Summary
This application note describes a sample application for Video Display Controller 5 (VDC5), which interoperates with QE for Video Display Controller 5, a plugin for the e² studio integrated development environment with support for Renesas microcontrollers. QE for Video Display Controller 5 is a tool that provides a graphical interface for display control to support the development of embedded systems incorporating display devices.

Target Device
RZ/AH Group

Contents
1. Overview ..3
2. Operation Confirmation Conditions ..4
3. Hardware ..5
 3.1 Hardware Configuration ...5
4. Software ..6
 4.1 Operation Overview ..6
 4.2 Sample Software Details ...7
 4.3 Memory Map ..8
 4.4 Peripheral Functions Used ...8
 4.5 Interrupt Used ..8
 4.6 Function Specifications ...8
5. Using the Sample Program and QE for Video Display Controller 5 ...9
 5.1 Procedure for Confirming Display with a Header File Generated by QE for Video Display Controller 5 ...9
 5.1.1 Importing the Sample Project9
 5.1.2 Launching QE for Video Display Controller 512
 5.1.3 Display Device Information Settings13
 5.1.4 Generating a Header File ...18
 5.1.5 Building the Sample Project19
 5.1.6 Confirming Debugger Settings and Display20
 5.2 Real-Time Adjustment Function Using QE for Video Display Controller 5 ..23
 5.3 Image Download Function of QE for Video Display Controller 5 ..24
6. Adapting the Sample Program to the User Environment25
 6.1 CPU and Board Initialization ..25
6.2 VDC5 Operation Settings ... 25
 6.2.1 Panel Clock Settings ... 25
 6.2.2 Using the LVDS PLL to Generate the Panel Clock ... 26
6.3 GPIO Settings .. 27

7. Reference Documents.. 28
1. Overview

As shown in Figure 1.1, VDC5 comprises multiple blocks, so simply checking display attributes requires an understanding of the VDC5 specifications and several settings. However, by using the sample program and QE for Video Display Controller 5, it is possible to prepare an environment in which display device connections can be checked quickly, without the need to understand the VDC5 specifications. QE for Video Display Controller 5 is a tool that provides a graphical interface for display control. The user inputs information on the display device to be used, and the tool outputs a header file containing the information necessary for display control. Using the header file as a basis, the sample program makes settings to VDC5. The tool also provides a function that adjusts the timing in real time, making it possible to first make fine adjustments with the display device connected, and then to output the header file. The sample program is described below.

![VDC5 Block Configuration](image)

Figure 1.1 VDC5 Block Configuration
2. Operation Confirmation Conditions

The sample program accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCU used</td>
<td>RZ/A1H</td>
</tr>
</tbody>
</table>
| Operating frequency | **CPU clock** (I\(\phi\)): 400 MHz
Image processing clock (G\(\phi\)): 266.67 MHz
Internal bus clock (B\(\phi\)): 133.33 MHz
Peripheral clock 1 (P1\(\phi\)): 66.67 MHz
Peripheral clock 0 (P0\(\phi\)): 33.33 MHz |
| Operating voltage | **Power supply** (I/O): 3.3 V
Power supply (internal): 1.18 V |
| Development environment | Development environment
Renesas “e² studio” Version: 4.3.1.0001 |
| Compiler | GNUARM-NONE-EABI Toolchain v14.02 |
| Operating mode | Boot mode 0*1
(CS0 space, 16-bit boot) |
| Board to be used | Board
- RSK CPU board (YR0K77210C000BE)
- RSK TFT APP board (YROK77210C000BE) |
| Emulator | J-Link LITE ARM debugger |
| Board settings (Jumper/switch) | RSK CPU board (YR0K77210C000BE)
- SW4-1 OFF, SW4-2 OFF, SW4-3 OFF, SW4-4 OFF,
- SW4-5 OFF, SW4-6 OFF, SW4-7 OFF, SW4-8 OFF
- SW6-1 ON, SW6-2 ON, SW6-3 ON, SW6-4 ON, SW6-5 ON, SW6-6 ON
- RSK TFT APP board (YROK77210C000BE) |

Note 1. The sample program is loaded into the on-chip RAM and run from there. It does not use the CS0 space.
3. Hardware

3.1 Hardware Configuration

Figure 3.1 shows the hardware configuration used by the sample program.

![Hardware Configuration Diagram](image-url)
4. Software

4.1 Operation Overview

As shown in Figure 4.1, the sample program initializes clocks, interrupts, the MMU, etc., on the CPU; initializes the bus settings for connecting to external memory, etc., on the board; and makes VDC5 operation settings based on the header file output by Video Display Controller 5. Then it makes GPIO settings used for display control.

![Flowchart of Sample Program Operation Overview]

- **Start**
- **CPU initialization**
 - Initializes clocks, interrupt, the MMU, etc., on the CPU.
- **Board initialization**
 - Initializes the bus settings for connecting to external memory, etc., on the board.
- **VDC5 operation settings**
 - Makes VDC5 settings based on necessary information (header file) for display control.
- **GPIO settings**
 - Makes GPIO settings for control signals connected to the display device, etc.
- **End**

Figure 4.1 Sample Program Operation Overview
4.2 Sample Software Details

Figure 4.2 lists the VDC5 operation settings in detail. The VDC5 operation settings are based on the header file output by QE for Video Display Controller 5.

If the display device settings are made correctly, the screen shown in Figure 4.3 is displayed.
4.3 Memory Map

The specific section used by the sample program is as shown below.

<table>
<thead>
<tr>
<th>Name of Area</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRAM_SECTION_1</td>
<td>ZI Data</td>
<td>Buffer for storing display data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assigned to an uncached area at a fixed address (0x60500000) in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>large-capacity on-chip RAM.</td>
</tr>
</tbody>
</table>

4.4 Peripheral Functions Used

Table 4.2 lists the peripheral functions used by the sample program and their applications.

<table>
<thead>
<tr>
<th>Peripheral Function</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video display controller 5 (VDC5) Channel 0</td>
<td>Display</td>
</tr>
<tr>
<td></td>
<td>• Uses graphics 2.</td>
</tr>
<tr>
<td></td>
<td>• Color format: RGB888</td>
</tr>
<tr>
<td>Interrupt controller (INTC)</td>
<td>VDC5 channel 0 interrupt control</td>
</tr>
<tr>
<td></td>
<td>• Waiting for register update</td>
</tr>
<tr>
<td>Large-capacity on-chip RAM</td>
<td>VRAM</td>
</tr>
<tr>
<td></td>
<td>• On-chip RAM is used as a display buffer.</td>
</tr>
</tbody>
</table>

4.5 Interrupt Used

Table 4.3 lists the interrupt used by the sample program. The VDC5 register settings are updated by the vertical sync signal (Vsync), and this interrupt is used to wait for the update to occur. The LCD refresh rate is approximately 60 Hz, so the interrupt interval is approximately 16.6 msec.

<table>
<thead>
<tr>
<th>Interrupt (Source ID)</th>
<th>Priority</th>
<th>Source Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDC5 channel 0 (GR3_VLINE0: 78)</td>
<td>5</td>
<td>Specified line signal of graphics 3 panel output (synchronized with line 0 of the video signal output by the image synthesis block)</td>
</tr>
</tbody>
</table>

4.6 Function Specifications

For information on the functions used by the sample program, refer to the related application note RZ/A1H Group: Video Display Controller 5 Sample Driver (R01AN1822JJ/EJ).
5. Using the Sample Program and QE for Video Display Controller 5

The sample program is intended to be run in the environment provided by the RSK CPU board (YR0K77210C000BE). The procedure for confirming connection of the RSK TFT APP board (YR0K77210C000BE) with QE for Video Display Controller 5 when using this environment is described below. For instructions for installing e² studio and QE for Video Display Controller 5, refer to the manuals of each of these tools.

5.1 Procedure for Confirming Display with a Header File Generated by QE for Video Display Controller 5

5.1.1 Importing the Sample Project

After launching e² studio, right-click with the mouse and select Import, as shown in Figure 5.1, to display the Import dialog box.

![Figure 5.1 Importing the Project](image-url)
In the **Import** dialog box (Figure 5.2), select **Existing Projects into Workspace** and click the **Next** button.

![Figure 5.2 Import Dialog Box](image)

In the **Browse Folders** dialog box (Figure 5.3), select the folder containing the sample program and click the **OK** button.

![Figure 5.3 Browse Folders](image)
When the sample project is found, **RZ_A1H_QE_for_VDC5_sample** is displayed in the Project field, as shown in Figure 5.4. Check the box and then click the Finish button.

![Figure 5.4 Import Project Confirmation Dialog Box](image)

When the above steps are completed, the sample program is imported into e² studio (Figure 5.5).

![Figure 5.5 Imported Sample Project](image)
5.1.2 Launching QE for Video Display Controller 5

From the e² studio menu select Renesas Views → Renesas QE → Display Timing Tuning(QE) to launch QE for Video Display Controller 5 (Figure 5.6).

![QE for Video Display Controller 5 Launch Screen](image)

Figure 5.6 QE for Video Display Controller 5 Launch Screen
5.1.3 Display Device Information Settings

Select Custom from the Maker/Type pull-down list at the top of the dialog box shown in Figure 5.6 to display the Edit Custom Display Data dialog box (Figure 5.7). The display device information is input into this dialog box. The TFT LCD (GWP0700CNWV04) from GW Opto is mounted on the RSK TFT APP board (YRK77210C000BE) used in the present case, and information matching the specifications of this TFT LCD will be input.

(a) Entering a Registered Name

Enter any name you wish in the Maker/Type and Model/Size fields of the Edit Custom Display Data dialog box (Figure 5.8). This name will be registered in the drop-down list and will become selectable.

(b) Selecting the Display Type

Table 5.1 lists the main control signals required when connecting a display device. In the present case, three display device types combining these control signals are supported by QE for Video Display Controller 5.

Table 5.1 Main Control Signals

<table>
<thead>
<tr>
<th>Name</th>
<th>Function Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal sync signal (Hsync)</td>
<td>Signal that creates timing for displaying one line</td>
</tr>
<tr>
<td>Vertical sync signal (Vsync)</td>
<td>Signal that creates timing for displaying one screen</td>
</tr>
<tr>
<td>Panel clock (CLK)</td>
<td>Pixel-level display frequency</td>
</tr>
<tr>
<td>Display enable (DE)</td>
<td>Signal indicating that valid data is being output</td>
</tr>
<tr>
<td>Data (Data)</td>
<td>Display data</td>
</tr>
</tbody>
</table>
The user must select from the three display types listed in Table 5.2 to determine which control signals are required by the specifications of the display device used.

Table 5.2 Control Signals Used

<table>
<thead>
<tr>
<th>Name</th>
<th>Display Type 1</th>
<th>Display Type 2</th>
<th>Display Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal sync signal (Hsync)</td>
<td>Used</td>
<td>Not used</td>
<td>Used</td>
</tr>
<tr>
<td>Vertical sync signal (Vsync)</td>
<td>Used</td>
<td>Not used</td>
<td>Used</td>
</tr>
<tr>
<td>Panel clock (CLK)</td>
<td>Used</td>
<td>Used</td>
<td>Used</td>
</tr>
<tr>
<td>Display enable (DE)</td>
<td>Not used</td>
<td>Used</td>
<td>Used</td>
</tr>
<tr>
<td>Data (Data)</td>
<td>Used</td>
<td>Used</td>
<td>Used</td>
</tr>
</tbody>
</table>

Figure 5.9 and Figure 5.10 show horizontal and vertical input timing charts for the RSK TFT APP board (YROK77210C000BE) used in the present case. The horizontal sync (Hsync) signal, vertical sync (Vsync) signal, and display enable (DE) signal shown in these timing charts are required, so select display type 3 (Figure 5.11).
(c) **Inputting Control Timing Values**

Figure 5.9 and Figure 5.10 show horizontal and vertical input timing charts for the RSK TFT APP board (YROK77210C000BE) used in the present case. Table 5.3 and Table 5.4 list the input timing of the horizontal and vertical sync signals. After inputting these control timing values, the result is as shown in Figure 5.12. The values input under **Typ** are used for timing control, and the values input under **Min** and **Max** are used to confirm that values are within the allowable range when the GUI is used for timing adjustment in QE for Video Display Controller 5.

Figure 5.12 Result Inputting Control Timing Values

Refer to Table 5.3 when inputting the following items:

- Panel clock frequency
- Horizontal total period
- Horizontal pulse width
- Horizontal display period
- Horizontal front porch
- Horizontal back porch

Refer to Table 5.4 when inputting the following items:

- Vertical total period
- Vertical pulse width
- Vertical display period
- Vertical front porch
- Vertical back porch

Note: In Figure 5.12 the **Typ** values for Horizontal Pulse Width and Vertical Pulse Width are midway between the **Min** and **Max** values. Also, the values listed in Table 5.3 and Table 5.4 should be input for HS Blanking and VS Blanking, but since these HS Blanking and VS Blanking values include the HS pulse width and VS pulse width, respectively, the **Typ** values for Horizontal Pulse Width and Vertical Pulse Width are subtracted and the resulting values are input as the **Typ** values for Horizontal Back Porch and Vertical Back Porch, respectively.
Table 5.3 Horizontal Input Timing

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal display area</td>
<td>thd</td>
<td>—</td>
<td>800</td>
<td>—</td>
</tr>
<tr>
<td>DCLK frequency</td>
<td>fclk</td>
<td>26.4</td>
<td>33.3</td>
<td>46.8</td>
</tr>
<tr>
<td>One horizontal line</td>
<td>th</td>
<td>852</td>
<td>1056</td>
<td>1200</td>
</tr>
<tr>
<td>HS pulse width</td>
<td>thpw</td>
<td>1</td>
<td>—</td>
<td>40</td>
</tr>
<tr>
<td>HS blanking</td>
<td>thb</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>HS front porch</td>
<td>thpf</td>
<td>16</td>
<td>210</td>
<td>354</td>
</tr>
</tbody>
</table>

Table 5.4 Vertical Input Timing

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical display area</td>
<td>tvd</td>
<td>—</td>
<td>480</td>
<td>—</td>
</tr>
<tr>
<td>VS period time</td>
<td>Tv</td>
<td>510</td>
<td>525</td>
<td>650</td>
</tr>
<tr>
<td>VS pulse width</td>
<td>tvpw</td>
<td>1</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td>VS blanking</td>
<td>tvb</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>VS front porch</td>
<td>tvpf</td>
<td>7</td>
<td>22</td>
<td>147</td>
</tr>
</tbody>
</table>

(d) Control Signal Output Settings

Click the display controller and LCD settings icon (Figure 5.13) in QE for Video Display Controller 5 to display the Display Controller and LCD Settings dialog box (Figure 5.14).

Figure 5.13 Display Controller and LCD Settings Icon

In this dialog box, make output settings for the control signals listed below.

[Panel driver signal (TCON) output selection]

- Output pin selection:
 - Output to pins LCD_TCON0 to LCD_TCON6 (TCON0 to TCON6)

- Control signal polarity:
 - Positive polarity (high active)
 - Negative polarity (low active)

[LCD setting]

- Output data format selection:
 - 24-bit RGB888 output (24-bit (VDC5_LCD_OUTFORMAT_RGB888))
 - 18-bit RGB666 output (18-bit (VDC5_LCD_OUTFORMAT_RGB666))
 - 16-bit RGB565 output (16-bit (VDC5_LCD_OUTFORMAT_RGB565))

- Data output timing:
 - Output at rising edge of panel clock (Rising (VDC5_EDGE_RISING))
 - Output at falling edge of panel clock (Falling (VDC5_EFGE_FALLING))
The output pin selection items matching the specifications of the RSK TFT APP board (YROK77210C000BE) used in the present case are listed below.

- Output pin selection
 - Vsync: TCON4
 - Hsync: TCON3
 - DE: TCON2

Based on Figure 5.9 and Figure 5.10, the polarity of the control signals is listed below.

- Polarity of the control signals
 - Vsync: Negative polarity (low active)
 - Hsync: Negative polarity (low active)
 - DE: Positive polarity (high active)

The output data format matching the board specifications is listed below.

- Output data format selection:
 24-bit RGB888 output (24-bit (VDC5_LCD_OUTFORMAT_RGB888))

Regarding the data output timing, since sampling occurs at the falling edge of the DCLK signal, according to Figure 5.9, the timing of data output on the VDC5 side is at the rising edge of the panel clock.

- Data output timing:
 Output at rising edge of panel clock (Rising (VDC5_EDGE_RISING))

This completes the display device information settings.
5.1.4 Generating a Header File

You can generate a header file reflecting the control timing settings by clicking the generate header file icon (Figure 5.15) in QE for Video Display Controller 5. The header file name and output destination can be specified by the user.

The sample program references the generated header file and makes settings to VDC5. Save the header file using the folder name and file name shown below.

Folder
- RZ_A1H_QE_for_VDC5_sample\inc\lcd

File name
- RSK_TFT_ch0.h
5.1.5 Building the Sample Project

After completing the display device information settings and outputting the header file in QE for Video Display Controller 5, right-click the imported project, as shown in Figure 5.16, and select Build Project.

Figure 5.16 Building the Project

You can confirm that building the project has completed successfully when the console output shown in Figure 5.17 is displayed.

Figure 5.17 Console Output of Result
5.1.6 Confirming Debugger Settings and Display

The RSK CPU board (YR0K77210C000BE) is used to confirm the display on the RSK TFT APP board (YR0K77210C000BE). The debugger used is the JLINK LITE ARM debugger bundled with the RSK CPU board (YR0K77210C000BE). The debugger settings are described below.

From the e² studio menu, select Run → Debug Configurations to display the Debug Configurations dialog box (Figure 5.18). Select Renesas GDB Hardware Debugging, right-click with the mouse, and select New.

![Figure 5.18 Debug Configuration Dialog Box](image)

Figure 5.19 shows a newly created debug configuration. Click the Browse... button under Project, and select RZ_A1H_QE_for_VDC5_sample.

![Figure 5.19 Newly Created Debug Configuration](image)
Next, select the **Debugger** tab, make the settings listed below (Figure 5.20), and click the **Apply** button.

[Debug hardware]: J-Link ARM
[Target Device]: R7S721001

![Figure 5.20 Debugger Settings](image)

Next, select the **Startup** tab, and remove the break point that is set by default. Uncheck the box shown in Figure 5.21. If this box is not unchecked, execution will always stop once at main.

![Figure 5.21 Removing Break Point](image)

After making the above settings, if the debugger is not connected, click the **Debug** button to start loading the program and launch the debugging environment (Figure 5.22).
After the debugger starts, if the display device settings have been entered correctly, a line one pixel thick is drawn around the outer edge of the screen, as shown in Figure 5.23. This screen is generated by the program according to the display size in the header information generated by QE for Video Display Controller 5. If you cannot confirm that this screen was displayed correctly, for example if it is shifted to the left or to the right, use QE for Video Display Controller 5 to adjust the control signal timing.
5.2 Real-Time Adjustment Function Using QE for Video Display Controller 5

After connecting the debugger and launching the sample program, you can alter the control signal timing by changing the setting values shown in Figure 5.24. Make adjustments while viewing the results on the connected display device, then re-output the header file.

Figure 5.24 Debugging the Control Signal Timing

Note: When debugging the control signal timing, the contents of the registers of VDC5 are changed directly via the debugger. The sample program assumes the VDC5 graphics plane graphics 2 will be used. If the user makes changes to use other graphics planes, such as graphics 0, graphics 1, or graphics 3, the anticipated operation may not be possible.
5.3 Image Download Function of QE for Video Display Controller 5

After checking the screen shown in Figure 5.23, you can use the image download function of QE for Video Display Controller 5 to display any image you wish. Click the icon shown in Figure 5.25 to display the **Send the Image** dialog box (Figure 5.26).

![Image Download Icon](image)

Figure 5.25 Image Download Icon

![Send Image Dialog Box](image)

Figure 5.26 Send Image Dialog Box

- **Address:** Specify the address of the buffer for storing display data.
- **Size [bytes]:** Image file size (When not specified, the file size is used.)
- **Sending File:** Image file (binary format)

For **Address**, specify 0x60500000. The sample program reserves the buffer for storing display data with an array variable (FrameBuffer_1[]) and allocates it to VRAM_SECTION_1 section (0x60500000).

For **Sending File**, use a binary image that matches the display data format set in the sample program. The display data format is set to RGB888 in the sample program. Note that you can use ImagePackager,¹ which is bundled with the sample program, to generate image files for downloading.

Note 1. For details of ImagePackager, refer to the related application note RZ/A1H Group: Graphics Library RGA (R01AN2162JJ/EJ).
6. Adapting the Sample Program to the User Environment

The sample program was created in conjunction with the RSK CPU board (YR0K77210C000BE) and RSK TFT APP board (YROK77210C000BE). In order to use it for checking LCD displays in the user environment, the sample program must be modified to match that environment. The locations to be modified are listed below.

6.1 CPU and Board Initialization

The sample program performs initialization to match the RSK CPU board (YR0K77210C000BE). It is therefore necessary to make modifications to match the user environment. The sample program makes settings for external memory such as SDRAM, although external memory is not used. These settings should be modified to match the user environment.

6.2 VDC5 Operation Settings

Some items related to display device control can be specified using QE for Video Display Controller 5 and some cannot. The settings that cannot be made using QE for Video Display Controller 5 are specified by the sample program instead. Therefore, the following three items need to be modified to match the user environment.

- **Display device timing control**
 The sample program references RSK_TFT_ch0.h when making settings to VDC5. This header file is generated by QE for Video Display Controller 5.

- **Panel clock settings**
 The sample program references RSK_TFT_panel_clk.h. This file must be modified to match the user environment. Note that this item cannot be specified using QE for Video Display Controller 5.

- **GPIO settings**
 The sample program uses GRAPHICS_SetLcdPanel_Ch0() in lcd_display_ch0.c to make these settings. This function must be modified to match the user environment. Note that this item cannot be specified using QE for Video Display Controller 5.

The panel clock settings are GPIO that cannot be specified using QE for Video Display Controller 5 are described below.

6.2.1 Panel Clock Settings

VDC5 allows a variety of input clocks to be used as the source clock to generate the panel clock. The selectable source clocks are listed below. Note that the selected source clock is then frequency divided (1/1 to 1/32).

[Source clocks]
- Video clock (VIDEO_X1)
- Video clock (DV_CLK)
- External clock 0 (LCD0_EXTCLK)
- External clock 1 (LCD1_EXTCLK)
- Peripheral clock 1 (P1ϕ)
- LVDS PLL clock
- LVDS PLL clock \times 1/7

The sample program uses the selections listed below to produce a “Panel Clock Frequency” of 33.3 MHz, as set in Figure 5.12, to match the specifications of the RSK TFT APP board (YROK77210C000BE).

- Peripheral clock 1 (P1ϕ) 66.6 MHz
- 1/2 division ratio

These settings are located in RSK_TFT_panel_clk.h.

- #define LCD_CH0_PANELCLK (VDC5_PANEL_ICKSEL_PERI)
- #define LCD_CH0_PANEL_CLK DIV (VDC5_PANEL_CLKDIV_1_2)
6.2.2 Using the LVDS PLL to Generate the Panel Clock

The preceding item described how a selection is made among the multiple source clocks to generate the panel clock. It is possible to gain additional flexibility by selecting the LDCS PLL clock as the source clock. The LDCS PLL clock can be used even when not using the LVDS LCD. Some setting examples are provided below.

Appended to the sample program are headers for settings to select the LDCS PLL clock, use the 66.6 MHz peripheral clock 1 (P1ϕ) as the source clock, and generate a 40 MHz clock.

These settings are located in RSK_HDMI_800x600_panel_clk.h. The source clock is the clock generated by the LVDS PLL, which is then frequency divided (1/1).

- #define LCD_CH0_PANEL_CLK (VDC5_PANEL_ICKSEL_LVDS)
- #define LCD_CH0_PANEL_CLK_DIV (VDC5_PANEL_CLKDIV_1_1)

The LVDS PLL settings are shown below. The 66.6 MHz peripheral clock 1 (P1ϕ) is selected as the source clock of the LVDS PLL.

- #define LVDS_PLL_INPUT_CLK (VDC5_LVDS_INCLK_SEL_PERI)

The settings for the LVDS PLL are listed below. For details on the setting values, see 40.5.1, LVDS PLL Settings, in RZ/A1H Group, RZ/A1M Group User’s Manual: Hardware.

- #define LVDS_PLL_NIDV (VDC5_LVDS_NDIV_4)
- #define LVDS_PLL_NODIV (VDC5_LVDS_NDIV_4)
- #define LVDS_PLL_NFD (384u)
- #define LVDS_PLL_NRD (5u-1u)
- #define LVDS_PLL_NOD (VDC5_LVDS_PLL_NOD_8)

Table 6.1 lists example settings for other panel clocks.

<table>
<thead>
<tr>
<th>Generated Panel Clock</th>
<th>25.175 [MHz]</th>
<th>40.0 [MHz]</th>
<th>65.0 [MHz]</th>
<th>83.5 [MHz]</th>
<th>85.5 [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD_CH0_PANEL_CLK</td>
<td>VDC5_PANEL_ICKSEL_LVDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD_CH0_PANEL_CLK_DIV</td>
<td>VDC5_PANEL_CLKDIV_1_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS_PLL_INPUT_CLK</td>
<td>VDC5_LVDS_INCLK_SEL_PERI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS_PLL_NIDV</td>
<td>VDC5_LVDS_NDIV_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS_PLL_NODIV</td>
<td>VDC5_LVDS_NDIV_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVDS_PLL_NFD</td>
<td>145</td>
<td>384</td>
<td>312</td>
<td>481</td>
<td>82</td>
</tr>
<tr>
<td>LVDS_PLL_NRD</td>
<td>(3u-1u)</td>
<td>(5u-1u)</td>
<td>(5u-1u)</td>
<td>(6u-1u)</td>
<td>(1u-1u)</td>
</tr>
<tr>
<td>LVDS_PLL_NOD</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
6.3 GPIO Settings

The ports of the RZ/A1 are multiplexed with pins of peripheral modules. The functions of multiplexed pins (alternative functions) are selected by means of register settings. In the present case the pins listed below are set as display device output pins, but multiple pins are multiplexed. The multiplexed RZ/A1H ports are listed below.

Output pin selections (multiplexed ports)

- Vsync: TCON4 (P3_5, P11_10, P11_13)
- Hsync: TCON3 (P3_4, P11_11)
- DE: TCON2 (P3_3, P11_12)

The following port selections are made in the sample program to match the RSK CPU board (YR0K77210C000BE) and RSK TFT APP board (YROK77210C000BE).

Output pin selections (selected ports)

- Vsync: TCON4 (P11_10)
- Hsync: TCON3 (P11_11)
- DE: TCON2 (P11_12)

GRAPHICS_SetLcdPanel_Ch0() in lcd_display_ch0.c is used to make these settings. In addition, settings are made in like manner for the following pins needed for display device control.

Output pin selections (selected ports)

- Panel clock: LCD0_CLK (P11_15)
- Data: LCD DATA23 to LCD DATA0 (P11_7 to P11_0, P10_15 to P10_0)

Modify these settings are necessary to match the display device you are using. Making the appropriate modifications will make it possible to confirm the operation of the display device you are using.
7. Reference Documents

User’s Manual

- RZ/A1H Group User’s Manual: Hardware
- RZ/A1H Group Renesas Starter Kit+ User’s Manual For e² studio
 (The latest information can be downloaded from the Renesas Electronics website.)

Application Notes

- RZ/A1H Group Example of Initialization (R01AN1864JJ/EJ)
- RZ/A1H Group Video Display Controller 5 Sample Driver (R01AN1822JJ/EJ)
- RZ/A1H Group Graphics Library "RGA" (R01AN2162JJ/EJ)
 (The latest information can be downloaded from the Renesas Electronics website.)
Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Oct. 17, 2016</td>
<td>—</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

<table>
<thead>
<tr>
<th>1. Handling of Unused Pins</th>
<th>Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.</td>
</tr>
<tr>
<td>2. Processing at Power-on</td>
<td>The state of the product is undefined at the moment when power is supplied.</td>
</tr>
<tr>
<td></td>
<td>The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.</td>
</tr>
<tr>
<td></td>
<td>In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.</td>
</tr>
<tr>
<td></td>
<td>In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.</td>
</tr>
<tr>
<td>3. Prohibition of Access to Reserved Addresses</td>
<td>Access to reserved addresses is prohibited.</td>
</tr>
<tr>
<td></td>
<td>The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.</td>
</tr>
<tr>
<td>4. Clock Signals</td>
<td>After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.</td>
</tr>
<tr>
<td></td>
<td>When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.</td>
</tr>
<tr>
<td>5. Differences between Products</td>
<td>Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.</td>
</tr>
<tr>
<td></td>
<td>The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software, and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are specified according to the following two quality grades: "Standard" and "High Quality," the recommended applications for each Renesas Electronics product depend on the product's quality grade, as indicated below. "Standard": Computers, office equipment, communication equipment, test and measurement equipment, audio and visual equipment, home appliances, machine tools, personal computers, electronic equipment, and industrial robots etc. "High Quality": Automotive products, industrial robots, etc. The product's quality grade may affect the suitability of the product for the intended application. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended, Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum ratings, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against radiation damage, the possibility of physical injury or damage caused by the use of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the availability of microcomputer software alone is very difficult, please evaluate the safety of the products or systems manufactured by you or third parties.

8. Please contact a Renesas Electronics sales office for details as to environmental characteristics such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with applicable laws and regulations that regulate the import, use, and transportation of controlled substances, including but not limited to the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies may not be used or incorporated into any products or systems where malfunctions, use, or sale is prohibited under applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purposes relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or reseller or distributor of Renesas Electronics products to determine the validity of the claims made by Renesas Electronics products, and, if necessary, to notify such parties to achieve the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

13. Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

14. Note 2) "Renesas Electronics products" means any product developed or manufactured by or for Renesas Electronics.

Renesas Electronics Corporation
http://www.renesas.com

SALES OFFICES

Renesas Electronics America Inc.,
2931 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-438-4000, Fax: +1-408-438-6100

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 800 Richmond Hill, Ontario Canada L4C 0T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dallas Meadow, Millboard Road, Stone End, Buckinghamshire, SL2 5JG, UK
Tel: +44-1280-835-100, Fax: +44-1280-833-600

Renesas Electronics Europe GmbH
Amadistrasse 10, 44247 Dinslaken, Germany
Tel: +49-212-456-0214, Fax: +49-212-456-3287

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 Zhonghua Road, Beijing 100191, P.R.China
Tel: +86-10-6233-1100, Fax: +86-10-6233-1579

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Pacific, 555 Laikou Road, Putuo District, Shanghai, P.R. China 200333
Tel: +86-21-2228-9298, Fax: +86-21-2228-9288

Renesas Electronics Hong Kong Limited
Unit 1601-1611, Tower 2, Tower 23 Central Plaza, 183 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2850-9968, Fax: +852-2850-9222

Renesas Electronics Taiwan Co., Ltd.
12F, No. 63, Ku Shing North Road, Taipei 10443, Taiwan
Tel: +886-2-2717-8880, Fax: +886-2-2717-8870

Renesas Electronics Europe GmbH,
80 Banderawela Road, Unit 607-02 Mira Innovation Centre, Singapore 339049
Tel: +65-6213-5200, Fax: +65-6213-5209

Renesas Electronics Malaysia Sdn Bhd,
Unit 1207, 12th Floor, Menara Aman, Amanjaya Trade Centre, No. 18, Jalan PJS 21, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +603-7955-6930, Fax: +603-7955-6910

Renesas Electronics India Pvt. Ltd.,
No.2772, 100 Peet Road, Malad East, Mumbai, India
Tel: +91-22-6628-0702, Fax: +91-22-6628-0777

Renesas Electronics Korea Co., Ltd.,
13F, 234 Yeoneran-ga, Gangnam-gu, Seoul, 135-080, Korea
Tel: +82-2-586-0707, Fax: +82-2-405-9411

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon S3