Summary

This document describes the use of the DTC (high-speed transfer and chain transfer). It explains how to use the end of A/D conversion as the DTC trigger to transfer (high-speed transfer) the A/D conversion result to RAM, to perform a serial transmission (chain transfer) of the A/D conversion result to UART0, and to reflect (chain transfer) the A/D conversion result in the PWM output width.

Contents

1. Overview of DTC (High-Speed Transfer and Chain Transfer) Operation 2
2. Specifications .. 6
3. Setting Procedures of Peripheral Functions .. 12
 3.1 Peripheral Function Initialization Procedure ... 12
 3.2 DTC (High-Speed Transfer) and DTC (Normal Transfer) Initialization Procedure 13
 3.3 A/D Converter Initialization Procedure ... 16
 3.4 TAU Initialization Procedure .. 17
 3.5 SAU Initialization Procedure .. 19
 3.6 Procedure for Enabling Peripheral Functions
 (DTC (High-Speed Transfer) Transfer Start) ... 20
 3.7 DTC Transfer-End Interrupt Handler .. 20
4. Important Points .. 21
 4.1 DTC Transfer Cycle Count .. 21
 4.2 DTC Usage Notes ... 23
1. **Overview of DTC (High-Speed Transfer and Chain Transfer) Operation**

The DTC of the RL78/F13 and RL78/F14 provides functionality for transferring data between areas of memory without using the CPU. There are two transfer methods: normal transfer, in which the control data is located in RAM, and high-speed transfer, which uses dedicated control data registers to allow for fewer transfer cycles than normal transfer. There are also two transfer modes (normal mode and repeat mode), and a chain transfer function that automatically continues after a transfer finishes with the next specified transfer.

During the DTC (high-speed transfer and chain transfer) operation, the DTC (high-speed transfer) initially takes place when a DTC activation source is generated. When chain transfer is enabled, the next DTC (normal transfer) then takes place and chain transfers continue until a DTC transfer with chain transfer disabled completes. All chain transfers use the normal DTC transfer method. A DTC transfer-end interrupt request is output when the first DTC (high-speed transfer) is executed, but the interrupt is held pending during DTC chain transfers. Thus, the DTC transfer-end interrupt can be accepted only when all transfers have finished.

Figure 1.1 is an outline of DTC (high-speed transfer and chain transfer) operation, and Figure 1.2 to Figure 1.5 are flowcharts of DTC (high-speed transfer and chain transfer) internal operation.

Figure 1.1 Flowchart (Outline) of DTC (High-Speed Transfer and Chain Transfer) Operation

1. Event selected as DTC activation source of DTC (high-speed channel 0) occurs.
2. Dedicated high-speed DTC control data [0] is read and a memory transfer takes place (a).
3. Control data [0] indicates that the value read from the DTC vector table area (b) corresponding to the activation source is “04H (k = 0).” When chain transfer starts, the next data, DTC control data [1], is read and a memory transfer takes place (c).
4. Next DTC control data [2] is read and a memory transfer takes place (d). Chain transfer is disabled in DTC control data [2], so chain transfer corresponding to the DTC activation source ends.

Note
Values in the figure for the DTC vector table area and the addresses indicated by DTC control data apply when the setting of the DTCBAR register is “FBH.”

Remarks
k = 0 to 23, m = 0 or 1
DTC Usage Example (High-Speed Transfer and Chain Transfer)

Notes
1. Interrupts are held pending until all chain transfers complete.
2. The DTC control data read first during chain transfer operation is the control data with the number equal to the DTC control data number (k) selected when the DTC activation request was generated + 1.
3. The peripheral function interrupt selected as the DTC (high-speed transfer) activation source is generated.

Remarks
i = 0 to 5, j = 0 to 7, k = 0 to 23, m = 0 or 1

Figure 1.2 Flowchart of DTC (High-Speed Transfer and Chain Transfer) Internal Operation
Notes Address control is set to “incremented,” and 1 is added for 8-bit transfers.
Address control is set to “incremented,” and 2 is added for 16-bit transfers.
Remarks m = 0 and 1

Figure 1.3 Flowchart of DTC (High-Speed Transfer) Internal Operation

Start

Read data from transfer source (SFR)
Reads data from the address indicated in HDTSARm (transfer source address).

Write data to transfer destination (RAM or SFR)
Writes to the address indicated in HDTDARm (transfer destination address).

Write back transfer counter, transfer source address, and transfer destination address
Decrement the transfer counter (HDTCCCTm) by 1 and updates the transfer source address and transfer destination address.\(^\text{Note}\)

End

Remarks m = 0 and 1

Figure 1.4 Flowchart of DTC (High-Speed Transfer) Internal Operation during Repeat Mode Final Transfer

Start

Interruptions enabled in repeat mode? Yes (HRPTINTm = 1)

Read data from transfer source (SFR)
Reads data from the address indicated in HDTSARm (transfer source address).

Write data to transfer destination (RAM or SFR)
Writes to the address indicated in HDTDARm (transfer destination address).

Write back transfer counter, transfer source address, and transfer destination address
The value of the transfer count reload register (HDTDLLDm) is transferred to HDTCCCTm, and the transfer source address or transfer destination address selected for the repeat area is initialized (the lower 8 bits are set to 00H).

End

Disables DTC (high-speed transfer) activation and requests a DTC transfer-end interrupt.\(^\text{Note}\)

Write 0 to the bit in DTCENij corresponding to the DTC activation source and request a DTC transfer-end interrupt.

Read data from transfer source (SFR)
Reads data from the address indicated in HDTSARm (transfer source address).

Write data to transfer destination (RAM or SFR)
Writes to the address indicated in HDTDARm (transfer destination address).

Note Interrupts are held pending until all chain transfers complete.
Remarks i = 0 to 5, j = 0 to 7, m = 0 or 1
Notes Address control is set to “incremented,” and 1 is added for 8-bit transfers.
Address control is set to “incremented,” and 2 is added for 16-bit transfers.
Remarks k = 0 to 23
When using chain transfer with DTC (high-speed transfer), the setting of the RPTINTk bit (interrupt setting for repeat mode) of the control data area has no effect.

Figure 1.5 Flowchart of DTC (Normal Transfer) Internal Operation
2. Specifications

A usage example combining the DTC, the A/D converter, timer array unit (TAU) channels 0 to 3 (TAU00 to TAU03), and UART0 transmission (on channel 0 (SAU00) of the serial array unit (SAU)) is presented below.

TAU00 (2.04 ms) and TAU01 (1.02 ms) count in coordinated fashion, and the A/D converter uses the TAU01 interrupt request signal as the trigger to perform A/D conversion of the input voltage on the ANI2 pin. In addition, TAU02 (510 μs) and TAU03 count in coordinated fashion, and a PWM signal is output on the TO03 pin. Using the A/D conversion end as the DTC (high-speed transfer) activation source, the DTC starts operating and performs the following memory transfers by means of chain transfers:

- Transfer of the A/D conversion result to RAM (DTC (high-speed transfer))
- Transfer of the A/D conversion result stored in RAM to the SDR00L register (DTC (normal transfer))
- Transfer of the A/D conversion result stored in RAM to the TDR03 register (DTC (normal transfer))

After this, the above processing is repeated.

Figure 2.1 is a connection diagram showing the pins used, Table 2.1 lists the peripheral functions used and their applications, Figure 2.2 is a configuration diagram of the peripheral functions used, Figure 2.3 shows the allocation of the DTC control data and DTC vector table, and Figure 2.4 and Figure 2.5 show the DTC transfer timing.

In the application described in this document AVREFP, AVREFM, ANI2, TO03, and TXD0 are used.

![Connection Diagram of Pins Used](image-url)
Table 2.1 Peripheral Functions Used and Their Applications

<table>
<thead>
<tr>
<th>Peripheral Function</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/D converter</td>
<td>Performs A/D conversion on the analog input signals from channel ANI2.</td>
</tr>
<tr>
<td></td>
<td>8-bit resolution</td>
</tr>
<tr>
<td></td>
<td>Hardware trigger no-wait mode (source: INTTM01)</td>
</tr>
<tr>
<td></td>
<td>Select mode (1-channel)</td>
</tr>
<tr>
<td></td>
<td>One-shot conversion mode</td>
</tr>
<tr>
<td>TAU00</td>
<td>Constant-period timer</td>
</tr>
<tr>
<td></td>
<td>Interval timer mode (2.04 ms)</td>
</tr>
<tr>
<td></td>
<td>Used as master channel</td>
</tr>
<tr>
<td>TAU01</td>
<td>Generates A/D conversion trigger (INTTM01).</td>
</tr>
<tr>
<td></td>
<td>One-count mode (1.02 ms)</td>
</tr>
<tr>
<td></td>
<td>Used as TAU00 slave channel.</td>
</tr>
<tr>
<td>TAU02</td>
<td>Constant-period timer</td>
</tr>
<tr>
<td></td>
<td>Interval timer mode (510 μs)</td>
</tr>
<tr>
<td></td>
<td>Used as master channel</td>
</tr>
<tr>
<td>TAU03</td>
<td>PWM signal output</td>
</tr>
<tr>
<td></td>
<td>One-count mode</td>
</tr>
<tr>
<td></td>
<td>Output pin: TO03</td>
</tr>
<tr>
<td></td>
<td>High width: 0 to 510 μs (zero-expanded data derived from upper 8 bits of A/D conversion result)</td>
</tr>
<tr>
<td></td>
<td>Used as TAU02 slave channel</td>
</tr>
<tr>
<td>SAU00</td>
<td>Performs transmission on TXD0 pin in UART mode.</td>
</tr>
<tr>
<td></td>
<td>Operating mode: UART mode (transmit function)</td>
</tr>
<tr>
<td></td>
<td>Baud rate: 9,600 bps (error: +0.16%)</td>
</tr>
<tr>
<td></td>
<td>(8 data bits, no parity, 1 stop bit, LSB-first)</td>
</tr>
<tr>
<td>DTC (high-speed DTC channel 0)</td>
<td>Transfers the A/D conversion result register value to the RAM.</td>
</tr>
<tr>
<td></td>
<td>DTC activation source: End of A/D conversion</td>
</tr>
<tr>
<td></td>
<td>Transfer source address: ADCRH register</td>
</tr>
<tr>
<td></td>
<td>Transfer destination address: RAM</td>
</tr>
<tr>
<td></td>
<td>Transfer size: 1 byte</td>
</tr>
<tr>
<td></td>
<td>Transfer count: 1</td>
</tr>
<tr>
<td></td>
<td>Operating mode: Repeat mode, chain transfer enabled</td>
</tr>
<tr>
<td>DTC (control data 1)</td>
<td>Transfers the A/D conversion result register value to serial data register 00.</td>
</tr>
<tr>
<td></td>
<td>DTC activation source: —</td>
</tr>
<tr>
<td></td>
<td>Transfer source address: RAM (A/D conversion result storage destination)</td>
</tr>
<tr>
<td></td>
<td>Transfer destination address: SDR00L register</td>
</tr>
<tr>
<td></td>
<td>Transfer size: 1 byte</td>
</tr>
<tr>
<td></td>
<td>Transfer count: 1</td>
</tr>
<tr>
<td></td>
<td>Operating mode: Repeat mode, chain transfer enabled</td>
</tr>
<tr>
<td>DTC (control data 2)</td>
<td>Transfers the A/D conversion result register value to timer data register 03.</td>
</tr>
<tr>
<td></td>
<td>DTC activation source: —</td>
</tr>
<tr>
<td></td>
<td>Transfer source address: RAM (A/D conversion result storage destination)</td>
</tr>
<tr>
<td></td>
<td>Transfer destination address: TDR03 register</td>
</tr>
<tr>
<td></td>
<td>Transfer size: 2 bytes</td>
</tr>
<tr>
<td></td>
<td>Transfer count: 1</td>
</tr>
<tr>
<td></td>
<td>Operating mode: Repeat mode, chain transfer disabled</td>
</tr>
</tbody>
</table>
DTC Usage Example (High-Speed Transfer and Chain Transfer)

Figure 2.2 Configuration Diagram of Peripheral Functions Used

- **TAU00** (2.04 ms) - INTTM00 signal (TAU01 count start)
- **TAU01** (1.02 ms) - A/D converter
- **AN2** (A/D conversion)

- **Transfer directive**
 - A/DCRH register (FFFF1H)
 - RAM (FFB00H) (A/D conversion result)
 - RAM (FFB01H) (UART transmit data)
 - SDR00L register (FFFF10H)
 - TDR03 register (FFFF67H-FFFF68H)

- **Normal transfer**
 - Chain transfer (1st)
 - Chain transfer (2nd)

- **DTC control data** (0)
- **DTC control data** (1)
- **DTC control data** (2)

- **INTAD** - A/D conversion end interrupt at DTC transfer-end

- **TXD0** (UART transmission)
- **TO03** (PWM output)

- **PWM function**

Conceptual image of data transfer:
- **DTC (high-speed transfer: 8 bits)**
 - A/D conversion result: 8 bits
 - RAM (initialized to 00H beforehand)
 - A/D conversion result: 16 bits
- **Chain transfer (1st): 8 bits**
- **Chain transfer (2nd): 16 bits**

- **INTTM01 signal (A/D conversion start)**
- **INTAD**

- **Normal transfer**
 - (1st)
 - (2nd)

- **RAM** (initialized to 00H beforehand)
 - A/D conversion result

- **ADCRH register (FFFF1H)**
 - RAM (FFB00H)
 - SDR00L register (FFFF10H)
 - TDR03 register (FFFF67H-FFFF68H)

- **SDR00L**
 - A/D conversion result
 - A/D conversion result
 - A/D conversion result

- **SAU00** (Duty)
 - SDR00L
 - TDR03H (00H)
 - TDR03L (FFFFH)

- **TAU02** (Duty)
 - SDR00L
 - TDR03H (00H)
 - TDR03L (FFFFH)

- **Normal transfer**
 - Chain transfer (1st)
 - Chain transfer (2nd)

- **A/D conversion end interrupt at DTC transfer-end**
DTC Usage Example (High-Speed Transfer and Chain Transfer)

(SFR area)

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F02DEH</td>
<td>HDTdar1</td>
</tr>
<tr>
<td>F02DCH</td>
<td>HDTsar1</td>
</tr>
<tr>
<td>F02DAH</td>
<td>HDTRLd1</td>
</tr>
<tr>
<td>F02D8H</td>
<td>HDTdar0</td>
</tr>
<tr>
<td>F02D4H</td>
<td>HDTSAR1</td>
</tr>
<tr>
<td>F02D2H</td>
<td>HDTRLd0</td>
</tr>
<tr>
<td>F02D0H</td>
<td>HDTCC0</td>
</tr>
</tbody>
</table>

Dedicated high-speed DTC control data [1]

Dedicated high-speed DTC control data [0]

(RAM area) Note 1

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+F8 to +FFH</td>
<td>Control data [23]</td>
</tr>
<tr>
<td>+F0 to +F7H</td>
<td>Control data [22]</td>
</tr>
<tr>
<td>+58 to +5FH</td>
<td>Control data [3]</td>
</tr>
<tr>
<td>+56H</td>
<td>DTDAR2</td>
</tr>
<tr>
<td>+54H</td>
<td>DTSAR2</td>
</tr>
<tr>
<td>+52H</td>
<td>DTTRL2</td>
</tr>
<tr>
<td>+50H</td>
<td>DTBLS2</td>
</tr>
<tr>
<td>+4EH</td>
<td>DTDAR1</td>
</tr>
<tr>
<td>+4CH</td>
<td>DTSAR1</td>
</tr>
<tr>
<td>+4AH</td>
<td>DTTRL1</td>
</tr>
<tr>
<td>+48H</td>
<td>DTBLS1</td>
</tr>
<tr>
<td>+46H</td>
<td>DTDAR0</td>
</tr>
<tr>
<td>+44H</td>
<td>DTSAR0</td>
</tr>
<tr>
<td>+42H</td>
<td>DTTRL0</td>
</tr>
<tr>
<td>+40H</td>
<td>DTBLS0</td>
</tr>
</tbody>
</table>

Control data [2]

Control data [1]

Control data [0]

+2EH to +3FH Reserved area

+2CH (INTTM17) (INTTM16)
+2AH (INTTM15) (INTTM14)
+28H (INTLIN1TRM) (INTLIN1RVC)
+26H (INTTM13) (INTTM12)
+24H (INTTM11) (INTTM10)
+22H (INTCMPO) (INTRU0)
+20H (TRDSR1.IMFD) (TRDSR1.IMFC)
+1EH (TRDSR1.IMFB) (TRDSR1.IMFA)
+1CH (TRDSR0.IMFD) (TRDSR0.IMFC)
+1AH (TRDSR0.IMFB) (TRDSR0.IMFA)
+18H (INTTM07) (INTTM06)
+16H (INTTM05) (INTTM04)
+14H (INTTM03) (INTTM02)
+12H (INTTM01) (INTTM00)
+10H (INTCANGRFR)
+0EH (INTLIN0TRM) (INTLIN0RVC)
+0CH (INTST1) Note 2 (INTSR1) Note 3
+0AH (INTST0) Note 4 (INTSR0) Note 5
+08H (INTAD) (INTKR)
+06H (INTP6) (INTP5)
+04H (INTP4) (INTP3)
+02H (INTP2) (INTP1)
+00H (INTP0) —

DTC vector table area

Notes

1. The DTC (normal transfer) control data and DTC vector table are allocated in RAM. The start address is set in the DTCCBAR register.
2. INTST1/INTCSI10/INTII10
3. INTSR1/INTCSI11/INTII11
4. INTST0/INTCSI00/INTII00
5. INTSR0/INTCSI01/INTII01

Figure 2.3 Allocation of DTC Control Data and DTC Vector Table
Figure 2.4 DTC Transfer Timing (1/2)
The following register settings are made by the software to put the function in the operational state:
- The DTGEN16 bit in the DTGEN1 register is set to 1 (DTC activation enabled (source: A/D conversion end)).
- The T500, T501, T502, and T503 bits in the T50 register are set to 1 (start counting on TAU00, TAU01, TAU02, and TAU03).
- The SE00 bit in the SS0 register is set to 1 (SAU00 CH0 in transmit-standby state).

When TAU00 finishes counting, the INTTM01 signal is output. Also, A/D conversion starts, using this signal as the trigger.

After A/D conversion end, the ADIF bit changes to 1 and a DTC (high-speed transfer) memory transfer is performed (ADCRH register → RAM), using the A/D conversion-end interrupt request signal as the trigger. Also, the HDTCCT0 register is decremented when the DTC transfer occurs.

When the transfer that causes the value of the HDTCCT0 register to change from 1 to 0 is executed, the following operations are performed:
- The DTGEN16 bit is cleared to 0 (DTC activation disabled).
- An A/D conversion-end interrupt request is generated due to the DTC (high-speed transfer) transfer end. (Generation of interrupts is held pending until all DTC transfers using chain transfer complete.)
- A data transfer using DTC (high-speed transfer) is executed (ADCRH register → RAM).
- The value of the HDCTRL0 register is stored in the HDTCCT0 register (initialization of transfer count using DTC (high-speed transfer)).

After confirmation that the HCHNE0 bit in the DTCCR0 register has been set to 1, control data 1 is read from the control data area and the following operations are performed:
- A data transfer using DTC (normal transfer) is executed (RAM (A/D conversion result storage area) → SDR00L register).
- The DTCT16 register is decremented. Also, SAU00 transmits the A/D conversion result on the TXD0 pin due to the data transfer to the SDR00L register.

After confirmation that the CHNE bit in the DTCCR1 register has been set to 1, control data 2 is read from the control data area and the following operations are performed:
- A data transfer using DTC (normal transfer) is executed (RAM (16-bit extended value from A/D conversion result storage area) → TDR03 register).
- The DTCT12 register is decremented.

An A/D conversion-end interrupt request is generated due to the DTC transfer end. At this point the following settings are made by the software:
- The software sets the DTGEN16 bit in the DTGEN1 register to 1 (DTC (high-speed transfer) activation enabled).

TAU00 and TAU01 perform the following operations:
- An INTTM00 signal is output when the TAU00 count completes (generation of TAU00 interrupt request signal).
- TAU01 (slave) starts counting. Also, TAU02 and TAU03 perform the following operations during steps [2] to [8]:
 - An INTTM02 signal is output when the TAU02 count completes (generation of TAU02 interrupt request signal), and the TO03 pin is driven to the high level (unless the value of the TDR03 register is 0000H).
 - TAU03 (slave) starts counting.
 - The TO03 pin is driven to the low level when the TAU03 count completes.

Notes

TCCR0: Timer counter register 00
- INTTM00 signal: Timer channel 0 count-end/capture-end interrupt request signal

TCCR1: Timer counter register 01
- INTTM01 signal: Timer channel 1 count-end/capture-end interrupt request signal (Used as A/D conversion trigger.)

A/D conversion status: 10-bit successive approximation register
- ADCRH: 8-bit A/D conversion result register (upper 8 bits of A/CR)
- DTC (high-speed transfer) activation request: Single-channel A/D conversion-end interrupt signal
- FF800H: RAM indicating HDTRAR0 (high-speed DTC transfer destination address register) for A/D conversion result storage

HDTCCT0: High-speed DTC transfer count register 0
- ADIF: A/D conversion end interrupt flag
- DTGEN16: DTGEN16 bit in DTGEN1 register

SDR00L: Serial data register 00 (lower 8 bits of SDR00)
- TXD0 pin: UART0 transmit pin

DTCCCT1: DTC transfer count register 1 allocated in DTC control data area
- TCR02: Timer counter register 02
- INTTM02 signal: Timer channel 2 count-end/capture-end interrupt request signal

TCCR3: Timer counter register 03
- INTTM03 signal: Timer channel 3 count-end/capture-end interrupt request signal

TDR03: Timer data register 3
- TO03 pin: Timer channel 3 PWM signal output pin

DTCCCT2: DTC transfer count register 2 allocated in DTC control data area
- CK03 (fCLK / 128 = 250 kHz) selected as TAU00 and TAU01 count clock
- CK02 (fCLK / 64 = 500 kHz) selected as TAU02 and TAU03 count clock

Figure 2.5 DTC Transfer Timing (2/2)
3. Setting Procedures of Peripheral Functions

The setting procedures of the peripheral functions (DTC, A/D converter, TAU, and SAU), are described in this section.

3.1 Peripheral Function Initialization Procedure

Figure 3.1 shows the peripheral function initialization procedure.

![Figure 3.1 Peripheral Function Initialization Procedure]

Start

DI (disable interrupts)

Initialize DTC

Initialize A/D converter

Initialize TAU

Initialize SAU

EI (enable interrupts)

End
3.2 DTC (High-Speed Transfer) and DTC (Normal Transfer) Initialization Procedure

Using the end of A/D conversion as the activation source, the A/D conversion result is transferred (high-speed transfer) to the conversion result storage area in RAM, the A/D conversion result stored in the A/D conversion result storage area is transferred (chain transfer) to the SDR00L register, and the A/D conversion result stored in the A/D conversion result storage area (16-bit expanded) is transferred (chain transfer) to the TDR03 register, sequentially.

Figure 3.2 and Figure 3.3 show the DTC (high-speed transfer) and DTC (normal transfer) initialization procedure. Figure 3.4 shows the allocation of DTC control data.

Figure 3.2 DTC (High-Speed Transfer) and DTC (Normal Transfer) Initialization Procedure (1/2)

```
Start

- FFD00H to FFDFH = 00H
  - Initializes the DTC control data area and DTC vector table area (00H).
- PER1.DTCEN = 1
  - Supplies the DTC input clock.
- DTCENi = 00H (i = 0 to 5)
  - Disables all DTC activation.
- DTCBAR = FDH
  - Sets the DTC base address. (FFD00H)
    - DTC vector address: FFD00H
    - DTC control data area start address: FFD40H
- FFD09H address = 40H
  - Selects DTC control data 0 as DTC vector table source number [9] (A/D conversion end). (Stores the lowest 1 byte of the DTC control data 0 address (FFD40H)).
- SELHS0 = 09H
  - Selects activation source number 9 (A/D conversion end) for high-speed DTC channel 0.
- HDTCCR0 = 31H
  - Sets the dedicated high-speed control data [0] conditions:
    - 8 data bits, repeat mode, interrupts enabled in repeat mode, chain transfer enabled, transfer source address fixed, transfer destination is repeat area.
- HDTCT0 = 01H
  - Sets the transfer count (1 time).
- HDTRLD0 = 01H
  - Sets the transfer count (reload) (1 time).
- HDTTSAR0 = 0F1FH
  - Sets the transfer source address (lower 12 bits of address data in ADRCH register)
- HDTDAR0 = FB00H
  - Sets the transfer destination address (lower 2 bytes of address data in RAM)
```

To Figure 3.3, DTC (High-Speed Transfer) and DTC (Normal Transfer) Initialization Procedure (2/2)
From Figure 3.2, DTC (High-Speed Transfer) and DTC (Normal Transfer)
Initialization Procedure (1/2)

1

Sets the control data 1 conditions:
8 data bits, repeat mode, interrupts disabled in repeat mode, chain transfer
enabled, transfer destination address fixed, transfer source is repeat area.

DTCCR1 = 13H

Sets the transfer size (1 byte).

DTBL1S = 01H

Sets the transfer count (1 time).

DTCCT1 = 01H

Sets the DTC transfer count (reload) (1 time).

DTRLD1 = 01H

Sets the transfer source address (lower 2 bytes of address data in RAM)

DTSAR1 = FB00H

Sets the transfer destination address (lower 2 bytes of address data in
SDR00L)

DTDAR1 = FF10H

Sets the control data 2 conditions:
16 data bits, repeat mode, interrupts disabled in repeat mode, chain transfer
disabled, transfer destination address fixed, transfer source is repeat area.

DTCCR2 = 43H

Sets the transfer size (1 byte).

DTBL1S = 01H

Sets the transfer count (1 time).

DTCCT2 = 01H

Sets the transfer count (reload) (1 time).

DTRLD2 = 01H

Sets the transfer source address (lower 2 bytes of address data in RAM)

DTSAR2 = FB00H

Sets the transfer destination address (lower 2 bytes of address data in
TDR03)

DTDAR2 = FF66H

End

Figure 3.3 DTC (High-Speed Transfer) and DTC (Normal Transfer) Initialization Procedure (2/2)
Dedicated high-speed DTC control data [0]

- Activation source: A/D conversion end
- 8-bit transfer from transfer source (ADCRH) to transfer destination RAM (FFB00H)
- Transfer count: 1 time, repeat mode, chain transfer enabled, interrupts enabled

Dedicated high-speed DTC control data [1]

- Activation source: DTC (normal transfer, control data [1]) transfer end
- 16-bit transfer from transfer source RAM (FFB00H) to transfer destination (TDR03)
- Transfer count: 1 time, repeat mode, chain transfer disabled, interrupts disabled

Control data [2]

- Activation source: DTC (high-speed transfer) transfer end
- 8-bit transfer from transfer source RAM (FFB00H) to transfer destination (SDR00L)
- Transfer count: 1 time, repeat mode, chain transfer enabled, interrupts disabled

Control data [1]

- Activation source: DTC (normal transfer, control data [1]) transfer end

Control data [0]

Remark

In the example presented in this document, the DTC activation source (INTAD) causes the register information stored in dedicated high-speed DTC control data [0] to be read and DTC (high-speed transfer) to take place based on that register information.

The register information read from dedicated high-speed DTC control data [0] indicates that chain transfer is enabled, so the register information stored in the next control data (in this case, control data [1]) is read, and based on that register information DTC (normal transfer) takes place.

The register information read from control data [1] also indicates that chain transfer is enabled, so the register information stored in the next control data (in this case, control data [2]) is read, and based on that register information DTC (normal transfer) takes place.

The register information read from control data [2] indicates that chain transfer is disabled, so DTC chain transfer ends.

Figure 3.4 Allocation of DTC Control Data
3.3 A/D Converter Initialization Procedure

The following settings are used to perform A/D conversion of the analog input signals on channel AN12.

Figure 3.5 shows the initialization procedure for the A/D converter.

- **PER0.ADCEN = 1**
 - Supplies the input clock to the A/D converter.
- **ADPC = 04H**
 - Analog input port settings
 - Selects analog input for P33/ANI0/AVREFP, P34/ANI1/AVREFM, and P80/ANI2.
- **PM3.PM3[4:3] = 11B**
 - Sets used analog input pins to input mode
- **PM8.0 = 1**
- **ADM0 = 2AH**
- **ADM1 = A0H**
- **ADM2 = 61H**
- **ADUL = FFH**
- **ADLL = 00H**
- **ADS = 02H**
 - A/D stabilization wait time A (5 μs)
- **ADM0.ADCE = 1**
 - A/D stabilization wait time B (1 μs)
- **PR11H.ADPR1 = 0**
- **PR01H.ADPR0 = 1**
- **MK1H.ADMK = 0**
- **IF1H.ADIF = 0**

Figure 3.5 A/D Converter Initialization Procedure
3.4 TAU Initialization Procedure

TAU00 is set as a timer with a period of 2.04 ms and TAU01 is set to 1.02 ms as the slave channel of TAU00. Next, TAU02 is set as the master channel and TAU03 as the slave channel with a period of 510 μs for use as a PWM function.

Figure 3.6 and Figure 3.7 show the TAU initialization procedure.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Supplies the input clock to the TAU0.</td>
</tr>
<tr>
<td>2</td>
<td>TAU0 timer clock selections</td>
</tr>
<tr>
<td></td>
<td>CK00: fCLK, CK01: fCLK/4, CK02: fCLK/64, CK03: fCLK/128</td>
</tr>
<tr>
<td>3</td>
<td>TAU00 timer operating mode settings</td>
</tr>
<tr>
<td></td>
<td>CKS00[1:0]: 11B (CK03 selected as fMCK)</td>
</tr>
<tr>
<td></td>
<td>CCS00: 0B (fMCK selected as count clock (fTCLK))</td>
</tr>
<tr>
<td></td>
<td>STS00[2:0]: 000B (software trigger selected as start trigger)</td>
</tr>
<tr>
<td></td>
<td>CIS00[1:0]: 00B (falling edge selected as valid edge of T00 pin signal)</td>
</tr>
<tr>
<td></td>
<td>MD00[3:1]: 000B (interval timer mode selected)</td>
</tr>
<tr>
<td></td>
<td>MD00: 0B (interrupt not generated at count start)</td>
</tr>
<tr>
<td>4</td>
<td>TAU01 timer operating mode settings</td>
</tr>
<tr>
<td></td>
<td>CKS01[1:0]: 11B (CK03 selected as fMCK)</td>
</tr>
<tr>
<td></td>
<td>CCS01: 0B (fMCK selected as count clock (fTCLK))</td>
</tr>
<tr>
<td></td>
<td>SPLIT01: 0B (16-bit timer, operates as slave channel)</td>
</tr>
<tr>
<td></td>
<td>STS01[2:0]: 100B (master channel interrupt signal used as start trigger)</td>
</tr>
<tr>
<td></td>
<td>CIS01[1:0]: 00B (falling edge selected as valid edge of T01 pin signal)</td>
</tr>
<tr>
<td></td>
<td>MD01[3:1]: 100B (one-count mode selected)</td>
</tr>
<tr>
<td></td>
<td>MD010: 1B (start trigger enabled and interrupts generated during count operation)</td>
</tr>
<tr>
<td>5</td>
<td>TAU02 timer operating mode settings</td>
</tr>
<tr>
<td></td>
<td>CKS02[1:0]: 01B (CK02 selected as fMCK)</td>
</tr>
<tr>
<td></td>
<td>CCS02: 0B (fMCK selected as count clock (fTCLK))</td>
</tr>
<tr>
<td></td>
<td>MASTER02: 1B (operation as master for simultaneous channel operation function selected)</td>
</tr>
<tr>
<td></td>
<td>STS02[2:0]: 000B (software trigger selected as start trigger)</td>
</tr>
<tr>
<td></td>
<td>CIS02[1:0]: 00B (falling edge selected as valid edge of T00 pin signal)</td>
</tr>
<tr>
<td></td>
<td>MD02[3:1]: 000B (interval timer mode selected)</td>
</tr>
<tr>
<td></td>
<td>MD020: 0B (interrupt not generated at count start)</td>
</tr>
<tr>
<td>6</td>
<td>TAU03 timer operating mode settings</td>
</tr>
<tr>
<td></td>
<td>CKS03[1:0]: 01B (CK02 selected as fMCK)</td>
</tr>
<tr>
<td></td>
<td>CCS03: 0B (fMCK selected as count clock (fTCLK))</td>
</tr>
<tr>
<td></td>
<td>SPLIT03: 0B (16-bit timer, operates as slave channel)</td>
</tr>
<tr>
<td></td>
<td>STS03[2:0]: 100B (master channel interrupt signal used as start trigger)</td>
</tr>
<tr>
<td></td>
<td>CIS03[1:0]: 00B (falling edge selected as valid edge of T01 pin signal)</td>
</tr>
<tr>
<td></td>
<td>MD03[3:1]: 100B (one-count mode selected)</td>
</tr>
<tr>
<td></td>
<td>MD030: 1B (start trigger enabled and interrupts generated during count operation)</td>
</tr>
</tbody>
</table>

To Figure 3.7, TAU Initialization Procedure (2/2)
From figure 3.6, TAU Initialization Procedure (1/2)

1

TIS0 = 00H

TOE0 = 0000H

TDR00 = 01FDH

TDR01 = 00FEH

TDR02 = 00FEH

TDR03 = 0000H

TOM0 = 0008H

TOL0 = 0000H

TO0 = 0000H

TOE0 = 0008H

PR10H.TMPR100 = 1

PR00H.TMPR000 = 0

PMC12.PMC125 = 0

P12.P125 = 0

PM12.PM125 = 0

MK1L.TMMK00 = 0

IF1L.TMIF00 = 0

MK1L.TMMK01 = 1

MK1L.TMMK02 = 1

MK1L.TMMK03 = 1

Figure 3.7 TAU Initialization Procedure (2/2)

Selects the TAU00, TAU01, TAU02, and TAU03 timer inputs (initial value).

Disables TAU00, TAU01, TAU02, and TAU03 timer output.

Sets the TAU00 count value (2.04 ms).

Sets the TAU01 count value (1.02 ms).

Sets the TAU02 count value (2.04 ms).

Sets the TAU03 count value (0 ms).

Timer output mode setting

Timer output level setting

Timer output setting

Enables TAU03 timer output.

TAU00 interrupt priority setting

10B (level 2)

Sets P125 to digital I/O.

Sets P125/TO03 pin to output mode.

Enables the TAU00 interrupt handler.

Clears the TAU00 interrupt request signal.

Disables the TAU01 interrupt handler.

Disables the TAU02 interrupt handler.

Disables the TAU03 interrupt handler.
3.5 SAU Initialization Procedure

Settings are made to enable SAU0 to transmit in UART mode.

Figure 3.8 shows the SAU initialization procedure.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>Supplies the input clock to the SAU0.</td>
</tr>
<tr>
<td>PER0.SAU0EN = 1</td>
<td>SAU0 cereal clock selections CK00: f({MCK}) / 16, CK01: f({MCK}) / 16</td>
</tr>
<tr>
<td>SPS0 = 0044H</td>
<td>Stops SAU0 (UART0) operation.</td>
</tr>
<tr>
<td>ST0 = 0003H</td>
<td>UART0 (SAU00) operating mode settings CKS00: 0B (CK00 selected as f({MCK})) CCS00: 0B (f({MCK}) selected as transfer clock (f(_{TCLK}))) STS00: 0B (software trigger selected as start trigger) SIS000: 0B (falling edge bit detection selected) MD00[2:1]: 01B (UART mode selected) MD000: 0B (transfer-end interrupt selected)</td>
</tr>
<tr>
<td>SMR00 = 0022H</td>
<td>UART0 (SAU00) communication operation settings TXE00, RXE00: 10B (transmission selected as operating mode) DAP00, CPK00: 00B (type 1 selected) PTC00[1:0]: 00B (no parity bit output selected) DIR00: 1B (LSB-first selected as data transfer order) SLC00[1:0]: 01B (1 bit selected as number of stop bits) DLS00[3:0]: 0111B (8 bits selected as number of data bits)</td>
</tr>
<tr>
<td>SCR00 = 8097H</td>
<td>Operating clock division ratio selection SDR00[15:9]: 1100111B (f(_{MCK}) / 208 selected as transfer clock)</td>
</tr>
<tr>
<td>SDR00 = CE00H</td>
<td>Selects unmodified output of transmit data (initial setting).</td>
</tr>
<tr>
<td>SOL0 = 0000H</td>
<td>SO00: 1B (high level selected as initial output level of TXD0 pin) Others are set to default values.</td>
</tr>
<tr>
<td>SO0 = 0303H</td>
<td>Enables output using SAU0 (UART0) serial communication.</td>
</tr>
<tr>
<td>SOE0 = 0001H</td>
<td>Sets P15/TXD0 pin to output mode.</td>
</tr>
<tr>
<td>P1.P15 = 1</td>
<td>UART0 (transmit) transfer-end interrupt priority setting 11B (level 3 (low priority))</td>
</tr>
<tr>
<td>PM1.PM15 = 0</td>
<td>Disables UART0 (transmit) interrupt processing.</td>
</tr>
<tr>
<td>PR10H.STPR10 = 1</td>
<td>UART0 (transmit) transfer-end interrupt priority setting 11B (level 3 (low priority))</td>
</tr>
<tr>
<td>PR00H.STPR00 = 1</td>
<td></td>
</tr>
<tr>
<td>MK0H.STMK0 = 1</td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 3.8 SAU Initialization Procedure](image)
3.6 Procedure for Enabling Peripheral Functions (DTC (High-Speed Transfer) Transfer Start)

After initializing the peripheral functions (DTC, A/D converter, TAU, and SAU), the operation of the peripheral functions is enabled (started).

Figure 3.9 shows the procedure for enabling the operation of the peripheral functions (DTC (high-speed transfer) transfer start).

<table>
<thead>
<tr>
<th>Start</th>
<th>DTCEN1.DTCEN16 = 1</th>
<th>Enables DTC activation (A/D conversion end source). Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ADM0.ADCS = 1</td>
<td>Enables A/D converter operation.</td>
</tr>
<tr>
<td></td>
<td>SS0.SS0[1:0] = 01B</td>
<td>Starts UART0 (SAU00) communication.</td>
</tr>
<tr>
<td></td>
<td>TS0.TS0[3:0] = 1111B</td>
<td>Starts counting by TAU00, TAU01, TAU02, and TAU03.</td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Writing to the DTCEN16 bit should be performed when interrupt sources for which DTC activation is enabled in the DTCEN1 register, and the interrupt source (A/D conversion end) set as activation-enabled, will not be generated.

Figure 3.9 Procedure for Enabling Peripheral Functions (DTC (High-Speed Transfer) Transfer Start)

3.7 DTC Transfer-End Interrupt Handler

When DTC transfer ends, the corresponding interrupt (in the example presented in this document, the A/D conversion-end interrupt) is generated. Figure 3.10 shows the handling of the DTC transfer-end interrupt (A/D conversion-end interrupt) in which the DTC transfer operation is re-enabled.

<table>
<thead>
<tr>
<th>Start</th>
<th>DTCEN1.DTCEN16 = 1</th>
<th>Enables DTC activation (A/D conversion end source). Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Writing to the DTCEN16 bit should be performed when interrupt sources for which DTC activation is enabled in the DTCEN1 register, and the interrupt source (A/D conversion end) set as activation-enabled, will not be generated.

Figure 3.10 DTC Transfer-End Interrupt (A/D Conversion End Interrupt) Handler
4. Important Points

4.1 DTC Transfer Cycle Count

The minimum number of transfer clock cycles is 8 for DTC (normal transfer) and 4 for DTC (high-speed transfer). Using the DTC specifications in the usage example presented in this document, each transfer (consisting of one high-speed transfer + two normal transfers executed as chain transfers) requires 20 clock cycles. For details, refer to Table 4.1.

Table 4.1 DTC Transfer Clock Cycle Count (Repeat Mode)

<table>
<thead>
<tr>
<th>Transfer Type</th>
<th>Transfer Source</th>
<th>Transfer Destination</th>
<th>Vector Read</th>
<th>Control Data</th>
<th>Data Read</th>
<th>Data Write</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-speed transfer</td>
<td>ADCRH</td>
<td>RAM</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Normal transfer</td>
<td>RAM</td>
<td>SDR00L</td>
<td>—</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Normal transfer</td>
<td>RAM</td>
<td>TDR03</td>
<td>—</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Note: See Table 4.2 and Table 4.3 for the control data write-back clock cycle count, Table 4.4 and Table 4.5 for the data read clock cycle count, and Table 4.6 and Table 4.7 for the data write clock cycle count. The settings used in the example presented in this document are indicated in Table 4.2 to Table 4.7 by the white unshaded cells.

Table 4.2 Clock Cycle Count Necessary for DTC Control Data Write-Back

<table>
<thead>
<tr>
<th>DAMOD</th>
<th>SAMOD</th>
<th>RPTSEL</th>
<th>MODE</th>
<th>Transfer Source</th>
<th>Transfer Destination</th>
<th>DTCCR</th>
<th>DTRLD</th>
<th>DTARj</th>
<th>DTARj</th>
<th>Clock Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Write-back</td>
<td>Write-back</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
<td>0</td>
<td>Incremented</td>
<td>Fixed</td>
<td>Write-back</td>
<td>Write-back</td>
<td>Write-back</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
<td>Fixed</td>
<td>Incremented</td>
<td>Write-back</td>
<td>Write-back</td>
<td>Write-back</td>
<td>Write-back</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>Repeat</td>
<td>Fixed</td>
<td>Write-back</td>
<td>Write-back</td>
<td>Write-back</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>Repeat</td>
<td>Incremented</td>
<td>Write-back</td>
<td>Write-back</td>
<td>Write-back</td>
<td>Write-back</td>
<td>3</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Fixed</td>
<td>Repeat</td>
<td>Write-back</td>
<td>Write-back</td>
<td>—</td>
<td>Write-back</td>
<td>2</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Incremented</td>
<td>Repeat</td>
<td>Write-back</td>
<td>Write-back</td>
<td>Write-back</td>
<td>Write-back</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: X: 0 or 1, —: no write-back, j = 0 to 23

Table 4.3 Clock Cycle Count Necessary for DTC (High-Speed Transfer) Control Data Write-Back

<table>
<thead>
<tr>
<th>HDAMODm</th>
<th>HSAMODm</th>
<th>HRPTSELm</th>
<th>HMODEm</th>
<th>Transfer Source</th>
<th>Transfer Destination</th>
<th>HDTCCTm</th>
<th>HDTRLDm</th>
<th>HDTSRm</th>
<th>HDTDARm</th>
<th>Clock Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Write-back</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
<td>0</td>
<td>Incremented</td>
<td>Fixed</td>
<td>Write-back</td>
<td>—</td>
<td>Write-back</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>Fixed</td>
<td>Incremented</td>
<td>Write-back</td>
<td>—</td>
<td>—</td>
<td>Write-back</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
<td>Incremented</td>
<td>Incremented</td>
<td>Write-back</td>
<td>—</td>
<td>Write-back</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>Repeat</td>
<td>Fixed</td>
<td>Write-back</td>
<td>—</td>
<td>—</td>
<td>Write-back</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>Repeat</td>
<td>Fixed</td>
<td>Write-back</td>
<td>—</td>
<td>—</td>
<td>Write-back</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Fixed</td>
<td>Repeat</td>
<td>Write-back</td>
<td>—</td>
<td>—</td>
<td>Write-back</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Incremented</td>
<td>Repeat</td>
<td>Write-back</td>
<td>—</td>
<td>Write-back</td>
<td>Write-back</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: X: 0 or 1, —: no write-back, m = 0 or 1
Table 4.4 DTC Data Read Clock Cycle Count

<table>
<thead>
<tr>
<th>RAM</th>
<th>Flash Memory</th>
<th>SFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Code Flash</td>
<td>Data Flash</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Note: A wait of one clock cycle is necessary when accessing the CAN- and LIN-related registers and the TRJ0 register of timer RJ.

Table 4.5 DTC (High-Speed Transfer) Data Read Clock Cycle Count

<table>
<thead>
<tr>
<th>RAM</th>
<th>Flash Memory</th>
<th>SFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Code Flash</td>
<td>Data Flash</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Note: A wait of one clock cycle is necessary when accessing the CAN- and LIN-related registers and the TRJ0 register of timer RJ.

Table 4.6 DTC Data Write Clock Cycle Count

<table>
<thead>
<tr>
<th>RAM</th>
<th>Flash Memory</th>
<th>SFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Code Flash</td>
<td>Data Flash</td>
</tr>
<tr>
<td>1</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Note: A wait of one clock cycle is necessary when accessing the CAN- and LIN-related registers and the TRJ0 register of timer RJ.

Table 4.7 DTC (High-Speed Transfer) Data Write Clock Cycle Count

<table>
<thead>
<tr>
<th>RAM</th>
<th>Flash Memory</th>
<th>SFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Code Flash</td>
<td>Data Flash</td>
</tr>
<tr>
<td>1</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Note: A wait of one clock cycle is necessary when accessing the CAN- and LIN-related registers and the TRJ0 register of timer RJ.
4.2 DTC Usage Notes

- Do not use a DTC transfer to access DTC-related registers (DTCBAR, SELHSm, HDTCCRm, HDTCTm, HDTRLDm, HDTSRm, and HTDARm) or the DTC control data area, DTC vector table area, or general-register (FFEE0H-FFEFFH) space in the RAM. Also, when using self-programming, the data flash libraries, the on-chip trace function, or the hot plug function, do not access the memory areas associated with those functions.
- Write to or change the DTCENi register only when the interrupt sources for which the DTC activation is enabled in the target register, and the interrupt sources set as activation-enabled will not be generated.
- Do not use the memory areas associated with the general-register (FFEE0H-FFEFFH) space, self-programming, the data flash libraries, the on-chip trace function, or the hot plug function as the DTC control data area or DTC vector table area.
- Only make changes to the DTC-related registers (DTCBAR, SELHSm, HDTCCRm, HDTCTm, HDTRLDm, HDTSRm, and HTDARm), the registers assigned to the DTC control data area (DTCCRj, DTBLSj, DTCCTj, DTRLdj, DTSARj, and DTDARj), and the DTC vector table area when all DTC activation sources are set as activation-disabled (corresponding bits in DTCENi register cleared to 0).
- Make initial settings (write random values) to the DTC control data area and DTC vector table area in the RAM. The DTC vector table area (64 bytes; including reserved areas) must not be used as general-purpose RAM by user programs. Note that portions of the DTC control data area (192 bytes) that are not used by the DTC can be used as general-purpose RAM.
- Do not overwrite DTCBAR more than once.
- When a DTC transfer-pending instruction (call or return instruction, unconditional or conditional branch instruction, instruction for accessing code flash memory, instruction for accessing interrupt-related registers (IFxx, MKxx, and PRxx) or PSW, instruction for accessing the data flash, or multiply, divide, or multiply-and-accumulate instruction except for the MULU instruction) is executed, the DTC transfer does not take place and the request is put on hold. Also, no DTC transfer takes place during a PREFIX instruction and for a period equal to one instruction immediately following it.
- If a DTC flash access instruction is executed during the period equal to one instruction after the activation of a DTC data transfer, a wait of three clock cycles occurs due to the specifications of the internal bus.
- The DTC transfer is put on hold when an access is made to an SFR requiring a wait (CAN or LIN register, or the TRJ0 register of timer RJ).
- From the point at which a DTC activation source is generated until the point at which the DTC transfer completes, the same activation source should not be generated again.
- If there is a conflict between DTC activation sources, the priorities of the activation sources are considered. The source with the higher priority (based on the source number) takes effect, and the source with the lower priority is put on hold.
- In order to read from the DTC control data area and DTC vector table area during high-speed transfer operation, write random values to them before enabling DTC transfer operation.
- In repeat mode, the lower byte of the address (setting value) of the repeat area must have a value of 00H. Also note that the transfer count and reload transfer count will differ according to the transfer data size.
 — 8-bit transfer: 01H to FFH (1 to 255 times)
 — 16-bit transfer: 01H to 7FH (1 to 127 times)
Website and Support

Renesas Electronics Website
 http://www.renesas.com/

Inquiries
 http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Dec. 12, 2017</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against or liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below.

“Standard”:
- Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronics appliances; machine tools; personal electronic equipment; and industrial robots etc.

“High Quality”:
- Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantation etc.), or may cause serious property damages (space and underground repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified usage conditions.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain usage conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer-based equipment alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that such third party or any other third party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your misuse or making Renesas Electronics products available any third-party.

11. This document shall not be republished, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Rev.3.0-1 November 2016)