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Voltage Feedback versus Current Feedback Operational Amplifiers

APPLICATION NOTE

Abstract
This application note compares the basic performance features of Voltage Feedback (VFB) and Current Feedback (CFB) 
operational amplifiers (op amps), and is intended for engineers unfamiliar with CFB amplifiers. Readers familiar with 
the subject can go straight to Table 1 on page 9, which summarizes the key features discussed in this application note.
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1. Introduction
Current Feedback (CFB) operational amplifiers have been around for more than 30 years. They were designed for 
extreme high-speed performance, which Voltage Feedback (VFB) amplifiers could not accomplish at that time. The 
VFB amplifiers have caught up and sometimes with strikingly better performance than the CFB counterparts. 
However, CFB amplifiers have one major advantage over VFBs, they maintain their bandwidth over a wide range of 
signal gain. VFB amplifiers are gain-bandwidth dependent, meaning their bandwidth decreases with increasing signal 
gain. CFB amplifiers are commonly used in high-speed applications while VFB amplifiers are preferably used in 
precision applications.

2. Voltage Feedback versus Current Feedback Amplifier
From a superficial look at an amplifier circuit, the user cannot tell whether the circuit uses a VFB or CFB op-amp. 
Both types have inverting and non-inverting signal inputs, a signal output, two supply pins for positive and negative 
voltage supplies, and use feedback and gain resistors (RF and RG) to stabilize circuit operation and to set the overall 
circuit gain. The difference between a VFB and a CFB amplifier is in the internal design structure.

A VFB amplifier has two symmetrical, high-impedance inputs. The fact that the negative input is high-impedance 
makes the feedback network, driven by the output voltage VO, operate in Voltage-Source mode. Here the series source 
impedance of this voltage source is the parallel circuit of RF and RG. The output of this voltage source is connected to 
the inverting input, providing the voltage potential, vn, at this pin. The voltage potential at the non-inverting input, vp, 
is identical to the signal input voltage VI. Thus, the difference between the two input potentials is an error voltage, ve, 
that is amplified to generate VO (Figure 1).

Unlike the VFB amplifier, the CFB amplifier has asymmetric inputs. Internally the non-inverting input connects using 
a unity-gain buffer to the inverting input. Thus, the non-inverting input exhibits the high impedance of the buffer input, 
while the inverting input presents the low impedance of the buffer output to the feedback network. This low input 
impedance makes the feedback network operate in Current-Source mode. The parallel source impedance of this current 
source again is the parallel circuit of RF and RG. During normal operation, the input voltage VI drives a current, ip, into 
the non-inverting input, and the output of the feedback current source drives a current, in, into the inverting input. The 
difference between the two input currents is the error current, ie. This error current is driven into an internal 
high-impedance stage, which results in the output voltage, VO (Figure 2).

To summarize, the major difference between a VFB and a CFB amplifier is the type of input error signal generating the 
output voltage. A VFB op-amp uses an error voltage while a CFB op-amp uses an error current.

3. Internal Design Structures
To fully understand the differences between the two amplifier types with regards to performance and application, a 
brief evaluation of their internal design structures is necessary. From these structures, simplified op-amp models that 
allow the user to analyze an amplifier circuit with regards to its transfer function and operation stability are defined.

Figure 1. VFB Amplifier with Feedback Network in 
Voltage-Source Mode

Figure 2. CFB Amplifier with Feedback Network in 
Current-Source Mode
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3.1 Voltage Feedback Amplifier
Figure 3 shows the simplified schematic of a voltage feedback amplifier, consisting of a differential input amplifier, 
a high-impedance stage, and an output buffer.

3.1.1 VFB Amplifier Stages

3.1.1.1 Differential Input Pair
Transistors Q1 and Q2 form a differential input amplifier that uses three equal current sources (IB) to bias the 
input circuit for normal operation, so that IB = I1 + I2.

• When VP = VN, I1 = I2, and the collector currents of Q1, Q2, Q3, and Q4 are equal.

• When VP > VN, Q1 turns on harder and I1 increases. I2 decreases because the bottom current source ensures 
that IB = I1 + I2.

• When VP < VN, Q2 turns on harder and I2 increases. Again, the bottom current source, ensuring that 
IB = I1 + I2, forces I1 to decrease.

Thus, the differential voltage between the VP and VN inputs causes differential currents to flow through Q3 and 
Q4. This voltage–to-current conversion of the differential input stage is modeled by a transconductance 
amplifier, gm, in Figure 4.

3.1.1.2 High-Impedance Stage
The current, I2, develops voltage, VC, at the high impedance node formed by the current mirror structure, 
Q3−Q4 and Q5−Q6, and capacitor CC. The high-impedance stage is modeled by the parallel impedance, 
ZC = RC || CC, with RC being the equivalent DC resistance to ground, and CC the parallel combination of two 
compensation capacitors; one connected to the positive, the other one to the negative supply.

Figure 3. Simplified Schematic of a Voltage Feedback (VFB) Amplifier
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3.1.1.3 Output Buffer
Q11 through Q14 form a double buffer operating in class AB mode at unity gain. Thus, the capacitor voltage, 
VC, is buffered to the output voltage, VO. This buffer is modeled by a unity-gain stage.

3.1.2 VFB Frequency Dependent Model
Figure 4 shows the frequency-dependent model of the VFB op-amp and its gain-frequency characteristic. Here 
the product of gm·RC is the DC open-loop gain, A0, commonly specified in datasheets, and fd is the dominant 
pole frequency. This is the frequency where the reactance of CC equals the value of RC, and the open-loop gain, 
A(f), starts rolling off at 20dB/decade.

3.2 Current Feedback Amplifier
Figure 5 shows the simplified schematic of a current feedback amplifier, consisting of a Class AB input amplifier, a 
current mirror, a high-impedance stage, and an output buffer.

Figure 4. Frequency Dependent Model and Open-Loop Gain Characteristic of a VFB Amplifier

Figure 5. Simplified Schematic of a Current Feedback (CFB) Amplifier
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3.2.1 CFB Amplifier Stages

3.2.1.1 Class AB Amplifier Input
The diode-connected pairs Q1-Q2 and Q3-Q4 comprise a unity-gain class AB amplifier that buffers the input 
signal vp and makes it available at input vn. This stage is modeled by a unity-gain buffer in Figure 6.

3.2.1.2 Current Mirror
The collector current of Q2 is drawn through diode-connected Q5. Q5 and Q6 form a current mirror so that the 
collector current of Q6 equals the collector current of Q2. The same is true for the bottom side so that Q4’s 
current is mirrored by Q8. This is modeled as a current source equal to the input error current, ie, driving the 
high impedance stage.

3.2.1.3 High-Impedance Stage
Either current, I1 or I2, develops the voltage, VC, at the high impedance node formed by the diode-connected 
Q9−Q10 and CC. The high-impedance stage is modeled by the parallel impedance, ZT = RT || CC, with RT 
being the equivalent DC resistance to ground, and CC the parallel combination of two compensation capacitors; 
one connected to the positive, the other one to the negative supply.

3.2.1.4 Output Buffer
Q11 through Q18 form a triple buffer operating in class AB mode at unity gain. The voltage, VC, is buffered to 
the output voltage, VO. This output buffer is modeled by a unity-gain buffer.

3.2.2 CFB Frequency Dependent Model
Figure 6 shows the resulting frequency-dependent model of a current feedback amplifier and its corresponding 
open-loop transimpedance characteristic. Here RT is the DC transimpedance, and fd is the dominant pole 
frequency. This is the frequency where the reactance of CC equals the value of RT, and ZT(f) starts rolling off at 
20dB/decade.

A comparison between the frequency dependent models shows both amplifiers use error currents to drive 
high-impedance stages that generate the output voltage. In the VFB op-amp this current is derived through a 
transconductance stage whose biasing current sources limit the charge and discharge current into the 
high-impedance node. This, of course, limits the switching speed, thus reducing amplifier bandwidth and slew 
rate. The CFB op-amp does not possess such limits and draws its charge/discharge currents directly from the 
supply rails. This current-at-demand provision shortens switching times significantly, thus allowing for high 
slew rates and wide bandwidth – the main intent of CFB op-amps.

Figure 6. Frequency Dependent Model and Open-Loop Gain Characteristic of a CFB Amplifier
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4. Ideal Op-Amp Models
Ideal op-amp models help determine a circuit’s transfer function and stability during circuit analysis. The most 
commonly applied models for VFB and CFB op-amps are shown in Figures 7 and 8.

4.1 Transfer Function of the VFB Model
To establish the transfer function, VO/VI, for the VFB amplifier, we write the output voltage, as given by the 
model, with: VO = A· ve = A·(vp - vn) and substitute the generic terms vp and vn with vp = VI and 

vn = VO· RG/(RG + RF) so that VO = A· VI - A·VO·RG/(RG + RF). After collecting terms and solving for VO/VI, 
the transfer function is:

Here 1+RF/RG is the ideal closed-loop gain, ACLi, of the non-inverting amplifier and the product 1/A · (1 + RF/RG) 
is the reciprocal of the loop-gain, T. To be able to compare the transfer functions between the two amplifier types, 
Equation 1 is converted into the generic form:

4.2 Transfer Function of the CFB Model
The CFB model shows the output voltage as the product of the transimpedance and the input error current 
VO = ZT · ie.

To find the transfer function, we define the currents in the negative input node with ie = IG - IF and substitute each 
current through its voltage/resistor ratio VO/ZT = VI/RG - (VO - VI)/RF. After collecting terms and solving for 
VO/VI, the transfer function is:

 

Comparing Equation 4 with Equation 2 shows the ideal closed-loop gain to be the same for both amplifier types. 
Their loop-gains however, differ.

Figure 7. Ideal VFB Amplifier Model Figure 8. Ideal CFB Amplifier Model
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5. The Importance of Loop-Gain
The loop-gain is the most important parameter to observe during amplifier design, because it determines the 
amplifier’s bandwidth and also its stability, or tendency towards self-sustaining oscillation. By definition the 
loop-gain, T, is the product of the op-amp’s open-loop gain times the circuit’s feedback factor.

5.1 VFB Loop-Gain
For the VFB amplifier  = 1/ACLi making the loop-gain TVFB = A/ACLi. On the logarithmic scale of a Bode plot, 
this ratio appears as the difference between the magnitude functions of A and ACLi due to 
TVFB =20(log A - log ACLi) (see Figure 9). At the intercept of ACLi and A, |A| = |ACLi| and |T| = 1. The frequency 
at this point is the signal bandwidth, fBW, of the amplifier circuit. At frequencies above fBW, the loop-gain drops 
below 1 due to the |A| roll off, and the op-amp cannot support further amplification. Thus, the closed-loop gain, 
ACL, deviates from is ideal value (ACLi) and follows AOL.

The linear roll-off of AOL presents a constant limit of the “Gain-Bandwidth Product”. Higher gains require smaller 
bandwidths and lower gains allow wider bandwidths. Hence, VFB amplifiers are known to be gain-bandwidth 
limited. The maximum bandwidth is at unity-gain (0dB), and called the unity-gain bandwidth, or simply the 
gain-bandwidth, GBW. This parameter allows to quickly determine the bandwidth for any gain factor by 
calculating fBW = GBW/ACLi.

The other important aspect of loop-gain is its phase shift, ΦT, at |T| = 1. Normal amplifier operation produces loop 
phases only in the range of 45° to 135°, which is due to AOL, because a resistive feedback does not phase lag. 
However, parasitic capacitance at the op-amp input as well as load capacitance at the op-amp output can add phase 
shifts to the 1/β and AOL curves respectively, causing the loop phase to approach 180°. Gain-peaking starts at 
about 125°, with the typical 3dB peak occurring at 135°, and worsening from then on with increasing phase shift. 
At 180° and |T| = 1, both magnitude and phase conditions for self-sustaining oscillations are satisfied. At this point, 
the amplifier oscillates at the frequency of the 1/β-AOL intercept, ignoring any signals applied to the non-inverting 
input. 

To maintain stable amplifier operation, it is important to prevent the loop-gain from exceeding 135° phase shift at 
the 1/β-AOL intercept. Note that a 135° phase shift is often called a 45° phase margin, ΦM, with regards to the 180° 
oscillatory condition (ΦM = 180° - ΦT).

One benefit of VFB amplifiers is that they allow for a number of compensation techniques to prevent instability. 
Another, often underrated advantage of VFBs is that they do not pose limits on the choice of resistor values. As the 
reader shall see, CFB op-amps do not provide this freedom of choice.

Figure 9. Gain – Bandwidth Dependence of 
VFB Amplifier

Figure 10. Gain Peak due to Parasitic Input Capacitance
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5.2 CFB Loop-Gain
For a CFB amplifier the open-loop gain is ZT and its feedback factor is 1/RF, making the loop-gain TCFB = ZT/RF. 
On the logarithmic scale of the Bode plot in Figure 13, the loop-gain is the difference (dBΩ) between ZT and RF. 
The signal bandwidth is where the RF line crosses the ZT roll-off and the loop-gain magnitude becomes one 
|TCFB| =1, which means:

(a) the signal bandwidth is determined by RF and not by the circuit gain

(b) the circuit gain is independently set with RG
(c) the signal bandwidth remains stable for all gain settings 

(d) even for unity-gain operation, an RF resistor is required

Points a) to c) only hold true for the ideal CFB op-amp model, where the output impedance of the input buffer is 
assumed with 0Ω. In this case, RB shunts gain resistor, RG, thus eliminating the influence of signal gain.

However, when measuring the bandwidth of CFB op-amps for various signal gains, a slight shift in bandwidth can 
be detected. This is because RB is not zero but somewhere in the range of 20Ω to 100Ω (Figure 13). The parallel 
combination of RB and RG then changes the feedback factor to  = 1/(RF + RB · ACLi), where the ACLi term 
causes the reduction in bandwidth with rising gain levels (Figure 14).

As previously mentioned, CFB op-amps do not allow users to freely choose the values of feedback resistors. 
Manufacturers of CFB op-amps typically specify one or two RF values at different gain settings, for which the 
op-amp provides the largest bandwidth under the most stable phase conditions. Note that even for unity-gain 
operation, the CFB amplifier always requires feedback resistors.

The designer might choose to deviate from these values, but must be aware of the possible changes in performance 
this might cause. 

Figure 11. Transimpedance – Bandwidth Dependence of 
CFB Amplifier

Figure 12. Gain – Bandwidth Dependence of Ideal 
CFB Amplifier

Figure 13. Alteration of β due to RB ≠ 0Ω Figure 14. Gain-Bandwidth Dependence of Real 
CFB Amplifier
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Figure 15 depicts this scenario for three different RF values. RF(O) represents the optimized value, specified for 
maximum bandwidth and minimum gain-peak. Increasing RF to the higher value, RF(H), overcompensates the 
loop-gain, causing a drastic reduction in bandwidth. On the other hand, lowering the RF value ever so slightly to 
RF(L), moves the device closer towards 180° phase shift and thus, instability. 

The best practice when designing with CFB op-amps is to use the RF values given in the datasheet and to adjust the 
desired gain level through RG.

6. Summary
For a quick comparison, Table 1 summarizes the key parameters discussed in this application note.

Figure 15. Changing RF Impacts Bandwidth and Stability
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