RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Document No.	TN-RL*-A005A/E	Rev.	1.00
Title	Correction for Incorrect Description Notice RL78/G13 Descriptions in the Hardware User's Manual Rev. 2.10 Changed		Information Category	Technical Notification		
	Lot No.			RL78/G13 User's Manual: Hardware Rev.2.10 R01UH0146EJ0210 (Sep. 2012)		
Applicable RL78/G13 Product R5F100xxx, R5F101xxx A		All lots	Reference Document			

This document describes misstatements found in the RL78/G13 User's Manual: Hardware Rev.2.10 (R01UH0146EJ0210).

Corrections

Applicable Item	Applicable Page	Contents
3.1.3 Internal data memory space	Page 111	Specifications extended
12. 6. 3 SNOOZE mode function	Pages 658	Specifications changed
18.3.2 STOP mode	Pages 868 and 869	Incorrect descriptions revised
18.3.3 SNOOZE mode	Page 871	Incorrect descriptions revised
22.3.6 Invalid memory access detection function	Page 920	Incorrect descriptions revised
Figure 24-3 Format of Option Byte (000C2H/010C2H)	Page 934	Specifications extended
29.3.1 Pin characteristics	Pages 993 and 994	Incorrect descriptions revised
29.3.2 Supply current characteristics	Pages 998 to 1010	Incorrect descriptions revised
29.4 AC characteristics	Page 1011	Specifications extended
29.5.1 Serial array unit	Pages 1014 to 1036	Specifications changed
29.5.2 Serial interface IICA	Page 1037	Specifications changed
29.6.1 A/D converter characteristics	Pages 1038 to 1041	Specifications extended
29.6.2 Temperature Sensor/Internal Reference Voltage Characteristics	Page 1042	Specifications changed
29.6.3 POR circuit characteristics	Page 1042	Specifications changed
Supply Voltage Rise Time	Page 1045	Specifications added
29.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	Page 1046	Specifications extended
Chapter 30 ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to +105°C) (TARGET)	Pages 1048 to 1098	Specifications fixed

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

No.	Corrections and Applicable Items			Pages in this document
	Document No.	English	R01UH0146EJ0210	for corrections
1	3.1.3 Internal data memory space		Page 111	Page 3
2	12. 6. 3 SNOOZE mode function		Pages 658	Pages 4 and 5
3	18.3.2 STOP mode		Pages 868 and 869	Page 6
4	18.3.3 SNOOZE mode		Page 871	Page 7
5	22.3.6 Invalid memory access detect	ion function	Page 920	Pages 8 and 9
6	Figure 24-3 Format of Option Byte (000C2H/010C2H)		Page 934	Page 10
7	29.3.1 Pin characteristics		Pages 993 and 994	Page 11
8	29.3.2 Supply current characteristics		Pages 998 to 1010	Page 11
9	29.4 AC characteristics		Page 1011	Page 11
10	29.5.1 Serial array unit		Pages 1014 to 1036	Page 11
11	29.5.2 Serial interface IICA		Page 1037	Page 11
12	29.6.1 A/D converter characteristics		Pages 1038 to 1041	Page 11
13	29.6.2 Temperature Sensor/Internal Reference Voltage Characteristics		Page 1042	Page 11
14	29.6.3 POR circuit characteristics		Page 1042	Page 11
15	Supply Voltage Rise Time		Page 1045	Page 12
16	29.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics		Page 1046	Page 12
17	Chapter 30 ELECTRICAL SPECIFI (G: T _A = -40 to +105°C) (TARGET)	CATIONS	Pages 1048 to 1098	Page 12

Incorrect: Bold with underline: Correct: Gray hatched

Revision History

RL78/G13 User's Manual: Hardware Rev.2.10 Correction for Incorrect Description Notice

Document Number	Date	Description
TN-RL*-A005A/E	Mar. 15, 2013	First edition issued
		No.1 to 17 in corrections (This notice)

Date: Apr. 5, 2013

1. 3.1.3 Internal Data Memory Space

Incorrect:

Cautions 2. The internal RAM in the following products cannot be used as stack area when using the self-programming function and data flash function.

R5F100xA, R5F101xA (x = 6 to 8, A to C, E to G)	: FFE20H to FFEDFH
R5F100xC, R5F101xC (x = 6 to 8, A to C, E to G, J, L)	: FFE20H to FFEDFH
R5F100xD, R5F101xD (x = 6 to 8, A to C, E to G, J, L)	: FFE20H to FFEDFH, FF300H to FF309H
R5F100xE, R5F101xE (x = 6 to 8, A to C, E to G, J, L)	FFE20H to FFEDFH, FEF00H to FF309H
R5F100xF, R5F101xF (x = A to C, E to G, J, L, M, P)	: FFE20H to FFEDFH
R5F100xG, R5F101xG (x = A to C, E to G, J, L, M, P)	: EFE20H to EFEDEH
R5F100xH, R5F101xH (x = E to G, J, L, M, P, S)	
R5F100xJ, R5F101xJ (x = F, G, J, L, M, P)	
R5F100xK, R5F101xK (x = F, G, J, L, M, P, S)	
R5F100xL, R5F101xL (x = F, G, J, L, M, P, S)	: FFE20H to FFEDFH, F7F00H to F8309H

Correct:

Cautions 2. While self-programming is being executed or the data flash being rewriting, do not allocate the RAM address which is used in stack, data buffer, the branch of vectored interrupt servicing, or the transfer destination or source by DMA in the address between FFE20H to FFEDFH.

> 3. The RAM area in the products listed below cannot be used when using the self-programming function or rewriting the data flash, because they are used by libraries.

R5F100xD, R5F101xD (x = 6 to 8, A to C, E to G, J, L)	: FF300H to FF309H
R5F100xE, R5F101xE (x = 6 to 8, A to C, E to G, J, L)	: FEF00H to FF309H
R5F100xJ, R5F101xJ (x = F, G, J, L, M, P)	: FAF00H to FB309H
R5F100xL, R5F101xL (x = F, G, J, L, M, P, S)	: F7F00H to F8309H

2. 12.6.3 SNOOZE mode function

Incorrect:

SNOOZE mode makes UART operate reception by RxDq pin input detection while the STOP mode. Normally UART stops communication in the STOP mode. But, using the SNOOZE mode makes reception UART operate unless the CPU operation by detecting RxDq pin input. Only following channels can be set to the SNOOZE mode.

- 24 to 64-pin products: UART0
- 80 to 128-pin products: UART0 and UART2

When using the SNOOZE mode function, set the SWCm bit of serial standby control register m (SSCm) to 1 just before switching to the STOP mode.

Cautions: 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fcLK.

2. The maximum transfer rate when using UARTq in the SNOOZE mode is 9600 bps.

Correct:

SNOOZE mode makes UART operate reception by RxDq pin input detection while the STOP mode. Normally UART stops communication in the STOP mode. But, using the SNOOZE mode makes reception UART operate unless the CPU operation by detecting RxDq pin input. Only following channels can be set to the SNOOZE mode.

• 20 to 64-pin products: UART0

• 80 to 128-pin products: UART0 and UART2

When using UARTq in SNOOZE mode, execute the following settings before entering STOP mode (Refer to Flowcharts of SNOOZE mode operation in Figure 12-93 and Figure 12-95).

- In SNOOZE mode, UART reception baud rate must be set differently from normal operation. Refer to Table 12-3 to set registers SPSm and SDRmn [15:9].
- Set bits EOCmn and SSECmn to enable or disable the error interrupt (INTSRE0) when a communication error occurs.
- Set the SWCm bit in the serial standby control register m (SSCm) to 1 just before entering STOP mode. After initialization, set the SSm1 bit to 1 in the serial channel start register m (SSm).

When the MCU detects the RxDq pin edge input (input the start bit) after entering STOP mode, the UART reception is started.

Cautions: 1. The SNOOZE mode can only be specified when the high-speed on-chip

oscillator clock (fin) is selected for fclk.

2. The transfer rate in SNOOZE mode is 4800 bps only.

3. When the SWCm bit is 1, UARTq can be used only when the reception is started in STOP mode. If UARTq is used with other SNOOZE function or interrupts concurrently and the reception is started in state other than STOP mode as described below, the UARTq cannot receive data correctly and may cause a framing error or parity error.

• The case the UARTq reception is started from the moment the SWCm bit is set to 1 before the MCU enters STOP mode

The case the UARTq reception is started in SNOOZE mode

• The case the UARTq reception is started from the moment the MCU exits STOP mode and enters normal mode using interrupts before the SWCm bit is set to 0

4. When the SSECm bit is 1, if a parity error, framing error, or overrun error occurs, flags PEFmn, FEFmn, or OVFmn is not set, nor an error interrupt (INTSREq) is generated. To set the SSECm bit to 1, clear flags PEFmn, FEFmn, and OVFmn before setting the SWC0 bit to 1, and read bits 7 to 0 (RxDq) in the SDRm1 register.

High-speed on-chip oscillator	UART reception baud rate in SNOOZE mode						
(fін)	Baud rate: 4800 bps						
	Operating clock	Operating clock SDRmn Maximum Minimum					
	(fмск)	[15:9]	acceptable value	acceptable value			
32 MHz ± 1.0% ^(note)	f _{CLK} /2⁵	105	2.27%	-1.53%			
24 MHz ± 1.0% ^(note)	f _{CLK} /2⁵	79	1.60%	-2.18%			
16 MHz ± 1.0% ^(note)	f _{CLK} /2 ⁴	105	2.27%	-1.53%			
12 MHz ± 1.0% ^(note)	$f_{CLK}/2^4$	79	1.60%	-2.19%			
8 MHz ± 1.0% ^(note)	$f_{CLK}/2^3$	105	2.27%	-1.53%			
6 MHz ± 1.0% ^(note)	$f_{CLK}/2^3$	79	1.60%	-2.19%			
4 MHz ± 1.0% ^(note)	f _{CLK} /2 ²	105	2.27%	-1.53%			
3 MHz ± 1.0% ^(note)	f _{CLK} /2 ²	79	1.60%	-2.19%			
2 MHz ± 1.0% ^(note)	f _{CLK} /2 ¹	105	2.27%	-1.54%			
1 MHz ± 1.0% ^(note)	f _{ськ} /2 ⁰	105	2.27%	-1.57%			

Note: When the high-speed on-chip oscillator clock accuracy is at ± 1.5% or 2.0%, the acceptable range is limited as follows:

• f_{IH} ± 1.5%: Subtract 0.5% from the maximum acceptable value of f_{IH} ± 1.0%, and add 0.5% to the minimum acceptable value of f_{IH} ± 1.0%.

• fin ± 2.0%: Subtract 1.0% from the maximum acceptable value of fin ± 1.0%, and add 1.0% to the minimum acceptable value of fin ± 1.0%.

Remarks: Maximum and minimum acceptable values in the above table are the baud rate acceptable values in UART reception. Make sure to set the baud rate for transmission within this range.

Date: Apr. 5, 2013

3. 18.3.2 STOP mode

Incorrect:

Figure 18-5 STOP Mode Release by Interrupt Request Generation (1/2) (1) When high-speed system clock (X1 oscillation) is used as CPU clock (omitted)

Notes: 2. STOP mode release time Supply of the clock is stopped: 18.96 µs to "whichever is longer 28.95 µs and the oscillation stabilization time (set by OSTS)

Wait

- When vectored interrupt servicing is carried out: 10 to 11 clocks
- When vectored interrupt servicing is not carried out: 4 to 5 clocks

 (2) When high-speed system clock (external clock input) is used as CPU clock
 (3) When high-speed on-chip oscillator clock is used as CPU clock (omitted)

Notes: 2. STOP mode release time Supply of the clock is stopped: 19.08 to 32.99 µs

Wait

• When vectored interrupt servicing is carried out: 7 clocks

• When vectored interrupt servicing is not carried out: 1 clock

Correct:

Figure 18-5 STOP Mode Release by Interrupt Request Generation (1/2) (1) When high-speed system clock (X1 oscillation) is used as CPU clock (omitted)

Notes: 2. STOP mode release time Supply of the clock is stopped: 18 µs to "whichever is longer 65 µs or the oscillation stabilization time (set by OSTS)"

Wait

- When vectored interrupt servicing is carried out: 10 to 11 clocks
- When vectored interrupt servicing is not carried out: 4 to 5 clocks

Remark: The time to stop clock supply varies depending on the temperature conditions and STOP mode time.

(2) When high-speed system clock (external clock input) is used as CPU clock (3) When high-speed on-chip oscillator clock is used as CPU clock

(omitted)

Notes: 2. STOP mode release time Supply of the clock is stopped: 18 to 65 µs

Wait

- When vectored interrupt servicing is carried out: 7 clocks
- When vectored interrupt servicing is not carried out: 1 clock

Remark: The time to stop clock supply varies depending on the temperature conditions and STOP mode time.

4. 18.3.3 SNOOZE Mode

Incorrect:

In SNOOZE mode transition, wait status to be only following time. From STOP to SNOOZE

- HS (High-speed main) mode: 18.96 to 28.95 µs
- LS (Low-speed main) mode: 20.24 to 28.95µs
- LV (Low-voltage main) mode: 20.98 to 28.95 µs

From SNOOZE to normal operation

- When vectored interrupt servicing is carried out: HS (High-speed main) mode: 6.79 to 12.4 µs + 7 clocks LS (Low-speed main) mode: 2.58 to 7.8 µs + 7 clocks LV (Low-voltage main) mode: 12.45 to 17.3 µs + 7 clocks
- When vectored interrupt servicing is not carried out: HS (High-speed main) mode: 6.79 to 12.4 µs + 7 clocks LS (Low-speed main) mode: 2.58 to 7.8 µs + 1 clock LV (Low-voltage main) mode: 12.45 to 17.3 µs + 1 clock

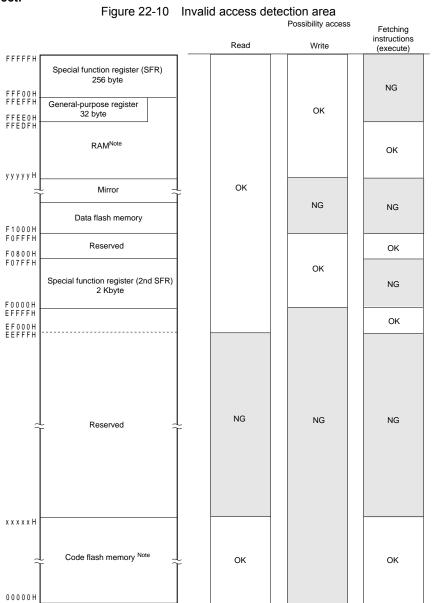
Date: Apr. 5, 2013

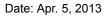
Correct:

The MCU transits from STOP mode to SNOOZE mode or from SNOOZE mode to normal operation after time shown below elapses.

Transit time from STOP mode to SNOOZE mode: 18 to 65 µs

Remark: The transit time from STOP mode to SNOOZE mode varies depending on the temperature conditions and STOP mode time.


Transit time from SNOOZE mode to normal operation:


• When v	When vectored interrupt servicing is carried out:				
HS (Hig	gh-speed main) mode	: "4.99 to 9.44 µs" + 7 clocks			
LS (Lo	<i>w</i> -speed main) mode	: "1.10 to 5.08 µs" + 7 clocks			
LV (Lo	w-voltage main) mode	: "16.58 to 25.40 µs" + 7 clocks			

5. 22.3.6 Invalid memory access detection function

Incorrect:

Correct:

Figure 22-10 Invalid access detection area

	Figure 22-10	Invalid access detection area Accessibility				
			Read		Write	Instruction fetch (execution)
FFFFFH	Special function register (SFR) 256 bytes					NG
FFEFFH FFEE0H FFEDFH	General-purpose register 32 bytes				ОК	
z z z z z H	RAM ^{Note}					ОК
Î	Mirror 🚍		ОК		NG	NG
F1000H F0FFFH	Data flash memory					
F0800H F07FFH	Reserved				ок	ОК
F0000H	Special function register (2nd SFR) 2 Kbytes					NG
EFFFFH EF000H EEFFFH						ОК
- 	Reserved 🚍		NG		NG	NG
ууууу H х x x x x H	Code flash memory Note		ок			ОК
0 0 0 0 0 H						

Note: Code flash memory and RAM address of each product are as follows.

Products	Code flash memory	RAM
	(00000H to xxxxxH)	(yyyyyH to FEEFEH)
R5E100xA, R5E101xA	16384 × 8 bit	2048 × 8 bit
(x = 6 to 8, A to C, E to G)	(00000H to 03FFFH)	(EE700H to EEEEEH)
R5F100xC, R5F101xC	32768 × 8 bit	2048 × 8 bit
(x = 6 to 8, A to C, E to G, J, L)	(00000H to 07FFFH)	(EE700H to EEEEEH)
R5F100xD, R5F101xD	49152 × 8 bit	3072 × 8 bit
(x = 6 to 8. A to C, E to G, J, L)	(00000H to 0BFFFH)	(FF300H to FFEFFH)
R5F100xE, R5F101xE	65536 × 8 bit	4096 × 8 bit
(x = 6 to 8 A to C, E to G, J, L)	(00000H to 0FFFH)	(FEF00H to FFEFFH)
R5F100xF, R5F101xF	98304 × 8 bit	8192 × 8 bit
(x = A to C, E to G, J, L, M, P)	(00000H to 17FFFH)	(FDF00H to FFEFFH)
R5F100xG, R5F101xG	131072 × 8 bit	12288 × 8 bit
(x = A to C, E to G, J, L, M, P)	(00000H to 1EEEH)	(ECF00H to FFEFFH)
R5F100xH, R5F101xH	196608 × 8 bit	16384 × 8 bit
(x = E to G, J, L, M, P, S)	(00000H to 2FFFFH)	(FBF00H to FFEFFH)
R5F100xJ, R5F101xJ	262144 × 8 bit	20480 × 8 bit
(x = F, G, J, L, M, P, S)	(00000H to 3FFFFH)	(EAF00H to FFEFFH)
R5F100xK, R5F101xK	393216 × 8 bit	24576 × 8 bit
(x = F, G, J, L, M, P, S)	(00000H to 5FFFFH)	(E9E00H to FEEFEH)
R5F100xL, R5F101xL	524288 × 8 bit	32768 × 8 bit
(x = F, G, J, L, M, P, S)	(00000H to 7EFEEH)	(E7E00H to FEEEEH)

Date: Apr. 5, 2013

Note: Code flash memory area, RAM area, and the detected lowest address of each product are as follows.

			Detected lowest
-	Code flash memory	RAM	address for
Products	(00000H to xxxxxH)	(zzzzH to FFEFFH)	read/instruction
	(**************************************	(fetch (execution)
			(уууууН)
R5F100xA, R5F101xA	16384 × 8 bit	2048 × 8 bit	10000H
(x = 6 to 8, A to C, E to G)	(00000H to 03FFFH)	(FF700H to FFEFFH)	
R5F100xC, R5F101xC	32768 × 8 bit	2048 × 8 bit	10000H
(x = 6 to 8, A to C, E to G, J, L)	(00000H to 07FFFH)	(FF700H to FFEFFH)	
R5F100xD, R5F101xD	49152 × 8 bit	3072 × 8 bit	10000H
(x = 6 to 8, A to C, E to G, J, L)	(00000H to 0BFFFH)	(FF300H to FFEFFH)	
R5F100xE, R5F101xE	65536 × 8 bit	4096 × 8 bit	10000H
(x = 6 to 8 A to C, E to G, J, L)	(00000H to 0FFFH)	(FEF00H to FFEFFH)	
R5F100xF, R5F101xF	98304 × 8 bit	8192 × 8 bit	20000H
(x = A to C, E to G, J, L, M, P)	(00000H to 17FFFH)	(FDF00H to FFEFFH)	
R5F100xG, R5F101xG	131072 × 8 bit	12288 × 8 bit	20000H
(x = A to C, E to G, J, L, M, P)	(00000H to 1FFFFH)	(FCF00H to FFEFFH)	
R5F100xH, R5F101xH	196608 × 8 bit	16384 × 8 bit	30000H
(x = E to G, J, L, M, P, S)	(00000H to 2FFFFH)	(FBF00H to FFEFFH)	
R5F100xJ, R5F101xJ	262144 × 8 bit	20480 × 8 bit	40000H
(x = F, G, J, L, M, P, S)	(00000H to 3FFFFH)	(FAF00H to FFEFFH)	
R5F100xK, R5F101xK	393216 × 8 bit	24576 × 8 bit	60000H
(x = F, G, J, L, M, P, S)	(00000H to 5FFFFH)	(F9F00H to FFEFFH)	
R5F100xL, R5F101xL	524288 × 8 bit	32768 × 8 bit	80000H
(x = F, G, J, L, M, P, S)	(00000H to 7FFFFH)	(F7F00H to FFEFFH)	

Date: Apr. 5, 2013

New:

Figure 24-3 Format of Option Byte (000C2H/010C2H) 6.

Old:	Fig 000C2H/010C		ormat of (Option Byte (000C2H/0100	C2H)	
7	6	5	4	3	2	1	0
CMODE1	C5MODE0	1	0	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0

		Setting of flash operation mode				
CMODE1	CMODE0		Operating Frequency Range	Operating Voltage Range		
0	0	LV (low voltage main) mode	1 to 4 MHz	1.6 to 5.5 V		
1	0	LS (low speed main) mode	1 to 8 MHz	1.8 to 5.5 V		
1	1	HS (high speed main) mode	1 to 16 MHz	2.4 to 5.5 V		
1	I	no (nigh speed main) mode	1 to 32 MHz	2.7 to 5.5 V		
Other that	an above	Setting prohibited				

FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator
1	0	0	0	32 MHz
0	0	0	0	24 MHz
1	0	0	1	16 MHz
0	0	0	1	12 MHz
1	0	1	0	8 MHz
1	0	1	1	4 MHz
1	1	0	1	1 MHz
	Other that	an above		Setting prohibited

Note: Set the same value as 000C2H to 010C2H when the boot swap operation is used because 000C2H is replaced by 010C2H. **Caution:** Be sure to set bit 5 to 1 and bit 4 to 0.

Figure 24-3. Format of Option Byte (000C2H/010C2H) Address: 000C2H/010C2H ^{note}							
7	6	5	4	3	2	1	0
CMODE1	C5MODE0	1	0	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0

		Setting of flash operation mode				
CMODE1	CMODE0		Operating Frequency Range	Operating Voltage Range		
0	0	LV (low voltage main) mode	1 to 4 MHz	1.6 to 5.5 V		
1	0	LS (low speed main) mode	1 to 8 MHz	1.8 to 5.5 V		
1	1	HS (high speed main) mode	1 to 16 MHz	2.4 to 5.5 V		
1	I	no (nigh speed main) mode	1 to 32 MHz	2.7 to 5.5 V		
Other than above		Setting prohibited	· · ·			

FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator
1	0	0	0	32 MHz
0	0	0	0	24 MHz
1	0	0	1	16 MHz
0	0	0	1	12 MHz
1	0	1	0	8 MHz
0	0	1	0	6 MHz
1	0	1	1	4 MHz
0	0	1	1	3 MHz
1	1	0	0	2 MHz
1	1	0	1	1 MHz
	Other that	an above		Setting prohibited

Note: Set the same value as 000C2H to 010C2H when the boot swap operation is used because 000C2H is replaced by 010C2H.

Caution: Be sure to set bit 5 to 1 and bit 4 to 0.

RENESAS TECHNICAL UPDATE TN-RL*-A005A/E	Date: Apr. 5, 2013
7. 29.3.1 Pin characteristics Incorrect: Fixed typo in Note 3 in pages 993 and 994	Correct: Refer to pages 6 and 7 in Technical Update Exhibit "Chapter 29 ELECTRICAL SPECIFICATIONS (A, D: $T_A = -40$ to + 85°C)" (MCYG-AB-12-0384).
8. 29.3.2 Supply current characteristics Incorrect: Fixed typo in Notes and typical values of IDD2 and IDD3 in pages 998 to 1010	Correct: Refer to pages 11 to 24 in Technical Update Exhibit "Chapter 29 ELECTRICAL SPECIFICATIONS (A, D: T _A = −40 to + 85°C)" (MCYG-AB-12-0384).
9. 29.4 AC Characteristics Old: Specifications of the external system clock frequency and external system clock input high-level width, low-level width in page 1011 extended	New: Refer to page 25 in Technical Update Exhibit "Chapter 29 ELECTRICAL SPECIFICATIONS (A, D: T _A = −40 to + 85°C)" (MCYG-AB-12-0384).
10. 29.5.1 Serial array unit Incorrect: Fixed typo in 29.5.1 Serial array unit in pages 1014 to 1036	Correct: Refer to pages 29 to 56 in Technical Update Exhibit "Chapter 29 ELECTRICAL SPECIFICATIONS (A, D: T _A = −40 to + 85°C)" (MCYG-AB-12-0384).
11. 29.5.2 Serial Interface IICA Incorrect: Fixed typo in 29.5.2 Serial interface IICA in page 1037	Correct: Refer to pages 57 to 60 in Technical Update Exhibit "Chapter 29 ELECTRICAL SPECIFICATIONS (A, D: T _A = −40 to + 85°C)" (MCYG-AB-12-0384).
12. 29.6.1 A/D converter characteristics Old: Specifications of "29.6.1 A/D converter characteristics" in pages 1038 to 1041 extended	New: Refer to pages 61 to 65 in Technical Update Exhibit "Chapter 29 ELECTRICAL SPECIFICATIONS (A, D: T _A = −40 to + 85°C)" (MCYG-AB-12-0384).
 13. 29.6.2 Temperature Sensor/Internal Reference Voltage Characteristics Incorrect: Fixed typo in 29.6.2 Temperature Sensor/Internal Reference Voltage Characteristics in page 1042 	Correct: Refer to page 66 in Technical Update Exhibit "Chapter 29 ELECTRICAL SPECIFICATIONS (A, D: T _A = -40 to + 85°C)" (MCYG-AB-12-0384).
14.29.6.3POR circuit characteristicsIncorrect:Fixed typo in 29.6.3 POR circuit characteristics in page 1042	Correct: Refer to page 66 in Technical Update Exhibit "Chapter 29 ELECTRICAL SPECIFICATIONS (A, D: T _A = -40 to + 85°C)" (MCYG-AB-12-0384).

RENESAS TECHNICAL UPDATE	TN-RL*-A005A/E
---------------------------------	----------------

Date: Apr. 5, 2013

15. Supply Voltage Rise Time Old: Specifications in Supply Voltage Rise Time in page 1045 added	New: Refer to page 68 in Technical Update Exhibit "Chapter 29 ELECTRICAL SPECIFICATIONS (A, D: T _A = −40 to + 85°C)" (MCYG-AB-12-0384).
16. 29.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics Old: Specifications in Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics in page 1046 extended	New: Refer to page 69 in Technical Update Exhibit "Chapter 29 ELECTRICAL SPECIFICATIONS (A, D: T _A = -40 to + 85°C)" (MCYG-AB-12-0384).
17. Chapter 30 ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to +105°C) (TARGET) Old: Specifications in Chapter 30 ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to +105°C) in pages 1048 to 1098 fixed	New: Refer to pages 2 to 54 in Technical Update Exhibit "Chapter 30 ELECTRICAL SPECIFICATIONS (G: T _A = −40 to +105°C)" (MCYG-AB-12-0385).

To our valued customers:		M C Y G - A B - 1 2 - 0 3 8 4 - 1
	RL78/G13	March 15, 2013
	Technical Update Exhibit	Hiroshi Uchimura
	Chapter 29 ELECTRICAL	Manager
	SPECIFICATIONS	1 st Solution Business Unit
	$(A, D: T_A = -40 \text{ to } +85^{\circ}\text{C})$	3 rd MCU Business Division
	(A, D: IA = 40 to 100 C)	Brand Strategy Department
		Renesas Electronics Corporation

(Rep. Seiya Indo)

Thank you for your continued support for Renesas Electronics products.

Please be advised that the misstatements found in the following User's Manual have been fixed.

The second and following pages in this document include "Chapter 29 ELECTRICAL SPECIFICATIONS (A, D: $T_A = -40$ to $+85^{\circ}$ C)" which has been updated by the Correction for incorrect description notice RL78/G13 Descriptions in the User's Manual: Hardware Rev.2.10 changed (TN-RL*-A005A/E).

1. Applicable products:

RL78/G13

R5F100xxA, R5F101xxA R5F100xxD, R5F101xxD

2. Reference documents:

Correction for incorrect description notice RL78/G13 Descriptions in the User's Manual: Hardware Rev.2.10 changed (TN-RL*-A005A/E) RL78/G13 User's Manual: Hardware Rev.2.10 (R01UH0146EJ0210)

CHAPTER 29 ELECTRICAL SPECIFICATIONS (A, D: TA = -40 to +85°C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)" and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}C$)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with Vss.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 With functions for each product.

29.1 Absolute Maximum Ratings

Absolute Maximum Ratings	$(T_A = 25^{\circ}C) (1/2)$
---------------------------------	-----------------------------

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	EVDD0, EVDD1	EV _{DD0} = EV _{DD1}	-0.5 to +6.5	V
	EVsso, EVss1	EV _{SS0} = EV _{SS1}	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V_{DD} +0.3 $^{\text{Note 1}}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	-0.3 to EV_DD0 +0.3 and -0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	V _{I3}	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_{DD0} +0.3 and -0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
	V ₀₂	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	Val1	ANI16 to ANI26	-0.3 to EV _{DD0} +0.3 and -0.3 to AV _{REF} (+) +0.3 ^{Notes 2,} 3	V
	V _{Al2}	ANI0 to ANI14	-0.3 to V_{DD} +0.3 and -0.3 to $AV_{\text{REF}}(+)$ +0.3 $^{\text{Notes 2,}}$ $_3$	V

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

- 2. Must be 6.5 V or lower.
- 3. Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the p ort pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - **3.** Vss : Reference voltage

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lol1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operation	on mode	-40 to +85	°C
temperature			orogramming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

29.2 Oscillator Characteristics

29.2.1 X1, XT1 oscillator characteristics

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2.4~V$	1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}} < 1.8~V$	1.0		4.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscill ator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

29.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	1.8 V≤V _{DD} ≤5.5 V	-1.0		+1.0	%
clock frequency accuracy			1.6 V≤V _{DD} <1.8 V	-5.0		+5.0	%
		–40 to –20 °C	1.8 V≤Vdd≤5.5 V	-1.5		+1.5	%
			1.6 V≤V _{DD} <1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

29.3 DC Characteristics

29.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іонт	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$1.6~V \leq EV_{DD0} \leq 5.5~V$			-10.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-55.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-10.0	mA
		$(\text{When duty} \le 70\%^{\text{Note 3}})$	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-5.0	mA
			$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-80.0	mA
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-19.0	mA
		P117, P146, P147	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			-10.0	mA
		(When duty $\leq 70\%$ ^{Note 3})	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			-5.0	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.

2. However, do not exceed the total current value.

3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allo wed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. The applied current for the products for industrial application (R5F100xxDxx, R5F101xxDxx) is -100 mA.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				20.0 ^{Note 2}	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			70.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			15.0	mA
		$(When duty \le 70\%^{Note 3})$	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			9.0	mA
		· · · · · · · · · · · · · · · · · · ·	$1.6~V \leq EV_{\text{DD0}} < 1.8~V$			4.5	mA
		Total of P05, P06, P10 to P17, P30,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			80.0	mA
		P31, P50 to P57, P60 to P67,	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			35.0	mA
		P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146,	$1.8~V \leq EV_{\text{DD0}} < 2.7~V$			20.0	mA
		P147 (When duty $\leq 70\%$ ^{Note 3})	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				150.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			5.0	mA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (2/5)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allo wed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, Normal input b P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147		0.8EV _{DD0}		EVddo	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V			
		P80, P81, P142, P143		V			
				V			
	VIH3	P20 to P27, P150 to P156		0.7Vdd		Vdd	V
	VIH4	P60 to P63		0.7EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	, RESET	0.8Vdd		VDD	V
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EV _{DD0}	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,		0		EVDD0 VDD 6.0 VDD 0.2EVDD0 0.8 0.5 0.32	V
		P80, P81, P142, P143	to P37, to P67, to P97, P120, Normal input buffer $0.8EV_{DD0}$ EV_{DD0} P55, TTL input buffer 2.2 EV_{DD0} 7 $4.0 V \le EV_{DD0} \le 5.5 V$ EV_{DD0} 7 TTL input buffer 2.0 EV_{DD0} $3.3 V \le EV_{DD0} < 4.0 V$ TTL input buffer 1.5 EV_{DD0} $1.6 V \le EV_{DD0} < 3.3 V$ $0.7V_{DD}$ V_{DD} $0.7EV_{DD0}$ $0.7EV_{DD0}$ 0.0 $EXCLKS, \overline{RESET}$ $0.8V_{DD}$ V_{DD} $0.7EV_{DD0}$ $0.2EV_{DD0}$ 0.0 $0.7EV_{DD0}$ $0.8V_{DD}$ V_{DD} $0.7EV_{DD0}$ $0.8V_{DD}$ $0.2EV_{DD0}$ $0.7EV_{DD0}$ $0.8V_{DD}$ $0.2EV_{DD0}$ $0.7EV_{DD0}$ $0.8V_{DD}$ $0.2EV_{DD0}$ $0.7EV_{DD0}$ $0.8V_{DD}$ $0.2EV_{DD0}$ $0.955,$ TTL input buffer 0 $0.3EV_{DD}$ $0.16 V \le EV_{DD0} < 3.3 V$ 0 $0.3V_{DD}$ $0.16 V \le EV_{DD0} < 3.3 V$ 0 $0.3V_{DD}$	0.5	V		
			•	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3VDD	V
	VIL4	P60 to P63	0		0.3EVDD0	V	
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	, RESET	0		0.2VDD	V

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (3/5)

- Caution The maximum value of V_{IH} of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EV_{DD0}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ mA \end{array}$	EV _{DD0} - 1.5			V
		P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	EV _{DD0} - 0.7			V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ mA \end{array}$	EV _{DD0} - 0.6		1.3 0.7 0.6 0.4 0.4	V
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	EV _{DD0} - 0.5			V
			$eq:log_log_log_log_log_log_log_log_log_log_$	EV _{DD0} - 0.5			V
	V _{OH2}	P20 to P27, P150 to P156	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = $-100 \ \mu \text{ A}$	$V_{\text{DD}}-0.5$			V
Output voltage, Iow	V _{OL1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			1.3	V
		P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:observed_eq}$			0.7	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD1}$			0.6	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:DD1}$			0.4	V
			$eq:local_$			0.4	V
			$eq:local_$			0.4	V
	V _{OL2}	P20 to P27, P150 to P156	$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL2}} = 400 \ \mu \text{ A}$			0.4	V
	Vol3	P60 to P63	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array}$			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 2.0 \ mA \end{array}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 5.5 \text{ V},$ Iol3 = 1.0 mA			0.4	V

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditi	ons		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EV _{DD0}				1	μA
	Ilih2	P20 to P27, P137, P150 to P156, RESET	VI = VDD				1	μA
	Ілнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low						-1	μA	
	Ilil2	P20 to P27, P137, P150 to P156, RESET	VI = VSS				-1	μA
	Ilili	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EV _{SSO}	In input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

29.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	fiH = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.1		mA
current ^{Note}		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		2.1		mA
			mode		Normal	V _{DD} = 5.0 V		4.6	7.0	mA
					operation	V _{DD} = 3.0 V		4.6	7.0	mA
				fill = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	mA
				f _{IH} = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.0	mA
					operation	V _{DD} = 3.0 V		2.7	4.0	mA
			LS (low-	fill = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			voltage main) mode ^{Note 5}	f _{IH} = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.2	1.7	mA
					operation	V _{DD} = 2.0 V		1.2	1.7	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.2	4.8	mA
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.6	mA
			V _{DD} = 3.0 V	-	Resonator connection		3.2	4.8	mA	
			f _{MX} = 10 MHz ^{Note 2} ,		Square wave input		1.9	2.7	mA	
				V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.7	mA
				f_{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	2.7	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.9	2.7	mA
			LS (low- speed main) mode ^{Note 5}	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 3.0 V	operation Normal	Resonator connection		1.1	1.7	mA
				f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
			clock operation	^{Note 4} T _A = −40°C	operation	Resonator connection		4.2	5.0	μA
				fsub = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
				Note 4 T _A = +25°C	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
				Note 4 T _A = +50°C	operation	Resonator connection		4.3	5.6	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA
				Note 4	operation	Resonator connection		4.4	6.4	μA
			T _A = +70°C							
				fsub = 32.768 kHz Note 4	Normal operation	Square wave input Resonator connection		4.6 4.7	7.7 7.8	μA μA
				T₄ = +85°C						ματ

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
- **Remarks 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	fiH = 32 MHz Note 4	V _{DD} = 5.0 V		0.54	1.63	mA
Current Note 1	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.54	1.63	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.28	mA
					V _{DD} = 3.0 V		0.44 1.28 0.40 1.00 0.40 1.00 260 530 260 530 260 530 420 640 420 640 0.28 1.00 0.45 1.17 0.28 1.00 0.45 1.17 0.19 0.60 0.26 0.67 0.19 0.60 0.26 0.67 95 330 145 380 95 330 145 380 0.25 0.57 0.44 0.76 0.30 0.57 0.49 0.76 0.37 1.17	mA	
			$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.00	mA				
					V _{DD} = 3.0 V		0.40	1.00	mA
			``	fill = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Note 7}		V _{DD} = 2.0 V		260	530	μA
			`	fı⊢ = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
			voltage main) mode ^{Note 7}		V _{DD} = 2.0 V		420	640	μA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
				V _{DD} = 3.0 V	Resonator connection		145	380	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	μA
			,	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock operation	T _A = -40°C	Resonator connection		0.44	0.76	μA
			operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				T _A = +50°C	Resonator connection		0.56	1.36	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
				T _A = +70°C	Resonator connection		0.72	2.16	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA
				T _A = +85°C	Resonator connection		1.01	3.56	μA
	IDD3 ^{Note 6}	STOP	T _A = -40°C				0.18	0.50	μA
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.30	1.10	μA
			T _A = +70°C				0.46	1.90	μA
			T _A = +85°C				0.75	3.30	μA

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. Ho wever, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: 1.8 V \leq V_DD \leq 5.5 V@1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fMx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	f _{IH} = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.3		mA
current ^{Note}		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		2.3		mA
			moue		Normal	V _{DD} = 5.0 V		5.2	8.5	mA
					operation	V _{DD} = 3.0 V		5.2	8.5	mA
				f _{IH} = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	6.6	mA
					operation	V _{DD} = 3.0 V		4.1	6.6	mA
				f _{IH} = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	4.7	mA
					operation	V _{DD} = 3.0 V		3.0	4.7	mA
			LS (low-	f _{IH} = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.3	2.1	mA
			speed main) mode Note 5		operation	V _{DD} = 2.0 V		1.3	2.1	mA
			LV (low-	f⊪ = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.3	1.8	mA
			voltage main) mode Note 5		operation	V _{DD} = 2.0 V		1.3	1.8	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	mA
			speed main)	V _{DD} = 5.0 V	operation	Resonator connection		3.6	5.7	mA
			mode Note 5	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	mA
			V _{DD} = 3.0 V	operation Normal	Resonator connection		3.6	5.7	mA	
			f _{MX} = 10 MHz ^{Note 2} ,		Square wave input		2.1	3.2	mA	
			LS (low-	V _{DD} = 5.0 V	operation Normal	Resonator connection		2.1	3.2	mA
				f _{MX} = 10 MHz ^{Note 2} ,		Square wave input		2.1	3.2	mA
				V _{DD} = 3.0 V	operation	Resonator connection		2.1	3.2	mA
				f _{MX} = 8 MHz ^{Note 2} ,	Normal operation Normal	Square wave input		1.2	2.0	mA
			speed main)	V _{DD} = 3.0 V		Resonator connection		1.2	2.0	mA
			mode Note 5	f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.2	2.0	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.0	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.8	5.9	μA
			clock operation	Note 4 T _A = -40°C	operation	Resonator connection		4.9	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.9	5.9	μA
				Note 4 T _A = +25°C	operation	Resonator connection		5.0	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.0	7.6	μA
				Note 4	operation	Resonator connection		5.1	7.7	μΑ
			T _A = +50°C						-	
			f _{SUB} = 32.768 kHz Note 4	Normal	Square wave input		5.2	9.3	μA	
				$T_A = +70^{\circ}C$	operation	Resonator connection		5.3	9.4	μA
				f _{SUB} = 32.768 kHz Note 4	Normal operation	Square wave input		5.7	13.3	μA
				T _A = +85°C		Resonator connection		5.8	13.4	μA

- **Notes 1.** Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (2/2)

Parameter	Symbol	Conditions					TYP.	MAX.	Unit
Supply current Note 1	IDD2	HALT	HS (high- speed main) mode ^{Note 7}	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	1.86	mA
	Note 2	mode			V _{DD} = 3.0 V		0.62	1.86	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	1.45	mA
					V _{DD} = 3.0 V		0.50	1.45	mA
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.11	mA
					V _{DD} = 3.0 V		0.44	1.11	mA
			LS (low-speed main) mode Note 7	fı⊢ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		290	620	μA
					V _{DD} = 2.0 V		290	620	μA
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		440	680	μA
			voltage main) mode Note 7		V _{DD} = 2.0 V		440	680	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.48	1.28	mA
			mode	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.08	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.28	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.63	m/
				V _{DD} = 5.0 V	Resonator connection		0.28	0.71	m/
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.63	m/
				V _{DD} = 3.0 V	Resonator connection		0.28	0.71	m/
			LS (low-speed main) mode Note 7	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
				V _{DD} = 3.0 V	Resonator connection		160	420	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
				V _{DD} = 2.0 V	Resonator connection		160	420	μA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
			clock operation	T _A = -40°C	Resonator connection		0.47	0.80	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μP
				T _A = +25°C	Resonator connection		0.53	0.80	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				T _A = +50°C	Resonator connection		0.60	2.49	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μA
				T _A = +70°C	Resonator connection		0.83	4.22	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
				T _A = +85°C	Resonator connection		1.28	8.23	μA
	IDD3 ^{Note 6}	STOP mode ^{Note 8}	T _A = -40°C				0.19	0.52	μA
			T _A = +25°C				0.25	0.52	μA
			T _A = +50°C				0.32	2.21	μA
			T _A = +70°C				0.55	3.94	μA
			T _A = +85°C				1.00	7.95	μA

- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - $2.4~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 16 MHz
 - LS (low-speed main) mode: $~1.8~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fMx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current ^{Note} 1	DD1	Operating	HS (high- speed main) mode ^{Note 5}	f _{IH} = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.6		mA
		mode			operation	V _{DD} = 3.0 V		2.6		mA
					Normal	V _{DD} = 5.0 V		6.1	9.5	mA
					operation	V _{DD} = 3.0 V		6.1	9.5	mA
				f _{IH} = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.8	7.4	mA
					operation	V _{DD} = 3.0 V		4.8	7.4	mA
				fill = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.5	5.3	mA
					operation	V _{DD} = 3.0 V		3.5	5.3	mA
			LS (low-	f _{IH} = 8 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.5	2.3	mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.5	2.3	mA
			LV (low-	f _{IH} = 4 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.5	2.0	mA
			voltage main) mode ^{Note 5}		operation	V _{DD} = 2.0 V		1.5	2.0	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.9	6.1	mA
			speed main) mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		4.1	6.3	mA
			mode ¹⁰⁴⁰	f _{MX} = 20 MHz ^{Note 2} ,	Normal operation	Square wave input		3.9	6.1	mA
				V _{DD} = 3.0 V		Resonator connection		4.1	6.3	mA
				f_{MX} = 10 MHz ^{Note 2} ,	Normal operation	Square wave input		2.5	3.7	mA
				V _{DD} = 5.0 V		Resonator connection		2.5	3.7	mA
				f_{MX} = 10 MHz ^{Note 2} ,	Normal operation	Square wave input		2.5	3.7	mA
				V _{DD} = 3.0 V		Resonator connection		2.5	3.7	mA
			LS (low- speed main) mode Note 5	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.4	2.2	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.4	2.2	mA
			mode	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}}$, Normal Square wave input	Square wave input		1.4	2.2	mA	
				V _{DD} = 2.0 V	operation	Resonator connection		1.4	2.2	mA
			Subsystem	f _{SUB} = 32.768 kHz Note 4	Normal	Square wave input		5.4	6.5	μA
			clock operation	$T_A = -40^{\circ}C$	operation	Resonator connection		5.5	6.6	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.5	6.5	μA
				Note 4 operation Resonator connection $T_A = +25^{\circ}C$		5.6	6.6	μA		
				fsuв = 32.768 kHz	Normal operation	Square wave input	<u> </u>	5.6	9.4	μA
				Note 4		Resonator connection		5.7	9.5	μA
				T _A = +50°C						
				fs∪B = 32.768 kHz Note 4	Normal operation	Square wave input		5.9	12.0	μA
				T _A = +70°C		Resonator connection		6.0	12.1	μA
				f _{SUB} = 32.768 kHz Note 4	Normal	Square wave input		6.6	16.3	μA
				T₄ = +85°C	operation	Resonator connection		6.7	16.4	μA

- Notes 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or VSS, EVSSO, and EVSS1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(3) 128-pin products, and flash ROM: 384 to 512 KB of 44- to 100-pin products

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current Note 1	DD2 Note 2	HALT mode	HS (high- speed main) mode ^{Note 7}	f _{IH} = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	1.89	mA
					V _{DD} = 3.0 V		0.62	1.89	mA
				f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	1.48	mA
					V _{DD} = 3.0 V		0.50	1.48	mA
				f _{ін} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.12	mA
					V _{DD} = 3.0 V		0.44	1.12	mA
			LS (low-speed main) mode Note 7	f⊪ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		290	620	μA
					V _{DD} = 2.0 V		290	620	μA
			LV (low-	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		460	700	μA
			voltage main) mode ^{Note 7}		V _{DD} = 2.0 V		460	700	μA
			HS (high- speed main) mode ^{Note 7}	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.14	mA
				V _{DD} = 5.0 V	Resonator connection		0.48	1.34	mA
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.31	1.14	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	1.34	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.21	0.68	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	0.76	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.21	0.68	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	0.76	mA
			LS (low-speed main) mode Note 7	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	390	μA
				V _{DD} = 3.0 V	Resonator connection		160	450	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	390	μA
				V _{DD} = 2.0 V	Resonator connection		160	450	μA
			Subsystem clock operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.66	μA
				T _A = -40°C	Resonator connection		0.50	0.85	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.38	0.66	μA
				T _A = +25°C	Resonator connection		0.57	0.85	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.47	3.49	μA
				T _A = +50°C	Resonator connection		0.66	3.68	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.80	6.10	μA
				T _A = +70°C	Resonator connection		0.99	6.29	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		1.52	10.46	μA
				T _A = +85°C	Resonator connection		1.71	10.65	μA
	IDD3 ^{Note 6}	STOP mode ^{Note 8}	T _A = -40°C				0.19	0.54	μA
			T _A = +25°C				0.26	0.54	μA
			T _A = +50°C				0.35	3.37	μA
			T _A = +70°C				0.68	5.98	μA
			T _A = +85°C				1.40	10.34	μA

- Notes 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. Ho wever, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
 - 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fMx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(4) Peripheral Functions (Common to all products)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	Note 1 Fi∟				0.20		μA
RTC operating current	I _{RTC} Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	I⊺ ^{Notes} 1, 2, 4				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter operating current	ADC Notes 1, 6	When conversion at maximum speed	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$ Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.3 0.5	1.7 0.7	mA mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVI Notes 1, 7				0.08		μA
Self- programming operating current	FSP Notes 1, 9				2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, AV_{REFP} = V_{DD} = 3.0 V		1.20	1.44	mA
		CSI/UART operati	on		0.70	0.84	mA

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the r eal-time clock (RTC) (excluding the oper ating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the v alues of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be a dded. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the op erating current of the lo w-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the v alues of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL 78 microcontrollers is the sum of I DD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.

- 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of I DD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

29.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

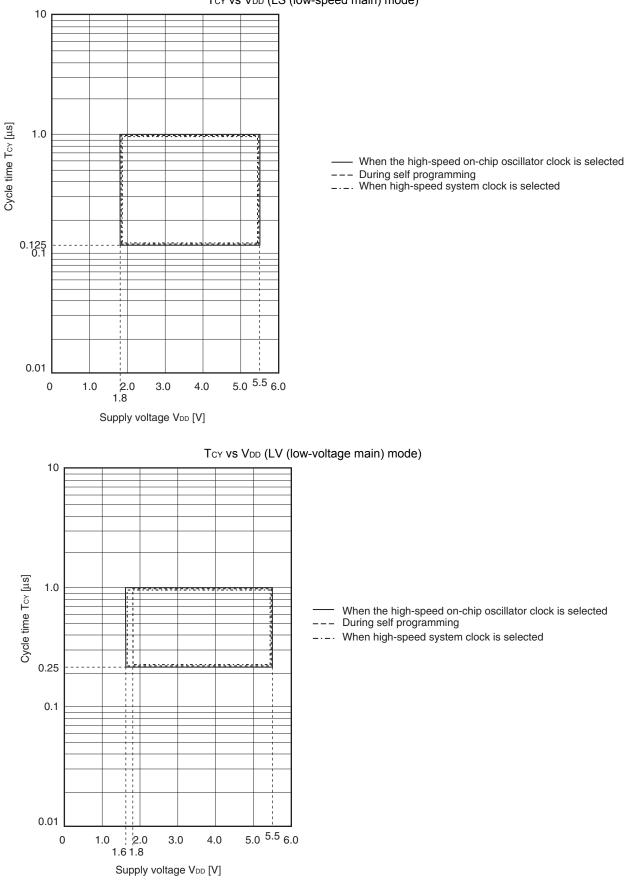
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system	HS (high-speed	$2.7V\!\le\!V_{DD}\!\le\!5.5V$	0.03125		1	μS
instruction execution time)		clock (fmain) operation	main) mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	0.0625		1	μS
		operation	LS (low-speed main) mode	$1.8V\!\le\!V_{DD}\!\le\!5.5V$	0.125		1	μS
			LV (low-voltage main) mode	$1.6V\!\le\!V_{DD}\!\le\!5.5V$	0.25		1	μS
		Subsystem c operation	lock (fsuB)	$1.8 V \le V_{DD} \le 5.5 V$	28.5	30.5 31	.3	μS
		In the self	HS (high-speed	$2.7V\!\leq\!V_{DD}\!\leq\!5.5V$	0.03125		1	μS
		programming mode	main) mode	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.0625		1	μS
		mode	LS (low-speed main) mode	$1.8V\!\le\!V_{DD}\!\le\!5.5V$	0.125		1	μS
			LV (low-voltage main) mode	$1.8V\!\le\!V_{DD}\!\le\!5.5V$	0.25		1	μS
External system clock frequency	fex	$2.7 \text{ V} \leq V_{\text{DD}} \leq$	5.5 V	•	1.0		20.0	MHz
		$2.4 V \le V_{DD}$ <	2.7 V		1.0		16.0	MHz
		$1.8 V \le V_{DD}$ <	2.4 V		1.0		8.0	MHz
		$1.6 V \le V_{DD}$ <	: 1.8 V		1.0		4.0	MHz
	fexs				32	35		kHz
External system clock input high-	texh, texl	$2.7 \ V \le V_{DD} \le$	5.5 V		24			ns
level width, low-level width		$2.4 V \le V_{DD}$ <	: 2.7 V		30			ns
		$1.8 V \le V_{DD}$ <	2.4 V		60			ns
		$1.6 V \le V_{DD} <$: 1.8 V		120			ns
	texhs, texls				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tт⊪, tт⊾				1/fмск+10			ns ^{Note}
T000 to T007, T010 to T017	fто	HS (high-spe	ed 4.0 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
output frequency		main) mode	2.7 V	\leq EV _{DD0} < 4.0 V			8	MHz
			1.8 V	≤ EV _{DD0} < 2.7 V			4	MHz
			1.6 V	≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spee	d 1.8 V :	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		main) mode		≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode	ge 1.6 V :	$\leq EV_{DD0} \leq 5.5 V$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe		$\leq EV_{DD0} \leq 5.5 V$			16	MHz
frequency		main) mode		\leq EV _{DD0} < 4.0 V			8	MHz
				≤ EV _{DD0} < 2.7 V			4	MHz
			1.6 V :	≤ EV _{DD0} < 1.8 V			2	MHz
		LS (low-spee		$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		main) mode		≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-volta main) mode	-	$\leq EV_{DD0} \leq 5.5 V$			4	MHz
		,		≤ EV _{DD0} < 1.8 V			2	MHz
Interrupt input high-level width, low-level width	tinth,	INTP0		$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μS
	t intl	INTP1 to INT	-	$\leq EV_{DD0} \leq 5.5 V$	1			μS
Key interrupt input low-level width	t kr	KR0 to KR7		$\leq EV_{DD0} \leq 5.5 V$	250			ns
			1.6 V :	≤ EV _{DD0} < 1.8 V	1			μS
RESET low-level width	trsl				10			μS

(Note and Remark are listed on the next page.)

Note The following conditions are required for low voltage interface when EVDD0 < VDD $1.8~V \leq EV_{\text{DD0}}$ < 2.7 V : MIN. 125 ns $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$: MIN. 250 ns

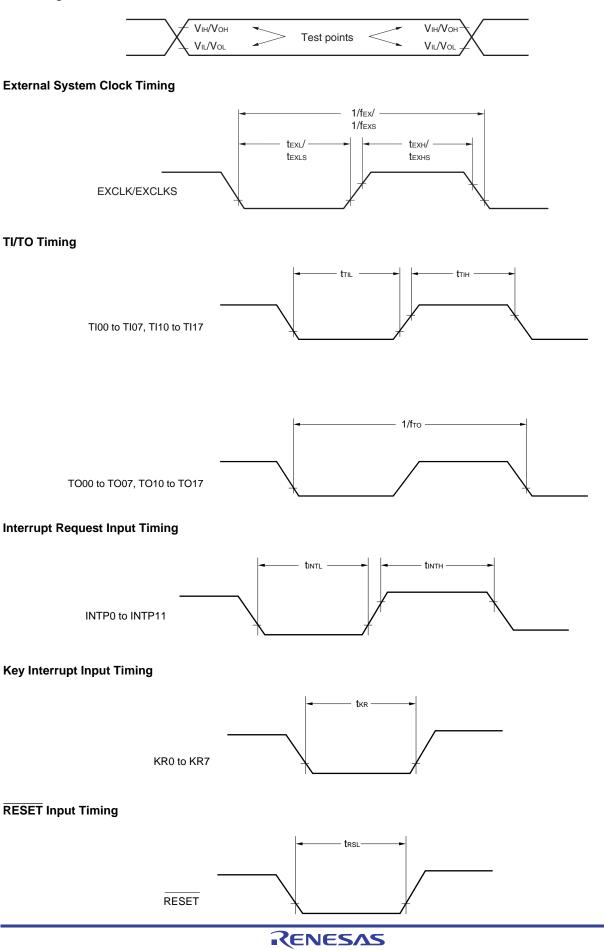
Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation


TCY VS VDD (HS (high-speed main) mode) 10 Cycle time Tcv [µs] 1.0 0.1 0.0625 0.05 0.03125 0.01 .0 3.0 2.4 2.7 5.0 5.5 6.0 0 1.0 2.0 4.0

Supply voltage VDD [V]

When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected _ _ _


_ . _ .

TCY VS VDD (LS (low-speed main) mode)

AC Timing Test Points

29.5 Peripheral Functions Characteristics

AC Timing Test Points

29.5.1 Serial array unit

(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions		h-speed Mode		/-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		$2.4~V\!\leq EV_{DD0} \leq 5.5~V$		fмск/6 Note 2		fмск/6 Note 2		fмск/6 Note 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fмск/6 Note 2		f мск/6		f мск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		5.3		1.3		0.6	Mbps
		$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		fмск/6 Note 2		fмск/6 Note 2		f мск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ ^{Note 3}		5.3		1.3		0.6	Mbps
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	-	_		fмск/6 Note 2		f мск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$	-			1.3		0.6	Mbps

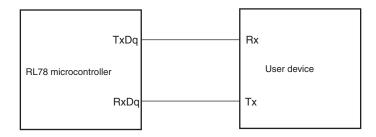
Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$.

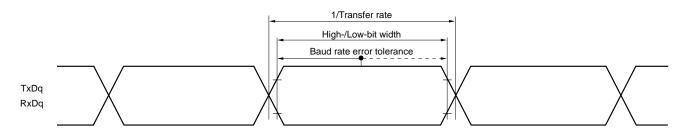
 $2.4~V \leq EV_{\text{DD0}}$ < 2.7 V : MAX. 2.6 Mbps

 $1.8~\text{V} \leq \text{EV}_\text{DD0}$ < 2.4 V : MAX. 1.3 Mbps

 $1.6~V \leq EV_{\text{DD0}}$ < 1.8~V : MAX. 0.6 Mbps


3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

 $\begin{array}{rll} \text{HS (high-speed main) mode:} & 32 \ \text{MHz} \ (2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ & 16 & \text{MHz} \ (2.4 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \text{LS (low-speed main) mode:} & 8 \ \text{MHz} \ (1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \\ \text{LV (low-voltage main) mode:} & 4 \ \text{MHz} \ (1.6 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}) \end{array}$


Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

- **Remarks 1.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (higl main)	h-speed Mode	`	/-speed Mode	`	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN. M	AX.	
SCKp cycle time	t ксү1	$t_{\text{KCY1}} \geq 2/f_{\text{CLK}}$	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level width	t кн1, t к∟1	$4.0 V \leq EV_{DD}$	$_0 \leq 5.5 \text{ V}$	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}}$	$_0 \leq 5.5 \text{ V}$	tксү1/2 – 10		tксү1/2 — 50		tксү1/2 – 50		ns
SIp setup time (to SCKp↑)	tsiĸ1	$4.0 V \le EV_{DD}$	$0 \leq 5.5 \text{ V}$	23		110		110		ns
Note 1		$2.7 \text{ V} \leq EV_{DD}$	$0 \leq 5.5 \text{ V}$	33		110		110		ns
SIp hold time (from SCKp↑) Note 2	tksi1	$2.7 V \leq EV_{DD}$	$_0 \leq 5.5 \text{ V}$	10		10	10			ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF ^{Note}	- 4		10		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becom es "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPm n = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output b ecomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.

p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
g: PIM and POM numbers (g = 1)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

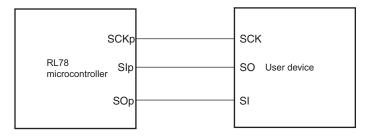
Parameter	Symbol	C	Conditions	HS (high main)	•	•	/-speed Mode	LV (low- main)	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN. M	AX.	
SCKp cycle time	tkCY1	$t_{\text{KCY1}} \geq 4/f_{\text{CLK}}$	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	125		500		1000		ns
			$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$	250		500		1000		ns
			$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	500		500		1000		ns
			$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	1000		1000		1000		ns
			$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$			1000		1000		ns
SCKp high-/low-level width	tкн1, tк∟1	$4.0 V \leq EV_{DD}$	$_{\text{D}} \leq 5.5 \text{ V}$	tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.7 \text{ V} \leq EV_{DD}$	$_{\text{D}} \leq 5.5 \text{ V}$	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	$_{\text{D}} \leq 5.5 \text{ V}$	tксү1/2 – 38		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.8 V \leq EV_{DD}$	$_{\text{D}} \leq 5.5 \text{ V}$	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		$1.7 V \leq EV_{DD}$	$_{\text{D}} \leq 5.5 \text{ V}$	tксү1/2 – 100		tксү1/2 – 100		tксү1/2 – 100		ns
		$1.6 V \le EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	—		tксү1/2 – 100		tксү1/2 – 100		ns
SIp setup time	tsik1	$4.0 V \le EV_{DD}$	$_{\text{D}} \leq 5.5 \text{ V}$	44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq EV_{\text{DD}}$	$_{\text{D}} \leq 5.5 \text{ V}$	44		110		110		ns
		$2.4 \text{ V} \leq EV_{\text{DD}}$	$_{\text{D}} \leq 5.5 \text{ V}$	75		110		110		ns
		$1.8 V \le EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	110		110		110		ns
		$1.7 \text{ V} \leq EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	220		220		220		ns
		$1.6 V \le EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	_		220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq EV_{\text{DD}}$	$0 \leq 5.5 \text{ V}$	19		19		19		ns
(from SCKp↑) Note 2		$1.6 V \le EV_{DD}$	$_{0} \leq 5.5 \text{ V}$	_		19		19		ns
Delay time from SCKp↓ to SOp	tkso1	$1.7 \text{ V} \le \text{EV}_{\text{DD}}$ C = 30 pF ^{Note}			25		25		25	ns
output Note 3		$\begin{array}{l} 1.6 \ V \leq EV_{DD} \\ C = 30 \ pF^{Note} \end{array}$			—		25		25	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becom es "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPm n = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output b ecomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

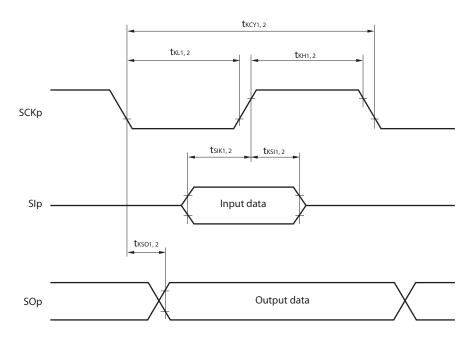
- Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) $(T_A = -40 \text{ to } +85^\circ\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}$. Vss = EVss0 = EVss1 = 0 V)

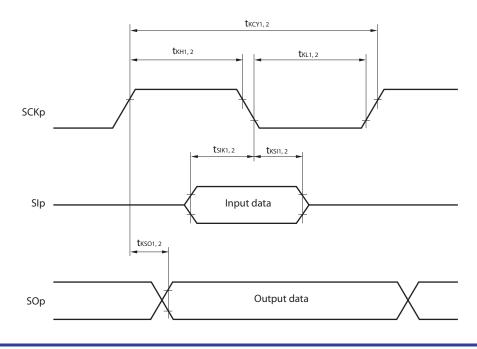
Parameter	Symbol	Condit	ions	. –	peed main) ode		v-speed Mode	d LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	20 MHz < fмск	8/f мск				_		ns
Note 5			fмск \leq 20 MHz	6/fмск		6/ f мск		6/ f мск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	16 MHz < fмск	8/f мск				_		ns
			$f_{MCK} \le 16 \ MHz$	6/fмск		6/ f мск		6/fмск		ns
		$2.4 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	/	-		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/low- level width	tкн2, tк∟2	$4.0~V \leq EV_{DD0} \leq 5.5~V$		tксү2/2 – 7		tксү2/2 - 7		tксү2/2 - 7		ns
		$2.7~V \leq EV_{DD0} \leq 5.5~V$		tĸcy2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V$		tксү2/2 – 18		tксү2/2 – 18		tксү2/2 – 18		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		tксү2/2 – 66		tксү2/2 - 66		tксү2/2 - 66		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$	/	-		tксү2/2 - 66		tксү2/2 - 66		ns

(Notes, Caution, and Remarks are listed on the next page.)


Parameter	Symbol		Conditions	HS (high-sp Mo	,	LS (low-sp Mc	,	LV (low-vol Mo	ltage main) ide	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time	tsik2	2.7 V ≤ E	$V_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск+20		1/fмск+30		1/fмск+30		ns
(to SCKp↑) ^{Note 1}		1.8 V ≤ E ^v	$V_{DD0} \leq 5.5 \text{ V}$	1/fмск+30		1/fмск+30		1/fмск+30		ns
		1.7 V ≤ E ^v	$V_{DD0} \leq 5.5 \text{ V}$	1/fмск+40		1/fмск+40		1/fмск+40		ns
		1.6 V ≤ E	$V_{DD0} \leq 5.5 \text{ V}$	_		1/fмск+40		1/fмск+40		ns
SIp hold time	tksi2	1.8 V ≤ E ^v	$V_{DD0} \leq 5.5 \text{ V}$	1/fмск+31		1/fмск+31		1/fмск+31		ns
(from SCKp↑) Note 2		1.7 V ≤ E	$V_{DD0} \leq 5.5 V$	1/fмск+ 250		1/fмск+ 250		1/fмск+ 250		ns
		1.6 V ≤ E	$EV_{DD0} \leq 5.5 \text{ V}$	_		1/fмск+ 250		1/fмск+ 250		ns
Delay time from SCKp↓ to SOp	tkso2	C = 30 pF ^{Note 4}	$2.7~V \le EV_{DD0} \le 5.5~V$		2/f _{мск} + 44		2/f _{мск} + 110		2/f _{мск} + 110	ns
output Note 3			$2.4~V \le EV_{DD0} \le 5.5~V$		2/f _{мск} + 44		2/f _{мск} + 110		2/f _{мск} + 110	ns
			$1.8~V \le EV_{DD0} \le 5.5~V$		2/f _{мск} + 110		2/f _{мск} + 110		2/f _{мск} + 110	ns
			$1.7~V \leq EV_{DD0} \leq 5.5~V$		2/f _{мск} + 220		2/f _{мск} + 220		2/f _{мск} + 220	ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$		_		2/f _{мск} + 220		2/fмск+ 220	ns

(4)	During communication at same potential (CSI mode) (slave mode, SCKp external clock input) (2/2)
	$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$


- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPm n = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)
 - fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of seri al mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))


CSI mode connection diagram (during communication at same potential)2912

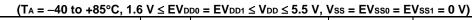
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Parameter	Symbol	Conditions	、 U	h-speed Mode	``	v-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$\label{eq:linear} \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$		400 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5 \text{ k}\Omega$		300 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 1.7 \ V \leq EV_{\text{DD0}} < 1.8 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 5 \ k\Omega \end{array}$		250 Note 1		250 Note 1		250 Note 1	kHz
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \Omega$		—		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	t LOW	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		1.8 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1150		1150		1150		ns
		$1.8 V \le EV_{DD0} < 2.7 V,$ C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ Cb = 100 pF, Rb = 5 k Ω	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ Cb = 100 pF, Rb = 5 k Ω			1850		1850		ns
Hold time when SCLr = "H"	tніgн	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$	1150		1150		1150		ns
		1.8 V \leq EV _{DD0} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1550		1550		1550		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ C _b = 100 pF, R _b = 5 kΩ	1850		1850		1850		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ C _b = 100 pF, R _b = 5 kΩ	—		1850		1850		ns


(5) During communication at same potential (simplified I^2C mode) (1/2)

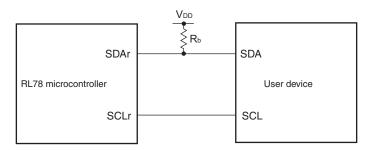
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

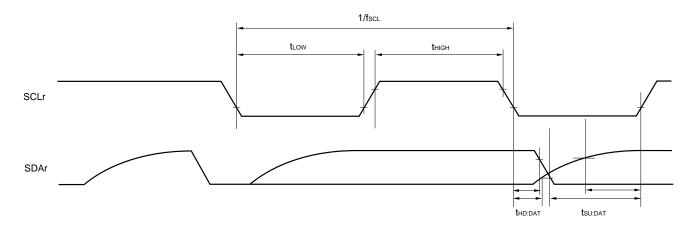
Parameter	Symbol	Conditions	HS (hig main)	n-speed Mode	LS (low main)	•	``	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN. N	IAX.	
Data setup time (reception)	tsu:dat	$\label{eq:states} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ C_{\text{b}} = 50 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	1/f _{MCK} + 85 ^{Note2}		1/fмск + 145 _{Note2}		1/fмск + 145 _{Note2}		ns
		$eq:linear_line$	1/fмск + 145 Note2		1/fмск + 145 Note2		1/fмск + 145 Note2		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 k\Omega \end{array}$	1/fмск + 230 Note2		1/f _{MCK} + 230 Note2		1/f _{MCK} + 230 Note2		ns
		$\begin{array}{l} 1.7 \; V \leq EV_{\text{DD0}} < 1.8 \; V, \\ C_{\text{b}} = 100 \; p\text{F}, \; R_{\text{b}} = 5 \; k\Omega \end{array}$	1/fмск + 290 Note2		1/f _{MCK} + 290 _{Note2}		1/f _{MCK} + 290 _{Note2}		ns
		$eq:linear_line$	—		1/f _{MCK} + 290 _{Note2}		1/f _{MCK} + 290 _{Note2}		ns
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ C _b = 50 pF, R _b = 2.7 kΩ	0	305	0 305	50		305	ns
		$1.8 V \le EV_{DD0} \le 5.5 V$, C _b = 100 pF, R _b = 3 kΩ	0	355	0 355	0		355	ns
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{\text{DD0}} < 2.7 \ \text{V}, \\ C_{\text{b}} &= 100 \ \text{pF}, \ R_{\text{b}} = 5 \ \text{k}\Omega \end{split}$	0	405	0 405	50		405	ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{EV}_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{\tiny b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{\tiny b}} = 5 \mbox{Ω} \end{array}$	0	405	0 405	50		405	ns
		$1.6 V \le EV_{DD0} < 1.8 V,$ C _b = 100 pF, R _b = 5 kΩ	_	-	0	405 0		405	ns

(5) During communication at same potential (simplified I²C mode) (2/2)

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.


2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14),
 h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

		C, 1.0 V	$\leq EVDD0 = EVDD1 \leq VDD$	$5 \le 5.5 \text{ v}, \text{ VSS} = EVS$					1		
Parameter	Symbol		Conditions		• •	h-speed Mode		/-speed Mode	•	-voltage Mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Recep- tion	$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ ^{Note 4}		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 4$		5.3		1.3		0.6	Mbps
			$\label{eq:VDD} \begin{split} & 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \end{split}$			fмск/6 Notes 1 to 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} N^{ote 4}$		5.3		1.3		1.3	Mbps

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$. 2.4 V $\leq EV_{DD0} < 2.7$ V : MAX. 2.6 Mbps

 $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.4 \text{ V}$: MAX. 1.3 Mbps

4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remarks 1. Vb[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)
 - 4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

Parameter	Symbol		Conditions	·	HS (speed		LS (lov	v-speed Mode	voltage	(low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmission	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,$			Note 1		Note 1		Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b =$		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			2.7 V ≤ EV _{DD0} < 4.0 V,	1.4 kΩ, Vb = 2.7 V		Note 3		Note 3		Note 3	hna
			$2.7 \text{ V} \leq \text{EVDD0} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b =$		1.2 Note 4		1.2 Note 4		1.2 Note 4	bps Mbps
				2.7 kΩ, Vb = 2.3 V		Notes		Natas		Natao	haa
			$1.8 V \le EV_{DD0} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$			5, 6		Notes 5, 6		Notes 5, 6	bps
				Theoretical value of the maximum transfer rate		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps
				C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V							

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V $\leq EV_{DD0} \leq$ 5.5 V and 2.7 V $\leq V_b \leq$ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

- RL78/G13
 - **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

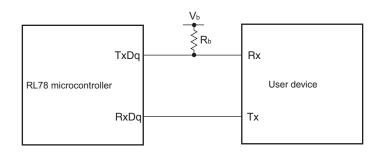
Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$ [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [%]}$$

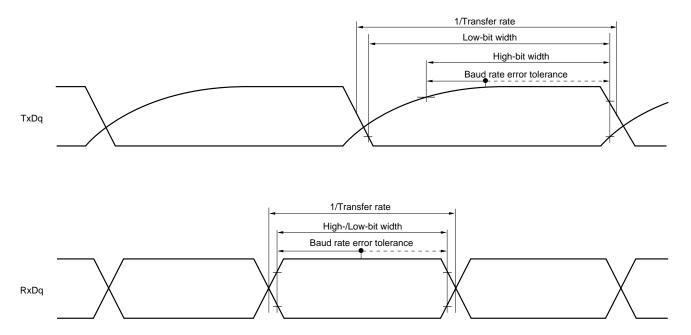
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $EV_{DD0} \ge V_b$.
- **6.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.


- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

Remarks 1. $R_b[\Omega]$:Communication line (TxDq) pull-up resistance,

- Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- **4.** UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (1/2)

Parameter	Symbol		Conditions	, U	h-speed Mode	LS (low main)	•	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	tксү1 ≥ 2 /fс∟к	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	200		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4$ $C_{\text{b}} = 20 \text{ pF, R}$	o ≤ 5.5 V, I.0 V,	tксү1/2 – 50		tксү1/2 – 50		tксү1/2 — 50		ns
		$\begin{array}{l} 2.7 \text{ V} \leq \text{EV}_{\text{DDD}}\\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2\\ \text{C}_{\text{b}} = 20 \text{ pF}, \text{ R} \end{array}$	o < 4.0 V, 2.7 V,	tксү1/2 – 120		tксү1/2 – 120		tксү1/2 — 120		ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq EV_{DDC} \\ 2.7 \ V \leq V_b \leq 4 \\ C_b = 20 \ pF, \ R \end{array}$	1.0 V,	tксү1/2 – 7		tксү1/2 – 50		tксү1/2 — 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DDC} \\ 2.3 \ V \leq V_b \leq 2 \\ C_b = 20 \ pF, \ R \end{array}$	2.7 V,	tксү1/2 – 10		tксү1/2 – 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı	$\begin{array}{l} 4.0 \ V \leq EV_{DDC} \\ 2.7 \ V \leq V_b \leq 4 \\ C_b = 20 \ pF, \ R \end{array}$	1.0 V,	58		479		479		ns
		$2.7 V \le EV_{DDC}$ $2.3 V \le V_b \le 2$ $C_b = 20 pF, R$	o < 4.0 V, 2.7 V,	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4$ $C_{\text{b}} = 20 \text{ pF, R}$	o ≤ 5.5 V, 4.0 V,	10		10		10		ns
		2.7 V \leq EV _{DDC} 2.3 V \leq V _b \leq 2 C _b = 20 pF, R	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tĸso1	4.0 V \leq EV _{DDC} 2.7 V \leq V _b \leq 4 C _b = 20 pF, R	o ≤ 5.5 V, 4.0 V,		60		60		60	ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2$ $C_{\text{b}} = 20 \text{ pF, R}$	o < 4.0 V, 2.7 V,		130		130		130	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only) (2/2)

Parameter	Symbol	Conditions		h-speed Mode	-	v-speed Mode	-	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsikı	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \end{array}$	23		110	110			ns
		C_b = 20 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	33		110	110			ns
		C_b = 20 pF, R_b = 2.7 k Ω							
SIp hold time (from SCKp↓) ^{Note 2}	tksii	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	10		10	10			ns
		C_b = 20 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	10		10	10			ns
		C_b = 20 pF, R_b = 2.7 k Ω							
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$		10		10		10	ns
SOp output Note 2		C_b = 20 pF, R_b = 1.4 k Ω							
		$\label{eq:VDD0} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		10		10		10	ns
		C_b = 20 pF, R_b = 2.7 k Ω							

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - **3.** fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSm n bit of seri al mode registe r mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

Parameter	Symbol		$0 = \mathbf{EV}_{DD1} \le \mathbf{V}_{DD} \le 5.5 \ \mathbf{V}$ Conditions	HS (hig	h-speed Mode		-speed		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fc∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	300		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \end{array}$	500		1150		1150		ns
			$\begin{split} & C_b = 30 \text{ pF}, \ R_b = 2.7 \ k\Omega \\ & 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note}}, \end{split}$	1150	1150)		1150		ns
			C_b = 30 pF, R_b = 5.5 k Ω							
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ 2.7 \ V \leq V_b \leq 4 \end{array}$		tксү1/2 – 75		tксү1/2 – 75		tксү1/2 – 75		ns
		C₀ = 30 pF, F	R _b = 1.4 kΩ							
		$2.7 V \leq EV_{DD}$ $2.3 V \leq V_b \leq 2$	2.7 V,	tксү1/2 – 170		tксү1/2 – 170		tксү1/2 – 170		ns
		$\begin{array}{l} C_{b} = 30 \ pF, \ F\\ 1.8 \ V \leq EV_{DD}\\ 1.6 \ V \leq V_{b} \leq 2 \end{array}$	0 < 3.3 V,	tксү1/2 — 458		tксү1/2 – 458		tксү1/2 – 458		ns
		C _b = 30 pF, F	R _b = 5.5 kΩ							
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \\ 2.7 \ V \leq V_b \leq 4 \end{array}$		tксү1/2 – 12		tксү1/2 – 50		tксү1/2 – 50		ns
		C _b = 30 pF, F	R _b = 1.4 kΩ							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} \\ 2.3 \ V \leq V_b \leq 2 \end{array}$,	tксү1/2 – 18		tксү1/2 – 50		tксү1/2 – 50		ns
		C _b = 30 pF, F	R _b = 2.7 kΩ							
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} \\ 1.6 \ V \leq V_b \leq 2 \end{array}$		tксү1/2 – 50		tксү1/2 – 50		tксү1/2 – 50		ns
		C _b = 30 pF, F	R _b = 5.5 kΩ							

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) (T_A = −40 to +85°C, 1.8 V ≤ EV_{DD0} = EV_{DD1} ≤ V_{DD} ≤ 5.5 V. Vss = EV_{SS0} = EV_{SS1} = 0 V)

Note Use it with $EV_{DD0} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

Parameter	Symbol	Conditions	、 U	h-speed Mode	``	peed main) ode	``	v-voltage) Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsiĸ1	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \end{array}$	81		479		479		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	177		479		479		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	479		479		479		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note 2}}, \end{array} $	19		19		19		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \end{array}$		100		100		100	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		195		195		195	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{array}{l} 1.8 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \end{array} $		483		483		483	ns
		C_b = 30 pF, R_b = 5.5 k Ω							

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3) $(T_A = -40 \text{ to } +85^\circ\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. Use it with $EV_{DD0} \ge V_b$.

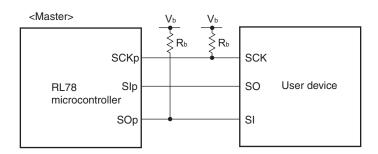
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

Parameter	Symbol	Conditions	、 U	h-speed Mode	· ·	beed main) bde	``	/-voltage) Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD0}} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \end{array}$	44		110		110		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	44		110		110		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
			110		110		110		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
SIp hold time (from SCKp↓) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$	19		19		19		ns
		C_b = 30 pF, R_b = 2.7 k Ω							
			19		19		19		ns
		C_b = 30 pF, R_b = 5.5 k Ω							
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \end{array}$		25		25		25	ns
SOp output Note 1		C_b = 30 pF, R_b = 1.4 k Ω							
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$		25		25		25	ns
		C_b = 30 pF, R_b = 2.7 k Ω							
		$ \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\mbox{Note 2}}, \end{array} $		25		25		25	ns
		C_b = 30 pF, R_b = 5.5 k Ω							

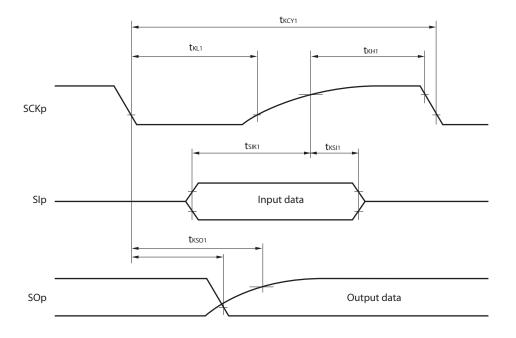
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3) ($T_A = -40$ to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V. Vss = EVss0 = EVss1 = 0 V)

Notes 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

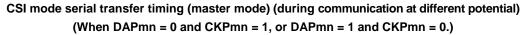

2. Use it with $EV_{DD0} \ge V_b$.

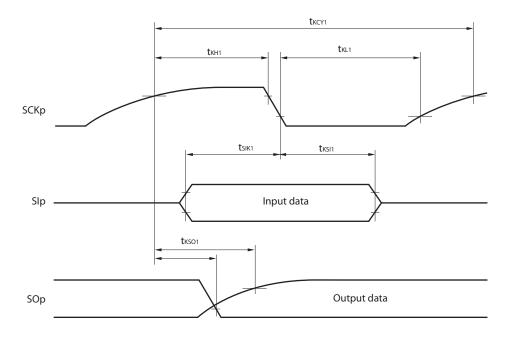
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)



CSI mode connection diagram (during communication at different potential)




- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Parameter	Symbol		VDD ≤ 5.5 V, Vss = EV: nditions	HS (hig	h-speed Mode	LS (low		LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0 V \le EV_{DD0} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$	24 MHz < fмск	14/ fмск		_		_		ns
			20 MHz < fмск ≤ 24 MHz	12/ fмск				_		ns
			8 MHz < fмск ≤ 20 MHz	10/ fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/f мск		16/ fмск		—		ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$	24 MHz < fмск	20/ fмск						ns
		20 MHz < fмск ≤ 24 MHz	16/ fмск				—		ns	
		16 MHz < fмск ≤ 20 MHz	14/ fмск						ns	
			8 MHz < fмск ≤ 16 MHz	12/ fмск		_				ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/ fмск		—		ns
			fмск ≤4 MHz	6/fмск		10/ fмск		10/ fмск		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note 2}}$		48/ fмск						ns
	$1.6 V \le V_b \le 2.0 V$ Note		20 MHz < fмск ≤ 24 MHz	36/ fмск				—		ns
			16 MHz < fмск ≤ 20 MHz	32/ fмск		—				ns
			8 MHz < fмск ≤ 16 MHz	26/ fмск		—				ns
		4 MHz < fмск ≤ 8 MHz	16/ fмск		16/ fмск				ns	
			fмск ≤4 MHz	10/ fмск		10/ fмск		10/ fмск		ns

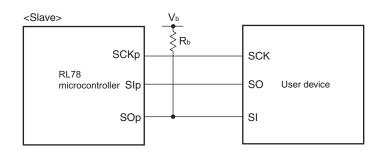
(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}0} = \text{EV}_{\text{DD}1} \le \text{V}_{\text{D}2} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (1/2)

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

Parameter	Symbol	Conditions	· •	h-speed Mode	`	v-speed Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tк∟2	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	tксү2/2 — 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	tксү2/2 – 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V^{\mbox{Note 2}} \end{array}$	tксү2/2 — 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsik2	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \; V \leq EV_{DD0} \leq 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}} \end{array}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output	tkso2	$\label{eq:V} \begin{split} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{split}$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
Note 5		$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		2/fмск + 214		2/fмск + 573		2/f _{мск} + 573	ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

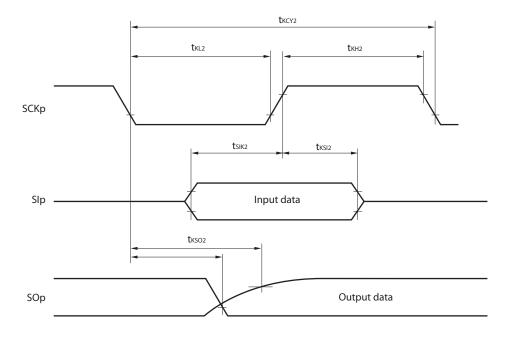
(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^\circ\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD1}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (2/2)

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

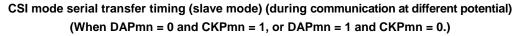

2. Use it with $EV_{DD0} \ge V_b$.

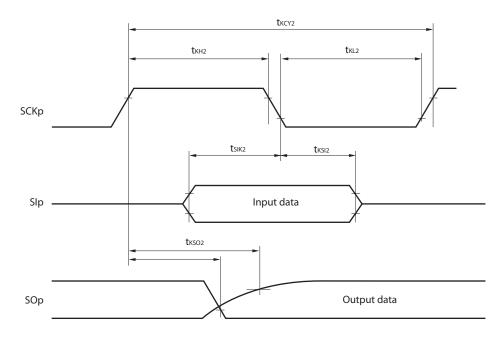
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becom es "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPm n = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)



CSI mode connection diagram (during communication at different potential)




- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **3.** fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

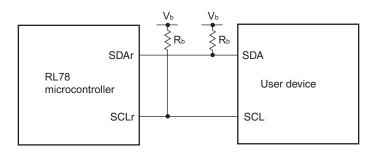
2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Parameter	Symbol	Conditions	、 U	h-speed Mode	``	v-speed Mode		v-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
				400 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$		400 Note 1		300 Note 1		300 ote 1	kHz
		$\label{eq:V} \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V^{ \text{Note 2}}, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$		300 Note 1		300 Note 1		300 Note 1	kHz
lold time when SCLr = _"	t∟ow	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	475		1550		1550		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	475		1550		1550		ns
			1150		1550		1550		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1150		1550		1550		ns
		$\label{eq:V} \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V^{ \text{Note 2}}, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = H"	tніgн		245	610	610				ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 50 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	200	610	610				ns
			675	610	610				ns
	$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$	600	610	610				ns	
		$\label{eq:V} \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_{b} \leq 2.0 \; V^{ \text{Note 2}}, \\ & C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{split}$	610	610	610				ns

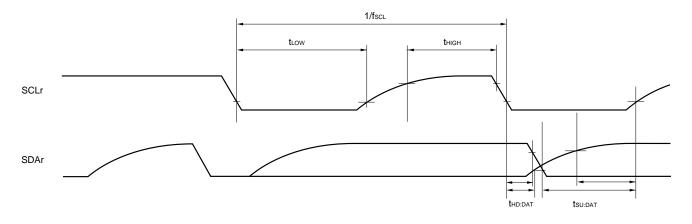
(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I^2C mode) (1/2) (T₁ = 40 to 185%C 1.8 V/c EVapo = EVapo c 5.5 V/Vap c 5.5 V/Vap = EVapo = EVapo c 0.V/

Parameter	Symbol	Conditions	HS (higl main)	n-speed Mode	LS (low main)		LV (low main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 135 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{МСК} + 135 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
			1/f _{МСК} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{МСК} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 2}}, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $	1/f _{МСК} + 190 ^{Note 3}		1/fмск + 190 Note 3		1/fмск + 190 Note 3		kHz
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305 0	805 0 305				ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ & C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	0	405	0	405	0	405	ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2)


Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- **2.** Use it with $EV_{DD0} \ge V_b$.
- 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 128-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)

29.5.2 Serial interface IICA

(1) I^2C standard mode

 $(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{sso}} = \text{EV}_{\text{sso}} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	- ()	h-speed Mode	•	/-speed Mode	•	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLA0 clock frequency	fsc∟	Standard mode:	$2.7~V \le EV_{DD0} \le 5.5~V$	0	100	0	100 0		100	kHz
		fclk≥ 1 MHz	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	0	100	0	100 0		100	kHz
			$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	0	100	0	100 0		100	kHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	_	_	0	100 0		100	kHz
Setup time of restart	tsu:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.$	5 V	4.7		4.7		4.7		μs
condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.$	5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq EV_{DD0} \leq 5.$	5 V	4.7		4.7		4.7		μS
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	_	_	4.7		4.7		μS
Hold time ^{Note 1}	thd:sta	$2.7 V \le EV_{DD0} \le 5.$	5 V	4.0		4.0		4.0		μs
		$1.8 V \le EV_{DD0} \le 5.$	5 V	4.0		4.0		4.0		μs
		$1.7 V \le EV_{DD0} \le 5.$	5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	_	_	4.0		4.0		μs
Hold time when SCLA0 =	t LOW	$2.7 V \le EV_{DD0} \le 5.$	5 V	4.7	4.7			4.7		μS
"L"		$1.8 V \le EV_{DD0} \le 5.$	5 V	4.7		4.7		4.7		μs
		$1.7 V \le EV_{DD0} \le 5.$	5 V	4.7				4.7		μs
		$1.6 V \le EV_{DD0} \le 5.8$	5 V	-	_	4.7		4.7		μs
Hold time when SCLA0 =	tніgн	$2.7 V \le EV_{DD0} \le 5.$	5 V	4.0		4.0		4.0		μs
"H"		$1.8 V \le EV_{DD0} \le 5.$	5 V	4.0		4.0		4.0		μs
		$1.7 V \le EV_{DD0} \le 5.$	5 V	4.0		4.0		4.0		μs
		$1.6 V \le EV_{DD0} \le 5.8$	5 V	-		4.0		4.0		μs
Data setup time	tsu:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.$	5 V	250		250		250		ns
(reception)		$1.8 \ V \leq EV_{\text{DD0}} \leq 5.$	5 V	250		250		250		ns
		$1.7 V \le EV_{DD0} \le 5.$	5 V	250		250		250		ns
		$1.6 V \le EV_{DD0} \le 5.8$	5 V	-	_	250		250		ns
Data hold time	thd:dat	$2.7~V \leq EV_{\text{DD0}} \leq 5.$	5 V	0	3.45	0	3.45	0	3.45	μs
(transmission) ^{Note 2}		$1.8 \ V \leq EV_{\text{DD0}} \leq 5.$	5 V	0	3.45	0	3.45	0	3.45	μs
		$1.7~V \leq EV_{\text{DD0}} \leq 5.$	5 V	0	3.45	0	3.45	0 3.4	5	μs
		$1.6 V \le EV_{DD0} \le 5.9$	5 V	-	_	0	3.45	0	3.45	μs
Setup time of stop	tsu:sto	$2.7~V \leq EV_{\text{DD0}} \leq 5.$	5 V	4.0	4.0			4.0		μs
condition		$1.8 \ V \leq EV_{\text{DD0}} \leq 5.$	5 V	4.0		4.0		4.0		μs
		$1.7 \ V \leq EV_{\text{DD0}} \leq 5.$	5 V	4.0		4.0		4.0		μS
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.8$	5 V	-		4.0		4.0		μS
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.$	5 V	4.7		4.7		4.7		μS
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.$	5 V	4.7		4.7		4.7		μS
		$1.7 \text{ V} \le EV_{\text{DD0}} \le 5.$	5 V	4.7		4.7		4.7		μS
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.8$	5 V	-		4.7		4.7		μs

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MA X.) of t HD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}$, $R_b = 2.7 \text{ k}\Omega$

(2)	l ² C fa	st mode
-----	---------------------	---------

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	、 U	h-speed Mode	``	/-speed Mode	``	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode:	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400 0	400		kHz
		$f_{CLK} \ge 3.5 MHz$	$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400 0	400		kHz
Setup time of restart	tsu:sta	$2.7 V \le EV_{DD0} \le 5.8$	5 V	0.6		0.6		0.6		μs
condition		$1.8 V \le EV_{DD0} \le 5.8$	5 V	0.6		0.6		0.6		μs
Hold time ^{Note 1}	thd:sta	$2.7 V \le EV_{DD0} \le 5.8$	$7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			0.6		0.6		μS
		$1.8 V \le EV_{DD0} \le 5.8$	$8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			0.6		0.6		μs
Hold time when SCLA0 =	t LOW	$2.7 V \le EV_{DD0} \le 5.8$	5 V	1.3		1.3		1.3		μS
"L"		$1.8 V \le EV_{DD0} \le 5.8$	5 V	1.3		1.3		1.3		μS
Hold time when SCLA0 =	tніgн	$2.7 V \le EV_{DD0} \le 5.5$	5 V	0.6		0.6		0.6		μs
"H"		$1.8 V \le EV_{DD0} \le 5.8$	5 V	0.6		0.6		0.6		μS
Data setup time	tsu:dat	$2.7 V \le EV_{DD0} \le 5.5$	5 V	100		100		100		μs
(reception)		$1.8 V \le EV_{DD0} \le 5.8$	5 V	100		100		100		μs
Data hold time	thd:dat	$2.7 V \le EV_{DD0} \le 5.8$	5 V	0	0.9	0	0.9	0	0.9	μS
(transmission) ^{Note 2}		$1.8 V \le EV_{DD0} \le 5.8$	5 V	0	0.9	0	0.9	0	0.9	μS
Setup time of stop	tsu:sto	$2.7 V \le EV_{DD0} \le 5.5$	5 V	0.6		0.6		0.6		μs
condition		$1.8 \text{ V} \le EV_{\text{DD0}} \le 5.8$	5 V	0.6		0.6		0.6		μs
Bus-free time	tBUF	$2.7 \text{ V} \le EV_{\text{DD0}} \le 5.8$	5 V	1.3		1.3		1.3		μS
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.8$	5 V	1.3		1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MA X.) of t HD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

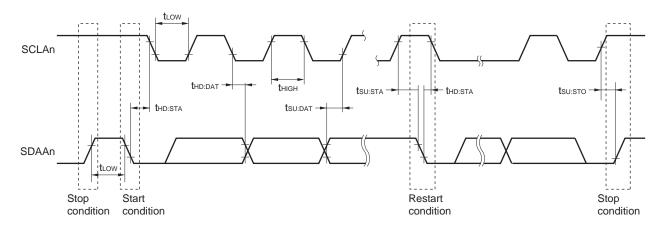
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

(3) I^2C fast mode plus

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions		h-speed Mode		/-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fc∟k≥ 10 MHz			1000		_	—		kHz
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \leq EV_{DD0} \leq 5.9$	$V \le EV_{DD0} \le 5.5 V$			_		_	_	μS
Hold time ^{Note 1}	thd:sta	$2.7 \text{ V} \le EV_{\text{DD0}} \le 5.8$	$V \leq EV_{DD0} \leq 5.5 V$			_		_		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.9$	$7~V \leq EV_{DD0} \leq 5.5~V$					_		μS
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.9$	5 V	0.26		—		_	_	μS
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.9$	5 V	50		_	_	-	_	μS
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.9$	5 V	0	0.45	_		_	_	μS
Setup time of stop condition	tsu:sto	$2.7 V \leq EV_{DD0} \leq 5.8$	$.7~V \leq EV_{DD0} \leq 5.5~V$			_	_	_	_	μS
Bus-free time	t BUF	$2.7 V \le EV_{DD0} \le 5.8$	$2.7 \text{ V} \le EV_{DD0} \le 5.5 \text{ V}$			_	_	_	_	μS


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MA X.) of t HD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: C_b = 120 pF, R_b = 1.1 k Ω

IICA serial transfer timing

Remark n = 0, 1

29.6 Analog Characteristics

29.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage								
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR							
Input channel	Reference voltage (-)= AVREFM	Reference voltage (-)= Vss	Reference voltage (-)= AVREFM							
ANI0 to ANI14	Refer to 29.6.1 (1).	Refer to 29.6.1 (3).	Refer to 29.6.1 (3).							
ANI16 to ANI26	Refer to 29.6.1 (2).									
Internal reference voltage	Refer to 29.6.1 (1).		-							
Temperature sensor output										
voltage										

(1) When reference voltage (+)= AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(T_A = -40 to +85°C, 1.6 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		10	bit	
Overall errorNote 1	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±3.5	LSB	
		AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 1.6 \ V \leq AV_{REFP} \leq 5.5 \ V \\ {}^{\text{Note}} \\ {}^{\text{4}} \end{array}$		1.2	±7.0	LSB	
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS	
		Target pin: ANI2 to ANI14	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS	
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μS	
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μS	
		10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μS	
		Target pin: Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS	
	Ezs	reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS	
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR	
		AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 1.6 \ V \leq AV_{REFP} \leq 5.5 \ V \\ {}^{\text{Note}} \\ {}^{\text{4}} \end{array}$			±0.50	%FSR	
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR	
		AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 1.6 \ V \leq AV \text{REFP} \leq 5.5 \ V \\ ^{\text{Note}} \end{array}$			±0.50	%FSR	
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.5	LSB	
		AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 1.6 \ V \leq AV_{REFP} \leq 5.5 \ V \\ {}^{\text{Note}} \end{array}$			±5.0	LSB	
Differential linearity error Note	DLE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±1.5	LSB	
1		AV _{REFP} = V _{DD} ^{Note 3}	$\begin{array}{l} 1.6 \ V \leq AV_{REFP} \leq 5.5 \ V \\ {}^{\text{Note}} \end{array}$			±2.0	LSB	
Analog input voltage	VAIN	ANI2 to ANI14	1	0		AVREFP	V	
		Internal reference voltage output (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 5			V	
			Temperature sensor output voltage 2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			V _{TMPS25} Note 5		

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - 4. Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
 - 5. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V},$
Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
		$EV_{DD0} = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 5}}$		1.2	±8.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V \text{DD} \le 5.5~V$	2.125		39	μS
		Target ANI pin : ANI16 to ANI26	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μS
Zero-scale error ^{Notes 1, 2}		10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
		$EV_{DD0} = AV_{REFP} = V_{DD}^{Notes 3,}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 5}}$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Efs		$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
		$EVDD0 = AV_{REFP} = V_{DD} Notes 3,$ 4	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 5}}$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±3.5	LSB
		$EV_{DD0} = AV_{REFP} = V_{DD}^{Notes 3, 4}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 5}}$			±6.0	LSB
Differential linearity	DLE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.0	LSB
error Note 1		EVDD0 = AV _{REFP} = V _{DD} ^{Notes 3, 4}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 5}}$			±2.5	LSB
Analog input voltage	VAIN	ANI16 to ANI26		0		AVREFP and EVDD0	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When AV_{REFP} < EV_{DD0} ≤ V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{DD}}, \text{ Reference voltage (-)} = \text{V}_{\text{SS}}$

Parameter	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V\text{dd} \leq 5.5~V$		1.2	±7.0	LSB
			$\begin{array}{l} 1.6 \ V \leq V \text{DD} \leq 5.5 \ V \\ \text{Note 3} \end{array}$		1.2	±10.5	LSB
Conversion time	t _{CONV}	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI14, ANI16 to ANI26	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V\text{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \le V \text{DD} \le 5.5~V$	57		95	μS
Conversion time	tconv	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: internal reference voltage, and temperature	$2.7~V \le V \text{DD} \le 5.5~V$	3.5625		39	μS
		sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \ V \leq V_{DD} \leq 5.5 \ V \\ _{\textit{Note 3}} \end{array}$			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Efs		$1.8~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
			$\begin{array}{l} 1.6 \ V \leq V_{DD} \leq 5.5 \ V \\ _{\textit{Note 3}} \end{array}$			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±4.0	LSB
			$\begin{array}{l} 1.6 \ V \leq V_{DD} \leq 5.5 \ V \\ _{\textit{Note 3}} \end{array}$			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
			$\begin{array}{l} 1.6 \ V \leq V_{DD} \leq 5.5 \ V \\ _{\textit{Note 3}} \end{array}$			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
	ANI16 to ANI26 Internal reference voltage outp $(2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{HS}$ (high			0		EVDD0	V
				V _{BGR} Note 4		V	
		Temperature sensor output v (2.4 V \leq VDD \leq 5.5 V, HS (high	•	VTMPS25 Note 4			V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, 1.6 V \leq EV_{DD} = EV_{DD1} \leq V_{DD}, V_{SS} = EV_{SS0} = EV_{SS1} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM} = 0 V^{Note 4}, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}^{\text{ Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

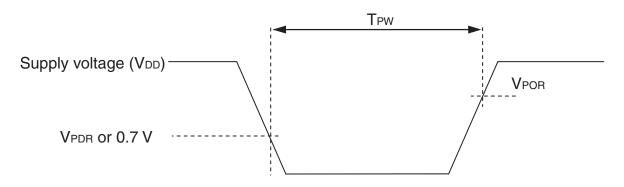
2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AV_{REFM}.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AV_{REFM}.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AV_{REFM}.

29.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

29.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time		1.51	1.54	V
	VPDR	Power supply fall time	1.46	1.50	1.53	V
Minimum pulse width ^{Note}	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

29.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
	VLVD1	Power supply rise time	3.68	3.75	3.82	V	
		Power supply fall time	3.60	3.67	3.74	V	
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
		Power supply fall time	2.70	2.75	2.81	V	
	VLVD6	Power supply rise time	2.66	2.71	2.76	V	
		Power supply fall time	2.60	2.65	2.70	V	
	VLVD7	Power supply rise time	2.56	2.61	2.66	V	
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pu	Ilse width	t∟w		300			μS
Detection de	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

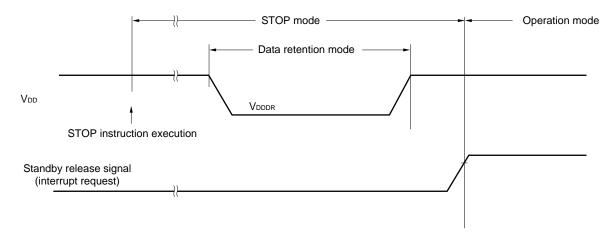
Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVD13	VPOC2, VPOC1, VPOC0 = 0, 0,), falling reset voltage	1.60	1.63	1.66	V
mode	VLVD12	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
			Falling interrupt voltage	1.70	1.73	1.77	V
	VLVD11	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
			Falling interrupt voltage	1.80	1.84	1.87	V
	VLVD4	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVD11 VP	VPOC2, VPOC1, VPOC0 = 0, 0,	1, falling reset voltage	1.80	1.84	1.87	V
	VLVD10	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
Vlvd9 Vlvd2			Falling interrupt voltage	1.90	1.94	1.98	V
	VLVD9	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	VLVD2	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	VLVD8	VPOC2, VPOC1, VPOC0 = 0, 1,	VPOC2, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage				V
	VLVD7	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVD6	LVIS1, LVIS0 = 0, 7	Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	VLVD1	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
			Falling interrupt voltage	3.60	3.67	3.74	V
	VLVD5	VPOC2, VPOC1, VPOC0 = 0, 1,	1, falling reset voltage	2.70	2.75	2.81	V
	VLVD4	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVD3	LVIS1, LVIS0 = 0, 7	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V
	VLVD0	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
			Falling interrupt voltage	3.90	3.98	4.06	V

29.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 29.4 AC Characteristics.



29.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

29.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fс∟к	$1.8~V \leq V_{DD} \leq 5.5~V$		1		32	MHz
Number of code flash rewrites Note 1, 2, 3	Cerwr	Retained for 20 years	TA = 85°C ^{Note3}	1,000			Times
Number of data flash rewrites		Retained for 1 years	TA = 25°C ^{Note3}		1,000,000		
Note 1, 2, 3		Retained for 5 years	TA = 85°C ^{Note3}	100,000			
		Retained for 20 years	TA = 85°C ^{Note3}	10,000			

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

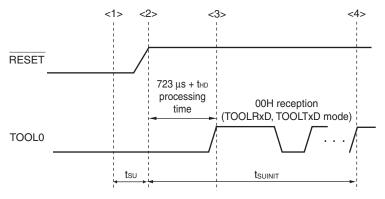
Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

29.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le \text{V}_{\text{D}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

29.10 Timing Specs for Switching Flash Memory Programming Modes

(T _A = -40 to +85°C, 1.8	$V \leq EV_{DD0} = EV_{DD1} \leq V_{DD}$	$0 \leq 5.5$ V. Vss = EVsso	= EVss1 = 0 V)
(,	

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)		POR and LVD reset must end before the external reset ends.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - t_{SU} : How long from when the TOOL0 pin is placed at the low level until an external reset ends
 - thD: How long to keep the T OOL0 pin at the low level from when the extern al and internal res ets end (excluding the processing time of the firmware to control the flash memory)

To our valued customers:		M C Y G - A B - 1 2 - 0 3 8 5 - 1
	RL78/G13	March 15, 2013
	Technical Update Exhibit	Hiroshi Uchimura
	Chapter 30 ELECTRICAL	Manager
	SPECIFICATIONS	1 st Solution Business Unit
	(G: $T_A = -40$ to +105°C)	3 rd MCU Business Division
		Brand Strategy Department
		Renesas Electronics Corporation

(Rep. Seiya Indo)

Thank you for your continued support for Renesas Electronics products.

Please be advised that the misstatements found in the following User's Manual have been fixed.

The second and following pages in this document include "Chapter 30 ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C)" which has been updated by the Correction for incorrect description notice RL78/G13 Descriptions in the User's Manual: Hardware Rev.2.10 changed (TN-RL*-A005A/E).

1. Applicable products:

RL78/G13

R5F100xxG

2. Reference documents:

Correction for incorrect description notice RL78/G13 Descriptions in the User's Manual: Hardware Rev.2.10 changed (TN-RL*-A005A/E) RL78/G13 User's Manual: Hardware Rev.2.10 (R01UH0146EJ0210)

CHAPTER 30 ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)

This chapter describes the electrical specifications for the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD0}, EV_{DD1}, EV_{SS0}, or EV_{SS1} pin, replace EV_{DD0} and EV_{DD1} with V_{DD}, or replace EV_{SS0} and EV_{SS1} with Vss.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 With functions for each product.

There are following differences between the products "G: Industrial applications (TA = -40 to + 105° C)" and the products "A: Consumer applications, and D: Industrial applications".

	Appli	cation
	A: Consumer applications,	
Parameter	D: Industrial applications	G: Industrial applications
Operating ambient temperature	-40 to +85°C	-40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 32 MHz	$2.7~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 32 MHz
	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_DD \leq 5.5 V@1 MHz to 8 MHz	
	LV (low-voltage main) mode:	
	1.6 V \leq V_DD \leq 5.5 V@1 MHz to 4 MHz	
High-speed on-chip oscillator clock	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$
accuracy	±1.0%@ T _A = -20°C to +85°C	±2.0%@ T _A = +85°C to +105°C
	±1.5%@ T _A = -40°C to -20°C	±1.0%@ T _A = -20°C to +85°C
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	±1.5%@ T _A = -40°C to -20°C
	±5.0%@ T _A = -20°C to +85°C	
	±5.5%@ T _A = -40°C to -20°C	
Serial array unit	UART	UART
	CSI: fclk/2 (supporting 16 Mbps), fclk/4	CSI: fclк/4
	Simplified I ² C communication	Simplified I ² C communication
IICA	Normal mode	Normal mode
	Fast mode	Fast mode
	Fast mode plus	
Voltage detector	Rise detection voltage: 1.67 V to 4.06 V (14	Rise detection voltage: 2.61 V to 4.06 V (8
	levels)	levels)
	Fall detection voltage: 1.63 V to 3.98 V (14	Fall detection voltage: 2.55 V to 3.98 V (8
	levels)	levels)

Remark The electrical characteristics of the products G: Industrial applications (TA = -40 to + 105°C) are different from those of the products "A: Consumer ap plications, and D: Industria I applications". For details, refer to 30.1 to 30.10.

30.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	EVDD0, EVDD1	EV _{DD0} = EV _{DD1}	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	–0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 $^{Note\ 1}$	V
Input voltage	VI1	P00 to P07, P10 to P17, P30 to P37, P40 to P47,	-0.3 to EV _{DD0} +0.3	V
		P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	and –0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	
	V ₁₂	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_{DD0} +0.3 and -0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
	V _{O2}	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	VAI1	ANI16 to ANI26	-0.3 to EV_{DD0} +0.3 and -0.3 to AV_{REF}(+) +0.3^{Notes 2, 3}	V
	Vai2	ANI0 to ANI14	-0.3 to V_DD +0.3 and -0.3 to AV_{REF}(+) +0.3^{Notes 2, 3}	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

- **Notes 1.** Connect the REGC pin to Vss via a c apacitor (0.47 to 1 μ F). T his value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the p ort pins.
 - **2.** $AV_{REF}(+)$: + side reference voltage of the A/D converter.
 - **3.** Vss : Reference voltage

Absolute Maximum Ratings (TA = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lol1	Per pin	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P07, P32 to P37, P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100, P101, P110 to P117, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins] [5	mA
Operating ambient	TA	In normal operation	on mode		°C
temperature		In flash memory p	programming mode	-40 to +105 ^{note}	
Storage temperature	Tstg			-65 to +150	°C

Note Total operating time in 85°C to 105°C : 10,000 hours

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

30.2 Oscillator Characteristics

30.2.1 X1, XT1 oscillator characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fx) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscill ator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

30.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		32	MHz
High-speed on-chip oscillator		–20 to +85 °C	2.4 V≤V _{DD} ≤5.5 V	-1.0		+1.0	%
clock frequency accuracy		–40 to –20 °C	2.4 V≤Vdd≤5.5 V	-1.5		+1.5	%
		+85 to +105 °C	2.4 V≤Vdd≤5.5 V	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

30.3 DC Characteristics

30.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V}) (1/5)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$2.4~V \leq EV_{DD0} \leq 5.5~V$			-3.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-30.0	mA
		P40 to P47, P102 to P106, P120,	$2.7~V \leq EV_{DD0} < 4.0~V$			-10.0	mA
		P125 to P127, P130, P140 to P145 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq EV_{DD0} < 2.7~V$			-5.0	mA
			$4.0~V \leq EV_{DD0} \leq 5.5~V$			-30.0	mA
		P50 to P57, P64 to P67, P70 to P77, P80 to	$2.7~V \leq EV_{DD0} < 4.0~V$			-19.0	mA
		P87, P90 to P97, P100, P101, P110 to P117, P146, P147 (When duty $\leq 70\%$ ^{Note 3})	$2.4~V \leq EV_{\text{DD0}} < 2.7~V$			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$			-60.0	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$2,4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Note 2}	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EV_{DD0}, EV_{DD1}, V_{DD} pins to an output pin.

2. Do not exceed the total current value.

3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and I_{OH} = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allo wed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1	Per pin for P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147				8.5 ^{Note 2}	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P07, P32 to P37,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			40.0	mA
		P40 to P47, P102 to P106, P120, P125 to P127, P130, P140 to P145	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			15.0	mA
		$(\text{When duty} \le 70\%^{\text{Note 3}})$	$2.4~V \leq EV_{\text{DD0}} < 2.7~V$			9.0	mA
		Total of P05, P06, P10 to P17, P30,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			40.0	mA
		P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97,	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			35.0	mA
		P100, P101, P101 to P117, P146, P147 (When duty $\leq 70\%^{Note 3}$)	$2,4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			20.0	mA
	Total of all pins (When duty $\leq 70\%$ ^{Note 3})				80.0	mA	
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2,4~V \leq V_{\text{DD}} \leq 5.5~V$			5.0	mA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$ (2/5)

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1 and Vss pin.
 - 2. Do not exceed the total current value.
 - 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allo wed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EV _{DD0}		EVddo	V
	VIH2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq EV_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer 2.4 V ≤ EVDD0 < 3.3 V 1.5 EVDD0 0.7VDD VDD 0.7EVDD0 6.0	V			
	VIH3	P20 to P27, P150 to P156		0.7Vdd		VDD	V
	VIH4	P60 to P63	0.7EV _{DD0}		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLKS	0.8VDD		Vdd	V	
Input voltage, low	VIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EVDD0	V
	VIL2	P01, P03, P04, P10, P11, P13 to P17, P43, P44, P53 to P55,	TTL input buffer $4.0 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	0		0.8	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3V _{DD}	V
	VIL4	P60 to P63		0		0.3EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS	, RESET	0		0.2VDD	V

($T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} =$	$=$ EVDD1 \leq VDD \leq 5.5 V	. Vss = EVsso = EVss1 = 0 V) (3	/5)
•			$, \mathbf{c} = \mathbf{c} + \mathbf{c} + \mathbf{c} = \mathbf{c} + c$,

- Caution The maximum value of VIH of pins P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	EV _{DD0} - 0.7			V
		P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120,	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ mA \end{array}$	EV _{DD0} – 0.6			V
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	EV _{DD0} - 0.5			V
	Vон2	P20 to P27, P150 to P156	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Ioh2 = -100 μ A	Vdd - 0.5			V
Output voltage, low	Vol1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:DD1}$			0.7	V
		P100 to P106, P110 to P117, P120, P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:eq:optimal_states}$			0.6	V
			$eq:local_$			0.4	V
			$eq:local_$			0.4	V
	Vol2	P20 to P27, P150 to P156	$\begin{array}{l} \text{2.4 V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ \text{I}_{\text{OL2}} = 400 \ \mu \text{ A} \end{array}$			0.4	V
	Vol3	P60 to P63	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array} \end{array} \label{eq:DD1}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD1}$			0.4	~
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 2.0 \text{ mA}$			0.4	V

٦)	$A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}}$	< 5 5 V Vss = FV	$s_{S0} = FV_{SS1} = 0 V (4/5)$
· ('	$A = -40 10 + 103 C, 2.4 V \le EVDDU$	≤ J.J V, VSS = ⊏V3	$550 = \Box V 551 = U V (4/3)$

- Caution P00, P02 to P04, P10 to P15, P17, P43 to P45, P50, P52 to P55, P71, P74, P80 to P82, P96, and P142 to P144 do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Condit	ions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EVDDO				1	μA
	Ілн2	P20 to P27, P137, P150 to P156, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	$V_1 = V_{DD}$	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	Vi = EV _{SS0}				-1	μA
	ILIL2	P20 to P27, P137, P150 to P156, RESET	VI = VSS				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vi = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P90 to P97, P100 to P106, P110 to P117, P120, P125 to P127, P140 to P147	VI = EVsso	In input port	10	20	100	kΩ

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (5/5)

30.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	f⊪ = 32 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		2.1		mA
current ^{Note}		mode	speed main) mode ^{Note 5}		operation	V _{DD} = 3.0 V		2.1		mA
			mode		Normal	V _{DD} = 5.0 V		4.6	7.5	mA
					operation	V _{DD} = 3.0 V		4.6	7.5	mA
				f⊪ = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operation	V _{DD} = 3.0 V		3.7	5.8	mA
				f⊪ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.7	4.2	mA
					operation	V _{DD} = 3.0 V		2.7	4.2	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.9	mA
			speed main) mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.2	5.0	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.0	4.9	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.2	5.0	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.9	2.9	mA
			V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.9	mA	
				f _{MX} = 10 MHz ^{Note 2} , No	Normal	Square wave input		1.9	2.9	mA
			V _{DD} = 3.0 V	operation	Resonator connection		1.9	2.9	mA	
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.1	4.9	μA
			clock		operation	Resonator connection		4.2	5.0	μA
			operation	T _A = -40°C						
				f _{SUB} = 32.768 kHz Note 4	Normal	Square wave input		4.1	4.9	μA
				T _A = +25°C	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
				Note 4	operation	Resonator connection		4.3	5.6	μA
				T _A = +50°C						
				fsuв = 32.768 kHz	Normal	Square wave input		4.3	6.3	μA
				Note 4	operation	Resonator connection		4.4	6.4	μA
				T _A = +70°C						
				fsuв = 32.768 kHz	Normal	Square wave input		4.6	7.7	μA
		Note 4 $T_{\Lambda} = +85^{\circ}C$	operation	Resonator connection		4.7	7.8	μA		
		T _A = +85°C f _{SUB} = 32.76	fsuв = 32.768 kHz	Normal	Square wave input		6.9	19.7	μA	
				Note 4 T _A = +105°C	operation	Resonator connection		7.0	19.8	μA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 32 MHz $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 16 MHz
- **Remarks 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(1) Flash ROM: 16 to 64 KB of 20- to 64-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V})$ (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	f⊪ = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.54	2.90	mA
current Note 1	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.54	2.90	mA
Note 1				f⊪ = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	2.30	mA
					V _{DD} = 3.0 V		0.44	2.30	mA
				f⊪ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.70	mA
					V _{DD} = 3.0 V		0.40	1.70	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.90	mA
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.45	2.00	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.90	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	2.00	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	1.02	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	1.10	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	mA
			Subsystem	fsue = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock operation	T _A = -40°C	Resonator connection		0.44	0.76	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.37	1.17	μA
				T _A = +50°C	Resonator connection		0.56	1.36	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.53	1.97	μA
				T _A = +70°C	Resonator connection		0.72	2.16	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.82	3.37	μA
				T _A = +85°C	Resonator connection		1.01	3.56	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		3.01	15.37	μA
				T _A = +105°C	Resonator connection		3.20	15.56	μA
	IDD3 ^{Note 6}	STOP	T _A = -40°C				0.18	0.50	μA
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.30	1.10	μA
			T _A = +70°C				0.46	1.90	μA
			T _A = +85°C				0.75	3.30	μA
			T _A = +105°C				2.94	15.30	μA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD0}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD0} or V_{SS}, EV_{SS0}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chi p pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. Ho wever, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 32 MHz

2.4 V \leq V_DD \leq 5.5 V@1 MHz to 16 MHz

- 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	fili = 32 MHz Note 3	Basic	V _{DD} = 5.0 V		2.3		mA
current ^{Note}		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		2.3		mA
			mode		Normal	V _{DD} = 5.0 V		5.2	9.2	mA
					operation	V _{DD} = 3.0 V		5.2	9.2	mA
				fin = 24 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		4.1	7.0	mA
					operation	V _{DD} = 3.0 V		4.1	7.0	mA
				f _{IH} = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		3.0	5.0	mA
					operation	V _{DD} = 3.0 V		3.0	5.0	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.9	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.6	6.0	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.9	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.6	6.0	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.5	mA
	$\frac{V_{DD} = 5.0 \text{ V}}{f_{MX} = 10 \text{ MHz}^{Note 2}}$		operation	Resonator connection		2.1	3.5	mA		
		Normal	Square wave input		2.1	3.5	mA			
			V _{DD} = 3.0 V	operation	Resonator connection		2.1	3.5	mA	
			Subsystem	fsuв = 32.768 kHz	Normal	Square wave input		4.8	5.9	μA
			clock operation	Note 4 $T_A = -40^{\circ}C$	operation	Resonator connection		4.9	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.9	5.9	μA
				Note 4 T _A = +25°C	operation	Resonator connection		5.0	6.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.0	7.6	μA
				Note 4 T _A = +50°C	operation	Resonator connection		5.1	7.7	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.2	9.3	μA
				Note 4 T _A = +70°C	operation	Resonator connection		5.3	9.4	μA
				fsuв = 32.768 kHz	Normal	Square wave input		5.7	13.3	μA
	ts No	Note 4	operation	Resonator connection		5.8	13.4	μA		
				T _A = +85°C						1.5
				fsuв = 32.768 kHz Non	Normal	Square wave input		10.0	46.0	μA
				Note 4 T _A = +105°C	operation	Resonator connection		10.0	46.0	μA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. W hen AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V@1 MHz}$ to 32 MHz $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	fiH = 32 MHz ^{Note 4}	V _{DD} = 5.0 V		0.62	3.40	mA
Current Note 1	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.62	3.40	mA
			mode	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.50	2.70	mA
					V _{DD} = 3.0 V		0.50	2.70	mA
				fi⊢ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	1.90	mA
					V _{DD} = 3.0 V		0.44	1.90	mA
			HS (high- speed main) mode ^{Note 7}	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.10	mA
				V _{DD} = 5.0 V	Resonator connection		0.48	2.20	mA
			mode	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.48	2.20	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	1.10	mA
				V _{DD} = 5.0 V	Resonator connection		0.28	1.20	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	1.10	mA
				V _{DD} = 3.0 V	Resonator connection		0.28	1.20	mA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.28	0.61	μA
			clock operation	T _A = -40°C	Resonator connection		0.47	0.80	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.34	0.61	μA
				T _A = +25°C	Resonator connection		0.53	0.80	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.41	2.30	μA
				T _A = +50°C	Resonator connection		0.60	2.49	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.64	4.03	μA
				T _A = +70°C	Resonator connection		0.83	4.22	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		1.09	8.04	μA
				T _A = +85°C	Resonator connection		1.28	8.23	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		5.50	41.00	μA
				T _A = +105°C	Resonator connection		5.50	41.00	μA
	IDD3 ^{Note 6}	STOP	T _A = −40°C				0.19	0.52	μA
		mode ^{Note 8}	T _A = +25°C				0.25	0.52	μA
			T _A = +50°C				0.32	2.21	μA
			T _A = +70°C				0.55	3.94	μA
			T _A = +85°C				1.00	7.95	μA
			T _A = +105°C				5.00	40.00	μA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into Vbb, EVbbb, and EVbb1, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb0, and EVbb1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. Ho wever, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 32 MHz $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 16 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol		Conditions MIN.	Т	YP.	MAX.	Unit
Low-speed on- chip oscillator operating current	Note 1 IFIL			0	.20		μA
RTC operating current	IRTC ^{Notes 1,} 2, 3			0	.02		μA
12-bit interval timer operating current	_{I⊤} ^{Notes} 1, 2, 4			0	.22		μA
Watchdog timer operating current	IWDT ^{Notes 1,} 2, 5	f⊩ = 15 kHz		0	.22		μA
A/D converter	ADC Notes 1,		Normal mode, AV _{REFP} = V _{DD} = 5.0 V	1	.3	1.7	mA
operating current	6	maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V	().5	0.7	mA
A/D converter reference voltage current	ADREF Note 1			7	5.0		μA
Temperature sensor operating current	ITMPS Note 1			7	5.0		μA
LVD operating current	ILVI Notes 1, 7			0	.08		μA
Self programming operating current	IFSP ^{Notes 1,} 9			2	.50	12.20	mA
BGO operating current	I _{BGO} Notes 1, 8			2	.50	12.20	mA
SNOOZE operating	ISNOZ Note 1	ADC operation	The mode is performed Note 10	0	.50	1.10	mA
current			The A/D conversion operations are performed, Loe voltage mode, AV _{REFP} = V _{DD} = 3.0 V	1	.20	2.04	mA
		CSI/UART operation	1	0	.70	1.54	mA

(3) Peripheral Functions (Common to all products)

$(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Notes 1. Current flowing to the V_{DD} .

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the r eal-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the v alues of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be a dded. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- 4. Current flowing only to the 12-bit interval timer (excluding the op erating current of the lo w-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the v alues of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is in operation.

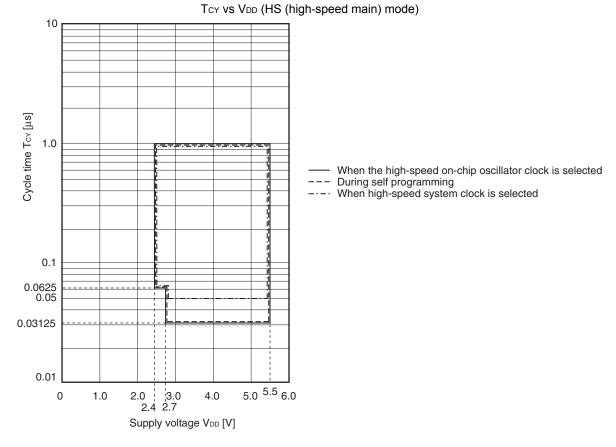
- **7.** Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of I DD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 8. Current flowing only during data flash rewrite.
- 9. Current flowing only during self programming.
- 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

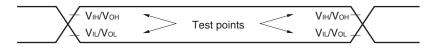
30.4 AC Characteristics

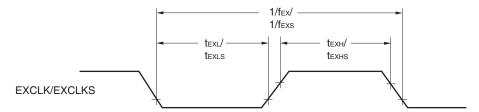
$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}\text{DD0} = \text{EV}\text{DD1} \le \text{V}\text{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}\text{ss0} = \text{EV}\text{ss1} = 0 \text{ V})$


Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main	HS (high-speed	$2.7V\!\le\!V_{DD}\!\le\!5.5V$	0.03125		1	μS
instruction execution time)		system ma clock (fmain) operation	main) mode	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.0625		1	μS
		Subsystem clock (fsuB) 2.4 V ≤ operation		$2.4 V \le V_{DD} \le 5.5 V$	28.5	30.5 31	.3	μS
		In the self	HS (high-speed	$2.7V\!\le\!V_{DD}\!\le\!5.5V$	0.03125		1	μS
		programming mode	main) mode	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μS
External system clock frequency	fex	$2.7 \text{ V} \leq V_{\text{DD}} \leq$	5.5 V		1.0		20.0	MHz
		$2.4 V \le V_{DD}$ <	< 2.7 V		1.0		16.0	MHz
	fexs				32	35		kHz
External system clock input high-	texh, texl	$2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V$		24			ns	
evel width, low-level width		$2.4~V \leq V_{\text{DD}} < 2.7~V$			30			ns
	texhs, texls				13.7			μS
TI00 to TI07, TI10 to TI17 input high-level width, low-level width	tт⊪, tт⊫				1/fмск+10			ns ^{Note}
TO00 to TO07, TO10 to TO17	f то	HS (high-spe	ed 4.0 V	$\leq EV_{DD0} \leq 5.5 V$			16	MHz
output frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-spe	ed 4.0 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
frequency		main) mode	2.7 V	≤ EV _{DD0} < 4.0 V			8	MHz
			2.4 V	≤ EV _{DD0} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μS
low-level width	t intl	INTP1 to INT	P11 2.4 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	1			μS
Key interrupt input low-level width	t kr	KR0 to KR7	2.4 V	$\leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl				10			μS

Note The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$ $2.4V \le EV_{DD0} < 2.7 \text{ V}$: MIN. 125 ns

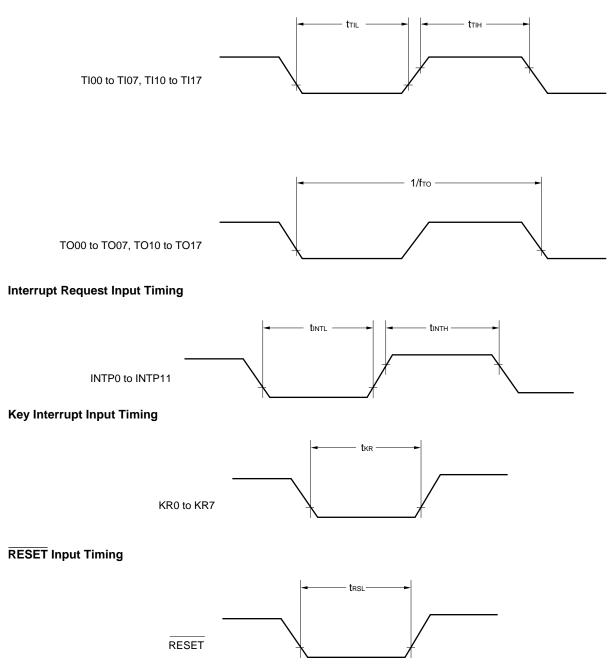
Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))



Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points



External System Clock Timing

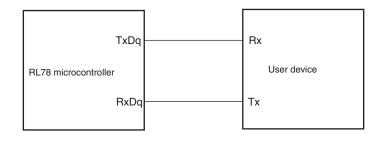
TI/TO Timing

30.5 Peripheral Functions Characteristics

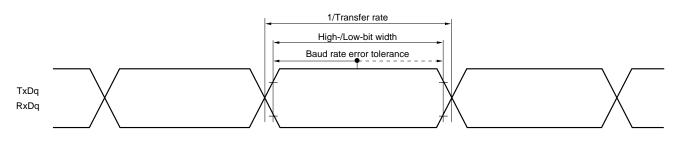
AC Timing Test Points

Ин/Vон VIH/VOH Test points VIL/VOL Vil/Vol

30.5.1 Serial array unit


(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$


	-				
Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate Note 1				fмск/12 ^{Note 2}	bps
		Theoretical value of the maximum transfer rate fcLK = 32 MHz, fMCK = fcLK		2.6	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$. 2.4 V $\leq EV_{DD0} < 2.7$ V : MAX. 1.3 Mbps
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

- **Remarks 1.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(2) D	During communication at sar	ne potential (CSI r	node) (master mode,	SCKp	. internal clock output)
-------	-----------------------------	---------------------	---------------------	------	--------------------------

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	$t_{\text{KCY1}} \ge 4/f_{\text{CLK}}$	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	250		ns
			$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$	500		ns
SCKp high-/low-level width	tкн1, tкL1	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 – 24		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 – 36		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү1/2 – 76		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsikı	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		66		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		66		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		113		ns
SIp hold time (from SCKp \uparrow) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note}	4		50	ns

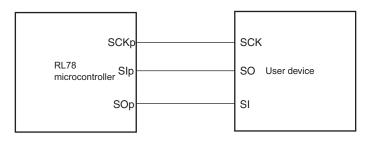
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{EV}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{sso}} = \text{EV}_{\text{sso}} = 0 \text{ V})$

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becom es "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPm n = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 1, 4, 5, 8, 14)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

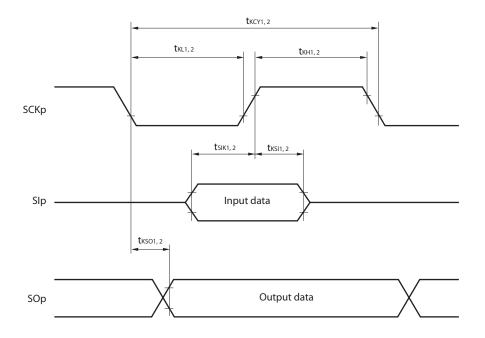
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MIN. MAX.	
SCKp cycle time Note 5	t ксү2	$4.0~V \leq EV_{DD0} \leq 5.5~V$	20 MHz < fмск	16/f мск		ns
			fмск \leq 20 MHz	12/f мск		ns
		$2.7~V \leq EV_{DD0} \leq 5.5~V$	16 MHz < fмск	16/f мск		ns
			fмск ≤ 16 MHz	12/f мск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		16/f мск		ns
				12/fмск and 1000		ns
	tкн2, tкL2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tĸcy2/2 – 14		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 – 16		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		tkcy2/2-36		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+40		ns
		$2.4~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск+60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2	$2.4~V \leq EV_{DD0} \leq 5.5~V$		1/fмск+62		ns
Delay time from SCKp \downarrow to SOp output ^{Note 3}	tkso2	C = 30 pF ^{Note 4}	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		2/fмск+66	ns
			$2.4 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск+113	ns

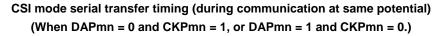
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becom es "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPm n = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

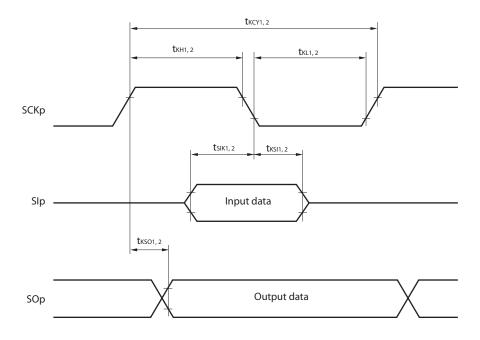

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1),


n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 4, 5, 8, 14)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of seri al mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))


CSI mode connection diagram (during communication at same potential)



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

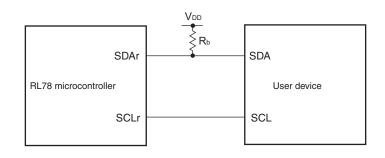
2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(4) During communication at same potential (simplified I²C mode)

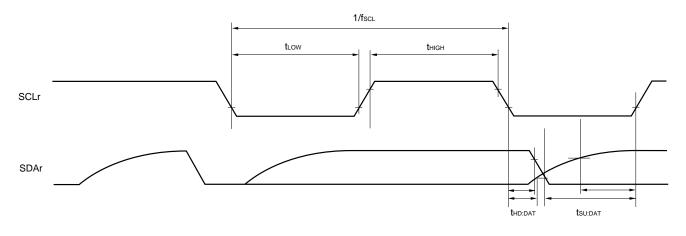
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode	
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega$		400 ^{Note1}	kHz
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$		100 ^{Note1}	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 kΩ	1200		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} = 50 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1200		ns
		2.4 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	4600		ns
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 kΩ	1/f _{MCK} + 220 Note2		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},$ C _b = 100 pF, R _b = 3 kΩ	1/fмск + 580 Note2		ns
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 kΩ	0	770	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	0	1420	ns

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.


2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(Remarks are listed on the next page.)

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance
 - r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 4, 5, 8, 14), h: POM number (g = 0, 1, 4, 5, 7 to 9, 14)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

T _A = -40 to +105	5°C, 2.4 V ≤ EVD	$bo = EVDD1 \le VDD \le 5.$.5 V, Vss = EVsso =	= EVss1 = 0 V)

Parameter	Symbol	Conditions		HS (high-spe	ed main) Mode	Unit
				MIN.	MAX.	
Transfer rate	rate Reception $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$			fмск/12 ^{Note 1}	bps	
		$2.7 V \le V_b \le 4.0 V$	Theoretical value of the maximum transfer rate fcLK = 32 MHz, fMCK = fcLK		2.6	Mbps
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$			fмск/12 Note 1	bps
		$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMck = fcLk		2.6	Mbps
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$			f _{MCK} /12 Notes 1,2	bps
			Theoretical value of the maximum transfer rate fcLk = 32 MHz, fMck = fcLk		2.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The following conditions are required for low voltage interface when $E_{VDD0} < V_{DD}$. 2.4 V $\leq EV_{DD0} < 2.7$ V : MAX. 1.3 Mbps
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** Vb[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSm n bit of seri al mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)
 - 4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Parameter	Symbol		Condit	ions	HS (high-spe	ed main) Mode	Unit
					MIN.	MAX.	
Transfer rate		Transmission	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,$			Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.6 Note 2	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V},$			Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate		1.2 Note 4	Mbps
				C_{b} = 50 pF, R_{b} = 2.7 kΩ, V_{b} = 2.3 V			
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$			Note 5	bps
			$1.6~V \le V_b \le 2.0~V$	Theoretical value of the maximum transfer rate		0.43 Note 6	Mbps
				C_{b} = 50 pF, R_{b} = 5.5 kΩ, V_{b} = 1.6 V			

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V $\leq EV_{DD0} \leq$ 5.5 V and 2.7 V $\leq V_b \leq$ 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD0} < 4.0 V and 2.4 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

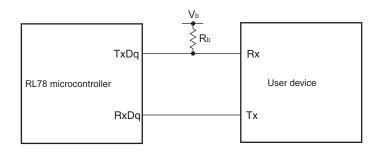
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \text{ [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

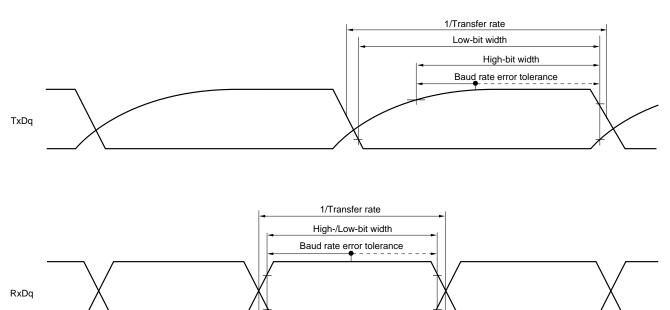
4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq EV_{DD0} < 3.3 V and 1.6 V \leq Vb \leq 2.0 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \text{ [%]}$$


* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remarks 1. $R_b[\Omega]$:Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

- 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 8, 14)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- 4. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol	Symbol Conditions		HS (high-speed	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkCY1	$t_{\text{KCY1}} \ge 4/f_{\text{CLK}}$	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$	600		ns
			C_b = 30 pF, R_b = 1.4 k Ω			
			$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$	1000		ns
			C_b = 30 pF, R_b = 2.7 k Ω			
			$2.4~V \leq EV_{\text{DD0}} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$	2300		ns
			C_b = 30 pF, R_b = 5.5 k Ω			
SCKp high-level width	t KH1	$4.0 V \leq EV_{DDO}$	${\rm b} \leq 5.5$ V, 2.7 V $\leq V_{\rm b} \leq 4.0$ V,	tксү1/2 – 150		ns
			C _b = 30 pF, R _b = 1.4 kΩ			
		$2.7 \text{ V} \leq EV_{DDO}$	$_{\rm 0} < 4.0$ V, 2.3 V $\leq V_{\rm b} \leq 2.7$ V,	tксү1/2 – 340		ns
		C _b = 30 pF, F	R _b = 2.7 kΩ			
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$	$v < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_b \le 2.0 \text{ V},$	tксү1/2 – 916		ns
		C _b = 30 pF, F	C_b = 30 pF, R_b = 5.5 k Ω			
SCKp low-level width	t KL1	$4.0 V \leq EV_{DDO}$	${\rm b} \leq 5.5$ V, 2.7 V $\leq V_{\rm b} \leq 4.0$ V,	tксү1/2 – 24		ns
		C _b = 30 pF, F	R _b = 1.4 kΩ			
		$2.7 \text{ V} \leq EV_{\text{DDO}}$	$_{\rm 0} < 4.0$ V, 2.3 V $\leq V_{\rm b} \leq 2.7$ V,	tксү1/2 – 36		ns
		C _b = 30 pF, R	R _b = 2.7 kΩ			
		$2.4 V \leq EV_{DDO}$	$_{0}$ < 3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V,	tксү1/2 – 100		ns
		C _b = 30 pF, R	R _b = 5.5 kΩ			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	HS (high-spe	ed main) Mode	Unit
			MIN.	MAX.	
Slp setup time	tsik1	$4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$	162		ns
(to SCKp↑) ^{Note}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$	354		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V,$	958		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
SIp hold time tksin (from SCKp [↑]) Note	tksi1	$4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$	38		ns
		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$	38		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V,$	38		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
Delay time from SCKp↓ to	tkso1	$4.0 \ V \leq EV_{\text{DD0}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$		200	ns
SOp output Note		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$		390	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \ V \le EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \le V_{\text{b}} \le 2.0 \ V,$		966	ns
		C_b = 30 pF, R_b = 5.5 k Ω			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{ss0}} = \text{EV}_{\text{ss1}} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

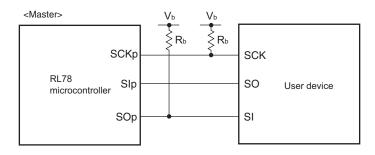
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

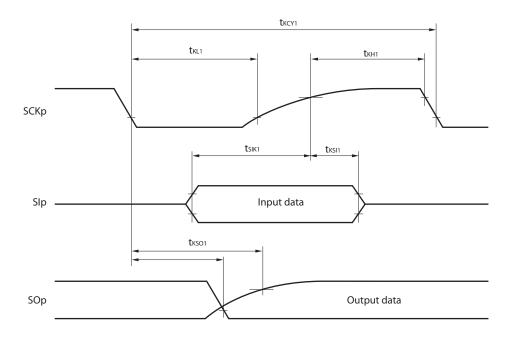
Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time	tsik1	$4.0 \ V \le EV_{\text{DD}} \le 5.5 \ V, \ 2.7 \ V \le V_{\text{b}} \le 4.0 \ V,$	88		ns
(to SCKp↓) ^{Note}		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \ V \leq EV_{\text{DD0}} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	88		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	220		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
SIp hold time tksi1 (from SCKp↓) Note	tksi1	$4.0 \; V \leq EV_{\text{DD0}} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V,$	38		ns
		C_{b} = 30 pF, R_{b} = 1.4 k Ω			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; \text{V}, \; 2.3 \; \text{V} \leq V_{\text{b}} \leq 2.7 \; \text{V},$	38		ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$	38		ns
		C_b = 30 pF, R_b = 5.5 k Ω			
Delay time from SCKp↑ to	tkso1	$4.0 \; V \leq EV_{\text{DD0}} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V,$		50	ns
SOp output Note		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7 \; V \leq EV_{\text{DD0}} < 4.0 \; \text{V}, \; 2.3 \; \text{V} \leq V_{\text{b}} \leq 2.7 \; \text{V},$		50	ns
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4 \ V \leq EV_{\text{DD0}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$		50	ns
		C_b = 30 pF, R_b = 5.5 k Ω			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{ss0}} = \text{EV}_{\text{ss1}} = 0 \text{ V})$

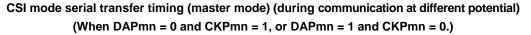

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

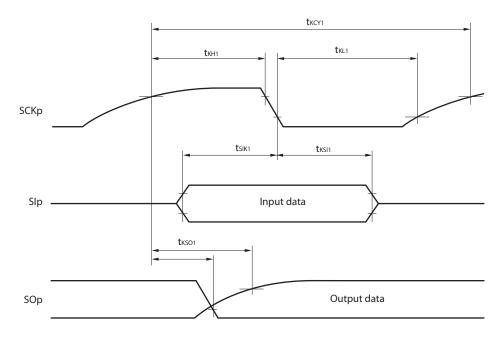
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)



CSI mode connection diagram (during communication at different potential)

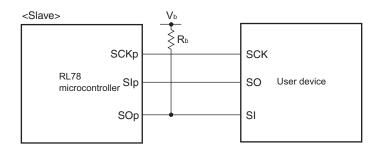



- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number , n: Channel number (mn = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **3.** fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

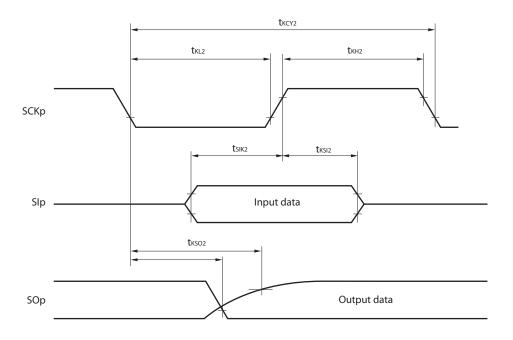
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 00, 01, 02, 10, 12, 13), n: Channel number (n = 0, 2), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - **2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

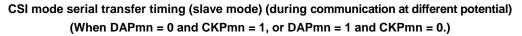
(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to $+105^{\circ}$ C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

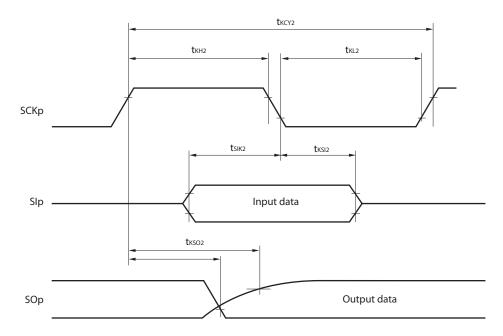

Parameter	Symbol	Symbol Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0 V \le EV_{DD0} \le 5.5 V$,	24 MHz < fмск	28/f мск		ns
		$2.7~V\!\le\!V_b\!\le\!4.0~V$	20 MHz < fмск ≤ 24 MHz	24/f мск		ns
			8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			4 MHz < fмск ≤8 MHz	16/f мск		ns
		fмск ≤4 MHz	12/f мск		ns	
		$2.7 V \le EV_{DD0} < 4.0 V$,	24 MHz < fмск	40/f мск		ns
		$2.3V{\leq}V_b{\leq}2.7V$	20 MHz < fмск ≤ 24 MHz	32/f мск		ns
			$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	28/f мск		ns
			8 MHz < $f_{MCK} \le 16$ MHz	24/f мск		ns
			4 MHz < fмск ≤8 MHz	16/f мск		ns
			fмск ≤4 MHz	12/f мск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$	24 MHz < fмск	96/f мск		ns
		$1.6 \ V {\le} V_b {\le} 2.0 \ V$	20 MHz < fмск ≤ 24 MHz	72/f мск		ns
			$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	64/f мск		ns
			$8 \text{ MHz} < f_{MCK} \le 16 \text{ MHz}$	52/f мск		ns
			4 MHz < fмск ≤8 MHz	32/f мск		ns
			fмск ≤4 MHz	20/f мск		ns
SCKp high-/low-level width	tкн2, tкL2	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	V,	tkcy2/2 - 24		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	V,	tkcy2/2 - 36		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \\ 1.6 \ V \leq V_b \leq 2.0 \ V^N \end{array}$		tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note2}	tsik2	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	V,	1/fмск + 40		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \leq 4.0 \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	V,	1/fмск + 40		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 3.3 \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$	V,	1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tĸso2	$4.0 V \le EV_{DD0} \le 5.5$ $C_b = 30 \text{ pF}, R_b = 1.4$	$\label{eq:Vb} \begin{array}{l} V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ 4 \ k\Omega \end{array}$		2/fмск + 240	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \\ C_b = 30 \ pF, \ R_b = 2. \end{array}$	V, 2.3 V \leq Vb \leq 2.7 V, 7 k\Omega		2/fмск + 428	ns
		$2.4 V \le EV_{DD0} < 3.3$ $C_b = 30 \text{ pF}, R_b = 5.3$	V, 1.6 V \leq V _b \leq 2.0 V 5 k Ω		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)


- Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becom es "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPm n = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output b ecomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (When 20- to 52-pin products)/EVDD tolerance (When 64- to 128-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)




- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 00, 01, 02, 10, 12, 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
 - **4.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number,

n: Channel number (mn = 00, 01, 02, 10, 12. 13), g: PIM and POM number (g = 0, 1, 4, 5, 8, 14)

2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I2C mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EV_{DD0} = EV_{DD1} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS0} = EV_{SS1} = 0 \text{ V})$

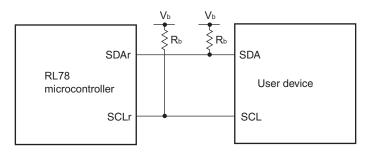
Parameter	Symbol	Conditions		speed main) ode	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$ \begin{split} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split} $		400 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		400 ^{Note 1}	kHz
				100 ^{Note 1}	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ \mathbf{C}_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$		100 ^{Note 1}	kHz
		$\label{eq:linear} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$		100 ^{Note 1}	kHz
Hold time when SCLr = "L"	tLow	$ \begin{aligned} & 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ & 2.7 \; V \leq V_b \leq 4.0 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	1200		ns
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1200		ns
			4600		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	4600		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	620		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	500		ns
			2700		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	2400		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1830		ns

(Notes, Caution and Remarks are listed on the next page.)

Parameter	Symbol	Conditions	HS (high-sp Mo	,	Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/f _{MCK} + 340 Note 2		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 340 Note 2		ns
			1/f _{MCK} + 760 Note 2		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{MCK} + 760 Note 2		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/f _{MCK} + 570 Note 2		ns
Data hold time (transmission)	thd:dat		0	770	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
			0	1420	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	1420	ns
		$\label{eq:linear} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

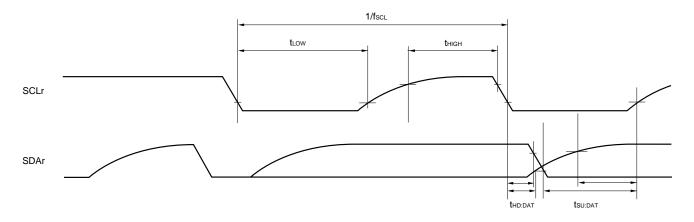
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I2C mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD0} = \text{EV}_{DD1} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS0} = \text{EV}_{SS1} = 0 \text{ V})$


Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

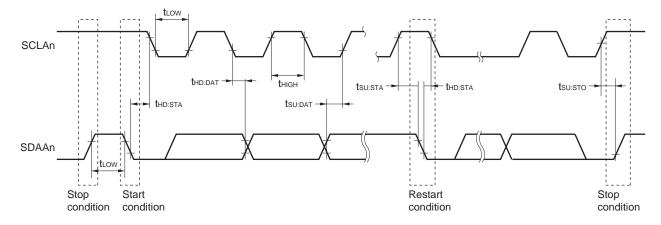
Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance (When 20- to 52-pin products)/EV_{DD} tolerance (When 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_L, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - **2.** r: IIC number (r = 00, 01, 10, 20, 30, 31), g: PIM, POM number (g = 0, 1, 4, 5, 8, 14)
 - fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13)

30.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (h	HS (high-speed main) Mode				
			Standar	Standard Mode		Fast Mode		
			MIN.	MAX.	MIN. N	IAX.		
SCLA0 clock frequency	fsc∟	Fast mode: $f_{CLK} \ge 3.5 \text{ MHz}$	-	-	0	400	kHz	
		Standard mode: $f_{CLK} \ge 1 \text{ MHz}$	0	100	-	-	kHz	
Setup time of restart condition	tsu:sta		4.7		0.6		μS	
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS	
Hold time when SCLA0 = "L"	t LOW		4.7		1.3		μS	
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS	
Data setup time (reception)	tsu:dat		250		100		ns	
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μS	
Setup time of stop condition	tsu:sto		4.0		0.6		μS	
Bus-free time	t BUF		4.7		1.3		μS	


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MA X.) of t HD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ } R_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ } R_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

30.6 Analog Characteristics

30.6.1 A/D converter characteristics

Classification of A/D converter characteristics

		Reference Voltage	
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR
Input channel	Reference voltage (-)= AVREFM	Reference voltage (-)= Vss	Reference voltage (-)= AVREFM
ANI0 to ANI14	Refer to 30.6.1 (1).	Refer to 30.6.1 (3).	Refer to 30.6.1 (3).
ANI16 to ANI26	Refer to 30.6.1 (2).		
Internal reference voltage	Refer to 30.6.1 (1).		-
Temperature sensor output			
voltage			

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±3.5	LSB
Conversion time	t _{CONV}	10-bit resolution	$3.6~V \le V \text{DD} \le 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17	39		μs
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	17	39		μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		•	Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		VBGR Note 4		V
		Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (H	•	V _{TMPS25} Note 4			V

(Notes are listed on the next page.)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. Refer to 30.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI26

$(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V},$
Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL		$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μS
		Target pin : ANI16 to	$2.7~V \le V \text{DD} \le 5.5~V$	3.1875		39	μs
		ANI26	$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	$\begin{array}{l} \text{10-bit resolution} \\ \text{EVDD0} \leq AV_{\text{REFP}} = V_{\text{DD}} \\ \text{Notes 3, 4} \end{array}$	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	Efs	10-bit resolution EVDD0 \leq AV _{REFP} = V _{DD} Notes 3, 4	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	$\begin{array}{l} \mbox{10-bit resolution} \\ \mbox{EVDD0} \leq AV_{REFP} = V_{DD} \end{array} \\ \mbox{Notes} \\ \mbox{$_{3,4}$} \end{array}$	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVDD0 \leq AV _{REFP} = V _{DD} ^{Notes} 3, 4	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI26		0		AV _{REFP} and EV _{DD0}	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When AV_{REFP} < EV_{DD0} ≤ V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin : ANI0 to ANI14, ANI16 to ANI26, internal reference voltage, and temperature sensor output voltage

$(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \leq \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{DD}}, \text{ V}_{\text{DD}} = 10 \text{ V}, \text{ Reference voltage (+)} = 10 \text{ R}, \text{ R},$
Reference voltage (-) = Vss)

Parameter	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI14,	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI26	$2.4~V \leq V\text{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: internal reference	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI26		0		EVDD0	V
		Internal reference voltage out (2.4 V \leq VDD \leq 5.5 V, HS (high			VBGR Note 3		V
		Temperature sensor output v (2.4 V \leq VDD \leq 5.5 V, HS (high	0	Ň	VTMPS25 Note 3	3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 30.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0, ANI2 to ANI14, ANI16 to ANI26

(T_A = -40 to +105°C, 2.4 V \leq EV_{DD0} = EV_{DD1} \leq V_{DD} \leq 5.5 V, V_{SS} = EV_{SS0} = EV_{SS1} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 30.6.2 Temperature sensor/internal reference voltage characteristics.

When reference voltage (-) = Vss, the MAX. values are as follows.
 Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AV_{REFM}.
 Integral linearity error: Add ±0.5 LSB to the MAX. value when reference voltage (-) = AV_{REFM}.
 Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AV_{REFM}.

30.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μS


(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, HS (high-speed main) mode)

30.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

30.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pu	Ilse width	t∟w		300			μS
Detection d	elay time					300	μS

LVD Detection Voltage of Interrupt & Reset Mode

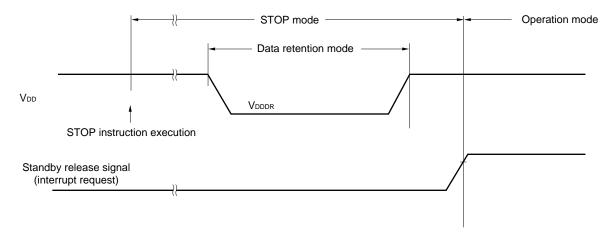
(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Con	Conditions				Unit
Interrupt and reset	VLVD5	VPOC2, VPOC1, VPOC0 = 0, 1, 1,	falling reset voltage	2.64	2.75	2.86	V
mode	VLVD4	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVD3	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	VLVD0	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

30.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 30.4 AC Characteristics.

30.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

30.8 Flash Memory Programming Characteristics

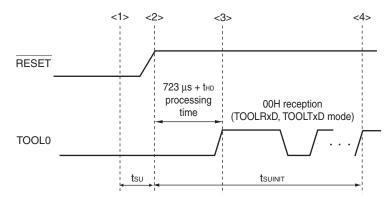
Parameter	Symbol	Conditio	MIN.	TYP.	MAX.	Unit	
CPU/peripheral hardware clock frequency	fськ	$2.4~V \le V \text{DD} \le 5.5~V$		1		32	MHz
Number of code flash rewrites Note1,2,3	Cerwr	Retained for 20 years	TA = 85°C ^{Note3}	1,000			Times
Number of data flash rewrites		Retained for 1 years	TA = 25°C ^{Note3}		1,000,000		
Note1,2,3		Retained for 5 years	TA = 85°C ^{Note3}	100,000			
		Retained for 20 years	TA = 85°C ^{Note3}	10,000			

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library.
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

30.9 Dedicated Flash Memory Programmer Communication (UART)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

30.10 Timing Specs for Switching Flash Memory Programming Modes

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$							
	Baramatar	Symbol	Conditiona	MIN			

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	t suinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)		POR and LVD reset must end before the external reset ends.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - $t_{\text{SU:}}$ How long from when the TOOL0 pin is placed at the low level until an external reset ends
 - the: How long to keep the T OOL0 pin at the low level from when the extern al and internal res ets end (excluding the processing time of the firmware to control the flash memory)

