Renonias Automotive

RL78 Brushless DC Motor Solution

RL78 Brushless DC Motor Solution
Brushless DC motors are achieving ever wider adoption in automobiles.

From mechanical systems to brushed DC motors

Motors are used for a variety of applications in automobiles. They help to make possible a safe, secure, and convenient driving experience while taking environmental considerations into account. Advantages of brushed DC motors include high efficiency and compactness. They can be driven using only a power supply, and they are cheap to manufacture. Many mechanical systems in automobiles have been replaced by systems employing brushed DC motors in order to boost fuel efficiency. However, there are problems associated with brushed DC motors. These include noise caused by brush friction, the generation of sparks and electrical noise, and limited service life due to frictional wear on the brushes.

And then, to brushless DC motors

Brushless DC motor eliminate the above deficiencies of brushed motors. In a brushless DC motor the magnetic force generated by a stator winding circuit drives a permanent magnet attached to the rotor. Current switching, which is performed by the brushes and commutator in a brushed DC motor, is accomplished by means of sensors and electronic circuits. Brushless DC motors only became practical due to advances in peripheral technologies such as semiconductors. In terms of the proportional relationship between current and torque, and between voltage and rotation speed, brushless DC motors are like other DC motors, but their structure is like that of AC motors. They combine the advantages of both. Brushless DC motors are energy efficient, deliver long service life, produce little noise, are compact and lightweight, and do not generate sparks or electric noise. They are gaining widespread adoption in many automotive applications where easy maintenance, quiet operation, compactness, and safety are important.

Accelerating adoption of brushless DC motors with vehicle motor control solutions —— RL78 Family

The RL78/F13 and RL78/F14 microcontrollers are built around the RL78 core, which combines power consumption among the lowest in the world with high processing performance, and they incorporate enhanced calculation capabilities and peripheral functions designed specifically for motor control. They are ideal for brushless DC motor vector control. Intended specifically for automotive use, these microcontrollers enable safe operation of brushless DC motors in applications where reliability is essential. They can operate in environments as hot as Ta = 150°C, allowing them to be combined with the motor as a single unit. Renesas offers simple kit solution products that make it possible for customers new to brushless DC motor control to get started quickly. This contributes to increased development efficiency for customers.
Motors are used extensively in today’s automobiles. The typical automobile contains more than 50 small motors. Nowadays more and more of them are brushless DC motors, especially in units where saving energy, long service life, compactness, and low noise are essential.

RL78 Brushless DC Motor Application Examples
The microcontrollers of the RL78 Family support a variety of body control system applications. They are ideal solutions for customers seeking to reduce power consumption, cut software development man-hours, and reduce system cost. They retain the advanced functionality of the peripheral circuits featured on the earlier 78K0R and R8C Families, allowing customers to make maximum use of existing resources.

The RL78/F13 and RL78/F14 Groups deliver low power consumption while offering support for a variety of motor control and Functional Safety requirements.

- Ultra-low power consumption, improving the environmental friendliness of the system overall.
- An extensive range of product versions sharing the same CPU core and peripheral functions simplifies the task of building a development platform.
- Ability to withstand high temperatures (Ta = 150°C), allowing use in hot environments such as the engine compartment or headlights.
- The ability to reuse software in successive product iterations helps reduce development costs and shorten development time.

Roadmap

Lineup [RL78/F13, F14 Group]

<table>
<thead>
<tr>
<th>ROM</th>
<th>20 pin</th>
<th>30 pin</th>
<th>32 pin</th>
<th>48 pin</th>
<th>64 pin</th>
<th>80 pin</th>
<th>100 pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>256KB</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>192KB</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>128KB</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>96KB</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>64KB</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>48KB</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>32KB</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>16KB</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Package

- SSOP (300mil) 20 pin, 32 pin, 48 pin, 64 pin, 80 pin, 100 pin
- QFN (5x5) 20 pin, 32 pin, 48 pin, 64 pin, 80 pin, 100 pin
- QFP (10x10) 20 pin, 32 pin, 48 pin, 64 pin, 80 pin, 100 pin
- QFP (14x14)

Specifications [RL78/F14 Group]

<table>
<thead>
<tr>
<th>Pin count</th>
<th>30</th>
<th>32</th>
<th>48</th>
<th>64</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>System clocks</td>
<td>Main clock: 32MHz (Ta = −40 to 105°C), 24MHz (Ta = −40 to 125°C/150°C), High-speed on-chip oscillator: 32MHz (timer RD only: 64MHz), Low-speed on-chip oscillator: 15KHz</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power-on reset, voltage detection circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External interrupts</td>
<td>Code flash more than 96KB</td>
<td>9 channels</td>
<td>14 channels</td>
<td>15 channels</td>
<td>16 channels</td>
<td></td>
</tr>
<tr>
<td>Code flash up to 96KB</td>
<td>13 channels</td>
<td>14 channels</td>
<td>16 channels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key input interrupts</td>
<td>8 channels</td>
<td>6 channels</td>
<td>8 channels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTC</td>
<td>37 sources</td>
<td>38/44 sources</td>
<td>44 sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-bit timer</td>
<td>16-bit (8 channels+4 channels)</td>
<td>16-bit (8 channels+2/8 channels+4 channels)</td>
<td>16-bit (8 channels+2/8 channels+4 channels)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timer RD (sawtooth wave modulation and triangular wave modulation supported)</td>
<td>2 units (6 outputs)</td>
<td>16-bit (8 channels+2/8 channels+4 channels)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serial interfaces</td>
<td>CSI/simplified I2C/UART</td>
<td>3 channels / 3 channels / 2 channels</td>
<td>4 channels / 4 channels / 2 channels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-master I2C</td>
<td>-</td>
<td>1 channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIN/UART</td>
<td>1 channel</td>
<td>2 channels (code flash more than 96KB), 1 channel (code flash up to 96KB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN</td>
<td>1 channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/D converter (10-bit)</td>
<td>12 channels</td>
<td>10 channels</td>
<td>15/18 channels</td>
<td>19/20 channels</td>
<td>20/25 channels</td>
<td>31 channels</td>
</tr>
<tr>
<td>D/A converter (8-bit)</td>
<td>1 channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator</td>
<td>1 channel (4 inputs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Features

- **Conduction Pattern Setting Using Timer RD**
 - Two triangular waves are used to form 3-phase conduction patterns with dead time.
 - The dead time can be specified easily using the offset of the triangular waves.

![Diagram of conduction pattern settings using Timer RD]

- **TRD0 Register Count Value**

 - The image shows a diagram of the TRD0 register count value with various counters and registers.

Tools from Partners

- **Conduction Pattern Setting Using Timer RD**
 - Two triangular waves are used to form 3-phase conduction patterns with dead time.
 - The dead time can be specified easily using the offset of the triangular waves.

 ![Diagram of conduction pattern settings using Timer RD]

- **TRD0 Register Count Value**

 - The image shows a diagram of the TRD0 register count value with various counters and registers.

Starter Kit

- **Low-Voltage Inverter**
 - T2002B
 - Allows testing using an inverter equivalent to circuits used in actual products.
 - DC12-24V 50VA@24V

- **CPU Board**
 - T5102
 - CPU Board Mounted with R5F10PMFL (RL78/F14)

Waveform Display Tool

- **ICS Series**
 - W1004 ICS++
 - Displays variables of the software used internally by the CPU as temporal waveforms, similar to an oscilloscope, and allows simultaneous changing of variable values. Isolation from the actual device means that the tool can be used while the control software is running. This allows debugging to be performed safely and in far less time, and does not impose a large burden on the user software.
Renesas Electronics Corporation

Notes:
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you or in omission from the information included herein.
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, and industrial robots etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, and safety equipment etc.
 - Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damage (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose related to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no responsibility for the loss of or damage to the products or systems manufactured by you or third parties as a result of unauthorized use of Renesas Electronics products.
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

SALES OFFICES

Refer to “http://www.renesas.com” for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6500, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-257-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5HF, U.K.
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhichunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 305, Tower A, Central Towers, 555 Lingao Road, Putuo District, Shanghai, P. R. China 20033
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6668, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F., No. 393, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886-2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyundai Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara AnCorp, AnCorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No, 777C, 100 Feet Road, HAL II Stage, Indira Nagar, Bangalore, India
Tel: +91-80-57256700, Fax: +91-80-57258777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation, All rights reserved.