TEST REPORT Test report no.: 1-6662/18-01-02 ## **Testing laboratory** #### CTC advanced GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany + 49 681 5 98 - 0 Phone: + 49 681 598 - 9075 Fax: Internet: http://www.ctcadvanced.com mail@ctcadvanced.com #### **Accredited Testing Laboratory:** The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-03 ### **Applicant** #### **Dialog Semiconductor BV** Het Zuiderkruis 53 5215 MV's Hertogenbosch / Netherlands Phone: -/- Contact: Laura Dimitropoulou e-mail: Laura.Dimitropoulou@diasemi.com +30 2610 462406 Phone: #### Manufacturer #### **Dialog Semiconductor BV** Het Zuiderkruis 53 5215 MV's Hertogenbosch / Netherlands #### Test standard/s Wideband transmission systems; Data transmission equipment operating in the ETSI EN 300 328 2.4 GHz ISM band and using wide band modulation techniques; Harmonised V2.1.1 Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU For further applied test standards please refer to section 3 of this test report. **Test Item** Kind of test item: Bluetooth LE SoC Model name: DA1469x Frequency: ISM band 2400 MHz to 2483.5 MHz Technology tested: Bluetooth® LE Antenna: Integrated printed inverted F antenna Power supply: 3.0 V DC by external power supply Temperature range: -40°C to +85°C This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. | Test report authorized: | Test performed: | |-------------------------|---------------------| | | | | | | | Andreas Luckenbill | Mihail Dorongovskij | Radio Communications & EMC Lab Manager Lab Manager Radio Communications & EMC ## 1 Table of contents | 1 | Table | of contents | 2 | |-----|--|---|----------------------------------| | 2 | Gener | al information | 3 | | | 2.1
2.2
2.3 | Notes and disclaimer | 3 | | 3 | Test s | tandard/s | 4 | | 4 | Test e | nvir onment | 4 | | 5 | Test it | em | 5 | | | 5.1
5.2 | General description | | | 6 | Descr | iption of the test setup | 6 | | | 6.1
6.2 | Shielded fully anechoic chamber | | | 7 | Summ | pary of measurement results | 9 | | 8 | Additi | onal comments | 10 | | 9 | EUT c | lassification | 11 | | 10 | Mea | asure ment results | 12 | | | 10.1
10.2
10.3
10.4
10.5
10.6
10.7 | Antenna gain RF output power Power spectral density Occupied channel bandwidth Transmitter unwanted emissions in the out-of-band domain Transmitter unwanted emissions in the spurious domain Receiver spurious emissions Receiver blocking | 13
15
17
18
20
25 | | 11 | Mea | asurement uncertainty | 31 | | Ann | ex A | Glossary | 32 | | Ann | ex B | Document history | 33 | | ۸nn | ۵ν ۲ | Accreditation Certificate | 23 | ### 2 General information #### 2.1 Notes and disclaimer The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH. The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH". CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer. Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided. Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH. All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval. This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory. ### 2.2 Application details Date of receipt of order: 2018-06-21 Date of receipt of test item: 2018-07-16 Start of test: 2018-07-17 End of test: 2018-07-17 Person(s) present during the test: Mr. Kai Lewandowski #### 2.3 Test laboratories sub-contracted None © CTC advanced GmbH Page 3 of 33 ## 3 Test standard/s | Test standard | Date | Description | |------------------------|---------|--| | ETSI EN 300 328 V2.1.1 | 2016-11 | Wideband transmission systems; Data transmission equipment operating in the 2.4 GHz ISM band and using wide band modulation techniques; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU | ## 4 Test environment | Temperature | : | T _{nom}
T _{max}
T _{min} | +22 °C during room temperature tests
+85 °C during high temperature tests
-40 °C during low temperature tests | |---------------------------|---|--|---| | Relative humidity content | : | | 55 % | | Barometric pressure | : | | not relevant for this kind of testing | | Power supply | : | V _{nom}
V _{max}
V _{min} | 3.0 V DC by external power supply No tests under extreme voltage conditions required. No tests under extreme voltage conditions required. | © CTC advanced GmbH Page 4 of 33 ## 5 Test item ## 5.1 General description | Kind of test item | : | Bluetooth LE SoC | | | | |----------------------------|---|---------------------------------------|--|--|--| | Type identification | : | DA1469x | | | | | S/N serial number | | Rad. 1825_000_29 | | | | | O/17 Geriai Harrisei | • | Cond. 1825_000_27 | | | | | HW hardware status | : | NA . | | | | | SW software status | : | 48F138 | | | | | Firmware status | | 10.0.1.32 and later | | | | | Frequency band | : | ISM band 2400 MHz to 2483.5 MHz | | | | | Type of radio transmission | : | Other than FHSS GFSK | | | | | Use of frequency spectrum | : | | | | | | Type of modulation | : | | | | | | Number of channels | : | 40 | | | | | Channel bandwidth (B) | | Approx. 1 MHz for 1 Msps | | | | | Onamier bandwidth (b) | • | Approx. 2.3 MHz for 2 Msps | | | | | Channel spacing | : | 2 MHz | | | | | Receiver category | : | 2 | | | | | Antenna | : | Integrated printed inverted F antenna | | | | | Power supply | : | 3.0 V DC by external power supply | | | | | Temperature range | : | -40°C to +85°C | | | | ## 5.2 Additional information The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing. Test setup and EUT photos are included in test report: 1-6662/18-01-01_AnnexB 1-6662/18-01-01_AnnexC © CTC advanced GmbH Page 5 of 33 ## 6 Description of the test setup Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard). In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item). #### Agenda: Kind of Calibration | k | calibration / calibrated | EK | limited calibration | |-------|--|-----|--| | ne | not required (k, ev, izw, zw not required) | zw | cyclical maintenance (external cyclical | | | | | maintenance) | | ev | periodic self verification | izw | internal cyclical maintenance | | Ve | long-term stability recognized | g | blocked for accredited testing | | vlkl! | Attention: extended calibration interval | | | | NK! | Attention: not calibrated | *) | next calibration ordered / currently in progress | © CTC advanced GmbH Page 6 of 33 ## 6.1 Shielded fully anechoic chamber Measurement distance: tri-log antenna and horn antenna 3 meter BAT-EMC software version: 3.16.0.49 OP = AV + D - G + CA (OP-radiated output power; AV-analyzer
value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path) #### Example calculation: OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μ W) ### **Equipment table:** | No. | Lab /
Item | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|---------------|--|-------------------------------------|----------------------------------|------------|-----------|------------------------|---------------------|---------------------| | 1 | А | Double-Ridged
Waveguide Horn
Antenna 1-18.0GHz | 3115 | EMCO | 8812-3088 | 300001032 | vlKI! | 07.07.2017 | 06.07.2019 | | 2 | Α | Highpass Filter | WHK1.1/15G-10SS | Wainwright | 37 | 400000148 | ne | -/- | -/- | | 3 | Α | Highpass Filter | WHKX7.0/18G-8SS | Wainwright | 18 | 300003789 | ne | -/- | -/- | | 4 | А | Band Reject Filter | WRCG2400/2483-
2375/2505-50/10SS | Wainwright | 26 | 300003792 | ne | -/- | -/- | | 5 | А | TRILOG Broadband
Test-Antenna 30
MHz - 3 GHz | VULB9163 | Schwarzbeck Mess -
Elektronik | 318 | 300003696 | vlKI! | 23.05.2017 | 22.05.2020 | | 6 | А | Broadband Amplifier
0.5-18 GHz | CBLU5184540 | CERNEX | 22051 | 300004483 | ev | -/- | -/- | | 7 | А | 4U RF Switch
Platform | L4491A | Agilent
Technologies | MY50000032 | 300004510 | ne | -/- | -/- | | 8 | Α | Anechoic chamber | | TDK | | 300003726 | ne | -/- | -/- | | 9 | A, B | EMI Test Receiver
9kHz-26,5GHz | ESR26 | R&S | 101376 | 300005063 | k | 14.12.2017 | 13.12.2018 | | 10 | A, B | DC power supply,
60Vdc, 50A, 1200 W | 6032A | HP | 2818A03450 | 300001040 | vlKI! | 12.12.2017 | 11.12.2020 | © CTC advanced GmbH Page 7 of 33 ## 6.2 Conducted measurements Bluetooth system OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path) ### Example calculation: OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW) ## **Equipment table:** | No. | Lab /
Item | Equipment | Туре | Manufacturer | Serial No. | INV. No. | Kind of
Calibration | Last
Calibration | Next
Calibration | |-----|---------------|----------------------------------|---------|-----------------------------|--------------------|-----------|------------------------|---------------------|---------------------| | 1 | В | Climatic Box | VT 4011 | Voetsch
Industrietechnik | 585662306000
10 | 300005363 | ev | 01.06.2017 | 31.05.2019 | | 2 | A, C | USB/GPIB interface | 82357B | Agilent
Technologies | MY52103346 | 300004390 | ne | -/- | -/- | | 3 | A, B, C | PC | Exone | F+W | | 300004179 | ne | -/- | -/- | | 4 | A, B, C | Wireless
Connectivity Tester | CMW270 | Rohde & Schwarz | 100683 | 300005133 | k | 03.01.2018 | 02.01.2020 | | 5 | Α | Spectrum Analyzer | FSV30 | Rohde & Schwarz | 103809 | 300005359 | k | 04.04.2017 | 03.04.2019 | | 6 | С | Signal Generator | SMB100A | Rohde & Schwarz | 180587 | 300005462 | k | 01.01.2018 | 31.12.2019 | | 7 | A, B, C | Relay Switch Matrix | RSM-1 | CTC | 1 | 400001355 | ev | 07.02.2018 | 06.02.2019 | | 8 | В | Peak And Average
Power Sensor | U2042XA | Keysight | MY58020014 | 300005547 | k | 12.02.2018 | 11.02.2019 | © CTC advanced GmbH Page 8 of 33 # 7 Summary of measurement results | ⊠ | No deviations from the technical specifications were ascertained | |---|---| | | There were deviations from the technical specifications ascertained | | | This test report is only a partial test report. The content and verdict of the performed test cases are listed below. | | TC identifier | Description | verdict | date | Remark | |---------------|----------------------------------|------------|------------|--------| | RF-Testing | ETSI EN 300 328 V2.1.1 (2016-11) | See table! | 2018-07-20 | -/- | | Test
specification
clause | Test case | temperature conditions | power
source
voltages | Mode | С | NC | NA | NP | Remark | |---------------------------------|--|------------------------|-----------------------------|------------------|-------------|----|----|----|--------| | | | Nominal | Nominal | 1 Msps
2 Msps | \boxtimes | | | | | | 5.4.2 | RF output power | Low | Nominal | 1 Msps
2 Msps | × | | | | -/- | | | | High | Nominal | 1 Msps
2 Msps | × | | | | | | | Duty cycle, | | | | | Ι | | | | | 5.4.2 | Tx-sequence, Tx-gap,
medium utilization | Nominal | Nominal | -/- | | | X | | -/- | | | | | | 1 Msps | | I | | | | | 5.4.3 | Power spectral density | Nominal | Nominal | 2 Msps | × | | | | -/- | | 5.4.4 | Accumulated transmit time, freq. occupation | Nominal | Nominal | -/- | | | × | | -/- | | 5.4.4 | and hopping sequence | | | | | | | | | | 5.4.5 | Hopping frequency separation | Nominal | Nominal | -/- | | | × | | -/- | | | | | | | | | | | | | 5.4.6 | Adaptivity | Nominal | Nominal | -/- | | | × | | -/- | | 5.4.7 | Occupied channel bandwidth | Nominal | Nominal | 1 Msps
2 Msps | \boxtimes | | | | -/- | | | T '11 | | | | | 1 | | ı | | | 5.4.8 | Transmitter unwanted emissions in the out-of-
band domain | Nominal | Nominal | 1 Msps
2 Msps | X | | | | -/- | | | | | | | | 1 | | I | | | 5.4.9 | Transmitter unwanted emissions in the spurious domain (cond. + rad.) | Nominal | Nominal | 1 Msps
2 Msps | \boxtimes | | | | -/- | | | | | | | 1 | ı | | 1 | | | 5.4.10 | Receiver spurious
emissions
(cond. + rad.) | Nominal | Nominal | 1 Msps | × | | | | -/- | | | | | | | | | | | | | 5.4.11 | Receiver blocking | Nominal | Nominal | 1 Msps
2 Msps | \boxtimes | | | | -/- | Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed © CTC advanced GmbH Page 9 of 33 ## 8 Additional comments The Bluetooth® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by CTC advanced GmbH is under license. Reference documents: Bluetooth® Core Specification 5.0 $1-6662_18-01-02_log1_conducted.pdf$ Note: 0 dBi antenna gain assumed in log1 conducted tests Special test descriptions: None Configuration descriptions: | Bluetooth Low Energy | | |---|------------------| | Longest Supported payload (37 – 255 Byte) | Tx: 255, RX: 255 | | LE 1M PHY supported | Yes | | LE 2M PHY supported | Yes | | Stable Modulation Index supported (SMI) | No | | LE Coded PHY supported (S=2) | No | | LE Coded PHY supported (S=8) | No | | Гest mode: | × | Bluetooth direct test mode enabled (EUT is controlled via CBT/CMW) | |------------|---|--| | | | Special software is used. | | | | FLIT is transmitting pseudo random data by itself | © CTC advanced GmbH Page 10 of 33 | 9 EUT classification | | |--|--| | Type of equipment: | stand alone equipment plug in radio equipment combined equipment | | Modulation types: | Wide band modulation (none hopping – e.g. DSSS, OFDM) Frequency hopping spread spectrum (FHSS) | | Adaptive equipment: | Yes, LBT-based Yes, non-LBT-based Yes (but can be disabled) No | | Antennas and transmission operating modes: | Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used) Operating mode 2 (multiple antennas, no beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming. | | | Operating mode 3 (multiple antennas, with beamforming) - Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements. | © CTC advanced GmbH Page 11 of 33 ## 10 Measurement results ## 10.1 Antenna gain ## **Measurement:** The antenna gain of the system is calculated by the difference of radiated power in EIRP and the conducted power of the module. | Measurement parameters (radiated) | | | |-----------------------------------|---|--| | Detector | Peak | | | Sweep time | Auto | | | Resolution bandwidth | 3 MHz | | | Video bandwidth | 3 MHz | | | Trace mode | Max hold | | | Additional EUT parameters: | Longest supported packet
Pattern: PRBS 9 | | | Test setup | See sub clause 6.1 - B | | | Measurement uncertainty | See sub clause 11 | | | Measurement parameters (conducted) | | | |------------------------------------|------------------------|--| | External result file -/- | | | | Test setup | See sub clause 6.2 - A | | | Measurement uncertainty | See sub clause 11 | | ### Limits: | No restriction! | |-----------------| |-----------------| ### Results: | | Low channel
(2402 MHz) | Mid channel
(2440 MHz) | High channel
(2480 MHz) | |--|---------------------------|---------------------------|----------------------------| | Conducted power [dBm] Measured with GFSK modulation (1 Msps) | 5.9 | 5.6 | 5.3
 | Radiated power [dBm] Measured with GFSK modulation (1 Msps) | 5.9 | 5.7 | 3.6 | | Gain [dBi]
Calculated | 0.0 | 0.1 | -1.7 | © CTC advanced GmbH Page 12 of 33 ## 10.2 RF output power ### **Measurement:** The Output power measurement is used to detect the maximum power of a device under test. The measurement is performed according to the EN specification 5.4.2. #### **Measurement parameters:** Instrument: Power Meter measuring average burst Power of a least 10 packets | External result file | 1-6662_18-01-02_log1_conducted.pdf
Chapter EN300328 RF Output Power etc | | |-------------------------|--|--| | Test setup | See sub clause 6.2 – B | | | Measurement uncertainty | See sub clause 11 | | ☐ Radiated (only if no conducted sample is provided) ## Limits: | For adaptive equipment | 20 dBm | | |----------------------------|--|--| | For non-adaptive equipment | Declared by the supplier and shall not exceed 20 dBm | | #### Results: 1 Msps | Test conditions | | Maximum conducted burst power in 10 measured bursts [dBm] | | | |------------------|-----------|---|-------------|--------------| | | | low channel | mid channel | high channel | | T _{nom} | V_{nom} | 5.8 | 5.6 | 5.3 | | T _{min} | V_{nom} | 5.2 | 4.9 | 4.5 | | T _{max} | V_{nom} | 6.4 | 6.2 | 5.8 | ### P = max cond. burst power (A) + antenna gain (G) + beamforming gain (Y) #### With: Beamforming gain (Y) = 0 (SISO) | Result P [dBm] E.I.R.P (Low channel): | 6.4 dBm + 0.0 dBi = 6.4 dBm | |--|-----------------------------| | Result P [dBm] E.I.R.P (Mid channel): | 6.2 dBm + 0.1 dBi = 6.3 dBm | | Result P [dBm] E.I.R.P (High channel): | 5.8 dBm - 1.7 dBi = 4.1 dBm | © CTC advanced GmbH Page 13 of 33 ## Results: 2 Msps | Test conditions | | Maximum conducted burst power in 10 measured bursts [dBm] | | | |------------------|------------------|---|-------------|--------------| | | | low channel | mid channel | high channel | | T _{nom} | V _{nom} | 5.8 | 5.6 | 5.2 | | T _{min} | V _{nom} | 5.2 | 4.9 | 4.5 | | T _{max} | V_{nom} | 6.4 | 6.2 | 5.8 | P = max cond. burst power (A) + antenna gain (G) + beamforming gain (Y) ## With: Beamforming gain (Y) = 0 (SISO) | Result P [dBm] E.I.R.P (Low channel): | 6.4 dBm + 0.0 dBi = 6.4 dBm | |--|-----------------------------| | Result P [dBm] E.I.R.P (Mid channel): | 6.2 dBm + 0.1 dBi = 6.3 dBm | | Result P [dBm] E.I.R.P (High channel): | 5.8 dBm - 1.7 dBi = 4.1 dBm | © CTC advanced GmbH Page 14 of 33 ## 10.3 Power spectral density ## **Description:** The power spectral density is the mean equivalent isotropically radiated power (E.I.R.P.) density during a transmission burst. | Measurement parameters | | | |-------------------------|---|--| | External result file | 1-6662_18-01-02_log1_conducted.pdf | | | External result file | Chapter EN300328 Power Spectral Density | | | Test setup | See sub clause 6.2 - A | | | Measurement uncertainty | See sub clause 11 | | ☐ Radiated (only if no conducted sample is provided) ## Limits: | Under normal test conditions only | -20 dBW / 1 MHz | |-----------------------------------|-----------------| | (including antenna gain) | 10 dBm / 1 MHz | ### Results: 1 Msps | ID | Measurement | Unit | Low channel | Mid channel | High channel | |----|--|-------------------|-------------|-------------|--------------| | 1 | P (Tnom)
(from chapter RF Output power) | dBm E.I.R.P. | 5.8 | 5.5 | 3.6 | | 2 | Psum of all raw points | dBm | 4.4 | 4.2 | 4.2 | | 3 | PSD max uncorrected | dBm/1MHz | 4.3 | 4.2 | 4.1 | | 4 | C-corr = Psum-Peirp (1-2) | dB | 1.4 | 1.3 | -0.6 | | | PSD max corrected (3+4) | dBm/1MHz E.I.R.P. | 5.7 | 5.5 | 3.5 | © CTC advanced GmbH Page 15 of 33 ## Results: 2 Msps | ID | Measurement | Unit | Low channel | Mid channel | High channel | |----|--|-------------------|-------------|-------------|--------------| | 1 | P (Tnom)
(from chapter RF Output power) | dBm E.I.R.P. | 5.8 | 5.5 | 3.5 | | 2 | Psum of all raw points | dBm | 2.9 | 2.8 | 2.8 | | 3 | PSD max uncorrected | dBm/1MHz | 1.7 | 1.6 | 1.6 | | 4 | C-corr = Psum-Peirp (1-2) | dB | 1.9 | 1.7 | 0.7 | | | PSD max corrected (3+4) | dBm/1MHz E.I.R.P. | 3.6 | 3.3 | 2.3 | © CTC advanced GmbH Page 16 of 33 ## 10.4 Occupied channel bandwidth ### **Measurement:** The occupied channel bandwidth is the bandwidth that contains 99 % of the power of the signal. | Measurement parameters | | | |-------------------------|---|--| | External result file | 1-6662_18-01-02_log1_conducted.pdf
Chapter EN300328 Occupied Channel Bandwidth | | | Test setup | See sub clause 6.2 - A | | | Measurement uncertainty | See sub clause 11 | | | Performed: | ☑ Conducted | |------------|-------------| |------------|-------------| ☐ Radiated (only if no conducted sample is provided) ### Limits: The occupied channel bandwidth shall fall completely within the band. For non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz. #### **Results:** | 99% bandwidth [kHz] | | | |---------------------|-------------|--------------| | | Low channel | High channel | | 1 Msps | 1031 | 1033 | | 2 Msps | 2073 | 2073 | © CTC advanced GmbH Page 17 of 33 ### 10.5 Transmitter unwanted emissions in the out-of-band domain #### **Description:** Transmitter unwanted emissions in the out-of-band domain are emissions when the equipment is in transmit mode, on frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious. | Measurement parameters | | | |-------------------------|--|--| | | 1-6662_18-01-02_log1_conducted.pdf | | | External result file | Chapter EN300328 TX Unwanted Emissions In The OOB Domain | | | Test setup | See sub clause 6.2 - A | | | Measurement uncertainty | See sub clause 11 | | ☐ Radiated (only if no conducted sample is provided) #### Limits: The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask. NOTE: Within the 2400 MHz to 2483.5 MHz band, the Out-of-band emissions are fulfilled by compliance with the Occupied Channel Bandwidth requirement in clause 4.3.2.6. Spurious Domain Out Of Band Domain (OOB) Allocated Band Out Of Band Domain (OOB) Spurious Domain В C 2 400 MHz - 2BW 2 400 MHz - BW 2 400 MHz 2 483,5 MHz 2 483,5 MHz + BW 2 483,5 MHz + 2BW A: -10 dBm/MHz B: -20 dBm/MHz BW = Occupied Channel Bandwidth [MHz] or 1 MHz whichever is greater C: Spurioius Domain limits © CTC advanced GmbH Page 18 of 33 ## <u>Results</u> | Unwanted emissions [dBm] (including antenna gain) | | | |---|-----------|--| | 1 Msps, channel BW see plots | | | | 2400 MHz - 2BW to 2400 MHz - BW | | | | Limit:< -20dBm/MHz | compliant | | | 2400 MHz - BW to 2400 MHz | | | | Limit:< -10dBm/MHz | compliant | | | 2483.5 MHz to 2483.5 MHz + BW | | | | Limit:< -10dBm/MHz | compliant | | | 2483.5 MHz + BW to 2483.5 MHz + 2BW | | | | Limit:< -20dBm/MHz | compliant | | | Unwanted emissions [dBm] (including antenna gain) | | | |---|-----------|--| | 2 Msps, channel BW see plots | | | | 2400 MHz - 2BW to 2400 MHz - BW | | | | Limit:< -20dBm/MHz | compliant | | | 2400 MHz - BW to 2400 MHz | | | | Limit:< -10dBm/MHz | compliant | | | 2483.5 MHz to 2483.5 MHz + BW | | | | Limit:< -10dBm/MHz | compliant | | | 2483.5 MHz + BW to 2483.5 MHz + 2BW | | | | Limit:< -20dBm/MHz | compliant | | © CTC advanced GmbH Page 19 of 33 ## 10.6 Transmitter unwanted emissions in the spurious domain ## **Description:** Transmitter unwanted emissions in the spurious domain are emissions outside the allocated band and outside the out-of-band domain when the equipment is in transmit mode. #### Pre-scan: | Measurement parameters (radiated) | | | |-----------------------------------|-----------------------------------|--| | Detector | Peak | | | Sweep time | 1s | | | Resolution bandwidth | Below 1 GHz: 100 kHz / above 1MHz | | | Video bandwidth | Below 1 GHz: 300 kHz / above 3MHz | | | Detector | Peak | | | Test setup | See sub clause 6.1 - A | | | Measurement uncertainty | See sub clause 11 | | | Measurement parameters (conducted) | | | |------------------------------------|--|--| | External result file | 1-6662_18-01-02_log1_conducted.pdf
EN300328 Unwanted Emissions in spurious domain | | | Test setup | See sub clause 6.2 - A | | | Measurement uncertainty | See sub clause 11 | | Any emissions identified during the sweeps in the pre-scan and that fall within the 6 dB range below the applicable limit, shall be individually measured using the procedure "retest". #### Retest: | Measurement parameters (radiated) | | | | | |-----------------------------------|-----------------------------------|--|--|--| | Detector | RMS | | | | | Measurement mode | Time domain power | | | | | Sweep time | 30 ms | | | | | Resolution bandwidth | Below 1 GHz: 100 kHz / above 1MHz | | | | | Video bandwidth | Below 1 GHz: 300 kHz / above 3MHz | | | | | Span | Zero span | | | | | Trace mode | Single sweep | | | | | Test setup | See sub clause 6.1 - A | | | | | Measurement uncertainty | See sub clause 11 | | | | | Measurement parameters (conducted) | | | | |
--|------------------------|--|--|--| | External result file 1-6662_18-01-02_log1_conducted.pdf EN300328 Unwanted Emissions in spurious don | | | | | | Test setup | See sub clause 6.2 - A | | | | | Measurement uncertainty | See sub clause 11 | | | | © CTC advanced GmbH Page 20 of 33 Performed: ⊠ Conducted ☑ Radiated ## Limits: | | Max. spurious level | | | | | |-----------------|---|---------------------------------|-------------------------------|--|--| | State | 47 MHz to 74 MHz
87.5 MHz to 118 MHz
174 MHz to 230 MHz | Other frequencies
≤ 1000 MHz | All frequencies
> 1000 MHz | | | | | 470 MHz to 862 MHz | <u>_</u> | | | | | Operating | 4.0 nW (-54 dBm) | 250 nW (-36 dBm) | 1.00 μW (-30 dBm) | | | | Receiver / Idle | 2.0 nW (-57 dBm) | 2.0 nW (-57 dBm) | 20.0 nW (-47 dBm) | | | Results: conducted, 1 Msps | Low channel | | | High channel | | | |---|----------------------|---|---------------------------------------|--|--| | f
[MHz] | Detector
Peak/RMS | Level
[dBm] | f Detector Level [MHz] Peak/RMS [dBm] | | | | All detected peaks are more than 6 dB below the limit | | All detected peaks are more than 6 dB below the limit | Results: conducted, 2 Msps | Low channel | | | | High channel | | |---|----------------------|---|---------------------------------------|--------------|--| | f
[MHz] | Detector
Peak/RMS | Level
[dBm] | f Detector Level [MHz] Peak/RMS [dBm] | | | | All detected peaks are more than 6 dB below the limit | | All detected peaks are more than 6 dB below the limit | © CTC advanced GmbH Page 21 of 33 Results: radiated, 1 Msps | Low channel | | | | High channel | | |---|----------------------|---|-------------------------------------|--------------|--| | f
[MHz] | Detector
Peak/RMS | Level
[dBm] | f Detector Leve [MHz] Peak/RMS [dBm | | | | All detected peaks are more than 6 dB below the limit | | All detected peaks are more than 6 dB below the limit | Results: radiated, 2 Msps | Low channel | | | | High channel | | |---|----------------------|---|---------------------------------------|--------------|--| | f
[MHz] | Detector
Peak/RMS | Level
[dBm] | f Detector Level [MHz] Peak/RMS [dBm] | | | | All detected peaks are more than 6 dB below the limit | | All detected peaks are more than 6 dB below the limit | © CTC advanced GmbH Page 22 of 33 ## Plots: Radiated Plot 1: 30 MHz to 12.75 GHz, Low channel, 1 Msps The carrier signal is notched with a 2.4 GHz band rejection filter. Plot 2: 30 MHz to 12.75 GHz, High channel, 1 Msps The carrier signal is notched with a 2.4 GHz band rejection filter. © CTC advanced GmbH Page 23 of 33 Plot 3: 30 MHz to 12.75 GHz, Low channel, 2 Msps The carrier signal is notched with a 2.4 GHz band rejection filter. Plot 4: 30 MHz to 12.75 GHz, High channel, 2 Msps The carrier signal is notched with a 2.4 GHz band rejection filter. © CTC advanced GmbH Page 24 of 33 ## 10.7 Receiver spurious emissions ## **Description:** Receiver/idle unwanted emissions in the spurious domain are emissions outside the allocated band and outside the out-of-band domain when the equipment is in receiver/idle mode. #### Pre-scan: | Measurement parameters (radiated) | | | | | |---|--|--|--|--| | Detector | Peak | | | | | Sweep time | 1s | | | | | Resolution bandwidth | Below 1 GHz: 100 kHz / above 1MHz | | | | | Video bandwidth | Below 1 GHz: 300 kHz / above 3MHz | | | | | Detector | Peak | | | | | Test setup | See sub clause 6.1 - A | | | | | Measurement uncertainty See sub clause 11 | | | | | | Measurement para | meters (conducted) | | | | | | 1-6662_18-01-02_log1_conducted.pdf | | | | | External result file | EN300328 Unwanted Emissions in spurious domain | | | | | | RX | | | | | Test setup | See sub clause 6.2 - A | | | | | Measurement uncertainty | See sub clause 11 | | | | Any emissions identified during the sweeps in the pre-scan and that fall within the 6 dB range below the applicable limit, shall be individually measured using the procedure "retest". ### Retest: | Measurement parameters (radiated) | | | | | |-----------------------------------|--|--|--|--| | Detector | RMS | | | | | Measurement mode | Time domain power | | | | | Sweep time | 30 ms | | | | | Resolution bandwidth | Below 1 GHz: 100 kHz / above 1MHz | | | | | Video bandwidth | Below 1 GHz: 300 kHz / above 3MHz | | | | | Span | Zero span | | | | | Trace mode | Single sweep | | | | | Test setup | See sub clause 6.1 - A | | | | | Measurement uncertainty | See sub clause 11 | | | | | Measurement para | meters (conducted) | | | | | | 1-6662_18-01-02_log1_conducted.pdf | | | | | External result file | EN300328 Unwanted Emissions in spurious domain | | | | | | RX | | | | | Test setup | See sub clause 6.2 - A | | | | | Measurement uncertainty | See sub clause 11 | | | | © CTC advanced GmbH Page 25 of 33 Performed: ⊠ Conducted ☑ Radiated ## Limits: | | Max. spurious level | | | | | |---------------|---------------------|-------------------|-------------------|--|--| | | 47 MHz to 74 MHz | | | | | | State | 87,5 MHz to 118 MHz | Other frequencies | All frequencies | | | | | 174 MHz to 230 MHz | ≤ 1000 MHz | > 1000 MHz | | | | | 470 MHz to 862 MHz | | | | | | Operating | 4.0 nW (-54 dBm) | 250 nW (-36 dBm) | 1.00 μW (-30 dBm) | | | | Receiver/idle | 2.0 nW (-57 dBm) | 2.0 nW (-57 dBm) | 20.0 nW (-47 dBm) | | | Results: conducted, 1 Msps | Low channel | | | High channel | | | |-----------------|---|----------------|---|--|--| | f
[MHz] | Detector
Peak/RMS | Level
[dBm] | f Detector Level [MHz] Peak/RMS [dBm] | | | | All detected pe | All detected peaks are more than 6 dB below the limit | | All detected peaks are more than 6 dB below the limit | Results: conducted, 2 Msps | Low channel | | | | High channel | | |---|----------------------|---|---------------------------------------|--------------|--| | f
[MHz] | Detector
Peak/RMS | Level
[dBm] | f Detector Level [MHz] Peak/RMS [dBm] | | | | All detected peaks are more than 6 dB below the limit | | All detected peaks are more than 6 dB below the limit | © CTC advanced GmbH Page 26 of 33 Results: radiated, 1 Msps | Low channel | | High channel | | | | |---|----------------------|---|------------|----------------------|----------------| | f
[MHz] | Detector
Peak/RMS | Level
[dBm] | f
[MHz] | Detector
Peak/RMS | Level
[dBm] | | All detected peaks are more than 6 dB below the limit | | All detected peaks are more than 6 dB below the limit | © CTC advanced GmbH Page 27 of 33 Plots: Radiated Plot 1: Receiver, 30 MHz to 12.75 GHz, Low channel, 1 Msps Plot 2: Receiver, 30 MHz to 12.75 GHz, High channel, 1 Msps © CTC advanced GmbH Page 28 of 33 ## 10.8 Receiver blocking #### **Description:** Receiver blocking is a measure of the ability of the equipment to receive a wanted signal on its operating channel without exceeding a given degradation in the presence of an unwanted signal (blocking signal) on frequencies other than those of the operating band. The CBT is used as the signaling unit. Starting at a typical high signaling level (e.g. -70.0 dBm) the CMW is sending packets to the EUT. The PER is logged and the signaling level gets reduced in 1 dB steps until the PER is higher than 10%. This is the Pmin value which is used as described in tables 1-3 depending on the receiver category of the EUT. | Measurement parameters | | | |-------------------------|---------------------------------------|--| | External result file | 1-6662_18-01-02_log1_conducted.pdf | | | External result file | Chapter EN300328 RX Receiver Blocking | | | Test setup | See sub clause 6.2 - C | | | Measurement uncertainty | See sub clause 11 | | Performed: Conducted ☐ Radiated Table 1: Receiver blocking parameters for receiver category 1 equipment: | Wanted signal mean
power from companion
device (dBm) | Blocking signal
frequency
(MHz) | Blocking
signal power
(dBm)
(see note 2) | Type of blocking
signal | |--|--|---|----------------------------| | P _{min} + 6 dB | 2 380.0
2 503.5 | -53 | CW | | P _{min} + 6 dB | 2 300.0
2 330.0
2 360.0 | -47 | CW | | P _{min} + 6 dB | 2 523.5
2 553.5
2 583.5
2 613.5
2 643.5
2 673.5 | -47 | CW | | NOTE 1: | P _{min} is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the
absence of any blocking signal. | | | | NOTE 2: | The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. | | | © CTC advanced GmbH Page 29 of 33 Table 2: Receiver blocking parameters for receiver category 2 equipment: | Wanted signal mean
power from companion
device (dBm) | Blocking signal
frequency
(MHz) | Blocking
signal power
(dBm)
(see note 2) | Type of blocking
signal | |--|--|---|----------------------------| | P _{min} + 6 dB | 2 380.0
2 503.5 | -57 | CW | | P _{min} + 6 dB | 2 300.0
2 583.5 | -47 | CW | | NOTE 1: | P _{min} is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. | | | | NOTE 2: | The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. | | | Table 3: Receiver blocking parameters for receiver category 3 equipment: | Wanted signal mean
power from companion
device (dBm) | Blocking signal
frequency
(MHz) | Blocking
signal power
(dBm)
(see note 2) | Type of blocking
signal | |--|--|---|----------------------------| | P _{min} + 12 dB | 2 380.0
2 503.5 | -57 | CW | | P _{min} + 12 dB | 2 300.0
2 583.5 | -47 | CW | | NOTE 1: | P _{min} is the minimum level of wanted signal (in dBm) required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal. | | | | NOTE 2: | The levels specified are levels in front of the UUT antenna. In case of conducted measurements, the levels have to be corrected by the actual antenna assembly gain. | | | ## <u>Limits:</u> | | Channel | | |----------------------------|-------------|--------------| | | Low channel | High channel | | Packet error rate
limit | 10% PER* | | ^{*}The manufacturer may declare alternative performance criteria as long as that is appropriate for the intended use of the equipment **Result:** Compliant (See log file for details) © CTC advanced GmbH Page 30 of 33 # 11 Measurement uncertainty | Measurement uncertainty | | | |-----------------------------------|---------|--| | Occupied channel bandwidth | ±5 % | | | RF output power, conducted | ±1.5 dB | | | Power spectral density, conducted | ±3 dB | | | Unwanted emissions, conducted | ±3 dB | | | All emissions, radiated | ±3 dB | | | Temperature | ±1 °C | | | Humidity | ±5 % | | | DC and low frequency voltages | ±3 % | | | Time | ±5 % | | | Duty cycle | ±5 % | | © CTC advanced GmbH Page 31 of 33 # Annex A Glossary | EUT | Equipment under test | |------------------|--| | DUT | Device under test | | UUT | Unit under test | | GUE | GNSS User Equipment | | ETSI | European Telecommunications Standards Institute | | EN | European Standard | | FCC | Federal Communications Commission | | FCC ID | Company Identifier at FCC | | IC | Industry Canada | | PMN | Product marketing name | | HMN | Host marketing name | | HVIN | Hardware version identification number | | FVIN | Firmware version identification number | | EMC | Electromagnetic Compatibility | | HW | Hardware | | SW | Software | | Inv. No. | Inventory number | | S/N or SN | Serial number | | С | Compliant | | NC | Not compliant | | NA | Not applicable | | NP | Not performed | | PP | Positive peak | | QP | Quasi peak | | AVG | Average | | ОС | Operating channel | | OCW | Operating channel bandwidth | | OBW | Occupied bandwidth | | ООВ | Out of band | | DFS | Dynamic frequency selection | | CAC | Channel availability check | | OP | Occupancy period | | NOP | Non occupancy period | | DC | Duty cycle | | PER | Packet error rate | | CW | Clean wave | | MC | Modulated carrier | | WLAN | Wireless local area network | | RLAN | Radio local area network | | DSSS | Dynamic sequence spread spectrum | | OFDM | Orthogonal frequency division multiplexing | | FHSS | Frequency hopping spread spectrum | | GNSS | Global Navigation Satellite System | | C/N ₀ | Carrier to noise-density ratio, expressed in dB-Hz | © CTC advanced GmbH Page 32 of 33 ## Annex B Document history | Version | Applied changes | Date of release | |---------|-----------------|-----------------| | -/- | Initial release | 2018-07-20 | ## **Annex C** Accreditation Certificate | first page | last page | |--|--| | Dakks Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition | Deutsche Akkreditierungsstelle GmbH Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig | | Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication | | | The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number D-Pt-12/076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following amone with a total of 43 pages. | The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkAS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkAStelle6) of 31 July 2009 (Federal Law Gastelle p. 265) and the Regulation IC (SI No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and
market surveillance relating to the marketing of products (Official Journal for the European Union L 218 of 9 July 2008, p. 30). DAkS is a signatory to the Nutlialezal Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation formul (AF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. | | Registration number of the certificate: D-PL-12076-01-03 Frankfurt, 02.06.2017 Disjoint [PH] Not Reference to the distance of the ball o | The up-to-date state of membership can be retrieved from the following websites: EA: www.uropean-accreditation.org ILAC: www.ilac.org IAF: www.isf.nu | Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request https://www.dakks.de/as/ast/d/D-PL-12076-01-03e.pdf © CTC advanced GmbH Page 33 of 33