LENESANS

RL78 Family R20UT0777EJ0110

Rev.1.10
Nov 30, 2023

Flash Self-Programming Library Type01 Package Ver.4.00
Release Note

Thank you for using the RL78 Family Flash Self-Programming Library Type01 Package Ver.4.00.
This document contains restrictions and notes regarding use of the Flash Self-Programming Library Type01

Package Ver.4.00. Please read this document before using the library.

Contents

Chapter 1 LK Lo 1= 4 d oo [0 T SRR 2
Chapter 2 USEI'S MaANUAIco.ueiiiii et e ettt e e e ea bt e e s rate e e e e anbeeeesaneeeeeeas 2
Chapter 3 REVISIONSciiiiiiiie ittt e e ettt e e s eate e e e e aate e e e s anbeeeeeanbeeeesanbeeeesanneeeeaas 2
Chapter4 PoINts fOr CaULIONcooiiiiii ettt e e et ee e e anreeeeeas 3
L0 gF=T o] (=T g SIS U o] o Yo] o (=T I I To] - 3
Chapter 6 1S3 =1 1= 11T o SRR 4
6.1 LTS =1 = (T o TSR 4
O O [o 11 1 e= 11 = (o o SRR 4
6.3 File Organizationcc.oiiiiiiiie e e e e et e e e e e e e e enreeeeannes 5
Chapter 7 HOW t0 BUild @ Programeiiiiiiii et e s e e sttt e st a e ansaeaesnneeeean 6
7.1 SOfWAre 10 D8 USEA......ooiiiii e e 6
7.2 Building using CS+(former CUDESUIIET)ciiiiiiiiieeee e 6
7.2.1 2101 oo To Ir=T O3 o] o | -0 o FON PP 7
7.2.2 Building an assembly language Programcoo i 10
7.2.3 Removing the automatically generated files (only when the CC-RL compiler is used)......... 12
7.2.4 = TU 1 o 10T OSSPSR 13
7.3 BUIldING USING €2 SEUAIO........uiiiiieiieeiciiciecie ettt sttt eneese s sne e 13
7.3.1 107 (=T (1o Vo J= T o[- o P SRR 13
7.3.2 =10 1o g Te B T O o o T [=10 o SRR 15
7.3.3 Building an Assembly-Language Program.............ooo i 19
T4 NOES AL BUIIA ...ttt ab et e e e s 21
7.41 When the CA78KOR Compiler iS USEAccoiiiiiiiiiiiiee et a e 21
7.4.2 When the CC-RL Compileris USEdooiiiiiiiiiiiiiiiiee ettt a e e 22
Chapter 8 How t0 DebUQ @ Program..........cccuiiiiiiiee ittt e e e e e e e e e e e e e e sarnreeeae s 23
Chapter 9 SampPle PrOgramooo ittt s e e e e e s enr e e e e nnre e e e enneeas 24
9.1 Initial Settings of the Sample Programooo e 24
9.2 Settings of Option byte and ONn-Chip Debuggingcccueeiiiiiiiiii e 25
9.3 Compilation Switch for the C-Language Sample Program............ccccooiiiieiiiiieiiiiiieeeieeee e 27
9.4 Defining the Internal RAM AF€a.........coiiiiiiiiiiii ettt 28
9.41 When the CA78KOR ComPpilerisS USEAcoiiiuiiiiiiie e 28
9.4.2 When the CC-RL CompilerisS USEdcoiiiiiiiiiiiiiiiiee e 29
943 When the LLVM Compileris USEdcoooiiiiiiiiiiiiiie ettt 33

R20UT0777EJ0110 Rev.1.10 Page 1 of 35

Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

Chapter 1 Target Product

In the Flash Self-Programming Library Type01 Package Ver.4.00, “RL78 Family Flash Self-Programming Library

Type01 for LLVM” has been newly added. The following shows the target products for this release note.

Product Name Ver. Installer File Name Ver.
Flash Self-Programming Library Type0O1 for
V2.20
CA78KOR Compiler for the RL78 Family
Flash Self-Programming Library TypeO1 for
. i V2.21 RENESAS_RL78_FSL_T01_4V00.exe V4.00
CC-RL Compiler for the RL78 Family
Flash Self-Programming Library TypeO1 for
V2.21
LLVM Compiler for the RL78 Family

Chapter 2 User’'s Manual

The following user’'s manual covers this version of the library.

Title Document Number

RL78 Family Flash Self-Programming Library Type01

R0O1US0050EJ0110
User’'s Manual
Chapter 3 Revisions
The following shows the items revised in this version.
No. Package Ver. Target Contents

Library V2.20
for CA78KOR Compiler | There is no change in the library from the package Ver.3.00.

Library V2.21
for CC-RL Compiler There is no change in the library from the package Ver.3.00.
1 V4.00
Library V2.21 Newlv added
for LLVM Compiler y '
User's Revised from Rev.1.05 to Rev.1.10.
manual For details on the corrections to the user's manual in response to
the revision, refer to the revision history of the user's manual.
R20UT0777EJ0110 Rev.1.10 Page 2 of 35

Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

Chapter 4 Points for Caution

For points for caution on using the Flash Self-Programming Library Type01, read this chapter and the

user's manual described later.

No. Description

1 ¢ Debugging by a simulator
The flash self-programming library cannot be debugged by a simulator. To perform debugging, either use
the on-chip debugging function of the RL78 microcontroller or prepare the IECUBE.

2 e Restrictions regarding use of the flash self-programming library on RL78/G13 sample devices (not

including mass-produced devices)

Some RL78/G13 sample devices (not including mass-produced devices) have restrictions on the interrupt
vector change processing through the flash self-programming library.

Note that the following flash functions cannot be used on those devices.

e FSL_ChangelnterruptTable

e FSL_RestorelnterruptTable

Chapter 5 Supported Tools

Use the following tool version when using the Flash Self-Programming Library Type01.

Library for CC-RL
Compiler Listed from

Target library Tool Name Version
Library for CA78KOR Integrated development environment CubeSuite+ V1.00.00 or later
Compiler Integrated development environment CS+ V3.00.00 or later

Integrated development environment CS+ V3.01.00 or later

Integrated development environment e2 studio Version: 2023-10 Note

Library for LLVM
Compiler

Integrated development environment e2 studio Version: 2023-10 or later

Note: Available for e2 studio with embedded CC-RL compiler V1.00 or later.

R20UT0777EJ0110 Rev.1.10 Page 3 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

Chapter 6 Installation

This chapter describes how to install and uninstall the Flash Self-Programming Library Type01 Package Ver.4.00.

6.1 Installation

Install the Flash Self-Programming Library Type01 by using the following procedure:
1) Start Windows.

(
(2) Decompress the file that contains the Flash Self-Programming Library Type01 Package and run the installer.
(3) Select "Asia/Oceania - English" from the drop-down list.

(

4) Click on the "OK" button to proceed installation according to the instructions of the installer.

r =

Please select your region. @

Renesas does not offer support nor will
take any potential responsibility or liability
for software based on a false selection.

[Asia/Oceania - English -
e

6.2 Uninstallation

Uninstall the Flash Self-Programming Library Type01 by using the following procedure:

(1) Start Windows.
(2) Delete the folder that contains the Flash Self-Programming Library Type01 files.

R20UT0777EJ0110 Rev.1.10 Page 4 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

6.3 File Organization

The file organization after this library is installed is shown below.

Installation folder
r20ut0777ejxxxx.pdf Note 1 : Release Note (this document)
support.txt : Support information file for FSL
CA78KOR_110, CC-RL_100 or LLVM_202310
— lib
fsl.lib or libfsl.a : Flash self-programming library
— fsl.h : Include file for C
— fsl.inc : Include file for assembler
— fsl_types.h : Include file that specifies definitions for C
— Sample
-
’> r_fsl_sample_c.c : Sample program file for C Note 2,3,4
— r_fsl_sample_c.dr : link directive file for Sample program Note 2
orr_fsl_sample_c.ld : linker script file for Sample program Note 4

Notes: 1. xindicates the omitted numerals in version or revision numbers.

2. To use the sample program for CA78KO0R, the program file (*.c) and link directive file (*.dr) should be
embedded together.

3. To use the sample program for CC-RL, the program file (*.c) should be embedded. The link information
for the sample program for CC-RL should be specified through the link setting window on the CS+ or the
e? studio.

4. To use the sample program for LLVM, the program file (*.c) and linker script file (*.1d) should be
embedded together.

R20UT0777EJ0110 Rev.1.10 Page 5 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

Chapter 7 How to Build a Program

This chapter describes how to build a program using the Flash Self-Programming Library Type01.

7.1 Software to be used

The following integrated development environment is necessary for building programs using the Flash Self-
Programming Library TypeO1.
e Integrated development environment CS+ V3.00.00 or later for CA78KOR compiler
/Integrated development environment CubeSuite+ V1.00.00 or later for CA78KOR compiler
e Integrated development environment CS+ V3.01.00 or later for CC-RL compiler
/Integrated development environment e? studio Listed from Version:2023-10 or later for CC-RL compiler Note
Note: Available for e2 studio with embedded CC-RL compiler V1.00 or later.

e Integrated development environment e? studio Version: 2023-10 or later for LLVM compiler

7.2 Building using CS+(former CubeSuite+)

This section describes how to include the Flash Self-Programming Library Type01 in a user-created program and

build the user program by using CS+. The target compilers for CS+ are CC-RL compiler and CA78KOR compiler.

R20UT0777EJ0110 Rev.1.10 Page 6 of 35
Nov 30, 2023 RENESAS

RL78 Family

Flash Self-Programming Library TypeO1 Ver.4.00 Package

Release Note

7.2.1

Building a C program

(1) Creating a project and specifying the source file

Create a project by using CS+. In the Project Tree window displayed on the left, right-click the File node, click

Add, and then click Add File. The Add Existing File dialog box is displayed (as shown in Figure 7-1).

Next, click the Files of type drop-down list to display a list of the file types. Select C source file (*.c), and then

register the user-created program as the source file.

Add

Add File...

h|""l

Thmmen Comled

Lt
P T <O | &

Add Blesar Fila
@3 Add Existing File x
« v <« Sample » C v & Search C el
Organize * New folder = [@
I This PC Mame
[l Desktop 3 I|:] r_fsl_sample_c.c I
E:-'] Documents
& Downloads
J‘l Music
| Pictures
B videos
28 Windows (C:)
- Data (D) W
File name: 2v| C source file (*.c)
4 Cancel
Figure 7-1. Registering the User Program File

R20UT0777EJ0110 Rev.1.10
Nov 30, 2023

RENESAS

Page 7 of 35

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

(2) Specifying the include file

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File.

The Add Existing File dialog box is displayed (as shown in Figure 7-2).

Next, click the Files of type drop-down list to display a list of the file types. Select Header file (*.h;*.inc), and
then register the header files (fsl.h, fsl_types.h) of the flash self-programming library.

1 = = -
5| Add b ([Add File..
=] Ohman Enldar sunthl Fvnlorar | S arid Mleaws File
isting File
@3 Add Existing Fil *
. v A « CA7TEKOR_110 s lib w 0 Search lib 2
Organize v MNew folder ==~ [A o
~ Fay
[This PC Hlame
[Desktop 301 fslh
|if'| Documents . felinc
4 Downloads L] fsltypes.h
J& Music
| Pictures
m Videos
2 Windows (C)
- Data (D) W
File name: 2|
4 Cancel

Figure 7-2. Registering the Include Files

(3) Specifying the library file

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing File
dialog box is displayed (as shown in Figure 7-3).
Next, click the Files of type drop-down list to display a list of the file types. Select Library file (*.lib), and then

register the flash self-programming library file (fsl.lib).

R20UT0777EJ0110 Rev.1.10 Page 8 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package

Release Note

| Add *

Add File...

i
Lt
7]

| Tvmam Ealdar with Evnlarar

S Bl Fils

@3 Add Existing File

€ - v

<« CATBKOR_110 » lib W

Organize * Mew folder
I This PC Mame

I Desktop 307 fsliib

|‘_j Documents

* Downloads

J’ﬁ Music

&= Pictures

m Videos

22 Windows (C)

== Data (D:) W

Search lib

2|

File name:

4| | Library fileg*.ic)

| Open IV|

Cancel

Figure 7-3. Registering the

Library File

(4) Specifying the link directive file (only when the CA78KOR compiler is used)

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing

File dialog box is displayed (as shown in Figure 7-4).

Next, click the Files of type drop-down list to display a list of the file types. Select Link Directive File (*.dr;*.dir),

and then register the link directive file that has the same name as the user-created program.

r |" 1 AddFile..

[Add
- i =

Coalal ale ol |

ELT B Bl

pe B3l

@3 Add Existing File

= v « Sample » C b

Crganize « Mew folder

Mame

3 ID r_fsl_sample_c.dr I

3 This PC
[Desktop
4 Downloads

J‘a Music

=

Documents

Pictures
m Videos
22 Windows (C:)

== Data (D2} W

o

Search C

== w

O @

File name:

Link directive file (*.dr: *.dir)

L

Figure 7-4. Registering the Link

Directive File

R20UT0777EJ0110 Rev.1.10

Nov 30, 2023 RENESAS

Page 9 of 35

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package

Release Note

7.2.2 Building an assembly language program

(1) Creating a project and specifying the source file

Create a project by using CS+. In the Project Tree window displayed on the left, right-click the File node, click

Add, and then click Add File. The Add Existing File dialog box is displayed (as shown in Figure 7-5).

Next, click the Files of type drop-down list to display a list of the file types. Select Assemble file (*.asm), and then

register the user-created program as the source file.

» m 1 AddFile..

3-U [Add
I = I o

e Ll ikl el LT589 AAA Blmsae BT

@3 Add Existing File

“— v € USEr * asm v Search asm

Organize = Mew folder

I Desktop 2 Mame
|if'| Documents 3
& Downloads

J'! Music

=| Pictures

B videos

=2 Windows (C:)
- Data (D:)

File name:

Figure 7-5. Registering the User Program File

(2) Specifying the include file

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File.

The Add Existing File dialog box is displayed (as shown in Figure 7-6).

Next, click the Files of type drop-down list to display a list of the file types. Select Header file (*.h;*.inc), and then

register the header file (fsl.inc) of the flash self-programming library.

R20UT0777EJ0110 Rev.1.10

Nov 30, 2023 RENESAS

Page 10 of 35

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package

Release Note

Add File...

Add p||'_1
T —— =

== A

@3 Add Eisting File

« « 4 || « CATBKORL110 5 lib

Organize « Mew folder

E This PC
[Desktop
* Downloads

J) Music

=

Documents

Pictures
m Videos
22 Windows (C)

== Data (D:) W

e bl

Search lib

File name:

Cancel

Figure 7-6. Registering the Include File

(3) Specifying the library file

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing File

dialog box is displayed (as shown in Figure 7-7).

Next, click the Files of type drop-down list to display a list of the file types. Select Library file (*.lib), and then

register the flash self-programming library file (fsl.lib).

E z T

Lt

1 AddFile..

= 1 |

EAT

Aol Bl

@3 Add Existing File

« v A ||« CA7BKOR_110 » lib v e

Organize « Mew folder

MName

3]

3 This PC
[Desktop
; Downloads

d

=

Documents

Music
Pictures

B videos

s Windows (C:)

- Data (D) ¥

Search lib

File name:

Library file(*.lib)

Figure 7-7. Registering the Library File

R20UT0777EJ0110 Rev.1.10

Nov 30, 2023 RENESAS

Page 11 of 35

RL78 Family

Flash Self-Programming Library TypeO1 Ver.4.00 Package

Release Note

(4) Specifying the link directive file (only when the CA78KOR compiler is used)

In the CS+ Project Tree window, right-click the File node, click Add, and then click Add File. The Add Existing

File dialog box is displayed (as shown in Figure 7-8).

Next, click the Files of type drop-down list to display a list of the file types. Select Link Directive File (*.dr;*.dir),

and then register the link directive file that has the same name as the user-created program.

117 §| Add V[AddFite.. I
@3 Add Existing File e
&« v P <« Sample » C v O Search C 2
Organize Mew folder ==+« [9
8 This PC A Name -
[Desktop 3 II:] r_fsl_sample_c.dr I
@ Documents
; Downloads
J& Music
&=| Pictures
m Videos
22 Windows (C:)
== Data (D:} W
File name: ~
Figure 7-8. Registering the Link Directive File
7.2.3 Removing the automatically generated files

(only when the CC-RL compiler is used)

CS+ for the CC-RL compiler automatically generates some files under the File node in the Project Tree window.

Among these, the processing of the "main.c" and "hdwinit.asm" files is included in the flash self-programming

library. Therefore, remove these two files from the target of the build process.

To use assembly language, only “main.c” is removed because the sample program is not used.

=/ % RSFL00LE-FSL (Project

. % RSF100LE (Microc
&y CC-RL (Build Tool
5! RL78 Simulator (D

%

cstart.asm

88m sthinit.asm

iodefine.h

Assemble

Cpen

Open with Internal Editor...

Cpen with Selected Application...
Cpen Folder with Explorer
Windows Explorer Menu

Add 3

Remove from Project Shift+Del I

Copy Ctrl+C

Ctrl+V

F2

Paste
Rename

Change Extension...

Property

After removal

R5F100LE-F51 (Project)”

R5SFL00LE (Microcontroller)
4, CC-RL (Build Tool)
2, RLT8 Simulator (Debug Tool)

=-[) File

- ﬂ Build tocl generated files

..BEM cctartasm

o “Ei’l stkinit.asm

.| jodefine.h

Figure 7-9. Removing the Automatically Generated Files

R20UT0777EJ0110 Rev.1.10
Nov 30, 2023

RENESAS

Page 12 of 35

RL78 Family

Flash Self-Programming Library TypeO1 Ver.4.00 Package

Release Note

7.2.4 Building

On the CS+ Build menu, click Build Project to build the project.

7.3 Building Using e? studio

This section describes how to include the Flash Self Programming Library Type01 in a user-created program and

build the user program by using e? studio. The target compilers for e2 studio are CC-RL and LLVM.

7.3.1 Creating a Project

The e? studio starts and from the [File] menu, select [New] — [C/C++ Project], the “Templates for New C/C++

Project” window will ope

n.

[€2 studio - € studio
[e]

FiIeIEdit Source Refactor Navigate Search Project RenesasViews Run Window Help

Mew

Alt+Shift+N >| [& Makefile Project with Existing Code

Open File...

Close

[} Open Projects from File System...

[T CrCerProject

= Project...

Ctrl+W Convert to a C/C++ Project (Adds C/C++ Nature)

Figure 7-10. Removing the Automatically Generated Files

- When using the CC-RL compiler, select [Renesas CC-RL C/C++ Executable Project] displayed after selection in

[Renesas RL78], and press “next” button.

a New C/C++ Project

Templates for New C/C++ Project

Renesas Debug
‘ Renesas RL78

All
CMake
Make

[Deprecated] GCC for Renesas RL78 C/C++ Executable Project
s A G/C++ Executable Project for Renesas RL 78 using the GCC for Renesas
RL78 Toolchain.

[Deprecated] GCC for Renesas RL78 C/C++ Library Project
== A G/C++ Library Project for Renesas RL78 using the GCC for Renesas RL78
Toolchain.

LLVM for Renesas RL78 C/C++ Executable Project
IO A C/C++ Executable Project for Renesas RL78 using LLVM for Renesas RL78
Toolchain,

LLVM for Renesas RL78 C/C++ Library Project
EEED A C/C++ Library Project for Renesas RL78 using LLVM for Renesas RL78 Toolchain.

Renesas CC-RL C/C++ Executable Project
oo A C/C++ Executable Project for Renesas RL78 using the CC-RL toolchain.

— Renesas CC-RL C/C++ Library Project
=== A G/C++ Library Praoject for Renesas RL78 using the CC-RL toolchain.

"\ < Back | Finish Cancel
Figure 7-11. Select the CC-RL Compiler for the Tool Chain

Input “project name” on “New Renesas CC-RL Executable Project” window, and press “Next” button.

R20UT0777EJ0110 Rev.1.10

Nov 30, 2023

RENESAS

Page 13 of 35

RL78 Family

Flash Self-Programming Library TypeO1 Ver.4.00 Package

Release Note

- When using the LLVM compiler, Select [LLVM for Renesas RL78 C/C++ Executable Project] displayed after

selection in [Renesas RL78], and press “Next” button.

a New C/C++ Project

Templates for New C/C++ Project

All
Clake fears
Make

Renesas Debui

[y

GCC for Renesas RL78 C/C++ Executable Project
A C/C++ Executable Progect for Renesas RL78 using the GCC for Renesas RL 78 Toolchain.

GCC for Renesas RL78 C/C++ Library Project
A CCe+ Library Project for Renesas RL 78 using the GCC for Renesas RL78 Toolchain.

LLVM for Renesas RL78 C/C++ Executable Project
A GC++ Executable Project for Renesas RL78 using LL VM for Renesas RL 78 Toolchain.

[ey

(crary

(cars

LLVM for Renesas RL78 C/C++ Library Project
A CCe+ Library Praject for Renesas AL 78 using L L VM for Renesas AL 78 Toalchain.

Renesas CC-RL C/C++ Executable Project
A CC++ Executable Project for Renesas RL78 using the CCRL toolchain,

Renesas CC-RL C/C++ Library Project
A G/C++ Library Praject for Renesas RL 78 using the CCRL toolchain,

@

< Back FEinish Cancel

Figure 7-1

2. Select the LLVM Compiler for the Tool Chain

Input “Project name” on “New LLVM for Renesas RL78 Executable Project” window, and press “Next” button.

Select the [Target Device] of [Device Settings] and select “RL78 — G13” - “R5F100LE”. (When the target device is
RL78/G13 [Part Number: R5F100LE].)

It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check mark to

“Create Hardware Debug Configuration” by [Configurations]. And select “E2 Lite(RL78)”. Press “Finish” button.

Toolchain Settings

Device Settings

MNew Renesas CC-RL Executable Project

O X

Select toolchain, device & debug settings

Language: ®C OC++
Toolchain: Renesas CC-RL R
Toolchain Version: |v1.12.01 ~

Manage Toolchains...

Configurations

Target Board: |Custom

V| | |Create Hardware Debug Configuration

Target Device: | RSF100LE

Endian: | Little

Project Type: | Default

Download additional boards...

| E2 Lite (RL78) ~

[] Create Debug Configuration

Unlock Devices...
RL78 Simulator ~

[] Create Release Configuration

\£ Next > Cancel
Figure 7-13. Device Selection
R20UTO0777EJ0110 Rev.1.10 Page 14 of 35
Nov 30, 2023 RENESAS

RL78 Family

Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

7.3.2

(1) When the on-chip debugging function is in use

Building a C Program

Specifying the flash self-programming library file in the created project.
- CC-RL: Register the flash self-programming library files “fsl.h”, “fsl_types.h”, “fsl.lib” and “r_fsl_sample_c.c” in
the “src” folder output by e? studio. (Figure 7-14)

* Project tree - Lib folder
VIS FSLType01_PJ01[HardwareDebug] « v p « CCRL_100 > lib v O
)Y Includes B ~
- e
_S_Frc - | fslinc
V&b || E fstiib
|n| fsl_types.h ‘Z/) tsl_typesh
|n| fslh
E’ fsllib - Sample¥C folder
v (= Sample « v 4 « Sample > C v O
vec A £ a
F B
l€] r_fsl_sample_c.c \
. \I D r_fsl_sample_c.c I
l€] FSLType01_PJO1c

Figure 7-14. Specifying the Source and Include Files (CC-RL)

- LLVM: Register the flash self-programming library files “fsl.h”, “fsl_types.h”, “libfsl.a”, “r_fsl_sample_c.c” and

“r_fsl_sample_c.ld" in the “src” folder output by e? studio. (Figure 7-15)

- Project tree - Lib folder
v IS FSLType01_PJO1 [HardwareDebug] — v 1 « LLVM_100 > lib v O
| - .
5. Binaries ~
- Includ i
|nit Includes
(2 generate U felh
o U fsl_types.h
VL sic] libfsla
v = lib
lh| fsl.h
E libfsla &« v 1 « Sample * C v &)
¥ = Sample e
hd \r___l C I D r_fsl_sample_c.c
l€] r_fsl_sample_c.c] r_sl_sample_cId
|L| r_fsl_sample_c.ld
L] FSLType01_PIO1.c

Figure 7-15. Specifying the Source and Include Files (LLVM)

R20UT0777EJ0110 Rev.1.10
Nov 30, 2023

RENESAS

Page 15 of 35

RL78 Family

Flash Self-Programming Library TypeO1 Ver.4.00 Package

Release Note

Exclusion of the file automatically added by the function of e? studio.

There are files added automatically in the created project. The same file as these exists also in the “sample” folder

of FSL Type01. Therefore, using the function of IDE, Select those files from tree, and excludes from a project.

Clicks the right mouse button for the file of tree. And On the [Settings] screen displayed by the “Properties”, put a

check mark to [Exclude resource from build] and exclude a target file. (Exclusion of a folder is also possible)

- CC-RL: Target files are “hdwinit.asm” in a [project name]/generate folder, and [project name] .c

(“FSLType01_PJ01.c”) in a [project name]/src folder.

- LLVM: Target files are “linker_script.Id” in a [project name]/generate folder, and [project name] .c

(“FSLType01_PJ01.c”) in a [project name]/src folder.

Before exclusion

After exclusion

W LDC FSLType01_PJ01 [HardwareDebug]
1;3 Binaries
m Includes — ?
v (£} generate Open
8 cstart Show In Alt+Shift+W >
— cstart.asm Open With >
I |_5| hdwinit.asm I Show in Local Terminal >
i iodefineh | & copy Ctrl+C
|5) stkinitasm Paste Ctrl+V
v [5rc 2. Delete Delete
v lib Source >
] Move...
|£| fsl_types.h Rename... F2
R fsl.h
aib fsllib
¥ = Sample
v C
l€] r_fsl_sample_c.c
| > [€ FsLTypent PIO1.C

hd Lr_—'fv FSLType01_PJO1[HardwareDebug]
1:-? Binaries
it Includes
v £ generate
|5| cstart.asm
|n] iodefineh
|5] stkinit.asm
v (£ src
v & lib
|n] fsl_typesh
b fslh
b fsllib
¥ = Sample
v C

|l r_fsl_sample_c.c

Figure 7-16. File Exclusion Example

R20UT0777EJ0110 Rev.1.10
Nov 30, 2023

RENESAS

Page 16 of 35

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

(2) Specifying the library file
- CC-RL: Click the right mouse button for the project in a tree, and select “Properties”. In the “Add file” window that
appears by clicking the “+” button to the right of “Relocatable files, object files, and library files” on the
“C/C++ Build” [Settings] — “Linker” [Input] screen, change the [Format] to “library”, and register the path to
the flash self-programming library file “fsl.lib”. (Figure 7-17)

Q Properties for FSLType01_PJO1 O

type filter text Settings (=
Resource
Builders

v C/C++ Build Configuration: |HardwareDebug [Active] ~ | | Manage Configura

Build Variables
Environment

Logging ¥ Tool Settings | Toolchain Device| # Build Steps Build Artifact ég Binary Parsers| € Error Parsers
Settings
Stack Analysis ® Common Use standard/mathematical libraries (-library)
Tool Chain Editor & Compiler [[JUse €99 edition libraries (-library)
C/C++ General & Assembler] Check memory smashing on releasing memory (-library)
v B

Project Natures Use runtime libraries (-library)

Project References
15

Relocatable files, object files and library files (-input/-library/-binary) R

EE:;[;Z,S; Settings Z:f ;)ptti_mization "${workspace_loc;/${ProjName}/src/lib/fsl.lib}"
(222 Section
Figure 7-17 (a). Specifying the Library File (CC-RL)
@& Add file X
Format: I library I ™
File name: |${workspace_|oc:/$(ProjName]/srcflibffsl.lib]
Workspace.. File system...
1
None
Figure 7-17 (b). Specifying the Library File (CC-RL)
R20UT0777EJ0110 Rev.1.10 Page 17 of 35

Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

- LLVM: Click the right mouse button for the project in a tree, and select “Properties”. Register the file path of the

flash self-programming library file “libfsl.a” in the “Additional input files” field on the screen displayed in

“C/C++ Build” [Settings] — “Linker” [Source].

ﬁ Properties for FSLType01_PJO1 O
|type filter text Settings - -
Resource
Builders
~ C/C++ Build Configuration: HardwareDebug [Active | ~ Manage Configurations..

Build Variables
Environment

ogging &) Tool Settings | & Toolchain

Tool Chain Editor

Build Steps| " Build Artifact | [a} Binary Parsers | ™

¥ Device

é‘? CPU Entry point: |—WI,—e_PowerON_Reset
(22 Optimization =

C/C++ General ¥ Deb Linker script 2R EREEARY
Project Natures (& Debug
é? Warnings "${workspace_loc;/${ProjNamel/src/Sample/C/r_fsl_sample_cld}"

Project References
) Library Generator

3 Compiler
3 Assembler
w183 Linker

Archives
(5 Miscellaneous
é? Other

3 Objcopy - JNamel/src/lib/libfsl

) Print Size |

Figure 7-18. Specifying the Library File (LLVM)

Renesas QE
Run/Debug Settings

®
i

D
4:“,]
=

Additional input files

(3) Specifying the linker script file (only when the LLVM compiler is used)
Click the right mouse button for the project in a tree, and select “Properties”. Register the file path of the linker

script file “.Id” in the “Linker script” field on the screen displayed in “C/C++ Build” [Settings] — “Linker” [Source].

Here, select the file path of “r_fsl_sample_c.ld” prepared for the FSL Type01.

ﬁ Properties for FSLType01_PJ01 O
|type filter text Settings 7 7
Resource
Builders
~ C/C++ Build Configuration: HardwareDebug [Active | ~ Manage Configurations..

Build Variables
Environment
Logging &} Tool Settings | &3 Toolchain
Tool Chain Editor
C/C++ General
Project Natures
Project References
Renesas QE
Run/Debug Settings

2 Device| # Build Steps| " Build Artifact | [& Binary Parsers| ™

é‘? CPU Entry point: |—WI,—e_PowerON_Reset

2 Optimization
i . R = W N
- L] Bl 5
= p Linker script RS R

é‘? Warnings "${workspace loc;/${ProjName}/src/Sample/C/r fsl sample cld}"

83 Library Generator
5 Compiler
3 Assembler

~ 83 Linker

Archives

Figure 7-19. Specifying the Linker Script File

Note: Refer to each reference manual of LLVM about the descriptive content of linker script file, and the details of

the description method.

R20UT0777EJ0110 Rev.1.10 Page 18 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

(4) Building

Right-click on the [Project] in the e? studio project tree and select “Build Project” to build the project.

7.3.3 Building an Assembly-Language Program
(1) Specifying the source and include files
Specifying the flash self-programming library file in the created project.
- CC-RL: Register user program file (“xxxxxx.asm”), the flash self-programming library files “fsl.inc” and “fsl.lib” in

the “src” folder output by e? studio. (Figure 7-20)

* Project tree - Lib folder
v IS FSLType01_PJ0O1 [HardwareDebug] « v 1 <« CCRL_100 > lib v O
¥ Includes _ ~
_ =
(X} generate B
v (2 src 2 sl
- lib | |] fslinc
= '_ _ //] fsllib
|'_h' fslinc ?J fsl_types.h
lard fsllib
|.c| F5LTypel1_PJ0O1.c
[S) soooocasm

Figure 7-20. Specifying the Source and Include Files (CC-RL)

Exclusion of the file automatically added by the function of IDE.

There are files added automatically in the created project. The same file as these exists also in the “sample” folder
of FSL Type01. Therefore, using the function of IDE, Select those files from tree, and excludes from a project.
Clicks the right mouse button for the file of tree. And On the [Settings] screen displayed by the “Properties”, put a
check mark to [Exclude resource from build] and exclude a target file (target folder).

(Exclusion of a folder is also possible)

- CC-RL: Target file is [project name] .c (“FSLType01_PJ01.c”) in a [project name]/src folder.

R20UT0777EJ0110 Rev.1.10 Page 19 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

(2) Specifying the library file
- CC-RL: Click the right mouse button for the project in a tree, and select “Properties”. In the “Add file” window
that appears by clicking the “+” button to the right of “Relocatable files, object files, and library files” on
the “C/C++ Build” [Settings] — “Linker” [Input] screen, change the [Format] to “library”, and register the
path to the flashself-programming library file “fsl.lib”. (Figure 7-21)

Q Properties for FSLTypeQ1_PJO1 O
Settings =
Resource
Builders
v C/C++ Build Configuration: HardwareDebug [Active] ~ | |Manage Configura

Build Vanables
Environment

Logging ¥ Tool Settings | Toolchain| Device| #* Build Steps Build Artifact &g Binary Parsers | € Error Parsers
Settings . .) 7
Stack Analysis ®: Common Use standard/mathematical libraries (-library)
Tool Chain Editor T:' Compiler [[Juse C99 edition libraries (-library)
C/C++ General & Assembler [] Check memory smashing on releasing memory (-library)

Project Natures Use runtime libraries (-library)

Project References Relocatable files, object files and library files (-input/-library/-binary) | =

Renesas QF - o . . .
Run/Debug Settings \‘_— Optimization ${workspace_loc:/${ProjName}/src/lib/fsllib}
\,E_’ Section
Figure 7-21 (a). Specifying the Library File (CC-RL)
& Add file x
Format: I library I ~
File name: ‘${workspa(s?lo(:fi’;{ijName}fsr(/libjfsl‘lib]
Workspace... |File system...
1
None
Figure 7-21 (b). Specifying the Library File (CC-RL)
(3) Building

Right-click on the [Project] in the e? studio project tree and select “Build Project” to build the project.

R20UT0777EJ0110 Rev.1.10 Page 20 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

7.4 Notes at Build

7.4.1 When the CA78KOR Compiler is Used

(1) When the on-chip debugging function is in use

After the on-chip debugging function is enabled in the CS+, building a program may generate the following type

of error.

RA78KOR error E3212: Default segment can't allocate to memory - ignored
Segment '??0OCDROM' at xxxxxH-200H

This error occurs when the segment for the monitor area (OCDROM) used by the on-chip debugging function
cannot be allocated. Therefore, to avoid this error, add the following code to the link directive file (*.dr)

embedded in the project and prepare a separate area for allocating the segment.

MEMORY OCD_ROM : (OxxxxxH, 00200H)

Remarks: 1. xxxxx indicates the start address of the location where the error occurred.

2. The area name OCD_ROM is an example of the notation.

(2) When the relink function is in use (on the flash area side)

The error shown below may occur when a program is built after a file including a declaration that specifies the

section name is registered in the project on the flash area side with the use of the relink function of CS+.

CC78KOR error E0842: Unrecognized pragma SECTION '@@xxxxx'

This error occurs because the section name on the flash area side differs from the normal case when the relink
function is used. To avoid the error, change the specified section name from "@@xxxxx" to "@Exxxxx" as

shown below to conform to the rules for the section name of the flash area side.

#pragma section @Exxxxx CNST_DAT

Remarks: 1. xxxxx indicates the string of the desired section name.

2. The changed section name CNST_DAT is an example of the notation.

R20UT0777EJ0110 Rev.1.10 Page 21 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

7.4.2 When the CC-RL Compiler is Used

(1) When the on-chip debugging function is in use

After the on-chip debugging function is enabled in the CS+, building a program may generate the following type

of error.

E0562321:Section ".monitor2" overlaps section "xxxxx"

This error occurs when the section for the monitor area (OCDROM) used by the on-chip debugging function
cannot be allocated. Therefore, to avoid this error, right click the CC-RL (Build Tool) node (1) in the CS+
Project Tree window, select Property to open the CC-RL Property panel (2), and select the Link Options tab
(3). In the Section category (4), modify the setting for Section start address (5) so that no other areas overlap
the area where the section for the on-chip debugger monitor is allocated (monitor2: the initial address range is

0xFEOQO to OxFFFF in RSF100LE). (See Figure 7-22.)

For details of the section settings, refer to the CC-RL Compiler User's Manual.

Remark 1. xxxxx: Indicates the section name.

Project Tree 2X M Property || A r_fsl_sample_c.c =l
& &
i} 7
8 ? 2 E CC-RL Property
B"“'sh R5F100LE-FSL ?ro ect)” Uutput vector information No i
e BoE1On oller) Output information of members of struct or union No

information

chons

ically Yes-AUTO_SECTION_LAYOUT)
.const, text. RLIB, SLIB. conetf, data, sdata FSL_FCD.FSL_

L svoul sections sutoms
Section start address
SECUON &L outp

external defined symbols to the file Section that outputs extemal defined symbols to the file[0]

o[File

vwwwwll o

“L"" cstart.asm U = -
W) <tkinit.asm ROM to RAM mapped section ROMto RAM mapped section[2] |
= ' Verify =
Message T
Others [
List
3
\ Common Options ,(Compile Options ,{' AssembleOptions'}, Link Options ,lHeuOutput Optio... ,(If/0 Header File G... / ¥
Error List 2 x
@1 Errors | |9[J Warnings | |I i_.'ﬂ Messages | W
MNumber Message File Line Project
@ E0562321 E0562321:Section " monitorZ” overaps section " texdf™ R5F100LE-F

& Output |BE Error List |

Figure 7-22. Modifying the Section Allocation

R20UT0777EJ0110 Rev.1.10 Page 22 of 35

Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

Chapter 8 How to Debug a Program

For details on how to perform debugging by using IECUBE or the on-chip debug emulator E1, E2, E2 emulator Lite

or E20, see the following document:

Title
CubeSuite+ Integrated Development Environment User's Manual: RL78 Debug[CS+ for CA,CX]Nete
CS+ Integrated Development Environment User's Manual: RL78 Debug Tool[CS+ for CC] Nete

e? studio Integrated Development Environment User's Manual: Getting Started Guide

Note: You can download this document from the “CS+ Integrated Development Environment” page or “e? studio

Integrated Development Environment” page of the Renesas Electronics website.

R20UT0777EJ0110 Rev.1.10 Page 23 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

Chapter9 Sample Program

The attached sample program (r_fsl_sample_c.c) is provided to enable the usage method of the Flash Self-Programming
Library Type01 to be easily confirmed on the QB-R5F100LE-TB boards with R5F100LEA (RL78/G13) as the target
microcontrollers. The sample program is just a reference example and the user program does not have to be created to
match the sample program. The sample program should be used as a simple program to confirm operation.

- The link directive file (r_fsl_sample_c.dr) for the sample program for the CA78KOR compiler has a purpose to specify
that a stack or data buffer used by the sample program is not allocated to an area where allocation is prohibited Note*,
When using the sample program, this file should also be embedded with the sample program.Note2. 3

- The sample program for the CC-RL compiler, should be allocated appropriately in the section category on the “Link
Options” tabbed page in the CS+ window, or on the “Linker” [Section] page in the e? studio, so that a stack or data
buffer used by the sample program is not allocated to an area where allocation is prohibited Not'3,

- The linker script file (r_fsl_sample_c.Id) for the sample program for the LLVM compiler has a purpose to specify that
a stack or data buffer used by the sample program is not allocated to an area where allocation is prohibited Note!,

When using the sample program, this file should also be embedded with the sample program.Note3

Notes: 1. For details, refer to chapter "2.2 Software Environment” in the user's manual.

2. In the supplied link directive file, the RAM area size is set to 512 bytes. Even when the target microcontroller
has 2 Kbytes or larger RAM, the sample program (r_fs|_sample_c.c) can be used for building without modifying
the defined area setting.

3. The data in usage may be placed at an unintended area depending on how the environment in use or the
program is changed. After an execution module is generated, the map file and allocation state of programs or
data must be confirmed. For the definition method and allocation conditions of each code or data, refer to the

user’s manual of the compiler used.

9.1 Initial Settings of the Sample Program

The sample program operates with the following initial settings. When these settings need to be changed, modify the

sample program.

o CPU operating frequency: High-speed on-chip oscillator 32 MHz

» VVoltage mode: High-speed mode

R20UT0777EJ0110 Rev.1.10 Page 24 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

9.2 Settings of Option byte and On-Chip Debugging

(1) When using CA78KOR or CC-RL compiler with the CS+

When performing on-chip debug, set “Set enable/disable on-chip debug by link option” to “Yes” and specify “84” for
“Option byte values for OCD”. For the CC-RL compiler, set “Set debug monitor area” to “Yes”.

The sample program normally operates by setting the high-speed on-chip oscillator at 32 MHz.

After setting “Set user option byte” to “Yes” on “Link Options” tabbed page, specify “xxxxE8” for “User option byte value”

and set the high-speed on-chip oscillator at 32 MHz.

A Ry & [8] [

> Debug Information -
> InputFile b
[+ Dutput File
> Library
F]
Set enable/disable on-chip debug by link option El
Option byte values for OCD [Fe=] 84 L
Debug monitor area start address [He#| FEOD 1
Diebug maonitor area size[byte] 512
Set user option byte Yes(-gb)
User option byte value [Fe%] FFFFES
Specify mirror area MAA=D(-mi)
Set flash start address No 4
Boot area load module file name
Control allocation to self RAM area No
- Message
- Stack .

Set enable/disable on-chip debug by link option
Specify this option, to set a value of the on-chip debug function and to secure area of the debug monitor.
This optien corresponds to the -go option.

Common Options { Compile Options 4 Assemble Opti.. |} Link Options § ROMizationPro... 4 Object Convert.. / Variables/Funt... / ¥
/

Figure 9-1 (a) Setting of Option Byte when Using the CS+ (CA78KOR Compiler)

Property ﬁ r_fsl_sample_c.c

4« CC-RL Property @ @ B

Debug Informabion
Optimization
Input File

Qutput File

Li

Set enable/disable on-chip debug by link option Yes(-OCDEG)
Option byte values for OCD [HER] B4
Set debug monitor area Yes(Specify address range)(-DEBUG_MONITOR=<Address range:)
Range of debug monitor area FEMN-FFFF

Set user option byte Yes-USER_CPT_BYTE)
User option byte value [vex] EFFFES

Control allocation to self RAM area Mo

Output Code

List

Variables/functions information

Section

Venfy

Message

Others

¥ 7T VW

VOV YV VY VWV

Device i

Commaon Options Compile Options AssembleOptions |, Link Options || Hex Qutput Optio... £ IfO Header File G... 71
i

Figure 9-1 (b) Setting of Option Byte when Using the CS+ (CC-RL Compiler)

R20UT0777EJ0110 Rev.1.10 Page 25 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

(2) When using the CC-RL compiler with the e? studio

Select “C/C++ Build” [Settings] - “Linker” [Device]. And set device items on the displayed screen.

When performing on-chip debug, put a check mark to “Set enable/disable on-chip debug by link option” and specify
“84” for “On-chip debug control value”. Put a check mark to “Secure memory area of OCD monitor”.

The sample program normally operates by setting the high-speed on-chip oscillator at 32 MHz. Put a check mark to
“Set user option byte” on the “Tool Settings” tabbed page, specify “xxxxE8” for “User option byte value” and set the

high-speed on-chip oscillator at 32 MHz.

& Properties for FSLType01_PJO1 O
Setings -
Resource
Builders
v €/C++ Build Configuration: |HardwareDebug [Active] ~| ' Manage Configurations..

Build Variables
Environment

ogging &3 Tool Settings | Toolchain| Device| # Build Steps Build Artifact ;’m Binary Parsers| €3 Error Parsers
:
tack Analysis &3 Common Security ID value (-security_id) 1]
. 5 =y i
Tool Chain Editor ; Compiler
&5 Assembler

C/C++ General v B Linker [_1Reserve working memory for RRM/DMM function (-rrm)
Project Natures -
Project References ‘% I'j'pl"t
Renesas QF ‘% L'St_ o Secure memory area of OCD monitor (-debug_monitor)
Run/Debug Settings = Optl-mIZaTIDI'I

el Memory area (-debug_monitor=<start address>- <end address>) |OFEOO-OFFFF

Set user option byte (-user_opt_byte)

= Output User option byte value (-user_opt_byte=<value>) |FFFFE8
= Mi

‘;; ﬁlscellaneous Set enable/disable on-chip debug by link option (-ocdbg)

=3 User

B Converter On-chip debug control value (-ocdbg=<value>) |84

Set security option byte (-security_opt_byte)

Figure 9-2. Setting of Option Byte when Using the e? studio (CC-RL Compiler)

(3) When using LLVM compiler with the e? studio

The device item settings are set in the “vects.c” file. In the “vects.c” file provided in the sample program, the option
byte value and user option byte value are set in “Option_Bytes” as follows.

The sample program normally operates by setting the high-speed on-chip oscillator at 32 MHz. Therefore, set the
user option byte value “xxxxe8” and the on-chip debug option byte value in the “Option_Bytes” of the “vects.c” file as

follows:

[The example for RL78/G13]
“Oxff, Oxff, 0xe8, 0x84” (WDT Enable, LVD reset mode, HS mode /32MHz, Enable on-chip debug operation)

const unsigned char Option_Bytes[] __attribute__ ((section (".option_bytes"))) ={
Oxff, Oxff, Oxe8, 0x84

Note: Be sure to confirm the contents of “User option byte” of the chapter of “Option Bytes” and “On-chip debug

option byte” by the user's manual of a target device. And describe the set value used with user application.

R20UT0777EJ0110 Rev.1.10 Page 26 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

9.3 Compilation Switch for the C-Language Sample Program

The sample program has a compilation switch as shown below. This compilation switch is used to turn on the LED to
confirm operation on the QB-R5F100LE-TB board. To use this, modify "#if 0" to "#if 1" so that the #define declaration

for the target CPU board becomes valid.

/ /

/* Sample Program — Program switch symbol */

/ /

/* Can be enabled when a single QB-R5F100LE-TB board is used */

#fo <« Can be modified to #if 1

#define __ QB_R5F100LE_TB___ when QB-R5F100LE-TB is used

/* Other boards */

#else
#define __ NON_TARGET__
#endif
R20UT0777EJ0110 Rev.1.10 Page 27 of 35

Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

9.4 Defining the Internal RAM Area

9.4.1 When the CA78KOR Compiler is Used

When the CA78KOR compiler is used, the entire internal RAM area is automatically defined as an area with the name
"RAM" in the initial state. Unless otherwise stated in the link directive file, the stack and data buffers are to be allocated
to this area N°t¢, However, in this case, the stack and data buffers would be allocated by default to an area (FFE20H to
FFEFFH in self-RAM) for which use by the flash self-programming library is prohibited, so the program may not run
correctly.

In the attached link directive file for the sample program, as a solution, re-define the area with the name "RAM" so that
it does not include the above area, ensuring that stack and so on are not allocated to the area for which usage is
prohibited.

MEMORY RAM :(OFF300H, 000B20H)

The above statement redefines the area with the name "RAM" to be the B20H bytes area starting from the address
FF300H (FF300H to FFE1FH) N°te, This prevents attempted use of the area which the flash self-programming library is
prohibited to use by excluding the prohibited portion from the area with the name "RAM".

However, if this is the only change setting that is explicitly made, the area from FFE20H to FFEFFH is also unusable
for any other purpose. Accordingly, separately add the following definition. No particular restrictions apply to the name

of this area.

MEMORY SADDR_RAM:(0FFE20H, 0000EOH)

If there is a self-RAM area, automatic allocation of variables to this area can be restricted by defining its range as an

area with the name "SELFRAM".

MEMORY SELFRAM :(OFEFOOH, 000400H)

An example of the settings for an RL78/G13 (the product with 4 Kbytes of RAM and 64 Kbytes of ROM) is given below.

; Define new memory entry for Self-RAM

MEMORY SELFRAM : (OFEFOOH, 000400H) «— Definition of the self-RAM area

; Redefined default data segment RAM

MEMORY RAM : (OFF300H, 000B20H) <«— - Definition of the RAM area to be used normally

; Define new memory entry for saddr area

MEMORY RAM_SADDR : (OFFE20H, 0000EOH)«——— Definition of the area from FFE20H to FFEFFH

Note: The CA78KOR linker allocates data with a non-specified destination for allocation (segment types DSEG and
BSEGQG) to the internal RAM area according to the re-allocation attribute of the data. Accordingly, specific data
may not be allocated to the area with the name "RAM" in some situations.

For details on the methods of defining and allocating the individual categories of data, refer to the user’'s
manual for CS+.

Reference to the map file (*.map) generated at the time of building is required to confirm the state of allocation.

R20UT0777EJ0110 Rev.1.10 Page 28 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

9.4.2 When the CC-RL Compiler is Used

(1) Adding the include path

In CS+ for the CC-RL compiler, no include path is specified in the initial state; the include paths for the header files
used by the flash self-programming library need to be added. The flash self-programming library uses header files
"fsl.h", "fs|_types.h", and "iodefine.h" (this file is automatically generated by CS+ and e? studio).
- In CS+, add the include path where each file resides in [Compile Options] — [Preprocessing] — [Additional
Include Path].
- In €2 studio, in the “Properties” window, add the include path where each file exists in the “Include file directories(-)"

field on the screen displayed by “C/C++ Build” [Settings] — “Compiler” [Source].
(2) Defining sections

When CS+ and e? studio for the CC-RL compiler is used, the sections used for the ROM and RAM areas need to be

defined.

- Sections can be defined in the Section category on the Link Options tabbed page in the CS+ window. When the
Layout sections automatically property is set to No, select the Section start address property to open the Section
Settings dialog box and add the sections necessary for the flash self-programming library to the ROM area (Figure
9-3). (In this example, the FSL_FCD, FSL_RCD, FSL_BCD, and FSL_BECD sections that are necessary for

operation of the sample program are added.)

R20UT0777EJ0110 Rev.1.10 Page 29 of 35
Nov 30, 2023 RENESAS

RL78 Family

Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note
Section Settings u
[——
Address Section
[(x02000 .const =
o Add Section S5
SLE Section name:
[textf F5L_FCO|
| > EESH
I dda [ok]| cacd || hep
I (xFEFOD dataR -
| bss | Enter the section name (FSL_FCD) and
BAFE2D scataRt click the OK button. Repeat this procedure
sbss
for FSL_RCD, FSL_BCD, and FSL_BECD.
[ok J[cancel || Hep |
éed-ion Settings [=]
s Soten \Q
02000 .const
_ =
SLIB Remove
o
constf
data
N FSL_FCD After adding all necessary sections, click the OK
M FSL_RCD button to close the Section Settings dialog box.
FSL_BCD
(<FEFD0 dataR
| bss
Il o
Export
-_ o 0 o J[b

Figure 9-3. Example of Section Settings for the Flash Self-Programming Library when Use CS+(ROM Area)

R20UT0777EJ0110 Rev.1.10 Page 30 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

- Setting of the section items on e? studio inputs in the “Properties” window. Select “C/C++ Build” [Setting] -
“Linker” [Section]. And set section items on the displayed screen. Remove a check mark to [Layout sections

automatically(-auto_section_layout)]. Press the © ” button of the right-hand side which sections are

displaying, and a “Section Viewer” screen is displayed and add the sections necessary for the flash self-
programming library to the ROM area (Figure 9-4). (In this example, the FSL_FCD, FSL_RCD, FSL_BCD, and

FSL_BECD sections that are necessary for operation of the sample program are added.)

n] x
Section Viewer
Address Section Name
- 0x00002000 .const
dext
data
sdata Add Section
.RLIB R
SLB ew Overlay
textf Remove Section
.constf Move Up
FSL_FCD Move Down
FSL_RCD : "
FSL_BCD Lt
FSL_BECD Export...
0x000FF300 .dataR
bss
Ox000FFE20 sdataR
sbss
[Override Linker Script
Browse
Re-Apply
OK | | Cancel

Figure 9-4. Example of Section Settings for the Flash Self-Programming Library when Use e? studio
(ROM Area)

R20UT0777EJ0110 Rev.1.10 Page 31 of 35
Nov 30, 2023 RENESAS

RL78 Family

Flash Self-Programming Library TypeO1 Ver.4.00 Package

Release Note

(3) Allocating the Self-RAM Area

In the initial state of the section settings in CS+ for the CC-RL compiler, the user RAM area is allocated at the

beginning of the internal RAM area (from address FEFOOH for R5F100LEA, which is the target microcontroller of the

sample program). However, in R5F100LEA, the flash self-programming library uses the address range from OxFEF00

to OXFF2FF as the self-RAM area. Therefore, the user RAM area must be allocated outside this area. In this example,
the user data start address OxFEFO0O0 is changed to OxFF300.

<]

Sect-i-on Settings P
Address Section
02000 .const

teod
p—
texdf
.constf - Down
.data
F5L_FCD
FSL_RCD
FSL_BCD
FSL_BECD
| bss
| | QxFFE20 sdataR
s
Export...
i oK | [Camed || Heb |
—d |

Sect?on Settings =]
Address Section
02000 .const

text
teadf
constf 4 D
data
B FSL_FCD
W FSL_RCD
FSL_BCD
FSL_BECD
| eeFra00 dataR
bss
| | keFFE20 sdataR
Exort.
" [ok | [Camca || Hep |

=X
Hep |

Section Address

Address:

| ok || Ccancel

J

"

[*=

Change the section address from FEF0O to

FF300.
Section Address ﬁ1
Address: FF300
[ok || camcel || Hep |

After changing the address, click the OK button
to close the Section Settings dialog box.

Figure 9-5. Example of Changing the User RAM Area Allocation When Use CS+ (RAM Area)

R20UT0777EJ0110 Rev.1.10
Nov 30, 2023

RENESAS

Page 32 of 35

RL78 Family

Flash Self-Programming Library TypeO1 Ver.4.00 Package

Release Note

m %
Section Viewer
Address Section Name
£ 0x00002000 .const
text
.data
sdata Add Section
.RLIB P —
SUB ew Overlay
textf Remove Section
.constf Move Up
FSL_FCD Move Down
FSL_RCD : "
FSL_BCD L
FSL_BECD Export...
[0x000FF300 I .dataR
bss
0x000FFE20 sdataR
sbss
[[] Override Linker Script
Browse
Re-Apply
OK | | Cancel

Figure 9-6. Example of Changing the User RAM Area Allocation when Use e? studio (RAM Area)

Note: The sections including the user-specified sections are automatically re-allocated when the Layout sections
automatically property is temporarily set to No, the user RAM allocation is changed, and then the property is
again set to Yes. In this case, sections may be allocated to areas that are not specified by the user; that is,
data may be placed in unintended areas. Be sure to refer to the map file to check if the software resources

(especially RAM data) used by the flash self-programming library are placed in relocatable areas.

94.3 When the LLVM Compiler is Used

(1) Adding the include path

In e? studio, no include path is specified in the initial state: The include path for the header files used by the flash
self-programming library need to be added. The flash self-programming library uses header files “fsl.h”,
“fsl_types.h”, and “iodefine.h” and “iodefine_ext.h” (this file is automatically generated by e? studio).

In e? studio, in the “Properties” window, add the include path where each file exists in the “Include file directories(-l)”

field on the screen displayed by “C/C++ Build” [Settings] — “Compiler” [Includes].

R20UT0777EJ0110 Rev.1.10
Nov 30, 2023

Page 33 of 35
RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

(2) Allocating the Self-RAM area

The LLVM compiler describes the link settings to be performed in the build in a linker script file (*.1d).

In the linker script file (linker_script.Id) output from e? studio, the built-in RAM area is defined as “RAM” section. In
addition, the software resources used by the flash self-programming library are defined as an area called “SELFRAM”
section. (Only for devices that require “Self-RAM” area)

In the linker script file “r_fsl_sample_c.ld” included with the sample program, the “RAM” section and “SELFRAM”
section are defined so that they do not overlap.

Note: The “r_fsl_sample_c.ld” provided in the sample program is prepared on the assumption that R5F100LE will be
used. When using other devices, please check the Self-RAM list and modify it according to the device.
Refer to each reference manual of LLVM about the descriptive content of linker script file (*.1d), and the details

of the description method.

R20UT0777EJ0110 Rev.1.10 Page 34 of 35
Nov 30, 2023 RENESAS

RL78 Family
Flash Self-Programming Library TypeO1 Ver.4.00 Package Release Note

All trademarks and registered trademarks are the property of their respective owners.

R20UT0777EJ0110 Rev.1.10 Page 35 of 35
Nov 30, 2023 RENESAS

Notice

1.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	Cover
	Contents
	Chapter 1 Target Product
	Chapter 2 User’s Manual
	Chapter 3 Revisions
	Chapter 4 Points for Caution
	Chapter 5 Supported Tools
	Chapter 6 Installation
	6.1 Installation
	6.2 Uninstallation
	6.3 File Organization

	Chapter 7 How to Build a Program
	7.1 Software to be used
	7.2 Building using CS+(former CubeSuite+)
	7.2.1 Building a C program
	7.2.2 Building an assembly language program
	7.2.3 Removing the automatically generated files (only when the CC-RL compiler is used)
	7.2.4 Building

	7.3 Building Using e2 studio
	7.3.1 Creating a Project
	7.3.2 Building a C Program
	7.3.3 Building an Assembly-Language Program

	7.4 Notes at Build
	7.4.1 When the CA78K0R Compiler is Used
	7.4.2 When the CC-RL Compiler is Used

	Chapter 8 How to Debug a Program
	Chapter 9 Sample Program
	9.1 Initial Settings of the Sample Program
	9.2 Settings of Option byte and On-Chip Debugging
	9.3 Compilation Switch for the C-Language Sample Program
	9.4 Defining the Internal RAM Area
	9.4.1 When the CA78K0R Compiler is Used
	9.4.2 When the CC-RL Compiler is Used
	9.4.3 When the LLVM Compiler is Used

	Notice

