Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8SX Family

DTC Transfer with Transfer Information Read Skipping Processing

Introduction

The data transfer controller (DTC) is activated by an IRQ0 interrupt and transfers 64 bytes of data twice. In the second data transfer, the DTC skips reading of the transfer information.

Target Device

H8SX/1653

Contents

1.	Specifications	. 2
	Conditions for Application	
3.	Description of Modules Used	. 4
4.	Description of Operation	. 6
5.	Description of Software	. 8

1. Specifications

- Figure 1 shows a block diagram of data transfer by the DTC for this sample task.
- The DTC is activated by an IRQ0 interrupt and transfers two 64-byte data blocks.
- With read skipping processing specified, the DTC skips reading the vector address and transfer information when it transfers the second block of data.

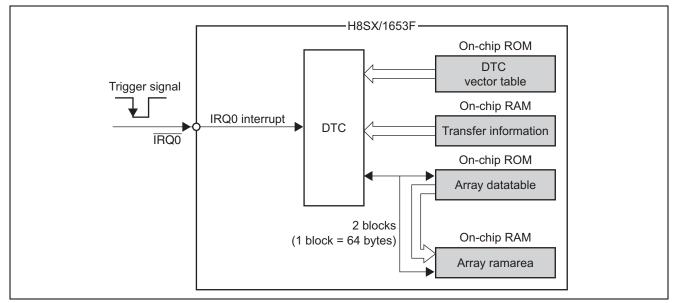


Figure 1 Block Data Transfer by the DTC with Transfer Information Read Skipping Processing

2. Conditions for Application

Table 1 Conditions for Application

Item	Contents	
Operating frequency	Input clock:	12 MHz
	System clock (I	48 MHz
	Peripheral module clock (P	24 MHz
	External bus clock (Bø):	48 MHz
Operating mode	Mode 6 (MD2 = 1, MD1 = 1, M	D0 = 0)
Development tool	High-performance Embedded	Workshop Version 4.00.03
C/C++ compiler	H8S, H8/300 Series C/C++ Co	mpiler Version 6.01.01
	(from Renesas Technology Co	prp.)
Compile option	-cpu = h8sxa:24:md, -code = n -speed = (register, shift, struct,	nachinecode, -optimize = 1, -regparam = 3 , expression)

Table 2 Section Settings

Address	Section Name	Description	
H'001000	Р	Program area	
	С	Data table storage area	
H'002500	CDTCV	DTC vector address storage area	
H'FF2000	В	Uninitialized data area (RAM area)	

3. Description of Modules Used

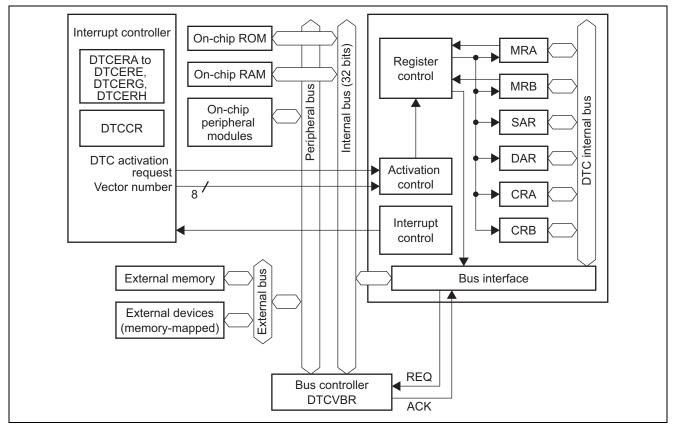
Figure 2 shows a block diagram of the DTC. The block diagram of the DTC is described below.

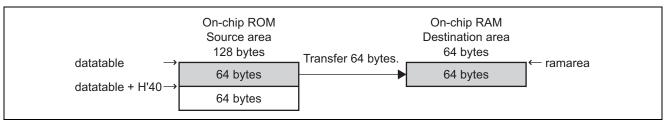
The registers shown below cannot be directly accessed by the CPU. The values to be set in the registers should be stored in the data area as the transfer information. When a DTC activation source event occurs, the DTC reads the start address of the transfer information according to the vector address assigned to each activation source, copies the transfer information to the registers in the DTC, and transfers data. After transferring the data, the DTC writes the contents of these registers back to the data area.

- DTC mode register A (MRA) Selects the DTC operating mode. In this sample task, the transfer mode is set to the block transfer mode, the transfer data size is set to the byte units, and SAR is specified to be incremented after data transfer.
- DTC mode register B (MRB) Selects the DTC operating mode. In this sample task, the destination side is selected as the block area and DAR is specified to be incremented after data transfer.
- DTC source address register (SAR) Specifies the source address of data transfer.
- DTC destination address register (DAR) Specifies the destination address of data transfer.
- DTC transfer count register A (CRA) Specifies the number of times data is to be transferred by the DTC. In block transfer mode, CRA is divided into two parts: the upper eight bits (CRAH) and the lower eight bits (CRAL). CRAH holds the block size while CRAL functions as an 8-bit block-size counter (1 to 256 bytes, words, or longwords). In this sample task, the block size is set to 64 bytes.
- DTC transfer count register B (CRB) Specifies the number of times block data is to be transferred by the DTC in block transfer mode.

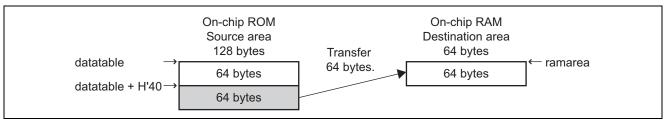
The registers shown below are in the interrupt controller or bus controller and can be directly accessed by the CPU.

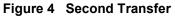
- DTC enable registers A to E, G, and H (DTCERA to DTCERE, DTCERG, and DTCERH) The DTCER registers (DTCERA to DTCERE, DTCERG, and DTCERH) select the DTC activation interrupt sources. Refer to the hardware manual for the correspondence between the interrupt sources and DTCE bits. In this sample task, the IRQ0 interrupt is selected as the activation source.
- DTC control register (DTCCR) Specifies skipping of transfer information reading, etc.
- DTC vector base register (DTCVBR) Specifies the base address to be used to calculate the vector table address.




Figure 2 Block Diagram of DTC

4. Description of Operation


4.1 Overview


4.1.1 DTC Data Transfer

Figures 3 and 4 show the memory mapping for data transfer by the DTC.

Figure 3 First Transfer

4.1.2 Transfer Information Read Skip Timing

- Figure 5 shows the timing of the transfer information read skip processing.
- When the DTC is activated for the first transfer, the DTC reads the vector and then reads the transfer information after the DTC activation request (1).
- When RRS = 1, the DTC skips reading the vector and transfer information for the second DTC activation request (2).

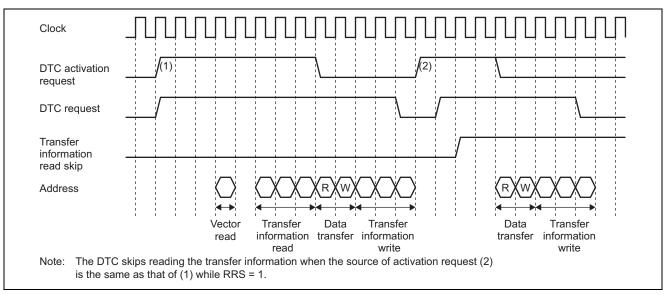


Figure 5 Timing

4.2 DTC Transfer Information

4.2.1 Configuration of Transfer Information

Figure 6 shows the configuration of the transfer information in memory in short address mode. In this sample task, the transfer information is allocated at H'FFB000.

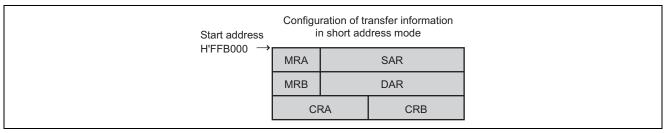


Figure 6 Configuration of Transfer Information

4.2.2 Correspondence between Vector Table and Transfer Information

Figure 7 shows the correspondence between the vector table and transfer information. In this sample task, the vector table address is calculated as H'00002500 based on the DTCVBR contents. The start address (H'FFB000) of transfer information is set in this vector table, which causes the transfer information to be read into the registers in the DTC.

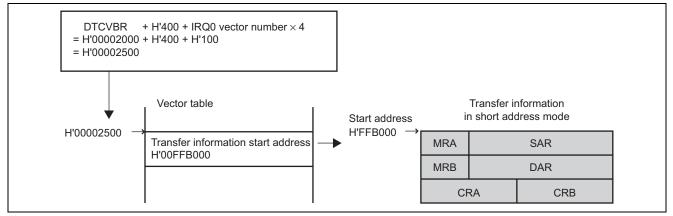


Figure 7 Correspondence between Vector Table and Transfer Information

5. Description of Software

5.1 List of Functions

Table 3 List of Functions

Function Name	Functions
init	Initialization routine
	Sets the CCR and configures the clocks, cancels the module stop mode, and calls the main function.
main	Main routine
	Makes the initial settings for the DTC, specifies skipping of transfer information read, and transfers two 64-byte data blocks.
irq0_int	IRQ0 interrupt handling routine

5.2 Vector Table

Table 4 Interrupt and Exception Handling Vector Table

Exception Handling Source	Vector Number	Vector Table Address	Exception Handling Routine
Reset	0	H'000000	main
IRQ0	64	H'000100	irq0_int

5.3 RAM Usage

Table 5 RAM Usage

Туре	Variable Name	Description	Used In
unsigned char	ramarea[64]	Destination RAM area	main
DTC_tag	TRINFO	DTC transfer information	main
		(Start address: H'FFB000)	

5.4 Data Table

Table 6 Data Table

Туре	Array Name	Description	Used In
unsigned char	datatable[128]	Stores the source data.	main
		128 bytes of data of H'00, H'01,, H'7F	

5.5 Description of Functions

5.5.1 init Function

(1) Functional overview

Initialization routine which cancels the module stop mode, sets up the clocks, and calls the main function.

(2) Argument

None

(3) Return value

None

(4) Description of internal registers

The internal registers used in this sample task are described below. Note that the settings shown below are not the initial values but the values used in this sample task.

Address: H'FFFDC4

• System clock control register (SCKCR)

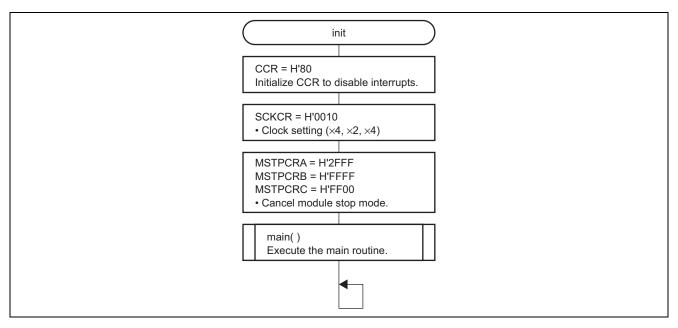
Bit	Bit Name	Setting	R/W	Function
10	ICK2	0	R/W	System Clock (I
9	ICK1	0	R/W	These bits select the frequency of the system clock, which is
8	ICK0	0	R/W	supplied to the CPU, DMAC, and DTC.
				000: Input clock × 4
6	PCK2	0	R/W	Peripheral Module Clock (P
5	PCK1	0	R/W	These bits select the frequency of the peripheral module
4	PCK0	1	R/W	clock.
				001: Input clock × 2
2	BCK2	0	R/W	External Bus Clock (B
1	BCK1	0	R/W	These bits select the frequency of the external bus clock.
0	BCK0	0	R/W	000: Input clock × 4

- MSTPCRA, MSTPCRB, and MSTPCRC control module stop mode. Setting a bit in these registers to 1 places the corresponding module in module stop mode, while clearing the bit to 0 cancels module stop mode.
- Module stop control register A (MSTPCRA) Address: H'FFFDC8 Bit **Bit Name** Setting R/W Function 15 ACSE 0 R/W All-module-clock-stop mode enable Enables or disables transition to all-module-clock-stop mode. If this bit is set to 1, all-module-clock-stop mode is entered when the SLEEP instruction is executed by the CPU while all the modules under control of the MSTPCR registers are placed in module stop mode. In all-module-clock-stop mode, even the bus controller and I/O ports are stopped to reduce the supply current. 0: Disables transition to all-module-clock-stop mode. 1: Enables transition to all-module-clock-stop mode. 13 R/W DMA controller (DMAC) MSTPA13 1 12 MSTPA12 0 R/W Data transfer controller (DTC) 9 R/W 8-bit timer (TMR_3, TMR_2) MSTPA9 1 8 MSTPA8 R/W 8-bit timer (TMR 1, TMR 0) 1 5 MSTPA5 1 R/W D/A converter (channels 1 and 0) 3 MSTPA3 1 R/W A/D converter (unit 0) 0 MSTPA0 1 R/W 16-bit timer pulse unit (TPU channels 5 to 0)

Module stop control register B (MSTPCRB) ٠

•

Address: H'FFFDCA


Bit	Bit Name	Setting	R/W	Function
15	MSTPB15	1	R/W	Programmable pulse generator (PPG)
12	MSTPB12	1	R/W	Serial communication interface_4 (SCI_4)
10	MSTPB10	1	R/W	Serial communication interface_2 (SCI_2)
9	MSTPB9	1	R/W	Serial communication interface_1 (SCI_1)
8	MSTPB8	1	R/W	Serial communication interface_0 (SCI_0)
7	MSTPB7	1	R/W	I ² C bus interface_1 (IIC_1)
6	MSTPB6	1	R/W	I ² C bus interface_0 (IIC_0)

• Module stop control register C (MSTPCRC)

Address: H'FFFDCC

Bit	Bit Name	Setting	R/W	Function
15	MSTPC15	1	R/W	Serial communication interface_5 (SCI_5), (IrDA)
14	MSTPC14	1	R/W	Serial communication interface_6 (SCI_6)
13	MSTPC13	1	R/W	8-bit timer (TMR_4, TMR_5)
12	MSTPC12	1	R/W	8-bit timer (TMR_6, TMR_7)
11	MSTPC11	1	R/W	Universal serial bus interface (USB)
10	MSTPC10	1	R/W	Cyclic redundancy check
4	MSTPC4	0	R/W	On-chip RAM_4 (H'FF2000 to H'FF3FFF)
3	MSTPC3	0	R/W	On-chip RAM_3 (H'FF4000 to H'FF5FFF)
2	MSTPC2	0	R/W	On-chip RAM_2 (H'FF6000 to H'FF7FFF)
1	MSTPC1	0	R/W	On-chip RAM_1 (H'FF8000 to H'FF9FFF)
0	MSTPC0	0	R/W	On-chip RAM_0 (H'FFA000 to H'FFBFFF)

(5) Flowchart

5.5.2 main Function

(1) Functional overview

Makes settings for DTC transfer and starts transfer.

(2) Argument

None

(3) Return value

None

(4) Description of internal registers

The internal registers used in this sample task are described below. Note that the settings shown below are not the initial values but the values used in this sample task.

• DTC mode register A (MRA)

(Cannot be directly accessed by the CPU.)

Bit	Bit Name	Setting	Function		
7	MD1	1	DTC Mode 1, 0		
6	MD0	0): Block transfer mode		
5	Sz1	0	DTC Data Transfer Size 1, 0		
4	Sz0	0	00: Byte-size transfer		
3	SM1	1	Source Address Mode 1, 0		
2	SM0	0	These bits specify the SAR operation after a data transfer.		
			10: Increments SAR after a transfer		

• DTC mode register B (MRB)

(Cannot be directly accessed by the CPU.)

Bit	Bit Name	Setting	Function
4	DTS	0	DTC Transfer Mode Select
			0: Specifies the destination as the repeat or block area
			1: Specifies the source as the repeat or block area
3	DM1	1	Destination Address Mode 1, 0
2	DM0	0	These bits specify the DAR operation after a data transfer.
			10: Increments DAR after a transfer

• DTC source address register (SAR) (Cannot be directly accessed by the CPU.) Function: Specifies the source address of data transfer. Setting: Start address of array datatable • DTC destination address register (DAR)

Function: Specifies the destination address of data transfer. Setting: Start address of array ramarea

(Cannot be directly accessed by the CPU.)

(Cannot be directly accessed by the CPU.)

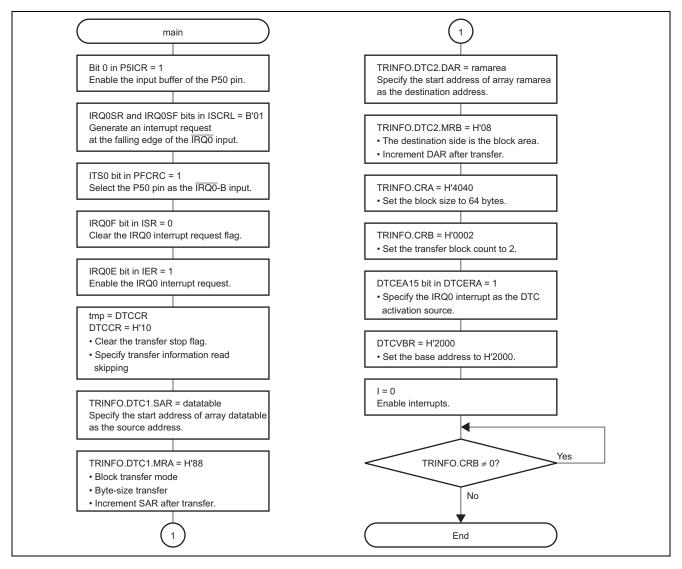
• DTC transfer count register A (CRA) Function: Specifies the block size in block transfer mode. When the Sz1 and Sz0 bits in MRA are set to B'00 (bytesize transfer) and CRA is set to H'4040, the block size is 64 bytes. Setting: H'4040

 DTC transfer count register B (CRB) (Cannot be directly accessed by the CPU.) Function: Specifies the number of times data is to be transferred in block transfer mode. This value is decremented (-1) after each data transfer. Setting: H'0002

Address: H'FFFB94

• Port 5 input buffer control register (P5ICR)

Bit	Bit Name	Setting	R/W	Function
)	P50ICR	1	R/W	0: Disables the input buffer of the P50 pin
				1: Enables the input buffer of the P50 pin
Por	function contro	l register C (PFCRC)	Address: H'FFFBCC
Bit	Bit Name	Setting	R/W	Function
0	ITS0	1	R/W	IRQ0 Pin Select
				0: Selects the P10 pin as the IRQ0-A input
				1: Selects the P50 pin as the IRQ0-B input
IRÇ	sense control re	egister L (ISO	CRL)	Address: H'FFFD6A
Bit	Bit Name	Setting	R/W	Function
1	IRQ0SR	0	R/W	IRQ0 Sense Control Rise
0	IRQ0SF	1	R/W	IRQ0 Sense Control Fall
				01: Concretes on interrupt request at the folling edge of the
				01: Generates an interrupt request at the falling edge of the
Fun	C vector base reg ction: 32-bit reg ing: H'00002000	ister that spe	,	Address: H'FFFD80 se address used to calculate the vector table address.
Fun Sett	ction: 32-bit reg	ister that spe	cifies the ba	IRQ0 input Address: H'FFFD80
Fun Sett DT	ction: 32-bit reg ing: H'00002000	ister that spe	cifies the ba	IRQ0 input Address: H'FFFD80 se address used to calculate the vector table address.
Fun Sett DTO	ction: 32-bit reg ing: H'00002000 C enable register	ister that spe) A (DTCER	cifies the ba	IRQ0 input Address: H'FFFD80 se address used to calculate the vector table address. Address: H'FFFF20
Fun Sett DTO	ction: 32-bit reg ing: H'00002000 C enable register Bit Name	ister that spe) A (DTCER Setting	cifies the ba A) R/W	IRQ0 input Address: H'FFFD80 se address used to calculate the vector table address. Address: H'FFFF20 Function 0: Does not select the IRQ0 interrupt as the DTC activation
Fun Sett DTO Bit 15	ction: 32-bit reg ing: H'00002000 C enable register Bit Name	ister that spe A (DTCER Setting 1	cifies the ba A) R/W	IRQ0 input Address: H'FFFD80 se address used to calculate the vector table address. Address: H'FFFF20 Function 0: Does not select the IRQ0 interrupt as the DTC activation source.
Fun Sett DTO Bit 15 DTO	ction: 32-bit reg ing: H'00002000 C enable register Bit Name DTCEA15	ister that spe A (DTCER Setting 1	cifies the ba A) R/W	IRQ0 input Address: H'FFFD80 se address used to calculate the vector table address. Address: H'FFF20 Function 0: Does not select the IRQ0 interrupt as the DTC activation source. 1: Selects the IRQ0 interrupt as the DTC activation source.
Fun Sett DTO Bit 15 DTO Bit	ction: 32-bit reg ing: H'00002000 C enable register Bit Name DTCEA15 C control registe	ister that spe A (DTCER Setting 1 r (DTCCR)	cifies the ba A) R/W R/W	IRQ0 input Address: H'FFFD80 se address used to calculate the vector table address. Address: H'FFFF20 Function 0: Does not select the IRQ0 interrupt as the DTC activation source. 1: Selects the IRQ0 interrupt as the DTC activation source. Address: H'FFFF30 Function DTC Transfer Information Read Skip Enable
Fun Sett DTO Bit 15 DTO Bit	ction: 32-bit reg ing: H'00002000 C enable register Bit Name DTCEA15 C control registe Bit Name	A (DTCER) Setting 1 r (DTCCR) Setting	cifies the ba A) R/W R/W	IRQO input Address: H'FFFD80 se address used to calculate the vector table address. Address: H'FFFF20 Function 0: Does not select the IRQO interrupt as the DTC activation source. 1: Selects the IRQO interrupt as the DTC activation source. Address: H'FFFF30 Function DTC Transfer Information Read Skip Enable 0: Disables skipping of transfer information read.
Fun Sett DTO Bit 15 DTO Bit	ction: 32-bit reg ing: H'00002000 C enable register Bit Name DTCEA15 C control registe Bit Name	A (DTCER) Setting 1 r (DTCCR) Setting	cifies the ba A) R/W R/W	IRQ0 input Address: H'FFFD80 se address used to calculate the vector table address. Address: H'FFF20 Function 0: Does not select the IRQ0 interrupt as the DTC activation source. 1: Selects the IRQ0 interrupt as the DTC activation source. Address: H'FFF30 Function DTC Transfer Information Read Skip Enable 0: Disables skipping of transfer information read. 1: Skips reading transfer information when the vector
Fun Sett DTO Bit 15 DTO Bit 4	ction: 32-bit reg ing: H'00002000 C enable register Bit Name DTCEA15 C control registe Bit Name RRS	A (DTCER Setting 1 r (DTCCR) Setting 1	cifies the ba A) R/W R/W R/W	IRQ0 input Address: H'FFFD80 se address used to calculate the vector table address. Address: H'FFF20 Function 0: Does not select the IRQ0 interrupt as the DTC activation source. 1: Selects the IRQ0 interrupt as the DTC activation source. Address: H'FFF30 Function DTC Transfer Information Read Skip Enable 0: Disables skipping of transfer information read. 1: Skips reading transfer information when the vector numbers match.
Fun Sett DTC Bit 15	ction: 32-bit reg ing: H'00002000 C enable register Bit Name DTCEA15 C control registe Bit Name	A (DTCER) Setting 1 r (DTCCR) Setting	cifies the ba A) R/W R/W	IRQO input Address: H'FFFD80 se address used to calculate the vector table address. Address: H'FFF20 Function 0: Does not select the IRQO interrupt as the DTC activation source. 1: Selects the IRQO interrupt as the DTC activation source. Address: H'FFF30 Function DTC Transfer Information Read Skip Enable 0: Disables skipping of transfer information read. 1: Skips reading transfer information when the vector numbers match. Transfer Stop Flag
Fun Sett DTO Bit 15 DTO Bit 4	ction: 32-bit reg ing: H'00002000 C enable register Bit Name DTCEA15 C control registe Bit Name RRS	A (DTCER Setting 1 r (DTCCR) Setting 1	cifies the ba A) R/W R/W R/W	IRQ0 input Address: H'FFFD80 se address used to calculate the vector table address. Address: H'FFF20 Function 0: Does not select the IRQ0 interrupt as the DTC activation source. 1: Selects the IRQ0 interrupt as the DTC activation source. Address: H'FFF30 Function DTC Transfer Information Read Skip Enable 0: Disables skipping of transfer information read. 1: Skips reading transfer information when the vector numbers match.


•]	IRQ e	enable	register	(IER)
-----	-------	--------	----------	-------

Address: H'FFFF34

	(1211)			
Bit Name	Setting	R/W	Function	
IRQ0E	1	R/W	IRQ0 Enable	
			0: Disables the IRQ0 interrupt request	
			1: Enables the IRQ0 interrupt request	
) status register ((ISR)		Address: H'FFFF36	
Bit Name	Setting	R/W	Function	
IRQ0F	0	R/(W)*	IRQ0 Status	
			0: IRQ0 interrupt has not occurred	
			1: IRQ0 interrupt has occurred	
	Bit Name IRQ0E Status register (Bit Name	IRQ0E 1 e status register (ISR) Bit Name Setting	Bit Name Setting R/W IRQ0E 1 R/W status register (ISR) Bit Name Setting R/W	Bit Name Setting R/W Function IRQ0E 1 R/W IRQ0 Enable 0: Disables the IRQ0 interrupt request 0: Disables the IRQ0 interrupt request 0: status register (ISR) Address: H'FFFF36 Bit Name Setting R/W Function IRQ0F 0 R/(W)* IRQ0 Status 0: IRQ0 interrupt has not occurred 0: IRQ0 interrupt has not occurred

Note: * Only 0 can be written to clear the flag.

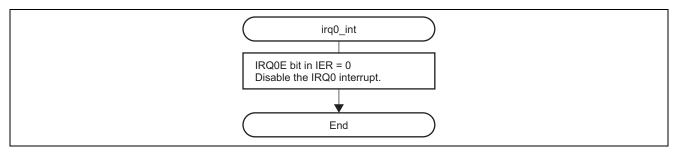
(5) Flowchart

5.5.3 irq0_int Function

- (1) Functional overview
- IRQ0 interrupt handling routine
- (2) Argument

None

(3) Return value


None

(4) Description of internal registers

The internal registers used in this sample task are described below. Note that the settings shown below are not initial values but the values used in this sample task.

• IRQ enable register (IER)				Address: H'FFFF34
Bit	Bit Name	Setting	R/W	Function
0	IRQ0E	0	R/W	IRQ0 Enable
				0: Disables the IRQ0 interrupt request
				1: Enables the IRQ0 interrupt request

(5) Flowchart

Website and Support

Renesas Technology Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/inquiry csc@renesas.com

Revision Record

	Date	Descript	ion		
Rev.		Page	Summary		
1.00	Sep.11.06	—	First edition issued		

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.