Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8SX Family

8-Bit Absolute Address Space Switching

Introduction

With an H8SX CPU, any 8-bit absolute address space is selectable as desired.

For all CPUs of the conventional H8S Family, the 8-bit absolute address space is fixed to the range from H'FFFF00 to H'FFFFFF. In the H8SX, the 256-byte area from a desired address specified by the SBR is set as the 8-bit absolute address space.

Target Device

H8SX Family

Contents

1.	Overview	. 2
	Applicable Conditions	
	Configuration	
4.	Sample Program	. 5

1. Overview

With an H8SX CPU, any 8-bit absolute address space is selectable as desired.

For all CPUs of the conventional H8S Family, the 8-bit absolute address space is fixed to the range from H'FFFF00 to H'FFFFFF. In the H8SX, the 256-byte area from a desired address specified by the SBR is set as the 8-bit absolute address space.

2. Applicable Conditions

Table 1 Applicable Condition

Item	Contents
Development tool	High-performance Embedded Workshop Ver.4.00.03
C/C++ compiler	H8S, H8/300 Series, C/C++ Compiler Ver.6.01.01
H8SX compiler options	-cpu = h8sxa:24:md, -code = machinecode, -optimize = 1, -regparam = 3, -speed = (register,shift,struct,expression) -sbr = FF2000

Table 2 Section Settings

Address	Section Name	Description
H'001000	Р	Program area

3. Configuration

3.1 Short Address Base Register (SBR)

The SBR is a 32-bit register in which the 24 higher-order bits are valid and specify the higher-order address bits for 8bit absolute addresses. The eight lower-order bits are reserved and read as 0s. The initial value is H'FFFFF00. The contents of the SBR are changed by using LDC and STC instructions.

	31 12	2 11	
SBR		(Reserved)	

3.2 Setting the SBR

The address space is set by having assembly instructions directly write to the SBR, or by an assembler or compiler option. The following describes how to set the range from H'FF2000 to H'FF20FF as the 8-bit absolute address space.

1. Writing to the SBR by using assembly instructions

```
MOV.L H'FF2000, ER1
LDC.L ER1, SBR
```

2. Setting the SBR by a compiler option (-SBR)

E.g. ch38 sample.c -sbr=FF2000

3.3 Absolute Addresses for the H8SX CPU

The operand value is the contents of a memory location which is pointed to by an absolute address included in the instruction code. The absolute address used to access the data area consists of 8, 16, or 32 bits. Table 3 shows the accessible absolute address ranges.

Table 3 Ranges for Access by Absolute Addresses

Absolute address in the data area	Ranges for access in advanced mode
8 bits (@aa:8)	Any contiguous 256-byte area (the higher-order address bits are set in SBR) The 24 higher-order bits are specified by SBR.
16 bits (@aa:16)	H'000000 to H'007FFF, H'FF8000 to H'FFFFFF
	The 16 higher-order bits are sign-extended.
32 bits (@aa:32)	H'000000 to H'FFFFF
	A 32-bit absolute address can access any location in the overall address space.

3.4 Example of Operation

Figure 1 shows an example of operation when the SBR is set to select the on-chip RAM (from H'FF2000 to H'FF20FF).

1. Conventional, with no SBR setting

MOV.B #imm8,	ROL	;	2	bytes/2	cycles	
MOV.B ROL,	@H'FF2000:32	2;	8	bytes/2	cycles	
	Tota	1 :	10	bytes/4	cycles	
2. With an SBR setting	g(SBR = H'FF200))0)				
MOV.B #imm8,	ROL	;	2	bytes/2	cycles	
MOV.B ROL,	@H'FF2000:8	;	2	bytes/1	cycle	
	Total 4 bytes/3 cycles					

Figure 1 Example of SBR Usage

4. Sample Program

4.1 Flowchart

Set SBR to H'FF2000, then confirm access to 8/16/32-bit absolute addresses from the results of compilation.

ma	ain)
TESTREG1 = H'41 Write H'41 to the address H H'41 is written with 8-bit ab the address is within the ra addresses.	solute addressing since	
TESTREG2 = H'42 H'42 is written to the addre H'42 is written with 32-bit a the address is in neither the addresses nor the range of	bsolute addressing since	
TESTREG2 = H'43 Write H'43 to the address H H'43 is written with 16-bit a the address is not in the ran addresses but is in the rang addresses.	bsolute addressing since nge of 8-bit absolute	
	•	-

4.2 Program Listing

A source program written in the C language is given below. This source program was compiled under the conditions described in "2. Applicable Conditions" and the results of compilation are described in section 4.3.

```
/*****
/* Application Note
                              */
#include <machine.h>
/* Internal I/O register symbol definition
                              */
#define TESTREG1 *(volatile unsigned char *)0xFF2000
#define TESTREG2 *(volatile unsigned char *)0xFF4000
#define TESTREG3 *(volatile unsigned char *)0xFF8000
/* Function prototype declaration
                              * /
void main ( void );
/* Vector Address
                              * /
#pragma entry main(sp=0xFFC000,vect=0)
                             /* H'0000 : Reset
                                        */
                                        */
#pragma section
                             /* P
*/
/* Main Program
void main ( void )
{
  TESTREG1 = 0x41; // Access to 8-bit absolute address space
  TESTREG2 = 0x42; // Access to 32-bit absolute address space
  TESTREG3 = 0x43; // Access to 16-bit absolute address space
  while(1);
}
```


4.3 Results of Compilation

Assembly code when "-sbr = FF2000" has been specified as a compiler option is shown below. The changes in the number of bytes under CODE with access to 8-, 16-, and 32-bit absolute addresses can be confirmed at values 0010, 0012, and 001A under OFFSET.

SCT OFFSET	CODE	LABEL	INSTRUCTION OPERAND	COMME	NT
Р				;	section
00000000		_main:		;	function: main
00000000	7A0700FFC000	MOV.L	#H'00FFC000,SP		
0000006	7A0300FF2000	MOV.L	#H'00FF2000,ER3		
000000C	0373	LDC.L	ER3,SBR		
000000E	F841	MOV.B	#H'41:8,R0L		
00000010	3800	MOV.B	R0L,@H'00FF2000:8		
00000012	017D484200FF4000	MOV.B	#H'42:8,@H'00FF4000):32	
000001A	017D40438000	MOV.B	#H'43:8,@H'00FF8000):16	
00000020		L16:			
00000020	4000	BRA	L16:8		

Website and Support

Renesas Technology Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/inquiry csc@renesas.com

Revision Record

		Description			
Rev.	Date	Page	Summary		
1.00	May.18.07		First edition issued		

Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- 5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below: (1) artificial life support devices or systems
 - (2) surgical implantations

KENESAS

- (3) healthcare intervention (e.g., excision, administration of medication, etc.)
- (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2007. Renesas Technology Corp., All rights reserved.