

RX26T Group, **RX23T Group**

Differences Between the RX26T Group and the RX23T Group

Introduction

This application note is intended as a source for reference to points of difference between the peripheral functions, I/O registers, and pin functions of the RX26T and RX23T Groups, as well as a guide to key points to consider when replacing MCUs.

Unless specifically otherwise noted, the information in this application note applies to the 100-pin package version of the RX26T Group and the 64-pin package version of the RX23T Group, which are the respective maximum specifications. To confirm details of differences in the specifications of the electrical characteristics, usage notes, and setting procedures, refer to the User's Manual: Hardware for the relevant products.

Target Device

RX26T Group, RX23T Group

Contents

1.	Comparison of Built-In Functions of RX26T Group and RX23T Group	4
2.	Comparative Overview of Specifications	6
2.1	CPU	6
2.2	Operating Modes	8
2.3	Address Space	g
2.4	Resets	10
2.5	Option-Setting Memory	11
2.6	Voltage Detection Circuit	13
2.7	Clock Generation Circuit	26
2.8	Low Power Consumption	31
2.9	Register Write Protection Function	36
2.10	Interrupt Controller	37
2.11	Buses	41
2.12	Data Transfer Controller	43
2.13	I/O ports	45
2.14	Multi-Function Pin Controller	49
2.15	Multi-Function Timer Pulse Unit 3	78
2.16	Port Output Enable 3	82
2.17	8-bit Timer	90
2.18	Compare Match Timer	92
2.19	Independent Watchdog Timer	93
2.20	Serial Communications Interface	96
2.21	I ² C Bus Interface	100
2.22	Serial Peripheral Interface	103
2.23	CRC Calculator	106
2.24	12-Bit A/D Converter	108
2.25	D/A Converter and 12-Bit D/A Converter	118
2.26	Comparator C	119
2.27	Data Operation Circuit	122
2.28	RAM	124
2.29	Flash Memory	125
2.30	Packages	130
3.	Comparison of Pin Functions	131
3.1	64-Pin Package	131
3.2	48-Pin Package	135
4.	Points to Note when Replacing MCUs	138
4.1	Notes on Pin Design	138
4.1.1	1 VCL Pin (External Capacitor)	138

4.1.2	Main Clock Oscillator	138
4.1.3	Connecting Capacitors to Analog Power Supply Pins	138
4.2	Notes on Functional Design	138
4.2.1	Changing the Option-Setting Memory Though Self-Programming	138
4.2.2	Software Configurable Interrupt	138
4.2.3	Using Flash Memory Commands	139
4.2.4	Flash Access Window Setting Register	139
4.2.5	Clock Frequency Settings	139
4.2.6	RIIC Operating Voltage Setting	140
4.2.7	Voltage Level Setting	140
4.2.8	Option-Setting Memory	140
4.2.9	PLL Circuit	140
4.2.10	All-Module Clock Stop Mode	140
4.2.11	MTU/GPTW Operating Frequency	140
4.2.12	DMAC Activation by MTU	140
4.2.13	Performing RAM Self-Diagnostics on Save Register Banks	140
4.2.14	Restrictions on Compare Function	141
4.2.15	Eliminating I ² C Bus Interface Noise	141
4.2.16	Control When a Port Output Enable 3 Output Stop Request Is Generated	141
4.2.17	Comparator C Operation with 12-Bit A/D Converter in Module Stop Mode	141
4.2.18	Initialization of Port Direction Register (PDR)	142
4.2.19	Pulse Width of Count Clock Source	142
4.2.20	Timer Mode Register Setting for ELC Event Input	142
4.2.21	Active Level Setting for MTU/GPTW Inverted Output	142
4.2.22	Note on Using Both POE and POEG	142
4.2.23	Reading Pins in High-Impedance State	142
5. R	Reference Documents	143
Revis	ion History	145
	·	

1. Comparison of Built-In Functions of RX26T Group and RX23T Group

A comparison of the built-in functions of the RX26T Group and RX23T Group is provided below. For details of the functions, see section 2, Comparative Overview of Specifications and section 5, Reference Documents.

Table 1.1 is Comparison of Built-In Functions of RX23T Group and RX26T Group.

Table 1.1 Comparison of Built-In Functions of RX23T Group and RX26T Group

Function	RX23T	RX26T
CPU		1
Operating modes		
Address space		
Resets		1
Option-setting memory		1
Voltage detection circuit (LVDAb for RX23T and LVDA for RX26T)		1
Clock generation circuit		1
Clock frequency accuracy measurement circuit (CAC)	(0
Low power consumption		/
Register write protection function		/ 📥
Exception handling	(0
Interrupt controller (ICUb for /RX23T and ICUG for RX26T)		1
Buses		1
Memory-protection unit (MPU)	(0
DMA controller (DMACAa)	×	0
Data transfer controller (DTCa for RX23T and DTCb for RX26T)		1
Event link controller (ELC)	×	0
I/O ports		1
Multi-function pin controller (MPC)		1
Multi-function timer pulse unit 3 (MTU3c for RX23T and MTU3d for RX26T)		1
Port output enable 3 (POE3b for RX23T and POE3D for RX26T)		1
General purpose PWM timer (GPTWa)	×	0
High resolution PWM waveform generation circuit (HRPWM)	×	0
Port output enable for GPTW (POEG)	×	0
8-bit timer (TMR for RX23T and TMRb for RX26T)		/_
Compare match timer (CMT)		/_
Compare match timer W (CMTW)	×	0
Watchdog timer (WDTA)	×	0
Independent watchdog timer (IWDTa)		<u> </u>
Serial communications interface (SCIg for RX23T, and SCIk and SCIh for		/_
<u>RX26T)</u>		
Serial communications interface (RSCI)	×	
I ² C bus interface (RIICa)		
I ³ C bus interface (RI3C)	×	0
CAN FD module (CANFD)	×	
Serial peripheral interface (RSPIa for RX23T and RSPId for RX26T)		
Serial peripheral interface (RSPIA)	X	
CRC calculator (CRC for RX23T and CRCA for RX26T)		
Trigonometric function calculator (TFUv2)	X	0
Trusted Secure IP (TSIP-Lite)	X	0
12-bit A/D converter (S12ADE for RX23T and S12ADHa for RX26T)		1
D/A converter (DA for RX23T)		1
12-bit D/A converter (R12DAb for RX26T)		

Function	RX23T	RX26T	
Temperature sensor (TEMPS)	×	0	
Comparator C (CMPC for RX23T and CMPCa for RX26T)			
Data operation circuit (DOC for RX23T and DOCA for RX26T)	<u> </u>		
RAM	•/▲		
Flash memory	•/ ^		
<u>Packages</u>		/_	

O: Available, ★: Unavailable, •: Differs due to added functionality,

^{▲:} Differs due to change in functionality, ■: Differs due to removed functionality.

2. Comparative Overview of Specifications

This section presents a comparative overview of specifications, including registers.

In the comparative overview, red text indicates functions which are included only in one of the MCU groups and also functions for which the specifications differ between the two groups.

In the register comparison, red text indicates differences in specifications for registers that are included in both groups and **black text** indicates registers which are included only in one of the MCU groups. Register specification items that have no differences between the groups are not indicated.

2.1 CPU

Table 2.1 is Comparative Overview of CPUs.

Table 2.1 Comparative Overview of CPUs

Item	RX23T	RX26T
CPU	 Maximum operating frequency: 40 MHz 32-bit RX CPU (RXv2) Minimum instruction execution time: One instruction per clock cycle Address space: 4 GB, linear Register set of the CPU — General purpose: Sixteen 32-bit registers — Control: Ten 32-bit registers — Accumulator: Two 72-bit registers 	 Maximum operating frequency: 120 MHz 32-bit RX CPU (RXv3) Minimum instruction execution time: One instruction per clock cycle Address space: 4 GB, linear Register set of the CPU — General purpose: Sixteen 32-bit registers — Control: Ten 32-bit registers — Accumulator: Two 72-bit registers 113 instructions (For products with a RAM capacity of 64 KB) 111 instructions (For products with a RAM capacity of 48 KB)
	 Basic instructions: 75, variable-length instruction format Floating point instructions: 11 DSP instructions: 23 	 Basic instructions: 77 Single-precision floating point instructions: 11 DSP instructions: 23 Instructions for register bank save function: 2 (Only for products with a RAM capacity of 64 KB)
	 Addressing modes: 11 Data arrangement — Instructions: Little endian — Data: Selectable between little endian and big endian On-chip 32-bit multiplier: 32 × 32 → 64 bits On-chip divider: 32 / 32 → 32 bits Barrel shifter: 32 bits Memory-protection unit (MPU) 	 Addressing modes: 11 Data arrangement Instructions: Little endian Data: Selectable between little endian and big endian On-chip 32-bit multiplier: 32 × 32 → 64 bits On-chip divider: 32 / 32 → 32 bits Barrel shifter: 32 bits

Item	RX23T	RX26T
FPU	Single-precision floating-point (32 bits)	Single-precision floating-point (32 bits)
	 Data types and floating-point exceptions conform to IEEE 754 standard 	Data types and floating-point exceptions conform to IEEE 754 standard
Register	_	Fast collective saving and restoration of
bank save		the values of CPU registers
function		16 save register banks

2.2 Operating Modes

Table 2.2 is Comparison of Operating Mode Registers.

Table 2.2 Comparison of Operating Mode Registers

Register	Bit RX23T RX26T		RX26T	
SYSCR1	_	System control register 1	System control register 1	
		Initial value after a reset differs.		
VOLSR	_	_	Voltage level setting register	

2.3 Address Space

Figure 2.1 is Comparative Memory Map in Single-Chip Mode.

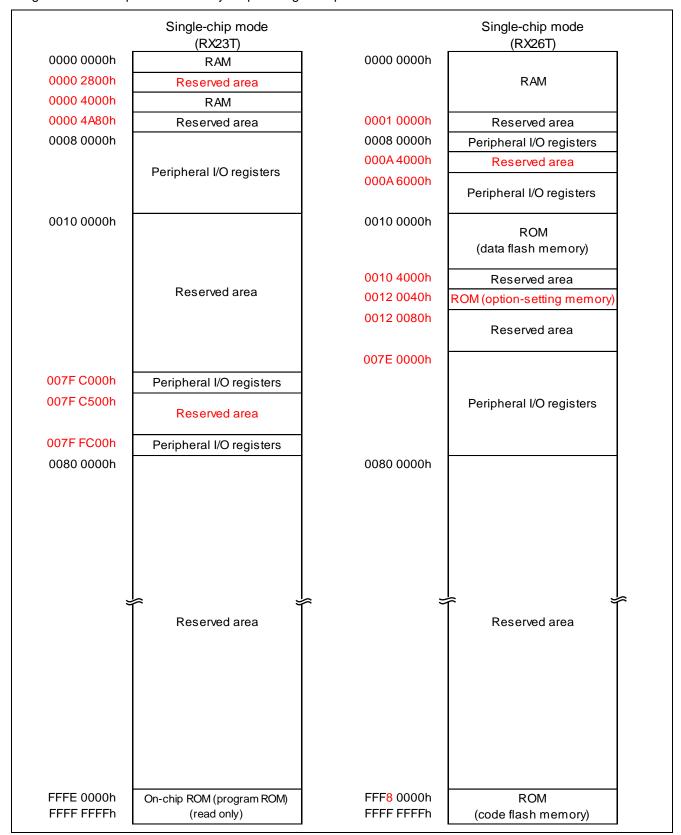


Figure 2.1 Comparative Memory Map in Single-Chip Mode

2.4 Resets

Table 2.3 is Comparative Overview of Resets, and Table 2.4 is Comparison of Reset-Related Registers.

Table 2.3 Comparative Overview of Resets

Item	RX23T	RX26T
RES# pin reset	Voltage input to the RES# pin is driven low.	Voltage input to the RES# pin is driven low.
Power-on reset	VCC rises (voltage monitored: VPOR)	VCC rises (voltage monitored: VPOR)
Voltage monitoring 0 reset	VCC falls (voltage monitored: Vdet0)	VCC falls (voltage monitored: Vdet0)
Voltage monitoring 1 reset	VCC falls (voltage monitored: Vdet1)	VCC falls (voltage monitored: Vdet1)
Voltage monitoring 2 reset	VCC falls (voltage monitored: Vdet2)	VCC falls (voltage monitored: Vdet2)
Independent Watchdog Timer Reset	Independent watchdog timer underflow, or refresh error	Independent watchdog timer underflow or refresh error
Watchdog timer Reset	_	Watchdog timer underflow or refresh
		error
Software reset	Register setting	Register setting

Table 2.4 Comparison of Reset-Related Registers

Register	Bit	RX23T	RX26T	
RSTSR2	WDTRF		Watchdog timer reset	
			Detection flag	

2.5 Option-Setting Memory

Figure 2.2 is Comparison of Option-Setting Memory Areas, and Table 2.5 is Comparison of Option-Setting Memory Registers.

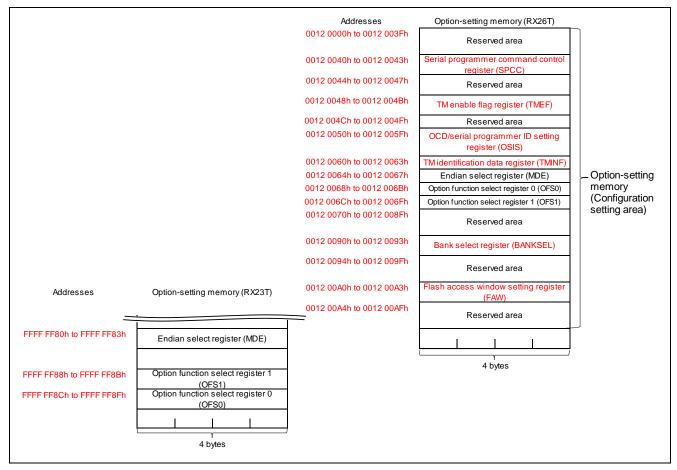


Figure 2.2 Comparison of Option-Setting Memory Areas

Table 2.5 Comparison of Option-Setting Memory Registers

Register	Bit	RX23T	RX26T (OFSM)
SPCC	_	_	Serial programmer command control
			register
OSIS	_	_	OCD/serial programmer ID setting
			register
OFS0	IWDTTOPS [1:0]	IWDT timeout period select bits	IWDT timeout period select bits
		b3 b2	b3 b2
		0 0: 128 cycles (007Fh)	0 0: 1,024 cycles (03FFh)
		0 1: 512 cycles (01FFh)	0 1: 4,096 cycles (0FFFh)
		1 0: 1,024 cycles (03FFh)	1 0: 8,192 cycles (1FFFh)
		1 1: 2,048 cycles (07FFh)	1 1: 16,384 cycles (3FFFh)
	IWDTRSTIRQS	IWDT reset interrupt request select bit	IWDT reset interrupt request select bit
		O: Non-maskable interrupt request is enabled 1: Reset is enabled	Non-maskable interrupt request or plain interrupt request is enabled Reset is enabled
	IWDTSLCSTP	IWDT sleep mode count stop control bit	IWDT sleep mode count stop control bit
		0: Counting stop is disabled	0: Counting stop is disabled
		1: Counting stop is enabled when entering sleep, software standby,	1: Counting stop is enabled when entering sleep, software standby,
		or deep sleep mode	deep software standby, or all-
		or doop eloop mede	module clock stop mode.
	WDTSTRT	_	WDT start mode select bit
	WDTTOPS[1:0]	_	WDT timeout period select bits
	WDTCKS[3:0]	_	WDT clock frequency division ratio select bits
	WDTRPES[1:0]	_	WDT window end position select bits
	WDTRPSS[1:0]	_	WDT window start position select bits
	WDTRSTIRQS	_	WDT reset interrupt request select
			bit
OFS1	VDSEL[1:0]	Voltage detection 0 level select bits	Voltage detection 0 level select bits
		b1 b0	b1 b0
		0 0: 3.84 V is selected	0 0: Reserved
		0 1: 2.82 V is selected	0 1: Reserved
		1 0: 2.51 V is selected	1 0: 2.83 V is selected
			1 1: 4.22 V is selected
		Settings other than above are prohibited when the voltage detection 0 circuit is used.	
MDE	BANKMD[2:0]	_	Bank mode select bits
TMEF		_	TM enable flag register
TMINF	_	_	TM identification data register
BANKSEL	_	_	Bank select register
FAW	_	_	Flash Access Window Setting
			Register

2.6 Voltage Detection Circuit

Table 2.6 is Comparative Overview of Voltage Detection Circuits, and Table 2.7 is Comparison of Voltage Detection Circuit Registers.

In addition, Table 2.8 is Comparison of Setting Procedures for Monitoring Vdet1, Table 2.9 is Comparison of Setting Procedures for Monitoring Vdet2, and Table 2.10 to Table 2.13 are comparative listings of the setting procedures for bits related to the voltage monitoring 1 and 2 interrupts and the voltage monitoring 1 and 2 resets.

Table 2.6 Comparative Overview of Voltage Detection Circuits

		RX23T (LVDAb)	1		RX26T (LVDA)		
Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
VCC monitoring	Monitored voltage	Vdet0	Vdet1	Vdet2	Vdet0	Vdet1	Vdet2
	Detection target	When voltage drops below Vdet0	When voltage rises above or drops below Vdet1	When voltage rises above or drops below Vdet2	When voltage drops below Vdet0	When voltage rises above or drops below Vdet1	When voltage rises above or drops below Vdet2
	Detection voltage	Selectable from 2 levels using the OFS1 register	Selectable from 9 levels using LVDLVLR. LVD1LVL[3:0] bits	Selectable from 4 levels using LVDLVLR. LVD2LVL[1:0] bits	Selectable from 2 levels using OFS1. VDSEL[1:0] bits	Selectable from 5 levels using LVDLVLR. LVD1LVL[3:0] bits	Selectable from 5 levels using LVDLVLR. LVD2LVL[3:0] bits
	Monitoring flag	Not available	LVD1SR. LVD1MON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR. LVD1DET flag: Vdet1 passage detection	LVD2SR. LVD2MON flag: Monitors whether voltage is higher or lower than Vdet2 LVD2SR. LVD2DET flag: Vdet2 passage detection	Not available	LVD1SR. LVD1MON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR. LVD1DET flag: Vdet1 passage detection	LVD2SR. LVD2MON flag: Monitors whether voltage is higher or lower than Vdet2 LVD2SR. LVD2DET flag: Vdet2 passage detection
Process upon voltage detection	Reset	Voltage Monitoring 0 reset Reset when Vdet0 > VCC: CPU restart after specified time with VCC > Vdet0	Voltage Monitoring 1 reset Reset when Vdet1 > VCC: CPU restart timing selectable: after specified time with VCC > Vdet1 or Vdet1 > VCC	Voltage Monitoring 2 reset Reset when Vdet2 > VCC: CPU restart timing selectable: after specified time with VCC > Vdet2 or Vdet2 > VCC	Voltage Monitoring 0 reset Reset when Vdet0 > VCC: CPU restart after specified time with VCC > Vdet0	Voltage Monitoring 1 reset Reset when Vdet1 > VCC: CPU restart timing selectable: after specified time with VCC > Vdet1 or Vdet1 > VCC	Voltage Monitoring 2 reset Reset when Vdet2 > VCC: CPU restart timing selectable: after specified time with VCC > Vdet2 or Vdet2 > VCC
	Interrupt	Not available	Voltage Monitoring 1 interrupt Selectable between non- maskable or maskable interrupt Interrupt request issued when Vdet1 > VCC and VCC > Vdet1 or either	Voltage Monitoring 2 interrupt Selectable between non- maskable or maskable interrupt Interrupt request issued when Vdet2 > VCC and VCC > Vdet2 or either	Not available	Voltage Monitoring 1 interrupt Selectable between non- maskable or maskable interrupt Interrupt request issued when Vdet1 > VCC and VCC > Vdet1 or either	Voltage Monitoring 2 interrupt Selectable between non- maskable or maskable interrupt Interrupt request issued when Vdet2 > VCC and VCC > Vdet2 or either

Item		RX23T (LVDAb)			RX26T (LVDA)		
		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
Digital filter	Enable/ disable switching	_	_	_	Digital filter function not available	Available	Available
	Sampling time	_	_	_	_	1/n LOCO frequency × 2 (n: 2, 4, 8, 16)	1/n LOCO frequency × 2 (n: 2, 4, 8, 16)
Event link function		_	_	_	Not available	Available Output of event signals on detection of Vdet crossings	Available Output of event signals on detection of Vdet crossings

Table 2.7 Comparison of Voltage Detection Circuit Registers

Register	Bit	RX23T (LVDAb)	RX26T (LVDA)
LVDLVLR	_	Voltage detection level select register	Voltage detection level select register
		Initial value after a reset differs.	
	LVD1LVL	Voltage detection 1 level select bits	Voltage detection 1 level select bits
	[3:0]	(Standard voltage during drop in	(Standard voltage during drop in
		voltage)	voltage)
		b3 b0	b3 b0
		0 0 0 0: 4.29 V	
		0 0 0 1: 4.14 V	
		0 0 1 0: 4.02 V	
		0 0 1 1: 3.84 V	
		0 1 0 0: 3.10 V	0 1 0 0: 4.57 V (Vdet1_0)
		0 1 0 1: 3.00 V	0 1 0 1: 4.47 V (Vdet1_1)
		0 1 1 0: 2.90 V	0 1 1 0: 4.32 V (Vdet1_2)
		0 1 1 1: 2.79 V	
		1 0 0 0: 2.68 V	4.0.4.0.0.00.\/.(\/.\/.\/.\/.\)
			1 0 1 0: 2.93 V (Vdet1_3)
		Cottings of how they they have	1 0 1 1: 2.88 V (Vdet1_4)
		Settings other than the above are prohibited.	Settings other than the above are prohibited.
	LVD2LVL	Voltage detection 2 level select bits	Voltage detection 2 level select bits
	[1:0]	(Standard voltage during drop in	(Standard voltage during drop in
	(RX23T)	voltage)	voltage)
	LVD2LVL	1.51.4	
	[3:0] (RX26T)	b5 b4	b 7 b4
	(10,1201)	0 0: 4.29 V	
		0 1: 4.14 V 1 0: 4.02 V	
		1 1: 3.84 V	
		1 1. 3.04 V	0 1 0 0: 4.57 V (Vdet2_0)
			0 1 0 1: 4.47 V (Vdet2_1)
			0 1 1 0: 4.32 V (Vdet2_2)
			1 0 1 0: 2.93 V (Vdet2_3)
			1 0 1 1: 2.88 V (Vdet2_4)
			Settings other than the above are
			prohibited.
LVD1CR0	_	Voltage monitoring 1 circuit control register 0	Voltage monitoring 1 circuit control register 0
		Initial value after a reset differs.	, -
	LVD1DFDIS	-	Voltage monitoring 1 digital filter
			disable mode select bit
	LVD1FSAMP [1:0]	_	Sampling clock select bits
LVD2CR0		Voltage monitoring 2 circuit control	Voltage monitoring 2 circuit control
		register 0	register 0
		Initial value after a reset differs.	
	LVD2DFDIS		Voltage monitoring 2 digital filter
			disable mode select bit
	LVD2FSAMP	_	Sampling clock select bits
	[1:0]		

Table 2.8 Comparison of Setting Procedures for Monitoring Vdet1

Item		RX23T (LVDAb)	RX26T (LVDA)
Setting procedure for monitoring Vdet1	1	Specify the detection voltage by setting the LVDLVLR.LVD1LVL[3:0] bits (voltage detection 1 level select).	Select the detection voltage by setting the LVDLVLR.LVD1LVL[3:0] bits.
	2	Set the LVCMPCR.LVD1E bit to 1 (enabling the voltage detection 1 circuit).	Set LVCMPCR.LVD1E = 1 (enabling the voltage detection 1 circuit).
	3	Wait for at least td(E-A).	Wait for at least td(E-A) (LVD operation stabilization time after LVD is enabled).
	4		When the digital filter is in use Select the sampling clock for the digital filter by setting the LVD1CR0.LVD1FSAMP[1:0] bits.
		(No procedure because there is no digital filter)	When the digital filter is not in use — (No procedure)
	5		When the digital filter is in use Set LVD1CR0.LVD1DFDIS = 0 (enabling the digital filter).
		(No procedure because there is no digital filter)	When the digital filter is not in use — (No procedure)
	6		When the digital filter is in use Wait for at least 2n + 3 cycles of LOCO (where n = 2, 4, 8, 16, and the sampling clock for the digital filter is the LOCO frequency divided by n).
		(No procedure because there is no digital filter)	When the digital filter is not in use — (No procedure)
	7	Set the LVD1CR0.LVD1CMPE bit to 1 (enabling output of the results of comparison by voltage monitoring 1).	LVD1CR0.LVD1CMPE = 1 (enabling output of the results of comparison by voltage monitoring 1)

Table 2.9 Comparison of Setting Procedures for Monitoring Vdet2

Item		RX23T (LVDA <mark>b</mark>)	RX26T (LVDA)
Setting procedure for	1	Specify the detection voltage by	Select the detection voltage by
monitoring Vdet2		setting the LVDLVLR.LVD2LVL[1:0]	setting the LVDLVLR.LVD2LVL[3:0]
		bits (voltage detection 2 level select).	bits.
	2	Set the LVCMPCR.LVD2E bit to 1	Set LVCMPCR.LVD2E = 1 (enabling
		(enabling the voltage detection 2 circuit).	the voltage detection 2 circuit).
	3	Wait for at least td(E-A).	Wait for at least td(E-A) (LVD
			operation stabilization time after LVD is enabled).
	4		When the digital filter is in use
			Select the sampling clock for the digital filter by setting the LVD2CR0.LVD2FSAMP[1:0] bits.
		(No procedure because there is no digital filter)	When the digital filter is not in use — (No procedure)
	5		When the digital filter is in use
			Set LVD2CR0.LVD2DFDIS = 0 (enabling the digital filter).
		(No procedure because there is no digital filter)	When the digital filter is not in use (No procedure)
	6		When the digital filter is in use Wait for at least 2n + 3 cycles of LOCO (where n = 2, 4, 8, 16, and the sampling clock for the digital filter is the LOCO frequency divided by n).
		(No procedure because there is no digital filter)	When the digital filter is not in use — (No procedure)
	7	Set the LVD2CR0.LVD2CMPE bit to	LVD2CR0.LVD2CMPE = 1
		1 (enabling output of the results of comparison by voltage monitoring 2).	(enabling output of the results of comparison by voltage monitoring 2)

Table 2.10 Comparison of Operation-Enable Setting Procedures for Bits Related to Voltage Monitoring 1 Interrupt and Voltage Monitoring 1 Reset

Item		RX23T (LVDAb)	RX26T (LVDA)
Operation-enable	1	Select the detection voltage by	Select the detection voltage by
setting procedure for		setting the LVDLVLR.LVD1LVL[3:0]	setting the LVDLVLR.LVD1LVL[3:0]
bits related to voltage		bits.	bits.
monitoring 1 interrupt	2	Set the LVD1CR0.LVD1RI bit to 0 (voltage monitoring 1 interrupt).	Set LVCMPCR.LVD1E = 1 (enabling the voltage detection 1 circuit).
	3	Select the timing of interrupt	Wait for at least td(E-A) (LVD
		requests by setting the LVD1CR1.LVD1IDTSEL[1:0] bits.	operation stabilization time after LVD is enabled).
		 Select the type of interrupt by setting the 	
		LVD1CR1.LVD1IRQSEL bit.	
	4		 When the digital filter is in use Select the sampling clock for the digital filter by setting the LVD1CR0.LVD1FSAMP[1:0] bits.
		(No procedure because there is no digital filter)	When the digital filter is not in use — (No procedure)
	5		When the digital filter is in use Set LVD1CR0.LVD1DFDIS = 0 (enabling the digital filter).
		(No procedure because there is no digital filter)	When the digital filter is not in use — (No procedure)
	6		When the digital filter is in use Wait for at least 2n + 3 cycles of LOCO (where n = 2, 4, 8, 16, and the sampling clock for the digital filter is the LOCO frequency divided by n).
		(No procedure because there is no digital filter)	When the digital filter is not in use — (No procedure)
	7	Set the LVCMPCR.LVD1E bit to 1 (enabling the voltage detection 1 circuit).	Set LVD1CR0.LVD1RI = 0 (voltage monitoring 1 interrupt).
	8	Wait for at least td(E-A).	 Select the timing of interrupt requests by setting the LVD1CR1.LVD1IDTSEL[1:0] bits. Select the type of interrupt by setting the LVD1CR1.LVD1IRQSEL bit.
	9	Set the LVD1CR0.LVD1CMPE bit to	_
		1 (enabling output of the results of	
		comparison by voltage monitoring 1).	
	10	Set the LVD1SR.LVD1DET bit to 0.	Set LVD1SR.LVD1DET = 0.
	11	Set the LVD1CR0.LVD1RIE bit to 1	Set LVD1CR0.LVD1RIE = 1
		(enabling voltage monitoring 1 interrupts/resets).	(enabling voltage monitoring 1 interrupts/resets).
	12	interrupto/resets/.	Set LVD1CR0.LVD1CMPE = 1
	12	_	(enabling output of the results of
			comparison by voltage monitoring 1).
	l	I	The special of the same of the

Item		RX23T (LVDAb)	RX26T (LVDA)
Operation-enable setting procedure for bits related to voltage	1	Select the detection voltage by setting the LVDLVLR.LVD1LVL[3:0] bits.	Select the detection voltage by setting the LVDLVLR.LVD1LVL[3:0] bits.
monitoring 1 reset	2	 Set the LVD1CR0.LVD1RI bit to 1 (voltage monitoring 1 reset). Select the type of reset negation by setting the LVD1CR0.LVD1RN bit. 	Set LVCMPCR.LVD1E = 1 (enabling the voltage detection 1 circuit).
	3	Set the LVD1CR0.LVD1RIE bit to 1 (enabling voltage monitoring 1 interrupts/resets).	Wait for at least td(E-A) (LVD operation stabilization time after LVD is enabled).
	4	(No procedure because there is no digital filter)	 When the digital filter is in use Select the sampling clock for the digital filter by setting the LVD1CR0.LVD1FSAMP[1:0] bits. When the digital filter is not in use — (No procedure)
	5	(No procedure because there is no digital filter)	 When the digital filter is in use Set LVD1CR0.LVD1DFDIS = 0 (enabling the digital filter). When the digital filter is not in use — (No procedure)
	6	(No procedure because there is no	 When the digital filter is in use Wait for at least 2n + 3 cycles of LOCO (where n = 2, 4, 8, 16, and the sampling clock for the digital filter is the LOCO frequency divided by n). When the digital filter is not in use
		digital filter)	— (No procedure)
	7	Set the LVCMPCR.LVD1E bit to 1 (enabling the voltage detection 1 circuit).	 Set the LVD1CR0.LVD1RI = 1 (voltage monitoring 1 reset). Select the type of reset negation by setting the LVD1CR0.LVD1RN bit.
	8	Wait for at least td(E-A).	Set LVD1SR.LVD1DET = 0.
	9	_	Set LVD1CR0.LVD1RIE = 1 (enabling voltage monitoring 1 interrupts/resets).
	10	Set the LVD1CR0.LVD1CMPE bit to 1 (enabling output of the results of comparison by voltage monitoring 1).	Set LVD1CR0.LVD1CMPE = 1 (enabling output of the results of comparison by voltage monitoring 1).

Table 2.11 Comparison of Operation-Disable Setting Procedures for Bits Related to Voltage Monitoring 1 Interrupt and Voltage Monitoring 1 Reset

Item		RX23T (LVDAb)	RX26T (LVDA)
Operation-disable	1	Set the LVD1CR0.LVD1RIE bit to 0	Set LVD1CR0.LVD1CMPE = 0
setting procedure for		(disabling voltage monitoring 1	(disabling output of the results of
bits related to voltage		interrupts/resets).	comparison by voltage monitoring 1).
monitoring 1 interrupt	2	(No procedure because there is no	 When the digital filter is in use Wait for at least 2n + 3 cycles of LOCO (where n = 2, 4, 8, 16, and the sampling clock for the digital filter is the LOCO frequency divided by n). When the digital filter is not in use
		digital filter) —	— (No procedure)
	3	Set the LVD1CR0.LVD1CMPE bit to 0 (disabling output of the results of comparison by voltage monitoring 1).	Set LVD1CR0.LVD1RIE = 0 (disabling voltage monitoring 1 interrupts/resets).
	4		 When the digital filter is in use Set LVD1CR0.LVD1DFDIS = 1 (disabling the digital filter).
		(No procedure because there is no digital filter) —	When the digital filter is not in use — (No procedure)
	5	Set the LVCMPCR.LVD1E bit to 0 (disabling the voltage detection 1 circuit).	Set LVCMPCR.LVD1E = 0 (disabling the voltage detection 1 circuit).
	6	Modify settings of bits related to the voltage detection circuit registers other than LVCMPCR.LVD1E, LVD1CR0.LVD1RIE, and LVD1CR0.LVD1CMPE.	
Operation-disable setting procedure for bits related to voltage	1	Set the LVD1CR0.LVD1CMPE bit to 0 (disabling output of the results of comparison by voltage monitoring 1).	Set LVD1CR0.LVD1CMPE = 0 (disabling output of the results of comparison by voltage monitoring 1).
monitoring 1 reset	2		When the digital filter is in use Wait for at least 2n + 3 cycles of LOCO (where n = 2, 4, 8, 16, and the sampling clock for the digital filter is the LOCO frequency divided by n).
		(No procedure because there is no digital filter) —	When the digital filter is not in use — (No procedure)
	3	Set the LVCMPCR.LVD1E bit to 0 (disabling the voltage detection 1 circuit).	Set LVD1CR0.LVD1RIE = 0 (disabling voltage monitoring 1 interrupts/resets).
	4		When the digital filter is in use Set LVD1CR0.LVD1DFDIS = 1 (disabling the digital filter).
		(No procedure because there is no digital filter) —	When the digital filter is not in use — (No procedure)
	5	Set the LVD1CR0.LVD1RIE bit to 0 (disabling voltage monitoring 1 interrupts/resets).	Set LVCMPCR.LVD1E = 0 (disabling the voltage detection 1 circuit).

Item		RX23T (LVDAb)	RX26T (LVDA)
Operation-disable	6	Modify settings of bits related to the	_
setting procedure for		voltage detection circuit registers	
bits related to voltage		other than LVCMPCR.LVD1E,	
monitoring 1 reset		LVD1CR0.LVD1RIE, and	
		LVD1CR0.LVD1CMPE.	

Table 2.12 Comparison of Operation-Enable Setting Procedures for Bits Related to Voltage Monitoring 2 Interrupt and Voltage Monitoring 2 Reset

Item		RX23T (LVDA <mark>b</mark>)	RX26T (LVDA)
Operation-enable setting procedure for bits related to voltage	1	Set the detection voltage by setting the LVDLVLR.LVD2LVL[1:0] bits.	Select the detection voltage by setting the LVDLVLR.LVD2LVL[3:0] bits.
monitoring 2 interrupt	2	Set the LVD2CR0.LVD2RI bit to 0 (voltage monitoring 2 interrupt).	Set LVCMPCR.LVD2E = 1 (enabling the voltage detection 2 circuit).
	3	 Select the timing of interrupt requests by setting the LVD2CR1.LVD2IDTSEL[1:0] bits. Select the type of interrupt by setting the LVD2CR1.LVD2IRQSEL bit. 	Wait for at least td(E-A) (LVD operation stabilization time after LVD is enabled).
	4		When the digital filter is in use Select the sampling clock for the digital filter by setting the LVD2CR0.LVD2FSAMP[1:0] bits.
		(No procedure because there is no digital filter)	When the digital filter is not in use — (No procedure)
	5	(No procedure because there is no digital filter)	 When the digital filter is in use Set LVD2CR0.LVD2DFDIS = 0 (enabling the digital filter). When the digital filter is not in use — (No procedure)
	6		When the digital filter is in use Wait for at least 2n + 3 cycles of LOCO (where n = 2, 4, 8, 16, and the sampling clock for the digital filter is the LOCO frequency divided by n).
		(No procedure because there is no digital filter)	When the digital filter is not in use — (No procedure)
	7	Set the LVCMPCR.LVD2E bit to 1 (enabling the voltage detection 2 circuit).	Set LVD2CR0.LVD2RI = 0 (voltage monitoring 2 interrupt).
	8	Wait for at least td(E-A).	 Select the timing of interrupt requests by setting the LVD2CR1.LVD2IDTSEL[1:0] bits. Select the type of interrupt by setting the LVD2CR1.LVD2IRQSEL bit.
	9	Set the LVD2CR0.LVD2CMPE bit to 1 (enabling output of the results of comparison by voltage monitoring 2).	_
	10	Set the LVD2SR.LVD2DET bit to 0.	Set LVD2SR.LVD2DET = 0.
	11	Set the LVD2CR0.LVD2RIE bit to 1 (enabling voltage monitoring 2 interrupts/resets).	Set LVD2CR0.LVD2RIE = 1 (enabling voltage monitoring 2 interrupts/resets).
	12	_	LVD2CR0.LVD2CMPE = 1 (enabling output of the results of comparison by voltage monitoring 2)
1	L	1	. , , ,

Item		RX23T (LVDAb)	RX26T (LVDA)
Operation-enable setting procedure for bits related to voltage	1	Set the detection voltage by setting the LVDLVLR.LVD2LVL[1:0] bits.	Select the detection voltage by setting the LVDLVLR.LVD2LVL[3:0] bits.
monitoring 2 reset	2	 Set the LVD2CR0.LVD2RI bit to 1 (voltage monitoring 2 reset). Select the type of reset negation by setting the LVD2CR0.LVD2RN bit. 	Set LVCMPCR.LVD2E = 1 (enabling the voltage detection 2 circuit).
	3	Set the LVD2CR0.LVD2RIE bit to 1 (enabling voltage monitoring 2 interrupts/resets).	Wait for at least td(E-A) (LVD operation stabilization time after LVD is enabled).
	4	(No procedure because there is no digital filter)	 When the digital filter is in use Select the sampling clock for the digital filter by setting the LVD2CR0.LVD2FSAMP[1:0] bits. When the digital filter is not in use — (No procedure)
	5	(No procedure because there is no digital filter)	 When the digital filter is in use Set LVD2CR0.LVD2DFDIS = 0 (enabling the digital filter). When the digital filter is not in use — (No procedure)
	6	(No procedure because there is no digital filter)	 When the digital filter is in use Wait for at least 2n + 3 cycles of LOCO (where n = 2, 4, 8, 16, and the sampling clock for the digital filter is the LOCO frequency divided by n). When the digital filter is not in use — (No procedure)
	7	Set the LVCMPCR.LVD2E bit to 1 (enabling the voltage detection 2 circuit).	 Set the LVD2CR0.LVD2RI = 1 (voltage monitoring 2 reset). Select the type of reset negation by setting the LVD2CR0.LVD2RN bit.
	8	Wait for at least td(E-A).	Set LVD2SR.LVD2DET = 0.
	9	_	Set LVD2CR0.LVD2RIE = 1 (enabling voltage monitoring 2 interrupts/resets).
	10	Set the LVD2CR0.LVD2CMPE = 1 (enabling output of the results of comparison by voltage monitoring 2).	LVD2CR0.LVD2CMPE = 1 (enabling output of the results of comparison by voltage monitoring 2)

Table 2.13 Comparison of Operation-Disable Setting Procedures for Bits Related to Voltage Monitoring 2 Interrupt and Voltage Monitoring 2 Reset

Item	L	RX23T (LVDA <mark>b</mark>)	RX26T (LVDA)
Operation-disable	1	Set the LVD2CR0.LVD2RIE bit to 0	Set LVD2CR0.LVD2CMPE = 0
setting procedure for		(disabling voltage monitoring 2	(disabling output of the results of
bits related to voltage		interrupts/resets).	comparison by voltage monitoring 2).
monitoring 2 interrupt	2	(No procedure because there is no	 When the digital filter is in use Wait for at least 2n + 3 cycles of LOCO (where n = 2, 4, 8, 16, and the sampling clock for the digital filter is the LOCO frequency divided by n). When the digital filter is not in use
		digital filter) —	— (No procedure)
	3	Set the LVD2CR0.LVD2CMPE bit to 0 (disabling output of the results of comparison by voltage monitoring 2).	Set LVD2CR0.LVD2RIE = 0 (disabling voltage monitoring 2 interrupts/resets).
	4		 When the digital filter is in use Set LVD2CR0.LVD2DFDIS = 1 (disabling the digital filter).
		(No procedure because there is no digital filter) —	When the digital filter is not in use — (No procedure)
	5	Set the LVCMPCR.LVD2E bit to 0 (disabling the voltage detection 2 circuit).	Set LVCMPCR.LVD2E = 0 (disabling the voltage detection 2 circuit).
	6	Modify settings of bits related to the voltage detection circuit registers other than LVCMPCR.LVD2E, LVD2CR0.LVD2RIE, and LVD2CR0.LVD2CMPE.	
Operation-disable setting procedure for bits related to voltage	1	Set the LVD2CR0.LVD2CMPE bit to 0 (disabling output of the results of comparison by voltage monitoring 2).	Set LVD2CR0.LVD2CMPE = 0 (disabling output of the results of comparison by voltage monitoring 2).
monitoring 2 reset	2	. , , ,	When the digital filter is in use Wait for at least 2n + 3 cycles of LOCO (where n = 2, 4, 8, 16, and the sampling clock for the digital filter is the LOCO frequency divided by n).
		(No procedure because there is no digital filter) —	When the digital filter is not in use — (No procedure)
	3	Set the LVCMPCR.LVD2E bit to 0 (disabling the voltage detection 2 circuit).	Set LVD2CR0.LVD2RIE = 0 (disabling voltage monitoring 2 interrupts/resets).
	4		When the digital filter is in use Set LVD2CR0.LVD2DFDIS = 1 (disabling the digital filter).
		(No procedure because there is no digital filter) —	When the digital filter is not in use — (No procedure)
	5	Set the LVD2CR0.LVD2RIE bit to 0 (disabling voltage monitoring 2 interrupts/resets).	Set LVCMPCR.LVD2E = 0 (disabling the voltage detection 2 circuit).

Item		RX23T (LVDAb)	RX26T (LVDA)
Operation-disable	6	Modify settings of bits related to the	_
setting procedure for		voltage detection circuit registers	
bits related to voltage		other than LVCMPCR.LVD2E,	
monitoring 2 reset		LVD2CR0.LVD2RIE, and	
		LVD2CR0.LVD2CMPE.	

2.7 Clock Generation Circuit

Table 2.14 is Comparative Overview of Clock Generation Circuits, and Table 2.15 is Comparison of Clock Generation Circuit Registers.

Table 2.14 Comparative Overview of Clock Generation Circuits

Item	RX23T	RX26T
Use	 Generates the system clock (ICLK) to be supplied to the CPU, DTC, ROM, and RAM. Generates the peripheral module clocks (PCLKA, PCLKB, and PCLKD) supplied to the peripheral modules: The peripheral module clock PCLKA is the operating clock for MTU3, the peripheral module clock PCLKD is for the S12AD, and peripheral module clock 	 Generates the system clock (ICLK) to be supplied to the CPU, TFU, DMAC, DTC, code flash memory, and RAM. Generates the peripheral module clock (PCLKA) to be supplied to the RSPI, RSPIA, RSCI, RI3C, CANFD, MTU (internal peripheral bus), GPTW (internal peripheral bus), and HRPWM (internal peripheral bus).
	PCLKB is for modules other than MTU3 and S12AD.	 Generates the peripheral module clock (PCLKB) supplied to the peripheral modules. Generates the counter reference clock for peripheral modules and the HRPWM reference clock (PCLKC) to be supplied to the MTU and GPTW. Generates the peripheral module clock (for analog conversion) (PCLKD) to be supplied to the S12AD.
	 Generates the FlashIF clock (FCLK) to be supplied to the FlashIF. Generates the CAC clock (CACCLK) to be supplied to the CAC. 	 Generates the FlashIF clock (FCLK) to be supplied to the FlashIF. Generates the CAC clock (CACCLK) to be supplied to the CAC. Generates the CANFD clock (CANFDCLK) to be supplied to the CANFD. Generates the CANFD main clock (CANFDMCLK) to be supplied to the CANFD.
	Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT.	Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT.

Item	RX23T	RX26T
Operating	• ICLK: 40 MHz (max.)	• ICLK: 120 MHz (max.)
frequency	PCLKA: 40 MHz (max.)	• PCLKA: 120 MHz (max.)
' '	• PCLKB: 40 MHz (max.)	• PCLKB: 60 MHz (max.)
	TOLIND. 40 WII IZ (Max.)	• PCLKC: 120 MHz (max.)
	PCLKD: 40 MHz (max.)	PCLKD: 8 MHz to 60 MHz
	FOERD: 40 WII IZ (IIIAX.)	(for conversion with the 12-bit A/D
		converter)
	FCLK: 1 MHz to 32 MHz (ROM)	• FCLK:
	TOLIK. TIMITE to 32 WITE (KOW)	— 4 MHz to 60 MHz
		(for programming and erasing the code flash memory and data flash
		memory)
		— 60 MHz (max.)
		(for reading from the data flash memory)
	CACCLK:	
	Same as the clock from respective	CACCLK: Same as the clock from respective
	oscillators	oscillators
	Osomators	CANFDCLK: 60 MHz (max.)
		CANFDMCLK: 24 MHz (max.)
	IWDTCLK: 15 kHz	DAIDTOLIC COOLLI
Main clock		
oscillator	Resonator frequency: 1 MHz to 20 MHz	Resonator frequency: 8 MHz to 24 MHz Future all all all input frequency:
OSCIIIAIOI	External clock input frequency: 20 MHz (max.)	External clock input frequency: A Mula (max.)
	20 MHz (max.)	24 MHz (max.)
	Connectable resonator or additional irquitt	Connectable resonator or additional irouit
	circuit: Ceramic resonator, crystal	circuit: Ceramic resonator, crystal
		-
	Connection pins: EXTAL and XTAL Consillation atom detection functions.	Connection pins: EXTAL and XTAL Oscillation standard functions
	Oscillation stop detection function: When a main clock application stop is	Oscillation stop detection function: When a main clock oscillation stop is
	When a main clock oscillation stop is detected, the system clock source is	detected, the system clock source is
	switched to LOCO, and the MTU pin is	switched to LOCO, and the MTU and
	driven to high-impedance state.	GPTW pins are driven to high-
	 Drive capacity switching function 	impedance state.
PLL	Input clock source: Main clock	Input clock source: Main clock, HOCO
frequency	·	•
synthesizer	 Input pulse frequency division ratio: Selectable from 1, 2, and 4 	 Input pulse frequency division ratio: Selectable from 1, 2, and 3
0,111.100.201	 Input frequency: 4 MHz to 12.5 MHz 	 Input frequency: 8 MHz to 24 MHz
	Frequency multiplication ratio:	Frequency multiplication ratio:
	Selectable from 4 to 10 (increments of	Selectable from 10 to 30
	0.5)	Selectable from 10 to 30
	Oscillation frequency:	Output clock frequency of the PLL
	24 MHz to 40 MHz	frequency synthesizer:
	27 IVII IZ 10 TO IVII IZ	120 MHz to 240 MHz
High-speed	Oscillation frequency: 32 MHz	Oscillation frequency: Selectable from
on-chip		16 MHz, 18 MHz, and 20 MHz
oscillator		HOCO power supply control
(HOCO)		. 1000 points capping contact
Low-speed	Oscillation frequency: 4 MHz	Oscillation frequency: 240 kHz
on-chip		, ,
oscillator		
(LOCO)		

Item	RX23T	RX26T
IWDT- dedicated on- chip oscillator	Oscillation frequency: 15 kHz	Oscillation frequency: 120 kHz
Event link function (output)		Detection of stopping of the main clock oscillator
Event link function (input)	_	Switching of the clock source to the low- speed on-chip oscillator

 Table 2.15
 Comparison of Clock Generation Circuit Registers

Register	Bit	RX23T	RX26T
SCKCR	_	System clock control register	System clock control register
		Initial value after a reset differs.	·
	PCKC[3:0]	_	Peripheral module clock C (PCLKC) select bits
SCKCR2	_	_	System clock control register 2
PLLCR	_	PLL control register	PLL control register
		Initial value after a reset differs.	-
	PLIDIV[1:0]	PLL input frequency division ratio select bits	PLL input frequency division ratio select bits
		b1 b0 0 0: Divided by 1 0 1: Divided by 2 1 0: Divided by 4 1 1: Setting prohibited	b1 b0 0 0: Divided by 1 0 1: Divided by 2 1 0: Divided by 3 1 1: Setting prohibited
	PLLSRCSEL		PLL clock source selection bit (b4)
	STC[5:0]	Frequency multiplication factor select bits	Frequency multiplication factor select bits
		b13 b8 000111:x4 001000:x4.5 001001:x5 001010:x5.5 001011:x6 001100:x5.5 001101:x7 001110:x7.5 001111:x8 010000:x8.5 010001:x9 010010:x9.5 010011:x10 Settings other than the above are prohibited.	0 1 0 0 1 1: x10.0 0 1 0 0 1 1: x10.0 0 1 0 1 0 0: x10.5 0 1 0 1 0 1: x11.0 0 1 0 1 1 0: x11.5 0 1 0 1 1 1: x12.0 0 1 1 0 0 0: x12.5 0 1 1 0 1 0: x13.5 0 1 1 0 1 1: x14.0 : : 1 1 1 0 1 1: x30.0 Settings other than the above are
HOCOCR2	_	_	prohibited. High-speed on-chip oscillator control register 2
HOCOWTCR	_	High-speed on-chip oscillator wait Control register	_

Register	Bit	RX23T	RX26T
OSCOVFSR	_	Oscillation stabilization flag register	Oscillation stabilization flag register
		Initial value after a reset differs.	
	ILCOVF	_	IWDT-dedicated clock oscillation
			stabilization flag
OSTDCR	OSTDIE	Oscillation stop detection interrupt	Oscillation stop detection interrupt
		enable bit	enable bit
		Or The equillation atom detection	O. The application stan detection
		0: The oscillation stop detection interrupt is disabled, and	The oscillation stop detection interrupt is disabled, and
		oscillation stop detection is not	oscillation stop detection is not
		reported to the POE.	reported to the POE or POEG.
		1: The oscillation stop detection	1: The oscillation stop detection
		interrupt is enabled, and	interrupt is enabled, and
		oscillation stop detection is	oscillation stop detection is
MOCOMTOD		reported to the POE.	reported to the POE or POEG.
MOSCWTCR	_	Main clock oscillator wait control register	Main clock oscillator wait control register
		Initial value after a reset differs.	register
	MSTS[4:0]	Main clock oscillator wait time	Waiting time until output from the
	(RX23T)	setting bits (b4 to b0)	main clock oscillator to the internal
	MSTS[7:0]		circuits starts (b7 to b0)
	(RX26T)		
		b4 b0	
		0 0 0 0 0: Wait time = 2 cycles	MSTS[7:0] >
		(0.5 μs)	[tMAINOSC x (fLOCO_max) + 16] / 32
		0 0 0 0 1: Wait time = 1,024 cycles (256 μs)	32
		0 0 0 1 0: Wait time = 2,048 cycles	(tMAINOSC: main clock oscillation
		(512 µs)	stabilization time; fLOCO_max:
		0 0 0 1 1: Wait time = 4,096 cycles (1.024 ms)	maximum fLOCO frequency)
		0 0 1 0 0: Wait time = 8,192 cycles (2.048 ms)	
		0 0 1 0 1: Wait time = 16,384 cycles (4.096 ms)	
		0 0 1 1 0: Wait time = 32,768 cycles (8.192 ms)	
		0 0 1 1 1: Wait time = 65,536 cycles (16.384 ms)	
		Settings other than the above are prohibited.	
		Wait time when LOCO = 4.0 MHz (0.25 µs, TYP.)	
MOFCR	MODRV21	Main clock oscillator drive capability	Main clock oscillator drive capability
	(RX23T)	switch bits	2 switch bits
	MODRV2		h5 h4
	[1:0] (RX26T)	0: 1 MHz or higher and lower than	b5 b4 0 0: 20.1 to 24 MHz
	(,	10 MHz	0 1: 16.1 to 20 MHz
		1: 10 MHz to 20 MHz	1 0: 8.1 to 16 MHz
			1 1: 8 MHz
HOCOPCR	_	_	High-speed on-chip oscillator power
			supply control register
MEMWAIT		Memory wait cycle setting register	_

2.8 Low Power Consumption

Table 2.16 is Comparative Overview of Low Power Consumption Functions, Table 2.17 is Comparison of Procedures for Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode, and Table 2.18 is Comparison of Low Power Consumption Registers.

Table 2.16 Comparative Overview of Low Power Consumption Functions

Item	RX23T	RX26T
Reducing power consumption by switching clock signals	The frequency division ratio can be set independently for the system clock (ICLK), high speed peripheral module clock (PCLKA), peripheral module clock (PCLKB), S12AD clock	The frequency division ratio can be set independently for the system clock (ICLK), peripheral module clock (PCLKA, PCLKB, PCLKC, PCLKD), and flash interface clock (FCLK).
Module stop function	(PCLKD), and FlashIF clock (FCLK). Each peripheral module can be stopped independently by the module stop control register.	Each peripheral module can be stopped independently by the module stop control register.
Function for transition to low power consumption mode	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.
Low power consumption modes	Sleep modeDeep sleep modeSoftware standby mode	Sleep modeAll-module clock stop modeSoftware standby mode
Function for lower operating power consumption	 Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage. Two operating power control modes are available: High-speed operating mode Middle-speed operating mode 	

Table 2.17 Comparison of Procedures for Entering and Exiting Low Power Consumption Modes and **Operating States in Each Mode**

	Entering and Exiting Low Power Consumption Modes and Operating		
Mode	States	RX23T	RX26T
Sleep mode	Transition method	Control register +	Control register +
		instruction	instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution state	Program execution state
		(interrupt processing)	(interrupt processing)
	Main clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Operation possible	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Operation possible	Operation possible
	CPU	Stopped (retained)	Stopped (retained)
	RAM	Operation possible (retained)	Operation possible (retained)
	DTC	Operation possible	_
	Flash memory	Operation possible	Operation possible
	Watchdog timer		Stopped (retained)
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Port output enable (POE)		Operation possible
	8-bit timer (unit 0, unit1) (TMR)	_	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Operation possible	Operation possible
	I/O ports	Operation	Operation
	Comparator C	Operation possible	_
Software standby mode	Transition method	Control register + instruction	Control register + instruction
,	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution	Program execution
		state	state
		(interrupt processing)	(interrupt processing)
	Main clock oscillator	Stopped	Stopped
	High-speed on-chip oscillator	Stopped	Stopped
	Low-speed on-chip oscillator	Stopped	Stopped
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Stopped	Stopped
	CPU	Stopped (retained)	Stopped (retained)
	RAM	Stopped (retained)	Stopped (retained)
	DTC	Stopped (retained)	_
	Flash memory	Stopped (retained)	Stopped (retained)
	Watchdog timer		Stopped (retained)
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Port output enable (POE)		Stopped (retained)
	8-bit timer (unit 0, unit1) (TMR)	_	Stopped (retained)
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Stopped (retained)	Stopped (retained)

	Entering and Exiting Low Power		
Mode	Consumption Modes and Operating	DV22T	DVacT
Mode Software	States	RX23T Retained	RX26T
standby mode	I/O ports Comparator C		Retained
Deep sleep	Transition method	Operation possible Control register +	_
mode	Transition method	instruction	_
mode	Method of cancellation other than reset	Interrupt	_
	State after cancellation	Program execution	_
	State after caricellation	state	
		(interrupt processing)	
	Main clock oscillator	Operation possible	_
	High-speed on-chip oscillator	Operation possible	_
	Low-speed on-chip oscillator	Operation possible	_
	IWDT-dedicated on-chip oscillator	Operation possible	_
	PLL	Operation possible	_
	CPU	Stopped (retained)	_
	RAM	Stopped (retained)	_
	DTC	Stopped (retained)	_
	Flash memory	Stopped (retained)	_
	Independent watchdog timer (IWDT)	Operation possible	_
	Voltage detection circuit (LVD)	Operation possible	_
	Power-on reset circuit	Operation	_
	Peripheral modules	Operation possible	_
	I/O ports	Operation	_
	Comparator C	Operation possible	_
All-module clock stop	Transition method	_	Control register + instruction
mode	Method of cancellation other than reset		Interrupt
	State after cancellation	_	Program execution
			state
			(interrupt processing)
	Main clock oscillator	_	Operation possible
	High-speed on-chip oscillator	_	Operation possible
	Low-speed on-chip oscillator	_	Operation possible
	IWDT-dedicated on-chip oscillator	_	Operation possible
	PLL	_	Operation possible
	CPU	_	Stopped (retained)
	RAM	_	Stopped (retained)
	Flash memory	_	Stopped (retained)
	Watchdog timer	_	Stopped (retained)
	Independent watchdog timer (IWDT)	_	Operation possible
	Port output enable (POE)	_	Operation possible
	8-bit timer (unit 0, unit1) (TMR)	_	Operation possible
	Voltage detection circuit (LVD)	_	Operation possible
	Power-on reset circuit	_	Operation
	Peripheral modules	_	Stopped (retained)
	I/O ports	_	Retained

[&]quot;Operation possible" means that whether the state is operating or stopped is controlled by the control register setting.

[&]quot;Stopped (retained)" means that internal register values are retained and internal operations are suspended.

Table 2.18 Comparison of Low Power Consumption Registers

Register	Bit	RX23T	RX26T
SBYCR	SSBY	Software standby bit	Software standby bit
		O: Transition to sleep mode or deep sleep mode after the execution of the WAIT instruction 1: Transition to software standby mode after the execution of the WAIT instruction	O: Transition to sleep mode or all module clock stop mode after the execution of the WAIT instruction 1: Transition to software standby mode after the execution of the WAIT instruction
MSTPCRA	_	Module stop control register A	Module stop control register A
		Initial value after a reset differs.	
	MSTPA0	_	Compare match timer W (unit 1) module stop bit
	MSTPA1	_	Compare match timer W (unit 0) module stop bit
	MSTPA2	_	8-bit timer 7/6 (unit 3) module stop bit
	MSTPA3	_	8-bit timer 5/4 (unit 2) module stop bit
	MSTPA7		General purpose PWM timer/high resolution PWM/GPTW-dedicated port output enable module stop bit
	MSTPA16		12-bit A/D converter (unit 1) module stop bit
	MSTPA19	Comparator C reference voltage generation D/A converter module stop bit	12-bit D/A converter module stop bit
		Target module: DA 0: Release from module-stop state 1: Transition to module-stop state	Target module: 12-bit DA 0: Release from module-stop state 1: Transition to module-stop state
	MSTPA23	_	12-bit A/D converter (unit 2) module stop bit
	MSTPA24	_	Module stop A24 setting bit
	MSTPA27	_	Module stop A27 setting bit
	MSTPA28	Data transfer controller module stop bit	DMA controller/data transfer controller module stop bit
		Target module: DTC 0: Release from module-stop state 1: Transition to module-stop state	Target module: DMAC/DTC 0: Release from module-stop state 1: Transition to module-stop state
	MSTPA29	-	Module stop A29 setting bit
	ACSE	_	All-module clock stop mode enable bit
MSTPCRB	MSTPB4		Serial communications interface 12 module stop bit
	MSTPB9	_	Event link controller module stop bit
	MSTPB25	_	Serial communications interface 6 module stop bit

Register	Bit	RX23T	RX26T
MSTPCRC	MSTPC24	_	Serial communications interface 11 module stop bit
	MSTPC26	_	Serial communications interface 9 module stop bit
	MSTPC27	_	Serial communications interface 8 module stop bit
	DSLPE	Deep sleep mode enable bit	_
MSTPCRD	_	_	Module stop control register D
RSTCKCR	_	_	Sleep mode return clock source switching register
OPCCR		Operating power control register	_

2.9 Register Write Protection Function

Table 2.19 is Comparative Overview of Register Write Protection Functions, and Table 2.20 is Comparison of Register Write Protection Function Registers.

Table 2.19 Comparative Overview of Register Write Protection Functions

Item	RX23T	RX26T
PRC0 bit	Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR, MEMWAIT	Registers related to the clock generation circuit: SCKCR, SCKCR2, SCKCR3, PLLCR, PLLCR2, MOSCCR, LOCOCR, ILOCOCR, HOCOCR, HOCOCR, HOCOCR2, OSTDCR, OSTDSR
PRC1 bit	Registers related to the operating modes: SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, OPCCR Registers related to the clock generation circuit: MOFCR, MOSCWTCR Software reset register: SWRR	Registers related to the operating modes: SYSCR1, VOLSR Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, RSTCKCR Registers related to the clock generation circuit: MOSCWTCR, MOFCR, HOCOPCR Software reset register: SWRR
PRC2 bit	Registers related to the clock generation circuit: HOCOWTCR	_
PRC3 bit	Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR	Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR

Table 2.20 Comparison of Register Write Protection Function Registers

Register	Bit	RX23T	RX26T
PRCR	PRC2	Protect bit 2	

2.10 Interrupt Controller

Table 2.21 is Comparative Overview of Interrupt Controllers, and Table 2.22 is Comparison of Interrupt Controller Registers.

Table 2.21 Comparative Overview of Interrupt Controllers

Item		RX23T (ICUb)	RX26T (ICUG)
Interrupts	Peripheral function interrupts	Interrupts from peripheral modules Interrupt detection: Edge detection/level detection The detection method is fixed for each source of connected peripheral modules.	 Interrupts from peripheral modules Interrupt detection method: Edge detection or level detection (fixed for each interrupt source) Group interrupt: Multiple interrupt sources are grouped together and treated as a single interrupt source. — Group IE0 interrupt: Interrupt sources of
			coprocessors that use ICLK as the operating clock (edge detection) — Group BE0 interrupt: Interrupt sources of peripheral modules that use PCLKB as the operating clock (edge detection) — Group BL0/BL1/BL2 interrupt: Interrupt sources of peripheral modules that use PCLKB as the operating clock (level detection) — Group AL0/AL1 interrupt: Interrupt sources of peripheral modules that use PCLKA as the operating clock (level detection)
			Software configurable interrupt A: Any of the interrupt sources for peripheral modules that use PCLKA as the operating clock can be assigned to interrupt vector numbers 208 to 255.
	External pin interrupts	 Interrupts from pins IRQ0 to IRQ5 Number of sources: 6 Interrupt detection: Detection of low level, falling edge, rising edge, or rising and falling edges can be set for each detection source. Digital filter function: Supported 	 Interrupts by input signals on IRQi pins (i = 0 to 15) Interrupt detection: Detection of low level, falling edge, rising edge, or rising and falling edges can be set for each detection source. A digital filter can be used to remove noise.

Item		RX23T (ICUb)	RX26T (ICUG)
Interrupts	Software	Interrupt generated by writing to	An interrupt request can be
	interrupts	a register	generated by writing to a
			register.
		Number of sources: 1	Number of sources: 2
	Interrupt	Specified by registers.	The priority level is set with the
	priority level		interrupt source priority register r
			(IPRr) (r = 000 to 255).
	Fast interrupt	Faster interrupt handling by the	It is possible to reduce the CPU's
	function	CPU can be specified for a single interrupt source only.	interrupt response time. This setting can be used for one
		interrupt source only.	interrupt source only.
	DTC and	The DTC can be activated by an	The DTC and DMAC can be
	DMAC	interrupt source.	activated by an interrupt source.
	control	·	
Non-	NMI pin	Interrupt from the NMI pin	Interrupt by the input signal on the
maskable	interrupt		NMI pin
interrupts		Interrupt detection:	Interrupt detection:
		Falling edge/rising edge	Falling edge or rising edge
		Digital filter function: Supported	A digital filter can be used to remove noise.
	Oscillation	Interrupt on detection of oscillation	Interrupt occurs when the main
	stop	having stopped	clock oscillator stop is detected.
	detection	liming supplies	
	interrupt		
	WDT	_	Interrupt occurs when the watchdog
	underflow/		timer underflows or a refresh error
	refresh error		occurs.
	interrupt IWDT	Interrupt on an underflow of the	Interrupt occurs when the
	underflow/	down counter or occurrence of a	independent watchdog timer
	refresh error	refresh error	underflows or a refresh error
	interrupt		occurs.
	Voltage	Voltage monitoring interrupt of	Interrupt from voltage detection 1
	monitoring 1	voltage detection circuit 1 (LVD1)	circuit (LVD1)
	interrupt	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	Voltage monitoring 2	Voltage monitoring interrupt of voltage detection circuit 2 (LVD2)	Interrupt from voltage detection 2 circuit (LVD2)
	interrupt	voltage detection circuit 2 (LVD2)	Circuit (LVD2)
	RAM error	_	Interrupt occurs when a parity
	interrupt		check error is detected in RAM.
Return from	Sleep mode	Exit sleep mode by a non-maskable	Exit sleep mode by any non-
low power		interrupt or any other interrupt	maskable interrupt or any interrupt.
consumption	<u> </u>	source.	
state	Deep sleep	Exit deep sleep mode by a non-	_
	mode	maskable interrupt or any other interrupt source.	
	All-module		Exit all-module clock stop mode by
	clock stop		the non-maskable interrupt, external
	mode		pin interrupt, or peripheral interrupt
			(voltage monitoring 1, voltage
			monitoring 2, IWDT, TMR0 to
			TMR3).

RX26T Group, RX23T Group Differences Between the RX26T Group and the RX23T Group

Item		RX23T (ICUb)	RX26T (ICUG)
Return from low power consumption state	Software standby mode	Exit software standby mode by a non-maskable interrupt or IRQ0 to IRQ5 interrupt.	Exit software standby mode by the non-maskable interrupt, external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, or IWDT).

Table 2.22 Comparison of Interrupt Controller Registers

Register	Bit	RX23T (ICUb)	RX26T (ICUG)
IRn*1	_	Interrupt request register n	Interrupt request register n
		(n = 016 to 249)	(n = 016 to 255)
IPRn*1	-	Interrupt source priority register n	Interrupt source priority register r
		(n = 000 to 249)	(r = 000 to 255)
SWINT2R	_	_	Software interrupt 2 generation
			register
DTCERn*1	_	DTC transfer request enable register	DTC transfer request enable register
	DTOE	n (n = 027 to 248)	n (n = 026 to 255)
	DTCE	DTC transfer request enable bit	DTC transfer request enable bit
		0: DTC initiation disabled	Or Set to an interrupt source to the
		0. DTC initiation disabled	0: Set to an interrupt source to the CPU, or DMAC activation source.
		1: DTC initiation enabled	1: Set to the DTC activation source.
DMRSRm			DMAC activation source select
DIVINORIII			register m (m = 0 to 7)
IRQCRi	_	IRQ control register i (i = 0 to 5)	IRQ control register i (i = 0 to 15)
IRQFLTE0	FLTEN6		IRQ6 digital filter enable bit
	FLTEN7	_	IRQ7 digital filter enable bit
IRQFLTE1	_	_	IRQ pin digital filter enable register 1
IRQFLTC0	FCLKSEL6	_	IRQ6 digital filter sampling clock
	. 02.10220		setting bit
	FCLKSEL7	_	IRQ7 digital filter sampling clock
			setting bit
IRQFLTC1	_	_	IRQ pin digital filter setting register 1
NMISR	WDTST	_	WDT underflow/refresh error status
			flag
	RAMST	_	RAM error interrupt status flag
NMIER	WDTEN	_	WDT underflow/refresh error enable
			bit
	RAMEN	-	RAM error interrupt enable bit
NMICLR	WDTCLR	-	WDT clear bit
GRPBL0/	_	-	Group BL0/BL1/BL2 interrupt request
GRPBL1/			register
GRPBL2			Crown ALO/AL4 interrupt request
GRPAL0/ GRPAL1		_	Group AL0/ AL1 interrupt request register
GENBL0/			Group BL0/BL1/BL2 interrupt request
GENBL1/			enable register
GENBL2			onable regions.
GENAL0/	_	_	Group AL0/ AL1 interrupt request
GENAL1			enable register
PIARk	_	_	Software configurable interrupt A
			request register k
			(k = 0h to Fh, 12h to 14)
SLIARn	_	<u> </u>	Software configurable interrupt A
			source select register n
CLIDDOD			(n = 208 to 255)
SLIPRCR		_	Software configurable interrupt source select register
			Write protection register
		1	write protection register

Note 1. On the RX23T Group, n = 250 to 255 correspond to a reserved area.

2.11 Buses

Table 2.23 is Comparative Overview of Buses, and Table 2.24 is Comparison of Bus Registers.

Table 2.23 Comparative Overview of Buses

Item		RX23T	RX26T
CPU buses	Instruction bus	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, code flash memory) Operates in synchronization with the system clock (ICLK)
	Operand bus	Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)	Connected to the CPU (for operands) Connected to on-chip memory (RAM, code flash memory) Operates in synchronization with the system clock (ICLK)
Memory	Memory bus 1	Connected to RAM	Connected to RAM
buses	Memory bus 2	Connected to ROM	Connected to code flash memory
Internal main buses	Internal main bus 1	 Connected to CPU Operates in synchronization with the system clock (ICLK) 	Connected to CPU Operates in synchronization with the system clock (ICLK)
	Internal main bus 2	 Connected to DTC Connected to on-chip memory (RAM, ROM) 	 Connected to the DTC and DMAC Connected to on-chip memory (RAM, code flash memory)
		Operates in synchronization with the system clock (ICLK)	Operates in synchronization with the system clock (ICLK)
Internal peripheral buses	Internal peripheral bus 1	Connected to peripheral modules (DTC, interrupt controller, and bus error monitoring section)	Connected to peripheral modules (TFU, DTC, DMAC, interrupt controller, and bus error monitoring section)
		Operates in synchronization with the system clock (ICLK)	Operates in synchronization with the system clock (ICLK)
	Internal peripheral bus 2	 Connected to peripheral modules (peripheral functions other than those connected to internal peripheral buses 1, 3, and 4) Operates in synchronization with the peripheral-module clock (PCLKB) 	 Connected to peripheral modules (peripheral functions other than those connected to internal peripheral buses 1, 3, 4, and 5) Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 3	Connected to peripheral module (CMPC)	Connected to peripheral modules (DOC, RSCI, CANFD, and CMPC)
		Operates in synchronization with the peripheral-module clock (PCLKB)	Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 4	Connected to peripheral modules (MTU3)	Connected to peripheral modules (MTU, GPTW, HRPWM, and RSPI)
		 Operates in synchronization with the peripheral-module clock (PCLKA) 	Operates in synchronization with the peripheral-module clock (PCLKA)

Item		RX23T	RX26T
Internal peripheral buses	Internal peripheral bus 5		 Connected to peripheral modules (RSCI, RSPIA, RI3C, and CANFD) Operates in synchronization with the peripheral-module clock (PCLKA)
	Internal peripheral bus 6	 Connected to the flash control module Operates in synchronization with the FlashIF clock (FCLK) 	 Connected to code flash memory (in P/E) and data flash memory Operates in synchronization with the FlashIF clock (FCLK)

Table 2.24 Comparison of Bus Registers

Register	Bit	RX23T	RX26T
BERSR1	MST[2:0]	Bus master code bits	Bus master code bits
		b6 b4	b6 b4
		0 0 0: CPU	0 0 0: CPU
		0 0 1: Reserved	0 0 1: Reserved
		0 1 0: Reserved	0 1 0: Reserved
		0 1 1: DTC	0 1 1: DTC/DMAC
		1 0 0: Reserved	1 0 0: Reserved
		1 0 1: Reserved	1 0 1: Reserved
		1 1 0: Reserved	1 1 0: Reserved
		1 1 1: Reserved	1 1 1: Reserved
BUSPRI	BPHB[1:0]	Internal peripheral bus 4 priority control bits	Priority control bits for internal peripheral buses 4 and 5
		b9 b8	b9 b8
		0 0: Fixed priority	0 0: Fixed priority
		0 1: Toggled priority	0 1: Toggled priority
		1 0: Setting prohibited	1 0: Setting prohibited
		1 1: Setting prohibited	1 1: Setting prohibited

2.12 Data Transfer Controller

Table 2.25 is Comparative Overview of Data Transfer Controllers, and Table 2.26 is Comparison of Data Transfer Controller Registers.

Table 2.25 Comparative Overview of Data Transfer Controllers

Item	RX23T (DTCa)	RX26T (DTCb)
Number of transfer channels	Equal to number of all interrupt sources that can start a DTC transfer.	Equal to number of all interrupt sources that can start a DTC transfer.
Transfer modes	 Normal transfer mode A single activation leads to a single data transfer. Repeat transfer mode A single activation leads to a single data transfer. The transfer address returns to the transfer start address when the number of data transfers equals the repeat size. The maximum number of repeat transfers is 256 and the maximum data transfer size is 256 x 32 bits, or 1,024 bytes. Block transfer mode A single activation leads to the transfer of a single block of data. The maximum block size is 256 x 32 bits = 1,024 bytes. 	 Normal transfer mode A single activation leads to a single data transfer. Repeat transfer mode A single activation leads to a single data transfer. The transfer address returns to the transfer start address when the number of data transfers equals the repeat size. The maximum number of repeat transfers is 256 and the maximum data transfer size is 256 x 32 bits, or 1,024 bytes. Block transfer mode A single activation leads to the transfer of a single block of data. The maximum block size is 256 x 32 bits = 1,024 bytes.
Chain transfer function	 Multiple types of data transfer can be performed sequentially in response to a single transfer request. (transferred by a DTC transfer request from ICU) Either "performed only when the transfer counter reaches 0" or "every time" can be selected. 	 Multiple types of data transfer can be performed sequentially in response to a single transfer request. Either "performed only when the transfer counter reaches 0" or "every time" can be selected.
Sequence transfer		 A complex series of transfers can be registered as a sequence. Any sequence can be selected by the transfer data and executed. Only one sequence transfer trigger source can be selected at a time. Up to 256 sequences can correspond to a single trigger source. The data that is initially transferred in response to a transfer request determines the sequence. The entire sequence can be executed on a single request, or the sequence can be suspended in the middle and resumed on the next transfer request (sequence division).

Item	RX23T (DTCa)	RX26T (DTCb)
Transfer space	 16 MB in short-address mode (from 0000 0000h to 007F FFFh or from FF80 0000h to FFFF FFFFh, excluding reserved areas) 4 GB in full-address mode (within 0000 0000h to FFFF FFFFh, excluding reserved areas) 	 16 MB in short-address mode (from 0000 0000h to 007F FFFFh or from FF80 0000h to FFFF FFFFh, excluding reserved areas) 4 GB in full-address mode (within 0000 0000h to FFFF FFFFh, excluding reserved areas)
Data transfer units	 Single data unit: byte (8 bits), 1 word (16 bits), or 1 longword (32 bits) Single block size: to 256 data units 	 Single data unit: byte (8 bits), 1 word (16 bits), or 1 longword (32 bits) Single block size: to 256 data units
CPU interrupt requests	 An interrupt request to the CPU can be generated by a DTC activation interrupt. An interrupt request to the CPU can be generated after a single data transfer. An interrupt request to the CPU can be generated after transfer of the specified number of data units. 	 An interrupt request to the CPU can be generated by a DTC activation interrupt. An interrupt request to the CPU can be generated after a single data transfer. An interrupt request to the CPU can be generated after transfer of the specified number of data units.
Event link function	_	An event link request is generated after one data transfer (for block transfers, after one block).
Read skip	Read skip of transferred information can be specified.	Reading of the transfer information can be skipped when the same transfer is repeated.
Write-back skip	Write-back skip can be executed when the transfer source address or transfer destination address is fixed.	Write-back of the transferred data that is not updated can be skipped when the address of the transfer source or destination is fixed.
Write-back disable	_	Ability to disable write-back of transfer information
Displacement addition	_	Ability to add displacement to the transfer source address (selectable by each transfer information)
Low power consumption function	Ability to transition to module stop state	Ability to transition to module stop state

Table 2.26 Comparison of Data Transfer Controller Registers

Register	Bit	RX23T (DTCa)	RX26T (DTCb)
MRA	WBDIS	_	Write-back disable bit
MRB	SQEND	_	Sequence transfer end bit
	INDX	_	Index table reference bit
MRC	_	_	DTC mode register C
DTCIBR	_	_	DTC index table base register
DTCOR	_	_	DTC operation register
DTCSQE	_	_	DTC sequence transfer enable
			register
DTCDISP	_	_	DTC address displacement register

2.13 I/O ports

Table 2.27 is Comparative Overview of I/O Ports on 64-Pin Products, Table 2.28 is Comparative Overview of I/O Ports on 48-Pin Products, Table 2.29 is Comparison of I/O Port Functions, and Table 2.31 is Comparison of I/O Port Registers.

Table 2.27 Comparative Overview of I/O Ports on 64-Pin Products

Item	RX23T (64-Pin)	RX26T (64-Pin)
PORT0	P00 to P02	P00, P01
PORT1	P10, P11	P11
PORT2	P22 to P24	P20 to P22
PORT3	P30 to P33, P36, P37	P36, P37
PORT4	P40 to P47	P40 to P47
PORT5	_	P52 to P54
PORT6	_	P64, P65
PORT7	P70 to P76	P70 to P76
PORT9	P91 to P94	P90 to P96
PORTA	PA2 to PA5	_
PORTB	PB0 to PB7	PB0 to PB6
PORTD	PD3 to PD7	PD3 to PD7
PORTE	PE2	PE2
PORTN	_	PN6, PN7

Table 2.28 Comparative Overview of I/O Ports on 48-Pin Products

Item	RX23T (48-Pin)	RX26T (48-Pin)
PORT0	_	P00
PORT1	P10, P11	P10, P11
PORT2	P22 to P24	P20, P21
PORT3	P36, P37	P36, P37
PORT4	P40 to P47	P40 to P44
PORT5	_	P52, P53
PORT6	_	P62
PORT7	P70 to P76	P71 to P76
PORT9	P93, P94	P91 to P95
PORTA	PA2, PA3	_
PORTB	PB0 to PB6	PB0 to PB6
PORTD	PD3 to PD6	PD3, PD5, PD7
PORTE	PE2	PE2
PORTN	_	PN6

Table 2.29 Comparison of I/O Port Functions

Item	Port Symbol	RX23T	RX26T
Input pull-up	PORT0	P00 to P02	P00, P01
function	PORT1	P10, P11	P10, P11
	PORT2	P22 to P24	P20 to P24, P27
	PORT3	P30 to P33, P36, P37	P30 to P33, P36, P37
	PORT4	P40 to P47	P40 to P47
	PORT5	_	P50 to P55
	PORT6	_	P60 to P65
	PORT7	P70 to P76	P70 to P76
	PORT8	_	P80 to P82
	PORT9	P91 to P94	P90 to P96
	PORTA	PA2 to PA5	PA0 to PA5
	PORTB	PB0 to PB7	PB0 to PB7
	PORTC	_	_
	PORTD	PD3 to PD7	PD0 to PD7
	PORTE	_	PE0, PE1, PE3 to PE5
	PORTN		PN6, PN7
Open-drain	PORT0	P00 to P02	P00, P01
output	PORT1	P10, P11	P10, P11
function	PORT2	P22 to P24	P20 to P24, P27
	PORT3	P30 to P33, P36, P37	P30 to P33, P36, P37
	PORT4	_	P40 to P47
	PORT5	_	P50 to P55
	PORT6	_	P60 to P65
	PORT7	P70 to P76	P70 to P76
	PORT8	_	P80 to P82
	PORT9	P91 to P94	P90 to P96
	PORTA	PA2 to PA5	PA0 to PA5
	PORTB	PB0 to PB7	PB0 to PB7
	PORTC	_	_
	PORTD	PD3 to PD7	PD0 to PD7
	PORTE	_	PE0, PE1, PE3 to PE5
	PORTN	_	PN6
5 V tolerant	PORTB	PB1, PB2	PB1, PB2

Table 2.30 Comparison of Driving Ability Switching on I/O Ports

Port Symbol	Driving Ability Switching	RX23T	RX26T
PORT0	Fixed to normal output	—	-
	Normal/high	P00 to P02	P00, P01
PORT1	Fixed to normal output	—	-
	Normal/high	P10, P11	P10, P11
PORT2	Fixed to normal output	_	-
	Normal/high	P22 to P24	P20 to P24, P27
PORT3	Fixed to normal output	P30 to P33, P36, P37	P36, P37
	Normal/high	_	P30 to P33
PORT4	Fixed to normal output	P40 to P47	P40 to P47
	Normal/high	_	_
PORT5	Fixed to normal output	_	P50 to P55
	Normal/high	_	_
PORT6	Fixed to normal output	_	P60 to P65
	Normal/high	_	_
PORT7	Fixed to normal output	_	_
	Fixed to high drive output	P71 to P76	_
	Normal/high	P70	P70
	Normal/high/large current	_	P71 to P76
	output		
PORT8	Fixed to normal output	_	_
	Fixed to high drive output	_	_
	Normal/high	_	P80, P82
	Normal/high/large current	_	P81
	output		
PORT9	Fixed to normal output	_	<u> </u>
	Fixed to high drive output	_	<u> </u>
	Normal/high	P91 to P94	P96
	Normal/high/large current	_	P90 to P95
DODTA	output		
PORTA	Fixed to normal output	<u> </u>	_
DODTO	Normal/high	PA2 to PA5	PA0 to PA5
PORTB	Fixed to normal output	_	PB1, PB2
	Fixed to high drive output	PB1, PB2, PB5	_
	Normal/high	PB0, PB3, PB4, PB6, PB7	PB0, PB3, PB4, PB6, PB7
	Normal/high/large current		PB5
PORTD	output Fixed to normal output		
FOKID	Fixed to high drive output	PD3	-
	Normal/high	PD4 to PD7	PD0 to PD2, PD4 to PD7
	Normal/high/large current		PD3
	output		1 03
PORTE	Fixed to normal output	_	1_
. 5	Normal/high	_	PE0, PE1, PE3 to PE5
PORTN	Normal/high	_	PN6, PN7
	110111101/111911		1 110, 1 111

Table 2.31 Comparison of I/O Port Registers

Register	Bit	RX23T	RX26T
PDR	B0 to B7	Pm0 to Pm7 I/O select bits	Pm0 to Pm7 I/O select bits
		(m = 0 to 4, 7, 9, A, B, D)	(m = 0 to 9, A, B, D, E, N)
PODR	B0 to B7	Pm0 to Pm7 output data store bits	Pm0 to Pm7 output data store bits
		(m = 0 to 4, 7, 9, A, B, D)	(m = 0 to 9, A, B, D, E, N)
PIDR	B0 to B7	Pm0 to Pm7 bits	Pm0 to Pm7 bits
		(m = 0 to 4, 7, 9, A, B, D, E)	(m = 0 to 9, A, B, D, E, N)
PMR	B0 to B7	Pm0 to Pm7 pin mode control bits	Pm0 to Pm7 pin mode control bits
		(m = 0 to 3, 7, 9, A, B, D, E)	(m = 0 to 9, A, B, D, E, N)
ODR0	B0, B2,	Pm0, Pm1, Pm2, and Pm3 output	Pm0, Pm1, Pm2, and Pm3 output
	B4, B6	type select bits	type select bits
		(m = 0 to 3, 7, 9, A, B, D)	(m = 0 to 9, A, B, D, E)
ODR1	B0, B2,	Pm4, Pm5, Pm6, and Pm7 output	Pm4, Pm5, Pm6, and Pm7 output
	B4, B6	type select bits	type select bits
		(m = 2, 3, 7, 9, A, B, D)	(m = 2 to 7, 9, A, B, D, E, N)
PCR	B0 to B7	Pm0 to Pm7 input pull-up resistor	Pm0 to Pm7 input pull-up resistor
		control bits	control bits
		(m = 0 to 4, 7, 9, A, B, D)	(m = 0 to 9, A, B, D, E, N)
DSCR	B0 to B7	Pm0 to Pm7 drive capacity control	Pm0 to Pm7 drive capacity control
		bits	bits
		(m = 0 to 3, 7, 9, A, B, D)	(m = 0 to 3, 7 to 9, A, B, D, E, N)
DSCR2		_	Drive capacity control register 2
POHSR1	_	_	Port output retention setting register
			1
POHSR2	_	_	Port output retention setting register
			2
POHCR	_	_	Port output retention control register
GPSEXT	_	_	General I/O pin select extended
			register

2.14 Multi-Function Pin Controller

Table 2.32 is Comparison of Multiplexed Pin Assignments, and Table 2.33 to Table 2.47 show a comparison of the multi-function pin controller registers.

In the following comparison of the assignments of multiplexed pins, **light blue text** designates pins that exist on the RX26T Group only, **orange text** pins that exist on the RX23T Group only. A circle (\bigcirc) indicates that a function is assigned, a cross (\times) that the pin does not exist or that no function is assigned, and grayed out items mean that the function is not implemented.

Table 2.32 Comparison of Multiplexed Pin Assignments

Module/		Port	RX23T	(MPC)	RX26T	(MPC)
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
Interrupt	NMI (input)	PE2	0	0	0	0
	IRQ0 (input)	P10	0	0	X	0
		P52	X	X	0	0
		P93	0	0	X	X
		PE2	X	X	0	0
	IRQ1 (input)	P11	0	0	0	0
		P53	X	X	0	0
		P94	0	0	X	X
		P95	X	X	0	0
	IRQ2 (input)	P00	0	X	0	0
		P22	0	0	X	X
		P54	X	X	0	X
		PB1	0	0	X	×
		PB6	X	X	0	0
		PD4	0	0	0	X
	IRQ3 (input)	P24	0	0	X	×
		PB4	0	0	0	0
		PD5	0	0	X	×
	IRQ4 (input)	P01	0	X	0	×
		P23	0	0	X	X
		P96	X	X	0	X
		PA2	0	0	X	X
		PB1	X	X	0	0
	IRQ5 (input)	P02	0	×	X	X
		P70	0	0	0	X
		PB6	0	0	X	X
		PD6	0	0	0	X
		PN7	X	X	0	X
	IRQ6 (input)	P21			0	0
		P62			X	0
		PD5			0	0
	IRQ7 (input)	P20			0	0
	IRQ8 (input)	P64			0	X
		PB0			0	0
		PD7			0	0
	IRQ9 (input)	P65			0	X
		PB3			0	0
	IRQ10 (input)	P22			0	×
	IRQ14 (input)	P93			0	0

Module/		Port	RX23T	(MPC)	RX26T	RX26T (MPC)	
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin	
Multi-function	MTIOCOA (input/output)/	P31	0	X	X	×	
timer unit 3	MTIOC0A# (input/output)	P70	X	X	O	X	
		PB3	Ô	Ô	Ö	0	
	MTIOC0B(input/output)/	P30	Ö	X	×	×	
	MTIOC0B# (input/output)	P93	0	O	X	X	
		PB2	Ö	O	Ô	Ô	
	MTIOCOC (input/output)/	P94	0	O	X	X	
	MTIOC0C# (input/output)	PB1	Ö	Ö	Ô	Ô	
	MTIOC0D (input/output)/	PB0	Ö	Ö	Ö	Ŏ	
	MTIOC0D# (input/output)						
	MTIOC1A (input/output)/	P95	×	×	0	0	
	MTIOC1A# (input/output)	PA5	0	×	X	X	
	MTIOC1B (input/output)/	PA4	Ö	X	X	X	
	MTIOC1B# (input/output)						
	MTIOC2A (input/output)/	P94	X	×	0	0	
	MTIOC2A# (input/output)	PA3	0	0	X	×	
	MTIOC2B (input/output)/	PA2	O	0	X	X	
	MTIOC3B# (input/output) MTIOC3A (input/output)/ MTIOC3A# (input/output) MTIOC3B (input/output)/						
	MTIOC3A (input/output)/	P11	0	0	0	0	
	MTIOC3A# (input/output)	P33	0	X	X	X	
	MTIOC3B (input/output)/	P71	0	X	X	0	
	MTIOC3B# (input/output)						
	MTIOC3C (input/output)/	P32	0	X	×	×	
	MTIOC3C# (input/output)						
	MTIOC3D (input/output)/	P74	0	0	0	0	
	MTIOC3D# (input/output)						
	MTIOC4A (input/output)/	P72	0	0	0	0	
	MTIOC4A# (input/output)		1				
	MTIOC4B (input/output)/	P73	0	0	0	0	
	MTIOC4B# (input/output)	DZE					
	MTIOC4C (input/output)/ MTIOC4C# (input/output)	P75	0	0	0	0	
	MTIOC4C# (input/output)/	P76	0	0	0	0	
	MTIOC4D# (input/output)	F70					
	MTIC5U (input)/	P24	0	0	×	×	
	MTIC5U# (input)	1 24				^	
	MTIC5V (input)/	P23	0	0	×	X	
	MTIC5V# (input)	. 20					
	MTIC5W (input)/	P22	0	0	0	×	
	MTIC5W# (input)						
	MTIOC6A (input/output)/	P93			0	0	
	MTIOC6A# (input/output)						
	MTIOC6B (input/output)/	P95			0	0	
	MTIOC6B# (input/output)						
	MTIOC6C (input/output)/	P92			0	0	
	MTIOC6C# (input/output)						
	MTIOC6D (input/output)/	P92			0	0	
	MTIOC6D# (input/output)						
	MTIOC7A (input/output)/	P94			0	0	
	MTIOC7A# (input/output)	DCC.					
	MTIOC7B (input/output)/	P93			0	0	
	MTIOC7B# (input/output)						

Module/		Port	RX23T	(MPC)	RX26T	(MPC)
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
Multi-function	MTIOC7C (input/output)/	P91			0	0
timer unit 3	MTIOC7C# (input/output)					
	MTIOC7D (input/output)/	P90			0	X
	MTIOC7D# (input/output)					
	MTIOC9A (input/output)/	P00			0	0
	MTIOC9A# (input/output)	P21			0	0
		PD7			0	0
	MTIOC9B (input/output)	P22			0	X
	MTIOC9B (input/output)/	P10			X	0
	MTIOC9B# (input/output)					
	MTIOC9C (input/output)/	P01			0	X
	MTIOC9C# (input/output)	P20			0	0
		PD6			0	X
	MTIOC9D (input/output)	P11			0	0
	MTIOC9D (input/output)/	PN7			0	×
	MTIOC9D# (input/output)	D04		1		
	MTCLKA (input)/ MTCLKA# (input)	P21	X	X	0	0
	` ' '	P33	0	X	X	X
	MTCLKB (input)/ MTCLKB# (input)	P20	X	X	0	0
	· · · · · ·	P32	0	X	X	X
	MTCLKC (input)/ MTCLKC# (input)	P11	0	0	0	0
	WTCLKC# (Input)	P31	0	X	X	X
	MTOLKO (P70	X	X	0	X
	MTCLKD (input)/	P10	0	0	X	0
	MTCLKD# (input)	P22	X	X	0	X
	ADCMO (surface)	P30	0	X	X	X
	ADSM0 (output)	PB2	0	0	0	0
O hit time on	ADSM1 (output)	PB1			0	0
8-bit timer	TMO0 (output)	PB0	X	X	0	0
	TMCIO (in a s.4)	PD3	0	0	0	0
	TMCI0 (input)	PB1	X	X	0	0
	TMDIO (innut)	PD4 PB2	0	0	0	X
	TMRI0 (input)		X	X	0	0
	TMO4 (autaut)	PD5	0	0	0	0
	TMO1 (output)	P94 PD6	0	0	X	X
	TMCI1 (inc.:+)		0	0	0	X
	TMCI1 (input)	P92 P93	0	×	X	X
	TMRI1 (input)	PD7	0	0	×	X
	TMO2 (output)	P20	0	X	0	0
	TMO2 (output)	P20 P23	X	X	0	0
		P23	0	0	X	×
	TMCI2 (input)	P92	X	X	0	0
	TMCI2 (input)	P24	0	0	X	X
	TMRI2 (input)	P11	0	0	0	X
	TMO3 (output)		0	0	0	0
	TMCI3 (input)	P95 PA5	X	X	0	0
	TMPI2 (input)	PA5	0	X	X	X
	TMRI3 (input) TMO4 (output)	P10	0	0	X	0
	TIVIO4 (output)				0	X
		P93			0	0

Module/		Port	RX23T	(MPC)	RX26T (MPC)	
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
8-bit timer	TMCI4 (input)	P21	011111	10 1 111	0	0
	TMRI4 (input)	P20			Ö	0
	TMRI5 (input)	PD7			Ö	Ö
	TMO6 (output)	P21			Ö	0
	TMCI6 (input)	PD4			Ö	X
	TMRI6 (input)	P70			Ö	X
		PD5			O	O
	TMRI7 (input)	P94			O	Ö
Port output	POE0# (input)	P70	0	0	Ō	X
enable 3	POE4# (input)	P96			Ō	X
	POE8# (input)	PB4	0	0	0	0
	POE9# (input)	P11			0	Ō
	POE10# (input)	PE2	0	0	Ō	Ö
	POE12# (input)	P01			Ö	X
		P10			×	0
Serial	RXD1 (input)/	PD5	0	0	0	0
communications	SMISO1 (input/output)/					
interface	SSCL1 (input/output)					
	TXD1 (output)/	PD3	0	0	0	0
	SMOSI1 (input/output)/					
	SSDA1 (input/output)					
	SCK1 (input/output)	PD4	0	0	0	X
	CTS1# (input)/	P02	0	X	X	X
	RTS1# (output)/ SS1# (input)	PD6	0	0	0	×
	RXD5 (input)/	P37				
	SMISO5 (input/output)/	P91	X	X	0	0
	SSCL5 (input/output)	PB1	X	X	0	0
	(PB6	0	0	X	X
	TXD5 (output)/	P36			0	0
	SMOSI5 (input/output)/	P90	X	X	0	×
	SSDA5 (input/output)	PB2	X	X		T
		PB5	0	0	X 0	X 0
		PD7			0	0
	SCK5 (input/output)	P70	X	X	0	
	SCR3 (input/output)	P93	X	X		×
		PB3	0	0	×	×
		PB7	0		×	×
	CTS5# (input)/	PA2	_	X		
	RTS5# (output)/	PB4	O X	O X	X	X
	SS5# (input)	1 54	^	^		
	RXD6 (input)/	P95			0	0
	SMISO6 (input/output)/	PB1			O	0
	SSCL6 (input/output)				Ľ_	<u> </u>
	TXD6 (output)/	PB0			0	0
	SMOSI6 (input/output)/	PB2			0	0
	SSDA6 (input/output)					<u> </u>
	SCK6 (input/output)	PB3			0	0
	CTS6# (input)/	P10			×	0
	RTS6# (output)/					
	SS6# (input)					

Module/		Port	RX23T (MPC) R		RX26T	RX26T (MPC)		
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin		
Serial	RXD12 (input)/	P00	• 1 1 111		0	0		
communications	SMISO12 (input/output)/	P22			O	X		
interface	SSCL12 (input/output)/	PB4			O	O		
	RXDX12 (input)	PB6			O	0		
		PD6			0	X		
	TXD12 (output)/	P01			Ō	X		
	SMOSI12 (input/output)/	P21			0	0		
	SSDA12 (input/output)/	PB3			0	0		
	TXDX12 (output)/	PB5			0	0		
	SIOX12 (input/output)	PD4			0	×		
	RXD008 (input)/	P20			0	0		
	SMISO008 (input/output)/	P22			0	X		
	SSCL008 (input/output)	P95			0	0		
	TXD008 (output)/	P21			0	0		
	TXDA008 (output)/	PB0			0	0		
	SMOSI008 (input/output)/ SSDA008 (input/output)	PD7			0	0		
	SCK008 (input/output)	P11			0	0		
		P22			0	X		
		P94			0	0		
	TXDB008 (output)	P22			0	X		
		P94			0	0		
	CTS008# (input)/	P20			0	0		
	RTS008# (output)/ SS008# (input)	P96			0	×		
	DE008 (output)	P20			0	0		
		P96			0	X		
	RXD009 (input)/ SMISO009 (input/output)/ SSCL009 (input/output)	P00			0	0		
	TXD009 (output)/	P01			0	X		
	TXDA009 (output)/	P10			X	0		
	SMOSI009 (input/output)/	P93			0	0		
	SSDA009 (input/output)	P94			0	0		
	SCK009 (input/output)	P11			0	0		
		P92			0	0		
		PD7			0	0		
	TXDB009 (output)	P11			0	0		
		P92			0	0		
	OT0000# (*) /	PD7			0	0		
	CTS009# (input)/	P70			0	X		
	RTS009# (output)/ SS009# (input)	PB3			0	0		
	DE009 (output)	P70			0	X		
		PB3			0	0		
	RXD011 (input)/	P93			0	0		
	SMISO011 (input/output)/	PB6			0	0		
	SSCL011 (input/output)	PD5			0	0		

Module/	Port RX23T (MPC)		RX26T	(MPC)		
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
Serial	TXD011 (output)/	P92			0	0
communications	TXDA011 (output)/	PB5			0	0
interface	SMOSI011 (input/output)/ SSDA011 (input/output)	PD3			0	0
	SCK011 (input/output)	PB4			0	0
	Corto II (iiiparoatpat)	PD4			0	X
	TXDB011 (output)	PB4			0	0
	in (Supur)	PD4			0	X
	CTS011# (input)/	PB0			0	Ô
	RTS011# (output)/	PB4			Ö	0
	SS011# (input)	PD6			0	X
	DE011 (output)	PB0			0	0
		PD6			0	X
I ² C bus interface	SCL0 (input/output)	PB1	0	0	0	0
	SDA0 (input/output)	PB2	Ō	0	Ō	0
Serial peripheral	RSPCKA (input/output)	P20	×	×	0	0
interface		P24	0	0	×	X
		P93	0	0	×	X
		PA4	0	X	X	X
		PB3	0	0	0	0
	MOSIA (input/output)	P21	X	X	0	0
		P23	0	0	X	X
		PB0	0	0	0	0
	MISOA (input/output)	P22	0	0	0	X
		P94	0	0	X	X
		P95	X	X	0	0
		PA5	0	X	X	X
		PB4	X	X	0	0
	SSLA0 (input/output)	P30	0	X	X	X
		P70	X	X	0	X
		P94	X	X	0	0
		PA3	0	0	X	X
		PD6	0	0	0	X
	SSLA1 (output)	P31	0	X	X	×
		PA2	0	0	X	X
	201.10 ()	PD7	0	X	0	0
	SSLA2 (output)	P32	0	X	X	X
		P92	0	X	X	X
	001.40 (1.1.1)	P93	X	X	0	O
	SSLA3 (output)	P33	0	X	X	X
		P91	0	X	X	X
	DCDCVO (in model and a street)	P92	X	×	0	0
	RSPCK0 (input/output)	P20			0	O
		P70			0	X
		P91 P96			0	0
		PB5			0	X
		כמאן			0	0

Function	Module/		Port	RX23T	(MPC)	RX26T	(MPC)
P72		Pin Function			·		
P33	Serial peripheral	MOSI0 (input/output)	P21			0	0
PB0	interface		P72			0	O
PD3			P93			0	0
MISO0 (input/output)			PB0			0	0
MISO0 (input/output)			PD3			0	O
P71		MISO0 (input/output)	P22				
P95			P71			0	
SSL00 (input/output)			P92			0	O
SSL00 (input/output)			P95			0	0
P94			PB6			0	0
PD5		SSL00 (input/output)	P73				O
PD6			P94			0	0
PD6			PD5			0	0
SSL01 (output)			PD6				
SSL01 (output)		SSL01 (output)	P74				
PB4			P90				
PD7			PB4				
P75			PD7				
P93			P75				
PD4			P93				
PD4			P95			_	
SSL03 (output)			PD4				
P92		SSL03 (output)	P76				
P96			P92				
12-bit A/D Converter			P96				
Converter AN001 (input) P41	12-bit A/D	AN000 (input)	P40	0	0		
AN002 (input) P42	converter		P41				
AN003 (input) P43 OOOO AN004 (input) P44 OOOO AN005 (input) P45 OOOO AN006 (input) P46 OOOO AN007 (input) P47 OOOO AN016 (input) P11 OOOOO AN017 (input) P10 OOOOO AN017 (input) P10 OOOOOOOOOO AN017 (input) P10 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO			P42				
AN004 (input) AN005 (input) P45 O O AN006 (input) P46 O O AN007 (input) P47 O O AN016 (input) P11 O O AN017 (input) P10 O ADTRG0# (input) P20 P93 X X O P93 X X O P06 PN7 X X X AN100 (input) P44 AN101 (input) P45 AN102 (input) P46 AN103 (input) P47 ADTRG1# (input) P41 AN101 (input) P42 AN103 (input) P44 AN103 (input) P45 AN103 (input) P46 AN103 (input) P47 ADTRG1# (input) P48 AN104 AN105 (input) P49 AN107 (input) P40 AN108 (input) P40 AN109 (input) P41 AN109 (input) P42 AN109 (input) P43 AN109 (input) P44 AN109 (input) P45 AN109 (input) P46 AN109 (input) P47 AN109 (input) P48 AN109 (input) P49 AN109 (input) P40 AN109 (input) AN109 (input) P40 AN109 (input)			P43				
AN005 (input) P45 O O AN006 (input) P46 O O AN007 (input) P47 O O AN016 (input) P11 O O AN017 (input) P10 O O ADTRIGUE AN017 (input) P10 O O ADTRIGUE AN017 (input) P20 O O O O O O O O O O O O O O O O O O O			P44				
AN006 (input) P46 O O AN007 (input) P47 O O AN016 (input) P11 O O AN017 (input) P10 O O ADTRG0# (input) P44 O X X P20 X X O O P93 X X O O P93 X X O O ADST0 (output) P02 O X X PD6 O O X PN7 X X O AN100 (input) P44 O O AN101 (input) P45 O X AN102 (input) P46 O X AN103 (input) P47 O X ADTRG1# (input) P21 O O ADST1 (output) P00 O O			P45				
AN007 (input)							
AN016 (input)		AN007 (input)	P47	_			
AN017 (input) P10 O ANDTRG0# (input) ADTRG0# (input) PA4 O X X P20 X X O P93 X X O ADST0 (output) P02 O X X PD6 O O O X AN100 (input) P44 O O AN101 (input) P45 O X AN102 (input) P46 O X AN103 (input) P47 O X ADTRG1# (input) P21 O O P95 O O O ADST1 (output) P00 O O		· · · /	P11				
ADTRG0# (input) PA4 P20 X X P93 X X O ADST0 (output) P02 PN7 X X AN100 (input) P44 AN101 (input) P45 AN102 (input) P46 AN103 (input) P47 ADTRG1# (input) P21 P95 ADST1 (output) P00 X X X X X X X X X X X X			P10				
P20			PA4			×	X
P93							
ADST0 (output) P02 PD6 PN7 X X AN100 (input) P44 AN101 (input) AN102 (input) P45 AN102 (input) P46 AN103 (input) P47 ADTRG1# (input) P95 ADST1 (output) P00			P93				
PD6 O O X PN7 X X O X AN100 (input) P44 O O AN101 (input) P45 O X AN102 (input) P46 O X AN103 (input) P47 O X ADTRG1# (input) P21 O O P95 O O ADST1 (output) P00 O O O O O ADST1 (output) P00 O O O O O O X AN100 (input) P47 O X ADTRG1# (input) P21 O O O O O O O O O		ADST0 (output)	P02				
PN7			PD6				
AN100 (input) AN101 (input) AN102 (input) AN103 (input) ADTRG1# (input) P21 P95 ADST1 (output) P00						_	
AN101 (input) AN102 (input) P46 AN103 (input) P47 ADTRG1# (input) P95 ADST1 (output) P00		AN100 (input)					0
AN102 (input) AN103 (input) P47 ADTRG1# (input) P21 P95 ADST1 (output) P00			P45				
AN103 (input) P47			P46				
ADTRG1# (input) P21 P95 ADST1 (output) P00 O O			P47				
P95 O O ADST1 (output) P00 O			P21				
ADST1 (output) P00 O			P95				
		ADST1 (output)					
		AN200 (input)	P52			Ö	Ö

Module/	dule/ Port RX23T (MPC		(MPC)	RX26T	(MPC)	
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
12-bit A/D	AN201 (input)	P53			0	0
converter	AN202 (input)	P54			O	X
	AN208 (input)	P62			X	0
	AN210 (input)	P64			0	X
	AN211 (input)	P65			0	×
	AN216 (input)	P20			0	0
	AN217 (input)	P21			0	0
	ADTRG2# (input)	P22			0	X
		PB0			0	0
	ADST2 (output)	P01			0	X
12-bit D/A	DA0 (output)	P64			0	X
converter	DA1 (output)	P65			0	X
Clock frequency	CACREF (input)	P00	X	X	0	0
accuracy		P01	0	X	X	X
measurement		P23	0	0	X	X
circuit		PB3	0	0	0	0
Comparator	CMPC00 (input)	P40	0	0	0	0
	CMPC01 (input)	P43	0	0	X	X
		P40	×	X	0	0
	CMPC02 (input)	P46	0	0	X	X
		P52	×	X	0	0
	CMPC10 (input)	P41	0	0	0	0
	CMPC11 (input)	P44	0	0	X	X
		P41	X	X	0	0
	CMPC12 (input)	P47	0	0	X	X
		P53	X	X	0	0
	CMPC20 (input)	P42	0	0	0	0
	CMPC21 (input)	P45	0	0	X	X
		P42	×	X	0	0
	CMPC22 (input)	P47	0	0	X	X
		P54	X	X	0	X
	CMPC30 (input)	P44			0	0
	CMPC31 (input)	P44			0	0
	CMPC33 (input)	P64			0	X
	CMPC40 (input)	P45			0	X
	CMPC41 (input)	P45			0	X
	CMPC43 (input)	P62			X	0
	CMPC50 (input)	P46			0	X
	CMPC51 (input)	P46			0	X
	CMPC53 (input)	P65			0	X
	COMP0 (output)	P24	0	0	X	X
		P00	X	X	0	0
	COMP1 (output)	P23	0	0	X	X
		P01	X	X	0	X
	COMP2 (output)	P22	0	0	0	X
	COMP4 (output)	P20			0	0
		P81			X	X
	COMP5 (output)	P21			0	0
		P82			X	X

Module/		Port	RX23T ((MPC)	RX26T	(MPC)
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
Comparator	CVREFC0 (input)	P11	0	0	×	X
		P53	X	×	0	0
	CVREFC1 (input)	P10	0	0	×	X
		P54	×	×	0	X
General purpose	GTIOC0A (input/output)/	P71			0	0
PWM timer	GTIOC0A# (input/output)	PD7			0	0
	GTIOC0B (input/output)/	P74			0	0
	GTIOC0B# (input/output)	PD6			0	X
	GTIOC1A (input/output)/	P72			0	0
	GTIOC1A# (input/output)	PD5			0	0
	GTIOC1B (input/output)/	P75			0	0
	GTIOC1B# (input/output)	PD4			0	X
	GTIOC2A (input/output)/	P73			0	0
	GTIOC2A# (input/output)	PB6			0	0
		PD3			0	0
	GTIOC2B (input/output)/	P76			0	0
	GTIOC2B# (input/output)	PB5			0	0
		PD2			X	X
	GTIOC3A (input/output)/	P10			X	0
	GTIOC3A# (input/output)	PB6			0	0
		PD7			0	0
	GTIOC3B (input/output)/	P11			0	0
	GTIOC3B# (input/output)	PB5			0	0
		PD6			0	X
	GTIOC4A (input/output)/	P71			0	0
	GTIOC4A# (input/output)	P95			0	0
	GTIOC4B (input/output)/	P74			0	0
	GTIOC4B# (input/output)	P92			0	0
	GTIOC5A (input/output)/	P72			0	0
	GTIOC5A# (input/output)	P94			0	0
	GTIOC5B (input/output)/	P75			0	0
	GTIOC5B# (input/output)	P91			0	0
	GTIOC6A (input/output)/	P73			0	0
	GTIOC6A# (input/output)	P93			0	0
	GTIOC6B (input/output)/	P76			0	0
	GTIOC6B# (input/output)	P90			0	X
	GTIOC7A (input/output)/	P95			0	0
	GTIOC7A# (input/output)	PB2			0	0
	GTIOC7A (input/output)	PD5			0	0
	GTIOC7B (input/output)/	P92			0	0
	GTIOC7B# (input/output)	PB1			0	0
	GTIOC7B (input/output)	PD3			0	0
	GTETRGA (input)	P01			0	X
		P11			0	0
		P70			0	X
		P96			0	X
		PB4			0	0
		PD5			0	0

Module/		Port	RX23T	(MPC)	RX26T (MPC)
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
General purpose	GTETRGB (input)	P01			0	×
PWM timer		P10			X	0
		P70			0	X
		P96			0	X
		PB4			0	0
		PD4			0	X
	GTETRGC (input)	P01			Ō	×
		P11			O	0
		P70			0	X
		P96			0	X
		PB4			0	0
		PD3			0	0
	GTETRGD (input)	P01			0	X
		P10			X	0
		P70			0	X
		P96			0	X
		PB4			0	0
	GTADSM0 (output)	P94			0	0
		PB2			0	0
	GTADSM1 (output)	PB1			0	0
	GTCPPO0 (output)	P11			0	0
		P70			0	X
		PB4			0	0
	GTCPPO4 (output)	P96			0	X
	GTIU (input)	P00			0	0
		P21			0	0
		PB3			0	0
		PD7			0	0
	GTIV (input)	P10			X	0
		P22			0	X
		PB2			0	0
	GTIW (input)	P01			0	X
		P20			0	0
		PB1			0	0
		PD6			0	X
	GTOULO (output)	P74			0	0
		P92			0	0
	GTOUUP (output)	P71			0	0
		P95			0	0
	GTOVLO (output)	P75			0	0
		P91			0	0
	GTOVUP (output)	P72			0	0
		P94			0	0
	GTOWLO (output)	P76			0	0
		P90			0	X
	GTOWUP (output)	P73			0	0
		P93			0	0

Module/		Port	RX23T	(MPC)	RX26T	(MPC)
Function	Pin Function	Allocation	64-Pin	48-Pin	64-Pin	48-Pin
Compare match	TOC0 (output)	PB6			0	0
timer W	TIC0 (input)	PB5			0	0
	TOC1 (output)	PB3			0	0
	TIC1 (input)	PB2			0	0
	TOC2 (output)	PB1			0	0
	TIC2 (input)	PB0			0	0
	TOC3 (output)	P11			0	0
	TIC3 (input)	P00			0	0
		P10			X	0
I ³ C bus interface	SCL00 (input/output)	PB1			0	0
	SDA00 (input/output)	PB2			0	0
CAN FD module	CRX0 (input)	P22			0	X
		P93			0	0
		PB4			0	0
		PB6			0	0
	CTX0 (output)	P92			0	0
		PB3			0	0
		PB5			0	0
		PD7			0	0

Table 2.33 Comparison of P0n Pin Function Control Registers (P0nPFS)

Register	Bit	RX23T (n = 0 to 2)	RX26T (n = 0, 1)
P00PFS	PSEL[5:0]	_	P00 Pin function select bits
P01PFS	PSEL[4:0] (RX23T)	Pin function select bits	Pin function select bits
	PSEL[5:0]	b4 b0	b5 b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
			000001b: MTIOC9C
			000011b: MTIOC9C#
		00111b: CACREF	000111b: POE12#
			001001b: ADST2
			001100b: TXD12/SMOSI12/
			SSDA12/TXDX12/SIOX12
			010100b: GTETRGA
			010101b: GTETRGB
			010110b: GTETRGC
			010111b: GTETRGD
			011000b: GTIW
			011110b: COMP1
			101100b: XD009/TXDA009/
			SMOSI009/SSDA009
P02PFS	_	P02 pin function control register	_
P0nPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		P00: IRQ2 (64-pin)	P00: IRQ2 (32/48/64/80/100-pin)
		P01: IRQ4 (64-pin) P02: IRQ5 (64/52-pin)	P01: IRQ4 (64/80/100-pin)

Table 2.34 Comparison of P1n Pin Function Control Registers (P1nPFS)

Register	Bit	RX23T (n = 0, 1)	RX26T (n = 0, 1)
P10PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
			000001b: MTIOC9B
		00010b: MTCLKD	000010b: MTCLKD
			000011b: MTIOC9B#
			000100b: MTCLKD#
		00101b: TMRI3	000101b: TMRI3
			000111b: POE12#
			001010b: CTS6#/RTS6#/SS6#
			010100b: GTIOC3A
			010101b: GTETRGB
			010110b: GTIOC3A#
			010111b: GTETRGD
			011000b: GTIV
			011101b: TIC3
			101100b: TXD009/TXDA009/
			SMOSI009/SSDA009
P11PFS	PSEL[4:0] (RX23T)	Pin function select bits	Pin function select bits
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC3A	000001b: MTIOC3A
		00010b: MTCLKC	000010b: MTCLKC
			000011b: MTIOC3A#
			000100b: MTCLKC#
		00101b: TMO3	000101b: TMO3
			000111b: POE9#
			001000b: MTIOC9D
			010100b: GTIOC3B
			010101b: GTETRGA
			010110b: GTIOC3B#
			010111b: GTETRGC
			011000b: GTCPPO0
			011101b: TOC3
			101100b: SCK009
			101101b: SCK008
			101110b: TXDB009
P1nPFS	ASEL	Analog input function select bit	_

Table 2.35 Comparison of P2n Pin Function Control Registers (P2nPFS)

P20PFS — P20 pin function select P21PFS — P21 pin function select P22PFS PSEL[4:0] (RX23T) Pin function select bits PSEL[5:0] (RX26T) b4 b0 b5 b0 b6 b5 b0 b6	
P22PFS PSEL[4:0] (RX23T) Pin function select bits Pin function select bits PSEL[5:0] (RX26T) b4 b0 00000b: Hi-Z b5 b0 00000b: Hi-Z	register
(RX23T)	
(RX26T) 00000b: Hi-Z 000000b: Hi-Z	
00001b: MTIC5W 000001b: MTIC5W	
000010b: MTCLKD	
000011b: MTIC5W#	
000100b: MTCLKD#	
00101b: TMRI2 000101b: TMRI2	
000110b: TMO4	
001000b: MTIOC9B	
001001b: ADTRG2#	
001100b: RXD12/SMIS RXDX12	SO12/SSCL12/
01101b: MISOA 001101b: MISOA	
001110b: MISO0	
010000b: CRX0	
011000b: GTIV	
11110b: COMP2 011110b: COMP2	
101100b: RXD008/SMI	SO008/
SSCL008	
101101b: SCK008	
101110b: TXDB008	
P23PFS PSEL[4:0] Pin function select bits Pin function select bits	
PSEL[5:0] b4 b0 b5 b0	
(RX26T) 00000b: Hi-Z 000000b: Hi-Z	
00001b: MTIC5V 000001b: MTIC5V	
000011b: MTIC5V#	
00101b: TMO2 000101b: TMO2	
00111b: CACREF 000111b: CACREF	
001100b: TXD12/SMOS	
01101b: MOSIA 001101b: MOSIA	
001110b: MOSI0	
010000b: CTX0	
11110b: COMP1 011110b: COMP1	
101100b: TXD008/TXD	A008/
SMOSI008/S	

Register	Bit	RX23T (n = 2 to 4)	RX26T (n = 0 to 4, 7)
P24PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIC5U	000001b: MTIC5U
			000011b: MTIC5U#
		00101b: TMCI2	000101b: TMCI2
			000110b: TMO6
		01101b: RSPCKA	001101b: RSPCKA
			001110b: RSPCK0
		11110b: COMP0	011110b: COMP0
			101100b: CTS008#/RTS008#/
			SS008#
			101101b: SCK008
			101110b: DE008
P27PFS	_	_	P27 pin function control register
P2nPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
			P20: IRQ7 (48/64/80/100-pin)
			P21: IRQ6 (48/64/80/100-pin)
		P22: IRQ2 (64/52/48 pin)	P22: IRQ10 (64/80/100-pin)
		P23: IRQ4 (64/52/48 pin)	P23: IRQ11 (100-pin)
		P24: IRQ3 (64/52/48 pin)	P24: IRQ4 (100-pin)
			P27: IRQ15 (80/100-pin)
	ASEL	_	Analog function select bit

Table 2.36 Comparison of P3n Pin Function Control Registers (P3nPFS)

Register	Bit	RX23T (n = 0 to 3)	RX26T (n = 0 to 3, 6, 7)
P30PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC0B	000001b: MTIOC0B
		00010b: MTCLKD	000010b: MTCLKD
			000011b: MTIOC0B#
			000100b: MTCLKD#
			000101b: TMCI6
		01101b: SSLA0	001101b: SSLA0
			001110b: SSL00
			011000b: GTIV
			011110b: COMP3
			101100b: SCK008
			101101b: CTS008#/RTS008#
			SS008#
			101110b: DE008
P31PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC0A	000001b: MTIOC0A
		00010b: MTCLKC	000010b: MTCLKC
			000011b: MTIOC0A#
			000100b: MTCLKC#
			000101b: TMRI6
		01101b: SSLA1	001101b: SSLA1
			001110b: SSL01
			011000b: GTIU
P32PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b5 b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC3C	000001b: MTIOC3C
		00010b: MTCLKB	000010b: MTCLKB
			000011b: MTIOC3C#
			000100b: MTCLKB#
			000101b: TMO6
		01101b: SSLA2	001101b: SSLA2
			001110b: SSL02
			010100b: GTIOC3A
			010101b: GTIOC7A
			010110b: GTIOC3A#
			010111b: GTIOC7A#

Register	Bit	RX23T (n = 0 to 3)	RX26T (n = 0 to 3, 6, 7)
P33PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC3A	000001b: MTIOC3A
		00010b: MTCLKA	000010b: MTCLKA
			000011b: MTIOC3A#
			000100b: MTCLKA#
			000101b: TMO0
		01101b: SSLA3	001101b: SSLA3
			001110b: SSL03
			010100b: GTIOC3B
			010101b: GTIOC7B
			010110b: GTIOC3B#
			010111b: GTIOC7B#
			011000b: GTCPPO0
P36PFS	_	_	P36 pin function control register
P37PFS	_	_	P37 pin function control register
P3nPFS	ISEL	—	Interrupt input function select bit

Table 2.37 Comparison of P4n Pin Function Control Registers (P4nPFS)

Register	Bit	RX23T	RX26T (n = 0 to 7)
P4nPFS	_		P4n pin function control register

Table 2.38 Comparison of P5n Pin Function Control Registers (P5nPFS)

Register	Bit	RX23T	RX26T (n = 0 to 5)
P5nPFS	_	_	P5n pin function control register

Table 2.39 Comparison of P6n Pin Function Control Registers (P6nPFS)

Register	Bit	RX23T	RX26T (n = 0 to 5)
P6nPFS		_	P6n pin function control register

Table 2.40 Comparison of P7n Pin Function Control Registers (P7nPFS)

Register	Bit	RX23T (n = 0 to 6)	RX26T (n = 0 to 6)
P70PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
			000001b: MTIOC0A
			000010b: MTCLKC
			000011b: MTIOC0A#
			000100b: MTCLKC#
			000101b: TMRI6
		00111b: POE0#	000111b: POE0#
			001010b: SCK5
			001101b: SSLA0
			001110b: RSPCK0
			010100b: GTETRGA
			010101b: GTETRGB
			010110b: GTETRGC
			010111b: GTETRGD
			011000b: GTCPPO0
			101100b: CTS009#/RTS009#/
			SS009#
			101110b: DE009
P71PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC3B	000001b: MTIOC3B
			000011b: MTIOC3B#
			001110b: MISO0
			010100b: GTIOC0A
			010101b: GTIOC4A
			010110b: GTIOC0A#
			010111b: GTIOC4A#
			011000b: GTOUUP
P72PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC4A	000001b: MTIOC4A
			000011b: MTIOC4A#
			001110b: MOSI0
			010100b: GTIOC1A
			010101b: GTIOC5A
			010110b: GTIOC1A#
			010111b: GTIOC5A#
			011000b: GTOVUP

Register	Bit	RX23T (n = 0 to 6)	RX26T (n = 0 to 6)
P73PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC4B	000001b: MTIOC4B
			000011b: MTIOC4B#
			001110b: SSL00
			010100b: GTIOC2A
			010101b: GTIOC6A
			010110b: GTIOC2A#
			010111b: GTIOC6A#
			011000b: GTOWUP
P74PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC3D	000001b: MTIOC3D
			000011b: MTIOC3D#
			001110b: SSL01
			010100b: GTIOC0B
			010101b: GTIOC4B
			010110b: GTIOC0B#
			010111b: GTIOC4B#
			011000b: GTOULO
P75PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC4C	000001b: MTIOC4C
			000011b: MTIOC4C#
			001110b: SSL02
			010100b: GTIOC1B
			010101b: GTIOC5B
			010110b: GTIOC1B#
			010111b: GTIOC5B#
			011000b: GTOVLO
P76PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b5 b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC4D	000001b: MTIOC4D
			000011b: MTIOC4D#
			001110b: SSL03
			010100b: GTIOC2B
			010101b: GTIOC6B
			010110b: GTIOC2B#
			010111b: GTIOC6B#
			011000b: GTOWLO

Table 2.41 Comparison of P8n Pin Function Control Registers (P8nPFS)

Register	Bit	RX23T	RX26T (n = 0 to 2)
P8nPFS	_	_	P8n pin function control register

Table 2.42 Comparison of P9n Pin Function Control Registers (P9nPFS)

Register	Bit	RX23T (n = 1 to 4)	RX26T (n = 0 to 6)
P90PFS	PSEL[5:0]	_	P90 Pin function select bits
P91PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
			000001b: MTIOC7C
			000011b: MTIOC7C#
			001010b: RXD5/SMISO5/SSCL5
		01101b: SSLA3	
			001110b: RSPCK0
			010100b: GTIOC5B
			010110b: GTIOC5B#
			011000b: GTOVLO
P92PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		1.
	PSEL[5:0] (RX26T)	b4 b0	b5 b0
	(KA201)	00000b: Hi-Z	000000b: Hi-Z
			000001b: MTIOC6D
			000010b: MTIOC6C
			000011b: MTIOC6D#
		00404h, TMCI4	000100b: MTIOC6C#
		00101b: TMCl1 01101b: SSLA2	000101b: TMO2 001101b: SSLA3
		01101b: SSLA2	001101b: SSLA3 001110b: MISO0
			010000b: CTX0
			010100b: CTX0 010100b: GTIOC4B
			010100b: GTIOC4B
			010101b: GTIOC1B
			010110b: GTIOC4B#
			011000b: GTOULO
			101100b: SCK009
			101101b: TXD011/TXDA011/
			SMOSI011/SSDA011
			101110b: TXDB009
			110011b: SSL03
			11001101000

Register	Bit	RX23T (n = 1 to 4)	RX26T (n = 0 to 6)
P93PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC0B	000001b: MTIOC7B
			000010b: MTIOC6A
			000011b: MTIOC7B#
			000100b: MTIOC6A#
		00101b: TMRI1	000101b: TMO4
			001001b: ADTRG0#
		01010b: SCK5	
		01101b: RSPCKA	001101b: SSLA2
			001110b: MOSI0
			010000b: CRX0
			010100b: GTIOC6A
			010110b: GTIOC6A#
			011000b: GTOWUP
			101100b: TXD009/TXDA009/ SMOSI009/SSDA009
			101101b: RXD011/SMISO011/ SSCL011
			110011b: SSL02
P94PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
F 94F I 3	(RX23T)	Fill full clion select bits	r in function select bits
	PSEL[5:0]	b4 b0	b5 b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
	(101201)	00000B: MTIOCOC	000000b: 111-2 000001b: MTIOC7A
		0000 IB. WITIOCOC	000010b: MTIOC2A
			000010b: MTIOCZA 000011b: MTIOC7A#
			00011b: MTIOC7A#
		00101b: TMO1	000100b: MTIGC2A# 000101b: TMRI7
		01101b: MISOA	001101b: TWKI7
		01101b. WISOA	001101b: SSLA0 001110b: SSL00
			01110b. SSL00 010100b: GTIOC5A
			010100b. GTIOC5A 010101b: GTADSM0
			010110b: GTIOC5A# 011000b: GTOVUP
			101100b: TXD009/TXDA009/ SMOSI009/SSDA009
			101101b: SCK008
			101101b. SCK008 101110b: TXDB008
			110011b: SSL00
P95PFS	PSEL[5:0]	_	P95 pin function select register
P96PFS	PSEL[5:0]		P96 pin function select register
P9nPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
Faires	IJLL		
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		P93: IRQ0 (64/52/48-pin) P94: IRQ1 (64/52/48 pin)	P93: IRQ14 (48/64/80/100 pin)
		(, , , , , , , ,	P95: IRQ1 (48/64/80/100-pin)
			P96: IRQ4 (64/80/100-pin)
	1		/

Table 2.43 Comparison of PAn Pin Function Control Registers (PAnPFS)

Register	Bit	RX23T (n = 2 to 5)	RX26T (n = 0 to 5)
PA0PFS	_	_	PA0 pin function select register
PA1PFS	_	_	PA1 pin function select register
PA2PFS	PSEL[4:0] (RX23T)	Pin function select bits	Pin function select bits
	PSEL[5:0]	b4 b0	b5 b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC2B	000001b: MTIOC2B
			000011b: MTIOC2B#
			000101b: TMO7
		01010b: CTS5#/RTS5#/SS5#	001010b: CTS6#/RTS6#/SS6#
		01101b: SSLA1	001101b: SSLA1
			001110b: SSL01
			010100b: GTADSM1
			101101b: RXD009/SMISO009/
			SSCL009
PA3PFS	PSEL[4:0] (RX23T)	Pin function select bits	Pin function select bits
	PSEL[5:0]	b4 b0	b5 b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC2A	000001b: MTIOC2A
			000011b: MTIOC2A#
			000101b: TMRI7
		01101b: SSLA0	001101b: SSLA0
			001110b: SSL00
			010100b: GTADSM0
			101100b: TXD009/TXDA009/ SMOSI009/SSDA009
			101101b: SCK008
			101110b: TXDB008
PA4PFS	PSEL[4:0] (RX23T)	Pin function select bits	Pin function select bits
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC1B	000001b: MTIOC1B
			000011b: MTIOC1B#
			000101b: TMCI7
		01001b: ADTRG0#	001001b: ADTRG0#
			001010b: SCK6
		01101b: RSPCKA	001101b: RSPCKA
			001110b: RSPCK0
			101101b: TXD008/TXDA008/
			SMOSI008/SSDA008

Register	Bit	RX23T (n = 2 to 5)	RX26T (n = 0 to 5)
PA5PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC1A	000001b: MTIOC1A
			000011b: MTIOC1A#
		00101b: TMCI3	000101b: TMCI3
			001001b: ADTRG1#
			001010b: RXD6/SMISO6/SSCL6
		01101b: MISOA	001101b: MISOA
			001110b: MISO0
			101101b: RXD008/SMISO008/
			SSCL008
PAnPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
			PA1: IRQ14 (100-pin)
		PA2: IRQ4 (64/52/48 pin)	
			PA5: IRQ1 (80/100-pin)

Table 2.44 Comparison of PBn Pin Function Control Registers (PBnPFS)

Register	Bit	RX23T (n = 0 to 7)	RX26T (n = 0 to 7)
PB0PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC0D	000001b: MTIOC0D
			000011b: MTIOC0D#
			000101b: TMO0
			001001b: ADTRG2#
			001010b: TXD6/SMOSI6/SSDA6
		01101b: MOSIA	001101b: MOSIA
			001110b: MOSI0
			011101b: TIC2
			101100b: TXD008/TXDA008/
			SMOSI008/SSDA008
			101101b: CTS011#/RTS011#/ SS011#
			101110b: DE011
PB1PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC0C	000001b: MTIOC0C
			000011b: MTIOC0C#
			000101b: TMCI0
			001001b: ADSM1
		01010b: RXD5/SMISO5/SSCL5	001010b: RXD6/SMISO6/SSCL6
		01111b: SCL0	001111b: SCL0
			010100b: GTADSM1
			010101b: GTIOC7B
			010111b: GTIOC7B#
			011000b: GTIW
			011101b: TOC2
			110010b: SCL00
PB2PFS	PSEL[4:0] (RX23T)	Pin function select bits	Pin function select bits
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC0B	000001b: MTIOC0B
			000011b: MTIOC0B#
			000101b: TMRI0
		01001b: ADSM0	001001b: ADSM0
		01010b: TXD5/SMOSI5/SSDA5	001010b: TXD6/SMOSI6/SSDA6
		01111b: SDA0	001111b: SDA0
			010100b: GTADSM0
			010101b: GTIOC7A
			010111b: GTIOC7A#
			011000b: GTIV
			011101b: TIC1
			110010b: SDA00

Register	Bit	RX23T (n = 0 to 7)	RX26T (n = 0 to 7)
PB3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00001b: MTIOC0A	000001b: MTIOC0A
			000011b: MTIOC0A#
		00111b: CACREF	000111b: CACREF
		01010b: SCK5	001010b: SCK6
			001100b: TXD12/SMOSI12/ SSDA12/TXDX12/SIOX12
		01101b: RSPCKA	001101b: RSPCKA
			010000b: CTX0
			011000b: GTIU
			011101b: TOC1
			101100b: CTS009#/RTS009#/ SS009#
			101110b: DE009
PB4PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b5 b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00111b: POE8#	000111b: POE8#
			001010b: CTS5#/RTS5#/SS5#
			001100b: RXD12/SMISO12/SSCL12/
			RXDX12
			001101b: MISOA
			001110b: SSL01
			010000b: CRX0
			010100b: GTETRGA
			010101b: GTETRGB 010110b: GTETRGC
			010110b: GTETRGC 010111b: GTETRGD
			011000b: GTCPPO0
			101100b: GTCFFC0
			SS011#
			101101b: SCK011
			101110b: TXDB011
PB5PFS	PSEL[4:0] (RX23T)	Pin function select bits	Pin function select bits
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		01010b: TXD5/SMOSI5/SSDA5	001010b: TXD5/SMOSI5/SSDA5
			001100b: TXD12/SMOSI12/
			SSDA12/TXDX12/SIOX12
			001110b: RSPCK0
			010000b: CTX0
			010100b: GTIOC2B
			010101b: GTIOC3B 010110b: GTIOC2B#
			010110b. GTIOC2B# 010111b: GTIOC3B#
			0111101b: G110C3B#
			101101b: TIC0 101101b: TXD011/TXDA011/
			SMOSI011/SSDA011
	L	1	SWICOIOT I/COD/ACTT

Register	Bit	RX23T (n = 0 to 7)	RX26T (n = 0 to 7)
PB6PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		01010b: RXD5/SMISO5/SSCL5	001010b: RXD5/SMISO5/SSCL5
			001100b: RXD12/SMISO12/SSCL12/ RXDX12
			001110b: MISO0
			010000b: CRX0
			010100b: GTIOC2A
			010101b: GTIOC3A
			010110b: GTIOC2A#
			010111b: GTIOC3A#
			011101b: TOC0
			101101b: RXD011/SMISO011/
			SSCL011
PB7PFS	PSEL[4:0] (RX23T)	Pin function select bits	Pin function select bits
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		01010b: SCK5	001010b: SCK5
			001100b: SCK12
			001110b: SSL03
			010100b: GTIOC1B
			010110b: GTIOC1B#
			101101b: SCK011
			101110b: TXDB011
PBnPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
			PB0: IRQ8 (48/64/80/100-pin)
		PB1: IRQ2 (64/52/48-pin)	PB1: IRQ4 (32/48/64/80/100 pin)
			PB3: IRQ9 (32/48/64/80/100-pin)
		PB4: IRQ3 (64/52/48-pin)	PB4: IRQ3 (48/64/80/100-pin)
		PB6: IRQ5 (64/52/48-pin)	PB6: IRQ2 (48/64/80/100 pin)

Table 2.45 Comparison of PDn Pin Function Control Registers (PDnPFS)

Register	Bit	RX23T (n = 3 to 7)	RX26T (n = 0 to 7)
PD0PFS			PD0 pin function select register
PD1PFS	_	_	PD1 pin function select register
PD2PFS		_	PD2 pin function select register
PD3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00101b: TMO0	000101b: TMO0
		01010b: TXD1/SMOSI1/SSDA1	001010b: TXD1/SMOSI1/SSDA1
			001110b: MOSI0
			010100b: GTIOC2A
			010101b: GTETRGC
			010110b: GTIOC2A#
			010111b: GTIOC7B
			101101b: TXD011/TXDA011/
DD 4D50	20211101	B) ())	SMOSI011/SSDA011
PD4PFS	PSEL[4:0] (RX23T)	Pin function select bits	Pin function select bits
	PSEL[5:0]	b4 b0	b5 b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00101b: TMCI0	000101b: TMCI0
			000110b: TMCI6
		01010b: SCK1	001010b: SCK1
			001100b: TXD12/SMOSI12/SSDA12/ TXDX12/SIOX12
			001110b: SSL02
			010100b: GTIOC1B
			010101b: GTETRGB
			010110b: GTIOC1B#
			101101b: SCK011
			101110b: TXDB011
PD5PFS	PSEL[4:0] (RX23T)	Pin function select bits	Pin function select bits
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00101b: TMRI0	000101b: TMRI0
			000110b: TMRI6
		01010b: RXD1/SMISO1/SSCL1	001010b: RXD1/SMISO1/SSCL1
			001110b: SSL00
			010100b: GTIOC1A
			010101b: GTETRGA
			010110b: GTIOC1A#
			010111b: GTIOC7A
			101101b: RXD011/SMISO011/
			SSCL011

Register	Bit	RX23T (n = 3 to 7)	RX26T (n = 0 to 7)
PD6PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b <mark>5</mark> b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
			000001b: MTIOC9C
			000011b: MTIOC9C#
		00101b: TMO1	000101b: TMO1
		01001b: ADST0	001001b: ADST0
		01010b: CTS1#/RTS1#/SS1#	001010b: CTS1#/RTS1#/SS1#
			001100b: RXD12/SMISO12/SSCL12/
			RXDX12
		01101b: SSLA0	001101b: SSLA0
			001110b: SSL00
			010100b: GTIOC0B
			010101b: GTIOC3B
			010110b: GTIOC0B#
			010111b: GTIOC3B#
			011000b: GTIW
			101101b: CTS011#/RTS011#/
			SS011#
			101110b: DE011
PD7PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
	(RX23T)		
	PSEL[5:0]	b4 b0	b5 b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
			000001b: MTIOC9A
			000011b: MTIOC9A#
		00101b: TMRI1	000101b: TMRI1
			000110b: TMRI5
			001010b: TXD5/SMOSI5/SSDA5
		01101b: SSLA1	001101b: SSLA1
			001110b: SSL01
			010000b: CTX0
			010100b: GTIOC0A
			010101b: GTIOC3A
			010110b: GTIOC0A#
			010111b: GTIOC3A#
			011000b: GTIU
			101100b: SCK009
			101101b: TXD008/TXDA008/
			SMOSI008/SSDA008
			101110b: TXDB009
PDnPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		O. Natural as IBO sites in the	Or Net weed as IDO a least of
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		PD4: IRQ2 (64/52/48 pin)	PD4: IRQ2 (64/80/100-pin)
		PD5: IRQ3 (64/52/48 pin)	PD5: IRQ6 (32/48/64/80/100-pin)
		PD6: IRQ5 (64/52/48 pin)	PD6: IRQ5 (64/80/100-pin)
			PD7: IRQ8 (48/64/80/100-pin)

Table 2.46 Comparison of PEn Pin Function Control Registers (PEnPFS)

Register	Bit	RX23T (n = 2)	RX26T (n = 0 to 5)
PE0PFS	_	—	PE0 pin function control register
PE1PFS	_	—	PE1 pin function control register
PE2PFS	PSEL[4:0] (RX23T) PSEL[5:0]	Interrupt input function select bit b4 b0	Interrupt input function select bit b5 b0
	(RX26T)	00000b: Hi-Z	000000b: Hi-Z
		00111b: POE10#	000111b: POE10#
PE3PFS	_		PE3 pin function control register
PE4PFS	_		PE4 pin function control register
PE5PFS		_	PE5 pin function control register
PEnPFS	ISEL	_	Interrupt input function select bit

Table 2.47 Comparison of PN7 Pin Function Control Registers (PN7PFS)

Register	Bit	RX23T	RX26T
PN7PFS	_		PN7 pin function control register

2.15 Multi-Function Timer Pulse Unit 3

Table 2.48 is Comparative Overview of Multi-Function Timer Pulse Unit 3, and Table 2.49 is Comparison of Multi-Function Timer Pulse Unit 3 Registers.

Table 2.48 Comparative Overview of Multi-Function Timer Pulse Unit 3

Item	RX23T (MTU3c)	RX26T (MTU3d)
Pulse	Max. 16 lines	Max. 28 lines
input/output		
Pulse input	3 lines	3 lines
Count clocks	11 clocks for each channel	11 clocks for each channel
	(14 for MTU0, 12 for MTU2, 10 for MTU5,	(14 for MTU0 and MTU9, 12 for MTU2, 10
	and 4 for MTU1 and MTU2 (when LWA =	for MTU5, and 4 for MTU1 and MTU2
	1))	(when LWA = 1))
Operating frequency	Up to 40 MHz	Up to 120 MHz
Available	[MTU0 to MTU4]	[MTU0 to MTU4, MTU6, MTU7, MTU9]
operations	 Waveform output at compare match 	Waveform output at compare match
	 Input capture function (noise filter setting function) 	Input capture function (noise filter setting function)
	Counter clear operation	Counter clear operation
	 Simultaneous writing to multiple timer counters (TCNT) 	Simultaneous writing to multiple timer counters (TCNT)
	 Simultaneous clearing by compare match or input capture 	Simultaneous clearing by compare match or input capture
	Simultaneous register input/output by	Simultaneous register input/output by
	synchronous counter operation	synchronous counter operation
	Up to 12-phase PWM output in	Up to 14-phase PWM output in
	combination with synchronous operation	combination with synchronous operation
	[MTU0, MTU3, MTU4]	[MTU0, MTU3, MTU4, MTU6, MTU7,
	, , ,	MTU9]
	Ability to specify buffer operation	Ability to specify buffer operation
	[MTU1, MTU2]	[MTU1, MTU2]
	 Independent specification of phase 	Independent specification of phase
	counting mode	counting mode
	 Ability to specify 32-bit phase counting 	Ability to specify 32-bit phase counting
	mode linked to MTU1 or MTU2 (when	mode linked to MTU1 or MTU2 (when
	TMDR3.LWA = 1)	TMDR3.LWA = 1)
	 Cascade connection operation 	Cascade connection operation
	[MTU3, MTU4]	[MTU3, MTU4, MTU6, MTU7]
	 Ability to produce waveform output, 	Ability to produce 12-phase waveform
	comprising six phases each of positive	output, comprising six phases each of
	and negative output, in complementary	positive and negative output, in
	PWM or reset PWM mode, through	complementary PWM or reset PWM
	linked operation of MTU3 or MTU4	mode, through linked operation of MTU3
		or MTU4 and MTU6 or MTU7
	 In complementary PWM mode, ability to 	In complementary PWM mode, ability to
	transfer data from the buffer register to a	transfer data from the buffer register to a
	temporary register at peaks or troughs of	temporary register at peaks or troughs of
	the timer counter or when writes to the buffer register (MTU4.TGRD or	the timer counter or when writes to the buffer register (MTU4.TGRD or
	MTU7.TGRD) occur	MTU7.TGRD) occur
	 Ability to specify double buffer function in 	Ability to specify double buffer function in
	complementary PWM mode	complementary PWM mode
	Somplementary I will mode	Complementary i vvivi inoue

Item	RX23T (MTU3c)	RX26T (MTU3d)
Available	[MTU3, MTU4]	[MTU3, MTU4]
operations	Through linked operation with MTU0, ability to specify the AC synchronous motor (brushless DC motor) drive mode using complementary PWM or reset PWM and to select two types (chopping or level) of waveform output	Through linked operation with MTU0, ability to specify the AC synchronous motor (brushless DC motor) drive mode using complementary PWM or reset PWM and to select two types (chopping or level) of waveform output
	[MTU5]	[MTU5]
	Can be used as a dead time compensation counter.	Can be used as a dead time compensation counter.
		 [MTU6, MTU7] Through linked operation with MTU9, ability to specify the AC synchronous motor (brushless DC motor) drive mode using complementary PWM or reset PWM and to select two types (chopping or level) of waveform output
Interrupt	Ability to skip interrupts at counter peak or	Ability to skip interrupts at counter peak or
skipping function	trough and A/D converter conversion start triggers in complementary PWM mode	trough and A/D converter conversion start triggers in complementary PWM mode
Interrupt sources	28 sources	45 sources
Buffer operation	Automatic transfer of register data (transfer from buffer register to timer register)	Automatic transfer of register data (transfer from buffer register to timer register)
Trigger generation	 Ability to generate A/D converter start trigger Ability to start A/D conversion at user-specified timing using A/D converter start request delay function Ability to synchronize operation with PWM output 	 Ability to generate A/D converter start trigger Ability to start A/D conversion at user-specified timing using A/D converter start request delay function Ability to synchronize operation with PWM output
Low power consumption function	Ability to specify module stop state	Ability to specify module stop state

Table 2.49 Comparison of Multi-Function Timer Pulse Unit 3 Registers

Register	Bit	RX23T(MTU3c)	RX26T (MTU3d)
TMDR1	BFE	Buffer operation E bit	Buffer operation E bit
		0: MTU0.TGRE and MTU0.TGRF make normal operation 1: MTU0.TGRE and MTU0.TGRF make buffer operation	0: MTU0.TGRE and MTU0.TGRF, and MTU9.TGRE and MTU9.TGRF make normal operation 1: MTU0.TGRE and MTU0.TGRF, and MTU9.TGRE and
		make bandi operation	MTU9.TGRF make buffer operation
TMDR2B	_	_	Timer mode register 2B
ТВТМ	TTSE	Timing select E bits	Timing select E bits
		0: Transfer from MTU0.TGRF to MTU0.TGRE is made at compare match E of MTU0	0: Transfer from MTU0.TGRF to MTU0.TGRE, or from MTU9.TGRF to MTU9.TGRE is made at compare match E of MTU0 or MTU9
		1: Transfer to MTU0.TGRF to MTU0.TGRE is made when MTU0.TCNT is cleared	1: Transfer from MTU0.TGRF to MTU0.TGRE, or from MTU9.TGRF to MTU9.TGRE is made when MTU0.TCNT or MTU9.TCNT is cleared
TSYCR	<u> </u>	_	Timer synchronization clear register
TSTRA/ TSTR (RX23T) TSTRA/ TSTRB/ TSTR (RX26T)	CST9		Counter start 9 bit
TSYRA (RX23T) TSYRA/ TSYRB (RX26T)	SYNC9		Timer synchronization 9 bit
TCSYSTR	SCH7	_	Synchronization start 7 bit
	SCH6	_	Synchronization start 6 bit
	SCH9	<u> </u>	Synchronization start 9 bit
TRWERB	_	_	Timer read/write enable register B
TOERB	_	_	Timer output master enable register B
TOCR1B		_	Timer output control register 1B
TOCR2B		_	Timer output control register 2B
TOLBRB	<u> </u>	<u> </u>	Timer output level buffer register B
TGCRB	<u> </u>	<u> </u>	Timer gate control register B
TCNTSB	_	_	Timer sub-counter B
TCDRB		_	Timer period data register B
TCBRB	_	_	Timer period buffer register B
TDDRB		_	Timer dead time data register B
TDERB		<u> </u>	Timer dead time enable register B

RX26T Group, RX23T Group Differences Between the RX26T Group and the RX23T Group

Register	Bit	RX23T(MTU3c)	RX26T (MTU3d)
TBTERB		_	Timer buffer transfer setting register
			В
TWCRB		_	Timer waveform control register B
NFCRn	_	Noise filter control register n	Noise filter control register n
		(n = 0 to 4, C)	(n = 0 to 4, 6, 7, 9, C)
TITMRB	_	_	Timer interrupt skipping mode
			register B
TITCR1B	_	_	Timer interrupt skipping setting
			register 1B
TITCNT1B	_	_	Timer interrupt skipping counter 1B
TITCR2B	_	_	Timer interrupt skipping setting
			register 2B
TITCNT2B	_	_	Timer interrupt skipping counter 2B
TADSTRGR0	TADSMEN0	_	ADSM0 pin output enable bit
TADSTRGR1	_	_	A/D conversion start request select
			register 1

2.16 Port Output Enable 3

Table 2.50 is Comparative Overview of Port Output Enable 3, and Table 2.51 is Comparison of Port Output Enable 3 Registers.

Table 2.50 Comparative Overview of Port Output Enable 3

Item	RX23T (POE3b)	RX26T (POE3D)
Pin status	High-impedance	High-impedance
while output is disabled	General I/O port	General I/O port
Output stop control target pins	MTU output pins — MTU0 pins (MTIOC0A, MTIOC0B, MTIOC0C, MTIOC0D) — MTU3 pins (MTIOC3B, MTIOC3D) — MTU4 pins (MTIOC4A, MTIOC4B, MTIOC4C, MTIOC4D)	MTU output pins MTUO pins (MTIOCOA, MTIOCOB, MTIOCOC, MTIOCOD) MTU3 pins (MTIOC3B, MTIOC3D) MTU4 pins (MTIOC4A, MTIOC4B, MTIOC4C, MTIOC4D) MTU6 pins (MTIOC6B, MTIOC6D) MTU7 pins (MTIOC7A, MTIOC7B, MTIOC7C, MTIOC7D) MTU9 pins (MTIOC9A, MTIOC9B, MTIOC9C, MTIOC9D) OFTW output pins GPTW output pins GPTW1 pins (GTIOC0A, GTIOC0B) GPTW2 pins (GTIOC2A, GTIOC2B) GPTW3 pins (GTIOC3A, GTIOC3B) GPTW4 pins (GTIOC4A, GTIOC4B) GPTW5 pins (GTIOC5A, GTIOC5B) GPTW5 pins (GTIOC5A, GTIOC5B) GPTW6 pins (GTIOC5A, GTIOC5B) GPTW6 pins (GTIOC6A, GTIOC6B)
Conditions for generating an output stop request	 Input pin changes: When signal input occurs on pin POE0#, POE8#, or POE10# Register settings are specified. Detection of stopped oscillation on clock oscillator Detection of comparator C (CMPC) output 	 — GPTW7 pins (GTIOC7A, GTIOC7B) Input pin changes: When signal input occurs on pin POE0#, POE4#, POE8#, POE10#, POE11#, POE12#, or POE9# SPOER register settings are specified. Detection of stopped oscillation on main clock oscillator Detection of comparator C (CMPC) output

Item	RX23T (POE3b)	RX26T (POE3D)
Conditions for generating an output stop request	Short circuit of output pins: A match (short circuit) of output signal levels (active level) lasting one or more cycles on one of the combinations of pins listed below [MTU complementary PWM output pins] MTIOC3B and MTIOC3D MTIOC4A and MTIOC4C MTIOC4B and MTIOC4D	Short circuit of output pins: A match (short circuit) of output signal levels (active level) lasting one or more cycles on one of the combinations of pins listed below [MTU complementary PWM output pins] MTIOC3B and MTIOC3D MTIOC4A and MTIOC4C MTIOC4B and MTIOC4D MTIOC6B and MTIOC6D MTIOC7A and MTIOC7C MTIOC7B and MTIOC7D [GPTW output pins] GTIOC0A and GTIOC0B GTIOC1A and GTIOC2B GTIOC5A and GTIOC5B GTIOC5A and GTIOC5B GTIOC6A and GTIOC6B GTIOC7A and GTIOC6B
Functions	 Falling-edge detection or sampling of the low level 16 times at PCLK/8, PCLK/16, or PCLK/128 can be set for each of the POE0#, POE8#, and POE10# input pins. Pins for complementary PWM output from the MTU and the MTU0 pin can be driven to the high impedance state on the detection of falling edges or sampling of the low level on the POE0#, POE8#, or POE10# pin. Pins for complementary PWM output from the MTU and the MTU0 pin can be driven to the high-impedance state when oscillation stop is detected in the clock generation circuit. When output levels on pins for complementary PWM output from the MTU are compared and simultaneous output of the active level continues for one or more cycles, output on the pins can be driven to the high-impedance 	 Falling-edge, rising-edge, low-level, or high-level detection can be set for each of the POE0#, POE4#, POE8#, POE10#, POE11#, POE12#, and POE9# pins.

Item	RX23T (POE3b)	RX26T (POE3D)
Functions	 Pins for complementary PWM output from the MTU and the MTU0 pin can be driven to the high-impedance state by comparator detection of the comparator (CMPC). Pins for complementary PWM output from the MTU and the MTU0 pin can be driven to the high-impedance state by the setting of POE register. Interrupts can be generated in response to the results of input level sampling or output-level comparison. 	 It is possible to compare levels output on GPTW output pins (GPTW0 to GPTW2, GPTW4 to GPTW6, and GPTW7 pins), and when simultaneous output of the active level continues for at least one cycle, output on the pins can be stopped. Output on all control target pins can be stopped on detection of output of comparator C (CMPC). Output on all control target pins can be stopped by modifying settings of POE registers. Interrupts can be generated in response to the results of input level sampling or output-level comparison. Signals output from the MTU output pins (MTU0 to MTU4, MTU6, MTU7, MTU9) and GPTW output pins (GPTW0 to GPTW7) can be used to mask output stop requests by the POE0#, POE4#, POE8#, POE10#, POE11#, POE12#, POE9# pins and COMP0 to COMP5 level detection signal.

Table 2.51 Comparison of Port Output Enable 3 Registers

Register	Bit	RX23T (POE3b)	RX26T (POE3D)
ICSR1	POE0M[1:0]	POE0 mode select bits	POE0 mode select bits
	(RX23T) POE0M[3:0]	h1 h0	h2 h0
	(RX26T)	b1 b0 0 0: Accepts a request on the falling edge of POE0# pin input.	b3 b0 0 0 0 0: Accepts a request on the falling edge or rising edge of POE0# pin input.
		0 1: Samples the low level of the POE0# pin input 16 times at PCLK/8 clock pulses, and accepts a request when all are low level.	0 0 0 1: Samples the input from the POE0# pin by PCLK/8, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
		1 0: Samples the low level of the POE0# pin input 16 times at PCLK/16 clock pulses, and accepts a request when all are low level.	0 0 1 0: Samples the input from the POE0# pin by PCLK/16, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
		1 1: Samples the low level of the POE0# pin input 16 times at PCLK/128 clock pulses, and accepts a request when all are low level.	0 0 1 1: Samples the input from the POE0# pin by PCLK/128, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			0 1 0 0: Samples the input from the POE0# pin by PCLK, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			0 1 0 1: Samples the input from the POE0# pin by PCLK/2, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			0 1 1 0: Samples the input from the POE0# pin by PCLK/4, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			Settings other than the above are
	POE0M2[3:0]		prohibited. POE0 sampling count select bit
	INV	<u> </u>	POE0 sampling count select bit POE0# pin input invert bit
ICSR2	_	_	Input level control/status register 2

Register	Bit	RX23T (POE3b)	RX26T (POE3D)
ICSR3	POE8M[1:0]	POE8 mode select bits	POE8 mode select bits
	(RX23T) POE8M[3:0] (RX26T)	b1 b0 0 0: Accepts a request on the falling edge of POE8# pin input.	b3 b0 0 0 0 0: Accepts a request on the falling edge or rising edge of POE8# pin input.
		0 1: Samples the low level of the POE8# pin input 16 times at PCLK/8 clock pulses, and accepts a request when all are low level.	0 0 0 1: Samples the input from the POE8# pin by PCLK/8, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
		1 0: Samples the low level of the POE8# pin input 16 times at PCLK/16 clock pulses, and accepts a request when all are low level.	0 0 1 0: Samples the input from the POE8# pin by PCLK/16, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
		1 1: Samples the low level of the POE8# pin input 16 times at PCLK/128 clock pulses, and accepts a request when all are low level.	0 0 1 1: Samples the input from the POE8# pin by PCLK/128, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			0 1 0 0: Samples the input from the POE8# pin by PCLK, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			0 1 0 1: Samples the input from the POE8# pin by PCLK/2, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			0 1 1 0: Samples the input from the POE8# pin by PCLK/4, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			Settings other than the above are prohibited.
	POE8M2[3:0]	_	POE8 sampling count select bit
	INV	_	POE8# pin input invert bit

Register	Bit	RX23T (POE3b)	RX26T (POE3D)
ICSR4	POE10M[1:0]	POE10 mode select bits	POE10 mode select bits
	(RX23T)		
	POE10M[3:0]	b1 b0	b3 b0
	(RX26T)	0 0: Accepts a request on the falling edge of POE10# pin input.	0 0 0 0: Accepts a request on the falling edge or rising edge of POE10# pin input.
		0 1: Samples the low level of the POE10# pin input 16 times at PCLK/8 clock pulses, and accepts a request when all are low level.	0 0 0 1: Samples the input from the POE10# pin by PCLK/8, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
		1 0: Samples the low level of the POE10# pin input 16 times at PCLK/16 clock pulses, and accepts a request when all are low level.	0 0 1 0: Samples the input from the POE10# pin by PCLK/16, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
		1 1: Samples the low level of the POE10# pin input 16 times at PCLK/128 clock pulses, and accepts a request when all are low level.	0 0 1 1: Samples the input from the POE10# pin by PCLK/128, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			0 1 0 0: Samples the input from the POE10# pin by PCLK, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			0 1 0 1: Samples the input from the POE10# pin by PCLK/2, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			0 1 1 0: Samples the input from the POE10# pin by PCLK/4, and accepts a request when low-level or high-level results are detected consecutively for the specified number of times.
			Settings other than the above are prohibited.
	POE10M2[3:0]	_	POE10 sampling count select bit
	INV	_	POE10# pin input invert bit
ICSR5	_	_	Input level control/status register 5
ICSR7	_	_	Input level control/status register 7
ICSR8	_	_	Input level control/status register 8
OCSR2	_	_	Output level control/status register 2
OCSR4	_	_	Output level control/status register 3 Output level control/status register 4
OCSR4		<u> </u>	Output level control/status register 4

Register	Bit	RX23T (POE3b)	RX26T (POE3D)
OCSR5	_	_	Output level control/status register 5
ALR2	_	_	Active level register 2
ALR3	_	_	Active level register 3
ALR4	_	_	Active level register 4
ALR5	_	_	Active level register 5
SPOER	_	Software port output enable register	Software port output enable register
O. OLIK		Contware port eatput enable register	Contward port datput chable register
		SPOER is an 8-bit register.	SPOER is a 16-bit register.
	MTUCH67HIZ	_	MTU6 and MTU7 pin output stop enable
			bit
	GPT01HIZ	_	GPTW0 and GPTW1 pin output stop
			enable bit
	GPT23HIZ	_	GPTW2 and GPTW3 pin output stop
			enable bit
	MTUCH9HIZ	_	MTU9 pin output stop enable bit
	GPT02HIZ	_	GPTW0 to GPTW2 pin output stop
			enable bit
	GPT46HIZ	-	GPTW4 to GPTW6 pin output stop
			enable bit
	GPT79HIZ	_	GPTW7 pin output stop enable bit
POECR1	MTU0A1ZE	MTIOC0A P31 pin high-impedance	_
	MELIODAZE	enable bit	
	MTU0B1ZE	MTIOC0B P30 pin high-impedance enable bit	_
	MTHOROZE		
	MTU0B2ZE	MTIOC0B P93 pin high-impedance enable bit	_
	MTU0C1ZE	MTIOC0C P94 pin high-impedance	
	WITOOCIZE	enable bit	
POECR2	MTU7BDZE	_	MTIOC7B/MTIOC7D pin high-impedance
			enable bit
	MTU7ACZE	_	MTIOC7A/MTIOC7C pin high-impedance
			enable bit
	MTU6BDZE	_	MTIOC6B/MTIOC6D pin high-impedance
			enable bit
POECR3	_	_	Port output enable control register 3
POECR4	IC1ADDMT34ZE	_	Bit for adding POE0F to the MTU3 and
			MTU4 output stop conditions
	IC2ADDMT34ZE	_	Bit for adding POE4F to the MTU3 and
	105455175475		MTU4 output stop conditions
	IC5ADDMT34ZE	_	Bit for adding POE11F to the MTU3 and MTU4 output stop conditions
	IC6ADDMT34ZE		Bit for adding POE12F to the MTU3 and
	ICOADDIVIT 34ZE	_	MTU4 output stop conditions
	IC8ADDMT34ZE		Bit for adding POE9F to the MTU3 and
	100ADDW1104ZL		MTU4 output stop conditions
POECR4B	_	_	Port output enable control register 4B
POECR5	IC2ADDMT0ZE		Bit for adding POE4F to the MTU0 output
			stop conditions
	IC3ADDMT0ZE	_	Bit for adding POE8F to the MTU0 output
			stop conditions
	IC5ADDMT0ZE	_	Bit for adding POE11F to the MTU0
			output stop conditions
	IC6ADDMT0ZE	_	Bit for adding POE12F to the MTU0
			output stop conditions
	IC8ADDMT0ZE	_	Bit for adding POE9F to the MTU0 output
			stop conditions
POECR6	_	<u> </u>	Port output enable control register 6

Register	Bit	RX23T (POE3b)	RX26T (POE3D)
POECR6B	_	_	Port output enable control register 6B
POECR7	_	_	Port output enable control register 7
POECR8	_	_	Port output enable control register 8
POECR9	_	_	Port output enable control register 9
POECR10	_	_	Port output enable control register 10
POECR11	_	_	Port output enable control register 11
PMMCR0	_		Port mode mask control register 0
PMMCR1	_		Port mode mask control register 1
PMMCR2	_		Port mode mask control register 2
POECMPFR	C3FLAG	<u> </u>	Comparator channel 3 output detection
I OLOWII I K	OSI LAG		flag
	C4FLAG	_	Comparator channel 4 output detection flag
	C5FLAG	_	Comparator channel 5 output detection flag
POECMPSEL	POEREQ3	_	Comparator channel 3 output stop enable bit
	POEREQ4	_	Comparator channel 4 output stop enable bit
	POEREQ5	_	Comparator channel 5 output stop enable bit
POECMPEX m	_	_	Port output enable comparator request extension select register m
			(m = 0 to 8)
M0SELR1	_	_	MTU0 pin select register 1
M0SELR2	_	_	MTU0 pin select register 2
M3SELR	_	_	MTU3 pin select register
M4SELR1	_	_	MTU4 pin select register 1
M4SELR2	_	_	MTU4 pin select register 2
M6SELR	_	_	MTU6 pin select register
M7SELR1	_	_	MTU7 pin select register 1
M7SELR2	_	_	MTU7 pin select register 2
M9SELR1	_	_	MTU9 pin select register 1
M9SELR2	_	_	MTU9 pin select register 2
G0SELR	_	_	GPTW0 pin select register
G1SELR	_	_	GPTW1 pin select register
G2SELR	_	_	GPTW2 pin select register
G3SELR	_	_	GPTW3 pin select register
G4SELR	_	_	GPTW4 pin select register
G5SELR	_	_	GPTW5 pin select register
G6SELR	_	_	GPTW6 pin select register
G7SELR	_	_	GPTW7 pin select register
IMCR0	_	_	Input signal mask control register 0
IMCR1	_	_	Input signal mask control register 1
IMCR2	_	_	Input signal mask control register 2
IMCR3	_	_	Input signal mask control register 3
IMCR4	_	_	Input signal mask control register 4
IMCR5	_	_	Input signal mask control register 5
IMCR6	_	_	Input signal mask control register 6
IMCR9	_	_	Input signal mask control register 9
IMCR10	_	_	Input signal mask control register 10
IMCR11	_	_	Input signal mask control register 11
IMCR12	_	_	Input signal mask control register 12
IMCR13	_	<u> </u>	Input signal mask control register 12
IMCR14	_	_	Input signal mask control register 13
INIOIT	<u>l</u>	1	mpat signal mask control register 14

2.17 8-bit Timer

Table 2.52 is Comparative Overview of 8-Bit Timers, and Table 2.53 is Comparison of 8-Bit Timer Registers.

Table 2.52 Comparative Overview of 8-Bit Timers

Item	RX23T (TMR)	RX26T (TMRb)
Count clocks	 Internal clock: PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1,024, PCLK/8,192 External clock: External count clock 	Internal clock: PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1,024, PCLK/8,192 External clock: External count clock
Number of	(8 bits x 2 channels) x 2 units	(8 bits × 2 channels) × 4 units
channels		
Compare match	 8-bit mode (compare match A, compare match B) 16-bit mode (compare match A, compare match B) 	 8-bit mode (compare match A, compare match B) 16-bit mode (compare match A, compare match B)
Counter clear	Selectable among compare match A or B, or an external counter reset signal	Selectable among compare match A or B, or an external counter reset signal
Timer output	Output pulses with a user-defined duty cycle or PWM output	Output pulses with a user-defined duty cycle or PWM output
Cascading of two channels	16-bit count mode 16-bit timer using TMR0 for the upper 8 bits and TMR1 for the lower 8 bits (TMR2 for the upper 8 bits and TMR3 for the lower 8 bits)	16-bit count mode 16-bit timer using TMR0 for the upper 8 bits and TMR1 for the lower 8 bits (TMR2 for the upper 8 bits and TMR3 for the lower 8 bits, TMR4 for the upper 8 bits and TMR5 for the lower 8 bits, and TMR6 for the upper 8 bits and TMR7 for the lower 8 bits)
	 Compare match count mode TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches). 	Compare match count mode TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches, TMR5 can be used to count TMR4 compare matches, and TMR7 can be used to count TMR6 compare matches).
Interrupt sources	Compare match A, compare match B, and overflow	Compare match A, compare match B, and overflow
Event link function (output)		Compare match A, compare match B, and overflow (TMR0 to TMR3)
Event link function (input)		Ability to perform one of three actions according to accepted event (1) Counter start (TMR0 to TMR3) (2) Event counter (TMR0 to TMR3) (3) Counter restart (TMR0 to TMR3)
DTC activation	The DTC can be activated by compare match A interrupts or compare match B interrupts.	The DTC can be activated by compare match A interrupts or compare match B interrupts.
Generation of trigger to start A/D converter	Compare match A of TMR0 or TMR2	Compare match A of TMR0, TMR2, TMR4, or TMR6
Generation of baud rate clock for SCI	Generation of baud rate clock for SCI	Generation of SCI basic clock

RX26T Group, RX23T Group Differences Between the RX26T Group and the RX23T Group

Item	RX23T (TMR)	RX26T (TMRb)
Low power	Ability to transition each unit to the module	Ability to transition each unit to the module
consumption	stop state	stop state
function		

Table 2.53 Comparison of 8-Bit Timer Registers

Register	Bit	RX23T (TMR)	RX26T (TMRb)
TCSTR	_		Timer counter start register

2.18 Compare Match Timer

Table 2.54 is Comparative Overview of Compare Match Timers.

Table 2.54 Comparative Overview of Compare Match Timers

Item	RX23T (CMT)	RX26T (CMT)
Count clocks	Four frequency dividing clocks: One clock from PCLK/8, PCLK/32, PCLK/128, and PCLK/512 can be selected for each channel.	Four frequency dividing clocks: One clock from PCLK/8, PCLK/32, PCLK/128, and PCLK/512 can be selected for each channel.
Interrupt	A compare match interrupt can be requested for each channel.	A compare match interrupt can be requested for each channel.
Event link function (output)	_	An event signal is output upon a CMT1 compare match.
Event link function (input)		 Linking to the specified module is possible. CMT1 count start, event counter, or count restart operation is possible.
Low power consumption function	Ability to transition each unit to the module stop state	Ability to transition each unit to the module stop state

2.19 Independent Watchdog Timer

Table 2.55 is Comparative Overview of Independent Watchdog Timers, and Table 2.56 is Comparison of Independent Watchdog Timer Registers.

Table 2.55 Comparative Overview of Independent Watchdog Timers

Item	RX23T (IWDTa)	RX26T (IWDTa)
Count source	IWDT-dedicated clock (IWDTCLK)	IWDT-dedicated clock (IWDTCLK)
Clock divide ratio	Divide by 1, 16, 32, 64, 128, or 256	Divide by 1, 16, 32, 64, 128, or 256
Counter operation	Counting down using a 14-bit down-counter	Counting down using a 14-bit counter
Conditions for starting the counter	 Counting automatically starts after a reset (auto-start mode) Counting is started (register start mode) by refreshing the counter (writing 00h and then FFh to the IWDTRR register). 	 Auto-start mode: Counting starts automatically after a reset. Register start mode: Counting is started by refreshing the counter (writing 00h and then FFh to the IWDTRR register).
Conditions for stopping the counter	Reset (the down-counter and other registers return to their initial values) A counter underflows or a refresh error occurs Counting restarts (In auto-start mode, counting automatically restarts after a reset or after a non-maskable interrupt request is output. In register start mode, counting restarts after refreshing.)	Reset (the down-counter and other registers return to their initial values) Low power consumption state (by means of register setting) Underflow or refresh error (register start mode only)
Window function	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)
Reset output sources	 Down-counter underflows Refreshing outside the refresh- permitted period (refresh error) 	Counter underflows Refreshing outside the refresh- permitted period (refresh error)
Non-maskable interrupt/interrupt sources (RX23T) Non-maskable interrupt/maskable interrupt sources (RX26T)	 Down-counter underflows Refreshing outside the refresh- permitted period (refresh error) 	Counter underflows Refreshing outside the refresh- permitted period (refresh error)
Reading the counter value	The down-counter value can be read by the IWDTSR register.	The counter value can be read by the IWDTSR register.
Event link function (output)		Counter underflow event outputRefresh error event output
Output signals (internal signals)	 Reset output Interrupt request output Sleep mode count stop control output 	Reset output Interrupt request output Sleep mode count stop control output

Item	RX23T (IWDTa)	RX26T (IWDTa)
Auto-start mode (controlled by option function select register 0 (OFS0))	 Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (OFS0.IWDTRPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPES[1:0] bits) Selecting the reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or 	 Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (OFS0.IWDTRPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPES[1:0] bits) Selecting the reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the counter operation/stop in low power consumption mode
Register start mode (controlled by the IWDT registers)	deep sleep mode (OFS0.IWDTSLCSTP bit) Selecting the clock frequency division ratio after refreshing (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPES[1:0] bits) Selecting the reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (IWDTCSTPR.SLCSTP bit)	 OFS0.IWDTSLCSTP bit) Selecting the clock frequency division ratio after refreshing (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPES[1:0] bits) Selecting the reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the counter operation/stop in low power consumption mode (IWDTCSTPR.SLCSTP bit)

Table 2.56 Comparison of Independent Watchdog Timer Registers

Register	Bit	RX23T (IWDTa)	RX26T (IWDTa)
IWDTCR	TOPS[1:0]	Timeout period select bits	Timeout period select bits
		b1 b0	b1 b0
		0 0: 128 cycles (007Fh)	0 0: 1,024 cycles (03FFh)
		0 1: 512 cycles (01FFh)	0 1: 4,096 cycles (0FFFh)
		1 0: 1,024 cycles (03FFh)	1 0: 8,192 cycles (1FFFh)
		1 1: 2,048 cycles (07FFh)	1 1: 16,384 cycles (3FFFh)
IWDTRCR	RSTIRQS	Reset interrupt request select bit	Reset interrupt request select bit
		0: Non-maskable interrupt request	0: Non-maskable interrupt request or
		output is enabled.	maskable interrupt request output
		1: Reset output is enabled.	is enabled.
			1: Reset output is enabled.
IWDTCSTPR	SLCSTP	Sleep mode count stop control bit	Sleep mode count stop control bit
		0: Counting stop is disabled.	0: Counter continues counting even in
		1: Counting stop is enabled when	low power consumption mode.*1
		entering sleep, software standby,	1: Counter stops in low power
		and deep sleep mode.	consumption mode.

Note 1. The counter continues counting in sleep mode, all-module clock stop mode, or software standby mode.

2.20 Serial Communications Interface

Table 2.57 is Comparative Overview of Serial Communications Interfaces, Table 2.58 is Comparison of Serial Communications Interface Channel Specifications, and Table 2.59 is Comparison of Serial Communications Interface Registers.

Table 2.57 Comparative Overview of Serial Communications Interfaces

Item		RX23T (SCIg)	RX26T (SCIk, SCIh)
Number of channels		SCIg: 2 channels	
			SCIk: 3 channels
			SCIh: 1 channel
Serial communic	cations modes	Asynchronous	 Asynchronous
		Clock synchronous	 Clock synchronous
		Smart card interface	Smart card interface
		Simple I ² C bus	Simple I ² C bus
		Simple SPI bus	Simple SPI bus
Transfer speed		Bit rate specifiable by on-chip baud rate generator.	Bit rate specifiable by on-chip baud rate generator.
Full-duplex com	munication	Transmitter:	Transmitter:
-		Continuous transmission possible	Continuous transmission possible
		using double-buffer structure.	using double-buffer structure.
		Receiver:	Receiver:
		Continuous reception possible using double-buffer structure.	Continuous reception possible using double-buffer structure.
Data transfer		Selectable as LSB first or MSB first	Selectable as LSB first or MSB first
		transfer.	transfer.
I/O signal level in	nversion	-	The levels of input and output signals
			can be inverted independently (SCI1, SCI5, SCI6).
Interrupt sources	5	Transmit end, transmit data empty,	Transmit end, transmit data empty,
		receive data full, and receive error	receive data full, receive error, and
			data coincidence (SCI1, SCI5, SCI6)
		Completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)	Completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)
Low power cons	umption function	Individual channels can be transitioned	Individual channels can be transitioned
	umption function	to the module stop state.	to the module stop state.
Asynchronous	Data length	7, 8, or 9 bits	7, 8, or 9 bits
mode	Transmission stop bits	1 or 2 bits	1 or 2 bits
	Parity	Even parity, odd parity, or no parity	Even parity, odd parity, or no parity
	Receive error detection function	Parity, overrun, and framing errors	Parity, overrun, and framing errors
	Hardware flow	CTSn# and RTSn# pins can be used in	CTSn# and RTSn# pins can be used in
	control	controlling transmission/reception.	controlling transmission/reception.
	Data match		Compares receive data and comparison
	detection		data register, and generates interrupt
			when they match (SCI1, SCI5, SCI6).
	Start-bit detection	Low level or falling edge is selectable.	Low level or falling edge is selectable.
	Receive data	_	The receive data sampling point can be
	sampling timing		shifted from the center of the data
	adjustment		forward or backward to a base point (SCI1, SCI5, SCI6).
	Transmit signal		Either the falling or rising edge of the
	change timing adjustment		transmit data can be delayed (SCI1, SCI5, SCI6).

RX23T (SCIg) RX26T (SCIk, SCIh)	RXDn ie i6). can be in the i6,
Diministry of processors Processors	can be n the
Clock source An internal or external clock can be selected. Transfer rate clock input from the TMR can be used (SCI5). Double-speed mode is selectable. Multi-processor communications function Noise synchronous mode Clock Synchronous mode Baud rate generator double-speed mode Baud rate generator double-speed mode Serial communication among multiple Serial communication among mult	can be the
Clock source An internal or external clock can be selected. Transfer rate clock input from the TMR can be used (SCI5). Double-speed mode is selectable. Multi-processor communications function Noise cancellation Data length Receive error detection Hardware flow control Smart card interface mode Smart card interface mode Clock synchronous mode Clock synchronous mode Clock synchronous mode Clock synchronous mode Data length Clock synchronous mode Clock sorron munication among multiple selectable. Serial communication among multiple selectable. Serial communication selectable. Serial communication among multiple selectable. Serial communication selec	can be n the 16,
selected. Transfer rate clock input from the TMR can be used (SCI5). Double-speed mode Multi-processor communications function Noise cancellation Clock synchronous mode The signal paths from input on the RXDn pins incorporate digital noise filters. Clock synchronous mode CTSn# and RTSn# pins can be used in control interface mode Error processing Selected. Transfer rate clock input from TMR can be used (SCI5, SCI SCI12). Baud rate generator double-speed is selectable. Serial communication among multiple processors The signal paths from input on the RXDn pins incorporate digital noise filters. The signal paths from input on the RXDn pins incorporate digital noise filters. Clock synchronous mode CTSn# and RTSn# pins can be used in controlling transmission/reception. CTSn# and RTSn# pins can be used in controlling transmission/reception. An error signal can be automatically retransmitted when detecting a parity error during reception. Data can be automatically retransmitted when receiving an error signal during transmission.	n the <mark>16</mark> ,
TMR can be used (SCI5). TMR can be used (SCI5, SCI SCI12). Double-speed mode Baud rate generator double-speed mode is selectable.	16,
Double-speed mode is selectable. Multi-processor communications function Noise cancellation The signal paths from input on the RXDn pins incorporate digital noise filters. Clock synchronous mode CTSn# and RTSn# pins can be used in controlling transmisted when detecting a parity error during reception. Smart card interface mode Error processing Double-speed is selectable. Baud rate generator double-speed is selectable. Serial communication among multiple processors The signal paths from input on the RXDn pins incorporate digital noise filters. Babits Serial communication among multiple processors The signal paths from input on the RXDn pins incorporate digital noise filters. Babits Overrun error Overrun error CTSn# and RTSn# pins can be used in controlling transmission/reception. An error signal can be automatically retransmitted when detecting a parity error during reception. Data can be automatically retransmitted when receiving an error signal during transmission.	
mode is selectable. is selectable. Serial communication among multiple processors Serial communication among multiple processors processors processors processors	ahom he
communications function Noise cancellation Data length Receive error detection Hardware flow control Smart card interface mode Error processing Error processing Error processing Error processing An error signal can be automatically error during reception. Data can be automatically retransmitted when receiving an error signal during transmission. processors The signal paths from input on the RXDn pins incorporate digital noise filters. Overrun error Overrun error CTSn# and RTSn# pins can be used in controlling transmission/reception. An error signal can be automatically error during reception. Data can be automatically retransmitted when receiving an error signal during transmission.	su mode
function Noise cancellation Noise cancellation Data length Receive error detection Hardware flow control Smart card interface mode Firor processing Firor processing An error signal can be automatically error during reception. Data can be automatically retransmitted when receiving an error signal during transmission. Final paths from input on the RXDn pins incorporate digital noise filters. Overrun error Overrun error CTSn# and RTSn# pins can be used in controlling transmission/reception. An error signal can be automatically error during reception. Data can be automatically retransmitted when receiving an error signal during transmission.	ıltiple
Clock synchronous mode Data length S bits	
Clock synchronous mode Data length Receive error detection	
synchronous mode Receive error detection Hardware flow control Smart card interface mode Error processing An error signal can be automatically error during reception. Data can be automatically retransmitted when detecting a parity error during reception. Data can be automatically retransmitted when receiving an error signal during transmission. Data can be automatically retransmitted when receiving an error signal during transmission.	rs.
mode detection	
control controlling transmission/reception. Smart card interface mode Error processing An error signal can be automatically transmitted when detecting a parity error during reception. Data can be automatically retransmitted when receiving an error signal during transmission. Controlling transmission/reception. An error signal can be automatically error during reception. Data can be automatically retransmitted when receiving signal during transmission.	
Smart card interface mode An error signal can be automatically transmitted when detecting a parity error during reception. Data can be automatically retransmitted when receiving an error signal can be automatically retransmitted when receiving an error signal during transmission. An error signal can be automatically transmitted when detecting a parity error during reception. Data can be automatically retransmitted when receiving an error signal can be automatically transmitted when receiving signal during transmission.	
interface mode processing transmitted when detecting a parity error during reception. • Data can be automatically retransmitted when receiving an error signal during transmission. • Data can be automatically retransmitted when receiving an error signal during transmission.	
 Data can be automatically retransmitted when receiving an error signal during transmission. Data can be automatically retransmitted when receiving signal during transmission. 	
retransmitted when receiving an error retransmitted when receiving signal during transmission.	
signal during transmission. signal during transmission.	an error
Data type Both direct convention and inverse Both direct convention and inverse	
	se
convention are supported. convention are supported.	
Simple I ² C Communication I ² C bus format I ²	
Operating mode Master (single-master operation only) Master (single-master operation	only)
Transfer speed Fast mode is supported. Fast mode is supported.	
Noise cancellation The signal paths from input on the SSCLn and SSDAn pins incorporate The signal paths from input on the SSCLn and SSDAn pins incorporate	
digital noise filters. digital noise filters.	
 The interval for noise cancellation is adjustable. The interval for noise cancellation is adjustable. 	ation is
Simple SPI Data length 8 bits 8 bits	
mode Detection of errors Overrun error Overrun error	
SS input pin Applying the high level to the SSn# pin Applying the high level to the SS	
function can cause the output pins to enter the can cause the output pins to enter	er the
high-impedance state. Clock actions — Four kinds of actions for clock phase — Four ki	
Clock settings Four kinds of settings for clock phase and clock polarity are selectable. Four kinds of settings for clock phase and clock polarity are selectable.	
Extended serial Start frame — Break field low width output a	hase
mode transmission generation of interrupt on cor supported by Detection of bus collision and	hase and
SCI12 only) • Detection of bus collision and generation of interrupt on det	hase and mpletion

Item		RX23T (SCIg)	RX26T (SCIk, SCIh)
Extended serial mode (supported by SCI12 only)	Start frame reception		 Detection of break field low width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates
	I/O control function		 Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin
	Timer function	_	Usable as reloading timer
Bit rate modulation function Event link function (supported by SCI5 only)		Correction of outputs from the on-chip baud rate generator can reduce errors. —	Correction of outputs from the on-chip baud rate generator can reduce errors. • Error (receive error or error signal detection) event output
(cappoints by Soile silly)			 Receive data full event output Transmit data empty event output Transmit end event output

Table 2.58 Comparison of Serial Communications Interface Channel Specifications

Item	RX23T (SCIg)	RX26T (SCIk, SCIh)
Asynchronous mode	SCI1, SCI5	SCI1, SCI5, SCI6, SCI12
Clock synchronous mode	SCI1, SCI5	SCI1, SCI5, SCI6, SCI12
Smart card interface mode	SCI1, SCI5	SCI1, SCI5, SCI6, SCI12
Simple I ² C mode	SCI1, SCI5	SCI1, SCI5, SCI6, SCI12
Simple SPI mode	SCI1, SCI5	SCI1, SCI5, SCI6, SCI12
Data match detection	—	SCI1, SCI5, SCI6
Extended serial mode	—	SCI12
TMR clock input	SCI5	SCI5, SCI6, SCI12
Event link function	_	SCI5
Peripheral module clock	PCLKB: SCI1, SCI5	PCLKB: SCI1, SCI5, SCI6, SCI12

Table 2.59 Comparison of Serial Communications Interface Registers

Register	Bit	RX23T (SCIg)	RX26T (SCIk, SCIh)
SEMR	ACS0	Asynchronous mode clock source select bit	Asynchronous mode clock source select bit
		 (Valid only in asynchronous mode) 0: External clock input 1: Logical AND of two compare matches output from TMR (valid for SCI5 only) Available compare match output varies per SCI channel. 	(Valid only in asynchronous mode) 0: External clock input 1: Logical AND of two compare matches output from TMR (valid for SCI5, SCI6, and SCI12 only) Available compare match output varies per SCI channel.
	ITE	<u> </u>	Immediate transmission enable bit
	ABCSE	_	Asynchronous mode base clock select extended bit
SPMR	MSS	Master/slave select bit	Master/slave select bit
		0: TXDn pin: Transmit, RXDn pin: Receive (master mode) 1: TXDn pin: Receive, RXDn pin: Transmit (slave mode)	0: SMOSIn pin: Transmit, SMISOn pin: Receive (master mode) 1: SMOSIn pin: Receive, SMISOn pin: Transmit (slave mode)
CDR	1_		Comparison data register
DCCR	—	<u> </u>	Data comparison control register
SPTR	_	_	Serial port register
TMGR	_	_	Transmit/receive timing select register
ESMER	_	_	Extended serial mode enable register
CR0	_	_	Control register 0
CR1	_	<u> </u>	Control register 1
CR2	_	_	Control register 2
CR3		_	Control register 3
PCR	_	_	Port control register
ICR	_	_	Interrupt control register
STR	_	_	Status register
STCR	_	_	Status clear register
CF0DR		_	Control Field 0 data register
CF0CR	_	_	Control Field 0 compare enable register
CF0RR	_	_	Control Field 0 receive data register
PCF1DR	_	_	Primary Control Field 1 data register
SCF1DR	_	_	Secondary Control Field 1 data register
CF1CR	_	_	Control Field 1 compare enable register
CF1RR	_	_	Control Field 1 receive data register
TCR	_	_	Timer control register
TMR	_	<u> </u>	Timer mode register
TPRE	<u> </u>	<u> </u>	Timer prescaler register
TCNT	<u> </u>	<u> </u>	Timer count register
PRDFR0	_	_	Product function select register 0

2.21 I²C Bus Interface

Table 2.60 is Comparative Overview of I2C Bus Interfaces.

Table 2.60 Comparative Overview of I²C Bus Interfaces

Item	RX23T (RIICa)	RX26T (RIICa)
Communication format	 I²C-bus format or SMBus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus-free times for the transfer rate 	 I²C-bus format or SMBus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus-free times for the transfer rate
Transfer rate	Fast-mode is supported (up to 400 kbps)	Fast-mode is supported (up to 400 kbps)
SCL clock	For master operation, the duty cycle of the SCL clock is selectable in the range from 4 to 96%.	For master operation, the duty cycle of the SCL clock is selectable in the range from 4 to 96%.
Issuing and detecting conditions	 Start, restart, and stop conditions are automatically generated. Start conditions (including restart conditions) and stop conditions are detectable. 	 Start, restart, and stop conditions are automatically generated. Start conditions (including restart conditions) and stop conditions are detectable.
Slave address	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (along with the use of both at once). General call addresses, device ID addresses, and SMBus host addresses are detectable. 	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (along with the use of both at once). General call addresses, device ID addresses, and SMBus host addresses are detectable.
Acknowledgment	 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically suspended on detection of a not-acknowledge bit. For reception, the acknowledge bit is automatically transmitted. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible. 	 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically suspended on detection of a not-acknowledge bit. For reception, the acknowledge bit is automatically transmitted. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible.
Wait function	In reception, the following periods of waiting can be obtained by holding the SCL clock at the low level. Waiting between the eighth and ninth clock cycles Waiting between the ninth clock cycle and the first clock cycle of the next transfer	In reception, the following periods of waiting can be obtained by holding the SCL line at the low level. Waiting between the eighth and ninth clock cycles Waiting between the ninth clock cycle and the first clock cycle of the next transfer
SDA output delay function	Timing of the output of transmitted data, including the acknowledge bit, can be delayed.	Change timing of the output of transmitted data, including the acknowledge bit, can be delayed.

Item	RX23T (RIICa)	RX26T (RIICa)
Arbitration	 For multi-master operation Operation to synchronize the SCL clock in cases of conflict with the SCL signal from another master is possible. When issuing the start condition would create conflict on the bus, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the internal signal for the SDA line. Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). When transmitting a not-acknowledge bit, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. Loss of arbitration due to non-matching of internal and line levels for data is detectable in slave transmission. 	 For multi-master operation Operation to synchronize the SCL in cases of conflict with the SCL signal from another master is possible. When issuing the start condition would create conflict on the bus, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the internal signal for the SDA line. Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). When transmitting a not-acknowledge bit, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. Loss of arbitration due to non-matching of internal and line levels for data is detectable in slave transmission.
Timeout function	The internal timeout function is capable of detecting long-interval stop of the SCL clock.	The internal timeout function is capable of detecting long-interval stop of the SCL.
Noise cancellation	The interface incorporates digital noise filters for both the SCL and SDA signals, and the width for noise cancellation by the filters is adjustable by software.	The interface incorporates digital noise filters for both the SCL and SDA signals, and the width for noise cancellation by the filters is adjustable by software.
Interrupt sources	Four sources: Error in transfer or occurrence of events Detection of arbitration, NACK, timeout, a start condition including a restart condition, or a stop condition Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address) Transmit data empty Ability to transition to module stop state	Four sources: Error in transfer or occurrence of events Detection of arbitration lost, NACK, timeout, a start condition including a restart condition, or a stop condition Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address) Transmit end Ability to transition to module stop state
consumption function	, to trainers to module step state	The management of module step state

Item	RX23T (RIICa)	RX26T (RIICa)
RIIC operating	4 modes:	• 4 modes:
modes	 Master transmit mode 	 Master transmit mode
	 Master receive mode 	 Master receive mode
	 — Slave transmit mode 	 Slave transmit mode
	 — Slave receive mode 	 — Slave receive mode
Event link	_	Four sources (RIIC0):
function		 Error in transfer or occurrence of
(output)		events
		Detection of arbitration lost, NACK,
		timeout, a start condition including a restart condition, or a stop
		condition
		— Receive data full
		(including matching with a slave
		address)
		 Transmit data empty
		(including matching with a slave
		address)
		— Transmit end

2.22 Serial Peripheral Interface

Table 2.61 is Comparative Overview of Serial Peripheral Interfaces, and Table 2.62 is Comparison of Serial Peripheral Interface Registers.

Table 2.61 Comparative Overview of Serial Peripheral Interfaces

Item	RX23T (RSPIa)	RX26T (RSPId)
Number of channels	1 channel	1 channel
RSPI transfer functions	 Use of MOSI (Master out/slave in), MISO (Master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Communication modes: Full-duplex or simplex (transmit-only) can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK 	 Use of MOSI (Master out/slave in), MISO (Master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Communication modes: Full-duplex or simplex (transmit-only or reception-only (in slave mode)) can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK
Data format	 MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). 	 MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). Byte swapping of transmit and receive data is selectable Ability to invert the logic level of transmit/receive data
Bit rate	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from division by 2 to division by 4096). In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 6). Width at high level: 4 cycles of PCLK Width at low level: 4 cycles of PCLK 	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from division by 2 to division by 4096). In slave mode, the minimum PCLK clock divided by 4 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 4). Width at high level: 2 cycles of PCLK Width at low level: 2 cycles of PCLK
Buffer configuration	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers 	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers
Error detection	Mode fault error detectionOverrun error detectionParity error detection	 Mode fault error detection Overrun error detection Parity error detection Underrun error detection

Item	RX23T (RSPIa)	RX26T (RSPId)
SSL control function	 Four SSL pins (SSLA0 to SSLA3) for each channel In single-master mode, SSLA0 to SSLA3 pins are output. In multi-master mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for either output or unused. In slave mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins are unused. Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable wait for next-access SSL output assertion (next-access delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Function for changing SSL polarity 	 Four SSL pins (SSLA0 to SSLA3) for each channel In single-master mode, SSLA0 to SSLA3 pins are output. In multi-master mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for either output or unused. In slave mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins are unused. Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable wait for next-access SSL output assertion (next-access delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Function for changing SSL polarity
Control in master transfer	 A transfer of up to eight commands can be executed sequentially in looped execution. For each command, the following can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay A transfer can be initiated by writing to the transmit buffer. MOSI signal value specifiable in SSL negation RSPCK auto-stop function 	 A transfer of up to eight commands can be executed sequentially in looped execution. For each command, the following can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay A transfer can be initiated by writing to the transmit buffer. MOSI signal value specifiable in SSL negation RSPCK auto-stop function The delay between data bytes can be shortened during burst transfers.
Interrupt sources	Interrupt sources Receive buffer full interrupt Transmit buffer empty interrupt RSPI error interrupt (mode fault, overrun, or parity error) RSPI idle interrupt (RSPI idle)	Interrupt sources Receive buffer full interrupt Transmit buffer empty interrupt Error interrupt (mode fault, overrun, underrun, or parity error) Idle interrupt Communication end interrupt

Item	RX23T (RSPIa)	RX26T (RSPId)
Event link function (output)		The following events can be output to the event link controller. (RSPI0) Receive buffer full events Transmit buffer empty events Error events (mode fault, overrun, underrun, and parity error) Idle events Communication completion events
Other functions	 Function for switching between CMOS output and open-drain output Function for initializing the RSPI Loopback mode 	Function for initializing the RSPILoopback mode
Low power consumption function	Ability to specify module stop state	Ability to specify module stop state

Table 2.62 Comparison of Serial Peripheral Interface Registers

Register	Bit	RX23T (RSPIa)	RX26T (RSPId)
SPSR	UDRF	_	Underrun error flag
	SPCF	_	Communication completion flag
SPDR	_	RSPI data register	RSPI data register
		Supported access sizes	Supported access sizes
		 Longword access (SPDCR.SPLW = 1) Word access 	 Longword access (SPDCR.SPLW = 1, SPDCR.SPBYT = 0) Word access
		(SPDCR.SPLW = 0)	(SPDCR.SPLW = 0, SPDCR.SPBYT = 0)
			Byte access (SPDCR.SPBYT = 1)
SPDCR	SPBYT	_	RSPI byte access specification bit
SPDCR2		_	RSPI data control register 2
SPCR3	-	_	RSPI control register 3

2.23 CRC Calculator

Table 2.63 is Comparative Overview of CRC Calculators, and Table 2.64 is Comparison of CRC Calculator Registers.

Table 2.63 Comparative Overview of CRC Calculators

Item	RX23T (CRC)	RX26T (CRCA)	
Data size	8 bits	8 bits	32 bits
Data for CRC calculation	CRC codes are generated for any desired data in 8n-bit units (where n is a whole number)	CRC codes are generated for any desired data in 8n-bit units (where n is a whole number)	CRC codes are generated for any desired data in 32n-bit units (where n is a whole number)
CRC processor unit	8-bit parallel processing	8-bit parallel processing	32-bit parallel processing
CRC generating polynomial	One of three generating polynomials is selectable 8-bit CRC: X ⁸ + X ² + X + 1 16-bit CRC: X ¹⁶ + X ¹⁵ + X ² + 1 X ¹⁶ + X ¹² + X ⁵ + 1	One of three generating polynomials is selectable • 8-bit CRC: X ⁸ + X ² + X + 1 • 16-bit CRC: X ¹⁶ + X ¹⁵ + X2 + 1 X ¹⁶ + X ¹² + X5 + 1	One of two generating polynomials is selectable • 32-bit CRC: X ³² + X ²⁶ + X ²³ + X ²² + X ¹⁶ + X ¹² + X ¹¹ + X ¹⁰ + X ⁸ + X ⁷ + X ⁵ + X ⁴ + X ² + X + 1 X ³² + X ²⁸ + X ²⁷ + X ²⁶ + X ²⁵ + X ²³ + X ²² + X ²⁰ + X ¹⁹ + X ¹⁸ + X ¹⁴ + X ¹³ + X ¹¹ + X ¹⁰ + X ⁹ + X ⁸ + X ⁶ + 1
CRC calculation switching	The order of the bits produced by CRC calculation can be switched for LSB first or MSB first communication	The order of the bits produced by CRC calculation can be switched for LSB first or MSB first communication	
Low power consumption function	Ability to specify module stop state	Ability to transition to module stop	state

Table 2.64 Comparison of CRC Calculator Registers

Register	Bit	RX23T (CRC)	RX26T (CRCA)
CRCCR	GPS[1:0] (RX23T)	CRC generating polynomial switching bits	CRC generating polynomial switching bits
	GPS[2:0]		
	(RX26T)	b1 b0	b2 b0
		0 0: No calculation is executed.	0 0 0: No calculation is executed.
		0 1: 8-bit CRC $(X^8 + X^2 + X + 1)$	0 0 1: 8-bit CRC (X ⁸ + X ² + X + 1)
		1 0: 16-bit CRC (X ¹⁶ + X ¹⁵ + X ² + 1)	0 1 0: 16-bit CRC (X ¹⁶ + X ¹⁵ + X ² + 1)
		1 1: 16-bit CRC (X ¹⁶ + X ¹² + X ⁵ + 1)	0 1 1: 16-bit CRC (X ¹⁶ + X ¹² + X ⁵ + 1)
			1 0 0: 32-bit CRC (X ³² + X ²⁶ + X ²³ +
			$X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X$
			$X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$
			1 0 1: 32-bit CRC ($X^{32} + X^{28} + X^{27} + X^{26} + X^{25} + X^{23} + X^{22} + X^{20} + X^{25} + $
			$X^{19} + X^{18} + X^{14} + X^{13} + X^{11} +$
			$X^{10} + X^9 + X^8 + X^6 + 1$
			1 1 0: No calculation is executed.
			1 1 1: No calculation is executed.
	LMS	CRC calculation switching bit (b2)	CRC calculation switching bit (b6)
CRCDIR	_	CRC data input register	CRC data input register
		Supported access sizes	Supported access sizes
			 Longword access
		_	(32-bit CRC selected)
		Byte access	Byte access
000000		ODO data a ta tanadata	(16-bit or 8-bit CRC selected)
CRCDOR	_	CRC data output register	CRC data output register
		Supported access sizes	Supported access sizes
		Supported access sizes	 Longword access
			(32-bit CRC selected)
		Word access	Word access
		The lower byte (b7 to b0) is used	(16-bit CRC selected)
		when generating 8-bit CRC.	,
			Byte access
			(8-bit CRC selected)

2.24 12-Bit A/D Converter

Table 2.65 is Comparative Overview of 12-Bit A/D Converters, and Table 2.66 is Comparison of 12-Bit A/D Converter Registers.

Table 2.65 Comparative Overview of 12-Bit A/D Converters

Item	RX23T (S12ADE)	RX26T (S12ADHa)
Number of units	1 unit	Three units (S12AD, S12AD1, and S12AD2) (For products with a RAM capacity of 64 KB) Two units (S12AD and S12AD2) (For products with a RAM capacity of 48 KB)
Input channels	10 channels	S12AD: 4 channels S12AD1: 4 channels S12AD2: 14 channels (For products with a RAM capacity of 64 KB) S12AD: 7 channels S12AD2: 8 channels (For products with a RAM capacity of 48 KB)
Extended analog function	Internal reference voltage	Temperature sensor output, internal reference voltage (S12AD2 only)
A/D conversion method	Successive approximation method	Successive approximation method
Resolution	12 bits	12 bits
Conversion time	1 μs per channel (when A/D conversion clock (ADCLK) = 40 MHz)	0.9 μs per channel (when A/D conversion clock (ADCLK) = 60 MHz)
A/D conversion clock	 Peripheral module clock PCLK and A/D conversion clock ADCLK can be set so that the frequency division ratio should be one of the following. PCLK to ADCLK frequency division ratio = 1:1, 1:2, 2:1, 4:1, 8:1 ADCLK is set by using the clock generation circuit. 	 Peripheral module clock PCLKB and A/D conversion clock ADCLK can be set so that the frequency division ratio should be one of the following. PCLKB to ADCLK frequency ratio = 1:1, 2:1, 4:1, 1:2 ADCLK is set by using the clock generation circuit. The A/D conversion clock (ADCLK) can operate at frequencies from a maximum of 60 MHz to a minimum of 8 MHz.

Item	RX23T (S12ADE)	RX26T (S12ADHa)
Data registers	10 registers for analog input, one register for A/D-converted data duplication in double trigger mode, and two registers for A/D-converted data duplication during extended operation in double trigger mode	 22 registers for analog input (S12AD: 4 registers, S12AD1: 4 registers, S12AD2: 14 registers), one register for A/D-converted data duplication in double trigger mode for each unit, and two registers for A/D-converted data duplication in extended double trigger mode for each unit One register for temperature sensor output (S12AD2)
	One register for internal referenceOne register for self-diagnosis	 One register for internal reference (S12AD2) One register for self-diagnosis for each
	 The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for the results of A/D conversion 	 unit The results of A/D conversion are stored in 12-bit A/D data registers.
	The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode	The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode The value obtained by adding up A/D-converted as a value in the A/D data registers in A/D-converted value addition mode The value obtained by adding up A/D-converted as a value in the A/D data registers in A/D-converted value addition mode The value obtained by adding up A/D-converted as a value in the A/D data registers in A/D-converted value addition mode The value obtained by adding up A/D-converted as a value in the A/D data registers in A/D-converted value addition mode The value obtained by adding up A/D-converted as a value in the A/D data registers in A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted value addition mode The value obtained by adding up A/D-converted by A/D-converted by A/D-converted by A/D-converted by A/D-converted by A/D-converted by A/D-c
	 Double trigger mode (selectable in single scan and group scan modes) The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register. 	 Double trigger mode (available in single scan and group scan modes) The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register.
	 Extended operation in double trigger mode (available for specific triggers) — A/D-converted analog-input data on one selected channel is stored in the duplication register that is prepared for each type of trigger. 	 Extended double trigger mode (available for specific triggers) — A/D-converted analog-input data on one selected channel is stored in the duplication register that is prepared for each type of trigger.

Item	RX23T (S12ADE)	RX26T (S12ADHa)
Operating		The operating mode can be set individually
modes	Single scan mode:	for each of three units. • Single scan mode:
	 — A/D conversion is performed only once on a maximum of 10 arbitrarily selected analog inputs. 	 — A/D conversion is performed only once on arbitrarily selected analog inputs. — A/D conversion is performed only once on the temperature sensor output (S12AD2).
	 — A/D conversion is performed only once on the internal reference voltage. 	 — A/D conversion is performed only once on the internal reference voltage (S12AD2).
	Continuous scan mode: — A/D conversion is performed repeatedly on a maximum of 10 arbitrarily collected analog inputs	Continuous scan mode: — A/D conversion is performed repeatedly on arbitrarily selected
	arbitrarily selected analog inputs.	analog inputs.
	Group scan mode: A maximum of 10 analog inputs arbitrarily selected are divided into two groups (group A and group B), and A/D conversion of the analog input selected on a group basis is performed only once.	 Group scan mode: Two (groups A and B) or three (groups A, B, and C) can be selected as the number of groups to be used. (Only the combination of groups A and B can be selected when the number of groups is two.) Arbitrarily selected analog input channels, the temperature sensor output (S12AD2), and the internal reference voltage (S12AD2) are divided into two groups (group A and B) or three groups (group A, B, and C), and A/D conversion of the analog input selected on a group basis is performed only once.
	 The scanning start condition for groups A and B (synchronous trigger) can be independently selected, allowing A/D conversion of each group to be started independently. 	 The scanning start condition for groups A, B, and C (synchronous trigger) can be independently selected, allowing A/D conversion of each group to be started independently.
	Group scan mode (Group A priority control selected)	Group scan mode (Group priority control selected)
	— When there is a trigger input of group A during A/D conversion of group B, A/D conversion of group B is suspended and A/D conversion of group A is performed.	 If a higher-priority group trigger is input during scanning of a lower-priority group, scanning of the lower-priority group stops and scanning of the higher-priority group starts. The priority order is group A (highest) > group B > group C (lowest).
	 A setting is possible for restarting (rescanning) A/D conversion of group B at the completion of A/D conversion of group A. 	Whether or not to restart scanning (rescan) of the lower-priority group after processing for the higher-priority group completes, is selectable. Rescan can also be set to start either from the first selected channel or from the channel on which A/D conversion did not complete.

Item	RX23T (S12ADE)	RX26T (S12ADHa)
Conditions for A/D conversion start	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU) or 8-bit timer (TMR) Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# (S12AD) pin. 	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU), general purpose PWM timer (GPTW), 8-bit timer (TMR), or event link controller (ELC) Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# (S12AD), ADTRG1# (S12AD1), and ADTRG2# (S12AD2) pins (individually for each of three units).
Functions	 Channel-dedicated sample-and-hold function (three channels) Variable sampling state count Self-diagnosis of 12-bit A/D converter Selectable A/D-converted value addition mode or average mode Analog input disconnection detection assist function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) Automatic clear function of A/D data registers 	 Channel-dedicated sample-and-hold function (three channels for S12AD and three channels for S12AD1) (Constant sampling can be set.) Variable sampling time (can be set per channel) Self-diagnosis of 12-bit A/D converter Selectable A/D-converted value addition mode or average mode Analog input disconnection detection assist function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) Automatic clear function of A/D data registers Compare function (window A and window B) Order of channel conversion can be specified for each unit. Input signal amplification function using the programmable gain amplifier (each unit has 3 channels) (Only for products with a RAM capacity of 64 KB)
Interrupt sources	 In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADI) can be generated on completion of single scan In double trigger mode, A/D scan end interrupt request (S12ADI) can be generated on completion of double scan. 	 In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADI, S12ADI1, or S12ADI2) can be generated on completion of single scan (individually for each unit). In double trigger mode, A/D scan end interrupt request (S12ADI, S12ADI1, or S12ADI2) can be generated on completion of double scan (individually for each unit).

Item	RX23T (S12ADE)	RX26T (S12ADHa)
Interrupt sources	In group scan mode, an A/D scan end interrupt request (S12ADI) can be generated on completion of group A scan, and an A/D scan end interrupt request (GBADI) for group B is generated on completion of group B scan.	In group scan mode, an A/D scan end interrupt request (S12ADI, S12ADI1, or S12ADI2) can be generated on completion of group A scan, an A/D scan end interrupt request (S12GBADI, S12GBADI1, or S12GBADI2) for group B can be generated on completion of group B scan, and an A/D scan end interrupt request (S12GCADI, S12GCADI1, or S12GCADI2) for group C can be generated on completion of group C scan.
	When double trigger mode is selected in group scan mode, an A/D scan end interrupt request (S12ADI) can be generated on completion of a double scan of group A, and an A/D scan end interrupt request (GBADI) for group B is generated on completion of group B scan.	 When double trigger mode is selected in group scan mode, an A/D scan end interrupt request (S12ADI, S12ADI1, or S12ADI2) can be generated on completion of a double scan of group A. A corresponding scan end interrupt request (S12GBADI/S12GCADI, S12GBADI1/S12GCADI1, or S12GBADI2/S12GCADI2) can be generated on completion of a group B or group C scan. A compare interrupt request
	The S12ADI and GBADI interrupts can activate the data transfer controller (DTC).	 (S12CMPAI, S12CMPAI1, S12CMPAI2, S12CMPBI, S12CMPBI1, or S12CMPBI2) can be generated upon a match with the comparison condition for the digital compare function. S12ADI / S12ADI1 / S12ADI2, S12GBADI / S12GBADI1 / S12GBADI2, S12GCADI / S12GCADI1 / S12GCADI2 The above interrupts can activate the DMA controller (DMAC) and the data transfer controller (DTC).
Event link function	_	 An event can be output upon completion of all scans. In single scan mode, an event can be output when the compare function window condition is met. Scan can be started by a trigger output by the ELC.
Low power consumption function	Ability to specify module stop state	Ability to transition to module stop state

Table 2.66 Comparison of 12-Bit A/D Converter Registers

Register	Bit	RX23T(S12ADE)	RX26T(S12ADHa)
ADDRy	_	A/D data register y	A/D data register y
-		(y = 0 to 7, 16, 17)	(y = 0 to 3: S12AD,
			y = 0 to 3: S12AD1,
			y = 0 to 11, 16, 17: S12AD2)
ADTSDR	_	_	A/D temperature sensor data
			register
ADCSR	DBLANS[4:0]	Double trigger target channel select	Double trigger mode target channel
	(S12AD)	bits	select bits
		b0 b4	b0 b4
		00000: AN000	00000: AN000
		00001: AN001	00001: AN001
		00010: AN002	00010: AN002
		00011: AN003	00011: AN003
		00100: AN004	00100: AN004
		00101: AN005	00101: AN005
		00110: AN006	00110: AN006
		00111: AN007	
		10000: AN016	
		10001: AN017	
	DBLANS[4:0]	_	Double trigger mode target channel
	(S12AD1)		select bits
	DBLANS[4:0]	_	Double trigger mode target channel
	(S12AD2)		select bits
	DBLE	Double trigger mode select bit	Double trigger mode enable bit
		0: Deselects double trigger mode.	0: Double trigger mode is disabled.
		1: Selects double trigger mode.	1: Double trigger mode is enabled.
ADANSA0	_	A/D channel select register A0	_
S12AD. ADANSA0	_	_	A/D channel select register A0
S12AD1. ADANSA0	_	_	A/D channel select register A0
S12A2.	_	_	A/D channel select register A0
ADANSA0			
ADANSA1	ANSA100/	A/D conversion channel select bit	A/D conversion channel select bit
	ANSA101		Set whether to include AN216 and
			AN217 in conversion targets.
		0: Exclude AN016 and AN017 from conversion targets	0: Exclude from conversion targets
		1: Include AN016 and AN017 in	1: Include in conversion targets
		conversion targets	
ADANSB0	_	A/D channel select register B0	_
S12AD.	_		A/D channel select register B0
ADANSB0			1 2 3 2 3
S12AD1.		_	A/D channel select register B0
ADANSB0			1 2 3 3 2 2 3
S12A2.	_	_	A/D channel select register B0
ADANSB0	1		

Register	Bit	RX23T(S12ADE)	RX26T(S12ADHa)
ADANSB1	ANSB100/	A/D conversion channel select bit	A/D conversion channel select bit
	ANSB101		Set whether to include AN216 and
			AN217 in conversion targets.
		0: Exclude AN016 and AN017 from conversion targets	0: Exclude from conversion targets
		1: Include AN016 and AN017 in conversion targets	1: Include in conversion targets
S12AD. ADANSC0	_	_	A/D channel select register C0
S12AD1. ADANSC0	_	_	A/D channel select register C0
S12A2.	_	_	A/D channel select register C0
ADANSC0			
ADANSC1	_	_	A/D channel select register C1
ADSCSn	_	_	A/D channel conversion order setting register n (n = 0 to 13)
ADADS0	_	A/D-converted value addition/average channel select register 0	
S12AD. ADADS0	_		A/D-converted value addition/average channel select register 0
S12AD1. ADADS0		_	A/D-converted value addition/average channel select register 0
S12AD2. ADADS0		_	A/D-converted value addition/average channel select register 0
ADADS1	ADS100/ ADS101	A/D-converted value addition/average channel select bit 0: Not selectable between A/D-converted value addition mode and average mode for AN016 and AN017 1: Selectable between A/D-converted value addition mode and average mode for AN016	A/D-converted value addition/average channel select bit Set A/D-converted value addition mode or average mode for AN216 and AN217 0: Disable A/D-converted value addition mode and average mode 1: Enable A/D-converted value addition mode and average mode mode
ADCER	ASE	and AN017	A/D data register automatic setting
	DIAGM	Self-diagnosis enable bit	enable bit
ADSTRCR		Self-diagnosis enable bit	Self-diagnosis enable bit
ADSTRGR	TRSB[5:0] (RX23T) TRSB[6:0] (RX26T)	A/D conversion start trigger select bits for Group B	A/D conversion start trigger select bits for Group B
	TRSA[5:0] (RX23T) TRSA[6:0] (RX26T)	A/D conversion start trigger select bits	A/D conversion start trigger select bits

Register	Bit	RX23T(S12ADE)	RX26T(S12ADHa)
ADEXICR	TSSAD	_	Temperature sensor output A/D- converted value addition/average mode select bit
	TSSA	_	Temperature sensor output A/D conversion select bit
	TSSB	_	Group B temperature sensor output A/D conversion select bit
	OCSB	_	Group B internal reference voltage A/D conversion select bit
ADGCEXCR	_	_	A/D group C extended input control register
ADGCTRGR	_	_	A/D group C trigger select register
ADGCTRGR2	_	_	A/D group C trigger select register 2
ADSSTRn		A/D sampling state register n (n = 0 to 7, L, O)	A/D sampling state register n (n = 0 to 11, L, T, O)
		Initial value after a reset differs.	
ADSHCR	_	A/D sample and hold circuit control register	A/D sample and hold circuit control register
		Initial value after a reset differs.	
	SSTSH[7:0]	These bits set a sampling time in the range from 4 to 255 state cycles.	These bits set a sampling time between 12 and 252 clock cycles.
ADSHCR	SHANS[2:0] (RX23T)	Channel-dedicated sample and hold circuit bypass select bits	Channel-dedicated sample and hold circuit bypass select bits
	SHANS[0] SHANS[1] SHANS[2] (RX26T)	Whether to use the channel- dedicated sample & hold circuit for AN000 to AN002 or bypass it without using it can be selected.	Whether to use the channel- dedicated sample & hold circuit for AN000 or AN100 channel/AN001 or AN101 channel/AN002 or AN102 channel can be selected.
		O: The channel-dedicated sample and hold circuit is bypassed. The channel-dedicated sample and hold circuit is used.	O: The channel-dedicated sample and hold circuit is disabled. The channel-dedicated sample and hold circuit is enabled.
ADSHMSR	_	_	A/D sample and hold operating mode select register

Register	Bit	RX23T(S12ADE)	RX26T(S12ADHa)
ADDISCR	_	Disconnection detection assist	Disconnection detection assist
		setting bits	setting bits
		ADNDIS[4]:	ADNDIS[4]
		Discharge or precharge	Discharge or precharge
		selection	selection
		b4	b4
		0: Discharge	0: Discharge
		1: Precharge	1: Precharge
		ADNDIS[3:0]:	ADNDIS[3:0]
		Discharge or precharge period	The discharge/precharge period is specified by the number of ADCLK clock cycles.
		b3 b0	b3 b0
		0 0 0 0: No charging	0 0 0 0: No charging
		(disconnection detection assist function disabled)	(disconnection detection assist function disabled)
		0 0 1 0 to 1 1 1 1: Number of states in	0 0 1 1: Charge period of 3 clock cycles
		precharge/discharge period	0 1 1 0: Charge period of 6 clock cycles
			1 0 0 1: Charge period of 9 clock cycles
			1 1 0 0: Charge period of 12 clock cycles
			1 1 1 1: Charge period of 15 clock cycles
		Settings other than the above are prohibited.	Settings other than the above are prohibited.
ADELCCR		_	A/D event link control register
ADGSPCR	LGRRS	_	Restart channel select bit
ADCMPCR	_	_	A/D compare function control register
ADCMPANSR0	_	_	A/D compare function window A
			channel select register 0
ADCMPANSR1	_	_	A/D compare function window A channel select register 1
ADCMPANSER	_		A/D compare function window A extended input select register
ADCMPLR0	_	_	A/D compare function window A
			compare condition setting register 0
ADCMPLR1		<u> </u>	A/D compare function window A
ADOMI LIVI			compare condition setting register
ADCMPLER	 	_	A/D compare function window A
			extended input compare condition setting register
ADCMPDR0	_	_	A/D compare function window A
			lower level setting register
ADCMPDR1	_	_	A/D compare function window A upper level setting register

Register	Bit	RX23T(S12ADE)	RX26T(S12ADHa)
ADCMPSR0		_	A/D compare function window A channel status register 0
ADCMPSR1	_	_	A/D compare function window A channel status register 1
ADCMPSER		_	A/D compare function window A extended input channel status register
ADWINMON	_	_	A/D compare function window A/B status monitoring register
ADCMPBNSR	_	_	A/D compare function window B channel select register
ADWINLLB	_	_	A/D compare function window B lower level setting register
ADWINULB	_	_	A/D compare function window B upper level setting register
ADCMPBSR	_	_	A/D compare function window B channel status register
S12AD. ADPGACR		_	A/D programmable gain amplifier control register
S12AD1. ADPGACR	_	_	A/D programmable gain amplifier control register
S12AD. ADPGAGS0	_	_	A/D programmable gain amplifier gain setting register 0
S12AD1. ADPGAGS0	_	_	A/D programmable gain amplifier gain setting register 0
ADVMONCR	_		A/D internal reference voltage monitoring circuit enable register
ADVMONO			A/D internal reference voltage monitoring circuit output enable register

2.25 D/A Converter and 12-Bit D/A Converter

Table 2.67 is Comparative Overview of D/A Converters, and Table 2.68 is Comparison of D/A Converter Registers.

Table 2.67 Comparative Overview of D/A Converters

Item	RX23T (DA)	RX26T (R12DAb)
Resolution	8 bits	12 bits
Output channels	1 channel	2 channels
Measure against interference between analog modules		Measure against interference between D/A and A/D converters: D/A converted data update timing is controlled by the 12-bit A/D converter synchronous D/A conversion enable signal output by the 12-bit A/D converter (unit 2). This reduces degradation of A/D conversion accuracy due to interference by controlling the timing of the 12-bit D/A converter inrush current with the enable signal.
Low power consumption	Ability to transition to module stop	Ability to transition to module stop
function	state	state
Event link function (input)	_	Ability to start D/A conversion on channel 0 when an event signal is input
Output destination selection		Output to external pins and to comparator C can be controlled independently.

Table 2.68 Comparison of D/A Converter Registers

Register	Bit	RX23T (DA)	RX26T (R12DAb)
DADR1	_	_	D/A data register 1
DACR	DAE	_	D/A enable bit
	DAOE1	_	D/A output enable 1 bit
DAADSCR	_	_	D/A A/D synchronization start control register
DADSELR	_	_	D/A destination select register

2.26 Comparator C

Table 2.69 is Comparative Overview of Comparator C Modules, and Table 2.70 is Comparison of Comparator C Registers.

Table 2.69 Comparative Overview of Comparator C Modules

Item	RX23T (CMPC)	RX26T (CMPCa)
Number of	3 channels	6 channels
channels	(comparator C0 to comparator C2)	(comparator C0 to comparator C5)
Analog input	Input voltage to CMPCnm pin	Input voltage on CMPCnm pin
voltage	(n = channel number, m = 0 to 2)	(n = channel number, m = 0 to 3)
	Internal reference voltage	
Reference	Input voltage on CVREFC0/CVREFC1	Input voltage from CVREFC0/CVREFC1
input voltage	pin or output voltage from on-chip D/A	pin, output voltage from on-chip D/A
	converter	converter 0, or output voltage from on-
		chip D/A converter 1
Comparison	The comparison result can be output	The comparison result can be output
result	externally.	externally.
Digital filter	One of three sampling periods can be	One of three sampling periods can be
function	selected.	selected.
	The filter function can also be disabled.	The filter function can also be disabled.
	A noise-filtered signal can be used to	A noise-filtered signal can be used to
	generate the interrupt request output and POE source output, and the signal	generate the interrupt request output, event output to the ELC, and POE
	can be used to read the comparison	source output*1, and comparison results
	result via registers.	can be read from registers.
Interrupt	An interrupt request is generated upon	An interrupt request is generated upon
request	detection of a valid edge of the	detection of a valid edge of the
signal	comparison result.	comparison result.
	The rising edge, falling edge, or both	The rising edge, falling edge, or both
	edges of the comparison result can be	edges of the comparison result can be
	selected.	selected as valid edges.
Low power	Ability to transition to module stop state	Ability to transition to module stop state
consumption		
function		

Note 1. The POE only uses the level detection signal, and the POEG uses the level detection and edge detection signals

Table 2.70 Comparison of Comparator C Registers

Register	Bit	RX23T (CMPC)	RX26T (CMPCa)
CMPSEL0	CMPSEL [3:0]	Comparator input select bits	Comparator input select bits
	[3:0]	 For Comparator C0 b3 b0 0 0 0 0 0: No input 0 0 0 1: CMPC00 is selected. 0 1 0 0: CMPC01 is selected. 1 0 0 0: CMPC03 is selected. Settings other than the above are prohibited. For Comparator C1 b3 b0 0 0 0 0: No input 0 0 0 1: CMPC10 is selected. 0 1 0 0: CMPC11 is selected. 0 1 0 0: CMPC12 is selected. 1 0 0 0: CMPC13 is selected. Settings other than the above are prohibited. For Comparator C2 b3 b0 0 0 0 0: No input 0 0 0 1: CMPC20 is selected. 0 1 0: CMPC21 is selected. 0 1 0: CMPC21 is selected. Settings other than the above are prohibited. For Comparator C2 b3 b0 0 0 0 0: No input 0 0 0 1: CMPC21 is selected. 0 1 0: CMPC23 is selected. Settings other than the above are prohibited. 	 For Comparator C0 b3 b0 0 0 0 0 0: No input 0 0 0 1: CMPC00 is selected. 0 1 0: CMPC01 is selected. 1 0 0 0: CMPC03 is selected. Settings other than the above are prohibited. For Comparator C1 b3 b0 0 0 0 0: No input 0 0 0 1: CMPC10 is selected. 0 1 0 0: CMPC11 is selected. 0 1 0 0: CMPC11 is selected. 0 1 0 0: CMPC12 is selected. 1 0 0 0: CMPC13 is selected. Settings other than the above are prohibited. For Comparator C2 b3 b0 0 0 0 0: No input 0 0 0 1: CMPC20 is selected. Settings other than the above are prohibited. For Comparator C2 b3 b0 0 0 0 0: CMPC21 is selected. 0 1 0: CMPC21 is selected. 0 1 0: CMPC21 is selected. 0 1 0: CMPC23 is selected. Settings other than the above are prohibited. For Comparator C3 b3 b0 0 0 0 0: No input 0 0 0: CMPC31 is selected. Settings other than the above are prohibited. For Comparator C3 b3 b0 0 0 0 0: No input 0 0 0 1: CMPC31 is selected. 0 1 0: CMPC31 is selected. Settings other than the above are prohibited. For Comparator C3 b3 b0 0 0 0 0: No input 0 0 0: CMPC32 is selected. 0 1 0: CMPC31 is selected. 0 1 0: CMPC31 is selected. Settings other than the above are prohibited. For Comparator C4 b3 b0 0 0 0: No input 0 0 0: CMPC41 is selected. Settings other than the above are prohibited. For Comparator C4 b3 selected. 0 1 0: CMPC41 is selected. 0 1 0: CMPC42 is selected. 0 1 0: CMPC42 is selected. Settings other than the above are prohibited.

Register	Bit	RX23T (CMPC)	RX26T (CMPCa)
CMPSELO	CMPSEL [3:0]		For Comparator C5 b3 b0 0 0 0 0: No input 0 0 0 1: CMPC50 is selected. 0 0 1 0: CMPC51 is selected. 0 1 0 0: CMPC52 is selected. 1 0 0 0: CMPC53 is selected. Settings other than the above are prohibited.
CMPSEL1	CVRS[1:0] (RX23T) CVRS[3:0] (RX26T)	Reference input voltage select bits [For Comparators C0 and C1] b1 b0 0 0: No input 0 1: CVREFC1 input is selected for the reference input voltage. 1 0: Output of on-chip D/A converter is selected for the reference input voltage. Settings other than the above are prohibited.	b3 b0 0 0 0 0: No input 0 0 0 1: Output of on-chip D/A converter 1 is selected for the reference input voltage. 0 0 1 0: Output of on-chip D/A converter 0 is selected for the reference input voltage. 0 1 0 0: CVREFC1 input is selected for the reference input voltage. 1 0 0 0: CVREFC0 input is selected for the reference input voltage. Settings other than the above are prohibited.
CMPIOC	VREFEN	[For Comparator C2] b1 b0 0 0: No input 0 1: CVREFC0 input is selected for the reference input voltage. 1 0: Output of on-chip D/A converter is selected for the reference input voltage. Settings other than the above are prohibited. Internal reference voltage ON/OFF	
0140071.0		control bit	
CMPCTL2	I —	 -	Comparator control register 2

2.27 Data Operation Circuit

Table 2.71 is Comparative Overview of Data Operation Circuits, and Table 2.72 is Comparison of Data Operation Circuit Registers.

Table 2.71 Comparative Overview of Data Operation Circuits

Item	RX23T (DOC)	RX26T (DOCA)
Data operation functions	16-bit data comparison, addition, and subtraction	 Comparison of 16- or 32-bit data (match/mismatch, greater/less, in/out of range) Addition or subtraction of 16- or 32-bit data
Low power consumption function	Ability to specify module stop state	Ability to transition to module stop state
Interrupts	 The compared values either match or mismatch The result of data addition is greater than FFFFh The result of data subtraction is 	 When data comparison result matches detection condition When data addition result is greater than FFFFh (when DOCR.DOPSZ = 0) or FFFF FFFFh (when DOCR.DOPSZ = 1) (overflow) When data subtraction result is
	less than 0000h	less than 0000h (when DOCR.DOPSZ = 0) or 0000 0000h (when DOCR.DOPSZ = 1) (underflow)
Event link function (output)		 When data comparison result matches detection condition When data addition result is greater than FFFFh (when DOCR.DOPSZ = 0) or FFFF FFFFh (when DOCR.DOPSZ = 1) (overflow) When data subtraction result is less than 0000h (when DOCR.DOPSZ = 0) or 0000 0000h (when DOCR.DOPSZ = 1) (underflow)

Table 2.72 Comparison of Data Operation Circuit Registers

Register	Bit	RX23T (DOC)	RX26T (DOCA)
DOCR	DCSEL (RX23T)	Detection condition select bit	Detection condition select bits
	DCSEL[2:0]	b2	b6 b4
	(RX26T)	0: Data mismatches are detected.	0 0 0: Mismatch (DODIR ≠ DODSR0)
		1: Data matches are detected.	0 0 1: Match (DODIR = DODSR0)
			0 1 0: Less (DODIR < DODSR0)
			0 1 1: Greater (DODIR > DODSR0)
			1 0 0: In range (DODSR0 < DODIR < DODSR1)
			1 0 1: Out of range (DODIR < DODSR0, DODSR1 < DODIR)
			Other than above: Setting prohibited.
	DOPSZ	—	Data operation size select bit
	DOPCIE	Data operation circuit interrupt	Data operation circuit interrupt
		enable bit (b4)	enable bit (b7)
	DOPCF	Data operation circuit flag	_
	DOPCFCL	DOPCF clear bit	_
DOSR	_	_	DOC status register
DOSCR	_	_	DOC status clear register
DODIR	_	DOC data input register	DOC data input register
		DODIR is a 16-bit register.	DODIR is a 32-bit register.
DODSR	_	DOC data setting register	_
DODSR0	_	_	DOC data setting register 0
DODSR1	_	_	DOC data setting register 1

2.28 RAM

Table 2.73 is Comparative Overview of RAMs, and Table 2.74 is Comparison of RAM Registers.

Table 2.73 Comparative Overview of RAMs

Item	RX23T	RX26T
RAM	12 KB (RAM0: 12 KB)	64 KB
capacity		
RAM	RAM0:	
Addresses	0000 0000h to 0000 27FFh	
	0000 4000h to 0000 4A7Fh	
		0000 0000h to 0000 FFFFh
Memory	Memory bus 1	Memory bus 1
buses		
Access	Single-cycle access is possible for both	Single-cycle access is possible for both
	reading and writing.	reading and writing.
	The RAM can be enabled or disabled.	The RAM can be enabled or disabled.
Low power	The module stop state is selectable for	Ability to transition to module stop state
consumption	RAM0.	
function		
Error	-	Parity check: Detection of 1-bit errors
checking		A non-maskable interrupt or an interrupt
		is generated when an error occurs.

Table 2.74 Comparison of RAM Registers

Register	Bit	RX23T	RX26T
RAMMODE	_	_	RAM operating mode control register
RAMSTS	_	_	RAM error status register
RAMECAD	_	_	RAM error address capture register
RAMPRCR	_		RAM protection register

2.29 Flash Memory

Table 2.75 is Comparative Overview of Flash Memories, and Table 2.76 is Comparison of Flash Memory Registers.

Table 2.75 Comparative Overview of Flash Memories

	RX23T	RX26T		
		Code	Data	
Item	ROM	flash memory	flash memory	
Memory space Address	User area: Max. 128 KB Extra area: Storage for startup area information, access window information, and unique IDs	Max. 512 KB • Products with capacity of 512	16 KB	
	 Products with capacity of 128 KB: FFFE 0000h to FFFF FFFFh Products with capacity of 64 KB: FFFF 0000h to FFFF FFFFh 	KB: [Linear mode] — FFF8 0000h to FFFF FFFFh [Dual mode] Bank 1 — FFF8 0000h to FFFB FFFFh Bank 2 — FFFC 0000h to FFFF FFFFh • Products with capacity of 256 KB: — FFFC 0000h to FFFF FFFFh • Products with capacity of 128 KB: — FFFE 0000h to FFFF FFFFh	 Products with capacity of 16 KB: — 0010 0000h to 0010 3FFFh 	
Read cycle	No ROM wait cycles when ICLK ≤ 32 MHz ROM wait cycle when ICLK > 32 MHz	One cycle	16-bit or 8-bit read access requires 8 FCLK clock cycles.	
Value after erasure	ROM: FFh	FFh	Undefined	

RX23T		RX26T		
		Code	Data	
Item	ROM	flash memory	flash memory	
Programming/ erasing method	Rewrite by software command The following software commands are implemented: Program, blank check, block erase, all-block erase The following commands are implemented for programs in the extra area: Start-up area information program Access window information program	 A flash memory programmer can be used to program and erast the flash memory via a serial interface (serial programming). A user program can be used to program and erase the flash memory (self-programming). 		
Security function	Protects against illicit tampering with or reading of data in flash memory.	Protects against illicit tampering w memory.	ith or reading of data in flash	
Protection function	Protects against erroneous programming of the flash memory.	Protects against erroneous progra	mming of the flash memory.	
Dual bank function		The dual bank configuration allows safe updating even upon interruption during a rewrite operation. Linear mode: In this mode, code flash memory is used as a single area. Dual mode: In this mode, code flash memory is used as two separate areas.		
Trusted Memory (TM) function		Protects against illicit reading in code flash memory. • Linear mode: Blocks 8 and 9 • Dual mode: Blocks 8, 9, 30, and 31		
BGO (Background Operation) function		 Code flash memory can be read while it is being programme erased. Data flash memory can be read while code flash memory is being programmed or erased. Code flash memory can be read while data flash memory is being programmed or erased. 		
Units of programming and erasure	 Units of programming for the user area: 8 bytes Units of erasure for the user area: Block units 	Programming: 128 bytes Erasure: Block units	Programming: 4-byte unitsErasure: block units	
Other functions	_	Interrupts can be accepted during	self-programming.	

	RX23T	RX26T	
		Code	Data
Item	ROM	flash memory	flash memory
On-board programming (serial programming and self-programming)	Boot mode (SCI interface) Channel 1 of the serial communications interface (SCI1) is used for asynchronous serial communication. The user area is programmable. Boot mode (FINE interface) FINE is used. The user area is programmable. Self-programming in single-chip mode The user area is programmable using a flash programming routine in a user program.	 Programming/erasure in boot in the asynchronous serial in the communication speed Programming/erasure in boot in the communication speed Programming/erasure in boot in the communication speed Programming/erasure in single the programming or erasure beginning to the communication of the communication in the commun	mode (SCI interface) iterface (SCI1) is used. is adjusted automatically. mode (FINE interface)
Off-board programming (programming and erasure using a parallel programmer)	The user area is rewritable using a flash programmer compatible with this MCU.		
Unique ID	A unique 16-byte ID code is provided for each MCU.	A unique 12-byte ID code is provide	ded for each MCU.

Table 2.76 Comparison of Flash Memory Registers

Register	Bit	RX23T	RX26T
FWEPROR	_	_	Flash P/E protect register
FASTAT	_	_	Flash access status register
FAEINT	_	_	Flash access error interrupt enable
			register
FRDYIE	_	_	Flash ready interrupt enable register
FSADDR	 	_	FACI command start address
			register
FEADDR	Ī—	_	FACI command end address register
FSTATR	—	_	Flash status register
FENTRYR	_	_	Flash P/E mode entry register
FSUINITR		_	Flash sequencer set-up initialization
			register
FCMDR	Ī—	_	FACI command register
FPESTAT	_	_	Flash P/E status register
FBCCNT	_	_	Data flash blank check control
			register
FBCSTAT	_	_	Data flash blank check status
			register
FPSADDR	_	_	Data flash programming start
			address register
FAWMON	-	_	Flash access window monitor
			register
FCPSR	-	_	Flash sequencer processing
			switching register
FPCKAR	_	_	Flash sequencer processing clock
			notification register
FSUACR	<u> </u>	_	Start-up area control register
FENTRYR		Flash P/E mode entry register	_
FPR		Protection unlock register	_
FPSR	_	Protection unlock status register	_
FPMCR	_	Flash P/E mode control register	_
FISR	_	Flash initial setting register	_
FRESETR	_	Flash reset register	_
FASR	_	Flash area select register	_
FCR	_	Flash control register	_
FEXCR	_	Flash extra area control register	_
FSARH	_	Flash processing start address	_
		register H	
FSARL	_	Flash processing start address	_
		register L	
FEARH	-	Flash processing end address	-
		register H	
FEARL	_	Flash processing end address register L	_
FWBn	_	Flash write buffer n register (n = 0 to 3)	_
FSTATR0	<u> </u>	Flash status register 0	_
FSTATR1	_	Flash status register 1	_
FEAMH	<u> </u>	Flash error address monitor register	_
		H	

RX26T Group, RX23T Group Differences Between the RX26T Group and the RX23T Group

Register	Bit	RX23T	RX26T
FEAML	_	Flash error address monitor register	_
		L	
FSCMR	_	Flash start-up setting monitor register	_
FAWSMR	_	Flash access window start address	_
		monitor register	
FAWEMR	_	Flash access window end address	_
		monitor register	
UIDRn	_	Unique ID register n ($n = 0$ to 3)	Unique ID register n (n = 0 to 2)

2.30 Packages

As indicated in Table 2.77, there are discrepancies in the package drawing codes and availability of some package types, and this should be borne in mind at the board design stage.

Table 2.77 Packages

	RENESAS Code	RENESAS Code	
Package Type	RX23T	RX26T	
100-pin LFQFP	×	0	
80-pin LFQFP	×	0	
64-pin HWQFN	×	0	
52-pin LQFP	0	×	
48-pin HWQFN	×	0	
32-pin HWQFN	×	0	

O: Package available (Renesas code omitted); X: Package not available

3. Comparison of Pin Functions

This section presents a comparative description of pin functions as well as a comparison of the pins for the power supply, clocks, and system control. Items that exist only on one group are indicated by **blue text**. Items that exists on both groups with different specifications are indicated by **red text**. Black text indicates there is no differences in the item's specifications between groups.

3.1 64-Pin Package

Table 3.1 is Comparative Listing of 64-Pin Package Pin Functions.

Table 3.1 Comparative Listing of 64-Pin Package Pin Functions

64-Pin	RX23T (64-pin LFQFP)	RX26T (64-Pin LFQFP, 64-Pin HWQFN)
1	P02/CTS1#/RTS1#/SS1#/ADST0/IRQ5	EMLE/PN7/MTIOC9D/MTIOC9D#/IRQ5/ ADST0
2	P00/IRQ2	P00/MTIOC9A/MTIOC9A#/CACREF/GTIU/ TIC3/RXD12/SMISO12/SSCL12/RXDX12/ RXD009*1/SMISO009*1/SSCL009*1/IRQ2/
		ADST1*1/ COMP0
3	VCL	VCL
4	P01/CACREF/IRQ4	MD/FINED/PN6
5	MD/NMI	P01/MTIOC9C/MTIOC9C#/POE12#/
		GTETRGA/GTETRGB/GTETRGC/
		GTETRGD/GTIW/TXD12/SMOSI12/SSDA12/
		TXDX12/SIOX12/TXD009*1/TXDA009*1/
		SMOSI009*1/SSDA009*1/IRQ4/ADST2/
		COMP1
6	RES#	RES#
7	XTAL/P37	XTAL/P37/RXD5/SMISO5/SSCL5
8	VSS	VSS
9	EXTAL/P36	EXTAL/P36/TXD5/SMOSI5/SSDA5
10	VCC	VCC
11	PE2/POE10#/NMI	PE2/POE10#/NMI/IRQ0
12	PD7/TMRI1/SSLA1	TRST#/PD7/MTIOC9A/MTIOC9A#/TMRI1/
		TMRI5/GTIOC0A/GTIOC3A/GTIOC0A#/
		GTIOC3A#/GTIU/TXD5/SMOSI5/SSDA5/
		SCK009*1/TXD008*1/TXDA008*1/SMOSI008*1/
		SSDA008*1/TXDB009*1/SSLA1/SSL01*1/
		CTX0/ IRQ8
13	PD6/TMO1/SSLA0/CTS1#/RTS1#/SS1#/	TMS/PD6/MTIOC9C/MTIOC9C#/TMO1/
	ADST0/IRQ5	GTIOC0B/GTIOC3B/GTIOC0B#/GTIOC3B#/
		GTIW/CTS1#/RTS1#/SS1#/RXD12/
		SMISO12/SSCL12/RXDX12/CTS011# ^{*1} /
		RTS011#*1/SS011#*1/DE011*1/SSLA0/
		SSL00*1/ IRQ5/ADST0
14	PD5/TMRI0/RXD1/SMISO1/SSCL1/IRQ3	TDI/PD5/TMRI0/TMRI6/GTIOC1A/
		GTETRGA/GTIOC1A#/GTIOC7A/RXD1/
		SMISO1/SSCL1/RXD011*1/SMISO011*1/
45	DD 4/TMO10/001/4/I/D00	SSCL011*1/SSL00*1/IRQ6
15	PD4/TMCI0/SCK1/IRQ2	TCK/PD4/TMCI0/TMCI6/GTIOC1B/
		GTETRGB/GTIOC1B#/SCK1/TXD12/
		SMOSI12/SSDA12/TXDX12/SIOX12/ SCK011*1/TXDB011*1/SSL02*1/IRQ2
		SUNUTT /TADDUTT /SSLUZ /IRQZ

64-Pin	RX23T (64-pin LFQFP)	RX26T (64-Pin LFQFP, 64-Pin HWQFN)
16	PD3/TMO0/TXD1/SMOSI1/SSDA1	TDO/PD3/TMO0/GTIOC2A/GTETRGC/
		GTIOC2A#/GTIOC7B/TXD1/SMOSI1/
		SSDA1/TXD011*1/TXDA011*1/SMOSI011*1/
		SSDA011*1/MOSI0
17	PB7/SCK5	PB6/GTIOC2A/GTIOC3A/GTIOC2A#/
		GTIOC3A#/TOC0/RXD5/SMISO5/SSCL5/
		RXD12/SMISO12/SSCL12/RXDX12/
		RXD011*1/SMISO011*1/SSCL011*1/MISO0*1/
		CRX0/ IRQ2
18	PB6/RXD5/SMISO5/SSCL5/IRQ5	PB5/GTIOC2B/GTIOC3B/GTIOC2B#/
		GTIOC3B#/TIC0/TXD5/SMOSI5/SSDA5/
		TXD12/SMOSI12/SSDA12/TXDX12/SIOX12/
		TXD011*1/TXDA011*1/SMOSI011*1/
		SSDA011*1/ RSPCK0*1/CTX0
19	PB5/TXD5/SMOSI5/SSDA5	PB4/POE8#/GTETRGA/GTETRGB/
		GTETRGC/GTETRGD/GTCPPO0/CTS5#/
		RTS5#/SS5#/RXD12/SMISO12/SSCL12/
		RXDX12/CTS011#/RTS011#*1/SS011#*1/
		SCK011*1/TXDB011*1/MISOA/SSL01*1/CRX0/
	1/00	IRQ3
20	VCC	PB3/MTIOC0A/MTIOC0A#/CACREF/GTIU/
		TOC1/SCK6/TXD12/SMOSI12/SSDA12/
		TXDX12/SIOX12/CTS009#*1/RTS009#*1/
04	DD 4/DOFOU/IDOO	SS009#*1/DE009*1/RSPCKA/CTX0/IRQ9
21	PB4/POE8#/IRQ3	PB2/MTIOC0B/MTIOC0B#/TMRIO/
		GTADSM0/GTIOC7A/GTIOC7A#/GTIV/TIC1/ TXD6/SMOSI6/SSDA6/SDA0/SDA00*1/
00	1/00	ADSMO
22	VSS	PB1/MTIOC0C/MTIOC0C#/TMCI0/ GTADSM1/GTIOC7B/GTIOC7B#/GTIW/
		TOC2/RXD6/SMISO6/SSCL6/SCL0/SCL00*1/
		IRQ4/ADSM1
23	PB3/MTIOC0A/CACREF/SCK5/RSPCKA	PB0/MTIOC0D/MTIOC0D#/TMO0/TIC2/
23	F B3/MTIOCOA/CACINET/3CR3/RSF CRA	TXD6/SMOSI6/SSDA6/TXD008*1/TXDA008*1/
		SMOSI008*1/SSDA008*1/CTS011#*1/
		RTS011#* ¹ /SS011#* ¹ /DE011* ¹ /MOSIA/
		MOSI0*1/IRQ8/ ADTRG2#
24	PB2/MTIOC0B/ADSM0/TXD5/SMOSI5/	VCC
24	SSDA5/SDA0	V66
25	PB1/MTIOC0C/RXD5/SMISO5/SSCL5/SCL0/	P96/POE4#/GTETRGA/GTETRGB/
_	IRQ2	GTETRGC/GTETRGD/GTCPPO4/
		CTS008#*1/RTS008#*1/SS008#*1/DE008*1/
		SSL03*1/RSPCK0*1/ IRQ4
26	PB0/MTIOC0D/MOSIA	VSS
27	PA3/MTIOC2A/SSLA0	P95/MTIOC6B/MTIOC1A/MTIOC6B#/
		MTIOC1A#/TMCI3/GTIOC4A/GTIOC7A/
		GTIOC4A#/GTIOC7A#/GTOUUP/RXD6/
		SMISO6/SSCL6/RXD008*1/SMISO008*1/
		SSCL008*1/MISOA/SSL02*1/MISO0*1/IRQ1/
		ADTRG1#*1
28	PA2/MTIOC2B/CTS5#/RTS5#/SS5#/SSLA1/	P94/MTIOC7A/MTIOC2A/MTIOC7A#/
	IRQ4	MTIOC2A#/TMRI7/GTIOC5A/GTADSM0/
		GTIOC5A#/GTOVUP/TXD009*1/TXDA009*1/
		SMOSI009*1/SSDA009*1/SCK008*1/
		TXDB008*1/ SSLA0/SSL00
	•	

64-Pin	RX23T (64-pin LFQFP)	RX26T (64-Pin LFQFP, 64-Pin HWQFN)
29	P94/MTIOC0C/TMO1/MISOA/IRQ1	P93/MTIOC7B/MTIOC6A/MTIOC7B#/
		MTIOC6A#/TMO4/GTIOC6A/GTIOC6A#/
		GTOWUP/TXD009*1/TXDA009*1/
		SMOSI009*1/SSDA009*1/RXD011*1/
		SMISO011*1/SSCL011*1/SSLA2/SSL02*1/
		MOSI0*1/CRX0/IRQ14/ ADTRG0#
30	P93/MTIOC0B/TMRI1/SCK5/RSPCKA/IRQ0	P92/MTIOC6D/MTIOC6C/MTIOC6D#/
		MTIOC6C#/TMO2/GTIOC4B/GTIOC7B/
		GTIOC4B#/GTIOC7B#/GTOULO/SCK009*1/
		TXD011*1/TXDA011*1/SMOSI011*1/
		SSDA011*1/TXDB009*1/SSLA3/SSL03*1/
		MISO0*1/CTX0
31	P92/TMCI1/SSLA2	P91/MTIOC7C/MTIOC7C#/GTIOC5B/
		GTIOC5B#/GTOVLO/RXD5/SMISO5/SSCL5/
	P04/001 40	RSPCK0*1
32	P91/SSLA3	P90/MTIOC7D/MTIOC7D#/GTIOC6B/
		GTIOC6B#/GTOWLO/TXD5/SMOSI5/ SSDA5/SSL01*1
33	P76/MTIOC4D	P76/MTIOC4D/MTIOC4D#/GTIOC2B/
33	P76/WITIOC4D	GTIOC6B/GTIOC2B#/GTIOC6B#/GTOWLO/
		SSL03*1
34	P75/MTIOC4C	P75/MTIOC4C/MTIOC4C#/GTIOC1B/
04	1 70/M110040	GTIOC5B/GTIOC1B#/GTIOC5B#/GTOVLO/
		SSL02*1
35	P74/MTIOC3D	P74/MTIOC3D/MTIOC3D#/GTIOC0B/
		GTIOC4B/GTIOC0B#/GTIOC4B#/GTOULO/
		SSL01*1
36	P73/MTIOC4B	P73/MTIOC4B/MTIOC4B#/GTIOC2A/
		GTIOC6A/GTIOC2A#/GTIOC6A#/GTOWUP/
		SSL00*1
37	P72/MTIOC4A	P72/MTIOC4A/MTIOC4A#/GTIOC1A/
		GTIOC5A/GTIOC1A#/GTIOC5A#/GTOVUP/
		MOSIO*1
38	P71/MTIOC3B	P71/MTIOC3B/MTIOC3B#/GTIOC0A/
		GTIOC4A/GTIOC0A#/GTIOC4A#/GTOUUP/ MISO0*1
20	P70/POE0#/IRQ5	P70/MTIOC0A/MTCLKC/MTIOC0A#/
39	P70/POE0#/IRQ5	MTCLKC#/TMRI6/POE0#/GTETRGA/
		GTETRGB/GTETRGC/GTETRGD/
		GTCPPO0/SCK5/CTS009#*1/RTS009#*1/
		SS009#*1/DE009*1/SSLA0/RSPCK0*1/IRQ5
40	P33/MTIOC3A/MTCLKA/SSLA3	VCC
41	P32/MTIOC3C/MTCLKB/SSLA2	VSS
42	VCC	P22/MTIC5W/MTCLKD/MTIC5W#/
		MTCLKD#/TMRI2/TMO4/MTIOC9B/GTIV/
		RXD12/SMISO12/SSCL12/RXDX12/
		RXD008*1/SMISO008*1/SSCL008*1/SCK008*1/
		TXDB008*1/MISOA/MISO0*1/CRX0/IRQ10/
		ADTRG2#/COMP2

64-Pin	RX23T (64-pin LFQFP)	RX26T (64-Pin LFQFP, 64-Pin HWQFN)	
43	P31/MTIOC0A/MTCLKC/SSLA1	P21/MTIOC9A/MTCLKA/MTIOC9A#/ MTCLKA#/TMCI4/TMO6/GTIU/TXD12/ SMOSI12/SSDA12/TXDX12/SIOX12/ TXD008*1/TXDA008*1/SMOSI008*1/ SSDA008*1/MOSIA/MOSIO*1/IRQ6/AN217/ ADTRG1#*1/COMP5	
44	VSS	P20/MTIOC9C/MTCLKB/MTIOC9C#/ MTCLKB#/TMRI4/TMO2/GTIW/CTS008#*1/ RTS008#*1/SS008#*1/RXD008*1/SMISO008*1/ SSCL008*1/DE008*1/RSPCKA/RSPCK0*1/ IRQ7/ AN216/ADTRG0#/COMP4	
45	P30/MTIOC0B/MTCLKD/SSLA0	P65/IRQ9/AN211/CMPC53/DA1	
46	P24/MTIC5U/TMCI2/RSPCKA/COMP0/IRQ3	P64/IRQ8/AN210/CMPC33/ CMPC52*2/DA0	
47	P23/MTIC5V/CACREF/TMO2/MOSIA/ COMP1/IRQ4	AVCC2	
48	P22/MTIC5W/TMRI2/MISOA/COMP2/IRQ2	AVSS2	
49	P47/AN007/CMPC12/CMPC22	P54/IRQ2/AN202/CMPC22/CVREFC1	
50	P46/AN006/CMPC02	P53/IRQ1/AN201/CMPC12/CVREFC0	
51	P45/AN005/CMPC21	P52/IRQ0/AN200/CMPC02	
52	P44/AN004/CMPC11	P47/AN103*1/AN206*2/CMPC03*2	
53	P43/AN003/CMPC01	P46/AN102*1/AN006*2/CMPC50*1/CMPC51*1/ CMPC21*2	
54	P42/AN002/CMPC20	P45/AN101*1/AN005*2/CMPC40*1/ CMPC41*1/CMPC11*2	
55	P41/AN001/CMPC10	P44/AN100*1/AN004*2/CMPC30*1/ CMPC31*1/CMPC01*2	
56	P40/AN000/CMPC00	P43/AN003/CMPC23*2/CMPC50*2	
57	AVCC0	P42/AN002/CMPC20/CMPC21*1	
58	VREFH0	P41/AN001/CMPC10/CMPC11*1	
59	VREFL0	P40/AN000/CMPC00/CMPC01*1/CMPC13*2	
60	AVSS0	AVCC1*1/NC	
61	P11/MTIOC3A/MTCLKC/TMO3/IRQ1/AN016/ CVREFC0	AVCC0	
62	P10/MTCLKD/TMRI3/IRQ0/AN017/ CVREFC1	AVSS0	
63	PA5/MTIOC1A/TMCI3/MISOA	AVSS1*1/NC*2	
64	PA4/MTIOC1B/RSPCKA/ADTRG0#	P11/MTIOC3A/MTCLKC/MTIOC3A#/ MTCLKC#/TMO3/POE9#/MTIOC9D/ GTIOC3B/GTETRGA/GTIOC3B#/GTETRGC/ GTCPPO0/TOC3/SCK009*1/SCK008*1/ TXDB009*1/IRQ1	

Notes: 1. Not present on products with a RAM capacity of 48 KB.

2. Not present on products with a RAM capacity of 64 KB.

3.2 48-Pin Package

Table 3.2 is Comparative Listing of 48-Pin Package Pin Functions.

Table 3.2 Comparative Listing of 48-Pin Package Pin Functions

48-Pin	RX23T (48-pin LFQFP)	RX26T (48-Pin LFQFP, 48-Pin HWQFN)
1	VCL	P00/MTIOC9A/MTIOC9A#/CACREF/GTIU/ TIC3/RXD12/SMISO12/SSCL12/RXDX12/ RXD009*1/SMISO009*1/SSCL009*1/IRQ2/ ADST1*1/ COMP0
2	MD/FINED	VCL
3	RES#	MD/FINED/PN6
4	XTAL/P37	RES#
5	VSS	XTAL/P37/RXD5/SMISO5/SSCL5
6	EXTAL/P36	VSS
7	VCC	EXTAL/P36/TXD5/SMOSI5/SSDA5
8	PE2/POE10#/NMI	VCC
9	PD6/TMO1/SSLA0/CTS1#/RTS1#/SS1#/ ADST0/IRQ5	PE2/POE10#/NMI/IRQ0
10	PD5/TMRI0/RXD1/SMISO1/SSCL1/IRQ3	TRST#/PD7/MTIOC9A/MTIOC9A#/TMRI1/ TMRI5/GTIOC0A/GTIOC3A/GTIOC0A#/ GTIOC3A#/GTIU/TXD5/SMOSI5/SSDA5/ SCK009*1/TXD008*1/TXDA008*1/SMOSI008*1/ SSDA008*1/TXDB009*1/SSLA1/SSL01*1/ CTX0/ IRQ8
11	PD4/TMCI0/SCK1/IRQ2	TDI/PD5/TMRI0/TMRI6/GTIOC1A/ GTETRGA/GTIOC1A#/GTIOC7A/RXD1/ SMISO1/SSCL1/RXD011*1/SMISO011*1/ SSCL011*1/SSL00*1/IRQ6
12	PD3/TMO0/TXD1/SMOSI1/SSDA1	TDO/PD3/TMO0/GTIOC2A/GTETRGC/ GTIOC2A#/GTIOC7B/TXD1/SMOSI1/ SSDA1/TXD011*1/TXDA011*1/SMOSI011*1/ SSDA011*1/MOSI0*1
13	PB6/RXD5/SMISO5/SSCL5/IRQ5	PB6/GTIOC2A/GTIOC3A/GTIOC2A#/ GTIOC3A#/TOC0/RXD5/SMISO5/SSCL5/ RXD12/SMISO12/SSCL12/RXDX12/ RXD011*1/SMISO011*1/SSCL011*1/MISO0*1/ CRX0/ IRQ2
14	PB5/TXD5/SMOSI5/SSDA5	PB5/GTIOC2B/GTIOC3B/GTIOC2B#/ GTIOC3B#/TIC0/TXD5/SMOSI5/SSDA5/ TXD12/SMOSI12/SSDA12/TXDX12/SIOX12/ TXD011*1/TXDA011*1/SMOSI011*1/ SSDA011*1/ RSPCK0*1/CTX0
15	VCC	PB4/POE8#/GTETRGA/GTETRGB/ GTETRGC/GTETRGD/GTCPPO0/CTS5#/ RTS5#/SS5#/RXD12/SMISO12/SSCL12/ RXDX12/CTS011#*1/RTS011#*1/SS011#*1/ SCK011*1/TXDB011*1/MISOA/SSL01*1/CRX0/ IRQ3
16	PB4/POE8#/IRQ3	PB3/MTIOC0A/MTIOC0A#/CACREF/GTIU/ TOC1/SCK6/TXD12/SMOSI12/SSDA12/ TXDX12/SIOX12/CTS009#*1/RTS009#*1/ SS009#*1/DE009*1/RSPCKA/CTX0/IRQ9

48-Pin	RX23T (48-pin LFQFP)	RX26T (48-Pin LFQFP, 48-Pin HWQFN)
17	PB3/MTIOC0A/CACREF/SCK5/RSPCKA	PB2/MTIOC0B/MTIOC0B#/TMRI0/
		GTADSM0/GTIOC7A/GTIOC7A#/GTIV/TIC1/
		TXD6/SMOSI6/SSDA6/SDA0/SDA00*1/
		ADSM0
18	PB2/MTIOC0B/ADSM0/TXD5/SMOSI5/	PB1/MTIOC0C/MTIOC0C#/TMCI0/
	SSDA5/SDA0	GTADSM1/GTIOC7B/GTIOC7B#/GTIW/
		TOC2/RXD6/SMISO6/SSCL6/SCL0/SCL00*1/
		IRQ4/ADSM1
19	PB1/MTIOC0C/RXD5/SMISO5/SSCL5/SCL0/	PB0/MTIOC0D/MTIOC0D#/TMO0/TIC2/
	IRQ2	TXD6/SMOSI6/SSDA6/TXD008*1/TXDA008*1/
		SMOSI008*1/SSDA008*1/CTS011#*1/
		RTS011#* ¹ /SS011#* ¹ /DE011* ¹ /MOSIA/
		MOSI0*1/IRQ8/ ADTRG2#
20	PB0/MTIOC0D/MOSIA	P95/MTIOC6B/MTIOC1A/MTIOC6B#/
		MTIOC1A#/TMCI3/GTIOC4A/GTIOC7A/
		GTIOC4A#/GTIOC7A#/GTOUUP/RXD6/
		SMISO6/SSCL6/RXD008*1/SMISO008*1/ SSCL008*1/MISOA/SSL02*1/MISO0*1/IRQ1/
		ADTRG1#1
21	PA3/MTIOC2A/SSLA0	P94/MTIOC7A/MTIOC2A/MTIOC7A#/
21	FAS/IVITIOGZA/SSLAU	MTIOC2A#/TMRI7/GTIOC5A/GTADSMO/
		GTIOC5A#/GTOVUP/TXD009*1/TXDA009*1/
		SMOSI009*1/SSDA009*1/SCK008*1/
		TXDB008*1/ SSLA0/SSL00*1
22	PA2/MTIOC2B/CTS5#/RTS5#/SS5#/SSLA1/	P93/MTIOC7B/MTIOC6A/MTIOC7B#/
	IRQ4	MTIOC6A#/TMO4/GTIOC6A/GTIOC6A#/
		GTOWUP/TXD009*1/TXDA009*1/
		SMOSI009*1/SSDA009*1/RXD011*1/
		SMISO011*1/SSCL011*1/SSLA2/SSL02*1/
		MOSI0*1/CRX0/IRQ14/ ADTRG0#
23	P94/MTIOC0C/TMO1/MISOA/IRQ1	P92/MTIOC6D/MTIOC6C/MTIOC6D#/
		MTIOC6C#/TMO2/GTIOC4B/GTIOC7B/
		GTIOC4B#/GTIOC7B#/GTOULO/SCK009*1/
		TXD011*1/TXDA011*1/SMOSI011*1/
		SSDA011*1/TXDB009*1/SSLA3/SSL03*1/
		MISO0*1/CTX0
24	P93/MTIOC0B/TMRI1/SCK5/RSPCKA/IRQ0	P91/MTIOC7C/MTIOC7C#/GTIOC5B/
		GTIOC5B#/GTOVLO/RXD5/SMISO5/SSCL5/
		RSPCK0*1
25	P76/MTIOC4D	P76/MTIOC4D/MTIOC4D#/GTIOC2B/
		GTIOC6B/GTIOC2B#/GTIOC6B#/GTOWLO/
		SSL03*1
26	P75/MTIOC4C	P75/MTIOC4C/MTIOC4C#/GTIOC1B/
		GTIOC5B/GTIOC1B#/GTIOC5B#/GTOVLO/
07	D74/MTIQQQD	SSL02*1
27	P74/MTIOC3D	P74/MTIOC3D/MTIOC3D#/GTIOC0B/
		GTIOC4B/GTIOC0B#/GTIOC4B#/GTOULO/ SSL01*1
20	D72/MTIOC4D	
28	P73/MTIOC4B	P73/MTIOC4B/MTIOC4B#/GTIOC2A/ GTIOC6A/GTIOC2A#/GTIOC6A#/GTOWUP/
		SSL00 ^{*1}
20	P72/MTIOC4A	P72/MTIOC4A/MTIOC4A#/GTIOC1A/
29	F12/WHOC4A	GTIOC5A/GTIOC1A#/GTIOC5A#/GTOVUP/
		MOSIO ¹¹
		IVICOIO

48-Pin	RX23T (48-pin LFQFP)	RX26T (48-Pin LFQFP, 48-Pin HWQFN)
30	P71/MTIOC3B	P71/MTIOC3B/MTIOC3B#/GTIOC0A/
		GTIOC4A/GTIOC0A#/GTIOC4A#/GTOUUP/
0.1	PTO IDOTO WIPOS	MISO0*1
31	P70/POE0#/IRQ5	VCC
32	VCC	VSS
33	VSS	P21/MTIOC9A/MTCLKA/MTIOC9A#/
		MTCLKA#/TMCI4/TMO6/GTIU/TXD12/ SMOSI12/SSDA12/TXDX12/SIOX12/
		TXD008*1/TXDA008*1/SMOSI008*1/
		SSDA008*1/MOSIA/MOSI0*1/IRQ6/AN217/
		ADTRG1#*1/ COMP5
34	P24/MTIC5U/TMCI2/RSPCKA/COMP0/IRQ3	P20/MTIOC9C/MTCLKB/MTIOC9C#/
		MTCLKB#/TMRI4/TMO2/GTIW/CTS008#*1/
		RTS008#*1/SS008#*1/RXD008*1/SMISO008*1/
		SSCL008*1/DE008*1/RSPCKA/RSPCK0*1/
		IRQ7/ AN216/ADTRG0#/COMP4
35	P23/MTIC5V/CACREF/TMO2/MOSIA/	AVCC2
	COMP1/IRQ4	
36	P22/MTIC5W/TMRI2/MISOA/COMP2/IRQ2	AVSS2
37	P47/AN007/CMPC12/CMPC22	P62/IRQ6/AN208/CMPC43
38	P46/AN006/CMPC02	P53/IRQ1/AN201/CMPC12/CVREFC0
39	P45/AN005/CMPC21	P52/IRQ0/AN200/CMPC02
40	P44/AN004/CMPC11	P44/AN004*2/AN100*1/CMPC01*2/CMPC30*1/ CMPC31*1
41	P43/AN003/CMPC01	P43/AN003/CMPC23*2/CMPC50*2
42	P42/AN002/CMPC20	P42/AN002/CMPC20/CMPC21*1
43	P41/AN001/CMPC10	P41/AN001/CMPC10/CMPC11*1
44	P40/AN000/CMPC00	P40/AN000/CMPC00/CMPC01*1
45	AVCC0	AVCC0/AVCC1*1
46	AVSS0	AVSS0/AVSS1*1
47	P11/MTIOC3A/MTCLKC/TMO3/IRQ1/AN016/	P11/MTIOC3A/MTCLKC/MTIOC3A#/
	CVREFC0	MTCLKC#/TMO3/POE9#/MTIOC9D/
		GTIOC3B/GTETRGA/GTIOC3B#/GTETRGC/
		GTCPP00/TOC3/SCK009*1/SCK008*1/
		TXDB009*1/IRQ1
48	P10/MTCLKD/TMRI3/IRQ0/AN017/	P10/MTIOC9B/MTCLKD/MTIOC9B#/
	CVREFC1	MTCLKD#/TMRI3/POE12#/GTIOC3A/ GTETRGB/GTIOC3A#/GTETRGD/GTIV/
		TIC3/CTS6#/RTS6#/SS6#/TXD009*1/
		TXDA009 ^{*1} /SMOSI009 ^{*1} /SSDA009 ^{*1} /IRQ0
		TADAGO TOMOGIOGO TOODAGGA TINGO

Notes: 1. Not present on products with a RAM capacity of 48 KB.

2. Not present on products with a RAM capacity of 64 KB.

4. Points to Note when Replacing MCUs

This section presents important information on differences between the RX26T Group and the RX23T Group.

4.1, Notes on Pin Design presents notes related to hardware. 4.2, Notes on Functional Design presents notes related to software.

4.1 Notes on Pin Design

4.1.1 VCL Pin (External Capacitor)

When connecting a smoothing capacitor to the VCL pin to stabilize the internal power supply, select a capacitor rated at $4.7 \, \mu F$ for the RX23T Group, and $0.47 \, \mu F$ on the RX26T Group.

4.1.2 Main Clock Oscillator

When connecting an oscillator to the EXTAL or XTAL pin of the RX26T Group, use an oscillator whose resonator frequency is 8 MHz to 24 MHz.

4.1.3 Connecting Capacitors to Analog Power Supply Pins

When using an A/D conversion clock frequency higher than 40 MHz on the RX26T Group, add a 0.01 μ F-capacitor between the 0.1 μ F capacitor and the power supply pin.

4.2 Notes on Functional Design

Software operating on the RX23T Group is compatible with some software written for the RX26T Group. Nevertheless, appropriate caution must be exercised due to differences in aspects such as operation timing and electrical characteristics.

This section describes software-related considerations regarding function settings that differ between the RX26T Group and RX23T Group.

For differences between modules and functions, see section 2, Comparative Overview of Specifications. For further information, refer to the *User's Manual: Hardware* of each MCU group, listed in section 5, Reference Documents.

4.2.1 Changing the Option-Setting Memory Though Self-Programming

In the RX26T Group, when changing the option setting memory through self-programming, use the configuration setting command to program the option setting memory to the configuration setting area.

For details on the configuration setting command, refer to the *RX26T Group Flash Memory User's Manual: Hardware* listed in section 5, Reference Documents.

4.2.2 Software Configurable Interrupt

On the RX23T Group, the interrupt sources have fixed vector numbers, but on the RX26T Group, the MTU and GPTW interrupt sources are classified as software configurable interrupt A and set in software configurable interrupt A source select register n (SLIARn), allowing interrupt sources to be allocated to 208 to 255 in the interrupt vector table.

4.2.3 Using Flash Memory Commands

On the RX23T Group, programming and erasing of the flash memory is accomplished by first transitioning to the dedicated sequencer mode for ROM programming and erasing and then issuing software commands. On the RX26T Group, programming and erasing of the flash memory is accomplished by setting FACI commands in the FACI command-issuing area to control the FCU.

Table 4.1 is Comparison of Specifications of Software Commands and FACI Commands.

Table 4.1 Comparison of Specifications of Software Commands and FACI Commands

Item	Software Command (RX23T)	FACI command (RX26T)	
Command-issuing area	_	FACI command issuing area (007E 0000h)	
Usable commands	 Programming Block erase All-block erase Blank check Start-up area information program Access window information 	 Programming Block erase P/E suspend P/E resume Status clear Forced stop Blank check 	
	program	Configuration setting	

4.2.4 Flash Access Window Setting Register

In the RX26T Group, the access window protect bit (FSPR) in the flash access window setting register (FAW) cannot be set back to 1 once it is set to 0.

For details, refer to the RX26T Group User's Manual: Hardware listed in section 5, Reference Documents.

4.2.5 Clock Frequency Settings

The clock frequency setting restrictions differ between the RX23T Group and RX26T Group.

For details, see Table 4.2.

Table 4.2 Comparison of Clock Frequency Setting Restrictions

Item	RX23T	RX26T
Clock frequency setting	ICLK ≥ PCLK	
restrictions		PCLKC ≥ PCLKA ≥ PCLKB
Clock frequency setting	_	PCLKA:PCLKB = 2:1
restrictions when using		PCLKB ≥ CANFDCLK
CANFD		PCLKB ≥ CANFDMCLK
Clock frequency ratio	ICLK:FCLK = N:1	ICLK:FCLK = N:1 or 1:N
restrictions	ICLK:PCLKA = N:1	ICLK:PCLKA = N:1 or 1:N
	ICLK:PCLKB = N:1	ICLK:PCLKB = N:1 or 1:N
		ICLK:PCLKC = N:1 or 1:N
	ICLK:PCLKD = N:1	ICLK:PCLKD = N:1 or 1:N
		PCLKA:PCLKC = 1:1 or 1:2
		PCLKB:PCLKD = 1:1 or 2:1 or 4:1 or
		1:2

4.2.6 RIIC Operating Voltage Setting

When using the RIIC on the RX26T Group, it is necessary to specify the power supply voltage range to preserve the slope characteristics. VCC is set to a value of 4.5 V or greater by default. If it is set to a value less than 4.5 V, make sure to change the voltage range before activating the RIIC.

For details, refer to the description of the VOLSR.RICVLS bit in RX26T Group User's Manual: Hardware.

4.2.7 Voltage Level Setting

On the RX26T Group, the operating mode setting in the voltage level setting register (VOLSR), the voltage detection circuit setting in the voltage detection level select register (LVDLVLR), and the option-setting memory setting in the option function select register 1 (OFS1) need to be changed as appropriate to match the operating voltage. Use a program to set these values.

4.2.8 Option-Setting Memory

On the RX23T Group, the ID code protection codes and ID code protection codes for the on-chip debugger are located in the ROM, but on the RX26T Group, they are located in the option-setting memory. Note that the setting configuration procedures are different.

4.2.9 PLL Circuit

The frequency multiplication factor of the PLL circuit can be set to 4 to 10 (in 0.5 increments) on the RX23T Group and to 10 to 30 (in 0.5 increments) on the RX26T Group. To use the PLL circuit, change the setting of the PLLCR.STC bits to an appropriate value. Also, on the RX26T Group, use a program to switch the PLL clock.

4.2.10 All-Module Clock Stop Mode

The RX23T Group does not have an all-module clock stop mode.

On the RX26T Group, it is necessary to write 1 to the MSTPA24, MSTPA27, MSTPA29 bits to transition to the all-module clock stop mode.

4.2.11 MTU/GPTW Operating Frequency

On the RX26T Group, the PCLKC is used as the MTU/GPTW count clock, and PCLKA is used as the bus clock. Note that limitations apply regarding the usable frequency combinations.

4.2.12 DMAC Activation by MTU

When the DMAC is activated by the MTU on the RX26T Group, the activation source is cleared when the DMAC requests ownership of the internal bus. Accordingly, the state of the internal bus may delay the start of a DMAC transfer, even if the activation source has been cleared.

4.2.13 Performing RAM Self-Diagnostics on Save Register Banks

On the RX26T Group save register banks are configured in the RAM. The save register banks are provided with a buffer, so when a SAVE instruction is used to write data to a register and then a RSTR instruction is used to read data from the same register, the data is actually read from the buffer and not from the RAM memory cells. When performing self-diagnostics on the RAM in a save register bank, use the following sequence of steps for checking the written data in order to prevent the data from being read from the buffer:

- (1) Use the SAVE instruction to write data to the bank that is the target of the diagnostic test.
- (2) Use the SAVE instruction to write data to a bank other than that written to in step 1.
- (3) Use the RSTR instruction to read data from the bank written to in step 1.

4.2.14 Restrictions on Compare Function

The compare function of the 12-bit A/D converter on the RX26T Group is subject to the following restrictions.

- (1) The compare function cannot be used together with the self-diagnosis function or double trigger mode. (The compare function is not available for the ADRD, ADDBLDRA, and ADDBLDRB registers.)
- (2) It is necessary to specify single scan mode when using match or mismatch event outputs.
- (3) When the temperature sensor or internal reference voltage is selected for window A, window B operations are disabled.
- (4) When the temperature sensor or internal reference voltage is selected for window B, window A operations are disabled.
- (5) It is not possible to set the same channel for window A and window B.
- (6) It is necessary to set the reference voltage values such that the high-side reference voltage value is equal to or larger than the low-side reference voltage value.

4.2.15 Eliminating I²C Bus Interface Noise

The RX23T Group has integrated analog noise filters on the SCL and SDA lines, but the RX26T Group has no integrated analog noise filters.

4.2.16 Control When a Port Output Enable 3 Output Stop Request Is Generated

On the RX26T Group, when an output stop request occurs, the pins with the corresponding bits of the POECR1 to POECR3 and POECR7 registers set to 1 are put in a high-impedance state and the pins with the corresponding bits of the PMMCR0 to PMMCR2 registers set to 1 are switched to the general I/O ports.

When both bits are set to 1 for the same pin, the POECR1 to POECR3 and POECR7 register settings take precedence and the pin is placed in a high-impedance state. After switching to the general I/O port, the state of the pins is determined by the PDR and PODR register settings.

The corresponding bits in the POECRn registers (n = 0 to 3) should be cleared to 0 beforehand.

4.2.17 Comparator C Operation with 12-Bit A/D Converter in Module Stop Mode

On the RX26T Group, the programmable gain amplifier (PGA) and 12-bit A/D converter are controlled by the same module stop signal, so it is not possible to compare the following PGA outputs when the 12-bit A/D converter is in the module stop state:

- AN000 pin PGA output
- AN001 pin PGA output
- AN002 pin PGA output
- AN100 pin PGA output
- AN101 pin PGA output
- AN102 pin PGA output

It is not possible to compare the following analog pins when the 12-bit A/D converter is in the module stop state:

- AN000 pin PGA output
- AN001 pin PGA output
- AN002 pin PGA output
- AN100 pin PGA output
- AN101 pin PGA output
- AN102 pin PGA output

4.2.18 Initialization of Port Direction Register (PDR)

The method of initializing the PDR register differs between the RX23T Group and RX26T Group, even on products with the same pin count.

4.2.19 Pulse Width of Count Clock Source

The pulse width of the MTU's count clock source differs between the RX23T Group and RX26T Group. For details, see Table 4.2. Correct operation cannot be achieved if the pulse width is less than the appropriate value listed below.

Table 4.3 Comparison of Count Clock Source Pulse Widths

Item		RX23T	RX26T	
Single edge		3 or more PCLKA cycles 1.5 or more PCLKC cycles		
Both edges		5 or more PCLKA cycles	2.5 or more PCLKC cycles	
Phase counting difference and overlap		3 or more PCLKA cycles	1.5 or more PCLKC cycles	
	Pulse width	5 or more PCLKA cycles	2.5 or more PCLKC cycles	

4.2.20 Timer Mode Register Setting for ELC Event Input

To set the MTU to ELC action operation on the RX26T Group, set the timer mode register (TMDR) of the relevant channel to its initial value (00h).

4.2.21 Active Level Setting for MTU/GPTW Inverted Output

On the RX26T Group, either normal output or inverted output can be selected for MTU and GPTW outputs by making settings in the MPC.PmnPFS registers.

When MTU inverted output is selected, the active level specified in the MTU.TOCR1j and MTU.TOCR2j registers (j = A or B) and the active level of the signals output to the pins are inverted. To use output short detection in this case, specify active levels in the ALR1 and ALR2 registers based on the signals actually output to the pins.

When GPTW inverted output is selected, the active level of the signals output to the pins is inverted. To use output short detection in this case, specify active levels in the ALR3 to ALR5 registers based on the signals actually output to the pins.

4.2.22 Note on Using Both POE and POEG

When using the POE and POEG together on the RX26T Group, do not use both the POE and POEG to control output disabling for the same GPTW output pins.

4.2.23 Reading Pins in High-Impedance State

When pins are put into the high-impedance state by the POE on the RX26T Group, the level of those pins cannot be read. The value when read is undefined. To read the level of the pins, release them from the high-impedance state.

This restriction does not apply when port switching control is selected instead of high-impedance control.

5. Reference Documents

User's Manual: Hardware

RX23T Group User's Manual: Hardware Rev.1.10 (R01UH0520EJ0110) (The latest version can be downloaded from the Renesas Electronics website.)

RX26T Group User's Manual: Hardware Rev.1.20 (R01UH0979EJ0120)

(The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

Related Technical Updates

This application note reflects the content of the following technical updates:

TN-RX*-A0147B/E

TN-RX*-A151A/E

TN-RX*-A163A/E

TN-RX*-A173A/E

TN-RX*-A193A/E

TN-RX*-A194A/E

TN-RX*-A200A/E

TN-RX*-A0206A/E

TN-RX*-A0213A/E

TN-RX*-A0216A/E

TN-RX*-A0224B/E

TN-RX*-A0230A/E

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	May.22.23	_	First edition issued
1.01	Aug.24.23	131 to 137	Modified typos and added notes in Table 3.1 and Table 3.2.
1.10	Mar.31.25	38, 39	Table 2.21, Comparative Overview of Interrupt Controllers, was modified.
		60	Table 2.33, Comparison of P0n Pin Function Control Registers (P0nPFS), was modified.
		74	Table 2.44, Comparison of PBn Pin Function Control Registers (PBnPFS), was modified.
		76	Table 2.45, Comparison of PDn Pin Function Control Registers (PDnPFS), was modified.
		83	Table 2.50, Comparative Overview of Port Output Enable 3, was modified.
		93, 94	Table 2.55, Comparative Overview of Independent Watchdog Timers, was modified.
		95	Table 2.56, Comparison of Independent Watchdog Timer Registers, was modified.
		109	Table 2.65, Comparative Overview of 12-Bit A/D Converters, was modified.
		130	The 32-pin HWQFN was added to Table 2.77, Packages.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.