

RX23W Group, RX230/RX231 Group

Differences Between the RX23W Group and the RX231 Group

Summary

This application note is intended as a reference to points of difference between the peripheral functions, I/O registers, and pin functions of the RX23W Group and RX231 Group, as well as a guide to key points to consider when migrating between the two groups.

Unless specifically otherwise noted, the information in this application note applies to the 85-pin package version of the RX23W Group and the 100-pin package version and chip version B of the RX231 Group. To confirm details of differences in the specifications of the electrical characteristics, usage notes, and setting procedures, refer to the User's Manual: Hardware of the products in question.

Target Devices

RX23W Group and RX231 Group

Contents

1.	Comparison of Built-In Functions of RX23W Group and RX231 Group	4
2.	Comparative Overview of Specifications	6
2.1	Operating Modes	6
2.2	Resets	7
2.3	Option-Setting Memory	
2.4	Voltage Detection Circuit	9
2.5	Clock Generation Circuit	12
2.6	Low Power Consumption	15
2.7	Register Write Protection Function	16
2.8	Interrupt Controller	17
2.9	Buses	
2.10	Event Link Controller	21
2.11	I/O Ports	24
2.12	Multi-Function Pin Controller	26
2.13	Multi-Function Timer Pulse Unit 2	
2.14	Port Output Enable 2	
2.15	16-Bit Timer Pulse Unit	
2.16	8-Bit Timer	
2.17	Realtime Clock	
2.18	USB 2.0 Host/Function Module	
2.19	Serial Communications Interface	
2.20	Serial Peripheral Interface	
2.21	Capacitive Touch Sensing Unit	
2.22	12-Bit A/D Converter	
2.23	12-Bit D/A Converter	67
2.24	Comparator B	68
2.25	RAM	70
2.26	Flash Memory	71
2.27	Packages	73
3.	Comparison of Pin Functions	74
3.1	100-Pin Package (RX231: TFLGA)/85-Pin Package (RX23W: BGA)	74
3.2	64-Pin Package (RX231: HWQFN)/56-Pin Package (RX23W: QFN)	79
4.	Notes on Migration	82
4.1	Operating Voltage Range	
4.1.1	Power Supply Voltage	
4.2	Notes on Function Settings	
4.2.1	Limitations Applying to I/O Port Register Settings	
4.2.2	2 8-Bit Timer Cascaded Operation	

5.	Reference Documents	84
Revi	ision History	86

1. Comparison of Built-In Functions of RX23W Group and RX231 Group

A comparison of the built-in functions of the RX23W Group and RX231 Group is provided below. For details of the functions, see section 2, Comparative Overview of Specifications and section 5, Reference Documents.

Table 1.1 is a comparison of built-in functions of RX23W Group and RX231 Group.

Table 1.1 Comparison of Built-In Functions of RX23W Group and RX231 Group

Function	RX231	RX23W
CPU	()
Operating modes		
Address space	()
Resets		
Option-setting memory (OFSM)		
Voltage detection circuit (LVDAb)		
Clock generation circuit	•	/
Clock frequency accuracy measurement circuit (CAC)	()
Low power consumption		/
Battery backup function	()
Register write protection function		
Exception handling	()
Interrupt controller (ICUb)		
Buses		
Memory-protection unit (MPU))
DMA controller (DMACA))
Data transfer controller (DTCa))
Event link controller (ELC)		
<u>I/O ports</u>		/
Multi-function pin controller (MPC)		/
Multi-function timer pulse unit 2 (MTU2a)		
Port output enable 2 (POE2a)		
<u>16-bit timer pulse unit (TPUa)</u>		
<u>8-bit timer (TMR)</u>		
Compare match timer (CMT)	()
Realtime clock (RTCe)		
Low-power timer (LPT)	()
Watchdog timer (WDTA)	()
Independent watchdog timer (IWDTa)	()
USB 2.0 Host/Function module (USBd): RX231, (USBc): RX23W		
Serial communications interface (SCIg, SCIh)		
IrDA interface)
I ² C bus interface (RIICa)	()
CAN module (RSCAN)	()
Serial sound interface (SSI))
Serial peripheral interface (RSPIa)		
CRC calculator (CRC))
SD host interface (SDHIa))
Bluetooth Low Energy (BLE)	X	0
Trusted Secure IP (TSIP-Lite))
Capacitive touch sensing unit (CTSU)	<u> </u>	<u> </u>
<u>12-bit A/D converter (S12ADE)</u>		

Function	RX231	RX23W	
12-bit D/A converter (R12DAA)			
Temperature sensor (TEMPSA)	(C	
Comparator B (CMPBa)			
Data operation circuit (DOC)	(C	
RAM			
Flash memory (FLASH)			
Packages			

 \bigcirc : Available, \times : Unavailable, \bigcirc : Differs due to added functionality,

2. Comparative Overview of Specifications

2.1 Operating Modes

Table 2.1 is a comparative overview of operating modes, and Table 2.2 is a comparison of operating mode registers.

Table 2.1	Comparative	Overview	of O	perating	Modes
-----------	-------------	----------	------	----------	-------

Item	RX231	RX23W
Operating modes specified by	Single-chip mode	Single-chip mode
mode setting pins	Boot mode (SCI interface)	Boot mode (SCI interface)
	Boot mode (USB interface)	Boot mode (USB interface)
Operating modes specified by	Single-chip mode	Single-chip mode
register settings	On-chip ROM disabled extended mode	_
	On-chip ROM enabled extended mode	

Table 2.2 Comparison of Operating Mode Registers

Register	Bit	RX231	RX23W
SYSCR0		System control register 0	

2.2 Resets

Table 2.3 is a comparative overview of resets, and Table 2.4 is a comparison of reset registers.

Item	RX231	RX23W	
RES# pin reset	RES# pin input voltage low	RES# pin input voltage low	
Power-on reset	VCC rise (voltage monitored: VPOR)	VCC rise (voltage monitored: VPOR)	
Voltage monitoring 0 reset	VCC fall (voltage monitored: Vdet0)	VCC fall (voltage monitored: Vdet0)	
Voltage monitoring 1 reset	VCC fall (voltage monitored: Vdet1)	VCC fall (voltage monitored: Vdet1)	
Voltage monitoring 2 reset	VCC fall (voltage monitored: Vdet2)	—	
Independent watchdog timer reset	Independent watchdog timer underflow, or refresh error	Independent watchdog timer underflow, or refresh error	
Watchdog timer reset	Watchdog timer underflow, or refresh	Watchdog timer underflow, or refresh	
	error	error	
Software reset	Register setting	Register setting	

Table 2.3 Comparative Overview of Resets

Table 2.4 Comparison of Reset Registers

Register	Bit	RX231	RX23W
RSTSR0	LVD2RF	Voltage monitoring 2 reset detect flag	

2.3 Option-Setting Memory

Table 2.5 is a comparison of option-setting memory registers.

Register	Bit	RX231 (OFSM)	RX23W (OFSM)
OFS1	VDSEL[1:0]	Voltage detection 0 level select bits	Voltage detection 0 level select bits
		b1 b0	b1 b0
		0 0: 3.84 V is selected	0 0: Setting prohibited.
		0 1: 2.82 V is selected	0 1: 2.82 V is selected
		1 0: 2.51 V is selected	1 0: 2.51 V is selected
		1 1: 1.90 V is selected	1 1: 1.90 V is selected

Table 2.5 Comparison of Option-Setting Memory Registers

2.4 Voltage Detection Circuit

Table 2.6 is a comparative overview of the voltage detection circuits, and Table 2.7 is a comparison of voltage detection circuit registers.

RX231 (LVDAb)			RX23W (LVDAb)			
ltem		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1
VCC	Monitored	Vdet0	Vdet1	Vdet2	Vdet0	Vdet1
monitoring	voltage	Vacio	Vucti	VUCIZ	Vacio	Vucti
monitoring	Detection target	Voltage drops past Vdet0	When voltage rises above or drops below Vdet1	When voltage rises above or drops below Vdet2 Input voltages to VCC and the CMPA2 pin can be switched using the LVCMPCR.EXV CCINP2 bit	Voltage drops past Vdet0	Voltage rises or drops past Vdet1
	Detection voltage	Voltage selectable from four levels using OFS1.VDSEL [1:0] bits	Voltage selectable from 14 levels using the LVDLVLR.LVD1 LVL[3:0] bits	Voltage selectable from four levels using the LVDLVLR.LVD2 LVL[1:0] bits	Selectable from among three different levels by using OFS1 register	Selectable from among ten different levels by using LVDLVLR.LVD1 LVL[3:0] bits
	Monitor flag		LVD1SR.LVD1M ON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR.LVD1D ET flag: Vdet1 passage detection	LVD2SR.LVD2M ON flag: Monitors whether voltage is higher or lower than Vdet2 LVD2SR.LVD2D ET flag: Vdet2 passage detection		LVD1SR.LVD1M ON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR.LVD1D ET flag: Vdet1 passage detection
Voltage detection processing	Reset	Voltage monitoring 0 reset Reset when Vdet0 > VCC CPU restart after specified time with VCC > Vdet0	Voltage monitoring 1 reset Reset when Vdet1 > VCC CPU restart timing selectable: after specified time with VCC > Vdet1 or Vdet1 > VCC	Voltage monitoring 2 reset Reset when Vdet2 > VCC or the CMPA2 pin CPU restart timing selectable: after specified time with VCC or the CMPA2 pin > Vdet2 or after specified time with Vdet2 > VCC or the CMPA2 pin	Voltage monitoring 0 reset Reset when Vdet0 > VCC CPU restart after specified time with VCC > Vdet0	Voltage monitoring 1 reset Reset when Vdet1 > VCC CPU restart timing selectable: after specified time with VCC > Vdet1 or Vdet1 > VCC

Table 2.6 Comparative Overview of Voltage Detection Circuits

RX23W Group, RX230/RX231 Group Differences Between the RX23W Group and the RX231 Group

		RX231 (LVDAb)			RX23W (LVDAb)	
		Voltage	Voltage	Voltage	Voltage	Voltage
Item		Monitoring 0	Monitoring 1	Monitoring 2	Monitoring 0	Monitoring 1
Voltage detection processing	Interrupt		Voltage monitoring 1 interrupt Non-maskable or maskable interrupt is	Voltage monitoring 2 interrupt Non-maskable or maskable interrupt is		Voltage monitoring 1 interrupt Non-maskable or maskable selectable
			Interrupt request issued when Vdet1 > VCC and VCC > Vdet1 or either	Interrupt request issued when Vdet2 > VCC or the CMPA2 pin and VCC or the CMPA2 pin > Vdet2 or either		Interrupt request issued when Vdet1 > VCC and VCC > Vdet1 or either
Event link function			Available Vdet1 passage detection event output	Available Vdet2 passage detection event output		Available Vdet1 passage detection event output

Table 2.7	Comparison of	FVOItage Detection	Circuit Registers
-----------	---------------	---------------------------	--------------------------

Register	Bit	RX231 (LVDAb)	RX23W (LVDAb)
LVD2CR1	—	Voltage monitoring 2 circuit control	—
		register 1	
LVD2SR		Voltage monitoring 2 circuit status	_
		register	
LVCMPCR	EXVCCINP2	Voltage detection 2 comparison	—
		voltage external input select bit	
	LVD2E	Voltage detection 2 enable bit	<u> </u>
LVDLVLR	LVD1LVL	Voltage detection 1 level select bits	Voltage detection 1 level select bits
	[3:0]	(Standard voltage during drop in	(Standard voltage during drop in
		voltage)	voltage)
		b3 b0	b3 b0
		0 0 0 0: 4.29 V	
		0 0 0 1: 4.14 V	
		0 0 1 0: 4.02 V	
		0 0 1 1: 3.84 V	
		0 1 0 0: 3.10 V	0 1 0 0: 3.10 V
		0 1 0 1: 3.00 V	0 1 0 1: 3.00 V
		0 1 1 0: 2.90 V	0 1 1 0: 2.90 V
		0 1 1 1: 2.79 V	0 1 1 1: 2.79 V
		1 0 0 0: 2.68 V	1 0 0 0: 2.68 V
		1 0 0 1: 2.58 V	1 0 0 1: 2.58 V
		1 0 1 0: 2.48 V	1 0 1 0: 2.48 V
		1 0 1 1: 2.20 V	1 0 1 1: 2.20 V
		1 1 0 0: 1.96 V	1 1 0 0: 1.96 V
		1 1 0 1: 1.86 V	1 1 0 1: 1.86 V
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.
	LVD2LVL	Voltage detection 2 level select bits	—
	[1:0]	(Standard voltage during drop in	
		voltage)	

RX23W Group, RX230/RX231 Group Differences Between the RX23W Group and the RX231 Group

Register	Bit	RX231 (LVDAb)	RX23W (LVDAb)
LVD2CR0	—	Voltage monitoring 2 circuit control	—

2.5 Clock Generation Circuit

Table 2.8 is a comparative overview of the clock generation circuits, and Table 2.9 is a comparison of clock generation circuit registers.

ltem	RX231	RX23W
Use	 Generates the system clock (ICLK) to be supplied to the CPU, DMAC, DTC, ROM, and RAM. 	 Generates the system clock (ICLK) to be supplied to the CPU, DMAC, DTC, ROM, and RAM.
	 Of the peripheral module clocks (PCLKA, PCLKB, and PCLKD) supplied to the peripheral modules, PCLKA is the operating clock for the MTU2, PCLKD is the operating clock for the S12AD, and PCLKB is the operating clock for modules other than MTU2 and S12AD. 	 Of the peripheral module clocks (PCLKA, PCLKB, and PCLKD) supplied to the peripheral modules, PCLKA is the operating clock for the MTU2, PCLKD is the operating clock for the S12AD, and PCLKB is the operating clock for modules other than MTU2 and S12AD.
	 Generates the FlashIF clock (FCLK) to be supplied to the FlashIF. Generates the external bus clock (BCLK) to be supplied to the external bus. 	Generates the FlashIF clock (FCLK) to be supplied to the FlashIF.
	 Generates the USB clock (UCLK) to be supplied to the USB. 	• Generates the USB clock (UCLK) to be supplied to the USB.
	• Generates the CAC clock (CACCLK) to be supplied to the CAC.	• Generates the CAC clock (CACCLK) to be supplied to the CAC.
	 Generates the RTC-dedicated sub- clock (RTCSCLK) to be supplied to the RTC. 	 Generates the RTC-dedicated sub- clock (RTCSCLK) to be supplied to the RTC.
	Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT.	Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT.
	 Generates the CAN clock (CANMCLK) to be supplied to the RSCAN. 	Generates the CAN clock (CANMCLK) to be supplied to the RSCAN.
	• Generates the SSI clock (SSISCK) to be supplied to the SSI.	• Generates the SSI clock (SSISCK) to be supplied to the SSI.
	• Generates the LPT clock (LPTCLK) to be supplied to the LPT.	• Generates the LPT clock (LPTCLK) to be supplied to the LPT.
		Generates the Bluetooth-dedicated clock (BLECLK).
		Generates the Bluetooth-dedicated low-speed clock (BLELOCO)

 Table 2.8
 Comparative Overview of Clock Generation Circuits

Item	RX231	RX23W
Operating	• ICLK: 54 MHz (max.)	• ICLK: 54 MHz (max.)
frequency	PCLKA: 54 MHz (max.)	PCLKA: 54 MHz (max.)
	PCLKB: 32 MHz (max.)	PCLKB: 32 MHz (max.)
	PCLKD: 54 MHz (max.)	PCLKD: 54 MHz (max.)
	FCLK:	FCLK:
	— 1 MHz to 32 MHz	— 1 MHz to 32 MHz
	(for programming and erasing the ROM and E2 DataFlash)	(for programming and erasing the ROM and E2 DataFlash)
	 — 32 MHz (max.) (for reading from the E2 DataFlash) 	 — 32 MHz (max.) (for reading from the E2 DataFlash)
	BCLK: 32 MHz (max.)	
	BCLK pin output: 16 MHz (max.)	
	UCLK: 48 MHz	UCLK: 48 MHz
	 CACCLK: Same as clock from respective oscillators 	CACCLK: Same as clock from respective oscillators
	RTCSCLK: 32.768 kHz	RTCSCLK: 32.768 kHz
	IWDTCLK: 15 kHz	IWDTCLK: 15 kHz
	CANMCLK: 20 MHz (max.)	CANMCLK: 20 MHz (max.)
	SSISCK: 20 MHz (max.)	SSISCK: 20 MHz (max.)
	LPTCLK: Same frequency as that of the selected oscillator	LPTCLK: Same frequency as that of the selected oscillator
		BLECLK: 32 MHz
		• BLELOCO: 32.768 kHz
Main clock	 Resonator frequency: 	Resonator frequency:
oscillator	1 MHz to 20 MHz (VCC ≥ 2.4 V), 1 MHz to 8 MHz (VCC < 2.4 V)	1 MHz to 20 MHz (VCC ≥ 2.4 V), 1 MHz to 8 MHz (VCC < 2.4 V)
	 External clock input frequency: 20 MHz (max.) 	External clock input frequency: 20 MHz (max.)
	Connectable resonator or additional circuit: ceramic resonator, crystal	Connectable resonator or additional circuit: ceramic resonator, crystal
	Connection pins: EXTAL, XTAL	Connection pins: EXTAL, XTAL
	Oscillation stop detection function:	Oscillation stop detection function:
	When a main clock oscillation stop is detected, the system clock source is switched to LOCO and MTU output can be forcedly driven to high-	When a main clock oscillation stop is detected, the system clock source is switched to LOCO and MTU output can be forcedly driven to high-
	impedance.	impedance.
	Drive capacity switching function	Drive capacity switching function
Sub-clock oscillator	Resonator frequency: 32.768 kHz	Resonator frequency: 32.768 kHz
	circuit: crystal	circuit: crystal resonator
	Connection pin: XCIN, XCOUT	Connection pin: XCIN, XCOUT
DLL sinsuit	Drive capacity switching function	Drive capacity switching function
PLL CIRCUIT	Input clock source: Main clock	Input clock source: Main clock
	Input pulse frequency division ratio: Selectable from 1, 2, and 4	Input pulse frequency division ratio: Selectable from 1, 2, and 4
	Input frequency: 4 MHz to 12.5 MHz	Input frequency: 4 MHz to 12.5 MHz
	Frequency multiplication ratio: Selectable from 4 to 42.5	Frequency multiplication ratio: Selectable from 4 to 40.5
	Jelectable from 4 to 13.5	Selectable from 4 to 13.5
	 VCO oscillation frequency: 	 VCO oscillation frequency:
	$24 \text{ MHz to 54 MHz (VCC } \ge 2.4 \text{ V})$	24 MHz to 54 MHz (VCC \ge 2.4 V)

Item	RX231	RX23W
USB-dedicated PLL circuit	 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz, 6 MHz, 8 MHz, and 12 MHz Frequency multiplication ratio: Selectable from 4, 6, 8, and 12 VCO oscillation frequency: 48 MHz (VCC ≥ 2.4 V) 	 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz, 6 MHz, 8 MHz, and 12 MHz Frequency multiplication ratio: Selectable from 4, 6, 8, and 12 VCO oscillation frequency: 48 MHz (VCC ≥ 2.4 V)
High-speed on-chip oscillator (HOCO) Low-speed on-chip oscillator (LOCO)	Oscillation frequency: 32 MHz and 54 MHz Oscillation frequency: 4 MHz	Oscillation frequency: 32 MHz and 54 MHz Oscillation frequency: 4 MHz
IWDT-dedicated on-chip oscillator	Oscillation frequency: 15 kHz	Oscillation frequency: 15 kHz
Bluetooth-dedicated clock oscillator		 Oscillation frequency: 32 MHz Connectable resonator: Crystal resonator Connection pins: XTAL1_RF and XTAL2_RF
Bluetooth-dedicated low-speed on-chip oscillator		Oscillation frequency: 32.768 kHz

Table 2.9 Comparison of Clock Generation Circuit Registers

Register	Bit	RX231	RX23W
SCKCR	BCK[3:0] (RX231) Reserved bits (RX23W)	External bus clock (BCLK) select bits (b19 to b16)	(b19 to b16) Set to the same value as the ICK[3:0] bits or PCKB[3:0] bits, whichever corresponds to the higher frequency.
	PSTOP1	BCLK pin output control bit	—
BCKCR	—	External bus clock control register	

2.6 Low Power Consumption

Table 2.10 is a comparative overview of the low power consumption functions, and Table 2.11 is a comparison of low power consumption registers.

Item	RX231	RX23W	
Reducing power consumption by switching clock signals	The frequency division ratio can be set independently for the system clock (ICLK), high speed peripheral module clock (PCLKA), peripheral module clock (PCLKB), S12AD clock (PCLKD), external bus clock (BCLK), and FlashIF clock (FCLK).	The frequency division ratio can be set independently for the system clock (ICLK), high speed peripheral module clock (PCLKA), peripheral module clock (PCLKB), S12AD clock (PCLKD), and FlashIF clock (FCLK).	
Module stop function	Each peripheral module can be stopped independently by the module stop control register.	Each peripheral module can be stopped independently by the module stop control register.	
Function for transition to low power consumption mode	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.	
Low power consumption modes	Sleep modeDeep sleep modeSoftware standby mode	Sleep modeDeep sleep modeSoftware standby mode	
Function for lower operating power consumption	 Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage. Three operating power control modes are available High-speed operating mode Middle-speed operating mode Low-speed operating mode 	 Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage. Three operating power control modes are available High-speed operating mode Middle-speed operating mode Low-speed operating mode 	

Table 2.10	Comparative	Overview	of Low Power	Consumption	Functions
------------	-------------	----------	--------------	-------------	-----------

Table 2.11 Comparison of Low Power Consumption Registers

Register	Bit	RX231	RX23W
SBYCR	OPE	Output port enable bit	
MSTPCRB	MSTPB25	Serial communication interface 6 module stop bit	Bluetooth Low Energy module stop bit
	MSTPB31	Serial communication interface 0 module stop bit	—
MSTPCRC	MSTPC26	Serial communication interface 9 module stop bit	—

2.7 Register Write Protection Function

Table 2.12 is a comparative overview of the register write protection functions.

Item	RX231	RX23W
PRC0 bit	Registers related to the clock generation	Registers related to the clock generation
	circuit:	circuit:
	SCKCR, SCKCR3, PLLCR, PLLCR2,	SCKCR, SCKCR3, PLLCR, PLLCR2,
	MOSCCR, SOSCCR, LOCOCR,	MOSCCR, SOSCCR, LOCOCR,
	ILOCOCR, HOCOCR, OSTDCR, OSTDSR,	ILOCOCR, HOCOCR, OSTDCR, OSTDSR,
	CKOCR, UPLLCR, UPLLCR2, BCKCR,	CKOCR, UPLLCR, UPLLCR2, HOCOCR2,
	HOCOCR2, MEMWAII, LOCOTRR,	MEMWAIT, LOCOTRR, ILOCOTRR,
	ILOCOTRR, HOCOTRRO, HOCOTRR3	HOCOTRRO, HOCOTRR3
PRC1 bit	 Registers related to the operating modes: SYSCR0, SYSCR1 	 Register related to the operating modes: SYSCR0
	 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR 	 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR
	Registers related to the clock generation circuit: MOFCR, MOSCWTCR	 Registers related to clock generation circuit: MOFCR, MOSCWTCR
	 Software reset register: SWRR 	 Software reset register: SWRR
PRC2 bit	Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPWUCR	Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPWUCR
PRC3 bit	 Registers related to LVD: 	Registers related to LVD:
	LVCMPCR, LVDLVLR, LVD1CR0,	LVCMPCR, LVDLVLR, LVD1CR0,
	LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR	LVD1CR1, LVD1SR
	Registers related to the battery backup	Registers related to the battery backup
	function:	function:
	VBATTCR, VBATTSR, VBTLVDICR	VBATTCR, VBATTSR, VBTLVDICR

Table 2.12 Comparative Overview of Register Write Protection Functions

2.8 Interrupt Controller

Table 2.13 is a comparative overview of the interrupt controllers, and Table 2.14 is a comparison of interrupt controller registers.

Item		RX231 (ICUb)	RX23W (ICUb)
Interrupts	Peripheral function interrupts	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection Edge detection or level detection is fixed for each source of connected peripheral modules 	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection Edge detection or level detection is fixed for each source of connected peripheral modules
	External pin interrupts	 Interrupts from pins IRQ0 to IRQ7 Number of sources: 8 Interrupt detection: Low level/falling edge/rising edge/rising and falling edges. One of these detection methods can be set for each source. Digital filter function: Supported 	 Interrupts from pins IRQ0, IRQ1, and IRQ4 to IRQ7 Number of sources: 6 Interrupt detection: Low level/falling edge/rising edge/rising and falling edges. One of these detection methods can be set for each source. Digital filter function: Supported
	Software interrupt	Interrupt generated by writing to a register.One interrupt source	Interrupt generated by writing to a register.One interrupt source
	Event link interrupt	The ELSR8I, ELSR18I or ELSR19I interrupt is generated by an ELC event	The ELSR8I, ELSR18I or ELSR19I interrupt is generated by an ELC event
	Interrupt priority level	Priority levels are specified by registers.	Priority levels are specified by registers.
	Fast interrupt function	Faster interrupt processing of the CPU can be set only for a single interrupt source.	Faster interrupt processing of the CPU can be set only for a single interrupt source.
	DTC and DMAC control	The DTC and DMAC can be activated by interrupt sources.	The DTC and DMAC can be activated by interrupt sources.
Non-maskable interrupts	NMI pin interrupt	 Interrupt from the NMI pin Interrupt detection: Falling edge/rising edge Digital filter function: Supported 	 Interrupt from the NMI pin Interrupt detection: Falling edge/rising edge Digital filter function: Supported
	Oscillation stop detection interrupt	Interrupt on detection of oscillation having stopped	Interrupt on detection of oscillation having stopped
	WDT underflow/ refresh error	Interrupt on an underflow of the down counter or occurrence of a refresh error	Interrupt on an underflow of the down counter or occurrence of a refresh error
	IWDT underflow/ refresh error	Interrupt on an underflow of the down counter or occurrence of a refresh error	Interrupt on an underflow of the down counter or occurrence of a refresh error
	Voltage monitoring 1 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)	Interrupt from voltage monitoring circuit 1 (LVD1)

Table 2.13	Comparative Overview of Interrupt Controllers

RX23W Group, RX230/RX231 Group Differences Between the RX23W Group and the RX231 Group

ltem		RX231 (ICUb)	RX23W (ICUb)
Non-maskable interrupts	Voltage monitoring 2 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 2 (LVD2)	
	VBATT voltage monitoring interrupt	Voltage monitoring interrupt of the VBATT	Voltage monitoring interrupt of the VBATT
Return from low power consumption modes	Sleep mode	Return is initiated by a non- maskable interrupt or any other interrupt source.	Return is initiated by a non- maskable interrupt or any other interrupt source.
	Deep sleep mode	Return is initiated by a non- maskable interrupt or any other interrupt source.	Return is initiated by a non- maskable interrupt or any other interrupt source.
	Software standby mode	Return is initiated by a non- maskable interrupt, interrupt IRQ0 to IRQ7, or an RTC alarm/periodic interrupt.	Return is initiated by a non- maskable interrupt, interrupt IRQ0, IRQ1, or IRQ4 to IRQ7, or an RTC alarm/periodic interrupt.

Table 2.14	Comparison	of Register	Interrupt	Controller	Registers
------------	------------	-------------	-----------	------------	-----------

Register	Bit	RX231 (ICUb)	RX23W (ICUb)
IRQCRi		IRQ control register i	IRQ control register i
		(i = 0 to 7)	(i = 0, 1, 4 to 7)
IRQFLTE0	FLTEN2	IRQ2 digital filter enable bit	—
	FLTEN3	IRQ3 digital filter enable bit	—
IRQFLTC0	FCLKSEL2	IRQ2 digital filter sampling clock	—
	[1:0]	bits	
	FCLKSEL3	IRQ3 digital filter sampling clock	—
	[1:0]	bits	
NMISR	LVD2ST	Voltage monitoring 2 interrupt	—
		status flag	
NMIER	LVD2EN	Voltage monitoring 2 interrupt	—
		enable bit	
NMICLR	LVD2CLR	LVD2 clear bit	

2.9 Buses

Table 2.15 is a comparative overview of the buses, and Table 2.16 is a comparison of bus registers.

ltem		RX231	RX23W
CPU buses	Instruction bus	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Memory buses	Operand bus	 Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) Connected to RAM 	 Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) Connected to RAM
	1 Memory bus 2	Connected to ROM	Connected to ROM
Internal main buses	Internal main bus 1	 Connected to the CPU Operates in synchronization with the system clock (ICLK) 	 Connected to the CPU Operates in synchronization with the system clock (ICLK)
	Internal main bus 2	 Connected to the DMAC and DTC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to the DMAC and DTC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Internal peripheral buses	Internal peripheral bus 1	 Connected to peripheral modules (DTC, DMAC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK) 	 Connected to peripheral modules (DTC, DMAC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK)
	Internal peripheral bus 2	 Connected to peripheral modules (modules other than those connected to internal peripheral buses 1, 3, and 4) Operates in synchronization with the peripheral-module clock (PCLKB) 	 Connected to peripheral modules (modules other than those connected to internal peripheral buses 1, 3, and 4) Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 3	 Connected to peripheral modules (USB0, CAN, and CTSU) Operates in synchronization with the peripheral-module clock (PCLKB) 	 Connected to peripheral modules (USB0, CAN, and CTSU) Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 4	 Connected to peripheral modules (MTU2) Operates in synchronization with the peripheral-module clock (PCLKA) 	 Connected to peripheral modules (MTU2) Operates in synchronization with the peripheral-module clock (PCLKA)

Table 2.15	Comparative	Overview of Buses
------------	-------------	--------------------------

RX23W Group, RX230/RX231 Group Differences Between the RX23W Group and the RX231 Group

Item		RX231	RX23W
Internal peripheral	Internal peripheral	Connected to the flash control module and E2 DataFlash	Connected to the flash control module and E2 DataFlash
buses	bus 6	Operates in synchronization with the FlashIF clock (FCLK)	Operates in synchronization with the FlashIF clock (FCLK)
External bus CS area	CS area	 Connected to the external devices Operates in synchronization with the external-bus clock (BCLK) 	

Table 2.16 Comparison of Bus Registers

Register	Bit	RX231	RX23W
CSnCR	—	CSn control register (n = 0 to 3)	_
CSnREC		csn recovery cycle register (n = 0 to 3)	
CSRECEN		CS recovery cycle insertion enable register	
CSnMOD	—	CSn mode register (n = 0 to 3)	
CSnWCR1	—	CSn wait control register 1 (n = 0 to 3)	
CSnWCR2		CSn wait control register 2 (n = 0 to 3)	
BUSPRI	BPEB[1:0]	External bus priority control bits	—

2.10 Event Link Controller

Table 2.17 is a comparative overview of the event link controllers, Table 2.18 lists the correspondences between event signal names set in ELSRn.ELS[7:0] bits and signal numbers, and Table 2.19 is a comparison of event link controller registers.

Item	RX231 (ELC)	RX23W (ELC)
Event link functions	 63 types of event signals can be directly linked to modules. 	 60 types of event signals can be directly linked to modules.
	 Operation of timer modules when inputting an event signal can be selected. 	 Operation of timer modules when inputting an event signal can be selected.
	 Event linkage operation is possible for ports B and E. 	 Event linkage operation is possible for ports B and E.
	 — Single port: Event linkage operation can be set for a single specified port. 	 — Single port: Event linkage operation can be set for a single specified port.
	 Port group: Event linkage operation can be set by grouping multiple specified ports among a total of eight ports. 	 Port group: Event linkage operation can be set by grouping multiple specified ports among a total of eight ports.
Low power consumption function	Ability to transition to module stop state	Ability to transition to module stop state

Table 2.17 Comparative Overview of Event Link Controllers

Table 2.18 Correspondences between Event Signal Names Set in ELSRn.ELS[7:0] Bits and Signal Numbers

Value of	Peripheral		
ELS[7:0] Bits	Module	RX231 (ELC)	RX23W (ELC)
08h	Multi-function	MTU1 compare match 1A	MTU1 compare match 1A
09h	timer pulse unit	MTU1 compare match 1B	MTU1 compare match 1B
0Ah	2	MTU1 overflow	MTU1 overflow
0Bh		MTU1 underflow	MTU1 underflow
0Ch		MTU2 compare match 2A	MTU2 compare match 2A
0Dh		MTU2 compare match 2B	MTU2 compare match 2B
0Eh		MTU2 overflow	MTU2 overflow
0Fh		MTU2 underflow	MTU2 underflow
10h		MTU3 compare match 3A	MTU3 compare match 3A
11h		MTU3 compare match 3B	MTU3 compare match 3B
12h		MTU3 compare match 3C	MTU3 compare match 3C
13h		MTU3 compare match 3D	MTU3 compare match 3D
14h		MTU3 overflow	MTU3 overflow
15h		MTU4 compare match 4A	MTU4 compare match 4A
16h		MTU4 compare match 4B	MTU4 compare match 4B
17h		MTU4 compare match 4C	MTU4 compare match 4C
18h		MTU4 compare match 4D	MTU4 compare match 4D
19h		MTU4 overflow	MTU4 overflow
1Ah		MTU4 underflow	MTU4 underflow
1Fh	Compare match timer	CMT1 compare match 1	CMT1 compare match 1

Value of	Peripheral Modulo	PX231 (ELC)	
22h	8-bit timer	TMR0 compare match A0	TMR0 compare match A0
2211 22h		TMR0 compare match R0	TMR0 compare match R0
2311 24b	-		
2411	-		
280	-	TMR2 compare match A2	TMR2 compare match A2
29n	-	TMR2 compare match B2	TMR2 compare match B2
	Dudkundudu		
2En	Realtime clock	RTC periodic event (selectable among 1/256, 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, or 2 seconds)	RTC periodic event (selectable among 1/256, 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, or 2 seconds)
31h	Independent watchdog timer	IWDT underflow or refresh error	IWDT underflow or refresh error
32h	Low-power timer	LPT compare match	LPT compare match
34h	12-bit A/D converter	S12AD comparison conditions met	S12AD comparison conditions met
35h		S12AD comparison conditions not met	S12AD comparison conditions not met
3Ah	Serial communications	SCI5 error (receive error or error signal detection)	SCI5 error (receive error or error signal detection)
3Bh	interface	SCI5 receive data full	SCI5 receive data full
3Ch	-	SCI5 transmit data empty	SCI5 transmit data empty
3Dh	-	SCI5 transmit end	SCI5 transmit end
4Eh	I ² C bus	RIIC0 communication error or	RIIC0 communication error or
	interface	event generation	event generation
4Fh		RIIC0 receive data full	RIIC0 receive data full
50h		RIIC0 transmit data empty	RIIC0 transmit data empty
51h		RIIC0 transmit end	RIIC0 transmit end
52h	Serial	RSPI0 error (mode fault, overrun,	RSPI0 error (mode fault, overrun,
	peripheral	or parity error)	or parity error)
53h	interface	RSPI0 idle	RSPI0 idle
54h	-	RSPI0 receive data full	RSPI0 receive data full
55h	-	RSPI0 transmit data empty	RSPI0 transmit data empty
56h		RSPI0 transmit end	RSPI0 transmit end
58h	12-bit A/D converter	S12AD A/D conversion end	S12AD A/D conversion end
59h	Comparator B0	Comparator B0 comparison result change	_
5Ah	Comparator B0 and B1	Comparator B0/B1 common comparison result change	
5Bh	Voltage	LVD1 voltage detection	LVD1 voltage detection
5Ch	detection circuit	LVD2 voltage detection	
5Dh	DMA controller	DMAC0 transfer end	DMAC0 transfer end
5Eh		DMAC1 transfer end	DMAC1 transfer end
5Fh		DMAC2 transfer end	DMAC2 transfer end
60h		DMAC3 transfer end	DMAC3 transfer end
61h	Data transfer controller	DTC transfer end	DTC transfer end
62h	Clock generation circuit	Clock generation circuit oscillation stop detection	Clock generation circuit oscillation stop detection

Value of ELS[7:0] Bits	Peripheral Module	RX231 (ELC)	RX23W (ELC)	
63h	I/O ports	Input port group 1 input edge detection	Input port group 1 input edge detection	
64h		Input port group 2 input edge detection	Input port group 2 input edge detection	
65h		Single input port 0 input edge detection	Single input port 0 input edge detection	
66h		Single input port 1 input edge detection	Single input port 1 input edge detection	
67h		Single input port 2 input edge detection	Single input port 2 input edge detection	
68h		Single input port 3 input edge detection	Single input port 3 input edge detection	
69h	Event link controller	Software event	Software event	
6Ah	Data operation circuit	DOC data operation condition met	DOC data operation condition met	
Settings other than the above are prohibited.				

Table 2.19 Comparison of Event Link Controller Registers

Register	Bit	RX231 (ELC)	RX23W (ELC)
ELOPC	LPTMD[1:0]	b5 b4	b5 b4
		 0 : Output the compare match event to the ICU as an interrupt request. 1 : Event output is disabled. Settings other than the above are prohibited. 	 0 : Output the LPT compare match 0 event to the ICU as an interrupt request. 1 : Event output is disabled. Settings other than the above are prohibited.

2.11 I/O Ports

Table 2.20 is a comparative overview of the I/O ports of 100-pin (RX231) and 85- or 83-pin (RX23W) products, and Table 2.21 is a comparative overview of the I/O ports of 64-pin (RX231) and 56-pin (RX23W) products. Table 2.22 is a comparison of I/O port functions, and Table 2.23 is a comparison of I/O port registers.

Port Symbol	RX231 (100-Pin)	RX23W (85-Pin, 83-Pin)
PORT0	P03, P05, P07	P03, P05, P07
PORT1	P12 to P17	P14 to P17
PORT2	P20 to P27	P21, P22, P25 to P27
PORT3	P30 to P37	P30, P31, P35 to P37
PORT4	P40 to P47	P40 to P47
PORT5	P50 to P55	—
PORTA	PA0 to PA7	—
PORTB	PB0 to PB7	PB0, PB1, PB3, PB5, PB7
PORTC	PC0 to PC7	PC0, PC2 to PC7
PORTD	PD0 to PD7	PD3
PORTE	PE0 to PE7	PE0 to PE4
PORTH	PH0 to PE3	—
PORTJ	PJ3	PJ3

Table 2.20 Comparative Overview of I/O Ports of 100-Pin (RX231) and 85- or 83-Pin (RX23W) Products

Table 2.21 Comparative Overview of I/O Ports of 64-Pin (RX231) and 56-Pin (RX23W) Products

Port Symbol	RX231 (64-Pin)	RX23W (56-Pin)
PORT0	P03, P05	P05
PORT1	P14 to P17	P14 to P17
PORT2	P26, P27	P26, P27
PORT3	P30, P31, P35 to P37	P30, P31, P35 to P37
PORT4	P40 to P44, P46	P41, P45 to P47
PORT5	P54, P55	_
PORTA	PA0, PA1, PA3, PA4, PA6	_
PORTB	PB0, PB1, PB3, PB5 to PB7	PB0, PB1, PB7
PORTC	PC2 to PC7	PC0, PC2 to PC7
PORTD	—	PD3
PORTE	PE0 to PE5	PE2 to PE4
PORTH	PH0 to PH3	—

Item	Port Symbol	RX231	RX23W
Input pull-up	PORT0	P03, P05, P07	P03, P05, P07
	PORT1	P12 to P17	P14 to P17
	PORT2	P20 to P27	P21, P22, P25 to P27
	PORT3	P30 to P34, P36, P37	P30, P31, P36, P37
	PORT4	P40 to P47	P40 to P47
	PORT5	P50 to P55	—
	PORTA	PA0 to PA7	—
	PORTB	PB0 to PB7	PB0, PB1, PB3, PB5, PB7
	PORTC	PC0 to PC7	PC0, PC2 to PC7
	PORTD	PD0 to PD7	PD3
	PORTE	PE0 to PE7	PE0 to PE4
	PORTH	PH0 to PH3	—
	PORTJ	PJ3	PJ3
Open-drain output	PORT1	P12 to P17	P14 to P17
	PORT2	P20 to P27	P21, P22, P25 to P27
	PORT3	P30 to P34, P36, P37	P30, P31, P36, P37
	PORT5	P50 to P52, P54	
	PORTA	PA0 to PA7	
	PORTB	PB0 to PB7	PB0, PB1, PB3, PB5, PB7
	PORTC	PC0 to PC7	PC0, PC2 to PC7
	PORTE	PE0 to PE7	PE0 to PE4
	PORTJ	PJ3	PJ3
Driving ability	PORT0	P03, P05, P07	P03, P05, P07
switching	PORT1	P12 to P17	P14 to P17
	PORT2	P20 to P27	P21, P22, P25 to P27
	PORT3	P30 to P34, P36, P37	P30, P31, P36, P37
	PORT4	P40 to P47	P40 to P47
	PORT5	P50 to P55	—
	PORTA	PA0 to PA7	—
	PORTB	PB0 to PB7	PB0, PB1, PB3, PB5, PB7
	PORTC	PC0 to PC7	PC0, PC2 to PC7
	PORTD	PD0 to PD7	PD3
	PORTE	PE0 to PE7	PE0 to PE4
	PORTH	PH0 to PH3	
	PORTJ	PJ3	PJ3
5 V tolerant	PORT1	P12, P13, P16, P17	P16, P17
	PORT3	P30 to P32	P30, P31
	PORTB	PB5	PB5

Table 2.22 Comparison of I/O Port Functions

Table 2.23 Comparison of I/O Port Registers

Register	Bit	RX231	RX23W
PSRA	—	Port switching register A	—
PSRB	—	Port switching register B	—

2.12 Multi-Function Pin Controller

Table 2.24 is a comparison of the assignments of multiplexed pins, and Table 2.25 to Table 2.36 are comparisons of multi-function pin controller registers.

In the following comparison of the assignments of multiplexed pins, **light blue text** designates pins that exist on the RX23W Group only and **orange text** pins that exist on the RX231 Group only. A circle (\bigcirc) indicates that a function is assigned, a cross (\times) that the pin does not exist or that no function is assigned, and grayed out items mean that the function is not implemented.

Module/		Port	RX231 (M	MPC)	RX23W (M	PC)
Function	Pin Function	Allocation	100-Pin	64-Pin	85/83-Pin	56-Pin
Interrupt	NMI (input)	P35	0	0	0	0
	IRQ0 (input)	P30	0	0	0	0
		PD0	0	X	×	X
		PH1	O *2	O *2	×	X
	IRQ1 (input)	P31	0	0	0	0
		PD1	0	X	×	X
		PH2	O *2	O *2	×	X
	IRQ2 (input)	P32	0	X		
		P12	0	×		
		PD2	0	X		
	IRQ3 (input)	P33	0	X		
		P13	0	X		
		PD3	0	X		
	IRQ4 (input)	PB1	0	0	0	0
		P14	0	0	0	0
		P34	0	X	×	X
		PD4	0	X	×	X
	IRQ5 (input)	PA4	0	0	×	X
		P15	0	0	0	0
		PD5	0	X	×	X
		PE5	0	0	×	X
	IRQ6 (input)	PA3	0	0	×	Х
		P16	0	0	0	0
		PD6	0	X	×	Х
		PE6	0	X	\times	X
	IRQ7 (input)	PE2	0	0	0	0
		P17	0	0	0	0
		PD7	0	X	×	Х
		PE7	0	X	\times	X
Clock generation	CLKOUT (output)	PE3	0	0	0	0
circuit		PE4	0	0	0	0
Multi-function	MTIOC0A (input/output)	P34	0	X	×	X
timer unit 2		PB3	0	0	0	X
	MTIOC0B (input/output)	P13	0	X	X	X
		P15	0	0	0	0
		PA1	0	0	X	X
	MTIOC0C (input/output)	P32	0	X	X	X
		PB1	0	0	0	0
	MTIOC0D (input/output)	P33	0	X		
		PA3	0	0		

 Table 2.24
 Comparison of Multiplexed Pin Assignments

Module/		Port	RX231 (N	MPC)	RX23W (M	PC)
Function	Pin Function	Allocation	100-Pin	64-Pin	85/83-Pin	, 56-Pin
Multi-function	MTIOC1A (input/output)	P20	0	Х	×	Х
Multi-function timer unit 2		PE4	0	0	0	0
	MTIOC1B (input/output)	P21	0	Х	0	Х
		PB5	0	0	0	Х
	MTIOC2A (input/output)	P26	0	0	0	0
		PB5	0	0	0	Х
	MTIOC2B (input/output)	P27	0	0	0	0
		PE5	0	0	×	Х
	MTIOC3A (input/output)	P14	0	0	0	0
		P17	0	0	0	0
		PC1	0	Х	X	Х
		PC7	0	0	0	0
	MTIOC3B (input/output)	P17	0	0	0	0
		P22	0	X	0	Х
		PB7	0	0	0	0
		PC5	0	Ō	0	0
	MTIOC3C (input/output)	P16	0	Ō	0	0
		PC0	0	X	0	0
		PC6	0	0	0	0
		PJ3	0	X	Ō	X
	MTIOC3D (input/output)	P16	0	0	0	0
		P23	Ō	X	X	X
		PB6	0	0	X	X
		PC4	0	0	0	0
	MTIOC4A (input/output)	P24	0	X	X	X
		PA0	0	0	X	X
		PB3	0	0	0	X
		PE2	Ō	0	0	0
	MTIOC4B (input/output)	P30	Ō	Ō	0	0
		P54	0	0	X	X
		PC2	0	0	0	0
		PD1	0	X	X	X
		PE3	0	0	0	0
	MTIOC4C (input/output)	P25	0	Х	0	X
		PB1	Ō	0	0	0
		PE1	0	0	0	X
		PE5	0	0	X	X
	MTIOC4D (input/output)	P31	0	0	0	0
		P55	0	0	X	X
		PC3	0	0	0	0
		PD2	Ō	X	X	X
		PE4	0	0	0	0
	MTIC5U (input)	PA4	Ō	Ō		
	(1)	PD7	0	X		
	MTIC5V (input)	PA6	0	0		
		PD6	Ō	X		
	MTIC5W (input)	PB0	0	0		
		PD5	0	×		

Module/		Port	RX231 (N	(IPC)	RX23W (M	PC)
Function	Pin Function	Allocation	100-Pin	64-Pin	85/83-Pin	56-Pin
Multi-function	MTCLKA (input)	P14	0	0	0	0
timer unit 2		P24	0	X	×	X
		PA4	0	0	×	X
		PC6	0	0	0	0
	MTCLKB (input)	P15	0	0	0	0
		P25	0	X	0	X
		PA6	0	0	×	X
		PC7	0	0	0	0
	MTCLKC (input)	P22	0	X	0	Х
		PA1	0	0	×	Х
		PC4	0	0	0	0
	MTCLKD (input)	P23	0	Х	×	Х
		PA3	0	0	×	Х
		PC5	0	0	0	0
Port output enable	POE0# (input)	PC4	0	0	0	0
2		PD7	0	Х	×	Х
	POE1# (input)	PB5	0	0	0	Х
		PD6	0	X	×	Х
	POE2# (input)	P34	0	X		
		PA6	0	0		
		PD5	0	X		
	POE3# (input)	P33	0	X	×	X
		PB3	0	0	0	Х
		PD4	0	X	×	Х
	POE8# (input)	P17	0	0	0	0
		P30	0	0	0	0
		PD3	0	X	0	0
		PE3	0	0	0	0
16-bit	TIOCA0 (input/output)	PA0	0	0		
timer pulse unit	TIOCB0 (input/output)	P17	0	0	0	0
		PA1	0	0	×	Х
	TIOCC0 (input/output)	P32	0	X		
	TIOCD0 (input/output)	P33	0	X		
		PA3	0	0		
	TIOCA1 (input/output)	PA4	0	0		
	TIOCB1 (input/output)	P16	0	0	0	0
		PA5	0	X	×	X
	TIOCA2 (input/output)	PA6	0	0		
	TIOCB2 (input/output)	P15	0	0	0	0
		PA7	0	X	×	Х
	TIOCA3 (input/output)	P21	0	X	0	X
		PB0	0	0	0	0
	TIOCB3 (input/output)	P20	0	X	X	X
		PB1	0	0	0	0
	TIOCC3 (input/output)	P22	0	X	0	X
		PB2	0	X	X	X
	TIOCD3 (input/output)	P23	0	X	X	X
		PB3	0	0	0	X
	TIOCA4 (input/output)	P25	0	X	0	X
		PB4	0	X	×	X

Module/		Port	RX231 (M	IPC)	RX23W (M	PC)
Function	Pin Function	Allocation	100-Pin	64-Pin	85/83-Pin	56-Pin
16-bit	TIOCB4 (input/output)	P24	0	Х	×	Х
timer pulse unit		PB5	0	0	0	Х
	TIOCA5 (input/output)	P13	0	Х		
		PB6	0	0		
	TIOCB5 (input/output)	P14	0	0	0	0
		PB7	0	0	0	0
	TCLKA (input)	P14	0	0	0	0
		PC2	0	0	0	0
	TCLKB (input)	P15	0	0	0	0
		PA3	0	0	×	Х
		PC3	0	0	0	0
	TCLKC (input)	P16	0	0	0	0
		PB2	0	Х	×	Х
		PC0	0	Х	0	0
	TCLKD (input)	P17	0	0	0	0
		PB3	0	0	0	Х
		PC1	0	Х	X	Х
8-bit timer	TMO0 (output)	P22	0	Х	0	Х
		PB3	0	0	0	Х
		PH1	O *2	O *2	X	Х
	TMCI0 (input)	P21	0	X	0	Х
		PB1	0	0	0	0
		PH3	O *2	O *2	X	Х
	TMRI0 (input)	P20	0	X		
		PA4	0	0		
		PH2	O *2	O *2		
	TMO1 (output)	P17	0	0	0	0
		P26	0	0	0	0
	TMCI1 (input)	P12	0	Х	×	Х
		P54	0	0	×	Х
		PC4	0	0	0	0
	TMRI1 (input)	P24	0	Х	×	Х
		PB5	0	0	0	Х
	TMO2 (output)	P16	0	0	0	0
		PC7	0	0	0	0
	TMCI2 (input)	P15	0	0	0	0
		P31	0	0	0	0
		PC6	0	0	0	0
	TMRI2 (input)	P14	0	0	0	0
		PC5	0	0	0	0
	TMO3 (output)	P13	0	×		
		P32	0	X		
		P55	0	0		
	TMCI3 (input)	P27	0	0	0	0
		P34	0	X	X	X
		PA6	0	0	×	X
	TMRI3 (input)	P30	0	0	0	0
		P33	0	X	×	Х

Medule/		Dert	DY231 /M		DY23W/ /M	
Function	Pin Function	Allocation	100-Pin	64-Pin	85/83-Pin	56-Pin
Serial	RXD0 (input) /	P21		×		
communications	SMISO0 (input/output) /		Ŭ			
interface	SSCL0 (input/output)					
	TXD0 (output) /	P20	0	X		
	SMOSI0 (input/output) /					
	SSDA0 (input/output)					
	SCK0 (input/output)	P22	0	X		
	CTS0# (input) /	P23	0	×		
	RIS0# (output) /					
	SS0# (Input)	D15				
	SMISO1 (input/output) /	P15	0	0	0	0
	SSCL1 (input/output)	P30	0	0	0	0
	TXD1 (output) /	P16	0	0	0	0
	SSDA1 (input/output)	P26	0	0	0	0
	SCK1 (input/output)	P17	0	0	0	0
		P27	0	Ō	0	Õ
	CTS1# (input) /	P14	0	0	0	0
	RTS1# (output) /	P31	0	0	0	0
	RXD5 (input) /	PA2	\bigcirc	×	X	×
	SMISO5 (input/output) / SSCL5 (input/output)	PA3	0	$\hat{\mathbf{O}}$	×	X
		PC2	0	$\overline{0}$	$\hat{\mathbf{O}}$	$\hat{\mathbf{O}}$
	TXD5 (output) /	PA4	0	0	×	X
	SMOSI5 (input/output) /	DOD				\sim
	SSDA5 (input/output)	PC3	0	0	0	0
	SCK5 (input/output)	PA1	0	0	×	X
		PC1	0	X	×	X
		PC4	0	0	0	0
	CTS5# (input) /	PA6	0	0	×	X
	RTS5# (output) /	PC0	0	X	0	0
	RXD6 (input) /	P33	0	×		
	SMISO6 (input/output) /	1 00				
	SSCL6 (input/output)	PB0	0	0		
	TXD6 (output) /	P32	0	×		
	SMOSI6 (input/output) / SSDA6 (input/output)	PB1	0	0		
	SCK6 (input/output)	P34	0	X		
		PB3	0	0		
	CTS6# (input) /	PB2	0	X		
	RTS6# (output) /		0			
	SS6# (input)	L12	\cup	^		
	RXD8 (input) /	PC6	0	0	0	0
	SMISO8 (input/output) /					
		PC7				
	SMOSI8 (input/output) /					
	SSDA8 (input/output)					
	SCK8 (input/output)	PC5	0	0	0	0

Module/		Port	RX231 (N	(IPC)	RX23W (M	PC)
Function	Pin Function	Allocation	100-Pin	, 64-Pin	85/83-Pin	, 56-Pin
Serial	CTS8# (input) /	PC4	0	0	0	0
communications	RTS8# (output) /					
interface	SS8# (input)					
	RXD9 (input) /	PB6	0	0		
	SMISO9 (input/output) /					
	SSCL9 (Input/output)			\sim		
	IXD9 (output) /	PB7	0	0		
	SSDA9 (input/output)					
	SCK9 (input/output)	PB5	0	0		
	CTS9# (input) /	PB4	0	X		
	RTS9# (output) /		Ŭ			
	SS9# (input)					
	RXD12 (input) /	PE2	0	0	0	X
	SMISO12 (input/output) /					
	SSCL12 (input/output) /					
	RXDX12 (Input)			\sim		
	SMOSI12 (input/output) /	PEI	0	0	0	X
	SSDA12 (input/output) /					
	TXDX12 (output) /					
	SIOX12 (input/output)					
	SCK12 (input/output)	PE0	0	0	0	X
	CTS12# (input) /	PE3	0	0	0	Х
	RTS12# (output) /					
	SS12# (input)	5.40				
I ² C bus interface	SCL (input/output)	P16		0	0	0
		P12		X	X	X
	SDA (Input/output)	P17			0	0
Sorial paripharal	PSPCKA (input/output)		0	X		X
interface	RSPCRA (Input/output)	PRO				
Interface		PC5				0
	MOSIA (input/output)	P16				0
		PA6				
		PC6		\bigcirc		
	MISOA (input/output)	P17	0	0	0	0
	(input output)	PA7	0	X	×	X
		PC7	0	$\hat{\mathbf{O}}$	$\hat{\mathbf{O}}$	$\hat{\mathbf{O}}$
	SSLA0 (input/output)	PA4	0	0	×	X
		PC4	0	0	$\hat{\mathbf{O}}$	$\hat{\mathbf{O}}$
	SSLA1 (output)	PA0	0	Ō	X	X
		PC0	0	X	0	0
	SSLA2 (output)	PA1	0	0	-	
		PC1	0	X		
	SSLA3 (output)	PA2	0	X	X	X
		PC2	0	0	0	0
Realtime clock	RTCOUT (output)	P16	0	0	0	0
		P32	0	X	Х	Х
	RTCIC0 (input)*1	P30	0	0	0	0
	RTCIC1 (input)*1	P31	0	0	0	0

Module/		Port	RX231 (M	/IPC)	RX23W (M	PC)
Function	Pin Function	Allocation	100-Pin	, 64-Pin	85/83-Pin	, 56-Pin
Realtime clock	RTCIC2 (input)*1	P32	0	X		
IrDA interface	IRTXD5 (output)	PA4	0	0	×	X
		PC3	0	0	0	0
	IRRXD5 (input)	PA2	0	X	×	X
		PA3	0	0	×	Х
		PC2	0	0	0	0
CAN module	CRXD0 (input)	P15	0	0	0	0
		P55	0	0	×	X
	CTXD0 (output)	P14	0	0	0	0
		P54	0	0	×	X
Serial sound	SSISCK0 (input/output)	P23	0	X	×	Х
interface		P31	0	0	0	0
		PA1	0	0	×	Х
	SSIWS0 (input/output)	P21	0	X	0	Х
		P27	0	0	0	0
		PA6	0	0	×	Х
	SSITXD0 (output)	P17	0	0	0	0
		PA4	0	0	X	Х
	SSIRXD0 (input)	P20	0	X	X	Х
		P26	0	0	0	0
		PA3	0	0	X	Х
	AUDIO_MCLK (input)	P22	0	X	0	Х
		P30	0	0	0	0
		PE3	0	0	0	0
SD host interface	SDHI_CLK (output)	PB1	0	0	0	Х
	SDHI_CMD (input/output)	PB0	0	0	0	Х
	SDHI_D0 (input/output)	PC3	0	0	0	Х
	SDHI_D1 (input/output)	PB6	0	0	×	Х
		PC4	0	0	0	Х
	SDHI_D2 (input/output)	PB7	0	0	0	Х
	SDHI_D3 (input/output)	PC2	0	0	0	Х
	SDHI_CD (input)	PB5	0	0	0	Х
	SDHI_WP (input)	PB3	0	0	0	Х
USB 2.0	USB0_VBUS (input)	P16	0	0	0	0
Host/Function		PB5	0	0	0	Х
module	USB0_EXICEN (output)	P21	0	X	0	Х
		PC6	X	0	0	0
	USB0_VBUSEN (output)	P16	0	0	0	0
		P24	0	X	×	Х
		P26	X	0	0	0
		P32	0	X	X	X
	USB0_OVRCURA (input)	P14	0	0	0	0
	USB0_OVRCURB (input)	P16	0	0	0	0
		P22	0	X	0	X
	USB0 ID (input)	P20	0	X	×	X
		PC5	X	0	0	0
12-bit A/D	AN000 (input)*1	P40	0	0	0	X
converter	AN001 (input)*1	P41	Ō	0	0	0
	AN002 (input)*1	P42	Ō	Ō	0	X
	AN003 (input)*1	P43	0	0	0	X

Module/		Port	RX231 (M		RX23W (M	PC)
Function	Function Pin Function		100-Pin	64-Pin	85/83-Pin	56-Pin
12-bit A/D	AN004 (input)*1	P44	0	0	0	X
converter	AN005 (input)*1	P45	0	X	0	0
	AN006 (input)*1	P46	0	$\overline{0}$	0	0
	AN007 (input)*1	P47	0	X	0	0
	AN016 (input)*1	PE0	0	0	0	X
	AN017 (input)*1	PE1	0	0	0	X
	AN018 (input)*1	PE2	0	0	0	0
	AN019 (input)*1	PE3	0	0	0	0
	AN020 (input)*1	PE4	Õ	Õ	0	0
	AN021 (input)*1	PE5	0	Ō		
	AN022 (input)*1	PE6	0	X		
	AN023 (input)*1	PE7	0	X		
	AN024 (input)	PD0	0	X		
	AN025 (input)	PD1	0	X		
	AN026 (input)	PD2	0	X		
	AN027 (input)	PD3	0	X	0	0
	AN028 (input)	PD4	0	X	_	
	AN029 (input)	PD5	0	X		
	AN030 (input)	PD6	0	×		
	AN031 (input)	PD7	0	×		
	ADTRG0# (input)	P07	0	X	0	X
		P16	0	0	0	0
		P25	0	X	0	Х
D/A converter	DA0 (output)*1	P03	0	0	0	Х
	DA1 (output)*1	P05	0	0	0	0
Clock frequency	CACREF (input)	PA0	0	0	×	Х
accuracy		PC7	0	0	0	0
measurement		PH0	O*2	O *2	X	X
	CMPA2 (input)*1	PF4	0	0		
detection input						
Comparator B	CMPB0 (input)*1	PE1	0	0		
	CVREFB0 (input)*1	PE2	0	0		
	CMPB1 (input)*1	PA3	0	0		
	CVREFB1 (input)*1	PA4	0	0		
	CMPB2 (input)*1	P15	0	0	0	0
	CVREFB2 (input)*1	P14	0	0	0	0
	CMPB3 (input)*1	P26	0	0	0	0
	CVREFB3 (input)*1	P27	0	0	0	0
	CMPOB0 (output)	PE5	0	0		
	CMPOB1 (output)	PB1	0	0		
	CMPOB2 (output)	P17	0	0	0	0
	CMPOB3 (output)	P30	0	0	0	0
Capacitive touch	TSCAP (output)	PC4	0	0	0	0
sensing unit	TS0 (output)	P34	0	×		
(0150)	TS1 (output)	P33	0	X		
	TS2 (output)	P27	0	0	0	0
	TS3 (output)	P26	0	0	0	0
	TS4 (output)	P25	0	X	0	X
	TS5 (output)	P24	0	×		

Module/		Port	RX231 (M	MPC)	RX23W (M	PC)
Function	Pin Function	Allocation	100-Pin	64-Pin	85/83-Pin	56-Pin
Capacitive touch	TS6 (output)	P23	0	Х		
sensing unit	sensing unit TS7 (output)			Х	0	Х
(CTSU)	TS8 (output)	P21	0	Х	0	Х
	TS9 (output)	P20	0	Х		
	TS12 (output)	P15	0	0	0	0
	TS13 (output)	P14	0	0	0	0
	TS15 (output)	P55	0	0		
	TS16 (output)	P54	0	0		
	TS17 (output)	P53	0	Х		
	TS18 (output)	P52	0	Х		
	TS19 (output)	P51	0	Х		
	TS20 (output)	P50	0	Х		
	TS22 (output)	PC6	0	0	0	0
	TS23 (output)	PC5	0	0	0	0
	TS27 (output)	PC3	0	0	0	0
	TS30 (output)	PC2	0	0	0	0
	TS33 (output)	PC1	0	X		
	TS35 (output)	PC0	0	Х	0	0
External bus	CS0# (output)	P24	0	X		
		PC7	0	X		
	CS1# (output)	P25	0	X		
		PC6	0	X		
	CS2# (output)	P26	0	X		
		PC5	0	Х		
	CS3# (output)	P27	0	Х		
		PC4	0	Х		
	A0 to A7 (output)	PA0 to PA7	0	Х		
	A8 to A15 (output)	PB0 to PB7	0	X		
	A16 to A23 (output)	PC0 to PC7	0	Х		
	D0 to D7 (input/output)	PD0 to PD7	0	Х		
	D8 to D15 (input/output)	PE0 to PE7	0	Х		
	BCLK (output)	P53	0	Х		
	RD# (output)	P52	0	Х		
	WR# (output)	P50	0	X		
	WR0# (output)	P50	0	X		
	WR1# (output)	P51	0	X		
	BC0# (output)	PA0	0	×		
	BC1# (output)	P51	0	X		
	WAIT# (input)	P51	0	×		
		P55	0	×		
		PC5	0	×		
	ALE (output)	P54	0	X		

Notes: 1. For these pin functions, ensure that the corresponding pin is set as general input (PORTm.PDR.Bn and PORTm.PMR.Bn bits cleared to 0).

2. The relevant pin is implemented on the RX230 only.

Register	Bit	RX231 (n = <mark>2 to</mark> 7)	RX23W (n = 4 to 7)
P12PFS	—	P12 pin function control register	—
P13PFS	—	P13 pin function control register	—
P14PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
P1nPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		P12: IRQ2 (100-pin)	
		P13: IRQ3 (100-pin)	
		P14: IRQ4 (100/64/48-pin)	P14: IRQ4 (85/83/56-pin)
		P15: IRQ5 (100/64/48-pin)	P15: IRQ5 (85/83/56-pin)
		P16: IRQ6 (100/64/48-pin)	P16: IRQ6 (85/83/56-pin)
		P17: IRQ7 (100/64/48-pin)	P17: IRQ7 (85/83/56-pin)

Table 2.25 Comparison of P1n Pin Function Control Register (P1nPFS)

Table 2.26	Comparison	of P2n	Pin Function	Control	Register	(P2nPFS)
10010 2.20	0011120113011		i in i unction	0011101	Register	(1 2111 1 0)

Register	Bit	RX231 (n = <mark>0 to</mark> 7)	RX23W (n = 1, 2, 5 to 7)
P20PFS	—	P20 pin function control register	
P21PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		b4 b0	b4 b0
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC1B	00001b: MTIOC1B
		00011b: TIOCA3	00011b: TIOCA3
		00101b: TMCI0	00101b: TMCI0
		01010b: RXD0/SMISO0/SSCL0	
		10001b: USB0_EXICEN	10001b: USB0_EXICEN
		10111b: SSIWS0	10111b: SSIWS0
		11001b: TS8	11001b: TS8
P22PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		b4 b0	b4 b0
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3B	00001b: MTIOC3B
		00010b: MTCLKC	00010b: MTCLKC
		00011b: TIOCC3	00011b: TIOCC3
		00101b: TMO0	00101b: TMO0
		01010b: SCK0	
		10001b: USB0_OVRCURB	10001b: USB0_OVRCURB
		10111b: AUDIO_MCLK	10111b: AUDIO_MCLK
		11001b: TS7	11001b: TS7
P23PFS		P23 pin function control register	—
P24PFS	—	P24 pin function control register	

RX23W Group, RX230/RX231 Group Differences Between the RX23W Group and the RX231 Group

Register	Bit	RX231 (n = 0 to 7)	RX23W (n = 1, 2, 5 to 7)
P26PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		b4 b0	b4 b0
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC2A	00001b: MTIOC2A
		00101b: TMO1	00101b: TMO1
		01010b: TXD1/SMOSI1/SSDA1	01010b: TXD1/SMOSI1/SSDA1
			10001b: USB0_VBUSEN
		10111b: SSIRXD0	10111b: SSIRXD0
		11001b: TS3	11001b: TS3

Table 2.27 Comparison of P3n Pin Function Control Register (P3nPFS)

Register	Bit	RX231 (n = 0 to 4)	RX23W (n = 0, 1)
P32PFS	—	P32 pin function control register	—
P33PFS	—	P33 pin function control register	—
P34PFS	—	P34 pin function control register	—
P3nPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		P30: IRQ0 (100/64/48-pin)	P30: IRQ0 (85/83/56-pin)
		P31: IRQ1 (100/64/48-pin)	P31: IRQ1 (85/83/56-pin)
		P32: IRQ2 (100-pin)	
		P33: IRQ3 (100-pin)	
		P34: IRQ4 (100-pin)	

Table 2.28 Comparison of P5n Pin Function Control Register (P5nPFS)

Register	Bit	RX231 (n = 0 to 5)	RX23W
P5nPFS	—	P5n pin function control register	

Table 2.29 Comparison of PAn Pin Function Control Register (PAnPFS)

Register	Bit	RX231 (n = 0 to 7)	RX23W
PAnPFS		PAn pin function control register	

Table 2.30 Comparison of PBn Pin Function Control Register (PBnPFS)

Register	Bit	RX231 (n = 0 to 7)	RX23W (n = 0, 1, 3, 5, 7)
PB0PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		b4 b0	b4 b0
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIC5W	
		00011b: TIOCA3	00011b: TIOCA3
		01011b: RXD6/SMISO6/SSCL6	
		01101b: RSPCKA	01101b: RSPCKA
		11010b: SDHI_CMD	11010b: SDHI_CMD

Register	Bit	RX231 (n = 0 to 7)	RX23W (n = 0, 1, 3, 5, 7)
PB1PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		b4 b0	b4 b0
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC0C	00001b: MTIOC0C
		10000h; CMDOR1	
		11010b: SDHI_CLK	11010b: SDHI_CLK
PB2PFS	<u> —</u>	PB2 pin function control register	
PB3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		b4 b0	b4 b0
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC0A	00001b: MTIOC0A
		00010b: MTIOC4A	00010b: MTIOC4A
		00011b: TIOCD3	00011b: TIOCD3
		00100b: TCLKD	00100b: TCLKD
		00101b: TMO0	00101b: TMO0
		00111b: POE3#	00111b: POE3#
		01011b: SCK6	
		11010b: SDHI WP	11010b: SDHI WP
PB4PFS		PB4 pin function control register	
PB5PES	PSEI [4·0]	Pin function select bits	Pin function select bits
		b4 b0	b4 b0
		00000b: Hi-7	
		01010b: SCK9	
		10001b: USB0_VBUS	10001b: USB0_VBUS
		11010b: SDHI_CD	11010b: SDHI_CD
PB6PFS	<u> </u>	PB6 pin function control register	—
PB7PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		b4 b0	b4 b0
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3B	00001b: MTIOC3B
		00011b: TIOCB5	00011b: TIOCB5
		01010b: TXD9/SMOSI9/SSDA9	
		11010b: SDHL D2	11010b: SDHL D2

Register	Bit	RX231 (n = 0 to 7)	RX23W (n = 0, 2 to 7)
PC1PFS	—	PC1 pin function control register	—
PC5PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		b4 b0	b4 b0
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3B	00001b: MTIOC3B
		00010b: MTCLKD	00010b: MTCLKD
		00101b: TMRI2	00101b: TMRI2
		01010b: SCK8	01010b: SCK8
		01101b: RSPCKA	01101b: RSPCKA
			10001b: USB0_ID
		11001b: TS23	11001b: TS23
PC6PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		b4 b0	b4 b0
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3C	00001b: MTIOC3C
		00010b: MTCLKA	00010b: MTCLKA
		00101b: TMCI2	00101b: TMCl2
		01010b: RXD8/SMISO8/SSCL8	01010b: RXD8/SMISO8/SSCL8
		01101b: MOSIA	01101b: MOSIA
			10001b: USB0_EXICEN
		11001b: TS22	11001b: TS22

Table 2.31 Comparison of PCn Pin Function Control Register (PCnPFS)

Table 2.32 Comparison of PDn Pin Function Control Register (PDnPFS)

Register	Bit	RX231 (n = 0 to 7)	RX23W (n = 3)
PD0PFS	—	PD0 pin function control register	—
PD1PFS		PD1 pin function control register	—
PD2PFS	—	PD2 pin function control register	—
PD4PFS	—	PD4 pin function control register	—
PD5PFS	—	PD5 pin function control register	—
PD6PFS	—	PD6 pin function control register	—
PD7PFS		PD7 pin function control register	—
PDnPFS	ISEL	Interrupt input function select bit	—
	ASEL	Analog function select bit	—

Table 2.33 Comparison of PEn Pin Function Control Register (PEnPFS)

Register	Bit	RX231 (n = 0 to 7)	RX23W (n = 0 to 4)
PE5PFS		PE5 pin function control register	—
PE6PFS		PE6 pin function control register	—
PE7PFS		PE7 pin function control register	
PEnPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		PE2: IRQ7 (100/64/48-pin)	PE2: IRQ7 (85/83/56-pin)
		PE5: IRQ5 (100/64-pin)	
		PE6: IRQ6 (100-pin)	
		PE7: IRQ7 (100-pin)	

Register	Bit	RX231 (n = 0 to 7)	RX23W (n = 0 to 4)
PEnPFS	ASEL	Analog function select bit	Analog function select bit
		0: Used as other than as analog pin	0: Used as other than as analog pin
		1: Used as analog pin	1: Used as analog pin
		PE0: AN016 (100/64-pin)	PE0: AN016 (85/83-pin)
		PE1: AN017, CMPB0	PE1: AN017 (85/83-pin)
		(100/64/48-pin)	
		PE2: AN018, CVREFB0	PE2: AN018 (85/83/56-pin)
		(100/64/48-pin)	
		PE3: AN019 (100/64/48-pin)	PE3: AN019 (85/83/56-pin)
		PE4: AN020 (100/64/48-pin)	PE4: AN020 (85/83/56-pin)
		PE5: AN021 (100/64-pin)	
		PE6: AN022 (100-pin)	
		PE7: AN023 (100-pin)	

Table 2.34 Comparison of PHn Pin Function Control Register (PHnPFS)

Register	Bit	RX231 (n = 0 to 3)	RX23W
PHnPFS		PHn pin function control register Implemented on the RX230 Group only.	

Table 2.35 Comparison of PJn Pin Function Control Register (PJnPFS)

Register	Bit	RX231 (n = 3)	RX23W (n = 3)
PJ3PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		b4 b0	b4 b0
		00000b: Hi-Z	00000b: Hi-Z
		00001b: MTIOC3C	00001b: MTIOC3C
		01011b: CTS6#/RTS6#/SS6#	

Table 2.36 Comparison of Multi-Function Pin Controller Registers

Register	Bit	RX231 (MPC)	RX23W (MPC)
PFCSE	—	CS output enable register	—
PFAOE0	—	Address output enable register 0	—
PFAOE1	—	Address output enable register 1	—
PFBCR0	—	External bus control register 0	—
PFBCR1	—	External bus control register 1	

2.13 Multi-Function Timer Pulse Unit 2

Table 2.37 is a comparative overview of multi-function timer pulse unit 2, and Table 2.38 is a comparison of multi-function timer pulse unit 2 registers.

Item	RX231 (MTU2a)	RX23W (MTU2a)
Pulse input/output	Max. 16 lines	Max. 15 lines
Pulse input	3 lines	—
Count clocks	Seven and eight clocks for each channel (four clocks for MTU5)	Seven and eight clocks for each channel
Available	[MTU0 to MTU4]	[MTU0 to MTU4]
operations	Waveform output at compare match	Waveform output at compare match
	Input capture function (noise filter setting function)	Input capture function (noise filter setting function)
	 Simultaneous writing to multiple timer counters (TCNT) 	 Simultaneous writing to multiple timer counters (TCNT)
	 Simultaneous clearing by compare match or input capture 	 Simultaneous clearing by compare match or input capture
	 Simultaneous register input/output by synchronous counter operation Up to 12-phase PWM output in combination with synchronous 	 Simultaneous register input/output by synchronous counter operation Up to 11-phase PWM output in combination with synchronous
	operation	operation
	[MTU0, MTU3, MTU4]	[MTU0, MTU3, MTU4]
	Ability to specify buffer operation	Ability to specify buffer operation
	 Ability to specify AC synchronous motor (brushless DC motor) drive mode using complementary PWM output and reset-synchronized PWM output and ability to select between two types of waveform output (chopping and level) 	 Ability to specify AC synchronous motor (brushless DC motor) drive mode using complementary PWM output and reset-synchronized PWM output and ability to select between two types of waveform output (chopping and level)
	[MTU1, MTU2]	[MTU1, MTU2]
	Independent specification of phase counting mode	 Independent specification of phase counting mode
	Cascade connection operation	Cascade connection operation
	[MTU3, MTU4]	[MTU3, MTU4]
	Ability to produce six-phase waveform output, including three phases each for positive and negative complementary PWM or reset PWM output, by interlocking operation	Ability to produce six-phase waveform output, including three phases each for positive and negative complementary PWM or reset PWM output, by interlocking operation
	[MTU5]	—
	Dead time compensation counter	
	Input capture function (noise filter	
	setting function)	
	Counter clear operation	
Complementary PWM mode	Interrupts at counter peaks and troughs	 Interrupts at counter peaks and troughs
	 Ability to skip A/D converter start triggers 	 Ability to skip A/D converter start triggers
Interrupt sources	28 sources	25 sources
Buffer operation	Automatic transfer of register data	Automatic transfer of register data

Table 2.37 Comparative Overview of Multi-Function Timer Pulse Unit 2

Item	RX231 (MTU2a)	RX23W (MTU2a)
Trigger generation	Ability to generate A/D converter start	Ability to generate A/D converter start
	trigger	trigger
Low power	Ability to specify module stop state	Ability to specify module stop state
consumption		
function		

Table 2.38 Comparison of Multi-Function Timer Pulse Unit 2 Registers

Register	Bit	RX231 (MTU2a)	RX23W (MTU2a)
TCNTCMPCLR	—	Timer compare match clear	—
		register	

2.14 Port Output Enable 2

Table 2.39 is a comparative overview of the port output enable 2 modules, and Table 2.40 is a comparison of port output enable 2 registers.

Item	RX231 (POE2a)	RX23W (POE2a)
High-impedance control by input level detection	 Ability to specify falling-edge detection or sampling of the low level 16 times at PCLK/8, PCLK/16, or PCLK/128 clock cycles for each of the POE0# to POE3# and POE8# input pins Ability to put pins for complementary PWM output from the MTU in the high-impedance state on detection of falling edges or sampling of the low level on the POE0# to POE3# pins Ability to put pins for output from 	 Ability to specify falling-edge detection or sampling of the low level 16 times at PCLK/8, PCLK/16, or PCLK/128 clock cycles for each of the POE0#, POE1#, POE3#, and POE8# input pins Ability to put pins for complementary PWM output from the MTU in the high-impedance state on detection of falling edges or sampling of the low level on the POE0# to POE3# pins Ability to put pins for output from
	MTU0 in the high-impedance state on detection of falling edges or sampling of the low level on the POE8# pin.	MTU0 in the high-impedance state on detection of falling edges or sampling of the low level on the POE8# pin.
High-impedance	Ability to compare levels output on pins for complementary PWM output from the	Ability to compare levels output on pins for complementary PWM output from the
level comparison	MTU and put them in the high- impedance state when simultaneous output of the active level continues for one or more cycles of the PCLK clock	MTU and put them in the high- impedance state when simultaneous output of the active level continues for one or more cycles of the PCLK clock
High-impedance control by oscillation stop detection	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state when oscillation by the clock generation circuit stops	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state when oscillation by the clock generation circuit stops
High-impedance control by software (registers)	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state by writing to the POE registers	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state by writing to the POE registers
High-impedance control by event signals	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state in response to an event signal from the event link controller (ELC)	Ability to put pins for complementary PWM output from the MTU and output pins for MTU0 in the high-impedance state in response to an event signal from the event link controller (ELC)
Interrupts	Ability to generate interrupts in response to the results of POE0# to POE3# and POE8# input-level detection or MTU complementary PWM output-level comparison	Ability to generate interrupts in response to the results of POE0#, POE1#, POE3#, and POE8# input-level detection or MTU complementary PWM output-level comparison

Table 2.39 Comparative Overview of Port Output Enable 2 Modules

Register	Bit	RX231 (POE2a)	RX23W (POE2a)
ICSR1	POE2M[1:0]	POE2 mode select bits	
	POE2F	POE2 flag	—
ICSR2	POE8E	POE8 high-impedance enable bit	POE8 high-impedance enable bit
		0: Does not place the MTIOC0A,	0: Does not place the MTIOC0A,
		MTIOC0B, MTIOC0C, and	MTIOC0B, and MTIOC0C pins in
		MTIOC0D pins in the high-	the high-impedance state.
		Impedance state.	
		1: Places the MTIOCUA, MTIOCUB,	1: Places the MTIOCUA, MTIOCUB,
		the high-impedance state	impedance state
	DE37E	MTIOCOD high-impedance enable	
I OLOINI		hit	
ICSR3	OSTSTE	OSTST high-impedance enable bit	OSTST high-impedance enable bit
		0: Does not place the MTIOC0A,	0: Does not place the MTIOC0A,
		МТІОСОВ, МТІОСОС,	MTIOC0B, MTIOC0C,
		MTIOC0D, MTIOC3B,	MTIOC3B, MTIOC3D,
		MTIOC3D, MTIOC4A,	MTIOC4A, MTIOC4B,
		MTIOC4B, MTIOC4C, and	MTIOC4C, and MTIOC4D pins in
		MTIOC4D pins in the high-	the high-impedance state
		1: Places the MTIOCOA, MTIOCOB,	1: Places the MTIOCUA, MTIOCUB,
			MTIOC4B MTIOC4C and
		MTIOC4C, and MTIOC4D pins in	MTIOC4D pins in the high-
		the high-impedance state	impedance state

Table 2.40 Comparison of Port Output Enable 2 Registers

2.15 16-Bit Timer Pulse Unit

Table 2.41 is a comparative overview of the 16-bit timer pulse units, and Table 2.42 is a comparison of 16-bit timer pulse unit registers.

Item	RX231 (TPUa)	RX23W (TPUa)
Pulse input/output	Max. 16 lines	Max. 10 lines
Count clock	Seven and eight clocks for each channel	Seven and eight clocks for each channel
Available	Waveform output at compare match	Waveform output at compare match
operations	Input capture function (noise filter setting function)	Input capture function (noise filter setting function)
	Counter clear operation	Counter clear operation
	• Simultaneous writing to multiple timer counters (TCNT)	Simultaneous writing to multiple timer counters (TCNT)
	Simultaneous clearing by compare match or input capture	Simultaneous clearing by compare match or input capture
	Synchronous register input/output by synchronous counter operation	Synchronous register input/output by synchronous counter operation
	Up to 15-phase PWM output in combination with synchronous operation	Up to 9-phase PWM output in combination with synchronous operation
	Cascaded operation	Cascaded operation
Buffer operation	Channels 0 and 3	Channels 0 and 3
	Automatic transfer of register data	Automatic transfer of register data
Phase coefficient mode	Channels 1, 2, 4, and 5	Channels 1, 2, 4, and 5
Interrupt sources	26 sources	26 sources
Trigger generation	Ability to generate A/D converter start trigger	Ability to generate A/D converter start trigger
Low power consumption function	Ability to specify module stop state	Ability to transition to module stop state

Table 2.41 Comparative Overview of 16-Bit Timer Pulse Units

Table 2.42 Comparison of 16-Bit Timer Pulse Unit Registers

Register	Bit	RX231 (TPUa)	RX23W (TPUa)
TMDR	ICSELB	TGRB input capture input select bit	TGRB input capture input select bit
		0: Input capture input source is TIOCBn pin.	0: Input capture input source is TIOCBn pin.
		1: Input capture input source is TIOCAn pin.	1: Input capture input source is TIOCAn pin.
		(n = 0 to 5)	(n = 3, 4)
			This bit is reserved on the TPU0,
			TPU1, TPU2, and TPU5, each of which
			lack TIOCAn pins. The bit is read as 0.
			The write value should be 0.

Register	Bit	RX231 (TPUa)	RX23W (TPUa)	
TMDR	ICSELD	TGRD input capture input select bit	TGRD input capture input select bit	
		0: Input capture input source is	0: Input capture input source is	
		TIOCDn pin.	TIOCDn pin.	
		1: Input capture input source is TIOCCn pin.	1: Input capture input source is TIOCCn pin.	
		(n = <mark>0</mark> , 3)	(n = 3)	
		This bit is reserved on the TPU1, TPU2, TPU4, and TPU5, each of which lack TGRC and TGRD registers. The bit is read as 0. The write value should be 0.	This bit is reserved on the TPU0, TPU1, TPU2, TPU4, and TPU5, each of which lack TIOCCn and TIOCDn pins. The bit is read as 0. The write value should be 0.	
TIORH	IOA[3:0]	TGRA control bits	TGRA control bits	
			This bit is reserved on the TPU0, TPU1, TPU2, and TPU5, each of which lack TIOCAn pins. The bit is read as 0.	
NFCR	NFAEN	Noise filter enable A bit	Noise filter enable A bit	
		0: The noise filter for TIOCAm is disabled.	0: The noise filter for TIOCAm is disabled.	
		1: The noise filter for TIOCAm is enabled.	1: The noise filter for TIOCAm is enabled.	
		(m = 0 to 5)	(m = 3, 4)	
			This bit is reserved on the TPU0, TPU1, TPU2, TPU4, and TPU5. The bit is read as 0. It cannot be written to.	
	NFCEN	Noise filter enable C bit	Noise filter enable C bit	
		0: The noise filter for TIOCCm is disabled.	0: The noise filter for TIOCCm is disabled.	
		1: The noise filter for TIOCCm is enabled.	1: The noise filter for TIOCCm is enabled.	
		(m = <mark>0</mark> , 3)	(m = 3)	
		This bit is reserved on the TPU1, TPU2, TPU4, and TPU5. The bit is read as 0. It cannot be written to.	This bit is reserved on the TPU0, TPU1, TPU2, and TPU5. The bit is read as 0. It cannot be written to.	
	NFDEN	Noise filter enable D bit	Noise filter enable D bit	
		0: The noise filter for TIOCDm is disabled.	0: The noise filter for TIOCDm is disabled.	
		1: The noise filter for TIOCDm is enabled.	1: The noise filter for TIOCDm is enabled.	
		(m = 0, 3)	(m = 3)	
		This bit is reserved on the TPU1, TPU2, TPU4, and TPU5. The bit is read as 0. It cannot be written to.	This bit is reserved on the TPU0, TPU1, TPU2, and TPU5. The bit is read as 0. It cannot be written to.	

2.16 8-Bit Timer

Table 2.43 is a comparison of 8-bit timer registers.

Register	Bit	RX231 (TMR)	RX23W (TMR)
TCR	CCLR[1:0]	Counter clear bits	Counter clear bits
		b4 b3	b4 b3
		0 0: Clearing is disabled	0 0: Clearing is disabled
		0 1: Cleared by compare match A	0 1: Cleared by compare match A
		1 0: Cleared by compare match B	1 0: Cleared by compare match B
		1 1: Cleared by external counter	1 1: Cleared by external counter
		reset signal	reset signal*1
		(Select edge or level with	(Select edge or level with
		TCCR.TMRIS bit.)	TCCR.TMRIS bit.)
TCCR	TMRIS	Timer reset detection condition	Timer reset detection condition
		select bit	select bit
			This bit is reserved on the TMR0.
			The bit is read as 0. The write
			value should be 0.

Table 2.43	Comparison	of 8-Bit	Timer	Registers
------------	------------	----------	-------	-----------

Note: 1. Do not use this setting on TMR0.

2.17 Realtime Clock

Table 2.44 is a comparison of realtime clock registers.

Register	Bit	RX231 (RTCe)	RX23W (RTCe)
RTCCRn		Time capture control register n (n = 0 to <mark>2</mark>)	Time capture control register n (n = 0 or 1)
RSECCPn/ BCNT0CPn		Second capture register n/BCNT0 capture register n (n = 0 to 2)	Second capture register n/BCNT0 capture register n (n = 0 or 1)
RMINCPn/ BCNT1CPn		Minute capture register n/BCNT1 capture register n (n = 0 to <mark>2</mark>)	Minute capture register n/BCNT1 capture register n (n = 0 or 1)
RHRCPn/ BCNT2CPn		Hour capture register n/BCNT2 capture register n (n = 0 to <mark>2</mark>)	Hour capture register n/BCNT2 capture register n (n = 0 or 1)
RDAYCPn/ BCNT3CPn		Day capture register n/BCNT3 capture register n (n = 0 to 2)	Day capture register n/BCNT3 capture register n (n = 0 or 1)
RMONCPn		Month capture register n (n = 0 to 2)	Month capture register n (n = 0 or 1)

Table 2.44	Comparison	of Realtime	Clock Registers
------------	------------	-------------	------------------------

2.18 USB 2.0 Host/Function Module

Table 2.45 is a comparison of USB 2.0 Host/Function module registers.

Table 2.45 Comparison of USB 2.0 Host/Function Module Registers

Register	Bit	RX231 (USBd)	RX23W (USBc)
USBMC	VDCEN	USB regulator on/off control bit	

2.19 Serial Communications Interface

Table 2.46 is a comparative overview of the serial communications interfaces, Table 2.47 is a comparison of SCI channel specifications, and Table 2.48 is a comparison of serial communications interface registers.

Item		RX231 (SCIg, SCIh)	RX23W (SCIg, SCIh)	
Number of char	nnels	SCIg: 6 channels	SCIg: 3 channels	
		SCIh: 1 channel	SCIh: 1 channel	
Serial communi	ications modes	Asynchronous	Asynchronous	
		Clock synchronous	Clock synchronous	
		Smart card interface	Smart card interface	
		Simple I ² C bus	Simple I ² C bus	
		Simple SPI bus	Simple SPI bus	
Transfer speed		Bit rate specifiable by on-chip	Bit rate specifiable by on-chip	
		baud rate generator.	baud rate generator.	
Full-duplex com	nmunication	• Transmitter:	• Transmitter:	
		Continuous transmission	Continuous transmission	
		possible using double-buffer	possible using double-buffer	
		Beceiver:	Receiver:	
		Continuous reception possible	Continuous reception possible	
		using double-buffer structure.	using double-buffer structure.	
Data transfer		Selectable as LSB first or MSB	Selectable as LSB first or MSB	
		first transfer.	first transfer.	
Interrupt source	es	Transmit end, transmit data	Transmit end, transmit data	
		empty, receive data full, and	empty, receive data full, and	
		receive error, completion of	receive error, completion of	
		generation of a start condition,	generation of a start condition,	
		(for simple l^2C mode)	(for simple l^2C mode)	
Low power con	sumption function	Module stop state can be set for	Module stop state can be set for	
		each channel.	each channel.	
Asynchronous	Data length	7, 8, or 9 bits	7, 8, or 9 bits	
mode	Transmission	1 or 2 bits	1 or 2 bits	
	stop bits			
	Parity	Even parity, odd parity, or no parity	Even parity, odd parity, or no parity	
	Receive error	Parity, overrun, and framing	Parity, overrun, and framing	
	detection	errors	errors	
	function			
	Hardware flow	CTSn# and RTSn# pins can be	CTSn# and RTSn# pins can be	
	control	used in controlling	used in controlling	
	Start bit	transmission/reception.	transmission/reception.	
	detection	selectable	selectable	
	Break detection	When a framing error occurs, a	When a framing error occurs, a	
	Dreak detection	break can be detected by reading	break can be detected by reading	
		the RXDn pin level directly.	the RXDn pin level directly.	
	Clock source	An internal or external clock	An internal or external clock	
		can be selected.	can be selected.	
		Transfer rate clock input from	Transfer rate clock input from	
		the TMR can be used (SCI5,	the TMR can be used (SCI5	
		SCI6, and SCI12).	and SCI12).	

Table 2.46	Comparative	Overview of	Serial C	Communications	Interfaces

Item		RX231 (SCIg, SCIh)	RX23W (SCIg, SCIh)
Asynchronous	Double-speed	Baud rate generator double-	Baud rate generator double-
mode	mode	speed mode is selectable.	speed mode is selectable.
	Multi-processor	Serial communication among	Serial communication among
	communications	multiple processors	multiple processors
	function		
	Noise	The signal paths from input on	The signal paths from input on
	cancellation	the RXDh pins incorporate digital	the RXDh pins incorporate digital
Clock	Data longth	Noise Inters.	P bito
synchronous	Data lengtin Receive error		
mode	detection	Overruit error	Overruit error
	Hardware flow	CTSn# and RTSn# pins can be	CTSn# and RTSn# pins can be
	control	used in controlling transmission/	used in controlling transmission/
		reception.	reception.
Smart card	Error processing	An error signal can be	An error signal can be
interface mode		automatically transmitted	automatically transmitted
		when detecting a parity error	when detecting a parity error
		Dete con be outernatically	a Data can be outernatically
		 Data can be automatically retransmitted when receiving 	 Data can be automatically retransmitted when receiving
		an error signal during	an error signal during
		transmission	transmission
	Data type	Both direct convention and	Both direct convention and
		inverse convention are	inverse convention are
		supported.	supported.
Simple I ² C mode	Communication format	I ² C bus format	I ² C bus format
	Operating mode	Master	Master
		(single-master operation only)	(single-master operation only)
	Transfer rate	Fast mode is supported.	Fast mode is supported.
	Noise	The signal paths from input on	The signal paths from input on
	cancellation	the SSCLn and SSDAn pins	the SSCLn and SSDAn pins
		and the interval for noise	and the interval for noise
		cancellation is adjustable	cancellation is adjustable
Simple SPI	Data length	8 bits	8 bits
mode	Detection of	Overrun error	Overrun error
	errors		
	SS input pin	Applying the high level to the	Applying the high level to the
	function	SSn# pin can cause the output	SSn# pin can cause the output
		pins to enter the high-impedance	pins to enter the high-impedance
		state.	state.
	Clock settings	Four kinds of settings for clock	Four kinds of settings for clock
		phase and clock polarity are	phase and clock polarity are
1		selectable.	selectable.

Item		RX231 (SCIg, SCIh)	RX23W (SCIg, SCIh)
Extended serial mode (supported by SCI12 only)	Start frame transmission	 Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection 	 Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection
	Start frame reception	 Detection of break field low width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates 	 Detection of break field low width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates
	I/O control function	 Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin 	 Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin
	Timer function	Usable as reloading timer	Usable as reloading timer
Bit rate modulation function		Correction of outputs from the on- chip baud rate generator can reduce errors.	Correction of outputs from the on- chip baud rate generator can reduce errors.
Event link function (supported by SCI5 only)		 Error (receive error, error signal detection) event output Receive data full event output Transmit data empty event output Transmit end event output 	 Error (receive error, error signal detection) event output Receive data full event output Transmit data empty event output Transmit end event output

Item	RX231 (SCIg, SCIh)	RX23W (SCIg, SCIh)
Synchronous mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI8, SCI12
Clock synchronous mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI8, SCI12
Smart card interface mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI8, SCI12
Simple I ² C mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI8, SCI12
Simple SPI mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI8, SCI12
Extended serial mode	SCI12	SCI12
TMR clock input	SCI5, <mark>SCI6</mark> , SCI12	SCI5, SCI12
Event link function	SCI5	SCI5

Table 2.47 Comparison of SCI Channel Specifications

Table 2.48 Comparison of Serial Communications Interface Registers

Register	Bit	RX231 (SCIg, SCIh)	RX23W (SCIg, SCIh)
SCR	MPIE	Multi-processor interrupt enable bit	Multi-processor interrupt enable bit
		(Valid in asynchronous mode when SMR.MP = 1)	(Valid in asynchronous mode when SMR.MP = 1)
		0: Normal reception	0: Normal reception
		1: When data with the multi-processor bit set to 0 is received, the data is not read, and setting the status flags ORER and FER in SSR to 1 is disabled. When data with the multi-processor bit set to 1 is received, the MPIE bit is automatically cleared to 0, and normal reception resumes.	1: When data with the multi-processor bit set to 0 is received, the data is not read, and setting the status flags RDRF, ORER, and FER in SSR to 1 is disabled. When data with the multi-processor bit set to 1 is received, the MPIE bit is automatically cleared to 0, and normal reception resumes.

2.20 Serial Peripheral Interface

Table 2.49 is a comparative overview of the serial peripheral interfaces, and Table 2.50 is a comparison of serial peripheral interface registers.

Item	RX231 (RSPIa)	RX23W (RSPIa)
Number of channels	1 channel	1 channel
RSPI transfer functions	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK 	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK
	Switching of the phase of RSPCK	Switching of the phase of RSPCK
Data format	 MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 	 MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits.
	 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/ reception (each frame consisting of up to 32 bits). 	 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/ reception (each frame consisting of up to 32 bits).
Bit rate	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096). In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 8). Width at high level: 4 cycles of PCLK; width at low level: 4 cycles of PCLK 	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096). In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 8). Width at high level: 4 cycles of PCLK; width at low level: 4 cycles of PCLK
Buffer configuration	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers 	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers
Error detection	 Mode fault error detection Overrun error detection Parity error detection 	 Mode fault error detection Overrun error detection Parity error detection

 Table 2.49
 Comparative Overview of Serial Peripheral Interfaces

ltem	RX231 (RSPIa)	RX23W (RSPIa)
SSL control function	 Four SSL pins (SSLA0 to SSLA3) for each channel In single-master mode, SSLA0 to SSLA3 pins are output. In multi-master mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for either output or upped 	 Three SSL pins (SSLA0, SSLA1, and SSLA3) for each channel In single-master mode, SSLA1 and SSLA3 pins are output. In multi-master mode: SSLA0 pin for input, and SSLA1 and SSLA3 pins for either output or upped
	 In slave mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for unused. 	 In slave mode: SSLA0 pin for input, and SSLA1 and SSLA3 pins for unused.
	Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay)	Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay)
	 Setting range: 1 to 8 RSPCK cycles Setting unit: 1 RSPCK cycle Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) Setting range: 1 to 8 RSPCK cycles Setting unit: 1 RSPCK cycle Controllable wait for next-access SSL output assertion (next-access delay) 	 Setting range: 1 to 8 RSPCK cycles Setting unit: 1 RSPCK cycle Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) Setting range: 1 to 8 RSPCK cycles Setting unit: 1 RSPCK cycle Controllable wait for next-access SSL output assertion (next-access delay)
	— Setting range: 1 to 8 RSPCK cycles Setting unit: 1 RSPCK cycle	Setting range: 1 to 8 RSPCK cycles Setting unit: 1 RSPCK cycle
	 Function for changing SSL polarity 	 Function for changing SSL polarity
Control in master transfer	 A transfer of up to eight commands can be executed sequentially in looped execution. 	 A transfer of up to eight commands can be executed sequentially in looped execution.
	 For each command, the following can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay 	 For each command, the following can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay
	 A transfer can be initiated by writing to the transmit buffer. MOSI signal value specifiable in SSI 	 A transfer can be initiated by writing to the transmit buffer. MOSI signal value specifiable in SSI
	negation	negation
	RSPCK auto-stop function	RSPCK auto-stop function
Interrupt sources	Receive butter tull interrupt	Receive butter tull interrupt
	Iransmit buffer empty interrupt BSDI error interrupt (mode foult	Iransmit buffer empty interrupt BSDI error interrupt (mode fault)
	• ROPI error interrupt (mode fault,	• ROPI error interrupt (mode fault,
	RSPI idle interrupt (RSPI idle)	RSPI idle interrupt (RSPI idle)

Item	RX231 (RSPIa)	RX23W (RSPIa)	
Event link function	The following events can be output to	The following events can be output to	
(output)	the event link controller. (RSPI0)	the event link controller. (RSPI0)	
	Receive buffer full signal	Receive buffer full signal	
	 Transmit buffer empty signal 	Transmit buffer empty signal	
	 Mode fault, overrun, or parity error signal 	 Mode fault, overrun, or parity error signal 	
	RSPI idle signal	RSPI idle signal	
	Transmission-completed signal	Transmission-completed signal	
Other functions	Function for switching between	Function for switching between	
	CMOS output and open-drain output	CMOS output and open-drain output	
	Function for initializing the RSPI	Function for initializing the RSPI	
	Loopback mode	Loopback mode	
Low power	Ability to specify module stop state	Ability to specify module stop state	
consumption			
function			

Table 2.50 Comparison of Serial Peripheral Interface Registers

Register	Bit	RX231 (RSPIa)	RX23W (RSPIa)
SSLP	SSL2P	SSL2 signal polarity setting bit	—
SPCMDm (m = 0 to 7)	SSLA[2:0]	SSL signal assertion setting bits	SSL signal assertion setting bits
		b6 b4	b6 b4
		0 0 0: SSL0	0 0 0: SSL0
		0 0 1: SSL1	0 0 1: SSL1
		0 1 0: SSL2	
		0 1 1: SSL3	0 1 1: SSL3
		1 x x: Setting prohibited.	Settings other than the above are prohibited.

2.21 Capacitive Touch Sensing Unit

Table 2.51 is a comparative overview of the capacitive touch sensing units, and Table 2.52 is a comparison of capacitive touch sensing unit registers.

Item		RX231 (CTSU)	RX23W (CTSU)
Operating clock		PCLK, PCLK/2, or PCLK/4	PCLK, PCLK/2, or PCLK/4
Pins	Electrostatic capacitance pins TS00, TS01, TS02, TS03, TS04, TS05, TS06, TS07, TS08, TS09, TS12, TS13, TS15, TS16, TS17, TS18, TS19, TS20, TS22, TS23, TS27, TS30, TS33, TS35 (24 channels) TS2, TS3, TS4, TS7, TS8, TS TS13, TS22, TS23, TS27, TS (12 channels) Low-pass filter TSCAP TSCAP		TS2, TS3, TS4, TS7, TS8, TS12, TS13, TS22, TS23, TS27, TS30, TS35 (12 channels) TSCAP
	connection pin		
Connection pin Measurement modes		 Self-capacitance single scan mode: Electrostatic capacitance on one channel is measured by the self- capacitance method. Self-capacitance multi-scan mode: Electrostatic capacitance on multiple channels is measured successively by the self- capacitance method. Mutual capacitance full scan mode: Electrostatic capacitance on multiple channels is measured successively by the mutual capacitance method. 	 Self-capacitance single scan mode: Electrostatic capacitance on one channel is measured by the self- capacitance method. Self-capacitance multi-scan mode: Electrostatic capacitance on multiple channels is measured successively by the self- capacitance method. Mutual capacitance full scan mode: Electrostatic capacitance on multiple channels is measured successively by the mutual capacitance method.
Noise	prevention	Synchronous noise prevention, high- range noise prevention	Synchronous noise prevention, high- range noise prevention
Measurement start conditions		 Software trigger External trigger (event input from event link controller (ELC)) 	 Software trigger External trigger (event input from event link controller (ELC))

Table 2.51	Comparative Overvi	ew of Capacitive T	ouch Sensing Units
		on of oupdointe i	out of one of other

Register	Bit	RX231 (CTSU)	RX23W (CTSU)
CTSUMCH0	CTSUMCH0	CTSU measurement channel 0	CTSU measurement channel 0
	[5:0]	bits	bits
		 Self-capacitance single scan 	 Self-capacitance single scan
		mode	mode
		b5 b0	b5 b0
		0 0 0 0 0 0: TS0	
		0 0 0 0 1: TS1	
		0 0 0 0 1 0: TS2	0 0 0 0 1 0: TS2
		0 0 0 0 1 1: TS3	0 0 0 0 1 1: TS3
		0 0 0 1 0 0: TS4	0 0 0 1 0 0: TS4
		0 0 0 1 1 1: TS7	0 0 0 1 1 1: TS7
		0 0 1 0 0 0: TS8	0 0 1 0 0 0: TS8
		0 0 1 0 0 1: TS9	
		0 0 1 1 0 0: TS12	0 0 1 1 0 0: TS12
		0 0 1 1 0 1: TS13	0 0 1 1 0 1: TS13
		0 0 1 1 1 1: TS15	
		1 1	
		0 1 0 1 0 0: TS20	
		0 1 0 1 1 0: TS22	0 1 0 1 1 0: TS22
		0 1 0 1 1 1: TS23	0 1 0 1 1 1: TS23
		0 1 1 0 1 1: TS27	0 1 1 0 1 1: TS27
		0 1 1 1 1 0: TS30	0 1 1 1 1 0: TS30
		1 0 0 0 0 1: TS33	
		1 0 0 0 1 1: TS35	1 0 0 0 1 1: TS35
		Other than above: Starting	Other than above: Starting
		measurement operation	measurement operation
		(CTSUCR0.CTSUSTRT bit = 1)	(CTSUCR0.CTSUSTRT bit = 1)
		is prohibited after these bits are	is prohibited after these bits are
		set.	set.

Table 2.52 Comparison of Capacitive Touch Sensing Unit Registers

Register	Bit	RX231 (CTSU)	RX23W (CTSU)
СТЅОМСНО	CTSUMCH0	Measurement modes other	Measurement modes other
	[5:0]	than self-capacitance single	than self-capacitance single
		scan	scan
		b5 b0	b5 b0
		0 0 0 0 0 0: TS0	
		0 0 0 0 0 1: TS1	
		0 0 0 0 1 0: TS2	0 0 0 0 1 0: TS2
		0 0 0 0 1 1: TS3	0 0 0 0 1 1: TS3
		0 0 0 1 0 0: TS4	0 0 0 1 0 0: TS4
		0 0 0 1 1 1: TS7	0 0 0 1 1 1: TS7
		0 0 1 0 0 0: TS8	0 0 1 0 0 0: TS8
		0 0 1 0 0 1: TS9	
		0 0 1 1 0 0: TS12	0 0 1 1 0 0: TS12
		0 0 1 1 0 1: TS13	0 0 1 1 0 1: TS13
		0 0 1 1 1 1: TS15	
		010100: IS20	
		010110: IS22	010110: IS22
		010111: IS23	0 1 0 1 1 1: IS23
		011011:IS27	011011: IS27
		0 1 1 1 1 0: TS30	011110:1530
			1 0 0 0 1 1 TS25
		1 0 0 0 1 1. 1555	100011.1555
		stopped	stopped
CTSUMCH1	CTSUMCH1	CTSU measurement channel 1	CTSU measurement channel 1
0100110111	[5:0]	bits	bits
		b5 b0	b5 b0
		0 0 0 0 0 0: TS0	
		0 0 0 0 0 1: TS1	
		0 0 0 0 1 0: TS2	0 0 0 0 1 0: TS2
		0 0 0 0 1 1: TS3	0 0 0 0 1 1: TS3
		0 0 0 1 0 0: TS4	0 0 0 1 0 0: TS4
		0 0 0 1 1 1: TS7	0 0 0 1 1 1: TS7
		0 0 1 0 0 0: TS8	0 0 1 0 0 0: TS8
		0 0 1 0 0 1: TS9	
		001100:TS12	0 0 1 1 0 0: TS12
		001101:TS13	0 0 1 1 0 1: TS13
		001111:1515	
			0 1 0 1 1 0 7822
		010110.1022	010110.1022
		01011.1020	01011.1020
		011011.1027	011011.1027
		100001.1530	011110.1000
			100011. 1. 7935
		1 1 1 1 1 1 1 Measurement	1 1 1 1 1 1 1 Measurement
		stopped	stopped

Register	Bit	RX231 (CTSU)	RX23W (CTSU)
CTSUCHAC0	CTSUCHAC00	CTSU channel enable control 00 bit	—
	CTSUCHAC01	CTSU channel enable control 01 bit	—
	CTSUCHAC02	CTSU channel enable control 02 bit	CTSU channel enable control 02 bit
	CTSUCHAC03	CTSU channel enable control 03 bit	CTSU channel enable control 03 bit
	CTSUCHAC04	CTSU channel enable control 04 bit	CTSU channel enable control 04 bit
	CTSUCHAC05	CTSU channel enable control 05 bit	—
	CTSUCHAC06	CTSU channel enable control 06 bit	—
	CTSUCHAC07	CTSU channel enable control 07 bit	CTSU channel enable control 07 bit
CTSUCHAC1	CTSUCHAC10	CTSU channel enable control 10 bit	CTSU channel enable control 08 bit
	CTSUCHAC11	CTSU channel enable control 11 bit	
	CTSUCHAC12	CTSU channel enable control 12 bit	—
	CTSUCHAC13	CTSU channel enable control 13 bit	—
	CTSUCHAC14	CTSU channel enable control 14 bit	CTSU channel enable control 12 bit
	CTSUCHAC15	CTSU channel enable control 15 bit	CTSU channel enable control 13 bit
	CTSUCHAC16	CTSU channel enable control 16 bit	—
	CTSUCHAC17	CTSU channel enable control 17 bit	—
CTSUCHAC2	CTSUCHAC20	CTSU channel enable control 20 bit	—
	CTSUCHAC21	CTSU channel enable control 21 bit	—
	CTSUCHAC22	CTSU channel enable control 22 bit	
	CTSUCHAC23	CTSU channel enable control 23 bit	
	CTSUCHAC24	CTSU channel enable control 24 bit	—
	CTSUCHAC25	CTSU channel enable control 25 bit	
	CTSUCHAC26	CTSU channel enable control 26 bit	CTSU channel enable control 22 bit
	CTSUCHAC27	CTSU channel enable control 27 bit	CTSU channel enable control 23 bit
CTSUCHAC3	CTSUCHAC30	CTSU channel enable control 30 bit	—
	CTSUCHAC31	CTSU channel enable control 31 bit	—
	CTSUCHAC32	CTSU channel enable control 32 bit	—

Register	Bit	RX231 (CTSU)	RX23W (CTSU)
		CTSU channel enable control 33	CTSU channel enable control 27
CIOUCIACO	CTOUCHAUSS	bit	bit
	CTSUCHAC34	CTSU channel enable control 34	
	010001///004	bit	
	CTSUCHAC35	CTSU channel enable control 35	
		bit	
	CTSUCHAC36	CTSU channel enable control 36	CTSU channel enable control 30
		bit	bit
	CTSUCHAC37	CTSU channel enable control 37 bit	—
CTSUCHAC4	CTSUCHAC40	CTSU channel enable control 40	—
		bit	
	CISUCHAC41	CISU channel enable control 41	-
		DIL CTSU channel anable control 42	
	CTSUCHAC42	bit	
	CTSUCHAC43	CTSU channel enable control 43	CTSU channel enable control 35
		bit	bit
CTSUCHTRC0	CTSUCHTRC00	CTSU channel transmit/receive control 00 bit	—
	CTSUCHTRC01	CTSU channel transmit/receive	—
		CTSU channel transmit/reserve	CTSU channel transmit/reasily/a
	CTSUCHTROUZ	control 02 bit	control 02 bit
	CTSUCHTRC03	CTSU channel transmit/receive	CTSU channel transmit/receive
		control 03 bit	control 03 bit
	CTSUCHTRC04	CTSU channel transmit/receive	CTSU channel transmit/receive
		control 04 bit	control 04 bit
	CTSUCHTRC05	CTSU channel transmit/receive	—
		CTSU channel transmit/receive	
	CISCONINCOO	control 06 bit	
	CTSUCHTRC07	CTSU channel transmit/receive	CTSU channel transmit/receive
		control 07 bit	control 07 bit
CTSUCHTRC1	CTSUCHTRC10	CTSU channel transmit/receive	CTSU channel transmit/receive
		control 10 bit	control 08 bit
	CTSUCHTRC11	CTSU channel transmit/receive	—
		control 11 bit	
	CTSUCHTRC12	CTSU channel transmit/receive control 12 bit	—
	CTSUCHTRC13	CTSU channel transmit/receive	
		control 13 bit	
	CTSUCHTRC14	CTSU channel transmit/receive	CTSU channel transmit/receive
		control 14 bit	control 12 bit
	CTSUCHTRC15	CTSU channel transmit/receive	CTSU channel transmit/receive
		control 15 bit	control 13 bit
	CTSUCHTRC16	CTSU channel transmit/receive	—
		CTSU channel transmit/receivo	
		control 17 bit	_
CTSUCHTRC2	CTSUCHTRC20	CTSU channel transmit/receive	—
		control 20 bit	
	CTSUCHTRC21	CTSU channel transmit/receive	—
		control 21 bit	

Register	Bit	RX231 (CTSU)	RX23W (CTSU)
CTSUCHTRC2	CTSUCHTRC22	CTSU channel transmit/receive	
		control 22 bit	
	CTSUCHTRC23	CTSU channel transmit/receive	—
		control 23 bit	
	CTSUCHTRC24	CTSU channel transmit/receive	—
		control 24 bit	
	CTSUCHTRC25	CTSU channel transmit/receive control 25 bit	—
	CTSUCHTRC26	CTSU channel transmit/receive	CTSU channel transmit/receive
		control 26 bit	control 22 bit
	CTSUCHTRC27	CTSU channel transmit/receive	CTSU channel transmit/receive
		control 27 bit	control 23 bit
CTSUCHTRC3	CTSUCHTRC30	CTSU channel transmit/receive	—
		control 30 bit	
	CISUCHIRC31	CISU channel transmit/receive	—
		CTSU channel transmit/reserve	
	CTSUCHTRC32	control 32 bit	
	CTSUCHTRC33	CTSU channel transmit/receive	CTSU channel transmit/receive
		control 33 bit	control 27 bit
	CTSUCHTRC34	CTSU channel transmit/receive	—
		control 34 bit	
	CTSUCHTRC35	CTSU channel transmit/receive	—
		control 35 bit	
	CTSUCHTRC36	CTSU channel transmit/receive	CTSU channel transmit/receive
		control 36 bit	control 30 bit
	CISUCHIRC3/	CISU channel transmit/receive	—
		CTSU channel transmit/reasily	
CISUCHIKC4	CTSUCHTRC40	control 40 bit	_
	CTSUCHTRC41	CTSU channel transmit/receive	—
		control 41 bit	
	CTSUCHTRC42	CTSU channel transmit/receive	—
		control 42 bit	
	CTSUCHTRC43	CISU channel transmit/receive control 43 bit	CISU channel transmit/receive control 35 bit

2.22 12-Bit A/D Converter

Table 2.53 is a comparative overview of the 12-bit A/D converters, and Table 2.54 is a comparison of 12-bit A/D converter registers.

RX231 (S12ADE)	RX23W (S12ADE)
1 unit	1 unit
24 channels	14 channels
Temperature sensor output, internal	Temperature sensor output, internal
reference voltage	reference voltage
Successive approximation method	Successive approximation method
12 bits	12 bits
0.83 μs per channel	0.83 μs per channel
(when A/D conversion clock ADCLK = 54 MHz)	(when A/D conversion clock ADCLK = 54 MHz)
Peripheral module clock PCLK and A/D	Peripheral module clock PCLK and A/D
conversion clock ADCLK can be set so	conversion clock ADCLK can be set so
that the frequency ratio should be one of	that the frequency ratio should be one of
the following.	the following.
PCLK to ADCLK frequency ratio	PCLK to ADCLK frequency ratio
= 1:1, 1:2, 2:1, 4:1, 8:1	= 1:1, 1:2, 2:1, 4:1, 8:1
ADCLK is set using the clock generation circuit.	ADCLK is set using the clock generation circuit.
 24 registers for analog input, intervide converted data duplication in double trigger mode One register for temperature sensor One register for internal reference One register for self-diagnosis The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for the results of A/D conversion The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode. Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register 	 In registers for analog input, inclive procession of analog input, inclive procession of analog input, inclive procession of a provided analog input, inclive provided analog input, provided analog input data on one selected channel is stored in the data register for the provided analog.
	RX231 (S12ADE) 1 unit 24 channels Temperature sensor output, internal reference voltage Successive approximation method 12 bits 0.83 μs per channel (when A/D conversion clock ADCLK = 54 MHz) Peripheral module clock PCLK and A/D conversion clock ADCLK can be set so that the frequency ratio should be one of the following. PCLK to ADCLK frequency ratio = 1:1, 1:2, 2:1, 4:1, 8:1 ADCLK is set using the clock generation circuit. • 24 registers for analog input, 1 for A/D-converted data duplication in double trigger mode • One register for temperature sensor • One register for self-diagnosis • The results of A/D conversion are stored in 12-bit A/D data registers. • 12-bit accuracy output for the results of A/D conversion • The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode. • Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece

Table 2.53 Comparative Overview of 12-Bit A/D Converters

Item	RX231 (S12ADE)	RX23W (S12ADE)	
Operating modes	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 24 channels arbitrarily selected. A/D conversion is performed only once on the temperature sensor output. A/D conversion is performed only once on the internal reference voltage. Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 24 channels arbitrarily selected. 	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 14 channels arbitrarily selected. A/D conversion is performed only once on the temperature sensor output. A/D conversion is performed only once on the internal reference voltage. Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 14 channels arbitrarily selected. 	
	 Group scan mode: Analog inputs of up to 24 channels arbitrarily selected, are divided into group A and group B, and A/D conversion of the analog input selected on a group basis is performed only once. The conditions for scanning start of group A and group B (synchronous trigger) can be independently selected, thus allowing A/D conversion of group A and group B to be started independently. Group scan mode (when group A is given priority): If a group A trigger is input during A/D conversion on group B, the A/D conversion on group B is stopped and A/D conversion is performed on group A. Restart (rescan) of A/D conversion on group A can be set. 	 Group scan mode: Analog inputs of up to 14 channels arbitrarily selected, are divided into group A and group B, and A/D conversion of the analog input selected on a group basis is performed only once. The conditions for scanning start of group A and group B (synchronous trigger) can be independently selected, thus allowing A/D conversion of group A and group B to be started independently. Group scan mode (when group A is given priority): If a group A trigger is input during A/D conversion on group B, the A/D conversion on group B is stopped and A/D conversion is performed on group A. Restart (rescan) of A/D conversion on group B after completion of A/D conversion on group B after completion of A/D conversion on group A can be set. 	
Conditions for A/D conversion start	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU), the event link controller (ELC), or the 16-bit timer pulse unit (TPU). Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin. 	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU), the event link controller (ELC), or the 16-bit timer pulse unit (TPU). Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin. 	

Item	RX231 (S12ADE)	RX23W (S12ADE)		
Functions	 Variable sampling state count Self-diagnosis of 12-bit A/D converter Selectable A/D-converted value addition mode or average mode Analog input disconnection detection function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) Automatic clear function of A/D data registers Compare function (window A and window B) 16 ring buffers when the compare function is used 	 Variable sampling state count Self-diagnosis of 12-bit A/D converter Selectable A/D-converted value addition mode or average mode Analog input disconnection detection function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) Automatic clear function of A/D data registers Compare function (window A and window B) 16 ring buffers when the compare function is used 		
Interrupt sources	 In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of single scan. In double trigger mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan. In group scan mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of group A scan, whereas an A/D scan end interrupt request (GBADI) for group B can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan of group A, whereas A/D scan end interrupt request (GBADI) scan end interrupt request (GBADI) scan end interrupt request (GBADI) Specially for group B can be generated on completion of double scan activate the DMA controller (DMAC) and the data transfer controller (DTC). 	 In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of single scan. In double trigger mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan. In group scan mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of group A scan, whereas an A/D scan end interrupt request (GBADI) for group B can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of group B can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan of group A, whereas A/D scan end interrupt request (GBADI) scan end interrupt request (GBADI) scan end interrupt request (GBADI) can be generated on completion of double scan of group A, whereas A/D scan end interrupt request (GBADI) The S12ADI0 and GBADI interrupts can activate the DMA controller (DMAC) and the data transfer controller (DTC). 		

Item	RX231 (S12ADE)	RX23W (S12ADE)
Event link function	 An ELC event is generated on completion of scans other than group B scan in group scan mode. An ELC event is generated on completion of group B scan in group scan mode. An ELC event is generated on completion of all scans. Scan can be started by a trigger output by the ELC. An ELC event is generated according to the event conditions of the window compare function in single scan mode. 	 An ELC event is generated on completion of scans other than group B scan in group scan mode. An ELC event is generated on completion of group B scan in group scan mode. An ELC event is generated on completion of all scans. Scan can be started by a trigger output by the ELC. An ELC event is generated according to the event conditions of the window compare function in single scan mode.
Low power consumption function	Ability to specify module stop state	Ability to specify module stop state

Register	Bit	RX231 (S12ADE)	RX23W (S12ADE)
ADDRv	_	A/D data register v	A/D data register v
		(y = 0 to 7, 16 to 31)	(y = 0 to 7, 16 to 20, 27)
ADANSA1	ANSA1n	A/D conversion channel select bit	A/D conversion channel select bit
		(n = 00 to 15)	(n = 00 to 04, 11)
ADANSB1	ANSB1n	A/D conversion channel select bit	A/D conversion channel select bit
		(n = 00 to 15)	(n = 00 to 04, 11)
ADADS1	ADS1n	A/D-converted value addition/	A/D-converted value addition/
		average channel select bit	average channel select bit
		(n = 00 to 15)	(n = 00 to 04, 11)
ADCMPANSR1	CMPCHA1n	Compare window A channel	Compare window A channel
		select bit	select bit
		(n = 00 to 15)	(n = 00 to 04, 11)
ADCMPLR1	CMPLCHA1n	Compare window A comparison	Compare window A comparison
		condition select bit $(n = 00 \text{ to } 15)$	condition select bit $(n = 00 \text{ to } 04, 11)$
		(II – 00 to 15)	(II = 00 to 04, 11)
ADCIMPSRI	CIVIPSTCHATT	(n = 00 to 15)	(n = 00 to 04, 11)
	СМРСНВ	Compare window B channel	Compare window B channel
	[5·0]	select bits	select bits
	[0.0]		
		b5 b0	b5 b0
		0 0 0 0 0 0: AN000	0 0 0 0 0 0: AN000
		0 0 0 0 0 1: AN001	0 0 0 0 0 1: AN001
		0 0 0 0 1 0: AN002	0 0 0 0 1 0: AN002
		:	:
		0 0 0 1 1 0: AN006	0 0 0 1 1 0: AN006
		0 0 0 1 1 1: AN007	0 0 0 1 1 1: AN007
		0 1 0 0 0 0: AN016	0 1 0 0 0 0: AN016
		0 1 0 0 0 1: AN017	0 1 0 0 0 1: AN017
		:	:
		0 1 0 1 0 0: AN020	0 1 0 1 0 0: AN020
		:	
		0 1 1 0 1 1: AN027	0 1 1 0 1 1: AN027
		0 1 1 1 0 0: AN028	
		0 1 1 1 0 1: AN029	
		0 1 1 1 1 0: AN030	
		0 1 1 1 1 1: AN031	
		10000: Temperature sensor	10000: Temperature sensor
		1 U U U U 1: Internal reference	1 U U U U 1: Internal reference
		Vollage	vollage
		prohibited.	prohibited.

Table 2.54 Comparison of 12-Bit A/D Converter Registers

2.23 12-Bit D/A Converter

Table 2.55 is a comparison of 12-bit D/A converter registers.

Register	Bit	RX231 (R12DAA)	RX23W (R12DAA)
DAVREFCR	REF[2:0]	D/A reference voltage select bits	D/A reference voltage select bits
		b2 b0	b2 b0
		0 0 0: Not selected	0 0 0: Not selected
		0 0 1: AVCC0/AVSS0	0 0 1: AVCC0/AVSS0
		0 1 1: Internal reference voltage/	0 1 1: Internal reference voltage/
		AVSS0	AVSS0
		1 1 0: VREFH/VREFL	
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.

Table 2.55 Comparison of 12-Bit D/A Converter Registers

2.24 Comparator B

Table 2.56 is a comparative overview of the comparator B modules, and Table 2.57 is a comparison of comparator B registers.

Item	RX231 (CMPBa)	RX23W (CMPBa)
Number of channels	2 channels × 2 units	2 channels × 1 unit
Analog input voltage	Voltage input to CMPBn pin (n = <mark>0 to</mark> 3)	Voltage input to CMPBn pin (n = 2 or 3)
Reference input voltage	Voltage input to CVREFBn pin (n = 0 to 3) or internal reference voltage	Voltage input to CVREFBn pin (n = 2 or 3) or internal reference voltage
Comparison result	 Read from the CPBFLG.CPBnOUT flag (n = 0 to 3) Ability to output comparison result to CMPOBn pin (n = 0 to 3). 	 Read from the CPBFLG.CPBnOUT flag (n = 2 or 3) Ability to output comparison result to CMPOBn pin (n = 2 or 3).
Interrupt request generation timing	 When comparator B0 comparison result changes When comparator B1 comparison result changes When comparator B2 comparison result changes When comparator B3 comparison result changes 	 When comparator B2 comparison result changes When comparator B3 comparison result changes
Timing of event generation to ELC	 When comparator B0 comparison result changes When comparator B0 or comparator B1 comparison result changes 	_
Selectable functions	 Digital filter function Ability to specify whether or not the digital filter is applied and to select the sampling frequency Window function Ability to specify whether or the window function is enabled or disabled (low-side reference (VRFL)) < CMPBn (n = 0 to 3) < high-side reference (VRFH)) 	 Digital filter function Ability to specify whether or not the digital filter is applied and to select the sampling frequency Window function Ability to specify whether or the window function is enabled or disabled (VRFL < CMPBn (n = 2 or 3) < VRFH)
	 Reference input voltage Ability to select CVREFBn pin (n = 0 to 3) input or internal reference voltage (generated internally) Comparator B response speed Ability to select high-speed or low- speed mode 	 Reference input voltage Ability to select CVREFBn pin (n = 2 or 3) input or internal reference voltage (generated internally) Comparator B response speed Ability to select high-speed or low- speed mode
Low power consumption function	Ability to specify module stop state	Ability to transition to module stop state

Table 2.56 Comparative Overview of Comparator B Modules

Register	Bit	RX231 (CMPBa)	RX23W (CMPBa)
CPBCNT1	—	Comparator B control register 1	—
CPBCNT2	—	Comparator B control register 2	—
CPBFLG	—	Comparator B flag register	—
CPBINT	—	Comparator B interrupt control	—
		register	
CPBF	—	Comparator B filter select register	—
CPBMD	—	Comparator B mode select register	—
CPBREF		Comparator B reference input	—
		voltage select register	
CPBOCR		Comparator B output control register	—

Table 2.57 Comparison of Comparator B Registers

2.25 RAM

Table 2.58 is a comparative overview of RAM.

Table 2.58	Comparative	Overview	of RAM
------------	-------------	----------	--------

Item	RX231	RX23W
Capacity	• 64 KB (0000 0000h to 0000 FFFFh)	• 64 KB (0000 0000h to 0000 FFFFh)
	• 32 KB (0000 0000h to 0000 7FFFh)	
Access	Single-cycle access is possible for both reading and writing. On this DAM can be enabled and	Single-cycle access is possible for both reading and writing. On object DAM each be analytical en
	• On-chip RAM can be enabled or disabled.	• On-chip RAM can be enabled or disabled.
Low power consumption function	Ability to specify module stop state	Ability to specify module stop state

2.26 Flash Memory

Table 2.59 is a comparative overview of flash memory.

Item	RX231	RX23W (FLASH)
Memory capacity	User area: Up to 512 KB	User area: Up to 512 KB
	Data area: 8 KB	Data area: 8 KB
	Extra area:	Extra area:
	Stores the start-up area information, access window information, and unique ID	Stores the start-up area information, access window information, and unique ID
Addresses	 Products with capacity of 512 KB FFF8 0000h to FFFF FFFFh 	 Products with capacity of 512 KB FFF8 0000h to FFFF FFFFh
	 Products with capacity of 384 KB FFFA 0000h to FFFF FFFFh 	 Products with capacity of 384 KB FFFA 0000h to FFFF FFFFh
	 Products with capacity of 256 KB FFFC 0000h to FFFF FFFFh 	
	 Products with capacity of 128 KB FFFE 0000h to FFFF FFFFh 	
Software commands	 The following commands are implemented: 	 The following commands are implemented:
	Program, blank check, block erase,	Program, blank check, block erase,
	and all-block erase	and all-block erase
	 The following commands are implemented for programming the 	 The following commands are implemented for programming the
	extra area:	extra area:
	Start-up area information program and	Start-up area information program and
	access window information program	access window information program
Value after	ROM: FFh	ROM: FFh
erasure	E2 DataFlash: FFh	E2 DataFlash: FFh
Interrupt	An interrupt (FRDYI) is generated upon	An interrupt (FRDYI) is generated upon
	completion of software command	completion of software command
	processing or forced stop processing.	processing or forced stop processing.

Table 2.59 Comparative Overview of Flash Memory

Item	RX231	RX23W (FLASH)
On-board programming	 Boot mode (SCI interface) Channel 1 of the serial communications interface (SCI1) is used for asynchronous serial communication. The user area and data area can be programmed. Boot mode (FINE interface) The FINE interface is used. The user area and data area can be programmed. Boot mode (USB interface) Channel 0 of the USB 2.0 Function (USB0) module is used. The user area and data area can be programmed. Boot mode (USB interface) Channel 0 of the USB 2.0 Function (USB0) module is used. The user area and data area can be programmed. Self-programmed in self-powered or bus-powered mode. A personal computer can be connected using only a USB cable. Self-programming (single-chip mode) The user area and data area can be programmed using a flash programming routine in a user program. 	 Boot mode (SCI interface) Channel 1 of the serial communications interface (SCI1) is used for asynchronous serial communication. The user area and data area can be programmed. Boot mode (FINE interface) The FINE interface is used. The user area and data area can be programmed. Boot mode (USB interface) Channel 0 of the USB 2.0 Function (USB0) module is used. The user area and data area can be programmed. Boot mode (USB interface) Channel 0 of the USB 2.0 Function (USB0) module is used. The user area and data area can be programmed. The flash memory can be programmed. A personal computer can be connected using only a USB cable. Self-programming (single-chip mode) The user area and data area can be programmed using a flash programmed using a flash programming routine in a user program.
programming	programmed using a flash programmer (serial programmer or parallel programmer) compatible with the MCU.	programmed using a flash programmer compatible with the MCU.
ID codes protection	 Connection with a serial programmer can be controlled using ID codes in boot mode. Connection with an on-chip debugging emulator can be controlled using ID codes. Connection with a parallel programmer can be controlled using ROM codes. 	 Connection with a serial programmer can be controlled using ID codes in boot mode. Connection with an on-chip debugging emulator can be controlled using ID codes.
Start-up program protection function	This function is used to safely program blocks 0 to 7.	This function is used to safely program blocks 0 to 7.
Area protection	During self-programming, this function enables programming only of specified blocks in the user area and disables programming of the other blocks.	During self-programming, this function enables programming only of specified blocks in the user area and disables programming of the other blocks.
Background operation (BGO) function	Programs in the ROM can run while the E2 DataFlash is being programmed.	Programs in the ROM can run while the E2 DataFlash is being programmed.

2.27 Packages

As indicated in Table 2.60, there are discrepancies in the package drawing codes and availability of some package types, and this should be borne in mind at the board design stage.

Table 2.60 Packages

	Renesas Code	
Package Type	RX231	RX23W
100-pin TFLGA	0	×
100-pin LFQFP	0	×
85-pin BGA	×	0
83-pin LGA	×	0
64-pin WFLGA	0	×
64-pin HWQFN	0	×
64-pin LFQFP	0	×
56-pin QFN	×	0
48-pin HWQFN	0	×
48-pin LFQFP	0	×

○: Package available (Renesas code omitted); X: Package not available

3. Comparison of Pin Functions

This section presents a comparative description of pin functions as well as a comparison of the pins for the power supply, clocks, and system control. Items that exist only on one group are indicated by <u>blue text</u>. Items that exists on both groups with different specifications are indicated by <u>red text</u>. **Black text** indicates there is no differences in the item's specifications between groups.

The RX23W Group and RX231 Group do not include packages with the same pin count, but with some exceptions the pin functions are compatible. The pin design therefore makes migration relatively easy.

3.1 100-Pin Package (RX231: TFLGA)/85-Pin Package (RX23W: BGA)

Table 3.1 lists the pin functions of the 100-pin package (RX231: TFLGA) and 85-pin package (RX23W: BGA) products.

100-Pin	85-Pin	RX231	RX23W	
IFLGA	BGA			
A1	89	P05/DA1	P05/DA1	
A2	-			
A3	C7	P07/ADTRG0#	P07/ADTRG0#	
A4	D10	VREFLO	VREFLO	
A5	D9	P43/AN003	P43/AN003	
A6	—	PD0/D0[A0/D0]/IRQ0/AN024	—	
A7	—	PD4/D4[A4/D4]/POE3#/IRQ4/AN028	—	
A8	G9	PE0/D8[A8/D8]/SCK12/AN016	PE0/SCK12/AN016	
A9	J9	PE1/D9[A9/D9]/MTIOC4C/TXD12/	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/	
		TXDX12/SIOX12/SMOSI12/SSDA12/ AN017/CMPB0	SMOSI12/SSDA12/AN017	
A10	H9	PE2/D10[A10/D10]/MTIOC4A/RXD12/	PE2/MTIOC4A/RXD12/RXDX12/	
_	-	RXDX12/SMISO12/SSCL12/IRQ7/	SMISO12/SSCL12/IRQ7/AN018	
		AN018/CVREFB0		
B1	B8	P03/DA0	P03/DA0	
B2	A10	AVSS0	AVSS0	
B3	B10	AVCC0	AVCC0	
B4	C9	P40/AN000	P40/AN000	
B5	E10	P44/AN004	P44/AN004	
B6	—	PD1/D1[A1/D1]/MTIOC4B/IRQ1/AN025	—	
B7	F9	PD3/D3[A3/D3]/POE8#/IRQ3/AN027	PD3/POE8#/AN027	
B8	—	PD6/D6[A6/D6]/MTIC5V/POE1#/IRQ6/	—	
BO				
69		AN031	—	
B10	H8	PE3/D11[A11/D11]/MTIOC4B/POE8#/	PE3/MTIOC4B/POE8#/CTS12#/RTS12#/	
		CTS12#/RTS12#/SS12#/AUDIO_MCLK/ AN019/CLKOUT	SS12#/AUDIO_MCLK/AN019/CLKOUT	
C1	A9	VCL	VCL	
C2		VREFL		
C3	C6	PJ3/MTIOC3C/CTS6#/RTS6#/SS6#	PJ3/MTIOC3C	
C4	C10	VREFH0	VREFH0	
C5	D8	P42/AN002	P42/AN002	
C6	F10	P47/AN007	CLKOUT_RF/P47/AN007	
C7	—	PD2/D2[A2/D2]/MTIOC4D/IRQ2/AN026	—	

Table 3.1 100-Pin Package (RX231: TFLGA)/85-Pin Package (RX23W: BGA)

100-Pin	85-Pin	RX231	RX23W
TFLGA	BGA	(100-Pin TFLGA)	(85-Pin BGA)
C8	—	AN029	—
C9	—	PE5/D13[A13/D13]/MTIOC4C/MTIOC2B/ IRQ5/AN021/CMPOB0	
C10	J8	PE4/D12[A12/D12]/MTIOC4D/MTIOC1A/	PE4/MTIOC4D/MTIOC1A/AN020/
0.0		AN020/CMPA2/CLKOUT	CLKOUT
D1	A8	XCIN	XCIN
D2	A7	XCOUT	XCOUT
D3	B7	MD/FINED	MD/FINED
D4	C5	VBATT	VBATT
D5	E9	P45/AN005	P45/AN005
D6	E8	P46/AN006	P46/AN006
D7		PE6/D14[A14/D14]/IRQ6/AN022	
D8		PE7/D15[A15/D15]/IRQ7/AN023	_
D9	—	PA1/A1/MTIOC0B/MTCLKC/TIOCB0/ SCK5/SSLA2/SSISCK0	
D10		PA0/A0/BC0#/MTIOC4A/TIOCA0/	
		SSLA1/CACREF	
E1	A6	XTAL/P37	XTAL/P37
E2	A5	VSS	VSS
E3	B6	RES#	RES#
E4		P34/MTIOC0A/TMCI3/POE2#/SCK6/ TS0/IRQ4	
E5	C8	P41/AN001	P41/AN001
E6	_	PA2/A2/RXD5/SMISO5/SSCL5/SSLA3/ IRRXD5	_
E7		PA6/A6/MTIC5V/MTCLKB/TMCI3/ POE2#/TIOCA2/CTS5#/RTS5#/SS5#/ MOSIA/SSIWS0	
E8		PA4/A4/MTIC5U/MTCLKA/TMRI0/ TIOCA1/TXD5/SMOSI5/SSDA5/SSLA0/ SSITXD0/IRTXD5/IRQ5/CVREFB1	
E9		PA5/A5/TIOCB1/RSPCKA	—
E10		PA3/A3/MTIOC0D/MTCLKD/TIOCD0/ TCLKB/RXD5/SMISO5/SSCL5/ SSIRXD0/IRRXD5/IRQ6/CMPB1	
F1	A4	EXTAL/P36	EXTAL/P36
F2	A3	VCC	VCC
F3	B5	UPSEL/P35/NMI	UPSEL/P35/NMI
F4		P32/MTIOC0C/TMO3/TIOCC0/RTCOUT/ RTCIC2/TXD6/SMOSI6/SSDA6/ USB0_VBUSEN/IRQ2	
F5	—	P12/TMCI1/SCL/IRQ2	—
F6	H4	PB3/A11/MTIOC0A/MTIOC4A/TMO0/ POE3#/TIOCD3/TCLKD/SCK6/ SDHI_WP	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/ TIOCD3/TCLKD/SDHI_WP
F7	—	PB2/A10/TIOCC3/TCLKC/CTS6#/ RTS6#/SS6#	—
F8	J6	PB0/A8/TIOCA3/RXD6/SMISO6/SSCL6/ PB0/MTIC5W/TIOCA3/RSPCKA/ RSPCKA/SDHI_CMD SDHI_CMD	
F9	—	PA7/A7/TIOCB2/MISOA	—
F10	K5	VSS	VSS

100-Pin	85-Pin	RX231 (100-Bin TEL GA)	RX23W (85-Pin BCA)
	DGA		
GI		RXD6/SMISO6/SSCL6/TS1/IRQ3	—
G2	B4	P31/MTIOC4D/TMCI2/RTCIC1/CTS1#/ RTS1#/SS1#/SSISCK0/IRQ1	P31/MTIOC4D/TMCI2/RTCIC1/CTS1#/ RTS1#/SS1#/SSISCK0/IRQ1
G3	A2	P30/MTIOC4B/TMRI3/POE8#/RTCIC0/ RXD1/SMISO1/SSCL1/AUDIO_MCLK/ IRQ0/CMPOB3	P30/MTIOC4B/TMRI3/POE8#/RTCIC0/ RXD1/SMISO1/SSCL1/AUDIO_MCLK/ IRQ0/CMPOB3
G4	B3	P27/CS3#/MTIOC2B/TMCI3/SCK1/ SSIWS0/TS2/CVREFB3	P27/MTIOC2B/TMCI3/SCK1/SSIWS0/ TS2/CVREFB3
G5		BCLK/P53/TS17	—
G6	—	P52/RD#/TS18	—
G7	J4	PB5/A13/MTIOC2A/MTIOC1B/TMRI1/ POE1#/TIOCB4/SCK9/USB0_VBUS/ SDHI_CD	PB5/MTIOC2A/MTIOC1B/TMRI1/ POE1#/TIOCB4/USB0_VBUS/SDHI_CD
G8		PB4/A12/TIOCA4/CTS9#/RTS9#/SS9#	—
G9	J5	PB1/A9/MTIOC0C/MTIOC4C/TMCI0/ TIOCB3/TXD6/SMOSI6/SSDA6/ SDHI_CLK/IRQ4/CMPOB1	PB1/MTIOC0C/MTIOC4C/TMCI0/ TIOCB3/SDHI_CLK/IRQ4
G10	K4	VCC	VCC
H1	B2	P26/CS2#/MTIOC2A/TMO1/TXD1/ SMOSI1/SSDA1/SSIRXD0/TS3/CMPB3	P26/MTIOC2A/TMO1/TXD1/SMOSI1/ SSDA1/SSIRXD0/USB0_VBUSEN/TS3/ CMPB3
H2	A1	P25/CS1#/MTIOC4C/MTCLKB/TIOCA4/ TS4/ADTRG0#	P25/MTIOC4C/MTCLKB/TIOCA4/TS4/ ADTRG0#
H3	C3	P16/MTIOC3C/MTIOC3D/TMO2/ TIOCB1/TCLKC/RTCOUT/TXD1/ SMOSI1/SSDA1/MOSIA/SCL/ USB0_VBUS/USB0_VBUSEN/ USB0_OVRCURB/IRQ6/ADTRG0#	P16/MTIOC3C/MTIOC3D/TMO2/ TIOCB1/TCLKC/RTCOUT/TXD1/ SMOSI1/SSDA1/MOSIA/SCL/ USB0_VBUS/USB0_VBUSEN/ USB0_OVRCURB/IRQ6/ADTRG0#
H4	C2	P15/MTIOC0B/MTCLKB/TMCI2/TIOCB2/ TCLKB/RXD1/SMISO1/SSCL1/CRXD0/ TS12/IRQ5/CMPB2	P15/MTIOC0B/MTCLKB/TMCI2/TIOCB2/ TCLKB/RXD1/SMISO1/SSCL1/CRXD0/ TS12/IRQ5/CMPB2
H5	—	P55/WAIT#/MTIOC4D/TMO3/CRXD0/ — TS15	
H6	—	P54/ALE/MTIOC4B/TMCI1/CTXD0/TS16	—
H7	F1	UB/PC7/A23/CS0#/MTIOC3A/MTCLKB/ TMO2/TXD8/SMOSI8/SSDA8/MISOA/ CACREF	UB/PC7/MTIOC3A/MTCLKB/TMO2/ TXD8/SMOSI8/SSDA8/MISOA/CACREF
H8	F2	PC6/A22/CS1#/MTIOC3C/MTCLKA/ TMCI2/RXD8/SMISO8/SSCL8/MOSIA/ TS22 PC6/MTIOC3C/MTCLKA/TM SMISO8/SSCL8/MOSIA/ TS22	
H9	—	PB6/A14/MTIOC3D/TIOCA5/RXD9/ SMISO9/SSCL9/SDHI_D1	_
H10	J3	PB7/A15/MTIOC3B/TIOCB5/TXD9/ SMOSI9/SSDA9/SDHI_D2	PB7/MTIOC3B/TIOCB5/SDHI_D2
J1		P24/CS0#/MTIOC4A/MTCLKA/TMRI1/ TIOCB4/USB0_VBUSEN/TS5	
J2	D3	P21/MTIOC1B/TMCI0/TIOCA3/RXD0/ SMISO0/SSCL0/USB0_EXICEN/ SSIWS0/TS8P21/MTIOC1B/TMCI0/TIOCA3/ USB0_EXICEN/SSIWS0/TS8	
J3	B1	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ TIOCB0/TCLKD/SCK1/MISOA/SDA/ SSITXD0/IRQ7/CMPOB2	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ TIOCB0/TCLKD/SCK1/MISOA/SDA/ SSITXD0/IRQ7/CMPOB2

100-Pin TFLGA	85-Pin BGA	RX231 (100-Pin TFLGA)	RX23W (85-Pin BGA)	
J4		P13/MTIOC0B/TMO3/TIOCA5/SDA/ IRO3		
.15	F2	VSS_USB	VSS LISB	
.16	D2	VCC USB	VCC USB	
17	<u> </u>	P50/WR0#/WR#/TS20		
18	G1			
30	01	TMCI1/POE0#/SCK5/CTS8#/RTS8#/	CTS8#/RTS8#/SS8#/SSI A0/SCK5/	
		SS8#/SSLA0/SDHI D1/TSCAP	SDHI D1/TSCAP	
.19	J1	PC0/A16/MTIOC3C/TCI KC/CTS5#/	PC0/MTIOC3C/TCLKC/CTS5#/RTS5#/	
	01	RTS5#/SS5#/SSLA1/TS35	SS5#/SSLA1/TS35	
J10		PC1/A17/MTIOC3A/TCLKD/SCK5/		
		SSLA2/TS33		
K1		P23/MTIOC3D/MTCLKD/TIOCD3/		
		CTS0#/RTS0#/SS0#/SSISCK0/TS6		
K2	C4	P22/MTIOC3B/MTCLKC/TMO0/TIOCC3/	P22/MTIOC3B/MTCLKC/TMO0/TIOCC3/	
		SCK0/USB0_OVRCURB/AUDIO_MCLK/	USB0_OVRCURB/AUDIO_MCLK/TS7	
		TS7		
K3		P20/MTIOC1A/TMRI0/TIOCB3/TXD0/	—	
		SMOSI0/SSDA0/USB0_ID/SSIRXD0/		
		TS9		
K4	C1	P14/MTIOC3A/MTCLKA/TMRI2/TIOCB5/	P14/MTIOC3A/MTCLKA/TMRI2/TIOCB5/	
		TCLKA/CTS1#/RTS1#/SS1#/CTXD0/	TCLKA/CTS1#/RTS1#/SS1#/CTXD0/	
		USB0_OVRCURA/TS13/IRQ4/	USB0_OVRCURA/TS13/IRQ4/	
KE.				
KO KC				
KO KZ				
	_			
no	GZ		PC5/MITIOC3B/MITCLKD/TMIKI2/SCK0/	
KO	H1			
110		SMOSI5/SSDA5/IRTXD5/SDHL D0/	SSDA5/IRTXD5/SDHL D0/TS27	
		TS27		
K10	H2	PC2/A18/MTIOC4B/TCLKA/RXD5/	PC2/MTIOC4B/TCLKA/RXD5/SMISO5/	
-		SMISO5/SSCL5/SSLA3/IRRXD5/	SSCL5/SSLA3/IRRXD5/SDHI D3/TS30	
		SDHI_D3/TS30	_	
	D4	—	VSS_RF	
	E3	—	VSS_RF	
	F3	—	VSS_RF	
	F8	—	VSS_RF	
	G3	—	VSS_RF	
	G8	—	VSS_RF	
	G10	—	DCLIN_A	
	H3		VSS_RF	
	H5	—	VSS_RF	
	H6	—	VSS_RF	
	H7	—	VSS_RF	
	H10		DCLIN_D	
	J2		VSS_RF	
	J7	—	VSS_RF	
	J10		VCC_RF	
	K1	 	VSS_RF	
	K2	—	ANT	

100-Pin TFLGA	85-Pin BGA	RX231 (100-Pin TFLGA)	RX23W (85-Pin BGA)
—	K3	—	VSS_RF
	K6	—	XTAL2_RF
	K7	—	XTAL1_RF
	K8	—	AVCC_RF
	K9	—	DCLOUT
	K10	—	VSS_RF

3.2 64-Pin Package (RX231: HWQFN)/56-Pin Package (RX23W: QFN)

Table 3.2 lists the pin functions of the 64-pin package (RX231: HWQFN) and 56-pin package (RX23W: QFN) products.

64-Pin	56-Pin	RX231	RX23W	
HWQFN	QFN	(64-Pin HWQFN)	(56-Pin QFN)	
1		P03/DA0	—	
2	1	VCL	VCL	
3	2	MD/FINED	MD/FINED	
4	3	XCIN	XCIN	
5	4	XCOUT	XCOUT	
6	5	RES#	RES#	
7	6	XTAL/P37	XTAL/P37	
8	7	VSS	VSS	
9	8	EXTAL/P36	EXTAL/P36	
10	9	VCC	VCC	
11	10	UPSEL/P35/NMI	UPSEL/P35/NMI	
12	_	VBATT		
13	11	P31/MTIOC4D/TMCI2/RTCIC1/CTS1#/	P31/MTIOC4D/TMCI2/RTCIC1/CTS1#/	
		RTS1#/SS1#/SSISCK0/IRQ1	RTS1#/SS1#/SSISCK0/IRQ1	
14	12	P30/MTIOC4B/TMRI3/POE8#/RTCIC0/	P30/MTIOC4B/TMRI3/POE8#/RTCIC0/	
		RXD1/SMISO1/SSCL1/AUDIO MCLK/	RXD1/SMISO1/SSCL1/AUDIO MCLK/	
		IRQ0/CMPOB3	IRQ0/CMPOB3	
15	13	P27/MTIOC2B/TMCI3/SCK1/SSIWS0/	P27/MTIOC2B/TMCI3/SCK1/SSIWS0/	
		TS2/CVREFB3	TS2/CVREFB3	
16	14	P26/MTIOC2A/TMO1/TXD1/SMOSI1/	P26/MTIOC2A/TMO1/TXD1/SMOSI1/	
		SSDA1/USB0_VBUSEN/SSIRXD0/TS3/	SSDA1/SSIRXD0/USB0_VBUSEN/TS3/	
		CMPB3	CMPB3	
17	15	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/	
		TIOCB0/TCLKD/SCK1/MISOA/SDA/	TIOCB0/TCLKD/SCK1/MISOA/SDA/	
		SSITXD0/IRQ7/CMPOB2	SSITXD0/IRQ7/CMPOB2	
18	16	P16/MTIOC3C/MTIOC3D/TMO2/	P16/MTIOC3C/MTIOC3D/TMO2/	
			SMOSI1/SSDA1/MOSIA/SCL/	
10	17			
19	17			
		SSCI 1/CRXD0/TS12/IRQ5/CMPB2	SSCI 1/CRXD0/TS12/IRQ5/CMPB2	
20	18			
20		TIOCB5/TCLKA/CTS1#/RTS1#/SS1#/	TIOCB5/TCLKA/CTS1#/RTS1#/SS1#/	
		CTXD0/USB0 OVRCURA/TS13/IRQ4/	CTXD0/USB0 OVRCURA/TS13/IRQ4/	
		CVREFB2	CVREFB2	
21	19	VCC USB	VCC USB	
22	20	USB0_DM	USB0_DM	
23	21	USB0_DP	USB0_DP	
24	22	VSS_USB	VSS_USB	
25	1	P55/MTIOC4D/TMO3/CRXD0/TS15		
26	1	P54/MTIOC4B/TMCI1/CTXD0/TS16		
27	23	UB/PC7/MTIOC3A/MTCLKB/TMO2/	UB/PC7/MTIOC3A/MTCLKB/TMO2/	
	-	TXD8/SMOSI8/SSDA8/MISOA/CACREF	TXD8/SMOSI8/SSDA8/MISOA/CACREF	

Table 3.2	64-Pin Package	(RX231 HWOFN)/56-Pin Package	(RX23W OFN
10010 0.2			poo-i ili i ackage	

64-Pin	56-Pin	RX231 RX23W		
HWQFN	QFN	(64-Pin HWQFN)	(56-Pin QFN)	
28	24	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8/	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8/	
		SMISO8/SSCL8/MOSIA/	SMISO8/SSCL8/MOSIA/	
		USB0_EXICEN/TS22	USB0_EXICEN/TS22	
29	25	PC5/MTIOC3B/MTCLKD/TMRI2/SCK8/	PC5/MTIOC3B/MTCLKD/TMRI2/SCK8/	
		RSPCKA/USB0_ID/TS23	RSPCKA/USB0_ID/TS23	
30	26	PC4/MTIOC3D/MTCLKC/TMCI1/	PC4/MTIOC3D/MTCLKC/TMCI1/	
		POE0#/SCK5/CTS8#/RTS8#/SS8#/	POE0#/CTS8#/RTS8#/SS8#/SSLA0/	
		SSLA0/SDHI_D1/TSCAP	SCK5/TSCAP	
31	27	PC3/MTIOC4D/TCLKB/TXD5/SMOSI5/	PC3/MTIOC4D/TCLKB/TXD5/SMOSI5/	
		SSDA5/IRTXD5/SDHI_D0/TS27	SSDA5/IRTXD5/TS27	
32	29	PC2/MTIOC4B/TCLKA/RXD5/SMISO5/	PC2/MTIOC4B/TCLKA/RXD5/SMISO5/	
		SSCL5/SSLA3/IRRXD5/SDHI_D3/1S30	SSCL5/SSLA3/IRRXD5/TS30	
33	31	PB7/PC1/MTIOC3B/TIOCB5/TXD9/	PB7/MTIOC3B/TIOCB5	
04				
34	—	PB6/PC0/MTIOC3D/TIOCA5/RXD9/	—	
25				
35	_		—	
36				
50		POE3#/TIOCD3/TCLKD/SCK6/	_	
		SDHI WP		
37	33	PB1/MTIOC0C/MTIOC4C/TMCI0/	PB1/MTIOC0C/MTIOC4C/TMCI0/	
0.		TIOCB3/TXD6/SMOSI6/SSDA6/	TIOCB3/IRQ4	
		SDHI CLK/IRQ4/CMPOB1		
38	34	VCC	VCC	
39	35	PB0/MTIC5W/TIOCA3/RXD6/SMISO6/	PB0/TIOCA3/RSPCKA	
		SSCL6/RSPCKA/SDHI_CMD		
40	36	VSS	VSS	
41	30	PA6/MTIC5V/MTCLKB/TMCI3/POE2#/	PC0/MTIOC3C/TCLKC/CTS5#/RTS5#/	
		TIOCA2/CTS5#/RTS5#/SS5#/MOSIA/	SS5#/SSLA1/TS35	
		SSIWS0		
42	—	PA4/MTIC5U/MTCLKA/TMRI0/TIOCA1/	—	
		TXD5/SMOSI5/SSDA5/SSLA0/		
		SSITXD0/IRTXD5/IRQ5/CVREFB1		
43	—	PA3/MTIOCOD/MTCLKD/TIOCD0/	—	
4.4				
44	_	SSI A2/SSISCKO	—	
45				
45	_	CACREE	—	
46		PE5/MTIOC4C/MTIOC2B/IRO5/ANI021/		
		CMPOB0		
47	41	PE4/MTIOC4D/MTIOC1A/AN020/	PE4/MTIOC4D/MTIOC1A/AN020/	
		CMPA2/CLKOUT	CLKOUT	
48	42	PE3/MTIOC4B/POE8#/CTS12#/	PE3/MTIOC4B/POE8#/AUDIO MCLK/	
	·	RTS12#/SS12#/AUDIO MCLK/AN019/	AN019/CLKOUT	
		CLKOUT		
49	43	PE2/MTIOC4A/RXD12/RXDX12/	PE2/MTIOC4A/IRQ7/AN018	
		SMISO12/SSCL12/IRQ7/AN018/		
		CVREFB0		

64-Pin	56-Pin	RX231	RX23W
HWQFN	QFN	(64-Pin HWQFN)	(56-Pin QFN)
50		PE1/MTIOC4C/TXD12/TXDX12/	_
		SIOX12/SMOSI12/SSDA12/AN017/	
		CMPB0	
51		PE0/SCK12/AN016	—
52		VREFL	—
53	49	P46/AN006	P46/AN006
54		VREFH	—
55		P44/AN004	—
56		P43/AN003	—
57	—	P42/AN002	—
58	51	P41/AN001	P41/AN001
59	52	VREFL0	VREFL0
60		P40/AN000	—
61	53	VREFH0	VREFH0
62	54	AVCC0	AVCC0
63	55	P05/DA1	P05/DA1
64	56	AVSS0	AVSS0
	28	—	VSS_RF
	32	—	ANT
—	37	—	XTAL2_RF
	38	—	XTAL1_RF
	39	—	AVCC_RF
	40	—	DCLOUT
	44	—	VCC_RF
	45	—	DCLIN_D
	46	—	DCLIN_A
	47	—	PD3/POE8#/AN027
	48	—	CLKOUT_RF/P47/AN007
	50	—	P45/AN005

4. Notes on Migration

With regard to differences between the RX231 Group and RX23W Group, a number of points need to be kept in mind when migrating between MCUs.

4.1, Operating Voltage Range, describes important points related to the operating voltage. 4.2, Notes on Function Settings, describes important points related to software.

4.1 Operating Voltage Range

4.1.1 Power Supply Voltage

The power supply voltage ranges of the RX231 and RX23W are different.

Table 4.1 is a comparison of power supply voltage range specifications.

 Table 4.1
 Comparison of Power Supply Voltage Range Specifications

Item		RX231	RX23W
Power supply voltage	VCC	1.8 V to 5.5 V*1	1.8 V to 3.6 V*1*4
Analog power	AVCC0	1.8 V to 5.5 V*2	1.8 V to 3.6 V* ³
supply voltage	VREFH0	1.8 V to AVCC0	1.8 V to AVCC0
	VREFH	1.8 V to AVCC0	None
USB power supply voltage	VCC_USB	Same potential as VCC	Same potential as VCC
VBATT power supply voltage	VBATT	1.8 V to 5.5 V	1.8 V to 3.6 V
BLE power	VCC_RF	None	1.8 V to 3.6 V*4
supply voltage	AVCC_RF	None	1.8 V to 3.6 V*4

Notes: 1. When USB is not used.

2. VCC \geq 2.0 V: AVCC0 and VCC may be set independently within the usable range. VCC < 2.0 V: AVCC0 = VCC

3. VCC > 2.4 V: AVCC0 may be set independently of VCC when AVCC0 \ge 2.4 V. VCC \le 2.4 V: AVCC0 may be set independently of VCC when AVCC0 \ge VCC.

4. Ensure that VCC = VCC_RF = AVCC_RF.

4.2 Notes on Function Settings

Software operating on the RX231 Group are compatible with some software on the RX23W Group. However, careful evaluation is required since specifications such as operating timing and electrical characteristics are different between the Groups.

This section describes notes on software regarding settings of functions that are different between the RX23W Group and the RX231 Group.

For differences in modules and functions, refer to section 2, Comparative Overview of Specifications. For further information, refer to the User's Manual: Hardware listed in section 5, Reference Documents.

4.2.1 Limitations Applying to I/O Port Register Settings

On the RX23W Group an indefinite value is returned when reading the bits in the PDR, PODR, and PMR register corresponding to pins P12, P13, P20, P32, P33, and P34. When writing to these bits, write-back the read value.

4.2.2 8-Bit Timer Cascaded Operation

On the RX23W Group there is no external counter reset input pin for TMR0, so it is not possible to clear the counter by means of an external counter reset signal. Also, there is no compare match output pin for TMR3, so it is not possible to produce compare match output. Therefore, there are some partial differences in cascaded operation between unit 0 and unit 1 on the RX23W Group.

For details, refer to RX23W Group User's Manual: Hardware, listed in section 5, Reference Documents.

5. Reference Documents

User's Manual: Hardware

RX230 Group, RX231 Group User's Manual: Hardware Rev.1.20 (R01UH0496EJ0120) (The latest version can be downloaded from the Renesas Electronics website.)

RX23W Group User's Manual: Hardware Rev.1.00 (R01UH0823EJ0100) (The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

Related Technical Updates

This module reflects the content of the following technical updates:

- TN-RX*-A0198B/E
- TN-RX*-A0214A/E
- TN-RX*-A0217A/E
- TN-RX*-A0227A/E
- TN-RX*-A0224B/E

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Jul. 17, 2019	—	First edition issued
1.10	Dec. 1, 2020	4	1 Table 1.1 Comparison of Built-In Functions of RX23W
			Group and RX231 Group revised
		6	2.1 Table 2.1 Comparative Overview of Operating Modes
			revised
		9	2.4 Table 2.6 Comparative Overview of Voltage Detection Circuits revised
		19	2.9 Table 2.15 Comparative Overview of Buses revised
		21	2.10 Table 2.17 Comparative Overview of Event Link Controllers added
		24	2.11 Table 2.20 Comparative Overview of I/O Ports of 64-Pin (RX231) and 56-Pin (RX23W) Products revised
		25	2.11 Table 2.21 Comparison of I/O Port Functions added
		26	2.12 Table 2.23 Comparison of Multiplexed Pin Assignments added
		35 to 39	2.12 Table 2.24 to Table 2.34 added
		39	2.12 Table 2.35 Comparison of Multi-Function Pin Controller Registers revised
		44	2.15 Table 2.41 Comparison of 16-Bit Timer Pulse Unit Registers added
		47	2.17 Table 2.43 Comparison of Realtime Clock Registers revised
		48	2.18 Table 2.44 Comparative Overview of USB 2.0 Host/Function Modules deleted
		52	2.19 Table 2.46 Comparison of SCI Channel Specifications revised
		53	2.20 Table 2.47 Comparative Overview of Serial Peripheral
		57	2.21 Table 2.50 Comparison of Capacitive Touch Sensing
		79	4 Notes on Migration: explanatory text added
		80	4.2 Notes on Function Settings: explanatory text added
		82	Related Technical Updates revised
1.20	Nov. 5. 2021	23	2.10 Event Link Controller
			Table 2.19 Comparison of Event Link Controller Registers added
		24	2.11 I/O Ports
			Table 2.20 Comparative Overview of I/O Ports of 100-Pin
		26 to 26	(RX231) and 85- or 83-Pin (RX23W) Products revised
		26 to 36, 38, 39	2.12 83-pin LGA specifications added
		52	2.19 Table 2.48 Comparison of Serial Communications Interface Registers added
		59 to 61	2.21 Table 2.52 Comparison of Capacitive Touch Sensing
		70	Unit Registers revised
		12	2.20 Flash Welling Table 2.50 Comparative Overview of Elech Memory revised
		73	2 27 Packages
			Table 2.60 Packages revised

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.