RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Docum No.		TN-RA*-A01324	√E	Rev.	1.00		
Title	RA0E1 Description in the User's Manual: Hard Rev.1.00 Changed.	ware	Informa Categ		Technical Notification					
		Lot No.								
Applicable Product	RA0E1 Group	All	Reference Document RA0E1 Group Us Rev.1.00 (R01U⊢					ware		
This documen	t describes misstatements found in the RA0E1 L	Jser's Mar	nual: Hard	ware F	Rev. 1.00 (R01UH10	40E	J0100).			
Corrections										
	Applicable Item		plicable Page		Contents	(Pages in documen correctio	t for		
Table 5.5 Sta	ates of LOCO when a reset occurs	Page	60	Inco revis	rrect descriptions	Р	age 2			
Figure 9.1 Lo	ow power mode transitions	Page	105		rrect descriptions	P	age 3			
Table 11.1 IC	CU specifications	Page	124	Inco revis	rrect descriptions	Page 4, Page 5				
13.2 Usage I	Notes	Page	152		rrect descriptions	Page 6				
17.1 Overvie	9W	Page	207		rrect descriptions	Page 7, Page 8				
21.3.22 SO1	: Serial Output Register 1	Page	361		rrect descriptions	Page 9, Page 10				
25.2.3 ADM2	2: A/D Converter Mode Register 2	Page	574		rrect descriptions	Page 11				
25.2.6 ADS:	Analog Input Channel Specification Register	Page	578	Inco revis	rrect descriptions	Page 12				
	Example of software trigger wait mode (select mod version mode) operation timing	^{e,} Page	587	Inco revis	rrect descriptions	P	age 13			
	Mode Function	Page	605		rrect descriptions	P	age 14			
25.7.1 A/D C	Conversion by Inputting a Software Trigger	Page Page			rrect descriptions		age 15 age 16			
	5 Block diagram when using Snooze mode gger wait mode				rrect descriptions		age 17			
Table 28.5 M	Apping for the extra bit of the startup area selectic setting (address (P/E) :0x0000_0010)	n Page	633		rrect descriptions	P	age 18			
Table 28.6	Mapping for the extra bit of the access windo program (address (P/E) :0x0000_0010)	w Page	633		rrect descriptions	P	age 19			
	Rn : Part Numbering Register n (n = 0 to 3)	Page	641		rrect descriptions	Page 20,				
Table 28.15	Basic functions	Page	644		rrect descriptions	Page 21 Page 22				
29 True Ran	dom Number Generator (TRNG)	Page	Page 666		rrect descriptions	Page 23				
Table 31.1 A	bsolute maximum ratings	Page	668	revised Incorrect descriptions revised			Page 24, Page 25			
Table 31.11	I/O other characteristics	Page Page			rrect descriptions	Page 26, Page 27				
Table 31.12	Operating and standby current (1) (2 of 2)	Page			rrect descriptions	Page 28 Page 29				
h					rrect descriptions	1	J = = •			

Table 31.16 Reset timing (2 of 2)

Document Improvement

Figure 31.11 Reset input timing (2)

Table 31.46 LVD1 characteristics (2 of 2)

The above corrections will be made for the next revision of the User's Manual: Hardware.

Page 684

Page 684

Page 719

Page 30

Page 31

Page 32

Incorrect descriptions

Incorrect descriptions

Incorrect descriptions

revised

revised

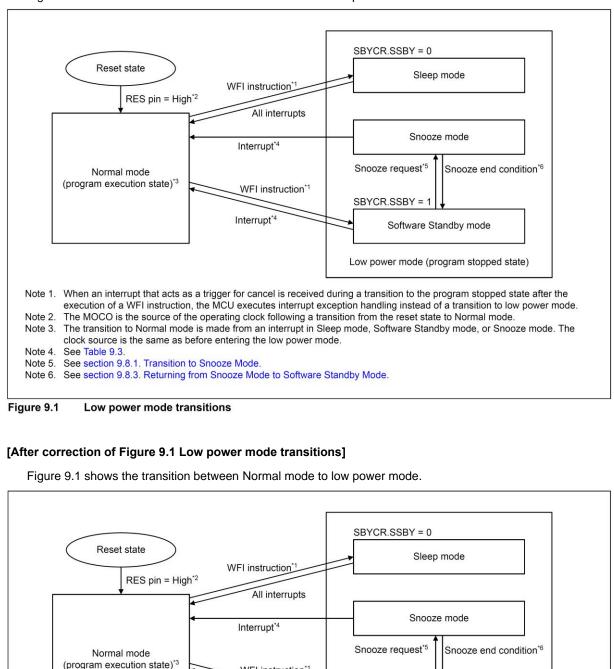
revised

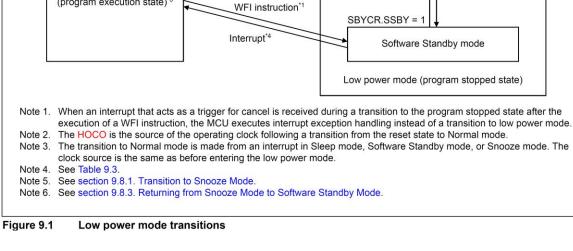
[Before correction of Table 5.5 States of LOCO when a reset occurs] (Page 60)

Table 5.5 States of LOCO when a reset occurs

		Reset source				
		POR/LVD0/LVD1	Other			
LOCO Enable or disable		Initialized to enable				

[After correction of Table 5.5 States of LOCO when a reset occurs]


Table 5.5 States of LOCO when a reset occurs


	Reset source					
	POR/LVD0/LVD1	Other				
LOCO	Initialized to disable. However, during the value of LCSTP.	WDT operation, LOCO oscillates regardless of				

[Before correction of Figure 9.1 Low power mode transitions] (Page 105)

Figure 9.1 shows the transition between Normal mode to low power mode.

[Before correction of Table 11.1 ICU specifications] (Page 124)

11. Interrupt Controller Unit (ICU)

11.1 Overview

The Interrupt Controller Unit (ICU) controls which event signals are linked to the Nested Vector Interrupt Controller (NVIC), and the Data Transfer Controller (DTC) modules. The ICU also controls non-maskable interrupts.

Table 11.1 lists the ICU specifications, Figure 11.1 shows a block diagram, and Table 11.2 lists the I/O pins.

Table 11.1 ICU specifications

ltem		Description
Maskable interrupts	Peripheral function interrupts	Interrupts from peripheral modules Number of sources: 33
	External pin interrupts	 Interrupt detection on falling edge, rising edge, rising and falling edges. One of these detection methods can be set for each source 6 sources, with interrupts from IRQi (i = 0 to 5) pins.
	Interrupt requests to CPU (NVIC)	39 interrupt requests are output to NVIC.
	DTC control	 The DTC can be activated using interrupt sources^{*1} The method for selecting an interrupt source is the same as that of the interrupt request to NVIC.
Non- maskable	NMI pin interrupt	 Interrupt from the NMI pin Interrupt detection on falling edge or rising edge
interrupts*2	IWDT underflow/refresh error*3	Interrupt on an underflow of the down-counter or occurrence of a refresh error
	Low voltage detection 1 ^{*3}	Voltage monitor 1 interrupt of the voltage monitor 1 circuit (LVD_LVD1)
	RPEST	Interrupt on SRAM parity error
Low power r	nodes	 Sleep mode: return is initiated by non-maskable interrupts or any other interrupt source Software Standby mode: return is initiated by non-maskable interrupts. Interrupt can be selected in the SBYEDCRn register. Snooze mode: return is initiated by non-maskable interrupts. Interrupt can be selected in the SBYEDCRn register. See section 11.2.14. SBYEDCR0 : Software Standby/Snooze End Control Register 0 and section 11.2.15. SBYEDCR1 : Software Standby/Snooze End Control Register 1.

Note 1. For the DTC activation sources, see Table 11.5.

Note 2. Non-maskable interrupts can be enabled only once after a reset release.

Note 3. These non-maskable interrupts can also be used as maskable interrupts. When used as maskable interrupts, do not change the value of the NMIER register from the reset state. To enable voltage monitor 1 interrupts, set the LVD1CR1.IRQSEL bits to 1.

[After correction of Table 11.1 ICU specifications]

11. Interrupt Controller Unit (ICU)

11.1 Overview

The Interrupt Controller Unit (ICU) controls which event signals are linked to the Nested Vector Interrupt Controller (NVIC), and the Data Transfer Controller (DTC) modules. The ICU also controls non-maskable interrupts.

Table 11.1 lists the ICU specifications, Figure 11.1 shows a block diagram, and Table 11.2 lists the I/O pins.

Table 11.1 ICU specifications

ltem		Description						
Maskable interrupts	Peripheral function interrupts	Interrupts from peripheral modules Number of sources: 33						
	External pin interrupts	 Interrupt detection on falling edge, rising edge, rising and falling edges. One of these detection methods can be set for each source 6 sources, with interrupts from IRQi (i = 0 to 5) pins. 						
	Interrupt requests to CPU (NVIC)	39 interrupt requests are output to NVIC.						
	DTC control	 The DTC can be activated using interrupt sources^{*1} The method for selecting an interrupt source is the same as that of the interrupt request to NVIC. 						
Non- maskable	NMI pin interrupt	 Interrupt from the NMI pin Interrupt detection on falling edge or rising edge 						
interrupts*2	IWDT underflow/refresh error*3	Interrupt on an underflow of the down-counter or occurrence of a refresh error						
	Low voltage detection 1 ^{*3}	Voltage monitor 1 interrupt of the voltage monitor 1 circuit (LVD_LVD1)						
	RPEST	Interrupt on SRAM parity error						
Low power r	nodes	 Sleep mode: return is initiated by non-maskable interrupts or any other interrupt source Software Standby mode: return is initiated by non-maskable interrupts or any other interrupt source. Interrupt can be selected in the SBYEDCRn register. Snooze mode: return is initiated by non-maskable interrupts or any other interrupt source. Interrupt can be selected in the SBYEDCRn register. See section 11.2.14. SBYEDCR0 : Software Standby/Snooze End Control Register 0 and section 11.2.15. SBYEDCR1 : Software Standby/Snooze End Control Register 1. 						

Note 1. For the DTC activation sources, see Table 11.5.

Note 2. Non-maskable interrupts can be enabled only once after a reset release.

Note 3. These non-maskable interrupts can also be used as maskable interrupts. When used as maskable interrupts, do not change the value of the NMIER register from the reset state. To enable voltage monitor 1 interrupts, set the LVD1CR1.IRQSEL bits to 1.

13.2 Usage Notes

13.2.1 Notes on the Use of a Debugger

The memory cannot be debugged if the FRP is enabled. Disable the flash read protection when debug a program, OCD debug only valid when OFS1.FRPDIS bit is 1.

13.2.2 **Compiler Settings**

The FRP is a kind of execute-only memory (XOM). Since data in a protected region is not readable, a protected region cannot have constant data such as literal pool. Therefore, appropriate compiler settings are required.

[After correction of 13.2 Usage Notes]

13.2 Usage Notes

13.2.1 Notes on the Use of a Debugger

The memory cannot be debugged if the FRP is enabled. Disable the flash read protection when debug a program, OCD debug only valid when OFS1.FRPDIS bit is 1.

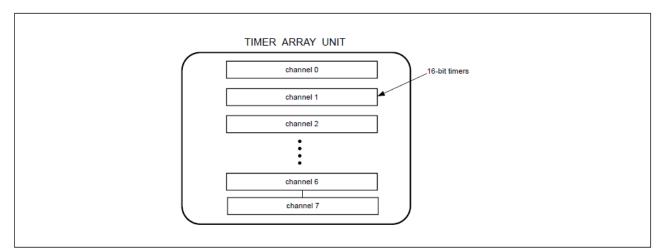
Compiler Settings 13.2.2

The FRP is a kind of execute-only memory (XOM). Since data in a protected region is not readable, a protected region cannot have constant data such as literal pool. Therefore, appropriate compiler settings are required.

Protection of OFS1 Register 13.2.3

Because overwriting OFS1.FRPS[5:0], OFS1.FRPE[5:0], or OFS1.FRPDIS bits can disable the protection of the FRP, OFS1 register (address = $0x0000_0404$) must be protected by the access window function. However, setting the access window function, which includes setting AWS.FSPR bit to 0, also disables changing AWS.BTFLG and FISR.SAS[1:0] bits used for the startup area select function. Therefore, the startup area select function is not available when using the FRP function. See section 28.5.2. Startup Area Select for the startup area select function and section 28.5.3. Protection by Access Window for

[Before correction of 17.1 Overview] (Page 207)


17. Timer Array Unit (TAU)

17.1 Overview

The timer array unit has eight 16-bit timers.

Each 16-bit timer is called a channel and can be used as an independent timer. In addition, two or more channels can be used to create a high-resolution timer.

Figure 17.1 shows the channel configuration per unit in timer array unit.

Figure 17.1 Channel configuration per unit

It is possible to use the 16-bit timer of channels 1 and 3 of unit 0 as two 8-bit timers (higher and lower). The functions that can use channels 1 and 3 as 8-bit timers are as follows:

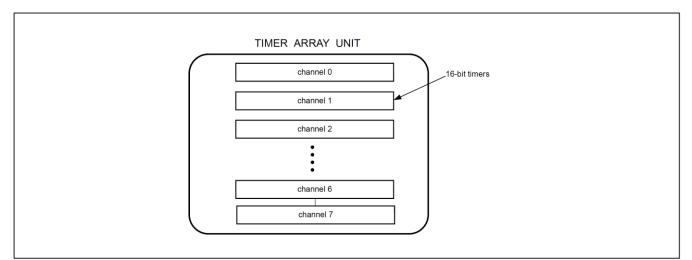
- Interval timer (upper or lower 8-bit timer) and square wave output (lower 8-bit timer only)
- External event counter (lower 8-bit timer only)
- Delay counter (lower 8-bit timer only)

Channel 7 of unit 0 can be used to realize LIN-bus communication operating in combination with UART2 of the serial array unit.

The peripheral module clock (PCLKB) is equal to the system clock (ICLK) in RA0E1.

Table 17.1 lists the TAU functions and Figure 17.2 to Figure 17.11 show each functional image.

[After correction of 17.1 Overview]


17. Timer Array Unit (TAU)

17.1 Overview

The timer array unit has eight 16-bit timers.

Each 16-bit timer is called a channel and can be used as an independent timer. In addition, two or more channels can be used to create a high-resolution timer.

Figure 17.1 shows the channel configuration per unit in timer array unit.

Figure 17.1 Channel configuration per unit

It is possible to use the 16-bit timer of channels 1 and 3 of unit 0 as two 8-bit timers (higher and lower). The functions that can use channels 1 and 3 as 8-bit timers are as follows:

- Interval timer (upper and lower 8-bit timer) and square wave output (lower 8-bit timer only)
- External event counter (lower 8-bit timer only)
- Delay counter (lower 8-bit timer only)

Channel 7 of unit 0 can be used to realize LIN-bus communication operating in combination with UART2 of the serial array unit.

The peripheral module clock (PCLKB) is equal to the system clock (ICLK) in RA0E1.

Table 17.1 lists the TAU functions and Figure 17.2 to Figure 17.11 show each functional image.

[Before correction of 21.3.22 SO1: Serial Output Register 1] (Page 361)

21.3.22 SO1: S	Serial O	utput F	Registe	r 1												
Base address: Offset address:	Base address: SAU1 = 0x400A_2200															
Oliset address.	0X0120															
Bit position:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit field:	Bit field: CKO[1:0] SO[1:0]															
Value after reset: 0 0 0 1 1 1 0 0 0 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>																

Bit	Symbol	Function	R/W
1:0	SO[1:0]	Serial Data Output of Channel n 0: Serial data output value is 0 1: Serial data output value is 1	R/W
7:2	—	These bits are read as 0. The write value should be 0.	R/W
9:8	CKO[1:0]	Serial Clock Output of Channel n 0: Serial clock output value is 0 1: Serial clock output value is 1	R/W
15:10	—	These bits are read as 0. The write value should be 0.	R/W

The SO1 is a buffer register for serial output of each channel of serial array unit 1.

The value of the SO[n] bit of this register is output from the serial data output pin of channel n.

The value of the CKO[n] bit of this register is output from the serial clock output pin of channel n.

The SO[n] bit of this register can be rewritten by software only when serial output is disabled (SOE1.SOE[n] = 0). When

serial output is enabled (SOE1.SOE[n] = 1), rewriting by software is ignored, and the value of the register can be changed only by a serial communication operation.

The CKO[n] bit of this register can be rewritten by software only when the channel operation is stopped (SE1.SE[n] = 0).

While channel operation is enabled (SE1.SE[n] = 1), rewriting by software is ignored, and the value of the CKO[n] bit can be changed only by a serial communication operation.

To use the pin for serial interface as a port function pin, set the corresponding CKO[n] and SO[n] bits to 1.

[After correction of 21.3.22 SO1: Serial Output Register 1]

21.3.22 SO1: S	Serial C	output F	Registe	r 1													
Base address:	Base address: SAU1 = 0x400A_2200																
Offset address:	0x0128																
Bit position:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Bit field:	Bit field: CKO[1:0] SO[1:0]																
Value after reset:	Value after reset: 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1																

Bit	Symbol	Function	R/W
1:0	SO[1:0]	Serial Data Output of Channel n 0: Serial data output value is 0 1: Serial data output value is 1	R/W
7:2	—	These bits are read as 0. The write value should be 0.	R/W
9:8	CKO[1:0]	Serial Clock Output of Channel n 0: Serial clock output value is 0 1: Serial clock output value is 1	R/W
15:10	—	These bits are read as 0. The write value should be 0.	R/W

The SO1 is a buffer register for serial output of each channel of serial array unit 1.

The value of the SO[n] bit of this register is output from the serial data output pin of channel n.

The value of the CKO[n] bit of this register is output from the serial clock output pin of channel n.

The SO[n] bit of this register can be rewritten by software only when serial output is disabled (SOE1.SOE[n] = 0). When

serial output is enabled (SOE1.SOE[n] = 1), rewriting by software is ignored, and the value of the register can be changed only by a serial communication operation.

The CKO[n] bit of this register can be rewritten by software only when the channel operation is stopped (SE1.SE[n] = 0).

While channel operation is enabled (SE1.SE[n] = 1), rewriting by software is ignored, and the value of the CKO[n] bit can be changed only by a serial communication operation.

To use the pin for serial interface as a port function pin, set the corresponding CKO[n] and SO[n] bits to 1.

[Before correction of 25.2.3 ADM2: A/D Converter Mode Register 2] (Page 574)

AWC bit (Specification of the Snooze Mode)

This bit is used for specification of the Snooze mode.

When there is a hardware trigger signal in the Software Standby mode, the Software Standby mode is exited, and A/D conversion is performed without operating the CPU (the Snooze mode).

- When using the Snooze mode function, set AWC to 0 in software trigger wait mode, and set AWC to 1 in hardware trigger wait mode.
- Using the Snooze mode function in the software trigger no-wait mode or hardware trigger no-wait mode is prohibited.
- Using the Snooze mode function in the software trigger no-wait mode, software trigger wait mode, or hardware trigger no-wait mode is prohibited..
- When using the Snooze mode function, specify a hardware trigger interval of at least "shift time to Snooze mode^{*1} + conversion start time + A/D power supply stabilization wait time + A/D conversion time + 2 PCLKB clock cycles + 5 μs".
- Even when using Snooze mode, be sure to set the AWC bit to 0 in normal operation and change it to 1 just before shifting to Software Standby mode.

Also, be sure to change the AWC bit to 0 after returning from Software Standby mode to normal operation. If the AWC bit is left set to 1, A/D conversion will not start normally in spite of the subsequent Snooze mode or normal operation.

Note 1. Refer to Table 31.21 in section 31.4.2. Wakeup Time.

[After correction of 25.2.3 ADM2: A/D Converter Mode Register 2]

AWC bit (Specification of the Snooze Mode)

This bit is used for specification of the Snooze mode.

When there is a hardware trigger signal in the Software Standby mode, the Software Standby mode is exited, and A/D conversion is performed without operating the CPU (the Snooze mode).

- When using the Snooze mode function, set AWC to 1 in hardware trigger wait mode.
- Using the Snooze mode function in the software trigger no-wait mode, software trigger wait mode, or hardware trigger no-wait mode is prohibited.
- Using the Snooze mode function in the sequential conversion mode and hardware trigger wait mode is prohibited.
- When using the Snooze mode function, specify a hardware trigger interval of at least "shift time to Snooze mode^{*1} + conversion start time + A/D power supply stabilization wait time + A/D conversion time + 2 PCLKB clock cycles + 5 µs".
- Even when using Snooze mode, be sure to set the AWC bit to 0 in normal operation and change it to 1 just before shifting to Software Standby mode.
 Also, be sure to change the AWC bit to 0 after returning from Software Standby mode to normal operation.
 If the AWC bit is left set to 1, A/D conversion will not start normally in spite of the subsequent Snooze mode or normal operation.

Note 1. Refer to Table 31.21 in section 31.4.2. Wakeup Time.

[Before correction of 25.2.6 ADS: Analog Input Channel Specification Register] (Page 578) (Omitted) Note: Rewrite the value of the ADISS bit while conversion is stopped (ADCS = 0, ADCE = 0). Note. If using VREFH0 as the '+' side reference voltage of the A/D converter, do not select AN000 as an A/D conversion channel. Note: If using VREFL0 as the '-' side reference voltage of the A/D converter, do not select AN001 as an A/D conversion channel. Note: When the setting of the ADISS bit is 1, the internal reference voltage cannot be used for the '+' side reference voltage. After the ADISS bit is set to 1, the initial conversion result cannot be used. For the setting flow, see section 25.6.5. Example of Using the ADC12 when Selecting the Temperature Sensor Output Voltage or Internal Reference Voltage, and Software Trigger No-wait Mode and One-shot Conversion Mode. For details about the internal reference voltage, see section 31, Electrical Characteristics $T_A = -40$ to $+105^{\circ}$ C. Note: Do not set the ADISS bit to 1 when shifting to Software Standby mode, or to Sleep mode while the CPU is operating on the subsystem clock. When the ADISS bit is set to 1, the A/D converter reference voltage current (IADREF) indicated in section 31.3.2. Operating and Standby Current will be added. When the setting of the ADISS bit is 1, the hardware trigger wait mode and one-shot conversion mode cannot be Note: used at the same time. [After correction of 25.2.6 ADS: Analog Input Channel Specification Register] (Omitted) Rewrite the value of the ADISS bit while conversion is stopped (ADCS = 0, ADCE = 0). Note: Note: If using VREFH0 as the '+' side reference voltage of the A/D converter, do not select AN000 as an A/D conversion channel. Note: If using VREFL0 as the '-' side reference voltage of the A/D converter, do not select AN001 as an A/D conversion channel. Note: When the setting of the ADISS bit is 1, the internal reference voltage cannot be used for the '+' side reference voltage. After the ADISS bit is set to 1, the initial conversion result cannot be used. For the setting flow, see section 25.6.5. Example of Using the ADC12 when Selecting the Temperature Sensor Output Voltage or Internal Reference Voltage, and Software Trigger No-wait Mode and One-shot Conversion Mode. For details about the internal reference voltage, see section 31, Electrical Characteristics T_A = -40 to +105°C. Note: Do not set the ADISS bit to 1 when shifting to Software Standby mode, or to Sleep mode while the CPU is operating on the subsystem clock. When the ADISS bit is set to 1, the A/D converter reference voltage current (IADREF) indicated in section 31.3.2. Operating and Standby Current will be added. Note: When the setting of the ADISS bit is 1, the hardware trigger wait mode and one-shot conversion mode cannot be used at the same time. When the setting of the ADISS bit is 1, the software trigger wait mode and one-shot conversion mode cannot be Note: used at the same time.

[Before correction of Figure 25.13 Example of software trigger wait mode (select mode, one-shot conversion mode) operation timing] (Page 587)

	<2	ADCS is set to 1 while in the conversion standby state.	<3>ADCS is automatically cleared to 0 after conversion ends	rl I	> ADCS is overwritte with 1 during A/D conversion operat	i i	<2>	<8> A hardware trig is generated (ar ignored).		<2> <	7> ADCS is cleared to 0 during A/D conversion operation.
ADCS		/	′ <u> </u>	-		/		6>ADS is rewritten (from AN000 to AN001) du A/D conversion opera	ing/	4	
ADS		Data 0 (AN000)						Data 1 (AN001)		—	Conversion is
A/D		Data 0	<3>A/D conversio ends.		Conversion is interrupted and restarts.	<3>	Data 0	Data 1	<3>	Data 1	rinterrupted.
onversion state	Stop state	Data 0 (AN000)	Stop state	Data 0 (AN000)	Data 0 (AN000)	Stop s	state Data 0 (AN000	Data 1 (AN001)	Stop state	(AN001)	Stop state
ADCR0, ADCR0H			<u> </u>	Data (AN0				ta 0 000)			vata 1 N001)
C12_ADI			<u>л</u>			_1_					
at the	e first con	version op	s passed	estarte	ed is the sa	ame as t	hat when	there is A/D	power s	upply	conversion time stabilization wait
at the time i Regis	e first con in softwa ster 0 and ion of F	ait time ha version op re trigger v d section 2	s passed peration re vait mode 5.2.1. AD	estarte e or ha DM0 : /	ed is the sa ardware trig A/D Conve	ame as t gger wai erter Moo	hat when t mode. (de Regist	there is A/E See section er 0.)	power s 25.2.1. A	DM0 :	
at the time i Regis correct	e first con in softwar ster 0 and ion of F ng]	ait time ha version op re trigger v d section 2 igure 25.1 CE = 0	s passed peration revait mode 5.2.1. AD 3 Exam	estarte e or ha DMO : / ple of	ed is the sa ardware trig A/D Conve	ame as t gger wai erter Moo e trigge	hat when t mode. (de Regist	there is A/E See section er 0.) ode (select	mode, o	one-sh	A/D Converter I A/D Converter I not conversion
at the time i Regis correcti	e first con in softwar ster 0 and ion of F ng]	ait time ha version op re trigger v d section 2 igure 25.1 CE = 0	s passed peration re vait mode 5.2.1. AD 3 Exam	estarte e or ha DMO : / ple of	ed is the sa irdware trig A/D Conve software	ame as f gger wai erter Mod	hat when t mode. (de Regist r wait m	section section er 0.) ode (select <a h<="" td=""><td>mode, o</td><td>DM0 :</td><td>A/D Converter I not conversion</td>	mode, o	DM0 :	A/D Converter I not conversion
at the time i Regis correcti ion timi ADCE ADCS	e first con in softwar ster 0 and ion of F ng]	ait time ha version op re trigger v d section 2 igure 25.1 CE = 0 CE = 0 CE = 0	s passed peration re vait mode 5.2.1. AD 3 Exam 3 Exam	estarte e or ha DMO : / ple of	ed is the sa irdware trig A/D Conve software	ame as f gger wai erter Mod	hat when t mode. (de Regist r wait m	section section er 0.) ode (select <	mode, o	DM0 :	A/D Converter I A/D Converter I not conversion
at the time i Regis correcti ion timi	e first con in softwar ster 0 and ion of F ng]	ait time ha version op re trigger v d section 2 igure 25.1 CE = 0	s passed peration re vait mode 5.2.1. AD 3 Exam 3 Exam	estarte e or ha DMO : / ple of	5> ADCS is overwrit with 1 during AD onversion opera	tten <4>	hat when t mode. (de Regist r wait m	<pre>class A hardware tri</pre>	mode, o	DM0 :	A/D Converter I A/D Converter I not conversion
at the time i Regis correcti ion timi ADCE ADCS ADS AD	e first con in softwar ster 0 and ion of F ng]	ait time ha version op re trigger v d section 2 igure 25.1 CE = 0 2> ADCS is set to 1 vmle in the conversion d section 2	s passed peration review of the second source of the second se	<pre>estarte e or ha DMO : / ple of </pre>	5> ADCS is overwrit with 1 during AD conversion opera	tten <4>	hat when t mode. (de Regist r wait m	section section er 0.) ode (select <td>mode, o</td><td><pre> upply : DM0 : One-st </pre></td><td>A/D Converter I A/D Converter I not conversion (7> ADCS is cleared to 0 during A/D conversion operation.</td>	mode, o	<pre> upply : DM0 : One-st </pre>	A/D Converter I A/D Converter I not conversion (7> ADCS is cleared to 0 during A/D conversion operation.
at the time i Regis correction timi ADCE ADCS ADCS ADS ADS ADS ADS	ion of F	ait time ha version op re trigger v d section 2 igure 25.1 igure 25.1 cE = 0 ce = 0 ce = 0 ce = 0 ce version te trigger v d section 2 ce = 0	s passed peration revait mode 5.2.1. AD 3 Exam 3 Exam 3 Exam 4 conversion end 4 conversi	estarte e or ha DMO : / ple of	5> ADCS is overwrit with 1 during AD conversion opera	tten <4>	<pre>class class c</pre>	section section er 0.) ode (select <td>mode, o</td><td><pre></pre></td><td>A/D Converter I A/D Converter I not conversion (7> ADCS is cleared to 0 during A/D conversion operation.</td>	mode, o	<pre></pre>	A/D Converter I A/D Converter I not conversion (7> ADCS is cleared to 0 during A/D conversion operation.
at the time i Regis correcti ion timi ADCE ADCS ADS ADS ADS	ion of F	ait time ha version op re trigger v d section 2 igure 25.1 igure 25.1 cE = 0 ce = 0 ce = 0 ce = 0 ce version te trigger v d section 2 ce = 0	s passed peration revait mode 5.2.1. AD 3 Exam 3 Exam 3 Exam 4 conversion end 4 conversi	estarte e or ha DMO : / ple of	5> ADCS is overwrite with 1 during AD with 1 during AD with 1 during AD conversion is interrupted and restarts. Data 0	tten <4>	<pre>class class c</pre>	there is A/L See section er 0.) ode (select <8> A hardware tri is generated (is generated (AND00 to AN001) d AND00 to AN001 d AND00 to AN001 d AND001)	mode, o	<pre></pre>	A/D Converter I A/D Converter I not conversion during A/D conversion operation. Conversion is interrupted. Stop state Data 1

Note: When <5> or <6> is detected during conversion operation, conversion is restarted automatically after the stabilization wait time has passed since the rising edge of the next conversion clock (f_{AD}). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See section 25.2.1. ADM0 : A/D Converter Mode Register 0 and section 25.2.1. ADM0 : A/D Converter Mode Register 0.)

Note: In software trigger wait mode (select mode, one-shot conversion mode), the ADISS = 1 setting (input source = temperature sensor output voltage, internal reference voltage) cannot be used.

[Before correction of 25.7 Snooze Mode Function] (Page 605)

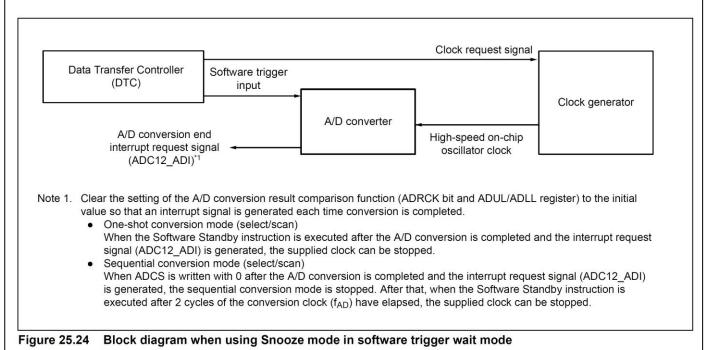
25.7 Snooze Mode Function

In Snooze mode, A/D conversion is triggered by inputting a software trigger or a hardware trigger in the Software Standby mode. Normally, A/D conversion is stopped while in the Software Standby mode, but, by using the Snooze mode function, A/D conversion can be performed without operating the CPU. This is effective for reducing the operating current.

[After correction of 25.7 Snooze Mode Function]

25.7 Snooze Mode Function

In Snooze mode, A/D conversion is triggered by inputting a hardware trigger in the Software Standby mode. Normally, A/D conversion is stopped while in the Software Standby mode, but, by using the Snooze mode function, A/D conversion can be performed without operating the CPU. This is effective for reducing the operating current.



[Before correction of 25.7.1 A/D Conversion by Inputting a Software Trigger] (Page 605, Page 606)

25.7.1 A/D Conversion by Inputting a Software Trigger

In the Snooze mode, A/D conversion is triggered by inputting a software trigger. A software trigger generated by the DTC is used as an input trigger for A/D conversion. When performing A/D conversion by inputting a software trigger in Snooze mode, only the following four conversion modes can be used.

- Software trigger wait mode (select mode, one-shot conversion mode)
- Software trigger wait mode (select mode, sequential conversion mode)
- Software trigger wait mode (scan mode, one-shot conversion mode)
- Software trigger wait mode (scan mode, sequential conversion mode)
- Note: The Snooze mode can only be specified when the high-speed on-chip oscillator clock or medium-speed on-chip oscillator clock is selected for PCLKB.

When using the Snooze mode, the initial setting of each register is specified before switching to the Software Standby mode (for details about these settings, see section 25.6.2. Setting up Software Trigger Wait Mode). If a software trigger (ADCS = 1) is input after switching to the Software Standby mode, the high-speed on-chip oscillator clock is supplied to the A/D converter. After supplying this clock, the A/D converter automatically counts up to the A/D power supply stabilization wait time, and then A/D conversion starts.

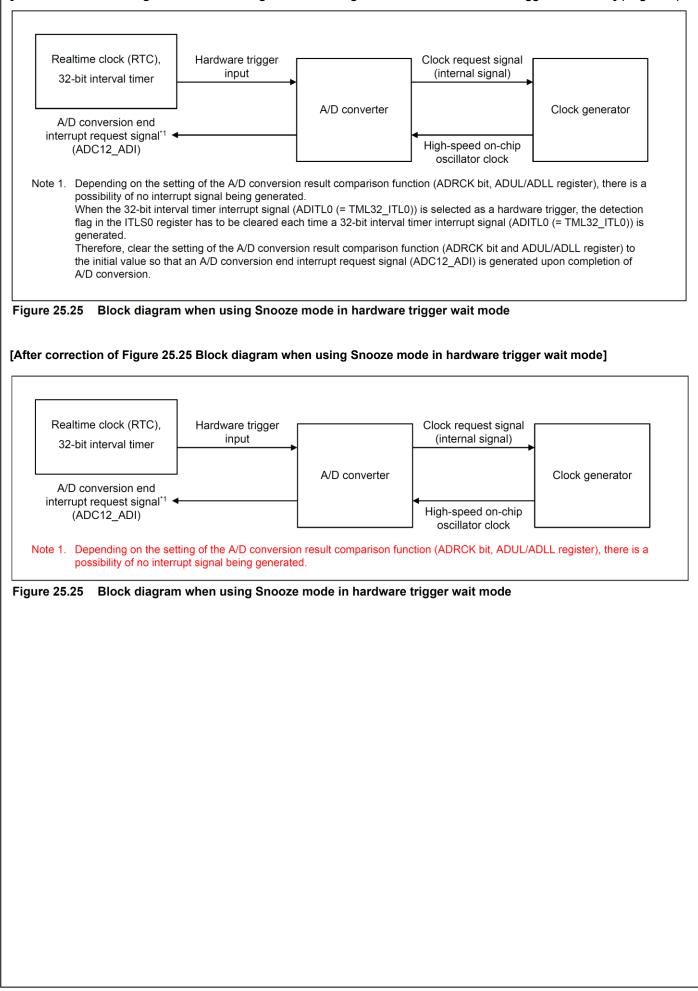
Step		Process	Detail					
Normal operation	<1>	MSTPCRD register setting	The ADC bit of the MSTPCRD register is set to 0, and supplying the clock starts.					
	<2>	PmnPFS_A register settings	The ports are set as the analog input. (See section 16.5.4. Notes on Using Analog Functions.)					
	<3>	 ADM0 register setting ADM1 register setting ADM2 register setting ADUL and ADLL register setting ADS register setting (The order of the settings is irrelevant.) 	 ADM0 register FR[2:0], LV[1:0]: bits: These are used to specify the A/D conversion time. ADMD bit: Select mode or scan mode ADM1 register ADTMD1 and ADTMD0 bits: These are used to specify the software trigger wait mode. ADSCM bit: One-shot conversion mode ADM2 register ADREFP[1:0], and ADREFM bits: These are used to select the reference voltage. ADRCK bit: This is used to select the range for the A/D conversion result comparison value for generating the interrupt signal from AREA1, AREA3, and AREA 2. ADTYP[1:0] bits: 12-bit, 10-bit, or 8-bit resolution ADUL and ADLL register These are used to specify the upper limit and lower limit A/D conversion result comparison values. ADS register ADS register ADS [4:0] bits: These are used to select the analog input channels. 					
	<4>	Reference voltage stabilization wait time count A	The reference voltage stabilization wait time count indicated by A below may be required if the values of the ADREFP[1:0] bits are changed. If the values of ADREFP[1:0] are changed to 10b, respectively: A = 5 μ s Before changing as above, perform reference supply discharge (1 μ s) by setting ADREFP[1:0] = 11b. A wait is not required if the values of ADREFP[1:0] are changed to 00b or 01b, respectively.					
Software Standby mode	<5>	Enter the Software Standby mode	Leave the AWC and ADCE bits at the initial value 0. These bits are not re-set.					
Snooze mode	<6>	Software trigger generation	After software trigger (ADCS = 1) is generated, the A/D converter automatically counts up to the A/D power supply stabilization wait time and A/D conversion is started in Snooze mode.					
		1	(The A/D conversion operations are performed)					
	<7>	End of A/D conversion	_					
	<8>	ADC12_ADI generation*2	The A/D conversion end interrupt (ADC12_ADI) is generated.*1					
	<9>	Storage of conversion results in the ADCRn or ADCRnH register	The conversion results are stored in the ADCRn or ADCRnH register.					
	<10>	End processing*3	—					
Software Standby mode	<11>	Software Standby instruction available ^{*4}	—					

Table 25.20 Setting up software trigger no-wait mode

Note 1. Depending on the settings of the ADRCK bit, ADUL and ADLL registers, there is a possibility of no interrupt signal being generated. In this case, the results are not stored in the ADCRn or ADCRnH register.

Note 2. Clear the ADRCK bit, ADUL and ADLL registers to the initial value in the initial setting, and specify settings so that an interrupt request signal (ADC12_ADI) is generated each time A/D conversion is completed.

Note 3. Sequential conversion mode requires the end processing. Write 0 to ADCS after ADC12_ADI is generated. Then, after 2 cycles of the conversion clock (f_{AD}) have elapsed, the Software Standby instruction can be executed.


Note 4. If a software trigger is input after the Software Standby instruction, A/D conversion operation is again performed in the Snooze mode.

[After correction of 25.7.1 A/D Conversion by Inputting a Software Trigger]

All deleted.

[Before correction of Figure 25.25 Block diagram when using Snooze mode in hardware trigger wait mode] (Page 607)

[Before correction of Table 28.5 Mapping for the extra bit of the startup area selection and security setting (address (P/E) :0x0000_0010)] (Page 633)

		0x0000	_0010)												
b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
SASM F ^{*1}	—	—	-	-	FAWE[1	0:0]									
b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
FSPR	—	—	-	—	FAWS[1	0:0]									

Table 28.5 Mapping for the extra bit of the startup area selection and security setting (address (P/E) : 0x0000_0010)

Note 1. Once 0 is set for these bits, it cannot be changed to 1.

[After correction of Table 28.5 Mapping for the extra bit of the startup area selection and security setting (address (P/E) :0x0000_0010)]

Table 28.5 Mapping for the extra bit of the startup area selection and security setting (address (P/E) : 0x0000_0010)

b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
BTFLG	—	_	-	—	FAWE[1	0:0]									
b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
FSPR *1	—	—	—	—	FAWS[1	0:0]									

Note 1. Once 0 is set for these bits, it cannot be changed to 1.

[Before correction of Table 28.6 Mapping for the extra bit of the access window information program (address (P/E) :0x0000_0010)] (Page 633)

		UXUUUU_	_0010)												
b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
SASM F ^{*1}	—	—	—	—	FAWE[1	0:0]									
b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
FSPR *1	_	—	—	—	FAWS[1	0:0]									

Table 28.6Mapping for the extra bit of the access window information program (address (P/E) :
0x0000_0010)

Note 1. Once 0 is set as data in these bits, it cannot be changed to 1.

[After correction of Table 28.6 Mapping for the extra bit of the access window information program (address (P/E) :0x0000_0010)]

Table 28.6Mapping for the extra bit of the access window information program (address (P/E) :
0x0000_0010)

b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
BTFLG		—	—	—	FAWE[1	0:0]									
b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
FSPR *1	_	_	_	_	FAWS[1	0:0]	•	•	•	•	*	•			

Note 1. Once 0 is set as data in these bits, it cannot be changed to 1.

[Before correction of 28.3.25 PNRn : Part Numbering Register n (n = 0 to 3)] (Page 641)

28.3.25 PNRn : Part Numbering Register n (n = 0 to 3)

Address:	0x0101_1080 + n × 4
Bit position:	31 0
Bit field:	PNR[31:0]
Value after reset:	Unique value for each chip

[Bit	Symbol	Function	R/W
	31:0	PNR[31:0]	Part Number	R

The PNRn is a read-only register that stores a 16-byte part numbering. The PNRn register should be read in 32-bit units.

Each byte corresponds to the ASCII code representation of the product part number as detailed in product list.

In case of the part number is 'R7FA0E1073CNK', 16-byte part numbering is stored as follows.

Address 0x0101_1080: 'K', 0x4B in ASCII code
Address 0x0101_1081: ' N' , 0x4E in ASCII code
Address 0x0101_1082: ' C' , 0x43 in ASCII code
Address 0x0101_1083: ' 3', 0x33 in ASCII code
Address 0x0101_1084: '7', 0x37 in ASCII code
Address 0x0101_1085: '0', 0x30 in ASCII code
Address 0x0101_1086: '1', 0x31 in ASCII code
Address 0x0101_1087: ' E' , 0x45 in ASCII code
Address 0x0101_1088: '0', 0x30 in ASCII code
Address 0x0101_1089: ' A' , 0x41 in ASCII code
Address 0x0101_1090: ' F' , 0x46 in ASCII code
Address 0x0101_1091: '7', 0x37 in ASCII code
Address 0x0101_1092: ' R', 0x52 in ASCII code
Address 0x0101_1093: '' (space) , 0x20 in ASCII code
Address 0x0101_1094: $$ (space) , 0x20 in ASCII code
Address 0x0101_1095: $\ensuremath{\overset{}{,}}$ (space) , 0x20 in ASCII code

[After correction of 28.3.25 PNRn : Part Numbering Register n (n = 0 to 3)]

28.3.25 PNRn : Part Numbering Register n (n = 0 to 3)

Address:	0x0101	1080 +	n × 4

Bit position:	31 0
Bit field:	PNR[31:0]
Value after reset:	Unique value for each chip

	Bit	Symbol	Function	R/W
ſ	31:0	PNR[31:0]	Part Number	R

The PNRn is a read-only register that stores a 16-byte part numbering. The PNRn register should be read in 32-bit units.

Each byte corresponds to the ASCII code representation of the product part number as detailed in product list.

In case of the part number is 'R7FA0E1073CNK', 16-byte part numbering is stored as follows.

Address 0x0101_1080: ' K', 0x4B in ASCII code
Address 0x0101_1081: ' N', 0x4E in ASCII code
Address 0x0101_1082: 'C', 0x43 in ASCII code
Address 0x0101_1083: ' 3', 0x33 in ASCII code
Address 0x0101_1084: '7', 0x37 in ASCII code
Address 0x0101_1085: '0', 0x30 in ASCII code
Address 0x0101_1086: '1', 0x31 in ASCII code
Address 0x0101_1087: ' E' , 0x45 in ASCII code
Address 0x0101_1088: '0', 0x30 in ASCII code
Address 0x0101_1089: ' A' , 0x41 in ASCII code
Address 0x0101_108A: 'F', 0x46 in ASCII code
Address 0x0101_108B: '7', 0x37 in ASCII code
Address 0x0101_108C: 'R', 0x52 in ASCII code
Address $0x0101_{108D}$: '' (space) , $0x20$ in ASCII code
Address 0x0101_108E: '' (space) , 0x20 in ASCII code
Address 0x0101_108F: '' (space) , 0x20 in ASCII code

[Before correction of Table 28.15 Basic functions] (Page 644)

Table 28.15Basic functions

		Availability
Function	Functional overview	Self-programming/SWD programming
Blank check	Checks a specified block to ensure that writing to it has not already proceeded.	Supported
Block erasure	Erases the memory contents in the specified block	Supported
Programming	Writes to the specified address	Supported
Read	Reads data programmed in the flash memory	Not supported (read by user program is possible)
ID code protection	Compares the ID code sent by the host with the code stored in the code flash memory. If the two match, the FCB enters the wait state for programming and erasure commands from the host.	Not supported (ID authentication is not performed)
Protection configuration	Configures the access window for flash area protection in the code flash memory	Supported

[After correction of Table 28.15 Basic functions]

Table 28.15Basic functions

		Availability	
Function	Functional overview	Self-programming	SWD programming
Blank check	Checks a specified block to ensure that writing to it has not already proceeded.	Supported	Supported
Block erasure	Erases the memory contents in the specified block	Supported	Supported
Programming	Writes to the specified address	Supported	Supported
Read	Reads data programmed in the flash memory	Not supported (read by user program is possible)	Not supported
ID code check	Compares the ID code sent by the host with the code stored in the code flash memory. If the two match, the FCB enters the wait state for programming and erasure commands from the host.	Not supported (ID authentication is not performed)	Supported
Security configuration	Configures the protection of security function (Access window and Start-up area selection	Supported with conditions See section 28.8. Protection	Supported with conditions See section 28.8. Protection
Protection configuration	Configures the access window for flash area protection in the code flash memory	Supported	Supported

[Before correction of 29 True Random Number Generator (TRNG)] (Page 666)

29.3 Operation

29.3.1 Overall Processing Flow

Table 29.2 shows the overall processing flow of TRNG activation.

Table 29.2 Procedure for using the True Random Number Generator to generate a random number seed

No	Step Name	Description
1	Module stop setting	Set the MSTPCRC.MSTPC28 = 0 to cancel the module-stop state.
2	Wait	Wait for the peripheral module clock (PCLKB) × 6.
3	TRNG enable setting	Set the TRNGSCR0.SGCEN = 1 to enable the true random number generator.
4	TRNG interrupt setting	Set the TRNGSCR1.INTEN bit to enable/disable the TRNG interrupt output.
5	TRNG operation start setting	Set the TRNGSCR0.SGSTART = 1 to start the generation of a random number seed.
6	Read the seed data	 There are 2 operation for TRNG seed generation, Polling and Interrupt. Polling operation ; Read TRNGSDR for 4 times after the TRNGSCR0.RDRDY = 1 Interrupt operation ; Read TRNGSDR register for 4 times after TRNG interrupt is generated.
7	TRNG operation stop setting	Set the TRNGSCR0.SGCEN = 0 to disable the true random number generator. Set the TRNGSCR0.SGSTART = 0 to stop the generation of a random number seed.
8	Module stop setting	Set the MSTPCRC.MSTPC28 = 1 to enter the module-stop state.

[After correction of 29 True Random Number Generator (TRNG)]

29.3 Operation

29.3.1 Overall Processing Flow

Table 29.2 shows the overall processing flow of TRNG activation.

Table 29.2 Procedure for using the True Random Number Generator to generate a random number seed

No	Step Name	Description
1	Module stop setting	Set the MSTPCRC.MSTPC28 = 0 to cancel the module-stop state.
2	Wait	Wait for the peripheral module clock (PCLKB) × 6.
3	TRNG enable setting	Set the TRNGSCR0.SGCEN = 1 to enable the true random number generator.
4	TRNG interrupt setting	Set the TRNGSCR1.INTEN bit to enable/disable the TRNG interrupt output.
5	TRNG operation start setting	Set the TRNGSCR0.SGSTART = 1 to start the generation of a random number seed.
6	Read the seed data	 There are 2 operation for TRNG seed generation, Polling and Interrupt. Polling operation ; Read TRNGSDR for 4 times after the TRNGSCR0.RDRDY = 1 Interrupt operation ; Read TRNGSDR register for 4 times after TRNG interrupt is generated.
7	TRNG operation stop setting	Set the TRNGSCR0.SGCEN = 0 to disable the true random number generator. Set the TRNGSCR0.SGSTART = 0 to stop the generation of a random number seed.
8	Module stop setting	Set the MSTPCRC.MSTPC28 = 1 to enter the module-stop state.

29.4 Usage Notes

TRNG operation is prohibited for a period of 20 μs before and after the MCU operation mode transition.

[Before correction of Table 31.1 Absolute maximum ratings] (Page 668)

Table 31.1 Absolute maximum ratings (1 of 2)

Parameter		Symbol	Value	Unit
Power supply voltage	e	VCC	-0.5 to +6.5	V
VCL pin input voltage	e	V _{IVCL}	-0.3 to +2.1 and -0.3 to VCC + 0.3 ^{*1}	V
nput voltage	P100 to P103, P108 to P110, P112, P200, P201, P206 to P208, P300, P407	V _I 1	-0.3 to VCC + 0.3	V
	P913, P914 (5 V tolerant)	V _l 2	-0.3 to +6.5	V
	P008 to P015, P212 to P215	V _I 3	-0.3 to VCC + 0.3	V
Output voltage	P100 to P103, P108 to P110, P112, P201, P206 to P208, P300, P407	V _O 1	-0.3 to VCC + 0.3	V
	P913, P914 (N-ch open-drain)	V _O 2	-0.3 to +6.5	V
	P008 to P015, P212, P213	V _O 3	-0.3 to VCC + 0.3*2	V

Table 31.1Absolute maximum ratings (2 of 2)

Parameter			Symbol	Value	Unit
Analog input voltage	AN000 to AN007		V _{AI} 1	-0.3 to VCC + 0.3 and -0.3 to VREFH0 + 0.3*2 *3	V
	AN021 to AN022		V _{AI} 2	-0.3 to VCC + 0.3 and -0.3 to VREFH0 + 0.3 ^{*2 *3}	V
High-level output current		Per pin	I _{OH} 1	-40	mA
	to P110, P112, P201 to P207, P208, P300, P407	Total of all pins		-100	mA
	P008 to P015, P212,	Per pin	I _{OH} 2	-5	mA
	P213	Total of all pins		-20	mA
Low-level output current	P100 to P103, P108 to	Per pin	I _{OL} 1	40	mA
	P110, P112, P201, P206 to P208, P300, P407, P913, P914	Total of all pins		100	mA
	P008 to P015, P212,	Per pin	I _{OL} 2	10	mA
	P213	Total of all pins		20	mA
Ambient operating	In normal operation mode	•	Та	-40 to +105	°C
temperature	In flash memory program	ming mode		-40 to +105	°C
Storage temperature			Tstg	-65 to +150	°C

Note 1. Connect the VCL pin to VSS via a capacitor (0.47 to 1 μF). The listed value is the absolute maximum rating of the VCL pins. Only use the capacitor connection. Do not apply a specific voltage to this pin.

Note 2. This voltage must be no higher than 6.5 V.

Note 3. The voltage on a pin in use for A/D conversion must not exceed VREFH0 + 0.3.

Note: The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

Note: VREFH0 refers to the positive reference voltage of the A/D converter.

Note: The reference voltage is VSS.

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

[After correction of Table 31.1 Absolute maximum ratings]

Table 31.1 Absolute maximum ratings (1 of 2)

Parameter		Symbol	Value	Unit
Power supply voltag	e	VCC	-0.5 to +6.5	V
VCL pin input voltag	e	V _{IVCL}	-0.3 to +2.1 and -0.3 to VCC + 0.3 ^{*1}	V
Input voltage	P100 to P103, P108 to P110, P112, P200, P201, P206 to P208, P300, P407	V _I 1	-0.3 to VCC + 0.3^{*2}	V
	P913, P914 (5 V tolerant)	V _l 2	-0.3 to +6.5	V
	P008 to P015, P212 to P215	V _I 3	-0.3 to VCC + 0.3 ^{*2}	V
Output voltage	P100 to P103, P108 to P110, P112, P201, P206 to P208, P300, P407	V _O 1	-0.3 to VCC + 0.3^{*2}	V
	P913, P914 (N-ch open-drain)	V _O 2	-0.3 to +6.5	V
	P008 to P015, P212, P213	V _O 3	-0.3 to VCC + 0.3*2	V

Table 31.1Absolute maximum ratings (2 of 2)

Parameter			Symbol	Value	Unit
Analog input voltage	AN000 to AN007		V _{AI} 1	-0.3 to VCC + 0.3 and -0.3 to VREFH0 + 0.3*2 *3	V
	AN021 to AN022		V _{AI} 2	-0.3 to VCC + 0.3 and -0.3 to VREFH0 + 0.3 ^{*2 *3}	V
High-level output current		Per pin	I _{OH} 1	-40	mA
	to P110, P112, P201 to P207, P208, P300, P407	Total of all pins		-100	mA
	P008 to P015, P212,	Per pin	I _{OH} 2	-5	mA
	P213	Total of all pins		-20	mA
Low-level output current	P100 to P103, P108 to	Per pin	I _{OL} 1	40	mA
	P110, P112, P201, P206 to P208, P300, P407, P913, P914	Total of all pins		100	mA
	P008 to P015, P212,	Per pin	I _{OL} 2	10	mA
	P213	Total of all pins		20	mA
Ambient operating	In normal operation mode	•	Та	-40 to +105	°C
temperature	In flash memory program	ming mode		-40 to +105	°C
Storage temperature			Tstg	-65 to +150	°C

Note 1. Connect the VCL pin to VSS via a capacitor (0.47 to 1 μF). The listed value is the absolute maximum rating of the VCL pins. Only use the capacitor connection. Do not apply a specific voltage to this pin.

Note 2. This voltage must be no higher than 6.5 V.

Note 3. The voltage on a pin in use for A/D conversion must not exceed VREFH0 + 0.3.

Note: The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

Note: VREFH0 refers to the positive reference voltage of the A/D converter.

Note: The reference voltage is VSS.

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

[Before correction of Table 31.11 I/O other characteristics] (Page 674, Page 675)

Table 31.11 I/O other characteristics (1 of 2)

Conditions: VCC = 1.6 to 5.5 V, VSS = 0 V, Ta = -40 to +105°C

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current, high	P100 to P103, P108 to P110, P112, P200, P201, P206 to P208, P300, P407, P913, P914	I _{LIH} 1	—	_	1	μΑ	V _I = VCC
	P008 to P015	I _{LIH} 2	_	—	1	μA	V _I = VCC
	P212 to P214	I _{LIH} 3	—	_	1	μA	VI = VCC

Table 31.11I/O other characteristics (2 of 2)

Conditions: VCC = 1.6 to 5.5 V, VSS = 0 V, Ta = -40 to +105°C

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions		
Input leakage current, low	P100 to P103, P108 to P110, P112, P200, P201, P206 to P208, P300, P407, P913, P914	I _{LIL} 1	-	-	-1	μA	V _I = VSS	
	P008 to P015	I _{LIL} 2	-	-	-1	μA	V _I = VSS	
	P212 to P214	I _{LIL} 3	-	-	-1	μA	V _I = VSS	
On-chip pll-up resistance	P100 to P103, P108 to P110, P112, P201, P206 to P208, P212, P213, P300, P407	RU	10	20	100	kΩ	V _I = VSS In input port	
Input capacitance	P200	Cin	-	-	30	pF	Vin = 0 V, f = 1 MHz, Ta = 25°C	
	Other input pins]	—	—	15]		

Note: The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

[After correction of Table 31.11 I/O other characteristics]

Table 31.11 I/O other characteristics (1 of 2)

Conditions: VCC = 1.6 to 5.5 V, VSS = 0 V, Ta = -40 to +105°C

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Input leakage current, high	P100 to P103, P108 to P110, P112, P200, P201, P206 to P208, P300, P407, P913, P914	I _{LIH} 1	—	—	1	μA	V _I = VCC
	P008 to P015	I _{LIH} 2	—	—	1	μA	V _I = VCC
	P212 to P215	I _{LIH} 3	—	—	1	μA	V _I = VCC

Table 31.11I/O other characteristics (2 of 2)

Conditions: VCC = 1.6 to 5.5 V, VSS = 0 V, Ta = -40 to +105°C

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions		
Input leakage current, low	P100 to P103, P108 to P110, P112, P200, P201, P206 to P208, P300, P407, P913, P914	I _{LIL} 1	_	-	-1	μA	V _I = VSS	
	P008 to P015	I _{LIL} 2	-	-	-1	μA	V _I = VSS	
	P212 to P215	I _{LIL} 3	-	-	-1	μA	V _I = VSS	
On-chip pll-up resistance	P100 to P103, P108 to P110, P112, P201, P206 to P208, P212, P213, P300, P407	RU	10	20	100	kΩ	V _I = VSS In input port	
Input capacitance	P200	Cin	—		30	pF	Vin = 0 V, f = 1 MHz, Ta = 25°C	
	Other input pins]	—	-	15]		

Note: The characteristics of functions multiplexed on a given pin are the same as those for the port pin unless otherwise specified.

[Before correction of Table 31.12 Operating and standby current (1) (2 of 2)] (Page 677)

Table 31.12Operating and standby current (1) (2 of 2)

Conditions: VCC = 1.6 to 5.5 V

Parameter	r					Symbol	Typ ^{*5}	Max	Unit	Test Conditions
Supply	Subosc-	Normal	Peripheral clocks	ICLK = 32.768 kHz	Ta = -40°C	Icc	3.3	—	μA	—
current*1	speed mode ^{*4}	mode	disabled		Ta = 25°C] [3.7	—]	
					Ta = 50°C	1	3.9	-	1	
					Ta = 70°C]	4.3	—	1	
					Ta = 85°C]	4.8	—]	
					Ta = 105°C	1	6.2	-	1	
			Peripheral clocks	ICLK = 32.768 kHz	Ta = -40°C]	—	7.2]	
			enabled ^{*6}		Ta = 25°C]	—	7.9]	
					Ta = 50°C		—	9.6		
					Ta = 70°C		—	13.0		
					Ta = 85°C		—	18.8		
					Ta = 105°C		36.5			
		Sleep mode	Peripheral clocks	ICLK = 32.768 kHz	Ta = -40°C		1.0	-		_
			disabled		Ta = 25°C		1.3	—		
					Ta = 50°C		1.5	—]	
					Ta = 70°C		1.8	—]	
					Ta = 85°C		2.2	-	1	
					Ta = 105°C]	3.2	—]	
			Peripheral clocks	ICLK = 32.768 kHz	Ta = -40°C]	—	4.8]	
			enabled ^{*6}		Ta = 25°C		—	5.4	-	
					Ta = 50°C		—	7.0		
					Ta = 70°C		_	10.5		
					Ta = 85°C		—	16.1		
					Ta = 105°C]	—	33.3		

Note 1. Supply current is the total current flowing into VCC. Supply current values apply when internal pull-up MOSs are in the off state and these values do not include output charge/discharge current from any of the pins.

- Note 2. The clock source is high-speed on-chip oscillator (HOCO).
- Note 3. The clock source is middle-speed on-chip oscillator (MOCO).
- Note 4. The clock source is the Sub-clock oscillator (SOSC) and CMC.SODRV[1:0] are 10b (Low power mode 2).
- Note 5. VCC = 3.3 V.
- Note 6. Includes operating current for PCLBUZ, TAU, SAU, and IICA functions only. For other peripheral operating currents, please add the current in Peripheral Functions Supply current in Table 31.14.

[After correction of Table 31.12 Operating and standby current (1) (2 of 2)]

Table 31.12Operating and standby current (1) (2 of 2)

Conditions: VCC = 1.6 to 5.5 V

Paramete	r					Symbol	Typ ^{*5}	Max	Unit	Test Conditions
Supply	Subosc-	Normal	Peripheral clocks	ICLK = 32.768 kHz	Ta = -40°C	Icc	3.3	—	μA	—
current*1	speed mode ^{*4}	mode	disabled		Ta = 25°C		3.7	—		
					Ta = 50°C	1	3.9	-		
					Ta = 70°C]	4.3	—		
					Ta = 85°C]	4.8	—		
					Ta = 105°C]	6.2	—		
			Peripheral clocks	ICLK = 32.768 kHz	Ta = -40°C]	—	7.2		
			enabled ^{*7}		Ta = 25°C	1	—	7.9		
					Ta = 50°C]	—	9.6		
					Ta = 70°C	 1.0 1.3 1.5 1.8 2.2	—	13.0		
					Ta = 85°C		—	18.8		
					Ta = 105°C		—	36.5		
		Sleep	Peripheral clocks	ICLK = 32.768 kHz	Ta = -40°C		1.0	—		-
		mode	disabled		Ta = 25°C		1.3	_		
					Ta = 50°C		1.5	—		
					Ta = 70°C		1.8	—		
					Ta = 85°C		2.2	-		
					Ta = 105°C	1	3.2	-		
			Peripheral clocks	ICLK = 32.768 kHz	Ta = -40°C	1	—	4.8		
			enabled ^{*7}		Ta = 25°C		—	5.4		
					Ta = 50°C		—	7.0		
					Ta = 70°C		—	10.5		
					Ta = 85°C		—	16.1	1	
					Ta = 105°C	1	_	33.3		

Note 1. Supply current is the total current flowing into VCC. Supply current values apply when internal pull-up MOSs are in the off state and these values do not include output charge/discharge current from any of the pins.

- Note 2. The clock source is high-speed on-chip oscillator (HOCO).
- Note 3. The clock source is middle-speed on-chip oscillator (MOCO).
- Note 4. The clock source is the Sub-clock oscillator (SOSC) and CMC.SODRV[1:0] are 10b (Low power mode 2).

Note 5. VCC = 3.3 V.

- Note 6. Includes operating current for PCLBUZ, TAU, SAU, and IICA functions only. For other peripheral operating currents, please add the current in Peripheral Functions Supply current in Table 31.14.
- Note 7. Includes operating current for PCLBUZ, TAU and SAU functions only. For other peripheral operating currents, please add the current in Table 31.14.

[Before correction of Table 31.16 Reset timing (2 of 2)] (Page 684)

Table 31.16Reset timing (2 of 2)

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
Wait time after internal reset cancellation (Independent watchdog timer reset, SRAM parity error reset, software reset)	t _{RESWT3}	—	0.04	0.041	ms	—

Note 1. When OFS1.LVDAS = 0.

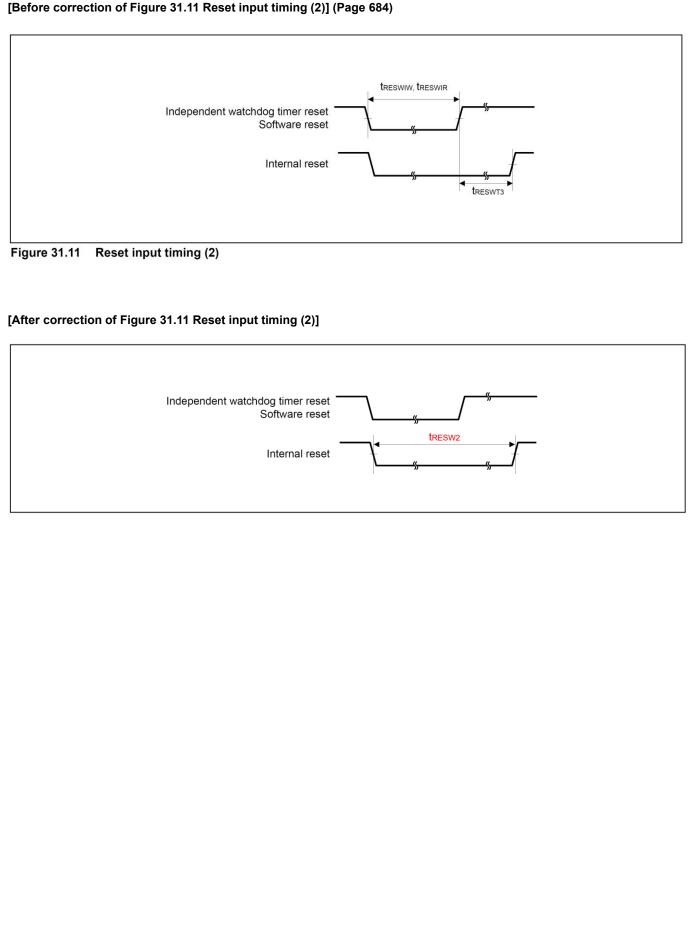
Note 2. When OFS1.LVDAS = 1.

Note 3. When RES pin is not used as the external reset input, this specification can be ignore.

[After correction of Table 31.16 Reset timing (2 of 2)]

Table 31.16Reset timing (2 of 2)

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
Internal reset by independent watch dog timer reset, SRAM parity error reset, software reset	tresw2		0.04	0.041	ms	—


Note 1. When OFS1.LVDAS = 0.

Note 2. When OFS1.LVDAS = 1.

Note 3. When RES pin is not used as the external reset input, this specification can be ignore.

[Before correction of Figure 31.11 Reset input timing (2)] (Page 684)

[Before correction of Table 31.46 LVD1 characteristics (2 of 2)] (Page 719)

Table 31.46LVD1 characteristics (2 of 2)

Conditions: VPDR \leq VCC \leq 5.5 V, VSS = 0 V, Ta = -40 to +105°C

Parameter		Symbol	Min	Тур	Max	Unit	Test Conditions	
Detection voltage Supply voltage level	V _{det1_B}	2.25	2.30	2.34	V	The power supply voltage is rising.		
			2.20	2.25	2.29	V	The power supply voltage is falling.	
		V _{det1_C}	2.15	2.20	2.24	V	The power supply voltage is rising.	
			2.10	2.15	2.19	V	The power supply voltage is falling.	
		V _{det1_D}	2.05	2.09	2.13	V	The power supply voltage is rising.	
			2.00	2.04	2.08	V	The power supply voltage is falling.	
		V _{det1_E}	1.94	1.98	2.02	V	The power supply voltage is rising.	
			1.90	1.94	1.98	V	The power supply voltage is falling.	
		V _{det1_F}	1.84	1.88	1.91	V	The power supply voltage is rising.	
			1.80	1.84	1.87	V	The power supply voltage is falling.	
		V _{det1_10}	1.74	1.78	1.81	V	The power supply voltage is rising.	
			1.70	1.74	1.77	V	The power supply voltage is falling.	
		V _{det1_11}	1.64	1.67	1.70	V	The power supply voltage is rising.	
			1.60	1.63	1.66	V	The power supply voltage is falling.	
Minimum pulse widt	ĥ	t _{LW}	500	—	-	μs	—	
Detection delay time	9	—	-	1_	500	μs	-	

[After correction of Table 31.46 LVD1 characteristics (2 of 2)]

Table 31.47 LVD1 characteristics (2 of 2)

Conditions: VPDR \leq VCC \leq 5.5 V, VSS = 0 V, Ta = -40 to +105°C

Parameter		Symbol	Min	Тур	Max	Unit	Test Conditions	
Detection voltage	Supply voltage level	V _{det1_B}	2.25	2.30	2.34	V	The power supply voltage is rising.	
			2.20	2.25	2.29	V	The power supply voltage is falling.	
		V _{det1_C}	2.15	2.20	2.24	V	The power supply voltage is rising.	
			2.10	2.15	2.19	V	The power supply voltage is falling.	
		V _{det1_D}	2.05	2.09	2.13	V	The power supply voltage is rising.	
			2.00	2.04	2.08	V	The power supply voltage is falling.	
		V _{det1_E}	1.94	1.98	2.02	V	The power supply voltage is rising.	
			1.90	1.94	1.98	V	The power supply voltage is falling.	
		V _{det1_F}	1.84	1.88	1.91	V	The power supply voltage is rising.	
			1.80	1.84	1.87	V	The power supply voltage is falling.	
		V _{det1_10}	1.74	1.78	1.81	V	The power supply voltage is rising.	
			1.70	1.74	1.77	V	The power supply voltage is falling.	
		V _{det1_11}	1.64	1.67	1.70	V	The power supply voltage is rising.	
			1.60	1.63	1.66	V	The power supply voltage is falling.	
Minimum pulse wid	th	t _{LW1}	500	_	—	μs	-	
Detection delay time		t _{det1}	-	-	500	μs	-	
LVD1 detection voltage stabilization time (after changing the LVD1 detection voltage)		td(E-A)	-	-	1500	μs	-	

