1
3

1
4

R
3

R
1

C
4

C
3

R
4

C
1

R
2

R
5

R
7

C
2

C
3

R
4

C
5

R
6

D
i
g
i
t

1

O
2

O
6

O
2
2

U
2

5
x
7
 D

o
t
M

a
tr

ix
 L

E
D

D
O

T
M

A
T

R
IX

L
E

D

12

34

5

6
7 8 9

1
0

1
1

1
2

1
3

1
4

R
3

R
1

C
4

C
3

R
4

C
1

R
2

R
5

R
7

C
2

C
3

R
4

C
5

R
6

O
3

S
C

L

O
8

O
1
2

R
2

2
K

2
0
8
0
5

O
[2

3
..
1
9
]

O
5

O
1
5

O
1
1

U
1

5
x
7
 D

o
t
M

a
tr

ix
 L

E
D

D
O

T
M

A
T

R
IX

L
E

D

12

34

5

6
7 8 9

1
0

1
1

1
2

1
3

1
4

R
3

R
1

C
4

C
3

R
4

C
1

R
2

R
5

R
7

C
2

C
3

R
4

C
5

R
6

O
1
0

O
2
3

O
[1

8
..
1
4
]

O
2
1

S
D

A

O
[1

3
..
7
]

O
1
8

U
7

2
4
A

A
1
6

D
IP

8

1 2 3 4
5678

A
0

A
1

A
2

V
s
s

S
D

A

S
C

L

W
P

V
c
c

O
[1

8
..
1
4
]

O
7

O
2
1

O
2
0

U
3

5
x
7
 D

o
t
M

a
tr

ix
 L

E
D

D
O

T
M

A
T

R
IX

L
E

D

12

34

5

6
7 8 9

1
0

1
1

1
2

1
3

1
4

R
3

R
1

C
4

C
3

R
4

C
1

R
2

R
5

R
7

C
2

C
3

R
4

C
5

R
6

O
9

O
1
0

O
2
3

O
6

O
0

3
V

3

S
C

L

O
9

S
D

A

O
6

O
1
6

3
V

3

3
V

3

O
2
1

O
5

O
1

O
1
1

O
1
8

U
5

M
A

X
6
9
5
3
E

P
L

D
IP

4
0

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

O
0

O
1

O
2

G
N

D
G

N
D

G
N

D
O

3
O

4
O

5
O

6
O

7
O

8
O

9
O

1
0

O
1
1

N
C

IS
E

T
A

D
1

G
N

D
B

L
IN

K
O

S
C

A
D

0
S

D
A

S
C

L
N

C
O

1
2

O
1
3

O
1
4

O
1
5

O
1
6

O
1
7

O
1
8

O
1
9

O
2
0

V
+

V
+

V
+

O
2
1

O
2
2

O
2
3

O
2

O
1
6

R
3

2
K

2
0
8
0
5

O
2
2

O
1
0

O
2
1

O
4

O
1
7

O
7

O
1
7

O
1
9

O
[1

3
..
7
]

O
1
6

O
3

O
[6

..
0
]

O
1
9

O
[2

3
..
1
9
]

O
1
2

O
0

O
[2

3
..
1
9
]

D
i
g
i
t

3

O
1
9

P
8
0

O
0

C
3

2
6
p
F

0
6
0
3

S
C

L

O
1
4

C
5

0
.1

u
F

0
6
0
3

O
1
3

O
1
1

U
6

M
A

X
6
6
2
6

S
O

T
2
3
-6

1 2 3
456

S
D

A

G
N

D

S
C

L
O

T

A
D

DV
s

O
1
5

O
1
5

P
7
0

3
V

3

O
5

O
1
3

O
1
6

O
1

C
1

4
7
u
F

C
A

P

O
[1

3
..
7
]

O
7

O
1
0

S
D

A

O
2
2

O
2
0

O
3

O
8

O
2
1

O
3

O
1
6

C
2

0
.1

u
F

C
A

P

O
1
3

D
i
g
i
t

2

O
[6

..
0
]

O
1
2

O
[1

8
..
1
4
]

O
2
3

O
4

O
[6

..
0
]

O
1
4

O
2

3
V

3

O
1
8

O
1

O
3

O
1
4

S
C

L

O
1
7

C
4

0
.1

u
F

0
6
0
3

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 39 of 41

7. References
1. The I2C-Bus Specification (Version 2.1), January 2000, Philips Semiconductor.
2. 24AA16/24LC16B 16K I2C Serial EEPROM, 2002, Microchip Technology Inc.
3. MAX6626 12-bit Temperature Sensor with I2C-compatible Serial Interface, 2002, Maxim Integrated Products.
4. MAX6953 2-wire Interfaced 4-digit 5x7 Matrix LED Display Driver, 2002, Maxim Integrated Products.
5. Serial Peripheral Interface (SPITM) & Inter-IC (I2CTM), 2003, Renesas Technology Corp.

(Application Note ref. no: AN0303011, http://sg.renesas.com,)
6. Application Note on Interfacing to EEPROM with I2CTM Emulation (Port), 2003, Renesas Technology Corp.

(Application Note ref. no: AN0303012, http://sg.renesas.com,)

Note: I2C is a registered trademark of Philips.

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 40 of 41

Revision Record
Description

Rev.

Date Page Summary

1.00 Sep.10.04 — First edition issued

H8/300L SLP Series
Implementation of I2C (Port) to Three I2C Devices (3I2Cport)

RES06B0004-0100/Rev.1.00 September 2004 Page 41 of 41

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Top Page
	1. I2C Interface Overview
	2. Microchip 24AA16 E2PROM
	2.1 Bus Protocol
	2.1.1 Device Addressing
	2.1.2 Bit Transfer and Data Validity
	2.1.3 Acknowledge

	2.2 Write Operation
	2.2.1 Byte Write
	2.2.2 Page Write

	2.3 Read Operation
	2.3.1 Current Address Read
	2.3.2 Random Read
	2.3.3 Sequential Read

	3. I2C Temperature Sensor
	3.1 Addressing
	3.2 Control Registers
	3.3 Temperature Conversion
	3.4 Over-Temperature Alarm
	3.5 Shutdown

	4. I2C 4-Digit 5 * 7 Matrix LED Display Driver
	4.1 Serial Addressing
	4.2 Start and Stop Conditions
	4.3 Bit Transfer
	4.4 Acknowledge
	4.5 Slave Address
	4.6 Writing Message Format
	4.7 Reading Message Format

	5. Code Listing
	6. Hardware Design
	7. References
	Revision Record
	Keep safety first in your circuit designs!
	Notes regarding these materials

