# **RENESAS TECHNICAL UPDATE**

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

| Product<br>Category   | MPU/MCU                                                                                                 |                      | Document<br>No.         | TN-RL*-A0140A/E                                                              | Rev. | 1.00 |  |
|-----------------------|---------------------------------------------------------------------------------------------------------|----------------------|-------------------------|------------------------------------------------------------------------------|------|------|--|
| Title                 | Correction for Incorrect Description Notice R<br>Descriptions in the User's Manual: Hardware<br>Changed | _78/G24<br>Rev. 1.10 | Information<br>Category | Technical Notification                                                       |      |      |  |
|                       |                                                                                                         | Lot No.              |                         |                                                                              |      |      |  |
| Applicable<br>Product | RL78/G24 Group                                                                                          | All lots             | Reference<br>Document   | RL78/G24 User's Manual: Hardware<br>Rev. 1.10<br>R01UH0961EJ0110 (Nov. 2023) |      |      |  |

This document describes misstatements found in the RL78/G24 User's Manual: Hardware Rev. 1.10 (R01UH0961EJ0110).

## **Corrections**

| Applicable Item                                                                 | Applicable Page                                   | Contents                       |
|---------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------|
| 2.4 Block Diagrams of Pins                                                      | Page 89, Page 96, Page 102,<br>Page 103, Page 104 | Incorrect descriptions revised |
| 20.3.9 Analog input channel specification register (ADS)                        | Page 1106                                         | Incorrect descriptions revised |
| 20.3.10 Analog input channel specification registers n for advanced mode (ADSn) | Page 1107                                         | Incorrect descriptions revised |
| 20.6.2 Software trigger no-wait mode (select mode, one-shot conversion mode)    | Page 1120                                         | Incorrect descriptions revised |
| 24.3.8 Serial status registers mn (SSRmn) (mn<br>= 00 to 03, 10, 11)            | Page 1244                                         | Incorrect descriptions revised |
| 27.4.3 Repeat mode                                                              | Page 1594                                         | Incorrect descriptions revised |
| 29.4 Interrupt Servicing Operations                                             | Page 1634, Page 1636                              | Incorrect descriptions revised |
| 42.2 Operation List                                                             | Page 1840                                         | Incorrect descriptions revised |
| 43.2 Characteristics of the Oscillators                                         | Page 1845                                         | Incorrect descriptions revised |
| 43.3.2 Supply current characteristics                                           | Page 1856, Page 1859                              | Incorrect descriptions revised |
| 44.2 Characteristics of the Oscillators                                         | Page 1925                                         | Incorrect descriptions revised |
| 44.3.2 Supply current characteristics                                           | Page 1934, Page 1937                              | Incorrect descriptions revised |
| 44.4 AC Characteristics                                                         | Page 1942                                         | Incorrect descriptions revised |

#### Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.



Corrections in the User's Manual: Hardware

| No. |                      | Сс                                              | prrections and App | licable Items                                                                                                                                 | Pages in this document |
|-----|----------------------|-------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| NO. |                      | Document No.                                    | English            | R01UH0961EJ0110                                                                                                                               | for corrections        |
| 1   | 3.1 Men              | nory Space                                      |                    | Page 106, Page 107, Page 112                                                                                                                  | Page 3 to Page 5       |
| 2   | 20.3.3 A             | A/D converter mode re                           | egister 0 (ADM0)   | Page 1071, Page 1075 to Page 1077,<br>Page 1079, Page 1081, Page 1083,<br>Page 1084, Page 1086, Page 1088,<br>Page 1090, Page 1091, Page 1093 | Page 6 to Page 18      |
| 3   | 20.3.4 A             | VD converter mode re                            | egister 1 (ADM1)   | Page 1096                                                                                                                                     | Page 19                |
| 4   | 20.3.5 A             | VD converter mode re                            | egister 2 (ADM2)   | Page 1098, Page1099                                                                                                                           | Page 20, Page21        |
| 5   | 39.6.1 5             | Self-programming pro                            | cedure             | Page 1760                                                                                                                                     | Page 22                |
| 6   | 39.10.1              | Overview of the data                            | flash memory       | Page 1811                                                                                                                                     | Page 23                |
| 7   | 40.3 Se              | curity Settings for On                          | -chip Debugging    | Page 1814                                                                                                                                     | Page 24                |
| 8   | 2.4 Bloc             | k Diagrams of Pins                              |                    | Page 89, Page 96, Page 102,<br>Page 103, Page 104                                                                                             | Page 25 to Page 30     |
| 9   | 20.3.9 A<br>register | Analog input channel :<br>(ADS)                 | specification      | Page 1106                                                                                                                                     | Page 31                |
| 10  |                      | Analog input channe<br>s n for advanced mod     |                    | Page 1107                                                                                                                                     | Page 32                |
| 11  |                      | Software trigger no-wa<br>one-shot conversion n |                    | Page 1120                                                                                                                                     | Page 33                |
| 12  |                      | Serial status registers<br>0 to 03, 10, 11)     | mn (SSRmn)         | Page 1244                                                                                                                                     | Page 34                |
| 13  | 27.4.3 F             | Repeat mode                                     |                    | Page 1594                                                                                                                                     | Page 35                |
| 14  | 29.4 Inte            | errupt Servicing Oper                           | ations             | Page 1634, Page 1636                                                                                                                          | Page 36, Page 37       |
| 15  | 42.2 Op              | eration List                                    |                    | Page 1840                                                                                                                                     | Page 38                |
| 16  | 43.2 Ch              | aracteristics of the O                          | scillators         | Page 1845                                                                                                                                     | Page 39                |
| 17  | 43.3.2 5             | Supply current charac                           | teristics          | Page 1856, Page 1859                                                                                                                          | Page 40, Page 41       |
| 18  | 44.2 Ch              | aracteristics of the O                          | scillators         | Page 1925                                                                                                                                     | Page 42                |
| 19  | 44.3.2 \$            | Supply current charac                           | teristics          | Page 1934, Page 1937                                                                                                                          | Page 43, Page 44       |
| 20  | 44.4 AC              | Characteristics                                 |                    | Page 1942                                                                                                                                     | Page 45                |

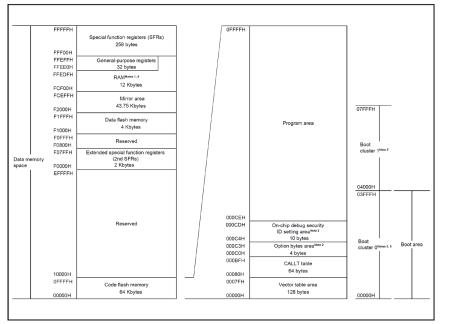
Incorrect: Bold with underline; Correct: Gray hatched

## **Revision History**

RL78/G24 Correction for incorrect description notice

| Document Number | Issue Date    | Description                                       |
|-----------------|---------------|---------------------------------------------------|
| TN-RL*-A0135A/E | Apr. 26, 2024 | First edition issued                              |
|                 |               | Corrections No.1 to No.7 revised                  |
| TN-RL*-A0140A/E | Jan. 8, 2025  | Corrections No.8 to No.XX revised (this document) |




# 1. Memory Space (Page 106, Page107, Page 112)

Incorrect:

(Page 106)

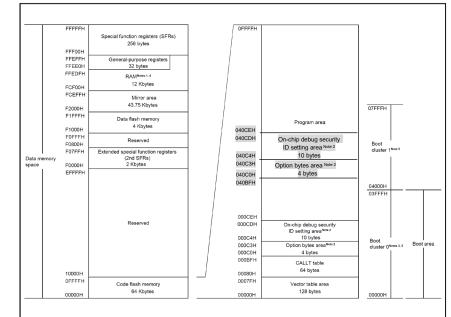
Products in the RL78/G24 can access a 1 MB address space. For details, see Figures 3 - 1 and 3 - 2.

Figure 3 - 1 Memory Map (R7F101GxE (x = 6, 7, 8, A, B, E, F, G, J, L))



- Note 1. Instructions can be executed from the RAM area excluding the general-purpose register area.
- Note 2. When boot swap is not used: Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH.

When boot swap is used: Set the option bytes to 000C0H to 000C3H and 040C0H to 040C3H, and the on-chip debug security IDs to 000C4H to 000CDH and 040C4H to 040CDH.


(omitted)

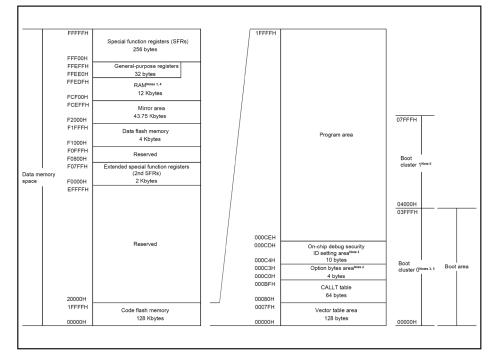
Date: Jan. 8, 2025

## Correct:

Products in the RL78/G24 can access a 1 MB address space. For details, see Figures 3 - 1 and 3 - 2.

Figure 3 - 1 Memory Map (R7F101GxE (x = 6, 7, 8, A, B, E, F, G, J, L))

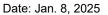



- Note 1. Instructions can be executed from the RAM area excluding the general-purpose register area.
- Note 2. When boot swapping is not to be used, that is, when the value of the BTFLG bit in the FLSEC register is 1, set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH.

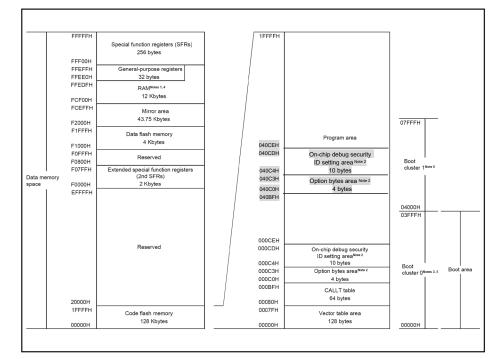
When boot swapping is to be used or the value of the BTFLG bit in the FLSEC register is 0, set the option bytes to 000C0H to 000C3H and 040C0H to 040C3H, and the on-chip debug security IDs to 000C4H to 000CDH and 040C4H to 040CDH.



(Page 107)


#### Figure 3 - 2 Memory Map (R7F101GxG (x = 6, 7, 8, A, B, E, F, G, J, L))




- Note 1. Instructions can be executed from the RAM area excluding the general-purpose register area.
- Note 2. When boot swap is not used: Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH.

When boot swap is used: Set the option bytes to 000C0H to 000C3H and 040C0H to 040C3H, and the on-chip debug security IDs to 000C4H to 000CDH and 040C4H to 040CDH.

(omitted)



#### Figure 3 - 2 Memory Map (R7F101GxG (x = 6, 7, 8, A, B, E, F, G, J, L))



- Note 1. Instructions can be executed from the RAM area excluding the general-purpose register area.
- Note 2. When boot swapping is not to be used, that is, when the value of the BTFLG bit in the FLSEC register is 1, set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH.

When boot swapping is to be used or the value of the BTFLG bit in the FLSEC register is 0, set the option bytes to 000C0H to 000C3H and 040C0H to 040C3H, and the on-chip debug security IDs to 000C4H to 000CDH and 040C4H to 040CDH.



(Page 112)

#### (omitted)

#### 3. Option bytes area

A 4-byte area of 000C0H to 000C3H can be used as an option bytes area. Set the option byte at 040C0H to 040C3H when **the boot swap is used**. For details, see Section 38 Option Bytes.

4. On-chip debug security ID setting area

A 10-byte area of 000C4H to 000CDH and 040C4H to 040CDH can be used as an onchip debug security ID setting area. Set the on-chip debug security ID of 10 bytes at 000C4H to 000CDH when **the boot swap is not used** and at 000C4H to 000CDH and at 040C4H to 040CDH when **the boot swap is used**. For details, see Section 40 On-chip Debugging. Date: Jan. 8, 2025

(omitted)

3. Option bytes area

A 4-byte area of 000C0H to 000C3H can be used as an option bytes area. Set the option byte at 040C0H to 040C3H when boot swapping is to be used or the value of the BTFLG bit in the FLSEC register is 0. For details, see Section 38 Option Bytes.

4. On-chip debug security ID setting area

A 10-byte area of 000C4H to 000CDH and 040C4H to 040CDH can be used as an onchip debug security ID setting area. Set the 10-byte security ID for on-chip debugging at 000C4H to 000CDH when boot swapping is not to be used, that is, the value of the BTFLG bit in the FLSEC register is 1, and at both 000C4H to 000CDH and 040C4H to 040CDH when boot swapping is to be used or the value of the BTFLG bit in the FLSEC register is 0. For details, see Section 40 On-chip Debugging.



2. <u>20.3.3 A/D converter mode register 0 (ADM0) (Page 1071, Page 1075 to Page1077, Page1079, Page 1081, Page 1083, Page 1084, Page 1086, Page 1088, Page 1090, Page 1091, Page 1093 )</u>

Incorrect:

(Page 1071)

Figure 20 - 4 Format of A/D Converter Mode Register 0 (ADM0)

(omitted)

| ADCE | A/D voltage comparator operation control <sup>Note 2</sup> |
|------|------------------------------------------------------------|
| 0    | Stops A/D voltage comparator operation                     |
| 1    | Enables A/D voltage comparator operation                   |

Note 1. For details of the FR[2:0] and LV[1:0] bits and A/D conversion, see Table 20 - 6 Selection of A/D Conversion Time.

- Note 2. While in the software trigger no-wait mode or hardware trigger no-wait mode, the operation of the A/D voltage comparator is controlled by the ADCS and ADCE bits, and it takes 1  $\mu$  s + 2 cycles of the conversion clock (fAD) from the start of operation for the operation to stabilize. Therefore, immediately after the ADCS bit is set to 1 after at least 1  $\mu$  s + 2 cycles of the conversion clock (fAD) have elapsed from the time ADCE bit is set to 1, the conversion result becomes valid. When ADCS is set to 1 while ADCE = 0, A/D conversion starts after the stabilization wait time has passed. If ADCS is set to 1 before at least 1  $\mu$  s + 2 cycles of the conversion clock (fAD) have elapsed, ignore data of the first conversion.
- Caution 1. Change the ADMD, FR[2:0], and LV[1:0] bits while conversion is stopped (ADCS = 0, ADCE = 0).
- Caution 2. Setting change from ADCS = 1 and ADCE = 1 to ADCS = 1 and ADCE = 0 is prohibited.
- Caution 3. Do not change the ADCS and ADCE bits from 0 to 1 at the same time by using an 8-bit manipulation instruction. Be sure to follow the procedure described in 20.7 A/D Converter Setup Flowchart.

Caution 4. Do not set ADMS to 1 when the advanced mode is enabled.

Caution 5. Do not overwrite ADCS with 1 when the setting of ADCS is 1 in the advanced mode. Caution 6. Do not overwrite ADCE with 1 when the setting of ADCE is 1 in the advanced mode. Date: Jan. 8, 2025

#### Correct:

#### Figure 20 - 4 Format of A/D Converter Mode Register 0 (ADM0)

(omitted)

| ADCE | A/D voltage comparator operation control <sup>Note 2</sup> |
|------|------------------------------------------------------------|
| 0    | Stops A/D voltage comparator operation                     |
| 1    | Enables A/D voltage comparator operation                   |

- Note 1. For details of the FR[2:0] and LV[1:0] bits and A/D conversion, see Table 20 6 Selection of A/D Conversion Time.
- Note 2. While in the software trigger no-wait mode or hardware trigger no-wait mode, the operation of the A/D voltage comparator is controlled by the ADCS and ADCE bits, and it takes 1  $\mu$  s + 2 cycles of the conversion clock (fAD) from the start of operation for the operation to stabilize. Therefore, immediately after the ADCS bit is set to 1 after at least 1  $\mu$  s + 2 cycles of the conversion clock (fAD) have elapsed from the time ADCE bit is set to 1, the conversion result becomes valid. When ADCS is set to 1 while ADCE = 0, A/D conversion starts after the stabilization wait time has passed. If ADCS is set to 1 before at least 1  $\mu$  s + 2 cycles of the conversion clock (fAD) have elapsed, ignore data of the first conversion.
- Caution 1. Change the ADMD, FR[2:0], and LV[1:0] bits while conversion is stopped (ADCS = 0, ADCE = 0).

Caution 2. Setting change from ADCS = 1 and ADCE = 1 to ADCS = 1 and ADCE = 0 is prohibited.

Caution 3. Do not change the ADCS and ADCE bits from 0 to 1 at the same time by using an 8-bit manipulation instruction. Be sure to follow the procedure described in 20.7 A/D Converter Setup Flowchart.

Caution 4. Do not set ADMS to 1 when the advanced mode is enabled.

Caution 5. Do not overwrite ADCS with 1 when the setting of ADCS is 1 in the advanced mode.

- Caution 6. Do not overwrite ADCE with 1 when the setting of ADCE is 1 in the advanced mode.
- Caution 7. Following stoppage of conversion by setting the ADCS and ADCE bits to 0 from the

conversion standby or conversion state, wait for at least 5 µs before restoring the values of the bits to 1. Note that, when changing the settings of bits ADMD, FR2 to FR0, LV1, and LV0, start by setting the ADCS and ADCE bits to 0, then wait for at least 0.2 µs before changing the rest of the bits.



#### (Page 1075)

- Caution 1. If using the hardware trigger wait mode, setting the ADCS bit to 1 is prohibited (but the bit is automatically switched to 1 when the hardware trigger signal is detected). However, it is possible to clear the ADCS bit to 0 to specify the A/D conversion standby state.
- Caution 2. While in the one-shot conversion mode of the hardware trigger no-wait mode or advanced mode, the ADCS bit is not automatically cleared to 0 when A/D conversion ends. Instead, 1 is retained.
- Caution 3. Only rewrite the value of the ADCE bit when ADCS = 0 (while in the conversion stopped/conversion standby state).
- Caution 4. In advanced mode, three cycles of the fCLK clock are required from the occurrence of a trigger source until detection of the trigger. Table 20 5 lists the required numbers of clock cycles from the occurrence of a trigger or completion of the most recently executed conversion until A/D conversion starts in advanced mode.
- Caution 5. To complete A/D conversion, specify at least the following time as the hardware trigger interval:

Hardware trigger no-wait mode: 2 cycles of the fCLK clock + conversion start time + A/D conversion time

Hardware trigger wait mode: 2 cycles of the fCLK clock + conversion start time + A/D power supply stabilization wait time + A/D conversion time

Advanced mode: 3 cycles of the fCLK clock + conversion start time + A/D conversion time (omitted)

Caution 1. If using the hardware trigger wait mode, setting the ADCS bit to 1 is prohibited (but the bit is automatically switched to 1 when the hardware trigger signal is detected). However, it is possible to clear the ADCS bit to 0 to specify the A/D conversion standby state.

Caution 2. While in the one-shot conversion mode of the hardware trigger no-wait mode or advanced mode, the ADCS bit is not automatically cleared to 0 when A/D conversion ends. Instead, 1 is retained.

Caution 3. Only rewrite the value of the ADCE bit when ADCS = 0 (while in the conversion stopped/conversion standby state).

- Caution 4. In advanced mode, three cycles of the fCLK clock are required from the occurrence of a trigger source until detection of the trigger. Table 20 5 lists the required numbers of clock cycles from the occurrence of a trigger or completion of the most recently executed conversion until A/D conversion starts in advanced mode.
- Caution 5. To complete A/D conversion, specify at least the following time as the hardware trigger interval:

Hardware trigger no-wait mode: 2 cycles of the fcLK clock + conversion start time + A/D conversion time

Hardware trigger wait mode: 2 fCLK clock cycles + conversion start time + A/D power supply

stabilization wait time + A/D conversion time + 5µs

Advanced mode: 3 cycles of the fCLK clock + conversion start time + A/D conversion time (omitted)

© 2025 Renesas Electronics Corporation. All rights reserved.



Date: Jan. 8, 2025

## (Page 1076)

Table 20 - 6 Selection of A/D Conversion Time (1/11)

#### Normal modes 1 and 2 with no A/D power supply stabilization wait time (software trigger no-wait select mode and hardware trigger no-wait select mode)

|            | Conve<br>Conve |     |     |     |     |             |                           | Number of                           | Number of  | Number of<br>Clock      |           |                       |                       |                       | n Start Delay<br>utput Delay 1 |                  |
|------------|----------------|-----|-----|-----|-----|-------------|---------------------------|-------------------------------------|------------|-------------------------|-----------|-----------------------|-----------------------|-----------------------|--------------------------------|------------------|
| (AD<br>M1) | (ADMU)         |     |     |     |     | Mode        | Conversion<br>Clock (fAD) | Cycles for<br>Conversion Cycles for | Cycles for | Cycles for<br>Interrupt |           |                       | 2.4 ∨ ≤ /             | AVREFP ≤ VD           | o≤5.5 V                        |                  |
| ADL<br>SP  | FR2            | FR1 | FRO | LV1 | LVO |             |                           | Start Delay                         |            | Output<br>Delay         |           | fclk =<br>1 MHz       | fCLK =<br>4 MHz       | fCLK =<br>8 MHz       | fCLK =<br>16 MHz               | fCLK =<br>32 MHz |
| 0          | 0              | 0   | 0   | 0   | 0   | Normal<br>1 | fCLK/32                   | 1 fAD                               | 64 fad     | 1 fAD                   | 2112/fcLK | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited          | 66 µs            |
| 0          | 0              | 0   | 1   |     |     |             | fcLK/16                   | 1 fAD                               | 64 fad     | 1 fAD                   | 1056/fcLK | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | 66 µs                          | 33 µs            |

| 1 | 1           | 0            | ( | 0 |  | fcLK/2 | 1 fad | 181 fAD | 1 fad | 366/fclk  | Setting prohibited | 91.5 µs  | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|-------------|--------------|---|---|--|--------|-------|---------|-------|-----------|--------------------|----------|-----------------------|-----------------------|-----------------------|
| 1 | 1           | 0            | 1 | 1 |  | fclk   | 1 fAD | 181 fAD | 1 fAD | 183/fCLK  | 183 µs             | 45.75 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| ¢ | Other<br>al | than<br>bove |   |   |  |        |       |         |       | Setting p | orohibited         |          |                       |                       |                       |

- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0).
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use normal mode 2.
- Caution 5. When the internal reference voltage is selected for the + side reference voltage, normal modes 1 and 2 cannot be used. In such cases, use low voltage mode 1 or 2.

Remark fCLK: CPU/peripheral hardware clock frequency

Table 20 - 6 Selection of A/D Conversion Time (1/11)

 Normal modes 1 and 2 with no A/D power supply stabilization wait time (software trigger no-wait select mode and hardware trigger no-wait select mode)

|            | Conve<br>Conve |     |     |     |     |             |                           | Number of                         | Number of           | Number of<br>Clock      |           | A/D Conversion Time (Conversion Start Delay Time +<br>Conversion Time + Interrupt Output Delay Time) |                       |                       |                       |                  |  |
|------------|----------------|-----|-----|-----|-----|-------------|---------------------------|-----------------------------------|---------------------|-------------------------|-----------|------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|------------------|--|
| (AD<br>M1) |                | (   | ADM | ))  |     | Mode        | Conversion<br>Clock (fAD) | Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for | Cycles for<br>Interrupt |           |                                                                                                      | 2.4 ∨ ≤ /             | AVREFP ≤ Vo           | op ≤ 5.5 V            |                  |  |
| ADL<br>SP  | FR2            | FR1 | FRO | LV1 | LVO |             |                           | Start Delay                       | Conversion          | Output<br>Delay         |           | fclk =<br>1 MHz                                                                                      | fclk =<br>4 MHz       | fclk =<br>8 MHz       | fCLK =<br>16 MHz      | fCLK =<br>32 MHz |  |
| 0          | 0              | 0   | 0   | 0   | 0   | Normal<br>1 | fCLK/32                   | 1 fAD                             | 64 fad              | 1 fAD                   | 2112/fcLK | Setting<br>prohibited                                                                                | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | 66 µs            |  |
| 0          | 0              | 0   | 1   |     |     |             | fcLk/16                   | 1 fad                             | 64 fad              | 1 fAD                   | 1056/fcLK | Setting<br>prohibited                                                                                | Setting<br>prohibited | Setting<br>prohibited | 66 µs                 | 33 µs            |  |

| 1                    | 1 | 0 | 0 | 1 |  | fcLK/2 | 1 fad | 181 fad   | 1 fad     | 366/fclk | Setting prohibited | 91.5 µs  | Setting<br>prohibited | Setting<br>prohibited | Setting prohibited    |
|----------------------|---|---|---|---|--|--------|-------|-----------|-----------|----------|--------------------|----------|-----------------------|-----------------------|-----------------------|
| 1                    | 1 | 0 | 1 |   |  | fclk   | 1 fAD | 181 fAD   | 1 fAD     | 183/fclk | 183 µs             | 45.75 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| Other than the above |   |   |   |   |  |        |       | Setting p | rohibited |          |                    |          |                       |                       |                       |

- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2 µs before setting the FR[2:0] and LV[1:0] bits.
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use normal mode 2.
- Caution 5. When the internal reference voltage is selected for the + side reference voltage, normal modes 1 and 2 cannot be used. In such cases, use low voltage mode 1 or 2.

Remark fclk: CPU/peripheral hardware clock frequency



(Page 1077)

Table 20 - 6 Selection of A/D Conversion Time (2/11)

#### Low voltage modes 1 and 2 with no A/D power supply stabilization wait time (software trigger no-wait select mode and hardware trigger no-wait select mode)

|            |        | erter N<br>erter N |     |     |                           |                                                               |                                                |                                            |        | Number of                             |                                       |                                       |                                       |                                       | n Start Delay<br>utput Delay |                  |
|------------|--------|--------------------|-----|-----|---------------------------|---------------------------------------------------------------|------------------------------------------------|--------------------------------------------|--------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------------------|------------------|
| (AD<br>M1) | (ADM0) |                    | Mo  |     | Conversion<br>Clock (fAD) | Number of<br>Clock<br>Cycles for<br>Conversion<br>Start Delay | Number of<br>Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Interrupt<br>Output |        | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.8 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 2.4 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 2.7 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V |                              |                  |
| ADL<br>SP  | FR2    | FR1                | FRO | LV1 | LVO                       |                                                               |                                                |                                            |        | Delay                                 |                                       | fCLK =<br>1 MHz                       | fclk =<br>4 MHz                       | fCLK =<br>8 MHz                       | fCLK =<br>16 MHz             | fCLK =<br>32 MHz |
| 0          | 0      | 0                  | 0   | 1   | 0                         | Low<br>voltage                                                | fCLK/32                                        | 1 fad                                      | 80 fad | 1 fad                                 | 2624/fclk                             | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited        | 82 µs            |
| 0          | 0      | 0                  | 1   |     |                           | 1                                                             | fCLK/16                                        | 1 fAD                                      | 80 fad | 1 fAD                                 | 1312/fclk                             | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | 82 µs                        | 41 µs            |

| 1 | 1            | 0            | 0  |  | fCLK/2 | 1 fad | 107 fAD | 1 fad | 218/fclk  | Setting<br>prohibited | 54.5 µs  | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|--------------|--------------|----|--|--------|-------|---------|-------|-----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
| 1 | 1            | 0            | 1  |  | fclk   | 1 fAD | 107 fAD | 1 fAD | 109/fclk  | 109 µs                | 27.25 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| 0 | ther t<br>ab | han t<br>ove | he |  |        |       |         |       | Setting p | rohibited             |          |                       |                       |                       |

- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0).
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use low voltage mode 2 with the conversion clock (fAD) with a frequency of no more than 16 MHz.

Table 20 - 6 Selection of A/D Conversion Time (2/11)

2. Low voltage modes 1 and 2 with no A/D power supply stabilization wait time (software trigger no-wait select mode and hardware trigger no-wait select mode)

|            |     | erter I<br>erter I |     |      | ster 0<br>ster 1          |                                                               |                                                |                                            |         | Number of                             |                                       |                                       |                                       |                                       | on Start Delay<br>Output Delay |                  |
|------------|-----|--------------------|-----|------|---------------------------|---------------------------------------------------------------|------------------------------------------------|--------------------------------------------|---------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------|------------------|
| (AD<br>M1) |     |                    |     | Mode | Conversion<br>Clock (fAD) | Number of<br>Clock<br>Cycles for<br>Conversion<br>Start Delay | Number of<br>Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Interrupt<br>Output |         | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.8 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 2.4 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 2.7 V ≤<br>AVREFP :<br>VDD ≤<br>5.5 V |                                |                  |
| ADL<br>SP  | FR2 | FR1                | FRO | LV1  | LVO                       |                                                               |                                                | ,                                          |         | Delay                                 |                                       | fclk =<br>1 MHz                       | fclk =<br>4 MHz                       | fclk =<br>8 MHz                       | fCLK =<br>16 MHz               | fCLK =<br>32 MHz |
| 0          | 0   | 0                  | 0   | 1    | 0                         | Low<br>voltage                                                | fCLK/32                                        | 1 fad                                      | 80 fad  | 1 fad                                 | 2624/fclk                             | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited          | 82 µs            |
| 0          | 0   | 0                  | 1   |      |                           | 1                                                             | fcLk/16                                        | 1 fad                                      | 80 fad  | 1 fad                                 | 1312/fcLK                             | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | 82 µs                          | 41 µs            |
|            |     | _                  | _   |      |                           |                                                               |                                                |                                            |         |                                       |                                       |                                       |                                       |                                       |                                |                  |
| 1          | 1   | 0 0                |     |      |                           |                                                               | fCLK/2                                         | 1 fAD                                      | 107 fAD | 1 fAD                                 | 218/fclk                              | Setting<br>prohibited                 | 54.5 µs                               | Setting<br>prohibited                 | Setting<br>prohibited          | Setting          |

| 1 | 1 | 0             | 0  |  | fCLK/2 | 1 fAD | 107 fad | 1 fad | 218/fclk  | Setting<br>prohibited | 54.5 µs  | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |  |
|---|---|---------------|----|--|--------|-------|---------|-------|-----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|--|
| 1 | 1 | 0             | 1  |  | folk   | 1 fad | 107 fad | 1 fad | 109/fclk  | 109 µs                | 27.25 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |  |
| O |   | han th<br>ove | 1e |  |        |       |         |       | Setting p | rohibited             |          |                       |                       |                       |  |

Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.

- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2 µs before setting the FR[2:0] and LV[1:0] bits.
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use low voltage mode 2 with the conversion clock (fAD) with a frequency of no more than 16 MHz.



Date: Jan. 8, 2025

## (Page 1079)

Table 20 - 6 Selection of A/D Conversion Time (3/11)

#### 3. Normal modes 1 and 2 with A/D power supply stabilization wait time

(software trigger wait select mode and hardware trigger wait select mode  $^{Note\,1})$ 

|            |     | erter M<br>erter M            |     |     |      |                           |                                   | Number of<br>Clock    | Number of               | Number of<br>Clock    |           |                       |                       |                       | upply Stabiliz<br>pt Output Del |                  |
|------------|-----|-------------------------------|-----|-----|------|---------------------------|-----------------------------------|-----------------------|-------------------------|-----------------------|-----------|-----------------------|-----------------------|-----------------------|---------------------------------|------------------|
| (AD<br>M1) |     | (ADM0)<br>FR2 FR1 FR0 LV1 LV0 |     |     | Mode | Conversion<br>Clock (fAD) | Cycles for<br>A/D Power<br>Supply | Clock<br>Cycles for   | Cycles for<br>Interrupt |                       |           | 2.4 ∨ ≤ /             | AVREFP ≤ Vo           | o≤5.5 V               |                                 |                  |
| ADL<br>SP  | FR2 | FR1                           | FRO | LV1 | LVO  |                           |                                   | Stabilization<br>Wait | Conversion              | Output<br>DelayNote 2 |           | fcLK =<br>1 MHz       | fclk =<br>4 MHz       | fCLK =<br>8 MHz       | fCLK =<br>16 MHz                | fCLK =<br>32 MHz |
| 0          | 0   | 0                             | 0   | 0   | 0    | Normal<br>1               | fCLK/32                           | 4 fad                 | 64 fad                  | 4 fad                 | 2304/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited           | 72 µs            |
| 0          | 0   |                               |     |     |      |                           | fcLk/16                           | 4 fad                 | 64 fad                  | 4 fad                 | 1152/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | 72 µs                           | 36 µs            |

| 1 | 1 | 0          | 0  | 1 |  | fCLK/2 | 4 fad | 181 fad | 4 fad | 378/fclk  | Setting prohibited | 94.5 µs  | Setting prohibited    | Setting<br>prohibited | Setting<br>prohibited |
|---|---|------------|----|---|--|--------|-------|---------|-------|-----------|--------------------|----------|-----------------------|-----------------------|-----------------------|
| 1 | 1 | 0          | 1  | ] |  | fclk   | 6 fad | 181 fAD | 4 fad | 191/fclk  | 191 µs             | 47.75 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| C |   | than toove | he | ] |  |        |       |         |       | Setting p | rohibited          |          |                       |                       |                       |

- Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1, 2, and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected. For details, see Table 20 - 6 Selection of A/D Conversion Time (1/11).
- Note 2. This number denotes the number of clock cycles for interrupt output delay in the one-shot conversion mode. When the sequential conversion mode is selected, the number of conversion clock (fAD) cycles becomes shorter by three cycles.
- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics. Note that the conversion time (tCONV) does not include A/D power supply stabilization wait time.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0).

#### Table 20 - 6 Selection of A/D Conversion Time (3/11)

3. Normal modes 1 and 2 with A/D power supply stabilization wait time

(software trigger wait select mode and hardware trigger wait select modeNote 1)

| A/D (<br>A/D ( |     |          |     |     |     |             |                           | Number of<br>Clock                | Number of           | Number of<br>Clock      |           |                       |                       |                       | upply Stabiliz<br>pt Output Del |                  |
|----------------|-----|----------|-----|-----|-----|-------------|---------------------------|-----------------------------------|---------------------|-------------------------|-----------|-----------------------|-----------------------|-----------------------|---------------------------------|------------------|
| (AD<br>M1)     |     | (ADM0) M |     |     |     | Mode        | Conversion<br>Clock (fAD) | Cycles for<br>A/D Power<br>Supply | Clock<br>Cycles for | Cycles for<br>Interrupt |           |                       | 2.4 ∨ ≤ /             | AVREFP ≤ Vo           | o≤5.5 V                         |                  |
| ADL<br>SP      | FR2 | FR1      | FRO | LV1 | LVO |             |                           | Stabilization<br>Wait             | Conversion          | Output<br>DelayNote 2   |           | fclk =<br>1 MHz       | fclk =<br>4 MHz       | fclk =<br>8 MHz       | fCLK =<br>16 MHz                | fCLK =<br>32 MHz |
| 0              | 0   | 0        | 0   | 0   | 0   | Normal<br>1 | fCLK/32                   | 4 fad                             | 64 fad              | 4 fad                   | 2304/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited           | 72 µs            |
| 0              | 0   | 0        | 1   |     |     |             | fCLK/16                   | 4 fad                             | 64 fad              | 4 fad                   | 1152/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | 72 µs                           | 36 µs            |

| 1 | I  | 1             | 0             | 0  | ] |  | fCLK/2 | 4 fad | 181 fad | 4 fad | 378/fclk  | Setting<br>prohibited | 94.5 µs  | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|----|---------------|---------------|----|---|--|--------|-------|---------|-------|-----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
| 1 | I  | 1             | 0             | 1  |   |  | fclk   | 6 fAD | 181 fAD | 4 fad | 191/fclk  | 191 µs                | 47.75 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|   | Ot | her ti<br>abo | han ti<br>ove | 1e |   |  |        |       |         |       | Setting p | rohibited             |          |                       |                       |                       |

- Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1, 2, and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected. For details, see Table 20 - 6 Selection of A/D Conversion Time (1/11).
- Note 2. This number denotes the number of clock cycles for interrupt output delay in the one-shot conversion mode. When the sequential conversion mode is selected, the number of conversion clock (fAD) cycles becomes shorter by three cycles.
- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics. Note that the conversion time (tCONV) does not include A/D power supply stabilization wait time.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2 µs before setting the FR[2:0] and LV[1:0] bits.



(Page 1081)

Table 20 - 6 Selection of A/D Conversion Time (4/11)

#### Low voltage modes 1 and 2 with A/D power supply stabilization wait time (software trigger wait select mode and hardware trigger wait select mode<sup>Note 1</sup>)

| A/D (<br>A/D (<br>(AD<br>M1)<br>ADL<br>SP | Conve | erter M | Mode<br>ADM( | Regi | ster 0<br>ster 1 | Mode           | Conversion<br>Clock (fAD) | Number of<br>Clock<br>Cycles for<br>A/D Power<br>Supply<br>Stabilization<br>Wait | Number of<br>Clock<br>Cycles for<br>Conversion | Number of<br>Clock<br>Cycles for<br>Interrupt<br>Output<br>Delay <sup>Note 2</sup> |           |                       |                       |                       | upply Stabiliz<br>pt Output Del<br>2.4 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V<br>fCLK =<br>16 MHz |       |
|-------------------------------------------|-------|---------|--------------|------|------------------|----------------|---------------------------|----------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------|-----------|-----------------------|-----------------------|-----------------------|----------------------------------------------------------------------------------------------|-------|
| 0                                         | 0     | 0       | 0            | 1    | 0                | Low<br>voltage | fCLK/32                   | 4 fad                                                                            | 80 fAD                                         | 4 fad                                                                              | 2816/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited                                                                        | 88 µs |
| 0                                         | 0     | 0       | 1            |      |                  | 1              | fcLk/16                   | 4 fad                                                                            | 80 fad                                         | 4 fad                                                                              | 1408/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | 88 µs                                                                                        | 44 µs |

| 1 | 1 | 0      | 0  |  | fCLK/2 | 4 fad | 107 fad | 4 fad | 230/fclk  | Setting prohibited | 57.5 µs  | Setting<br>prohibited | Setting prohibited    | Setting<br>prohibited |
|---|---|--------|----|--|--------|-------|---------|-------|-----------|--------------------|----------|-----------------------|-----------------------|-----------------------|
| 1 | 1 | 0      | 1  |  | fclk   | 6 fAD | 107 fad | 4 fAD | 117/fclk  | 117 µs             | 29.25 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| ( |   | than t | he |  |        |       |         |       | Setting p | rohibited          |          |                       |                       |                       |

- Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1, 2, and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected. For details, see Table 20 - 6 Selection of A/D Conversion Time (2/11).
- Note 2. This number denotes the number of clock cycles for interrupt output delay in the one-shot conversion mode. When the sequential conversion mode is selected, the number of conversion clock (fAD) cycles becomes shorter by three cycles.
- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics. Note that the conversion time (tCONV) does not include A/D power supply stabilization wait time.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0).

Table 20 - 6 Selection of A/D Conversion Time (4/11)

4. Low voltage modes 1 and 2 with A/D power supply stabilization wait time

(software trigger wait select mode and hardware trigger wait select modeNote 1)

|            |     | rerter Mode Register 0<br>rerter Mode Register 1<br>(ADM0) |     |     |      |                           |                                                             | Number of                                      |                                            | Number of               |                                       |                                       |                                       | A/D Power S<br>ime + Interru          |                                       |                  |
|------------|-----|------------------------------------------------------------|-----|-----|------|---------------------------|-------------------------------------------------------------|------------------------------------------------|--------------------------------------------|-------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------|
| (AD<br>M1) |     | (ADM0)<br>R2 FR1 FR0 LV1 LV0                               |     |     | Mode | Conversion<br>Clock (fAD) | Clock<br>Cycles for<br>A/D Power<br>Supply<br>Stabilization | Number of<br>Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Interrupt<br>Output |                         | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.8 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 2.4 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 2.7 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V |                  |
| ADL<br>SP  | FR2 | FR1                                                        | FRO | LV1 | LVO  |                           |                                                             | Wait                                           |                                            | Delay <sup>Note 2</sup> |                                       | fclk =<br>1 MHz                       | fclk =<br>4 MHz                       | fCLK =<br>8 MHz                       | fCLK =<br>16 MHz                      | fCLK =<br>32 MHz |
| 0          | 0   | 0                                                          | 0   | 1   | 0    | Low<br>voltage            | fCLK/32                                                     | 4 fad                                          | 80 fAD                                     | 4 fad                   | 2816/fclk                             | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | 88 µs            |
| 0          | 0   |                                                            |     |     |      | 1                         | fCLK/16                                                     | 4 fad                                          | 80 fad                                     | 4 fad                   | 1408/fclk                             | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | 88 µs                                 | 44 µs            |

| Ī | 1 | 1            | 0 | 0  |  | fCLK/2 | 4 fad | 107 fad | 4 fad | 230/fclk  | Setting<br>prohibited | 57.5 µs  | Setting prohibited    | Setting<br>prohibited | Setting<br>prohibited |
|---|---|--------------|---|----|--|--------|-------|---------|-------|-----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
|   | 1 | 1            | 0 | 1  |  | fclk   | 6 fAD | 107 fAD | 4 fad | 117/fclk  | 117 µs                | 29.25 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| ſ | 0 | ther t<br>ab |   | he |  |        |       |         |       | Setting p | rohibited             |          |                       |                       |                       |

- Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1, 2, and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected. For details, see Table 20 - 6 Selection of A/D Conversion Time (2/11).
- Note 2. This number denotes the number of clock cycles for interrupt output delay in the one-shot conversion mode. When the sequential conversion mode is selected, the number of conversion clock (fAD) cycles becomes shorter by three cycles.
- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics. Note that the conversion time (tCONV) does not include A/D power supply stabilization wait time.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2 µs before setting the FR[2:0] and LV[1:0] bits.



(Page 1083)

Table 20 - 6 Selection of A/D Conversion Time (5/11)

#### Normal modes 1 and 2 with no A/D power supply stabilization wait time (software trigger no-wait scan mode and hardware trigger no-wait scan mode)

| A/D (<br>A/D ( |     |     |      |     |     |             |                           | Number of   | Number of           | Number of<br>Clock      |           |                       |                       |                       | n Start Delay<br>Output Delay |                  |
|----------------|-----|-----|------|-----|-----|-------------|---------------------------|-------------|---------------------|-------------------------|-----------|-----------------------|-----------------------|-----------------------|-------------------------------|------------------|
| (AD<br>M1)     |     | 6   | ADMO | ))  |     | Mode        | Conversion<br>Clock (fAD) |             | Clock<br>Cycles for | Cycles for<br>Interrupt |           |                       | 2.4 ∨ ≤ /             | AVREFP ≤ Vo           | o≤5.5 V                       |                  |
| ADL<br>SP      | FR2 | FR1 | FRO  | LV1 | LVO |             |                           | Start Delay |                     | Output<br>Delay         |           | fclk =<br>1 MHz       | fclk =<br>4 MHz       | fCLK =<br>8 MHz       | fCLK =<br>16 MHz              | fclk =<br>32 MHz |
| 0              | 0   | 0   | 0    | 0   | 0   | Normal<br>1 | fcLk/32                   | 1 fAD       | 64 fad              | 1 fAD                   | 8256/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited         | 258 µs           |
| 0              | 0   | 0   | 1    |     |     |             | fcLk/16                   | 1 fad       | 64 fad              | 1 fad                   | 4128/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | 258 µs                        | 129 µs           |

| 1 | 1          | C              | 0 | ) |  | fCLK/2 | 1 fad | 181 fad | 1 fad | 1452/fclk | Setting<br>prohibited | 363 µs   | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|------------|----------------|---|---|--|--------|-------|---------|-------|-----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
| 1 | 1          | C              | 1 | 1 |  | fCLK   | 1 fad | 181 fad | 1 fad | 726/fclk  | 726 µs                | 181.5 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|   | Other<br>a | r thar<br>bove |   |   |  |        |       |         |       | Setting p | rohibited             |          |                       |                       |                       |

- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0).
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use normal mode 2.
- Caution 5. When the internal reference voltage is selected for the + side reference voltage, normal modes 1 and 2 cannot be used. In such cases, use low voltage mode 1 or 2.
- Remark fcLK: CPU/peripheral hardware clock frequency

Date: Jan. 8, 2025

Table 20 - 6 Selection of A/D Conversion Time (5/11)

 Normal modes 1 and 2 with no A/D power supply stabilization wait time (software trigger no-wait scan mode and hardware trigger no-wait scan mode)

|            |     | erter I<br>erter I |     |     |     |             |                           | Number of                         | Number of           | Number of<br>Clock      |           |                       |                       |                       | n Start Delay<br>Output Delay |                  |
|------------|-----|--------------------|-----|-----|-----|-------------|---------------------------|-----------------------------------|---------------------|-------------------------|-----------|-----------------------|-----------------------|-----------------------|-------------------------------|------------------|
| (AD<br>M1) |     | (ADM0) M           |     |     |     | Mode        | Conversion<br>Clock (fAD) | Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for | Cycles for<br>Interrupt |           |                       | 2.4 ∨ ≤ /             | AVREFP ≤ Vo           | op ≤ 5.5 V                    |                  |
| ADL<br>SP  | FR2 | FR1                | FRO | LV1 | LVO |             |                           | Start Delay                       | Conversion          | Output<br>Delay         |           | fclk =<br>1 MHz       | fclk =<br>4 MHz       | fCLK =<br>8 MHz       | fCLK =<br>16 MHz              | fCLK =<br>32 MHz |
| 0          | 0   | 0                  | 0   | 0   | 0   | Normal<br>1 | fCLK/32                   | 1 fAD                             | 64 fad              | 1 fad                   | 8256/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited         | 258 µs           |
| 0          | 0   | 0                  | 1   |     |     |             | fCLK/16                   | 1 fad                             | 64 fad              | 1 fad                   | 4128/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | 258 µs                        | 129 µs           |

| T | 1 | 1 | 0            | 0  | 1 |  | fCLK/2 | 1 fad | 181 fAD | 1 fad | 1452/fclk | Setting<br>prohibited | 363 µs   | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|---|---|--------------|----|---|--|--------|-------|---------|-------|-----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
|   | 1 | 1 | 0            | 1  | 1 |  | fCLK   | 1 fad | 181 fAD | 1 fad | 726/fclk  | 726 µs                | 181.5 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|   | 0 |   | han t<br>ove | he | 1 |  |        |       |         |       | Setting p | rohibited             |          |                       |                       |                       |

Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.

- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2 us before setting the FR[2:0] and LV[1:0] bits.
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use normal mode 2.
- Caution 5. When the internal reference voltage is selected for the + side reference voltage, normal modes 1 and 2 cannot be used. In such cases, use low voltage mode 1 or 2.

Remark fclk: CPU/peripheral hardware clock frequency



(Page 1084)

Table 20 - 6 Selection of A/D Conversion Time (6/11)

#### Low voltage modes 1 and 2 with no A/D power supply stabilization wait time (software trigger no-wait scan mode and hardware trigger no-wait scan mode)

|            |                               |     |     |     |      |                           |                                                               |                                                |                                            | Number of |                                       |                                       |                                       |                                       | n Start Delay<br>Output Dela          |                  |
|------------|-------------------------------|-----|-----|-----|------|---------------------------|---------------------------------------------------------------|------------------------------------------------|--------------------------------------------|-----------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|------------------|
| (AD<br>M1) | (ADM0)<br>FR2 FR1 FR0 LV1 LV0 |     |     |     | Mode | Conversion<br>Clock (fAD) | Number of<br>Clock<br>Cycles for<br>Conversion<br>Start Delay | Number of<br>Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Interrupt<br>Output |           | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.8 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 2.4 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 2.7 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V |                  |
| ADL<br>SP  | FR2                           | FR1 | FRO | LV1 | LVO  |                           |                                                               |                                                |                                            | Delay     |                                       | fclk =<br>1 MHz                       | fclk =<br>4 MHz                       | fCLK =<br>8 MHz                       | fCLK =<br>16 MHz                      | fCLK =<br>32 MHz |
| 0          | 0                             | 0   | 0   | 1   | 0    | Low<br>voltage            | fCLK/32                                                       | 1 fAD                                          | 80 fad                                     | 1 fad     | 10304/fcLK                            | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | 322 µs           |
| 0          | 0                             | 0   | 1   |     |      | 1                         | fcLk/16                                                       | 1 fAD                                          | 80 fAD                                     | 1 fad     | 5152/fclk                             | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | 322 µs                                | 161 µs           |

| 1 | 1 | 0              | 0  |   |  | fCLK/2 | 1 fad | 107 fad | 1 fad | 860/fclk  | Setting<br>prohibited | 215 µs   | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|---|----------------|----|---|--|--------|-------|---------|-------|-----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
| 1 | 1 | 0              | 1  |   |  | fCLK   | 1 fad | 107 fad | 1 fad | 430/fclk  | 430 µs                | 107.5 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| C |   | than ti<br>ove | he | ] |  |        |       |         |       | Setting p | rohibited             |          |                       |                       |                       |

- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0).
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use low voltage mode 2 with the conversion clock (fAD) with a frequency of no more than 16 MHz.

Table 20 - 6 Selection of A/D Conversion Time (6/11)

 Low voltage modes 1 and 2 with no A/D power supply stabilization wait time (software trigger no-wait scan mode and hardware trigger no-wait scan mode)

|                   |     | erter I<br>erter I |     |     |     |                |                           |                                                               |                                                | Number of                                           |                       |                                                 |                                                 |                                                 | on Start Delay<br>Output Delay                  |                                                 |
|-------------------|-----|--------------------|-----|-----|-----|----------------|---------------------------|---------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| (AD<br>M1)<br>ADL |     |                    |     |     |     | Mode           | Conversion<br>Clock (fAD) | Number of<br>Clock<br>Cycles for<br>Conversion<br>Start Delay | Number of<br>Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Interrupt<br>Output<br>Delay |                       | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V<br>fcLK = | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V<br>fCLK = | 1.8 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V<br>fCLK = | 2.4 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V<br>fCLK = | 2.7 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V<br>fcLK = |
| SP                | FR2 | FR1                | FRU | LV1 | LVU |                |                           |                                                               |                                                |                                                     |                       | 1 MHz                                           | 4 MHz                                           | 8 MHz                                           | 16 MHz                                          | 32 MHz                                          |
| 0                 | 0   | 0                  | 0   | 1   | 0   | Low<br>voltage | fCLK/32                   | 1 fAD                                                         | 80 fAD                                         | 1 fad                                               | 10304/fcLK            | Setting<br>prohibited                           | Setting<br>prohibited                           | Setting<br>prohibited                           | Setting<br>prohibited                           | 322 µs                                          |
| 0                 | 0   | v                  |     |     | 1   | fcLk/16        | 1 fAD                     | 80 fad                                                        | 1 fad                                          | 5152/fclk                                           | Setting<br>prohibited | Setting<br>prohibited                           | Setting<br>prohibited                           | 322 µs                                          | 161 µs                                          |                                                 |

| 1 | 1 | 0      | 0  |  | ĺ | fclk/2 | 1 fad | 107 fad | 1 fad | 860/fclk  | Setting prohibited | 215 µs   | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|---|--------|----|--|---|--------|-------|---------|-------|-----------|--------------------|----------|-----------------------|-----------------------|-----------------------|
| 1 | 1 | 0      | 1  |  |   | fCLK   | 1 fad | 107 fad | 1 fad | 430/fclk  | 430 µs             | 107.5 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| 0 |   | than t | he |  |   |        |       |         |       | Setting p | rohibited          |          |                       |                       |                       |

Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.

- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2 µs before setting the FR[2:0] and LV[1:0] bits.
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use low voltage mode 2 with the conversion clock (fAD) with a frequency of no more than 16 MHz.



(Page 1086)

Table 20 - 6 Selection of A/D Conversion Time (7/11)

#### 7. Normal modes 1 and 2 with A/D power supply stabilization wait time

(software trigger wait scan mode and hardware trigger wait scan mode<sup>Note 1</sup>)

|            | )<br>, FR2 FR1 FR0 LV1 L |   |   |    |   |                       |                           | Number of<br>Clock                | Number of           | Number of<br>Clock      |                 |                       |                       |                       | upply Stabiliz<br>rupt Output D |        |
|------------|--------------------------|---|---|----|---|-----------------------|---------------------------|-----------------------------------|---------------------|-------------------------|-----------------|-----------------------|-----------------------|-----------------------|---------------------------------|--------|
| (AD<br>M1) |                          | ( |   | )) |   | Mode                  | Conversion<br>Clock (fAD) | Cycles for<br>A/D Power<br>Supply | Clock<br>Cycles for | Cycles for<br>Interrupt |                 |                       | 2.4 V ≤ /             | AVREFP ≤ Vo           | o≤5.5 V                         |        |
| ADL<br>SP  | FR2 FR1 FR0 LV1 LV0      |   |   |    |   | Stabilization<br>Wait | Conversion                | Output<br>DelayNote 2             |                     | fclk =<br>1 MHz         | fclk =<br>4 MHz | fCLK =<br>8 MHz       | fCLK =<br>16 MHz      | fCLK =<br>32 MHz      |                                 |        |
| 0          | 0                        | 0 | 0 | 0  | 0 | Normal<br>1           | fCLK/32                   | 4 fad                             | 64 fAD              | 4 fAD                   | 8448/fcLK       | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited           | 264 µs |
| 0          |                          |   |   |    |   |                       | fCLK/16                   | 4 fad                             | 64 fad              | 4 fad                   | 4224/fclk       | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | 264 µs                          | 132 µs |

| 1 |    | 1             | 0             | 0  |   |  | fCLK/2 | 4 fad | 181 fad | 4 fad | 1464/fcLK | Setting<br>prohibited | 366 µs   | Setting<br>prohibited | Setting<br>prohibited | Setting prohibited    |
|---|----|---------------|---------------|----|---|--|--------|-------|---------|-------|-----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
| 1 |    | 1             | 0             | 1  |   |  | fclk   | 6 fAD | 181 fAD | 4 fAD | 734/fclk  | 734 µs                | 183.5 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| Γ | Ot | her ti<br>abo | han ti<br>ove | he | ] |  |        |       |         |       | Setting p | rohibited             |          |                       |                       |                       |

- Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1, 2, and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected. For details, see Table 20 - 6 Selection of A/D Conversion Time (1/11).
- Note 2. This number denotes the number of clock cycles for interrupt output delay in the one-shot conversion mode. When the sequential conversion mode is selected, the number of conversion clock (fAD) cycles becomes shorter by three cycles.
- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics. Note that the conversion time (tCONV) does not include A/D power supply stabilization wait time.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0).

Table 20 - 6 Selection of A/D Conversion Time (7/11)

7. Normal modes 1 and 2 with A/D power supply stabilization wait time

(software trigger wait scan mode and hardware trigger wait scan modeNote 1)

|            |     |     | Mode<br>Mode |     |     |             |                           | Number of<br>Clock                | Number of           | Number of<br>Clock      |           |                       |                       |                       | upply Stabiliz<br>rupt Output D |                  |
|------------|-----|-----|--------------|-----|-----|-------------|---------------------------|-----------------------------------|---------------------|-------------------------|-----------|-----------------------|-----------------------|-----------------------|---------------------------------|------------------|
| (AD<br>M1) |     | (   |              | ))  |     | Mode        | Conversion<br>Clock (fAD) | Cycles for<br>A/D Power<br>Supply | Clock<br>Cycles for | Cycles for<br>Interrupt |           |                       | 2.4 ∨ ≤ /             | AVREFP ≤ Vo           | o≤5.5 V                         |                  |
| ADL<br>SP  | FR2 | FR1 | FRO          | LV1 | LVO |             |                           | Stabilization<br>Wait             | Conversion          | Output<br>DelayNote 2   |           | fclk =<br>1 MHz       | fclk =<br>4 MHz       | fCLK =<br>8 MHz       | fCLK =<br>16 MHz                | fCLK =<br>32 MHz |
| 0          | 0   | 0   | 0            | 0   | 0   | Normal<br>1 | fCLK/32                   | 4 fAD                             | 64 fad              | 4 fAD                   | 8448/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited           | 264 µs           |
| 0          | 0   | 0   | 1            |     |     |             | fCLK/16                   | 4 fad                             | 64 fad              | 4 fad                   | 4224/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | 264 µs                          | 132 µs           |

| 1 | 1 | 0             | 0  |  | fcLK/2 | 4 fad | 181 fad | 4 fad | 1464/fcLK | Setting<br>prohibited | 366 µs   | Setting<br>prohibited | Setting<br>prohibited | Setting prohibited    |
|---|---|---------------|----|--|--------|-------|---------|-------|-----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
| 1 | 1 | 0             | 1  |  | fclk   | 6 fad | 181 fAD | 4 fAD | 734/fclk  | 734 µs                | 183.5 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| 0 |   | han ti<br>ove | he |  |        |       |         |       | Setting p | rohibited             |          |                       |                       |                       |

- Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1, 2, and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected. For details, see Table 20 - 6 Selection of A/D Conversion Time (1/11).
- Note 2. This number denotes the number of clock cycles for interrupt output delay in the one-shot conversion mode. When the sequential conversion mode is selected, the number of conversion clock (fAD) cycles becomes shorter by three cycles.
- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics. Note that the conversion time (tCONV) does not include A/D power supply stabilization wait time.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2 µs before setting the FR[2:0] and LV[1:0] bits.



(Page 1088)

Table 20 - 6 Selection of A/D Conversion Time (8/11)

#### Low voltage modes 1 and 2 with A/D power supply stabilization wait time (software trigger wait scan mode and hardware trigger wait scan mode<sup>Note 1</sup>)

|            |     |                               | Mode<br>Mode |         |       |                |                           | Number of                                                   |                                                | Number of                                  |                       |                                       |                                       |                                       | upply Stabiliz<br>rupt Output D       |                                       |
|------------|-----|-------------------------------|--------------|---------|-------|----------------|---------------------------|-------------------------------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| (AD<br>M1) |     | (ADM0)<br>FR2 FR1 FR0 LV1 LV0 |              |         |       | Mode           | Conversion<br>Clock (fAD) | Clock<br>Cycles for<br>A/D Power<br>Supply<br>Stabilization | Number of<br>Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Interrupt<br>Output |                       | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.8 V ≤<br>AVREFP ≤<br>Vod ≤<br>5.5 V | 2.4 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 2.7 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V |
| ADL<br>SP  | FR2 | FR1                           | FRO          | LV1     | LVO   |                |                           | Wait                                                        |                                                | DelayNote 2                                |                       | fclk =<br>1 MHz                       | fclk =<br>4 MHz                       | fCLK =<br>8 MHz                       | fCLK =<br>16 MHz                      | fCLK =<br>32 MHz                      |
| 0          | 0   | 0                             | 0            | 1       | 0     | Low<br>voltage | fCLK/32                   | 4 fad                                                       | 80 fAD                                         | 4 fad                                      | 10496/fcLK            | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | 328 µs                                |
| 0          | 0   |                               | 1            | fCLK/16 | 4 fad | 80 fad         | 4 fad                     | 5248/fclk                                                   | Setting<br>prohibited                          | Setting<br>prohibited                      | Setting<br>prohibited | 328 µs                                | 164 µs                                |                                       |                                       |                                       |

|   | 1 | 1 | 0             | 0  |  | fCLK/2 | 4 fad | 107 fAD | 4 fad | 872/fclk  | Setting<br>prohibited | 218 µs   | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|---|---|---------------|----|--|--------|-------|---------|-------|-----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
|   | 1 | 1 | 0             | 1  |  | fclk   | 6 fAD | 107 fad | 4 fAD | 438/fclk  | 438 µs                | 109.5 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| [ | 0 |   | han ti<br>ove | he |  |        |       |         |       | Setting p | rohibited             |          |                       |                       |                       |

- Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1, 2, and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected. For details, see Table 20 - 6 Selection of A/D Conversion Time (2/11).
- Note 2. This number denotes the number of clock cycles for interrupt output delay in the one-shot conversion mode. When the sequential conversion mode is selected, the number of conversion clock (fAD) cycles becomes shorter by three cycles.
- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics. Note that the conversion time (tCONV) does not include A/D power supply stabilization wait time.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0).

Date: Jan. 8, 2025

Table 20 - 6 Selection of A/D Conversion Time (8/11)

 Low voltage modes 1 and 2 with A/D power supply stabilization wait time (software trigger wait scan mode and hardware trigger wait scan mode<sup>Note 1</sup>)

|            |     |     | Node<br>Node |     |     |                |                           | Number of                                                   |                                                | Number of                                  |            |                                       |                                       |                                       | upply Stabiliz<br>rupt Output D       |                                       |
|------------|-----|-----|--------------|-----|-----|----------------|---------------------------|-------------------------------------------------------------|------------------------------------------------|--------------------------------------------|------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| (AD<br>M1) |     | (   | ADMO         | )   |     | Mode           | Conversion<br>Clock (fAD) | Clock<br>Cycles for<br>A/D Power<br>Supply<br>Stabilization | Number of<br>Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Interrupt<br>Output |            | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.6 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 1.8 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 2.4 V ≤<br>AVREFP ≤<br>VDD ≤<br>5.5 V | 2.7 V ≤<br>AVREFP :<br>VDD ≤<br>5.5 V |
| ADL<br>SP  | FR2 | FR1 | FRO          | LV1 | LVO |                |                           | Wait                                                        |                                                | DelayNote 2                                |            | fclk =<br>1 MHz                       | fclk =<br>4 MHz                       | fCLK =<br>8 MHz                       | fCLK =<br>16 MHz                      | fclk =<br>32 MHz                      |
| 0          | 0   | 0   | 0            | 1   | 0   | Low<br>voltage | fCLK/32                   | 4 fad                                                       | 80 fad                                         | 4 fad                                      | 10496/fcLK | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | 328 µs                                |
| 0          | 0   | 0   | 1            |     |     | 1              | fcLk/16                   | 4 fad                                                       | 80 fad                                         | 4 fad                                      | 5248/fclk  | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                 | 328 µs                                | 164 µs                                |

| ] | 1 | 1 | 0             | 0  |  | fCLK/2 | 4 fad | 107 fad | 4 fad | 872/fclk  | Setting<br>prohibited | 218 µs   | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|---|---|---------------|----|--|--------|-------|---------|-------|-----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
|   | 1 | 1 | 0             | 1  |  | fclk   | 6 fad | 107 fad | 4 fad | 438/fclk  | 438 µs                | 109.5 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|   | 0 |   | han ti<br>ove | he |  |        |       |         |       | Setting p | rohibited             |          |                       |                       |                       |

- Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1, 2, and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected. For details, see Table 20 - 6 Selection of A/D Conversion Time (2/11).
- Note 2. This number denotes the number of clock cycles for interrupt output delay in the one-shot conversion mode. When the sequential conversion mode is selected, the number of conversion clock (fAD) cycles becomes shorter by three cycles.
- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics. Note that the conversion time (tCONV) does not include A/D power supply stabilization wait time.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2 µs before setting the FR[2:0] and LV[1:0] bits.



## (Page 1090)

Table 20 - 6 Selection of A/D Conversion Time (9/11)

 Normal mode 1 with no A/D power supply stabilization wait time (in advanced mode) when ANI0 to ANI7 are to be A/D converted

|            |     | erter N<br>erter N |      |     |     |             |                           | Number of                         | Number of                         | Number of                                  |           |                 |                       | Time (Con<br>Time + Inter |                       |                  |                                       |
|------------|-----|--------------------|------|-----|-----|-------------|---------------------------|-----------------------------------|-----------------------------------|--------------------------------------------|-----------|-----------------|-----------------------|---------------------------|-----------------------|------------------|---------------------------------------|
| (AD<br>M1) |     | Q                  | ADMO | ))  |     | Mode        | Conversion<br>Clock (fAD) | Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Interrupt<br>Output |           |                 | 2.4                   | /≤Vop≤5                   | 5.5 V                 |                  | 2.7 V ≤<br>V <sub>DD</sub> ≤<br>5.5 V |
| ADL<br>SP  | FR2 | FR1                | FRO  | LV1 | LVO |             |                           | Start Delay                       | Note                              | Delay                                      |           | fclk =<br>1 MHz | fCLK =<br>4 MHz       | fCLK =<br>8 MHz           | fCLK =<br>16 MHz      | fCLK =<br>32 MHz | fCLK =<br>48 MHz                      |
| 0          | 0   | 0                  | 0    | 0   | 0   | Normal<br>1 | fCLK/32                   | 1 fad                             | 41 fad                            | 1 fad                                      | 1376/fcLK |                 | Setting<br>prohibited | Setting<br>prohibited     | Setting<br>prohibited | 43 µs            | 28.667 µs                             |
| 0          | 0   | 0                  | 1    |     |     |             | fCLK/16                   | 1 fad                             | 41 fAD                            | 1 fad                                      | 688/fclk  | Setting         | Setting               | Setting<br>prohibited     | 43 µs                 | 21.5 µs          | 14.333 µ                              |

| Τ | 1  | 1             | 0             | 0  |  | fCLK/2 | 1 fad | 41 fad | 1 fAD | 86/fclk | Setting<br>prohibited | 21.5 µs  | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|----|---------------|---------------|----|--|--------|-------|--------|-------|---------|-----------------------|----------|-----------------------|-----------------------|-----------------------|-----------------------|
| Γ | 1  | 1             | 0             | 1  |  | fclk   | 1 fAD | 41 fAD | 1 fAD | 43/fclk | 43 µs                 | 10.75 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|   | Ot | her ti<br>abo | han th<br>ove | he |  |        |       |        |       | Setting | prohibited            |          |                       |                       |                       |                       |

Note The listed value denotes the number of clock cycles for conversion when the setting of ADSPMOD[1:0] in the ADSPMODregister is 01B.

- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0).
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. The conversion start time applies when no contention is present. For details on the conversion start time when contention is present, see Note 2 for Figure 20 5. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the simultaneous sampling is to proceed, the following conditions must be met.  $ADLSP = 0, FR[2:0] = 100, LV[1:0] = 00, fCLK \ge 32 MHz, VDD \ge 2.7 V$  $ADLSP = 0, FR[2:0] = 101, LV[1:0] = 00, fCLK \ge 16 MHz, VDD \ge 2.7 V$

Remark fclk: CPU/peripheral hardware clock frequency

Table 20 - 6 Selection of A/D Conversion Time (9/11)

9. Normal mode 1 with no A/D power supply stabilization wait time (in advanced mode) when ANI0 to ANI7 are to be A/D converted

|            |     | erter I<br>erter I |     |     |     |             |            | Number of                         | Number of                         | Number of                                  |           |                       |                       |                       | version Sta<br>rupt Output |                  |                           |
|------------|-----|--------------------|-----|-----|-----|-------------|------------|-----------------------------------|-----------------------------------|--------------------------------------------|-----------|-----------------------|-----------------------|-----------------------|----------------------------|------------------|---------------------------|
| (AD<br>M1) |     | (                  | ADM | ))  |     | Mode        | Conversion | Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Interrupt<br>Output |           |                       | 2.4                   | /≤VDD≤                | 5.5 V                      |                  | 2.7 V ≤<br>VDD ≤<br>5.5 V |
| ADL<br>SP  | FR2 | FR1                | FRO | LV1 | LVO |             |            | Start Delay                       | Note                              | Delay                                      |           | fcLK =<br>1 MHz       | fCLK =<br>4 MHz       | fclk =<br>8 MHz       | fCLK =<br>16 MHz           | fclk =<br>32 MHz | fCLK =<br>48 MHz          |
| 0          | 0   | 0                  | 0   | 0   | 0   | Normal<br>1 | fCLK/32    | 1 fad                             | 41 fad                            | 1 fAD                                      | 1376/fcLk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited      | 43 µs            | 28.667                    |
| 0          | 0   | 0                  | 1   |     |     |             | fCLK/16    | 1 fad                             | 41 fAD                            | 1 fAD                                      | 688/fclk  | Setting               | Setting               | Setting               | 43 µs                      | 21.5 µs          | 14.333 (                  |

| 1 | 1 | 0             | 0  |  | fCLK/2 | 1 fad | 41 fad | 1 fad | 86/fclk | Setting<br>prohibited | 21.5 µs  | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|---|---------------|----|--|--------|-------|--------|-------|---------|-----------------------|----------|-----------------------|-----------------------|-----------------------|-----------------------|
| 1 | 1 | 0             | 1  |  | fCLK   | 1 fAD | 41 fAD | 1 fAD | 43/fclk | 43 µs                 | 10.75 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| 0 |   | han th<br>ove | ne |  |        |       |        |       | Setting | prohibited            |          |                       |                       |                       |                       |

Note The listed value denotes the number of clock cycles for conversion when the setting of ADSPMOD[1:0] in the ADSPMODregister is 01B.

- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2 µs before setting the FR[2:0] and LV[1:0] bits.
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. The conversion start time applies when no contention is present. For details on the conversion start time when contention is present, see Note 2 for Figure 20 5. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.

Caution 4. When the simultaneous sampling is to proceed, the following conditions must be met.  $ADLSP = 0, FR[2:0] = 100, LV[1:0] = 00, fCLK \ge 32 MHz, VDD \ge 2.7 V$  $ADLSP = 0, FR[2:0] = 101, LV[1:0] = 00, fCLK \ge 16 MHz, VDD \ge 2.7 V$ 

Remark fclk: CPU/peripheral hardware clock frequency



## (Page 1091)

Table 20 - 6 Selection of A/D Conversion Time (10/11)

 Normal modes 1 and 2 with no A/D power supply stabilization wait time (in advanced mode) when ANI0 to ANI7, and ANI16 to ANI30 are to be A/D converted

| A/D (<br>A/D ( |     |     |      | ~   |     |             |                           | Number of                         | Number of | Number of                                  |           |                       |                       |                       | version Sta<br>rupt Output |                  |                           |
|----------------|-----|-----|------|-----|-----|-------------|---------------------------|-----------------------------------|-----------|--------------------------------------------|-----------|-----------------------|-----------------------|-----------------------|----------------------------|------------------|---------------------------|
| (AD<br>M1)     |     | (/  | ADMO | ))  |     | Mode        | Conversion<br>Clock (fAD) | Clock<br>Cycles for<br>Conversion |           | Clock<br>Cycles for<br>Interrupt<br>Output |           |                       | 2.4 \                 | / ≤ VDD ≤ 5           | 5.5 V                      |                  | 2.7 V ≤<br>VDD ≤<br>5.5 V |
| ADL<br>SP      | FR2 | FR1 | FRO  | LV1 | LVO |             |                           | Start Delay                       | Note      | Delay                                      |           | fclk =<br>1 MHz       | fCLK =<br>4 MHz       | fCLK =<br>8 MHz       | fCLK =<br>16 MHz           | fCLK =<br>32 MHz | fclk =<br>48 MHz          |
| 0              | 0   | 0   | 0    | 0   | 0   | Normal<br>1 | fCLK/32                   | 1 fad                             | 48 fad    | 1 fad                                      | 1600/fclk | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited      | 50 µs            | 33.333 µs                 |
| 0              | 0   | 0   | 1    |     |     |             | fCLK/16                   | 1 fad                             | 48 fad    | 1 fAD                                      | 800/fclk  | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | 50 µs                      | 25 µs            | 16.667 µs                 |

|   | 1  | 1             | 0             | 0  |  | fCLK/2 | 1 fad | 261 fAD | 1 fad | 526/fclk | Setting<br>prohibited | 131.5 µs |   | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|----|---------------|---------------|----|--|--------|-------|---------|-------|----------|-----------------------|----------|---|-----------------------|-----------------------|-----------------------|
|   | 1  | 1             | 0             | 1  |  | fclk   | 1 fAD | 261 fAD | 1 fad | 263/fCLK | 263 µs                | 65.75 µs |   | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| Γ | Ot | her ti<br>abo | han th<br>ove | ne |  |        |       |         |       | Setting  | prohibited            |          | _ |                       | -                     |                       |

Note The listed value denotes the number of clock cycles for conversion when the setting of ADSPMOD[1:0] in the ADSPMOD register is 00B.

- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0).
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. The conversion start time applies when no contention is present. For details on the conversion start time when contention is present, see Note 2 for Figure 20 5. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use normal mode 2.

Table 20 - 6 Selection of A/D Conversion Time (10/11)

10. Normal modes 1 and 2 with no A/D power supply stabilization wait time (in advanced mode) when ANI0 to ANI7, and ANI16 to ANI30 are to be A/D converted

|            |     | erter I<br>erter I |     |     |     |             |                           | Number of                         | Number of | Number of                                  |           |                 |                       |                       | version Sta<br>rupt Output |                  |                           |
|------------|-----|--------------------|-----|-----|-----|-------------|---------------------------|-----------------------------------|-----------|--------------------------------------------|-----------|-----------------|-----------------------|-----------------------|----------------------------|------------------|---------------------------|
| (AD<br>M1) |     | 6                  | ADM | ))  |     | Mode        | Conversion<br>Clock (fAD) | Clock<br>Cycles for<br>Conversion |           | Clock<br>Cycles for<br>Interrupt<br>Output |           |                 | 2.4                   | /≤VDD≤                | 5.5 V                      |                  | 2.7 V ≤<br>VDD ≤<br>5.5 V |
| ADL<br>SP  | FR2 | FR1                | FRO | LV1 | LVO |             |                           | Start Delay                       | Note      | Delay                                      |           | fclk =<br>1 MHz | fclk =<br>4 MHz       | fclk =<br>8 MHz       | fCLK =<br>16 MHz           | fCLK =<br>32 MHz | fCLK =<br>48 MHz          |
| 0          | 0   | 0                  | 0   | 0   | 0   | Normal<br>1 | fCLK/32                   | 1 fad                             | 48 fAD    | 1 fAD                                      | 1600/fclk |                 | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited      | 50 µs            | 33.333 µ                  |
| 0          | 0   | 0                  | 1   |     |     |             | fCLK/16                   | 1 fAD                             | 48 fAD    | 1 fAD                                      | 800/fclk  | Setting         | Setting               | Setting<br>prohibited | 50 µs                      | 25 µs            | 16.667 µ                  |

| ] | 1 | 1              | 0             | 0  |  | fcLK/2 | 1 fad | 261 fAD | 1 fad | 528/fclk | Setting<br>prohibited | 131.5 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|---|----------------|---------------|----|--|--------|-------|---------|-------|----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
|   | 1 | 1              | 0             | 1  |  | fclk   | 1 fad | 261 fAD | 1 fAD | 263/fCLK | 263 µs                | 65.75 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|   | 0 | ther ti<br>abo | han ti<br>ove | ne |  |        |       |         |       | Setting  | prohibited            |          |                       |                       |                       |

Note The listed value denotes the number of clock cycles for conversion when the setting of ADSPMOD[1:0] in the ADSPMOD register is 00B.

- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2 µs before setting the FR[2:0] and LV[1:0] bits.
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. The conversion start time applies when no contention is present. For details on the conversion start time when contention is present, see Note 2 for Figure 20 5. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use normal mode 2.



## (Page 1093)

#### Table 20 - 6 Selection of A/D Conversion Time (11/11)

# 11. Low voltage modes 1 and 2 with no A/D power supply stabilization wait time (advanced mode)

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AVREFP           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| ADL EP2 EP1 EP1 IV1 IV0 fcLk = fcLk = fcLk = fcLk = fcLk =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.5 V            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fcLK =<br>48 MHz |
| 0 0 0 1 0 Low voltage fCLK/32 1 fAD 80 fAD 1 fAD 2824/fCLK Setting Setting Setting Setting setting brohibited prohibited  | 54.667 µs        |
| 0 0 0 1 1 fcLk/18 1 fAD 80 fAD 1 fAD 1312/fcLK Setting Setting setting setting brohibited prohibited prohibite | 27.333 µs        |

| 1 | 1             | 0             | 0  |  | fCLK/2 | 1 fad | 107 fad | 1 fad | 218/fCLK | Setting<br>prohibited | 54.5 µs  | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
|---|---------------|---------------|----|--|--------|-------|---------|-------|----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|
| 1 | 1             | 0             | 1  |  | fCLK   | 1 fAD | 107 fad | 1 fad | 109/fclk | 109 µs                | 27.25 µs | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |
| 0 | ther t<br>abo | han ti<br>ove | he |  |        |       |         |       | Setting  | prohibited            |          |                       |                       |                       |

- Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.
- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0).
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. The conversion start time applies when no contention is present. For details on the conversion start time when contention is present, see Note 2 for Figure 20 5. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use low voltage mode 2 with the conversion clock (fAD) with a frequency of no more than 16 MHz.

#### Table 20 - 6 Selection of A/D Conversion Time (11/11)

 Low voltage modes 1 and 2 with no A/D power supply stabilization wait time (advanced mode)

|            |     |     | Mode<br>Mode |     |     |                |                           |                                                               |                                                | Number of                                  |           |                                       |                                       | Time (Con<br>Time + Inter                         |                                       |                                       |                                       |
|------------|-----|-----|--------------|-----|-----|----------------|---------------------------|---------------------------------------------------------------|------------------------------------------------|--------------------------------------------|-----------|---------------------------------------|---------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| (AD<br>M1) |     | (   | ADM          | ))  |     | Mode           | Conversion<br>Clock (fAD) | Number of<br>Clock<br>Cycles for<br>Conversion<br>Start Delay | Number of<br>Clock<br>Cycles for<br>Conversion | Clock<br>Cycles for<br>Interrupt<br>Output |           | 1.6 V ≤<br>AVREFP<br>≤ VDD ≤<br>5.5 V | 1.6 V ≤<br>AVREFP<br>≤ VDD ≤<br>5.5 V | 1.8 V ≤<br>AVREFP<br>≤ V <sub>DD</sub> ≤<br>5.5 V | 2.4 V ≤<br>AVREFP<br>≤ VDD ≤<br>5.5 V | 2.7 V ≤<br>AVREFP<br>≤ VDD ≤<br>5.5 V | 2.7 V ≤<br>AVREFP<br>≤ VDD ≤<br>5.5 V |
| ADL<br>SP  | FR2 | FR1 | FRO          | LV1 | LVO |                |                           | ,                                                             |                                                | Delay                                      |           | fclk =<br>1 MHz                       | fclk =<br>4 MHz                       | fCLK =<br>8 MHz                                   | fCLK =<br>16 MHz                      | fCLK =<br>32 MHz                      | fclk =<br>48 MHz                      |
| 0          | 0   | 0   | 0            | 1   | 0   | Low<br>voltage | fCLK/32                   | 1 fad                                                         | 80 fad                                         | 1 fAD                                      | 2624/fcLK | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                             | Setting<br>prohibited                 | 82 µs                                 | 54.667 µ                              |
| 0          | 0   | 0   | 1            |     |     | 1              | fCLK/16                   | 1 fAD                                                         | 80 fad                                         | 1 fAD                                      | 1312/fcLk | Setting<br>prohibited                 | Setting<br>prohibited                 | Setting<br>prohibited                             | 82 µs                                 | 41 µs                                 | 27.333 µ                              |

| 1 | 1 | 0             | 0  |   |  | fCLK/2 | 1 fAD | 107 fad | 1 fad | 218/fclk | Setting<br>prohibited | 54.5 µs  | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |  |
|---|---|---------------|----|---|--|--------|-------|---------|-------|----------|-----------------------|----------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| 1 | 1 | 0             | 1  |   |  | fCLK   | 1 fad | 107 fAD | 1 fad | 109/fclk | 109 µs                | 27.25 µs |                       | Setting<br>prohibited | Setting<br>prohibited | Setting<br>prohibited |  |
| 0 |   | han ti<br>ove | he | ] |  |        |       |         |       | Setting  | prohibited            |          |                       |                       |                       |                       |  |

Caution 1. The A/D conversion time must be within the relevant range of conversion clock (fAD) and conversion times (tCONV) described in 43.6.1 A/D converter characteristics or 44.6.1 A/D converter characteristics.

- Caution 2. Rewrite the FR[2:0] and LV[1:0] bits to different values while conversion is stopped (ADCS = 0, ADCE = 0). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2 µs before setting the FR[2:0] and LV[1:0] bits.
- Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. The conversion start time applies when no contention is present. For details on the conversion start time when contention is present, see Note 2 for Figure 20 5. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
- Caution 4. When the internal reference voltage or the temperature sensor output voltage is selected as the conversion target, use low voltage mode 2 with the conversion clock (fAD) with a frequency of no more than 16 MHz.



# 3. 20.3.4 A/D converter mode register 1 (ADM1) (p. 1096)

Incorrect:

Caution 1. Only rewrite the value of the ADM1 register while conversion operation is stopped (ADCS = 0, ADCE = 0).

Caution 2. To complete A/D conversion, specify at least the following time as the hardware trigger interval:

Hardware trigger no-wait mode: 2 cycles of the fCLK clock + conversion start time + A/D conversion time

Hardware trigger wait mode: 2 cycles of the fCLK clock + conversion start time + A/D

power supply stabilization wait time + A/D conversion time

(omitted)

Date: Jan. 8, 2025

#### Correct:

#### (omitted)

Caution 1. Only rewrite the value of the ADM1 register while conversion operation is stopped (ADCS = 0, ADCE = 0).

Caution 2. To complete A/D conversion, specify at least the following time as the hardware trigger interval:

Hardware trigger no-wait mode: 2 cycles of the fCLK clock + conversion start time + A/D

#### conversion time

Hardware trigger wait mode: 2 cycles of the fCLK clock + conversion start time + A/D power

supply stabilization wait time + A/D conversion time + 5µs



# 4. 20.3.5 A/D converter mode register 2 (ADM2) (Page 1098, Page 1099)

Incorrect:

(Page 1098)

#### (omitted)

Figure 20 - 8 Format of A/D Converter Mode Register 2 (ADM2) (1/2)

F0010H Address: After reset: 00H R/W: R/W

| Symbol | 7       | 6       | 5      | 4 | <3>   | <2> | <1>    | <0>    |
|--------|---------|---------|--------|---|-------|-----|--------|--------|
| ADM2   | ADREFP1 | ADREFP0 | ADREFM | 0 | ADRCK | AWC | ADTYP1 | ADTYP0 |

| ADREFP1                                                                                                                                                          | ADREFP0                                                                                                                                          | Selection of the + side reference voltage source of the A/D converter                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                                                                | 0                                                                                                                                                | Supplied from VDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                                                                                                                                                | 1                                                                                                                                                | Supplied from P20/AVREFP/ANI0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                                                                                                                                                | 0                                                                                                                                                | Supplied from the internal reference voltage Note 1                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                                                                                                                                                | 1                                                                                                                                                | Discharged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <1> Set AD<br>ADREI<br>32> Set AD<br>ADREI<br>53> Refere<br>This st<br>10B.<br>54> Chang<br>55> Refere<br>66> Set AD<br>57> Refere<br>When 1<br>conver<br>When 1 | DCE = 0.<br>DREFP[1:0] bits<br>nce voltage<br>ep is only n<br>e the value<br>nce voltage<br>DCE = 1.<br>nce voltage<br>the ADREF<br>sion clock ( | cedure to rewrite the ADREFP[1:0] bits.<br>to 11B. This step is only necessary when the value of the<br>is changed to 10B.<br>a discharge time: 1 μs<br>lecessary when the value of the ADREFP[1:0] bits is changed to<br>of the ADREFP[1:0] bit.<br>a stabilization wait time A<br>e stabilization wait time B<br>P[1:0] bits are set to 10B, A = 5 μs and B = 1 μs + 2 cycles of the<br>fAD).<br>P[1:0] bits are set to 00B or 01B, <b>a wait A is not required</b> and B =<br>the conversion clock (fAD). |
| <ul> <li>When the<br/>output volta</li> </ul>                                                                                                                    | ADREFP[1<br>ige and inte                                                                                                                         | time, start the A/D conversion.<br>:0] bits are set to 10B, A/D conversion of the temperature sensor<br>ernal reference voltage <sup>Note 1</sup> cannot proceed.<br>D conversion while ADISS = 0.                                                                                                                                                                                                                                                                                                           |

(omitted)



Date: Jan. 8, 2025

#### Correct:

#### (omitted)

Figure 20 - 8 Format of A/D Converter Mode Register 2 (ADM2) (1/2)

Address: F0010H 00H After reset: R/W R/W:

| Symbol | 7       | 6       | 5      | 4 | <3>   | <2> | <1>    | <0>    |
|--------|---------|---------|--------|---|-------|-----|--------|--------|
| ADM2   | ADREFP1 | ADREFP0 | ADREFM | 0 | ADRCK | AWC | ADTYP1 | ADTYP0 |

|                                                                                  | ADREFP0                                                                                                          | Selection of the + side reference voltage source of the A/D converter                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                | 0                                                                                                                | Supplied from V <sub>DD</sub>                                                                                                                                                                                                                                                                                                               |
| 0                                                                                | 1                                                                                                                | Supplied from P20/AVREFP/ANI0                                                                                                                                                                                                                                                                                                               |
| 1                                                                                | 0                                                                                                                | Supplied from the internal reference voltage Note 1                                                                                                                                                                                                                                                                                         |
| 1                                                                                | 1                                                                                                                | Discharged                                                                                                                                                                                                                                                                                                                                  |
| ADREF<br>ADREF<br>This sto<br>10B. Change<br>Change<br>Change<br>Set AD Set AD < | REFP[1:0]<br>FP[1:0] bits<br>nce voltage<br>ep is only n<br>e the value<br>nce voltage<br>CE = 1.<br>nce voltage | to 11B. This step is only necessary when the value of the<br>is changed to 10B.<br>e discharge time: 1 μs<br>necessary when the value of the ADREFP[1:0] bits is changed to<br>of the ADREFP[1:0] bit.<br>e stabilization wait time A<br>e stabilization wait time B<br>P[1:0] bits are set to 10B, A = 5 μs and B = 1 μs + 2 cycles of the |

#### Date: Jan. 8, 2025

(Page 1099)

(omitted)

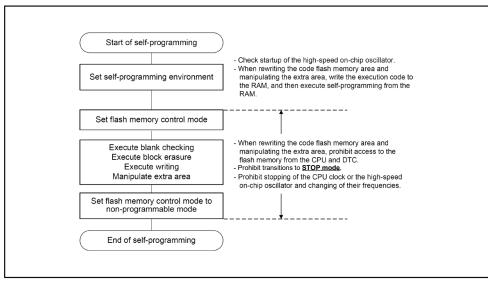
| AWC                            | Specification of the SNOOZE mode                                                                                                                                                                                                                                                                                          |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                              | Does not use the SNOOZE mode function                                                                                                                                                                                                                                                                                     |
| 1                              | Uses the SNOOZE mode function.                                                                                                                                                                                                                                                                                            |
| When there is a l              | nardware trigger signal in the STOP mode, the STOP mode is exited, and A/D conversion is                                                                                                                                                                                                                                  |
| performed withou               | it operating the CPU (the SNOOZE mode).                                                                                                                                                                                                                                                                                   |
| speed on-chip                  | mode function can only be specified when the high-speed on-chip oscillator clock or middle-<br>oscillator clock is selected for the CPU/peripheral hardware clock (fCLK). If any other clock is<br>cifying this mode is prohibited.                                                                                       |
| -                              | ne SNOOZE mode function, set AWC to 0 in software trigger wait mode, and set<br>ardware trigger wait mode.                                                                                                                                                                                                                |
| -                              | DOZE mode function in the software trigger no-wait mode, hardware trigger no-wait<br>anced mode is prohibited.                                                                                                                                                                                                            |
| Using the SN                   | OOZE mode function in hardware trigger wait mode in sequential conversion mode is prohibited.                                                                                                                                                                                                                             |
| SNOOZE mo                      | ne SNOOZE mode function, specify a hardware trigger interval of at least "transition time to.<br>de <sup>Note 2</sup> + conversion start time + A/D power supply stabilization wait time + A/D.<br>ime + 2 cycles of the fCLK clock".                                                                                     |
| just before sh<br>mode to norm | ing the SNOOZE mode, be sure to set the AWC bit to 0 in normal operation and change it to 1 fiting to STOP mode. Also, be sure to change the AWC bit to 0 after returning from STOP al operation. If the AWC bit is left set to 1, A/D conversion will not start normally in spite of the NOOZE mode or normal operation. |

(omitted)

| AWC                              | Specification of the SNOOZE mode                                                                                                                                                                                                          |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                | Does not use the SNOOZE mode function                                                                                                                                                                                                     |
| 1                                | Uses the SNOOZE mode function.                                                                                                                                                                                                            |
| When there is a                  | hardware trigger signal in the STOP mode, the STOP mode is exited, and A/D conversion is                                                                                                                                                  |
| performed witho                  | out operating the CPU (the SNOOZE mode).                                                                                                                                                                                                  |
| speed on-ch                      | E mode function can only be specified when the high-speed on-chip oscillator clock or middle-<br>ip oscillator clock is selected for the CPU/peripheral hardware clock (fCLK). If any other clock is<br>ecifying this mode is prohibited. |
| -                                | the SNOOZE mode function, set AWC to 0 in software trigger wait mode, and set<br>hardware trigger wait mode.                                                                                                                              |
| •                                | NOOZE mode function in the software trigger no-wait mode, hardware trigger no-wait<br>vanced mode is prohibited.                                                                                                                          |
| <ul> <li>Using the SN</li> </ul> | NOOZE mode function in hardware trigger wait mode in sequential conversion mode is prohibited                                                                                                                                             |
| SNOOZE mo                        | the SNOOZE mode function, specify a hardware trigger interval of at least "transition time to ode <sup>Note 2</sup> + conversion start time + A/D power supply stabilization wait time + A/D conversion time f the fCLK clock + 5us".     |
|                                  | using the SNOOZE mode, be sure to set the AWC bit to 0 in normal operation and change it to 1 hifting to STOP mode. Also, be sure to change the AWC bit to 0 after returning from STOP                                                    |

just before shifting to STOP mode. Also, be sure to change the AWC bit to 0 after returning from STOP mode to normal operation. If the AWC bit is left set to 1, A/D conversion will not start normally in spite of the subsequent SNOOZE mode or normal operation.

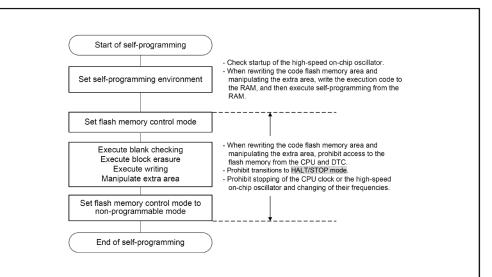
(omitted)




# 5. 39.6.1 Self-programming procedure (Page 1760)

#### Incorrect:

The following figure illustrates a flow for rewriting the flash memory by using self-programming. For details on registers for use in self-programming, see 39.6.2 Registers to control the flash memory.






#### Correct:

The following figure illustrates a flow for rewriting the flash memory by using self-programming. For details on registers for use in self-programming, see 39.6.2 Registers to control the flash memory.

Figure 39 - 8 Flow of Self-Programming (Rewriting the Flash Memory)





# 6. 39.10.1 Overview of the data flash memory (Page 1811)

Incorrect:

An overview of the data flash memory is provided below.

(omitted)

• Manipulating the DFLCTL register is prohibited while rewriting the data flash memory.

• Transition to the **STOP mode** is prohibited while rewriting the data flash memory.

Date: Jan. 8, 2025

## Correct:

An overview of the data flash memory is provided below.

- Manipulating the DFLCTL register is prohibited while rewriting the data flash memory.
- Transition to the HALT/STOP mode is prohibited while rewriting the data flash memory.



# 7. <u>40.3 Security Settings for On-chip Debugging (Page 1814)</u>

## Incorrect:

To protect against third parties reading the contents of memory, on-chip debugging includes the following functionality.

- Disabling of connection between the RL78 microcontroller and the programmer or on-chip debugger (see 39.9 Security Settings).
- On-chip debugging control bits in the flash memory at 000C3H (see Section 38 Option Bytes)
- An area in the range from 000C4H to 000CDH to hold the security ID code for on-chip debugging.<sup>Note</sup>
- Note The area to hold the security ID code for use in on-chip debugging is also used to hold the ID code for the programmer connection ID authentication when a programmer is to be used.

Table 40 - 1 On-chip Debug Security ID

| Address          | Security ID Code for On-chip Debugging |
|------------------|----------------------------------------|
| 000C4H to 000CDH | Any 10-byte ID code <sup>Note</sup>    |
| 040C4H to 040CDH |                                        |

## Correct:

To protect against third parties reading the contents of memory, on-chip debugging includes the following functionality.

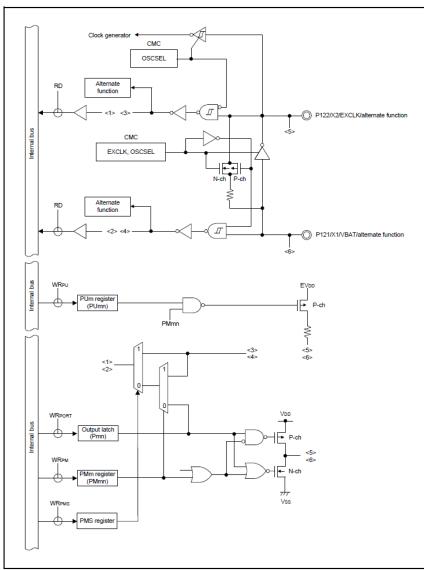
- Disabling of connection between the RL78 microcontroller and the programmer or on-chip debugger (see 39.9 Security Settings).
- On-chip debugging control bits in the flash memory at 000C3H (see Section 38 Option Bytes)
- $\cdot$  An area in the range from 000C4H to 000CDH to hold the security ID code for on-chip debugging.  $^{\text{Note}}$

Note The area to hold the security ID code for use in on-chip debugging is also used to hold the ID code for the programmer connection ID authentication when a programmer is to be used.

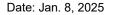
#### Table 40 - 1 On-chip Debug Security ID

| Address          | Security ID Code for On-chip Debugging   |
|------------------|------------------------------------------|
| 000C4H to 000CDH | Any 10-byte ID code <sup>Note 1, 2</sup> |
| 040C4H to 040CDH |                                          |

Note 2. Set the 10-byte security ID for on-chip debugging at both 000C4H to 000CDH and 040C4H to 040CDH when boot swapping is to be used or the value of the BTFLG bit in the FLSEC register is 0.

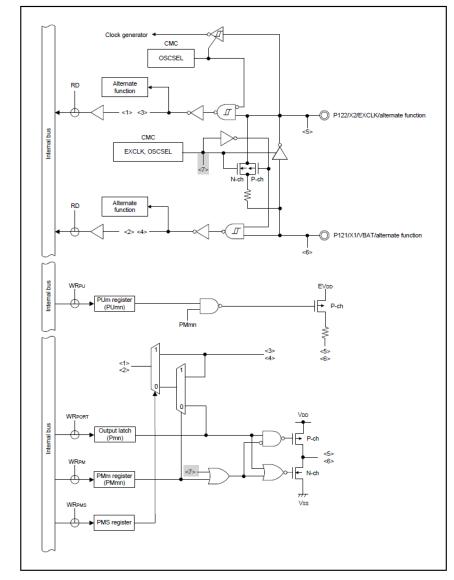



# 8. <u>2.4 Block Diagrams of Pins (Page 89, Page 96, Page 102, Page 103,</u> <u>Page 104)</u>


# Incorrect:

# (Page 89)

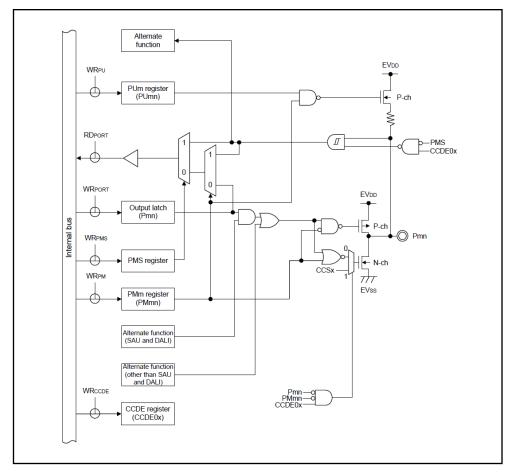
Figure 2 - 13 Pin Block Diagram for Pin Type 7-2-1




© 2025 Renesas Electronics Corporation. All rights reserved.



## Correct:







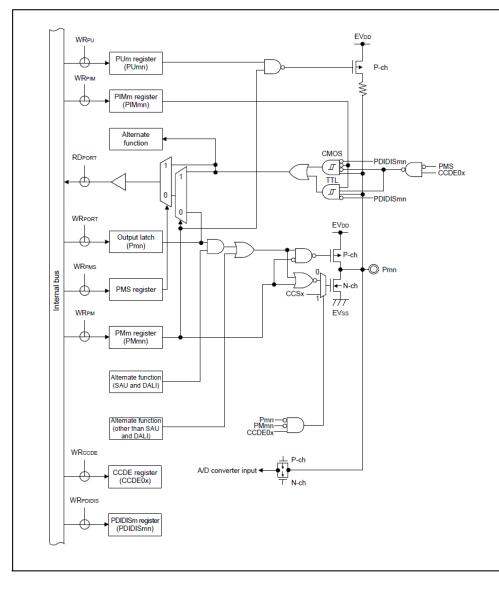


# <u>(Page 96)</u>

Figure 2 - 20 Pin Block Diagram for Pin Type 7-38-3



Date: Jan. 8, 2025


Figure 2 - 20 Pin Block Diagram for Pin Type 7-38-3





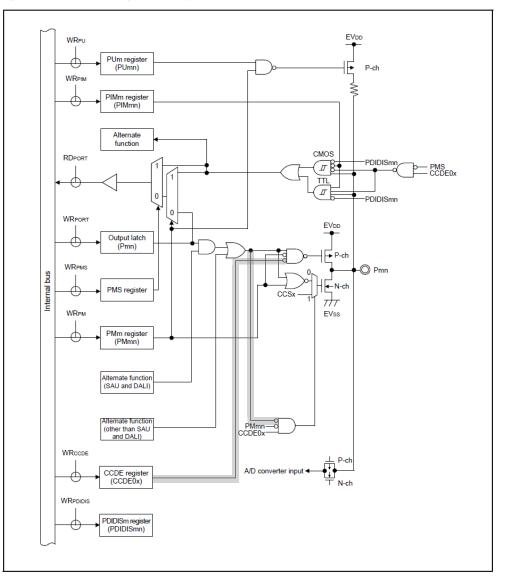
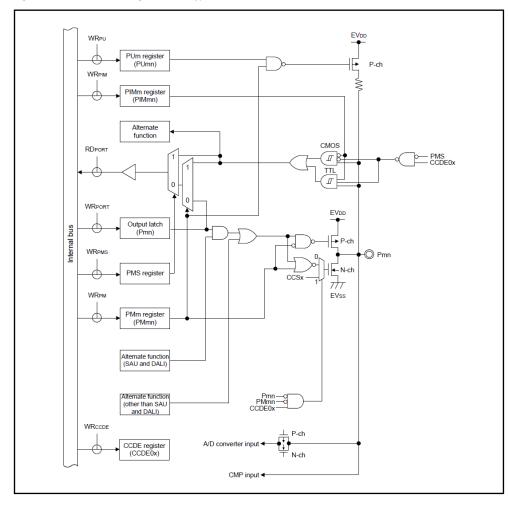

## (Page 102)

Figure 2 - 26 Pin Block Diagram for Pin Type 8-41-1



Date: Jan. 8, 2025


Figure 2 - 26 Pin Block Diagram for Pin Type 8-41-1





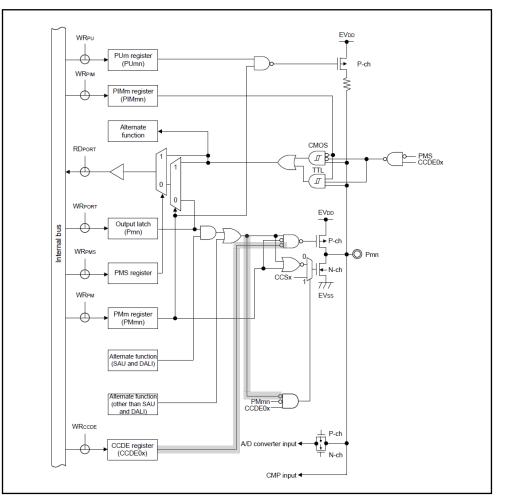
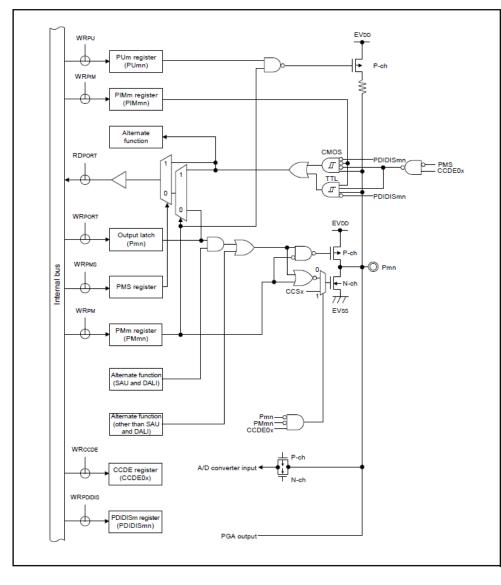

## (Page 103)

Figure 2 - 27 Pin Block Diagram for Pin Type 8-41-2

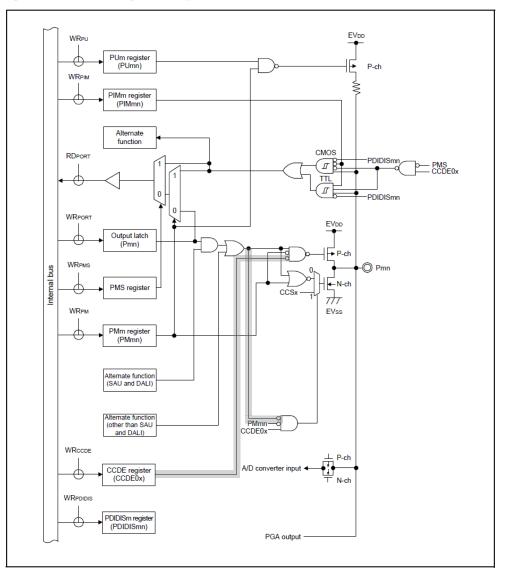


Date: Jan. 8, 2025


#### Figure 2 - 27 Pin Block Diagram for Pin Type 8-41-2



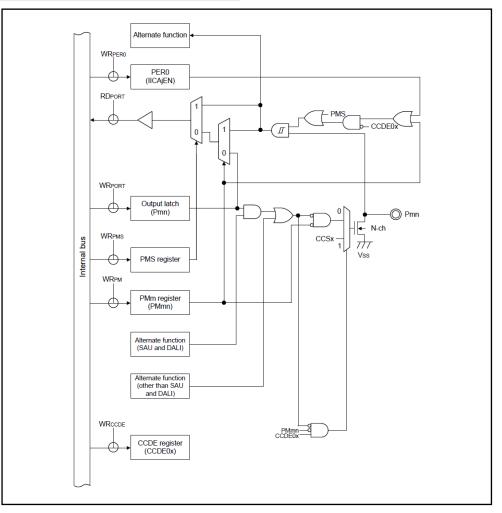



# <u>(Page 104)</u>

#### Figure 2 - 28 Pin Block Diagram for Pin Type 8-42-1



Date: Jan. 8, 2025


#### Figure 2 - 28 Pin Block Diagram for Pin Type 8-42-1





## Add the figure below

Figure 2 - 29 Pin Block Diagram for Pin Type 12-38-2



© 2025 Renesas Electronics Corporation. All rights reserved.

## 9. <u>20.3.9 Analog input channel specification register (ADS) (Page</u> <u>1106)</u>

#### Incorrect:

- Caution 8. Do not set the ADISS bit to 1 when shifting to STOP mode, or to HALT mode while the CPU is operating with the subsystem clock. When the ADISS bit is set to 1, the A/D converter reference voltage current (IADREF) indicated in 43.3.2 Supply current characteristics or 44.3.2 Supply current characteristics will be added.
- Caution 9. When the ADISS bit is set to 1, the hardware trigger wait mode and oneshot conversion mode are not available.
- **Caution 10.** Set the ADS register to 00H when the advanced mode is enabled (ADM3.ADVMOD = 1).

#### Correct:

- Caution 8. Do not set the ADISS bit to 1 when shifting to STOP mode, or to HALT mode while the CPU is operating with the subsystem clock. When the ADISS bit is set to 1, the A/D converter reference voltage current (IADREF) indicated in 43.3.2 Supply current characteristics or 44.3.2 Supply current characteristics will be added.
- Caution 9. When the ADISS bit is set to 1, the hardware trigger wait mode and oneshot conversion mode are not available.
- Caution 10. When the setting of the ADISS bit is 1, the software trigger wait mode and oneshot conversion mode cannot be used at the same time.
- Caution 11. Set the ADS register to 00H when the advanced mode is enabled (ADM3.ADVMOD = 1).



# 10. <u>20.3.10 Analog input channel specification registers n for advanced</u> <u>mode (ADSn) (Page 1107)</u>

Incorrect:

- Caution 10. Selecting PGA input as the target for conversion in normal 2 mode and low voltage 2 mode is prohibited.
- Caution 11. Setting an ANI signal that is used by the PGA, DAC, CMP or other on-chip peripheral modules as the target for A/D conversion is prohibited.
- Caution 12. When the ADSPSCn[1:0] bits are to be set to 10B or 11B, set the ADSn[4:0] bits to 00000B.

Correct:

Remove Caution 11.

- Caution 10. Selecting PGA input as the target for conversion in normal 2 mode and low voltage 2 mode is prohibited.
- Caution 11. When the ADSPSCn[1:0] bits are to be set to 10B or 11B, set the ADSn[4:0] bits to 00000B.



## 11. <u>20.6.2 Software trigger no-wait mode (select mode, one-shot</u> <u>conversion mode) (Page 1120)</u>

Incorrect:

#### (omitted)

Caution When <4>, <5>, or <6> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 20 - 6 Selection of A/D Conversion Time (3/11) and Table 20 - 6 Selection of A/D Conversion Time (4/11).)

#### Correct:

- Caution 1. When <4>, <5>, or <6> is detected while conversion is in progress, conversion is automatically restarted from the rising edge of the next cycle of the conversion clock (fAD). The conversion time at the first conversion operation restarted is the same as that when there is A/D power supply stabilization wait time in software trigger wait mode or hardware trigger wait mode. (See Table 20 6 Selection of A/D Conversion Time (3/11) and Table 20 6 Selection of A/D Conversion Time (4/11).)
- Caution 2. The setting of ADISS being 1 (the input source is temperature sensor output voltage or internal reference voltage) cannot be used in the software trigger wait mode (one-shot conversion mode).



## 12. <u>24.3.8 Serial status registers mn (SSRmn) (mn = 00 to 03, 10, 11)</u> (Page 1244)

Incorrect:

#### (omitted)

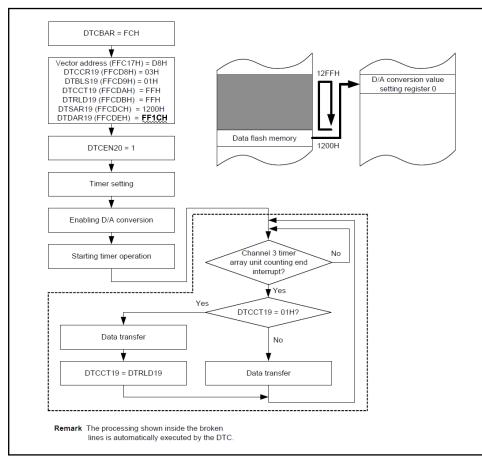
- Caution 1. If data is written to the SDRmn register when BFFmn = 1, the transmit/receive data stored in the register is discarded and an overrun error (OVFmn = 1) is detected.
- Caution 2. When the simplified SPI (CSI) is performing reception operations in the SNOOZE mode (SWCm = 1), the OVFmn flag will not change.

(omitted)

Correct:

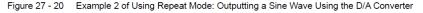
(omitted)

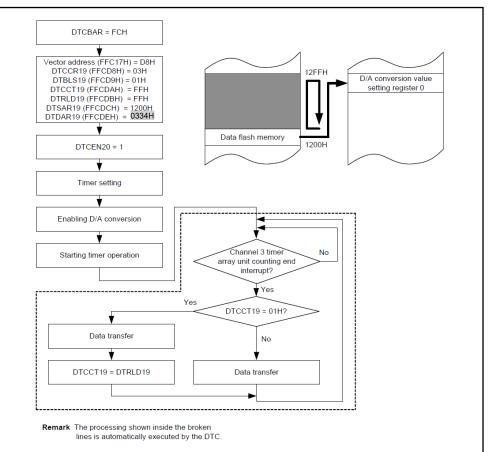
- Caution 1. If data is written to the SDRmn register when BFFmn = 1, the transmit/receive data stored in the register is discarded and an overrun error (OVFmn = 1) is detected.
- Caution 2. When the simplified SPI (CSI) is performing reception operations in the SNOOZE mode (SWCm = 1), the OVFmn and BFFmn flag will not change.




## 13. 27.4.3 Repeat mode (Page 1594)

Incorrect:


(omitted)


#### Figure 27 - 20 Example 2 of Using Repeat Mode: Outputting a Sine Wave Using the D/A Converter



Date: Jan. 8, 2025

Correct:







# 14. 29.4 Interrupt Servicing Operations (Page 1634, Page 1636)

Incorrect:

(Page 1634)

(omitted)

Table 29 - 4 Times until Vectored Interrupt Servicing

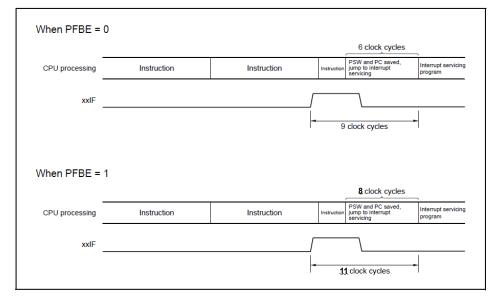
|                                | Minimum Time    | Maximum Time <sup>Note</sup> |
|--------------------------------|-----------------|------------------------------|
| Servicing time (when PFBE = 0) | 9 clock cycles  | 16 clock cycles              |
| Servicing time (when PFBE = 1) | 11 clock cycles | 20 clock cycles              |

(omitted)

Date: Jan. 8, 2025

Correct:

(omitted)


#### Table 29 - 4 Times until Vectored Interrupt Servicing

|                                | Minimum Time    | Maximum Time <sup>Note</sup> |
|--------------------------------|-----------------|------------------------------|
| Servicing time (when PFBE = 0) | 9 clock cycles  | 16 clock cycles              |
| Servicing time (when PFBE = 1) | 13 clock cycles | 24 clock cycles              |



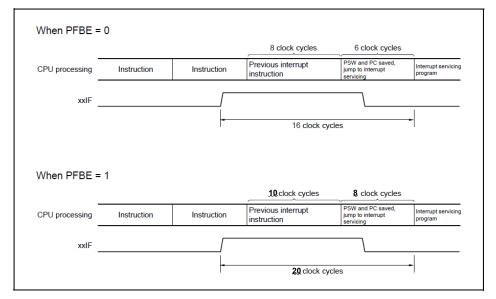
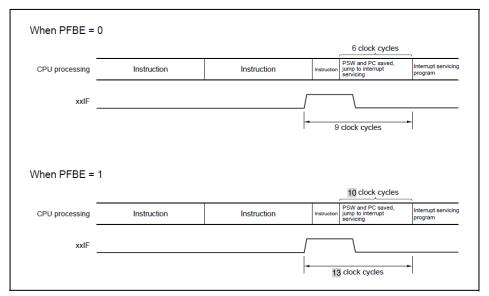

## (Page 1636)

Figure 29 - 8 Interrupt Request Acknowledgment Timing (Minimum Time)



Remark 1 clock cycle: 1/fCLK (fCLK: CPU clock)


Figure 29 - 9 Interrupt Request Acknowledgment Timing (Maximum Time)





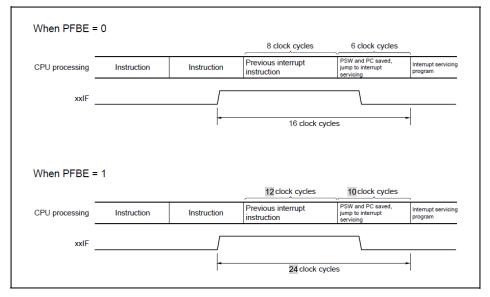

Date: Jan. 8, 2025

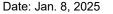
Figure 29 - 8 Interrupt Request Acknowledgment Timing (Minimum Time)



Remark 1 clock cycle: 1/fCLK (fCLK: CPU clock)

Figure 29 - 9 Interrupt Request Acknowledgment Timing (Maximum Time)




## 15. 42.2 Operation List (Page 1840) Incorrect:

#### Table 42 - 5 Operation List (17/18)

| Instruction               | Mnemonic  | Operands              | Bytes | Clo                     | ocks               | Operation                                                                                                                 |   | Flag |    |
|---------------------------|-----------|-----------------------|-------|-------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------|---|------|----|
| Group                     | winemonic | Operands              | Dytes | Note 1                  | Note 2             |                                                                                                                           | Z | AC   | CY |
| Stack<br>manipulate       | PUSH      | PSW                   | 2     | 1                       | -                  | $(SP - 1) \leftarrow PSW$ , $(SP - 2) \leftarrow 00H$ , $SP \leftarrow SP - 2$                                            |   |      |    |
|                           |           | rp                    | 1     | 1                       | -                  | $\begin{array}{l} (SP - 1) \leftarrow rp \text{H},  (SP - 2) \leftarrow rp \text{L}, \\ SP \leftarrow SP - 2 \end{array}$ |   |      |    |
|                           | POP       | PSW                   | 2     | 3                       | -                  | $PSW \leftarrow (SP + 1),  SP \leftarrow SP + 2$                                                                          | R | R    | R  |
|                           |           | гр                    | 1     | 1                       | _                  | $rp_{L} \leftarrow (SP), rp_{H} \leftarrow (SP + 1), SP \leftarrow SP + 2$                                                |   |      |    |
|                           | MOVW      | SP, #word             | 4     | 1                       | _                  | SP ← word                                                                                                                 |   |      |    |
|                           |           | SP, AX                | 2     | 1                       | -                  | SP ← AX                                                                                                                   |   |      |    |
|                           |           | AX, SP                | 2     | 1                       | -                  | AX ← SP                                                                                                                   |   |      |    |
|                           |           | HL, SP                | 3     | 1                       | -                  | HL ← SP                                                                                                                   |   |      |    |
|                           |           | BC, SP                | 3     | 1                       | -                  | $BC \leftarrow SP$                                                                                                        |   |      |    |
|                           |           | DE, SP                | 3     | 1                       | _                  | DE ← SP                                                                                                                   |   |      |    |
|                           | ADDW      | SP, #byte             | 2     | 1                       | _                  | SP ← SP + byte                                                                                                            |   |      |    |
|                           | SUBW      | SP, #byte             | 2     | 1                       | -                  | SP ← SP - byte                                                                                                            |   |      |    |
| Jnconditional E<br>branch | BR        | AX                    | 2     | 3                       | -                  | PC ← CS, AX                                                                                                               |   |      |    |
|                           |           | \$addr20              | 2     | 3                       | -                  | PC ← PC + 2 + jdisp8                                                                                                      |   |      |    |
|                           |           | \$laddr20             | 3     | 3                       | -                  | PC ← PC + 3 + jdisp16                                                                                                     |   |      |    |
|                           |           | laddr16               | 3     | 3                       | -                  | PC ← 0000, addr16                                                                                                         |   |      |    |
|                           |           | lladdr20              | 4     | 3                       | _                  | PC ← addr20                                                                                                               |   |      |    |
| Conditional<br>branch     | BC        | \$addr20              | 2     | 2/4/6Note3              | -                  | PC ← PC + 2 + jdisp8 if CY = 1                                                                                            |   |      |    |
| Dranch                    | BNC       | \$addr20              | 2     | 2/4/6 <sup>Note</sup> 3 | -                  | PC ← PC + 2 + jdisp8 if CY = 0                                                                                            |   |      |    |
|                           | BZ        | \$addr20              | 2     | 2/4/6Note3              | -                  | PC ← PC + 2 + jdisp8 if Z = 1                                                                                             |   |      |    |
|                           | BNZ       | \$addr20              | 2     | 2/4/6Note <b>3</b>      | -                  | PC ← PC + 2 + jdisp8 if Z = 0                                                                                             |   |      |    |
|                           | BH        | \$addr20              | 3     | 2/4/6Note <b>3</b>      | _                  | $PC \leftarrow PC + 3 + jdisp8 \text{ if } (Z \lor CY) = 0$                                                               |   |      |    |
|                           | BNH       | \$addr20              | 3     | 2/4/6Note <b>3</b>      | _                  | PC ← PC + 3 + jdisp8 if (Z ∨ CY) = 1                                                                                      |   |      |    |
|                           | BT        | saddr.bit, \$addr20   | 4     | 3/5/7Note <b>3</b>      | _                  | PC ← PC + 4 + jdisp8 if (saddr).bit = 1                                                                                   |   |      |    |
|                           |           | sfr.bit, \$addr20     | 4     | 3/5/7Note <b>3</b>      | _                  | PC ← PC + 4 + jdisp8 if sfr.bit = 1                                                                                       |   |      |    |
|                           |           | A.bit, \$addr20       | 3     | 3/5/7Note <b>3</b>      | _                  | PC ← PC + 3 + jdisp8 if A.bit = 1                                                                                         |   |      |    |
|                           |           | PSW.bit, \$addr20     | 4     | 3/5/7Note <b>3</b>      | _                  | PC ← PC + 4 + jdisp8 if PSW.bit = 1                                                                                       |   |      |    |
|                           |           | [HL].bit, \$addr20    | 3     | 3/5/7Note3              | 6/7/9Note <b>3</b> |                                                                                                                           |   |      |    |
|                           |           | ES:[HL].bit, \$addr20 | 4     | 4/6/8Note 3             |                    | $PC \leftarrow PC + 4 + jdisp8$ if (ES, HL).bit = 1                                                                       |   |      |    |

Note 1. Number of CPU clocks (fCLK) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.

- Note 2. Number of CPU clocks (fCLK) when the code flash memory is accessed, or when the data flash memory is accessed by an 8bit instruction.
- Note 3. The three numbers indicate the numbers of clock cycles when the condition is not met, when the condition is met and PFBE = 0, and when the condition is met and PFBE = 1.



#### Correct:

Table 42 - 5 Operation List (17/18)

| Instruction               | Mnemonic                                                                    | Operands              | Bytes                        | Clo         | cks          | Operation                                                                                                                                  |   | Flag |    |
|---------------------------|-----------------------------------------------------------------------------|-----------------------|------------------------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|---|------|----|
| Group                     | whemonic                                                                    | Operanus              | bytes                        | Note 1      | Note 2       | Operation                                                                                                                                  | Z | AC   | C١ |
| Stack<br>manipulate       | PUSH                                                                        | PSW                   | 2                            | 1           | _            | $\begin{array}{l} (SP - 1) \leftarrow PSW,  (SP - 2) \leftarrow 00H, \\ SP \leftarrow SP - 2 \end{array}$                                  |   |      |    |
|                           |                                                                             | rp                    | 1                            | 1           | _            | $\begin{array}{l} (SP \text{ - } 1) \leftarrow rp_{H},  (SP \text{ - } 2) \leftarrow rp_{L}, \\ SP \leftarrow SP \text{ - } 2 \end{array}$ |   |      |    |
|                           | POP                                                                         | PSW                   | 2                            | 3           | -            | $PSW \gets (SP \texttt{+} 1),  SP \gets SP \texttt{+} 2$                                                                                   | R | R    | R  |
|                           |                                                                             | rp                    | 1                            | 1           | -            | $rpL \leftarrow (SP),  rpH \leftarrow (SP + 1),  SP \leftarrow SP + 2$                                                                     |   |      |    |
|                           | MOVW                                                                        | SP, #word             | 4                            | 1           | -            | $SP \gets word$                                                                                                                            |   |      |    |
|                           |                                                                             | SP, AX                | 2                            | 1           | -            | $SP \leftarrow AX$                                                                                                                         |   |      |    |
|                           |                                                                             | AX, SP                | 2                            | 1           | -            | $AX \leftarrow SP$                                                                                                                         |   |      |    |
|                           |                                                                             | HL, SP                | 3                            | 1           | _            | HL ← SP                                                                                                                                    |   |      |    |
|                           |                                                                             | BC, SP                | 3                            | 1           | _            | $BC \gets SP$                                                                                                                              |   |      |    |
|                           |                                                                             | DE, SP                | 3                            | 1           | -            | DE ← SP                                                                                                                                    |   |      |    |
|                           | ADDW                                                                        | SP, #byte             | 2                            | 1           | _            | $SP \gets SP + byte$                                                                                                                       |   |      |    |
|                           | SUBW         SP, #byte         2         1         —         SP ← SP - byte |                       | $SP \gets SP \text{ - byte}$ |             |              |                                                                                                                                            |   |      |    |
| Jnconditional I<br>pranch | BR                                                                          | AX                    | 2                            | 3/5Note 3   | —            | $PC \gets CS, AX$                                                                                                                          |   |      |    |
|                           |                                                                             | \$addr20              | 2                            | 3/5Note 3   | -            | PC ← PC + 2 + jdisp8                                                                                                                       |   |      |    |
|                           |                                                                             | \$!addr20             | 3                            | 3/5Note 3   | _            | PC ← PC + 3 + jdisp16                                                                                                                      |   |      |    |
|                           |                                                                             | laddr16               | 3                            | 3/5Note 3   | _            | PC ← 0000, addr16                                                                                                                          |   |      |    |
|                           |                                                                             | !laddr20              | 4                            | 3/5Note 3   | -            | PC ← addr20                                                                                                                                |   |      |    |
| Conditional<br>branch     | BC                                                                          | \$addr20              | 2                            | 2/4/6Note 4 | -            | PC ← PC + 2 + jdisp8 if CY = 1                                                                                                             |   |      |    |
| branch                    | BNC                                                                         | \$addr20              | 2                            | 2/4/6Note 4 | -            | PC ← PC + 2 + jdisp8 if CY = 0                                                                                                             |   |      |    |
|                           | BZ                                                                          | \$addr20              | 2                            | 2/4/6Note 4 | _            | PC ← PC + 2 + jdisp8 if Z = 1                                                                                                              |   |      |    |
|                           | BNZ                                                                         | \$addr20              | 2                            | 2/4/6Note 4 | -            | PC ← PC + 2 + jdisp8 if Z = 0                                                                                                              |   |      |    |
|                           | BH                                                                          | \$addr20              | 3                            | 2/4/6Note 4 | -            | $PC \gets PC + 3 + jdisp8 \text{ if } (Z \lor CY) = 0$                                                                                     |   |      |    |
|                           | BNH                                                                         | \$addr20              | 3                            | 2/4/6Note 4 | _            | $PC \gets PC + 3 + jdisp8 \text{ if } (Z \lor CY) = 1$                                                                                     |   |      |    |
|                           | BT                                                                          | saddr.bit, \$addr20   | 4                            | 3/5/7Note 4 | _            | PC ← PC + 4 + jdisp8 if (saddr).bit = 1                                                                                                    |   |      |    |
|                           |                                                                             | sfr.bit, \$addr20     | 4                            | 3/5/7Note 4 | -            | PC ← PC + 4 + jdisp8 if sfr.bit = 1                                                                                                        |   |      |    |
|                           |                                                                             | A.bit, \$addr20       | 3                            | 3/5/7Note 4 | _            | PC ← PC + 3 + jdisp8 if A.bit = 1                                                                                                          |   |      |    |
|                           |                                                                             | PSW.bit, \$addr20     | 4                            | 3/5/7Note 4 | _            | PC ← PC + 4 + jdisp8 if PSW.bit = 1                                                                                                        |   |      |    |
|                           |                                                                             | [HL].bit, \$addr20    | 3                            | 3/5/7Note 4 | 6/7/9Note 4  | PC ← PC + 3 + jdisp8 if (HL).bit = 1                                                                                                       |   |      |    |
|                           |                                                                             | ES:[HL].bit, \$addr20 | 4                            | 4/6/8Note 4 | 7/8/10Note 4 | PC ← PC + 4 + jdisp8 if (ES, HL).bit = 1                                                                                                   |   |      |    |

- Note 1. Number of CPU clocks (fcLK) when the internal RAM area, SFR area, or second SFR area is accessed, or when no data is accessed.
- Note 2. Number of CPU clocks (fCLK) when the code flash memory is accessed, or when the data flash memory is accessed by an 8bit instruction.
- Note 3. The two numbers indicate the numbers of clock cycles when PFBE = 0 and PFBE = 1.
- Note 4. The three numbers indicate the numbers of clock cycles when the condition is not met, when the condition is met and PFBE = 0, and when the condition is met and PFBE = 1.



## 16. 43.2 Characteristics of the Oscillators (Page 1845)

Incorrect:

#### 43.2.1 Characteristics of the X1 and XT1 oscillators

| (TA = -40 to +105°C, 2.4 V ≤ VDD ≤ 5.5 V (20- to 32-pin products), 1.6 V ≤ VDD ≤ 5.5 V (40- to 64-pin products) Vss = | = 0 V) |
|-----------------------------------------------------------------------------------------------------------------------|--------|
|-----------------------------------------------------------------------------------------------------------------------|--------|

| Item                                                            | Resonator                               | Conditions | Min. | Тур.   | Max. | Unit |
|-----------------------------------------------------------------|-----------------------------------------|------------|------|--------|------|------|
| X1 clock oscillation allowable input cycle time <sup>Note</sup> | Ceramic resonator/<br>crystal resonator |            | 0.05 |        | 1    | μs   |
| XT1 clock oscillation frequency (fXT)Note                       | Crystal resonator                       |            |      | 32.768 |      | kHz  |

Note The listed time and frequency indicate permissible ranges of the oscillators. For actual applications, request the resonator manufacturer for evaluation of the resonators on the oscillator circuit mounted on a board so you can use appropriate values. Refer to 43.4 AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after release from the reset state, the user should use the oscillation stabilization time counter status register (OSTC) to check the X1 clock oscillation stabilization time. Sufficiently evaluate the oscillation stabilization time with the resonator to be used, and then specify the values for the oscillation stabilization time in the OSTC register and the oscillation stabilization time select register (OSTS).

Date: Jan. 8, 2025

#### Correct:

#### 43.2.1 Characteristics of the X1 oscillator

#### $(TA = -40 \text{ to } +105^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

| Item                                                            | Resonator                               | Conditions | Min. | Тур. | Max. | Unit |
|-----------------------------------------------------------------|-----------------------------------------|------------|------|------|------|------|
| X1 clock oscillation allowable input cycle time <sup>Note</sup> | Ceramic resonator/<br>crystal resonator |            | 0.05 |      | 1    | μs   |

Note The listed time and frequency indicate permissible ranges of the oscillators. For actual applications, request the resonator manufacturer for evaluation of the resonators on the oscillator circuit mounted on a board so you can use appropriate values. Refer to 43.4 AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after release from the reset state, the user should use the oscillation stabilization time counter status register (OSTC) to check the X1 clock oscillation stabilization time. Sufficiently evaluate the oscillation stabilization time with the resonator to be used, and then specify the values for the oscillation stabilization time in the OSTC register and the oscillation stabilization time select register (OSTS).

## 43.2.2 Characteristics of the XT1 oscillator

 $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V} \text{ (20- to 32-pin products)}, 2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V} \text{ (40- to 64-pin products)}, \text{VSS} = 0 \text{ V})$ 

| Item                                              | Resonator         | Conditions | Min. | Тур.   | Max. | Unit |
|---------------------------------------------------|-------------------|------------|------|--------|------|------|
| XT1 clock oscillation frequency $(f_{XT})^{Note}$ | Crystal resonator |            |      | 32.768 |      | kHz  |

Note The listed time and frequency indicate permissible ranges of the oscillators. For actual applications, request the resonator manufacturer for evaluation of the resonators on the oscillator circuit mounted on a board so you can use appropriate values. Refer to 43.4 AC Characteristics for instruction execution time.



## 17. 43.3.2 Supply current characteristics (Page 1856, Page 1859)

Incorrect:

#### (Page 1856)

(TA = -40 to +105°C, 1.6 V  $\leq$  EVDD0  $\leq$  VDD  $\leq$  5.5 V, Vss = EVss0 = 0 V)

| Item              | Symbol |           |                          | Min.                            | Тур.      | Max.        | Unit |     |     |    |
|-------------------|--------|-----------|--------------------------|---------------------------------|-----------|-------------|------|-----|-----|----|
| Supply            | IDD1   | Operating |                          | fMX = 8 MHz <sup>Note 4</sup> , | Normal    | VDD = 5.0 V |      | 0.9 | 2.4 | mA |
| current<br>Note 1 |        | mode      | (low-speed main)<br>mode | Resonator connection            | operation | VDD = 1.8 V |      | 0.9 | 2.4 |    |

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Typ. column do not include the peripheral operating current in the HS (high-speed main), LS (low-speed main), or LV (low-voltage main) mode. The currents in the Max... column include the peripheral operating current, but do not include those of the FAA, A/D converter, sample & hold circuit, D/A converter, PGA, comparator, TRNG, LVD circuit, I/O. port, and on-chip pull-up/pull-down resistors, and those flowing when the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

(omitted)

## Correct:

(2/5)

#### (TA = -40 to +105°C, 1.6 V $\leq$ EVDD0 $\leq$ VDD $\leq$ 5.5 V, Vss = EVss0 = 0 V)

(2/5)

| Item              | Symbol |           | Conditions               |                                 |           |             |  |     |     | Unit |
|-------------------|--------|-----------|--------------------------|---------------------------------|-----------|-------------|--|-----|-----|------|
| Supply            | IDD1   | Operating |                          | fMX = 8 MHz <sup>Note 4</sup> , | Normal    | VDD = 5.0 V |  | 0.9 | 2.4 | mA   |
| current<br>Note 1 |        | mode      | (low-speed main)<br>mode | Resonator connection            | operation | VDD = 1.8 V |  | 0.9 | 2.4 |      |

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Typ. column do not include the peripheral operating current in the HS (high-speed main), LS (low-speed main), or LP (low-power main) mode. The currents in the Max. column include the operating currents of the PCLBUZ, TAU, SAU, IICA, timer RD2, timer RX, and 16-bit timers KB30, KB31, and KB32.
- **Note 2.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, lowspeed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.



#### (Page 1859)

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Typ. column do not include the peripheral operating current when the CPU is placed in the HS (high-speed main), LS (low-speed main), or LV (low-voltage main) mode. The currents in the Max. column include the peripheral operating current, but do not include. those of the FAA. A/D converter, sample & hold circuit, D/A converter. PGA, comparator, TRNG, LVD circuit, I/O port, and on-chip pull-up-/pulldown resistors, and those flowing when the data flash memory is being rewritten. The currents in the Max. column include. that of the RTC when the CPU is placed in the HALT mode.
- **Note 2.** The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, lowspeed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

(omitted)

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Typ. column do not include the peripheral operating current when the CPU is placed in the HS (high-speed main), LS (low-speed main), or LP (low-power main) mode. The currents in the Max. column include the operating currents of the PCLBUZ, TAU, SAU, IICA, timer RD2, timer RX, and 16-bit timers KB30, KB31, and KB32.
- **Note 2.** The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, lowspeed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.



## 18. 44.2 Characteristics of the Oscillators (Page 1925)

#### Incorrect:

#### 44.2.1 Characteristics of the X1 and XT1 oscillators

#### (TA = -40 to +125°C, 2.7 V ≤ VDD ≤ 5.5 V, VSS = 0 V)

| Item                                                            | Resonator                               | Conditions | Min. | Тур.   | Max. | Unit |
|-----------------------------------------------------------------|-----------------------------------------|------------|------|--------|------|------|
| X1 clock oscillation allowable input cycle time <sup>Note</sup> | Ceramic resonator/<br>crystal resonator |            | 0.05 |        | 1    | μs   |
| XT1 clock oscillation frequency (fxT) <sup>Note</sup>           | Crystal resonator                       |            |      | 32.768 |      | kHz  |

Note The listed time and frequency indicate permissible ranges of the oscillators. For actual applications, request the resonator manufacturer for evaluation of the resonators on the oscillator circuit mounted on a board so you can use appropriate values. Refer to 44.4 AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after release from the reset state, the user should use the oscillation stabilization time counter status register (OSTC) to check the X1 clock oscillation stabilization time. Sufficiently evaluate the oscillation stabilization time with the resonator to be used, and then specify the values for the oscillation stabilization time in the OSTC register and the oscillation stabilization time select register (OSTS).

#### Correct:

#### 44.2.1 Characteristics of the X1 oscillator

#### (TA = -40 to +125°C, 2.7 V ≤ VDD ≤ 5.5 V, Vss = 0 V)

| Item                                                            | Resonator                               | Conditions | Min. | Тур. | Max. | Unit |
|-----------------------------------------------------------------|-----------------------------------------|------------|------|------|------|------|
| X1 clock oscillation allowable input cycle time <sup>Note</sup> | Ceramic resonator/<br>crystal resonator |            | 0.05 |      | 1    | μs   |

Note The listed time and frequency indicate permissible ranges of the oscillators. For actual applications, request the resonator manufacturer for evaluation of the resonators on the oscillator circuit mounted on a board so you can use appropriate values. Refer to 44.4 AC Characteristics for instruction execution time.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after release from the reset state, the user should use the oscillation stabilization time counter status register (OSTC) to check the X1 clock oscillation stabilization time. Sufficiently evaluate the oscillation stabilization time with the resonator to be used, and then specify the values for the oscillation stabilization time in the OSTC register and the oscillation stabilization time select register (OSTS).

#### 44.2.2 Characteristics of the XT1 oscillator

#### (TA = -40 to +125°C, 2.7 V ≤ VDD ≤ 5.5 V (40- to 64-pin , Vss = 0 V)

| Item                                           | Resonator         | Conditions | Min. | Тур.   | Max. | Unit |
|------------------------------------------------|-------------------|------------|------|--------|------|------|
| XT1 clock oscillation frequency $(fXT)^{Note}$ | Crystal resonator |            |      | 32.768 |      | kHz  |

Note The listed time and frequency indicate permissible ranges of the oscillators. For actual applications, request the resonator manufacturer for evaluation of the resonators on the oscillator circuit mounted on a board so you can use appropriate values. Refer to 44.4 AC Characteristics for instruction execution time.



## 19. 44.3.2 Supply current characteristics (Page 1934, Page 1937)

Incorrect:

# (Page 1934)

| (TA = -40         | $(TA = -40 \text{ to } + 125^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = 0 \text{ V})$ |           |                          |                                 |           |             |      |      |      |      |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|---------------------------------|-----------|-------------|------|------|------|------|
| Item              | Symbol                                                                                                                                                   |           |                          | Conditions                      |           |             | Min. | Тур. | Max. | Unit |
| Supply            | IDD1                                                                                                                                                     | Operating |                          | fMX = 8 MHz <sup>Note 4</sup> , | Normal    | VDD = 5.0 V |      | 0.9  | 2.8  | mA   |
| current<br>Note 1 |                                                                                                                                                          | mode      | (low-speed main)<br>mode | Resonator connection            | operation | VDD = 2.7 V |      | 0.9  | 2.8  |      |

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Typ. column do not include the peripheral operating current when the CPU is placed in the HS (high-speed main), LS (low-speed main), or LV (low-voltage main) mode. The currents in the Max. column include the peripheral operating current, but do not include those of the FAA, A/D converter, sample & hold circuit, D/A converter, PGA, comparator, TRNG, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing when the data flash memory is being rewritten.
- **Note 2.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, lowspeed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

(omitted)

## Correct:

#### (TA = -40 to +125°C, 1.6 V $\leq$ EVDD0 $\leq$ VDD $\leq$ 5.5 V, Vss = EVss0 = 0 V)

| Item              | Symbol | Conditions                    |                      |                                 |             |             |     | Тур. | Max. | Unit |
|-------------------|--------|-------------------------------|----------------------|---------------------------------|-------------|-------------|-----|------|------|------|
| Supply            | IDD1   | Operating                     |                      | fMX = 8 MHz <sup>Note 4</sup> , | Normal      | VDD = 5.0 V |     | 0.9  | 2.8  | mA   |
| current<br>Note 1 |        | mode (low-speed main)<br>mode | Resonator connection | operation                       | VDD = 2.7 V |             | 0.9 | 2.8  | ]    |      |

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Typ. column do not include the peripheral operating current when the CPU is placed in the HS (high-speed main), LS (low-speed main), or LP (low-power main) mode. The currents in the Max. column include the operating currents of the PCLBUZ, TAU, SAU, IICA, timer RD2, timer RX, and 16-bit timers KB30, KB31, and KB32.
- **Note 2.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 3.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

(omitted)



(2/5)

#### (Page 1937)

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or VSS, EVSS0. The currents in the Typ. column do not include the peripheral operating current when the CPU is placed in the HS (high-speed main), LS (low-speed main), or LV (low-voltage main) mode. The currents in the Max. column include the peripheral operating current, but do not include those flowing into the FAA. A/D converter, sample & hold circuit, D/A converter, PGA, comparator, TRNG, LVD circuit, I/O port, and on-chip pull-up-/pull-down resistors, and those flowing when the data flash memory is being rewritten. The currents in the Max. column include that of the RTC when the CPU is placed in the HALT mode.
- **Note 2.** The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

(omitted)

- Note 1. The listed currents are the total currents flowing into VDD and EVDD0, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVSs0. The currents in the Typ. column do not include the peripheral operating current when the CPU is placed in the HS (high-speed main), LS (low-speed main), or LP (low-power main) mode. The currents in the Max. column include the operating currents of the PCLBUZ, TAU, SAU, IICA, timer RD2, timer RX, and 16-bit timers KB30, KB31, and KB32.
- **Note 2.** The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
- **Note 3.** The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 4.** The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
- **Note 5.** The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.



# 20. 44.4 AC Characteristics (Page 1942)

#### Incorrect:

| Item                                                                                                                                                | Symbol          |                                                                                                                                                                                                         | Conditions                               |                       | Min.          | Тур. | Max. | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|---------------|------|------|------|
| Instruction cycle                                                                                                                                   | Тсу             | Main system clock<br>(fMAIN) operation                                                                                                                                                                  | HS (high-speed main) mode (Prefetch ON)  |                       | 0.02083       |      | 1    | μs   |
|                                                                                                                                                     |                 |                                                                                                                                                                                                         | HS (high-speed main) mode (Prefetch OFF) |                       | 0.03125       |      | 1    | μs   |
|                                                                                                                                                     |                 |                                                                                                                                                                                                         | LS (low-speed main) mode                 |                       | 0.04167       |      | 1    | μs   |
|                                                                                                                                                     |                 |                                                                                                                                                                                                         | LP (low-power main) mode                 |                       | 0.5           |      | 1    | μs   |
|                                                                                                                                                     |                 | Subsystem clock (fsub) operation                                                                                                                                                                        |                                          |                       | 26.041        | 30.5 | 31.3 | μs   |
|                                                                                                                                                     |                 | Self-programming mode                                                                                                                                                                                   | HS (high-speed main) mode                |                       | 0.03125       |      | 1    | μs   |
|                                                                                                                                                     |                 |                                                                                                                                                                                                         | LS (low-speed main) mode                 |                       | 0.04167       |      | 1    | μs   |
| External system clock                                                                                                                               | fEX             |                                                                                                                                                                                                         |                                          |                       | 1.0           |      | 20.0 | MHz  |
| frequency                                                                                                                                           | fEXS            |                                                                                                                                                                                                         |                                          |                       | 32            |      | 38.4 | kHz  |
| External system clock<br>input high-level width,                                                                                                    | tEXH,<br>tEXL   |                                                                                                                                                                                                         |                                          |                       | 24            |      |      | ns   |
| low-level width                                                                                                                                     | tEXHS,<br>tEXLS |                                                                                                                                                                                                         |                                          |                       | 13.7          |      |      | μs   |
| TI00 to TI03<br>input high-level width,<br>low-level width                                                                                          | ttiH, ttiL      |                                                                                                                                                                                                         |                                          |                       |               |      |      | ns   |
| Timer RJ input cycle                                                                                                                                | tc              | TRJIO                                                                                                                                                                                                   |                                          |                       | 100           |      |      | ns   |
| Timer RJ<br>input high-level width,<br>low-level width                                                                                              | ttjih,<br>ttji∟ | TRJIO                                                                                                                                                                                                   |                                          |                       | 40            |      |      | ns   |
| Timer RD2<br>input high-level width,<br>low-level width                                                                                             | ttdih,<br>ttdi∟ | TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0,<br>TRDIOC1, TRDIOD0, TRDIOD1                                                                                                                               |                                          |                       | 3/fclk        |      |      | ns   |
| Timer RD2                                                                                                                                           | ttdsil          | P137/INTP0 2 MHz ≤ fclk ≤ 48 MHz                                                                                                                                                                        |                                          | 1                     |               |      | μs   |      |
| forcible shut-off signal<br>input low-level width                                                                                                   |                 |                                                                                                                                                                                                         |                                          | fclk ≤ 2 MHz          | 1/fCLK<br>+ 1 |      |      | μs   |
| Timer RG2<br>input high-level width,<br>low-level width                                                                                             | ttgih,<br>ttgi∟ | TRGIOA, TRGIOB, TRGIDZ, TRGTRG                                                                                                                                                                          |                                          |                       | 2.5/fclk      |      |      | ns   |
| TO00 to TO03 TKBO00,                                                                                                                                | fто             | $ \begin{array}{l} \mbox{HS (high-speed main) mode} \\ \mbox{LS (low-speed main) mode} \end{array} \qquad \begin{array}{l} \mbox{4.0 V} \leq \mbox{EVDD0} \leq 5.5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |                                          |                       |               | 16   | MH:  |      |
| TKBO01, TKBO10,<br>TKBO11, TKBO20,                                                                                                                  |                 |                                                                                                                                                                                                         |                                          |                       |               | 8    | MH:  |      |
| TKBO21, TRJIO0,<br>TRJO0, TRGIOA,<br>TRGIOB, TRDIOA0,<br>TRDIOA1, TRDIOB0,<br>TRDIOB1, TRDIOC0,<br>TRDIOC1, TRDIOD0,<br>TRDIOD1<br>output frequency |                 | LP (low-power main) mode                                                                                                                                                                                |                                          |                       |               | 2    | MH   |      |
| PCLBUZ0, PCLBUZ1                                                                                                                                    | fPCL.           | LS (low-speed main) mode                                                                                                                                                                                |                                          | 4.0 V ≤ EVDD0 ≤ 5.5 V |               |      | .16  | MHz  |
| output frequency                                                                                                                                    |                 |                                                                                                                                                                                                         |                                          | 2.7 V ≤ EVDD0 < 4.0 V |               |      | 8    | MHz  |
|                                                                                                                                                     |                 | LP (low-power mai                                                                                                                                                                                       | n) mode                                  |                       |               |      | 2    | MH:  |
| Interrupt input high-level                                                                                                                          | tinth,          | INTP0, INTP20, IN                                                                                                                                                                                       | TP21                                     | 2.7 V ≤ VDD ≤ 5.5 V   | 1             |      |      | μs   |
| width, low-level width                                                                                                                              | TINTL           | INTP1 to INTP11                                                                                                                                                                                         |                                          | 2.7 V ≤ EVDD0 ≤ 5.5 V | 1             |      |      | μs   |
| Key interrupt input high-<br>level width, low-level<br>width                                                                                        | tKRH,<br>tKRL   | KR0 to KR7                                                                                                                                                                                              |                                          | 2.7 V ≤ EVDD0 ≤ 5.5 V | 250           |      |      | ns   |

Date: Jan. 8, 2025

## Correct:

| (TA = -40 to +125°C, 2.                                                                                                                             |                 |                                                                           |                                          |                                                    | Min           | Tur  | Max  | (1/2)<br>Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------|---------------|------|------|---------------|
| Item                                                                                                                                                | Symbol          | Conditions                                                                |                                          | Min.                                               | Тур.          | Max. |      |               |
| Instruction cycle                                                                                                                                   | TCY             | Main system clock<br>(fMAIN) operation                                    |                                          |                                                    | 0.02083       |      | 1    | μs            |
|                                                                                                                                                     |                 |                                                                           | HS (high-speed main) mode (Prefetch OFF) |                                                    | 0.03125       |      | 1    | μs            |
|                                                                                                                                                     |                 |                                                                           | LS (low-speed main) mode                 |                                                    | 0.04167       |      | 1    | μs            |
|                                                                                                                                                     |                 | LP (low-power main) mode                                                  |                                          |                                                    | 0.5           |      | 1    | μs            |
|                                                                                                                                                     |                 | Subsystem clock (fSUB) operation                                          |                                          |                                                    | 26.041        | 30.5 | 31.3 | μs            |
|                                                                                                                                                     |                 | Self-programming mode                                                     | HS (high-speed main) mode                |                                                    | 0.03125       |      | 1    | μs            |
|                                                                                                                                                     |                 | mode                                                                      | LS (low-speed main) mode                 |                                                    | 0.04167       |      | 1    | μs            |
| External system clock<br>frequency                                                                                                                  | fEX             |                                                                           |                                          |                                                    |               |      | 20.0 | MHz           |
| irequency                                                                                                                                           | fEXS            |                                                                           |                                          |                                                    | 32            |      | 38.4 | kHz           |
| External system clock<br>input high-level width,                                                                                                    | texh,<br>texl   |                                                                           |                                          |                                                    |               |      |      | ns            |
| low-level width                                                                                                                                     | tEXHS,<br>tEXLS |                                                                           |                                          |                                                    |               |      |      | μs            |
| TI00 to TI03<br>input high-level width,<br>low-level width                                                                                          | ttiH, ttiL      |                                                                           |                                          |                                                    |               |      |      | ns            |
| Timer RJ input cycle                                                                                                                                | tc              | TRJIO                                                                     |                                          |                                                    |               |      |      | ns            |
| Timer RJ<br>input high-level width,<br>low-level width                                                                                              | ttjih,<br>ttji∟ | TRJIO                                                                     |                                          |                                                    | 40            |      |      | ns            |
| Timer RD2<br>input high-level width,<br>low-level width                                                                                             | ttdiH,<br>ttdi∟ | TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0,<br>TRDIOC1, TRDIOD0, TRDIOD1 |                                          |                                                    | 3/fclk        |      |      | ns            |
| Timer RD2                                                                                                                                           | TTDSIL          | P137/INTP0 2 MHz ≤ fCLK ≤ 48 MHz                                          |                                          | 1                                                  |               |      | μs   |               |
| forcible shut-off signal<br>input low-level width                                                                                                   |                 | fclk ≤ 2 MHz                                                              |                                          |                                                    | 1/fclк<br>+ 1 |      |      | μs            |
| Timer RG2<br>input high-level width,<br>low-level width                                                                                             | ttgih,<br>ttgiL | TRGIOA, TRGIOB, TRGIDZ, TRGTRG                                            |                                          | 2.5/fclk                                           |               |      | ns   |               |
| TO00 to TO03 TKBO00,                                                                                                                                | fтo             | LS (low-speed main) mode                                                  |                                          | 4.0 V ≤ EVDD0 ≤ 5.5 V                              |               |      | 12   | MHz           |
| TKBO01, TKBO10,<br>TKBO11, TKBO20,                                                                                                                  |                 |                                                                           |                                          | 2.7 V ≤ EVDD0 < 4.0 V                              |               |      | 8    | MHz           |
| TKBO21, TRJIO0,<br>TRJO0, TRGIOA,<br>TRGIOB, TRDIOA0,<br>TRDIOA1, TRDIOB0,<br>TRDIOB1, TRDIOC0,<br>TRDIOC1, TRDIOD0,<br>TRDIOD1<br>output frequency |                 | LP (low-power main) mode                                                  |                                          |                                                    |               |      | 2    | MHz           |
| PCLBUZ0, PCLBUZ1                                                                                                                                    | <b>f</b> PCL    | HS (high-speed ma                                                         |                                          | 4.0 V ≤ EVDD0 ≤ 5.5 V                              |               |      | 12   | MHz           |
| output frequency                                                                                                                                    |                 | LS (low-speed mai                                                         | n) mode 2.7 V ≤ EVDD0 < 4.0 V            |                                                    |               |      | 8    | MHz           |
|                                                                                                                                                     |                 | LP (low-power mai                                                         | n) mode                                  |                                                    |               |      | 2    | MHz           |
| Interrupt input high-level                                                                                                                          | tinth,          | INTP0, INTP20, IN                                                         | TP21                                     | $2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$ | 1             |      |      | μs            |
| width, low-level width                                                                                                                              | TINTL           | INTP1 to INTP11                                                           |                                          | 2.7 V ≤ EVDD0 ≤ 5.5 V                              | 1             |      |      | μs            |
| Key interrupt input high-<br>level width, low-level<br>width                                                                                        | tKRH,<br>tKRL   | KR0 to KR7                                                                |                                          | 2.7 V ≤ EVDD0 ≤ 5.5 V                              | 250           |      |      | ns            |

