To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

Date: Mar.18.2004

RERESAS TECHNICAL UPD

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
RenesasTechnology Corp.

Product User Development Environment Document TN-CSX-065A/EA | Rev. | 1.0
Category No.
. H8S, H8/300 Series C/C++ Compiler Ver.6.0.00 Information S
Title : . Usage Limitation
bug information Category
Lot No. H8S, H8/300 Series C/C++ Compiler
: PS008CAS6-MWR Assembler Optimizing Linkage Editor
Agp“gabtle PS008CAS6-SLR ';eferencet User's Manual
roduct | psposcASe-H7R Ver.6.0.00 ocument | pEJ10B0058-0100H

Rev.1.0

Attached is the description of the detected bug information in Ver.6.0.00 of the H8S, H8/300 Series C/C++ Compiler.
The bug will affect this package version.

Attached: PSO008CAS6-040217E
H8S, H8/300 Series C/C++ Compiler Ver. 6.0.00 The details of the detected bug information

(c) 2004. Renesas Technology Corp., All rights reserved.

RENESAS

Page 1 of 1

PSO008CA S6-040217E

Problemsin the H8S, H8/300 Series C/C++ Compiler Ver. 6.0.00

Problems found in the H8S, H8/300 series C/C++ compiler Ver.6.0.00 are listed below.

1) Incorrect object by division of an unsigned variable by a constant
An incorrect code might be generated when an unsigned int (unsigned short) or an unsigned long type variable was divided by a constant
value that was the n-th power of two, while the cpuexpand option was specified.
[Example]
unsigned int a;
unsi gned | ong b;
voi d sub(voi d)

{
a =b/ 2048; /* Incorrect code was generated due to division by the lower two bytes*/
}
<Incorrect> <Correct>
_sub: _sub:
MOV. W @b+2:32, RO MOV.L @b: 32, ERO
SHLR W #11:5, RO SHLR L #11:5, ERO
MOV. W RO, @a: 32 MOV. W RO, @a: 32
RTS RTS
[Conditiong]
This problem might occur when all of the conditionsin a) or b) were fulfilled.
a)
i. H8SXN, H8SXM, H8SXA, or H8SXX was specified as a cpu kind.
ii. The cpuexpand option was specified.
iii. An (unsigned char)(variable/constant) expression was described.
iv. Thevariable was an unsigned int or unsigned short type variable and the constant value was the n-th power of two in the range of
0to 255.
b)
i. H8SXN, H8SXM, H8SXA, or H8SXX was specified as a cpu kind.
ii. The cpuexpand option was specified.
iii. An (unsigned int)(variable/constant) or (unsigned short)(variable/constant) expression was described.
iv. The variable was an unsigned long type and the constant value was the n-th power of two in the range of 0 to 65535.
[Solutions]

Take either of the following methods to prevent this problem.
a) Assign theresult of the operation to a variable of the same type as the dividend and then assign this variable to the left-hand side
variable.
unsigned int a;
unsi gned | ong b;
voi d sub(voi d)

{
unsi gned | ong c;
c = b/ 2048;
a =c;

}

b) Specify adivisor that was a variable with volatile and use this variable for division.

1/9

2) Incorrect structure with the initial value

The initial values were not specified to the members of the structure, when the members were pointer type and consecutively scalar type
structure members, and the values specified for the pointer type and scalar type members were "address + offset” and a constant,
respectively.
[Example]
unsi gned char data[2] = { 0x00, 0x11 };
const struct st_sanple {

void *di;

unsi gned | ong d3;
}stl = { (void *)(data+l),

0x22222222 /* This description was not output to an object. */

b

[Conditions]
This problem might occur when al of the following conditions were fulfilled.
a) HB8SXN, H8SXM, H8SXA, or H8SXX was specified as a cpu kind.
b) Pointer type and scalar type members were consecutively declared in a structure.
c) Thescaar type member in b) was the same size as the pointer type member.
d) Theinitia vaue of the pointer type variable in b) was represented as "address + constant”.
€) Theinitia value of the scalar type member in b) was a constant.
f) Theconst qualifier was specified for the structure.

[Solution]
This problem could be prevented by the following method:
Insert a dummy member of a different size between those members mentioned in b).
Example:
unsi gned char data[2] = { 0x00, O0x11 };
const struct st_sanple {

void *di;

unsi gned int u;

unsi gned | ong d3;
}stl = { (void *)(data+l),

Oxf f,

0x22222222

};

3) Incorrect bit field setting
An incorrect mask value might be set when a constant value was set to a bit field with the specific bit width and bit offset.
[Example]
struct ST{
signed | ong offset:3;
si gned | ong dat a: 20;
}st;

voi d func(void)

{
st.data = 0x000000ff; /* When a constant value was assigned to, the mask value isincorrect. */
}
<Incorrect> <Correct>
_func: _func:
MOV. L @st: 32, ERO MOV. L @st: 32, ERO
AND. L #h' df f f b3df : 32, ERO AND. L #h' e00001f f: 32, ERO
CR L #h' 0001f e00: 32, ERO CR L #h' 0001f e00: 32, ERO
MOV. L ERO, @st: 32 MOV. L ERO, @st: 32
RTS RTS

2/9

[Conditiong]

This problem might occur when al of the following conditions were fulfilled.
a) HB8SXN, H8SXM, H8SXA, or H8SXX was specified as a cpu kind.

b) A constant value was set to the bit field.

c) Thehbit field had one of the following specifications:

i. type long bit width: 20 bit offset: 3
ii. type long bit width: 15 bit offset: 5
iii. type long bit width: 9 bit offset: 17
iv. type long bit width: 9 bit offset: 8
v. type long bit width: 9 bit offset: 0

vi. type int /short bit width: 9 bit offset: 2

[Solutions]
This problem could be prevented by the following method:
Insert adummy bit field before the said bit field so that condition c) would not be fulfilled.
<Example>
struct ST{
signed | ong offset:3;
signed | ong dumy: 1; /* Insert adummy variable */
si gned | ong dat a: 20;
}st;

4) Incorrect value setting with using a 3-byte structure
When structreg option was specified, an incorrect value was set to the next area of the 3-byte structure when the return value was the
structure, or when a value was set to the 3-byte structure of the array or pointer type.
[Example]
#pragnma pack 1
t ypedef struct {
char a;
int b;
} ST,
#pragma unpack

ST st2[3];
ST sub();
voi d mai n(voi d) {
st2[1] = sub(); /* Anincorrect value was set to the following area (st2[2].a) */
}
[Conditiong]

This problem might occur when al of the following conditions were fulfilled.

a) HB8SXN, H8SXM, H8SXA, or H8SXX was specified as a cpu kind.

b) The structreg option was specified.

c) A 3-byte structure was specified for the return value of a function, or a value was set to the 3-byte structure of the array or pointer
type.

[Solutions]

Take either of the following methods to prevent this problem.

a) Do not specify the structreg option for compilation.

b) Add a 1-byte dummy member to the 3-byte structure (4 bytesin total).
c) Specify avolatile qudlifier to the 3-byte structure.

3/9

5) Incorrect elimination of afunction call
A function call might be eliminated when this function call was the end of the function and located next to the conditional statement.
[Example]
extern unsigned char a,b,arrayl[],array2[];
voi d func01();
voi d func02();
voi d sub(voi d)
{
if(a==1) {
i f(array2[1] ==0x01) {
func02(); /* Thefunction call funcO2 was eliminated because there was no processing after calling func02 within this function.*/
} else {
func0l();
}
} else if(a==2) {
i f (b&x01) {
func02();
} else {
func0l();
}
} else {
i f (b&x01) {
arrayl[1] =0x08;
} else {
func0l();
}
}

}
void funcOl(){}

void func02(){}

[Conditiong]
This problem might occur when al of the following conditions were fulfilled.
a) 300,300HN, 300HA, 2000N, 2000A, 2600N or 2600A was specified as a cpu kind
b) Register savelrestore operation was not performed at the entry/exit of the caller function.
c) Thecaler function had a conditional statement and the next statement of then clause was a function call.
d) The calee function fulfilled the following conditions:
i. No stack was used to pass the parameter to the callee function.
ii. Thereturn value was 4 bytes or less (when 300 was specified as the cpu kind, the return valueis 2 bytes or less).
€) The calee function was the last execution in the caller function.
f) The calee function and the caller function were defined in the samefile.

[Solutions]

Take either of the following methods to prevent this problem.
a) Specify the goptimize option for compilation.
b) Move the definition of the callee function to ancther file.

6) Incorrect result of operation on atwo-dimensiona array address
An incorrect result might be generated when addition or subtraction was performed on a two-dimensional array address reference
expression twice or more.
[Example]
char *p,array[12][12];
unsi gned |ong x1, x2, x3;

voi d sub()
{

p = (&rray[x1][0] + x2 + x3); /* Incorrectly referred to the data of the array, not the address value. */
}

4/9

[Conditiong]

This problem might occur when al of the following conditions were fulfilled.

a) 300, 300HN, 300HA, 2000N, 2000A, 2600N, or 2600A was specified as a cpu kind.

b) The optimize=0 option was specified.

c) Addition, subtraction, or combination of the two was performed on atwo-dimensional array address twice or more.
d) Thetwo-dimensional array address was described as " & array[variable][0]".

[Solutions]
Take one of the following methods to prevent this problem.
a) Figureout the two-dimensional array address by array[variable].
[Example]
p = (array[x1] + x2 + x3);
b) Split the expression and perform addition or subtraction for each.

[Example]
p = (&rray[x1][0] + x2);
p=(p + x3);

c) Specify optimization (optimize=1: default).

7) Incorrect setting and reference of bit field
An incorrect memory location might be accessed when a bit field was accessed by using the BFST/BFLD instruction.

[Example]
<Incorrect>
MOV. L #(_p+4), ERL ; (ptd) issetto ERL
BFLD #7, @ER1, ROL
CwP. B #4: 8, ROL
BHI L29: 8
MOV. B #2: 8, ROL
BRA L38: 8
L31:
L35:
BFLD #15, @ER3, ROL
ADD. B #2: 8, ROL
MOV. L #(_p+2), ER3 ; (pt2) issetto ER3
MOV. L ER3, ER2
MOV. B ROL, R1L
BFST RI1L, #240, GER2
MOV. L ER3, ERL ; ER3, in other words, (_p+2), isset to ER1
BFLD #240, @R1, R2L
MOV. B R2L, ROH
BFST ROH, #15, @ _p+3) : 32
L29:
MOV. B #6: 8, ROL
L38:
BFST
ROL, #7, @GER1 ; BFST ROL #7,@(_p+4) in fact, because ER1 may be changed
SUB. B ROL, ROL
SUB. B ROL, ROL

5/9

[Conditiong]
This problem might occur when al of the following conditions were fulfilled.
a) HB8SXN, H8SXM, H8SXA, or H8SXX was specified as a cpu kind.
b) The optimize=1 option (default) was specified.
c) Thebit field was such that the available size was 7 bits or less and the bit offset added to the bit field size was within abyte range.
d) The same bit field was set or referred to by two or more statementsin a function.
€) The same bit field was set or referred to by using the BFST/BFLD instruction.
f) Theaddressing mode for accessing the same bit field were different.
[Example]
BFST ROL, #7, @GERL
BFST ROL, #7, @Q.3+3

[Solution]
This problem could be prevented by the following method:
Do not specify optimize option (optimize=0).

8) Incorrect replacement of aloop control variable
An incorrect object might be generated when there was a 1-byte type variable in aloop that had a loop control variable with the type of 2
bytes or more.
[Example]
int a[100], b[100] ;
int i;
unsi gned char x;
voi d f(void){
X = 3;
i = 0;
while (i <= 32760) { /* x was used as aloop control variable and this while statement became an endless loop. */
a[x] = b[x];
X++;
i +=4;
}
}

[Conditiong]

This problem might occur when al of the following conditions were fulfilled.

a) HB8SXN, H8SXM, H8SXA, or H8SXX was specified as a cpu kind.

b) The optimize=1 option (default) was specified.

c) A loop had aloop control variable with the type of 2 bytes or more (i in the above example).
d) A char type or unsigned char type variable (x in the above example) was described in the loop.
€) A constant value was added or subtracted to the loop control variable.

f) Thevariable d) was incremented.

[Solutions]

Take one of the following methods to prevent this problem.

a) Specify avaue other than 1 asthe value added to the variable in the loop.

b) Change the type so that the size of the variable in condition d) will be equal to or larger than that of the loop control variable.
c) Change the type so that the size of the loop control variable will be equal to or larger than that of the variable in condition d).

6/9

9) Incorrect constant propagation

A value of the then or else clause in the if statement might be incorrectly propagated immediately before an assignment expression of
which the right-hand side and Ieft-hand side were the same external variable without volatile qualifier.

[Example]
int Xx;
int sub(){
if (x>=9999)
x=1050;
}
X=X; /I Eliminated as an unnecessary expression
X++; /1 1050 was incorrectly propagated and converted to x=1051

return (x);

}

[Conditiong]

This problem might occur when al of the following conditions were fulfilled.

a) HB8SXN, H8SXM, H8SXA, or H8SXX was specified as a cpu kind.

b) The optimize=1 option (default) was specified.

c) There was an assignment expression of which the right-hand side and Ieft-hand side had the same external variable without volatile

qudlifier.

d) Therewas an if statement before the assignment expression of ¢) and the then or else clause included an assignment to the externa
variable.

[Solution]

This problem could be prevented by the following method:
Specify the opt_range=noblock option.

10) Incorrect unification of string data

String data might be incorrectly unified when struct arrays or multi-dimensional arrays that had a string as a first member were defined
and the same string was specified as an initia value of the first member.
[Example]
/* Aninitial value of afirst member was string "Hello" and the size was 12 byte */
const char a[2][6] = {"Hello",
{1,2,3,4,5,6} };
const char b[2][6] = {"Hello",
{6,5,4,3,2,1} };

. SECTI ON C, DATA, ALl G\=2

_a ; static: a

_b: ; static: b unified incorrectly
. SDATAZ "Hel | o"
. DATA. B H 01,H 02, H 03, H 04, H 05, H 06

/* Aninitial value of afirst member was string "Hello" and the size was 10 byte */
t ypedef struct {
char a[6];
long |;
} stil;
t ypedef struct {
char a[6];
char b[4];
} st2;

const stl1 s1[] = {"Hello", 1};
const st2 s2[] = {"Hello", {0,1,2,3}};
. SECTI ON C, DATA, ALI G\=2
SS: ; static: ss
7/9

tt:

;o ostatic: tt unified incorrectly as ss

. SDATAZ "Hel | 0"
.DATA. L H 00000001
[Conditiong]

This problem might occur when al of the following conditions were fulfilled.

a)
b)
c)
d)

H8SXN, H8SXM, H8SXA or H8SX X was specified as the CPU type.

More than one struct arrays or multi-dimensional arrays that had a string as a first member were defined with const qualifier.
The same string was specified as ainitial value of the first member of b).

The struct array or multi-dimensional array of b) had same datasize.

[Solution]
This problem could be prevented by the following method:
Do not specify the const qualifier.

11) Cpuexpand option was not enabled
Not having generated a code for expanded interpretation when compilation was performed by specifying the cpuexpand option.
[Example] -cpu=2600a —cpuexpand were specified as compile option.
unsi gned | ong ul 1;
unsi gned int ui 1;

voi d sub()
{
ull = uil* (-1) ;
}
<Incorrect> <Correct>
_func: _func:
MOV. W @ui 1: 32, RO MOV. W @ui 1: 32, RO
NEG. W RO ; 2byte* 2byte(-1) -> 2byte MOV. W #-1, EO
EXTU. L ERO ; zero-extended to 4byte MULXU. W EO, ERO ; 2byte* 2byte -> 4byte
MOV. L ERO, @ul 1: 32 MOV. L ERO, @ul 1: 32
[Conditiong]

This problem might occur when al of the following conditions were fulfilled.

a)
b)
<)

300, 300HN, 300HA, 2000N, 2000A, 2600N, or 2600A was specified as a cpu kind.
The cpuexpand option was specified.
The following expressions were described:

long = int(short) * (-1)

unsigned long = unsigned int(unsigned short) * (-1)

[Solution]
Take one of the following methods to prevent this problem.

a)

b)

Insert the cast to the multiplier asfollows.
When the multiplier is unsigned type, change the multiplicand from “-1" to “OxFFFF" in addition.
Example:
long I 1;
short s1i;
unsi gned | ong ul 1;
unsi gned short usl;
voi d sub(voi d) {
1 = (long)sl * (-1); /'t is necessary to describe “—1", when multiplier is signed type.
ull = (unsigned | ong)usl * OxFFFF; //1tisnecessary to describe“ OxFFFF’, when multiplier is unsigned type.
}
Substitute the multiplier once to a variable with volatile qualifier, and use this variable for multiplication.
Example:
long I 1;
short s1i;
unsi gned | ong ul 1;
8/9

unsi gned short usl;
voi d sub(voi d) {
volatile short x = (-1);

11 =s1 * x;
ull = usl * x;
}
c) Do not specify the cpuexpand option.

12) Incorrect substitution with using 4 or less bytes structure
When the structure size was 4 or less bytes and the structure member was struct array, instruction of substitution the structure
might not generate.
Moreover, when the structure member size was 3-byte, it might output internal error.
[Example]
typedef struct {
char c1;
char di;
} ST1;

t ypedef struct {

char di;

ST1 sx[1];
} ST3;
STl G S;
ST3 sub()
{

ST3 st 3;

st3.sx[0] = G S

return st3;

}
<Incorrect> <Correct>
_sub: _sub:

subs #4, sp push.l er6

; This code was not generated nmv.w @GS:32,r0

nov. | @8:2,sp),er0 nov. | @8:16,sp),erl

nov.w @p, @ro0 nmov.w 10, @rl

nov. b @2:2,sp), @2:2,er0) nov.b r6h, @2: 16, erl)

adds #4, sp pop. | er6

rts rts
[Conditiong]

This problem might occur when al of the following conditions were fulfilled.

a) HB8SXN, H8SXM, H8SXA or H8SX X was specified as the CPU type.

b) The optimize=1 option (default) was specified.

c) Thesizeof astructure was 4-byte or less and it was declared as alocal variable.
d) The structure member of c) had array of structure.

€) Thestructure type array of d) was assigned to a value.

[Solution]

Take one of the following methods to prevent this problem.

a) Do not specify the optimize option (optimize=0).

b) Specify avolatile qualifier to the structure of alocal variable.

9/9

