Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8/300H SLP Series

Duty Pulse Output Using AEC Event Counter PWM Output Function

Introduction

Duty pulses are output using the event counter PWM output function of the asynchronous event counter (AEC).

Target Device

H8/38076R

Contents

1.	Specifications	2
2.	Functions Used	3
3.	Principles of Operation	6
4.	Description of Software	7
5.	Flowcharts	9

1. Specifications

Duty pulses are output using the event counter PWM output function of the AEC, as shown in figure 1.

- A standard PWM waveform is output from the PWM1 output pin by means of the AEC event counter PWM function.
- This sample task outputs duty pulses with a pulse cycle of 12 ms, pulse high width of 9 ms, and duty cycle of 75%.

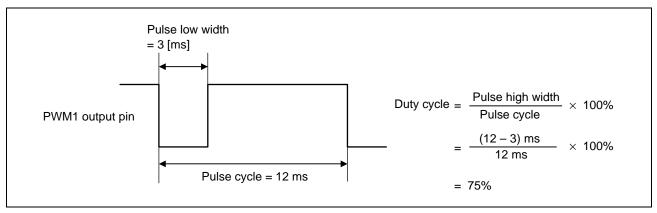


Figure 1 Duty Pulse Output Using Event Counter PWM Output Function of AEC

2. Functions Used

2.1 Functions

In this sample task, duty pulses are output using the event counter PWM output function of the AEC. A block diagram of the AEC is shown in figure 2. The block diagram of the event counter PWM output function of the AEC is explained below.

• System clock (ϕ)

The reference clock for operating the CPU and peripheral functions (in this sample task, 10 MHz)

• Prescaler S (PSS)

A 13-bit counter with ϕ as input, incremented every cycle

- Event counter PWM compare register (ECPWCR)
 ECPWCR sets the one conversion period of the event counter PWM waveform.
- Event counter PWM data register (ECPWDR) ECPWDR controls data of the event counter PWM waveform generator.
- Input pin edge select register (AEGSR) AEGSR enables or stops event counter PWM operation.
- Event counter control register (ECCR)

ECCR controls counter input clock and IRQAEC/IECPWM.

• Event counter PWM output (IECPWM)

IECPWM operates as an interrupt source. Interrupt enabling is controlled by IENEC2 in IENR1. When an IECPWM interrupt is generated, IRR1 interrupt request flag IRREC2 is set to 1. If IENEC2 is at this time, an interrupt request is issued to the CPU.

• Event input enable (IRQAEC)

Interrupt input pin that enables event input. Not used in this sample task.

• PWM1 control register (PWCR1)

Selects whether a PWM waveform output from the PWM1 output pin is a pulse division PWM waveform or AEC event counter PWM output.

• PWM1 output pin (PWM1)

In this sample task, PWM1 outputs an AEC event counter PWM waveform.

• Port mode register 9 (PMR9)

Sets the P90/PWM1 pin to PWM1 output.

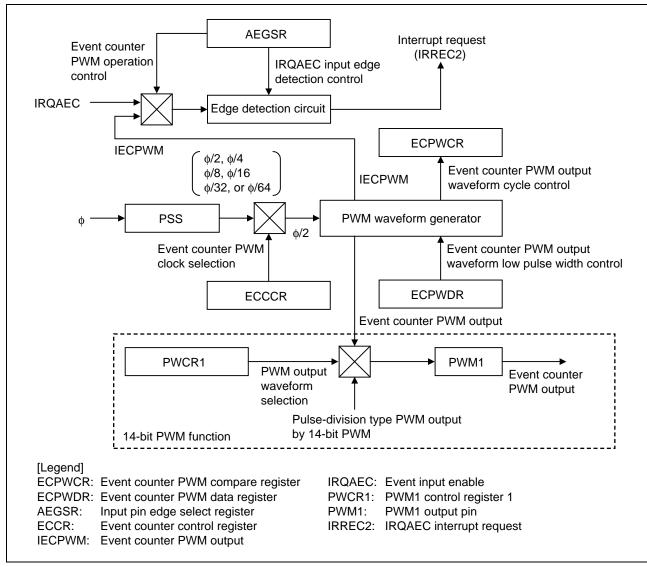


Figure 2 Block Diagram of AEC Event Counter PWM Output Function

2.2 Assignment of Functions

Table 1 shows the assignment of functions in this sample task. Using functions assigned as shown in table 1, duty pulses are output by using the AEC event counter PWM output function.

Table 1 Assignment of Functions

Elements	Description	
ECPWCR	Sets event counter PWM output waveform conversion cycle to 12 ms.	
ECPWDR	Sets IECPWM low-level periods to 3 ms.	
ECCR	Selects $\phi/2$ as event counter PWM clock.	
AEGSR	Enables event counter PWM operation.	
PWCR1	Sets standard PWM waveform as the waveform to be output from the PWM1 pin.	
PWM1	Outputs event counter PWM waveform.	
PMR9	Sets P90/PWM1 pin to be output from the PWM1 pin.	

3. Principles of Operation

The principles of operation of this sample task are illustrated below. By means of the hardware and software processing shown in figure 3, duty pulses are output using the PWM function of the AEC.

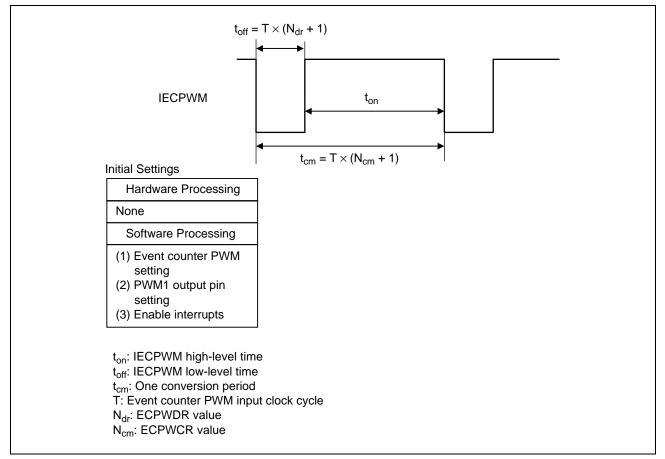


Figure 3 Principles of Operation

4. Description of Software

4.1 Modules

Table 2 shows the modules used in this sample task.

Table 2 Modules

Function Name	Description
main	Event counter PWM setting, PWM1 output pin setting, enable interrupt

4.2 Arguments

No arguments are used in this sample task.

4.3 Internal Registers Used

The internal registers used in this sample task are shown below.

- ECPWCR Event counter PWM compare register Address: H'FF8C
 Function: ECPWCR sets one event counter PWM waveform conversion period.
 Set value: H'EA59
 R/W: R/W
- ECPWDR Event counter PWM data register Address: H'FF8E Function: ECPWDR controls event counter PWM waveform data.
 Set value: H'3A97 R/W: W
- AEGSR Input pin edge select register Address: H'FF92

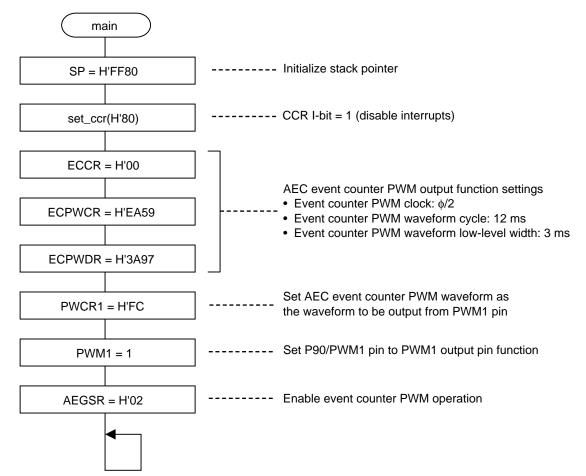
Bit	Bit Name	Set Value	R/W	Description
1	ECPWME	1	R/W	Event counter PWM enable
				Controls operation of event counter PWM and selection of IRQAEC.
				0: AEC PWM halted, IRQAEC selected
				1: AEC PWM enabled, IRQAEC not selected

• ECCR Event counter control register Address: H'FF94

Bit	Bit Name	Set Value	R/W	Description			
3	PWCK2	0	R/W	Event counter	er PWM clock se	lect	
2	PWCK1	0	R/W	Selects ever	nt counter PWM	clock.	
1	PWCK0	0	R/W	000: φ/2 011: φ/16	001:	010: φ/8 1x1: φ/64	

Note: x: Don't care

•	PMR9 Port m	ode register 9	Addre	ess: H'FFC8
Bit	Bit Name	Set Value	R/W	Description
0	PWM1	1	R/W	P90/PWM1 pin switching
				Sets whether P90/PWM1 pin is to be used as P90 I/O pin or as PWM1 output pin.
				0: P90 I/O pin
				1: PWM1 output pin
•	PWCR1 PWM	11 control regis	ster A	ddress: H'FFD0
Bit	Bit Name	Set Value	R/W	Description
2	PWCR1n	1	W	PWM output waveform select
				Selects standard PWM waveform or pulse-division type PWM waveform.


4.4 RAM Usage

No RAM is used in this sample task.

5. Flowcharts

5.1 main

• Link Address Specifications

Section Name	Address
CV1	H'0000
Р	H'0100

Revision Record

		Description			
Rev.	Date	Page	Summary		
1.00	Sep.16.04		First edition issued		

Keep safety first in your circuit designs!

CENESAS

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.