

REJ10J2128-0100

Renesas Starter Kit for R8C/38C

User's Manual

RENESAS SINGLE-CHIP MICROCOMPUTER R8C FAMILY R8C/3X SERIES

> Renesas Electronics Europe Ltd. www.renesas.com

Rev.1.00 Revision date: 01.APR.2010

Disclaimer

By using this Renesas Starter Kit (RSK), the user accepts the following terms. The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is assumed by the User. The RSK is provided by Renesas on an "as is" basis without warranty of any kind whether express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data, loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

- ensure attached cables do not lie across the equipment
- reorient the receiving antenna
- increase the distance between the equipment and the receiver
- connect the equipment into an outlet on a circuit different from that which the receiver is connected
- power down the equipment when not is use
- consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the following measures be undertaken;

- The user is advised that mobile phones should not be used within 10m of the product when in use.
- The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the regulatory standards for an end product.

Table of Contents

Chapter 1. Preface	1
Chapter 2. Purpose	2
Chapter 3. Power Supply	3
3.1. Requirements	
3.2. Power-up Behaviour	3
Chapter 4. Board Layout	4
4.1. Component Layout	4
4.2. Board Dimensions	5
Chapter 5. Block Diagram	6
Chapter 6. User Circuitry	7
6.1. Switches	7
6.2. LEDs	7
6.3. Potentiometer	7
6.4. Serial port	8
6.5. Debug LCD Module	8
6.6. LIN	9
6.7. Option Links	10
6.8. Oscillator Sources	16
6.9. Reset Circuit	16
Chapter 7. Modes	17
7.1. Boot modes	17
7.2. Single chip mode	18
Chapter 8. Programming Methods	19
Chapter 9. Headers	20
9.1. Microcontroller Ring Headers	20
9.2. Application Headers	24
Chapter 10. Code Development	26
10.1. Overview	26
10.2. Compiler Restrictions	26
10.3. Breakpoint Support	26
10.4. Memory Map	27
Chapter 11. Component Placement	28
Chapter 12. Additional Information	29

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Electronics Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

© 2010 Renesas Electronics Europe Ltd. All rights reserved.

© 2010 Renesas Electronics Corporation. All rights reserved.

 $\ensuremath{\mathbb{C}}$ 2010 Renesas Solutions Corporation. All rights reserved.

Website: www.renesas.com

Glossary

ADC	Analog to Digital Converter	LED	Light Emitting Diode
CD	Compact Disc	LIN	Local Interconnect Network
CPU	Central Processing Unit	MCU	Microcontroller Unit
DAC	Digital to Analog Converter	PC	Personal Computer
E8a	E8a on-chip debugger module	RAM	Random Access Memory
EMC	Electromagnetic compatibility	ROM	Read-Only Memory
ESD	Electrostatic Discharge	RSK	Renesas Starter Kit
HEW	High-Performance Embedded Workshop	UART	Universal Asynchronous Receiver Transmitter
I/O	Input / Output	USB	Universal Serial Bus
LCD	Liquid Crystal Display		

Chapter 2. Purpose

This RSK is an evaluation tool for Renesas microcontrollers.

This manual describes the technical details of the RSK hardware. The Quick Start Guide and Tutorial Manual provide details of the software installation and debugging environment.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as switches, LEDs and potentiometer
- Sample Application.
- Sample peripheral device initialisation code.

The RSK board contains all the circuitry required for microcontroller operation.

Chapter 3. Power Supply

3.1. Requirements

This RSK board operates from a 5V DC power supply.

A diode provides reverse polarity protection only if a current limiting power supply is used.

All RSK boards are supplied with an E8a debugger. This product is able to power the RSK board with up to 300mA. When the RSK is connected to another system then that system should supply power to the RSK.

All RSK boards have an optional centre positive supply connector using a 2.1mm barrel power jack.

Warning

The RSK board is neither under nor over voltage protected. Use a centre positive supply for this board.

3.2. Power-up Behaviour

When the RSK is purchased, the RSK board has the 'Release' or stand-alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. After 200 flashes or after pressing any switch the LEDs will flash at a rate controlled by the potentiometer.

Chapter 4. Board Layout

4.1. Component Layout

The following diagram shows the top layer component layout of the board.

Figure 4-1: Board Layout

4.2. Board Dimensions

The following diagram gives the board dimensions and connector positions. All through-hole connectors are on a common 0.1" grid for easy interfacing.

Chapter 5. Block Diagram

Figure 5-1 shows the RSK board components and their connectivity.

Figure 5-1: Block Diagram

Figure 5-2 shows E8a connections to the RSK.

Figure 5-2: E8a RSK Connections

Chapter 6. User Circuitry

6.1. Switches

There are four switches located on the RSK board. The function of each switch and its connection are shown in Table 6-1

Switch	Function	Microcontroller	
RES	When pressed, the microcontroller is reset.	RESETn, Pin 9	
SW1 / BOOT*	Connects to an INT input for user controls.	INT1n, Pin 35 (Port 3, bit 6)	
	The switch is also used in conjunction with the RES switch to place the		
	device in BOOT mode when not using the E8a debugger.		
SW2*	Connects to an INT line for user controls.	INT2n, Pin 46 (Port 6, bit 6)	
SW3 / ADTRG*	Connects to an INT line for user controls. The same MCU pin also	INT0n, Pin 48 (Port 4, bit 5)	
	functions as ADC trigger input.		

Table 6-1: Switch Functions

*Refer to the schematic for detailed connectivity information.

6.2. LEDs

There are six LEDs on the RSK board. The green 'POWER' LED lights when the board is powered. The orange 'BOOT' LED indicates the device is in BOOT mode when lit. The four user LEDs are connected to an I/O port and will light when their corresponding port pin is set low.

Table 6-2 below shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference (As	Colour	Microcontroller Port	Microcontroller
shown on silkscreen)		Pin function	Pin Number
LED0	Green	Port 0, bit 0	72
LED1	Orange	Port 0, bit 1	71
LED2	Red	Port 0, bit 2	70
LED3	Red	Port 0, bit 3	69

Table 6-2: LED Port

6.3. Potentiometer

A single-turn potentiometer is connected to pin AN8 (Port 1 bit 0, pin 56) of the microcontroller. This may be used to vary the input analog voltage value to this pin between AVCC and Ground.

Note: The potentiometer is fitted to offer an easy way of supplying a variable analog input to the controller. It does not necessarily reflect the accuracy of the controller's ADC. Please see the device manual for details.

6.4. Serial port

Serial port UART2 is connected to the standard RS232 header. Serial port UART0 can optionally be connected to the RS232 transceiver by moving option resistors. The connections to be moved are listed in the Table 6-3.

Description	Function	Microcontroller	Fit for RS232	Remove for RS232
		Port Pin		
UART0	Spare Serial Port (TX)	52 (Port 1, bit 4)	R58, R71	R56, R54, R70
UART0	Spare Serial Port (RX)	51 (Port 1, bit 5)	R59, R73	R57, R55, R72
UART1	Spare Serial Port (TX)	74 (Port 6, bit 3)	R52	R56
UART1	Spare Serial Port (RX)	73 (Port 6, bit 4)	R53	R57
UART2	Default serial port (TX)	19 (Port 3, bit 7)	R56, R84	R58, R54, R85
UART2	Default serial port (RX)	21 (Port 3, bit 4)	R57, R78	R59, R55, R79

Table 6-3: Serial port settings

The serial channel UART0 can also be accessed at J3 and JA6; UART1 can be accessed at J4 and JA6; UART2 can be accessed at JA2 and J1, J2.

The board is designed to accept a straight-through RS-232 male-to-female cable.

Serial port UART1 can be connected to a 0.1" header, 'J8' by fitting 0Ω link resistors to R52 and R53.

The UART0 port is shared with the LIN module. For more details please refer to the section 6.6.

6.5. Debug LCD Module

A debug LCD module is supplied to be connected to the connector LCD. This should be fitted so that the debug LCD module lies over J3. Care should be taken to ensure the pins are inserted correctly into LCD. The debug LCD module uses a 4 bit interface to reduce the pin allocation. No contrast control is provided; this is set by a resistor on the supplied display module.

Table 6-4 shows the pin allocation and signal names used on this connector.

The module supplied with the RSK board only supports 5V operation.

	LCD						
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin		
1	Ground	-	2	5V	-		
3	No Connection	-	4	DLCDRS	78 (Port 9, bit 5)		
5	R/W (Wired to write only	-	6	DLCDE (+ 100k pull	79 (Port 9, bit 4)		
	using 10K pull down))			down to ground)			
7	No Connection	-	8	No Connection	-		
9	No Connection	-	10	No Connection	-		
11	DLCDD4	34 (Port 9, bit 0)	12	DLCDD5	33 (Port 9, bit 1)		
13	DLCDD6	32 (Port 9, bit 2)	14	DLCDD7	31 (Port 9, bit 3)		

Table 6-4: Debug LCD Module Connections

6.6. LIN

The serial port UART0 also functions as LIN port pins. The options links to be configured are listed in the Table 6-5

Description	Function	Circuit Net Name	Device Pin	Fit for Hardware LIN	Remove for Hardware LIN
LIN	TXD	LINTXD	52	R70	R71
LIN	RXD	LINRXD	51	R72	R73
LIN	NSLP	LINNSLP	50	R74	R75

Table 6-5: Hardware LIN Settings

For more details regarding configuring the RSK to operate in LIN master and slave mode, refer to table 6-6.

6.7. Option Links

In this section, the default configuration is indicated by BOLD text.

Table 6-6 below describes the function of the option links associated with serial port configuration.

		Option Link Set	lings	
Reference	Function	Fitted	Alternative (Removed)	Related To
R46	Serial Port	Connects channel 2 (Tx pin) of the	Disconnects Channel 2 (TX pin) of the	R52
	Configuration	RS232 transceiver to pin 8 of the D-type	RS232 transceiver from the D-type serial	
		serial port connector	port connector	
R47	Serial Port	Connects channel 2 (Rx pin) of the	Disconnects Channel 2 (RX pin) of the	R53
	Configuration	RS232 transceiver to pin 7 of the D-type	RS232 transceiver from the D-type serial	
		serial port connector	port connector	
R48	Serial Port	Disables the RS-232 Transceiver.	Enables the RS-232 Transceiver	-
	Configuration			
R52	Serial Port	Connects the TxD pin of serial port	Disconnects the TxD pin of serial port	R46, R53
	Configuration	UART1 to the header 'J8' via the RS232	UART1 from the header 'J8'	
		transceiver		
R53	Serial Port	Connects the RxD pin of serial port	Disconnects the RxD pin of serial port	R47, R52
	Configuration	UART1 to the header 'J8' via the RS232	UART1 from the header 'J8'	
		transceiver		
	Serial Port	Connects the RS232 serial port (Tx) to	Disconnects the RS232 serial port (Tx)	R55, R56,
R54	Configuration	the application board interface (JA6-5).	from application board interface (JA6-5)	R58
R55	Serial Port	Connects the RS-232 serial port (Rx) to	Disconnects the RS-232 serial port (Rx)	R54, R57,
	Configuration	application board interface (JA6-6)	from application board interface (JA6-6)	R59
R56	Serial Port	Connects the TxD pin of serial port	Disconnects the TxD pin of serial port	R54, R58,
	Configuration	UART2 to the D-type connector via	UART2 from the D-type connector	R84, R85
		the RS232 transceiver		
R57	Serial Port	Connects the RxD pin of serial port	Disconnects the RxD pin of serial port	R55, R59,
	Configuration	UART2 to the D-type connector via	UART2 from the D-type connector	R78, R79
		the RS232 transceiver		
R58	Serial Port	Connects the TxD pin of serial port	Disconnects the TxD pin of serial port	R54, R56,
	Configuration	UART0 to the D-type connector via the	UART0 from the D-type connector	R70, R71
		RS232 transceiver		
R59	Serial Port	Connects the RxD pin of serial port	Disconnects the RxD pin of serial port	R55, R57,
	Configuration	UART0 to the D-type connector via the	UART0 from the D-type connector	R72, R73
		RS232 transceiver		

Table 6-6: Serial port configuration links

R95	LIN Mode	When fitted in conjunction with R96,	When removed in conjunction with R96, the	R96
	Configuration	the LIN operates in master mode.	LIN operates in slave mode	
R96	LIN Mode	When fitted in conjunction with R95,	When removed in conjunction with R95, the	R95
	Configuration	the LIN operates in master mode.	LIN operates in slave mode.	

Table 6-6: Serial port configuration links

Table 4.7 below departiples the function	n of the option links associated with Power Source configuration	
	I OF THE ODITOR THINKS ASSOCIATED WITH FOWER SOULCE CONTINUTATION	1.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related		
				То		
R18	Power Source	Connects the voltage source from	Disconnects the Board_VCC from PWR1	-		
		PWR1 to Board_VCC	connector			
R19	Power Source	Connects the net CON_5V (JA1-1) to	Disconnects CON_3V3 from Board_VCC	R20		
		Board_VCC. External 5V supply can be				
		connected at CON_5V.				
		(R18 and R20 Must be removed if				
		supplying 5V from CON_5V)				
R20	Power Source	Connects the net CON_3V3 (JA1-3) to	Disconnects CON_3V3 from Board_VCC	R19		
		Board_VCC. External 3.3V supply can				
		be connected at CON_3V3.				
		(R18 and R19 Must be removed if				
		supplying 3.3V from CON_3V3)				
R21	Microcontroller	Supply power to the Microcontroller	Disables 5V power supply to the	-		
	Power Supply	VCC pin	microcontroller VCC pins. Supply current to			
			the MCU can be measured across 'J6'			

Table 6-7: Power configuration links

	Option Link Settings						
Reference	Function	Fitted	Alternative (Removed)	Related			
				То			
R14	Analog Input	Connects on-board potentiometer	Disconnects the ADPOT from analog	-			
		ADPOT to the analog input pin AN8 of	input AN8				
		the MCU (Port pin p1_0)					
R15	Analog Reference	MCU pin VREF can be connected to	Disconnects MCU pin VREF from	R16, R17			
	Voltage	either UC_VCC (when R16 is fitted) or	UC_VCC and CON_VREF				
		CON_VREF (JA1-7) (when R17 is fitted)					
R16	Analog Voltage	Connects UC_VCC to the	Disconnects UC_VCC from potentiometer	R15, R17			
	Source	potentiometer RV1 and MCU pin VREF	RV1 and MCU pin VREF				
		via R15					
R17	Analog Reference	Connects MCU pin VREF to CON_VREF	Disconnects MCU pin VREF from	R15, R16			
	Voltage	(JA1-7) (when R15 is fitted)	UC_VCC and CON_VREF				

Table 6-8 below describes the function of the option links associated with Analog Voltage Source configuration.

Table 6-8: Analog Configuration Links

		Option Link Settings	3	
Reference	Function	Fitted	Alternative (Removed)	Related To
R66	Application Board	Connects MCU port pin P0_6 (pin 66) to	Disconnects MCU port pin P0_6 (pin	R67
	Interface	AN1 at JA1-10	66) from AN1	
R67	Application Board	Connects MCU port pin P0_6 (pin 66) to	Disconnects MCU port pin P0_6 (pin	R66
	Interface	DA0 at JA1-13	66) from DA0	
R68	Application Board	Connects MCU port pin P0_7 (pin 65) to	Disconnects MCU port pin P0_7 (pin	R69
	Interface	ANO at JA1-9	65) from AN0	
R69	Application Board	Connects MCU port pin P0_7 (pin 65) to	Disconnects MCU port pin P0_7 (pin	R68
	Interface	DA1 at JA2-23	65) from DA1	
R70	Application Board	Connects MCU port pin P1_4 (pin 52) to	Disconnects MCU port pin P1_4 (pin	R71, R58
	Interface	TXD pin of LIN transceiver	52) from TXD pin of LIN transceiver	
R71	Application Board	Connects MCU port pin P1_4 (pin 52) to	Disconnects MCU port pin P1_4 (pin	R70, R58
	Interface	TXD0 at JA6-8	52) from TXD0	
R72	Application Board	Connects MCU port pin P1_5 (pin 51) to	Disconnects MCU port pin P1_5 (pin	R73, R59
	Interface	RXD pin of LIN transceiver	51) from RXD pin of LIN transceiver	
R73	Application Board	Connects MCU port pin P1_5 (pin 51) to	Disconnects MCU port pin P1_5 (pin	R72, R59
	Interface	RXD0 at JA6-7	51) from RXD0	
R74	Application Board	Connects MCU port pin P1_6 (pin 50) to	Disconnects MCU port pin P1_6 (pin	R75,
	Interface	NSLP pin of LIN transceiver	50) from NSLP pin of LIN transceiver	
R75	Application Board	Connects MCU port pin P1_6 (pin 50) to	Disconnects MCU port pin P1_6 (pin	R74
	Interface	CLK0 at JA6-10	50) from CLK0	
R76	Application Board	Connects MCU port pin P3_3 (pin 22) to	Disconnects MCU port pin P3_3 (pin	R77
	Interface	CTS2RTS2 at JA2-12	22) from CTS2RTS2	
R77	Application Board	Connects MCU port pin P3_3 (pin 22) to	Disconnects MCU port pin P3_3 (pin	R76
	1	1		1

Interface

Interface

Interface

Interface

Interface

Application Board

Application Board

Application Board

Application Board

R78

R79

R80

R81

IVCMP3 at JA2-26

RXD2 at JA2-8

IVREF3 at JA2-25

CLK2 at JA2-8

SCL at JA1-26

Connects MCU port pin P3_4 (pin 21) to

Connects MCU port pin P3_4 (pin 21) to

Connects MCU port pin P3_5 (pin 20) to

Connects MCU port pin P3_5 (pin 20) to

R79, R57

R78, R57

R81

R80

Table 6-9 below describes the function of the option links associated with application board interface.

Table 6-9: Application Board Interface configuration links

22) from IVCMP3

21) from RXD2

21) from IVREF3

20) from CLK2

20) from SCL

Disconnects MCU port pin P3_4 (pin

Disconnects MCU port pin P3_4 (pin

Disconnects MCU port pin P3_5 (pin

Disconnects MCU port pin P3_5 (pin

R82	Application Board	Connects MCU port pin P3_6 (pin 35) to	Disconnects MCU port pin P3_6 (pin	R83
	Interface	user switch SW1	35) from SW1	
R83	Application Board	Connects MCU port pin P3_6 (pin 35) to	Disconnects MCU port pin P3_6 (pin	R82
	Interface	INT1n at JA2-7	35) from INT1n	
R84	Application Board	Connects MCU port pin P3_7 (pin 19) to	Disconnects MCU port pin P3_7 (pin	R85, R56
	Interface	TXD2 at JA2-8	19) from TXD2	
R85	Application Board	Connects MCU port pin P3_7 (pin 19) to	Disconnects MCU port pin P3_7 (pin	R84, R56
	Interface	SDA at JA2-25	19) from SDA	
R86	Application Board	Connects MCU port pin P4_5 (pin 48) to	Disconnects MCU port pin P4_5 (pin	R87, R88,
	Interface	user switch SW3	48) from SW3	R98
R87	Application Board	Connects MCU port pin P4_5 (pin 48) to	Disconnects MCU port pin P4_5 (pin	R86, R88,
	Interface	ADTRGn at JA1-8	48) from ADTRGn	R98
R88	Application Board	Connects MCU port pin P4_5 (pin 48) to	Disconnects MCU port pin P4_5 (pin	R86, R87,
	Interface	TRISTn at JA2-24	48) from TRISTn	R98
R98	Application Board	Connects MCU port pin P4_5 (pin 48) to	Disconnects MCU port pin P4_5 (pin	R86, R87,
	Interface	INT0n at JA2-3	48) from INT0n	R88
R89	Application Board	Connects MCU port pin P6_6 (pin 46) to	Disconnects MCU port pin P6_6 (pin	R90
	Interface	user switch SW2	46) from SW2	
R90	Application Board	Connects MCU port pin P6_6 (pin 46) to	Disconnects MCU port pin P6_6 (pin	R89
	Interface	INT2n at JA2-25	46) from INT2n	

Table 6-9: Application Board Interface configuration links

Table 6-10 below describes the	he function of the	option links associa	tod with Clock configuration
		option in its associa	teu with Clock configuration.

		Option Link Setting	S	
Reference	Function	Fitted	Alternative (Removed)	Related To
R1	Main clock	Parallel resistor for oscillator 'X1'	Not fitted	-
R2	Main clock	On board clock X1 connected to the MCU as	External clock source can be connected to	R3, R5,
		main clock	the MCU	R6, R7,
				R8
R3	Main clock	On board clock X1 connected to the MCU as	External clock source can be connected to	R2, R5,
		main clock	the MCU	R6, R7,
				R8
R4	Main clock	Parallel resistor for oscillator 'X2'	Not fitted	-
R5	Main clock	On board clock X2 can be connected to the	X2 is disconnected from MCU main	R2, R3,
		MCU as main clock	clock input pins	R6, R7,
				R8
R6	Main clock	On board clock X2 can be connected to the	X2 is disconnected from MCU main	R2, R3,
		MCU as main clock	clock input pins	R5, R7,
				R8
R7	Main clock	Routes MCU clock input pin XIN to J1 header (at	MCU pin XIN is disconnected from J1	R2, R3,
		J1-12)	header	R5, R6,
				R8
R8	Main clock	Routes MCU clock output pin XOUT to J1 (at	MCU pin XOUT is disconnected from	R2, R3,
		J1-10) and JA2 (at JA2-2) headers	J1 and JA2 headers	R5, R6,
		(External clock source is used for XOUT)		R7
R9	Sub clock	Parallel resistor for on-board sub clock X3	Not fitted	-
R10	Sub clock	On board clock X3 connected to the MCU as	X3 is disconnected for XCIN	R11, R12,
		sub clock		R13
R11	Sub clock	On board clock X3 connected to the MCU as	X3 is disconnected for XCOUT	R10, R12,
		sub clock		R13
R12	Sub clock	Routes MCU clock input pin XCIN to J1 header	MCU pin XCIN is disconnected from J1	R10, R11,
		(at J1-7)	header	R13
R13	Sub clock	Routes MCU clock input pin XCOUT to J1	MCU pin XCOUT is disconnected from	R10, R11,
		header (at J1-8)	J1 header	R12

Table 6-10: Clock configuration links

Table 6-11 below describes miscellaneous options links.

	Option Link Settings						
Reference	erence Function Fitted		Alternative (Removed)	Related			
				То			
R37	HW Reset	Connects the reset signal generated from	Disconnects the reset signal generated from	-			
	Circuit	on-board reset circuit to the MCU at reset	on-board reset circuit from the MCU reset pin				
		pin (pin 9)	(pin 9)				
R41	HW Reset	Connects the pin 14 of E8a to GROUND	Disconnect pin 14 of E8A connector from	-			
	Circuit		ground				
R97	LIN	Connects the Board_VCC to VBAT	Disconnects the Board_VCC from VBAT	-			

Table 6-11: Miscellaneous Option Links

6.8. Oscillator Sources

Crystal oscillators are fitted on the board and used to supply the main/sub clock input to the Renesas microcontroller.

Table 6-12 details the oscillators that are fitted on this RSK:

Component					
Crystal (X1)	20 MHz (HC49/4U package)				
Crystal (X2)	Not Fitted	For test purpose only			
Crystal (X3) Fitted 32.768 KHz (90 SMX package					

Table 6-12: Oscillators / Resonators

6.9. Reset Circuit

A reset control IC (i.e. RNA51957BFP) has been used to generate the reset signal required for the R8C/38C CPU.

Please check the hardware manual for the detailed reset requirements to ensure the reset circuit on the user's board meets all the reset timing requirements.

Chapter 7. Modes

The Renesas Starter Kit supports Boot mode and Single chip mode.

Details of programming the FLASH memory is described in the R8C/38C Group Hardware Manual.

This circuit is not required on customer's boards as it is intended for providing easy evaluation of the operating modes of the device on the RSK.

To manually enter the Boot mode, press and hold the SW1/BOOT. The mode pins are held in their boot states while reset is pressed and released. Release the boot button. The BOOT LED will be illuminated to indicate that the microcontroller is in boot mode.

Figure 7-1: RSKR8C38C Boot Sequence

When neither the E8a is connected nor the board is placed in Boot mode, the MODE pin is pulled high by a 4.7k resistor.

When an E8a is used the MODE pin is controlled by the E8a.

More information on the operating modes and programming the flash memory can be found in the R8C/38C Group hardware manual.

7.1. Boot modes

The Boot mode settings for this Renesas Starter Kit are shown in Table 7-1 below:

Mode	LSI State after Reset End
Low	Boot Mode

Table 7-1: Boot Mode pin settings

7.2. Single chip mode

Because the MODE pin is pulled high, this Renesas Starter Kit will always boot in Single chip mode when the E8a is not connected and the boot switch is not depressed. Refer to R8C/38C Group Hardware Manual for details of Single chip mode.

Mode	LSI State after Reset End		
High	Single chip Mode		

Table 7-2: Single chip mode settings

Chapter 8. Programming Methods

The board is intended for use with HEW and the supplied E8a debugger. Refer to R8C/38C Group Hardware Manual for details of programming the microcontroller without using these tools.

Chapter 9. Headers

9.1. Microcontroller Ring Headers

The microcontroller pin headers and their corresponding microcontroller connections are detailed in Table 9-1 to Table 9-4.

Header	Circuit Net Name	Device pin	Header	Circuit Net Name	Device pin
Pin			Pin		
1	TRGIOA	1	2	TRAIO	2
3	TRGCLKB	3	4	TRGCLKA	4
5	VREF	5	6	MODE	6
7	CON_XCIN	7	8	CON_XCOUT	8
9	RESETn	9	10	CON_XOUT	10
11	GROUND	11	12	CON_XIN	12
13	UC_VCC	13	14	PIN14	14
15	PIN15	15	16	TRCIOB	16
17	UD	17	18	PIN18	18
19	TXD2_SDA	19	20	CLK2_SCL	20
21	-	-	22	-	-
23	-	-	24	-	-
25	-	-	26	-	-
27	-	-	28	-	-
29	-	-	30	-	-
31	-	-	32	-	-
33	-	-	34	-	-
35	-	-	36	-	-

Table 9-1: J1 microcontroller header

Header Pin	Circuit Net Name	Device pin	Header Pin	Circuit Net Name	Device pin
1	RXD2_IVREF3	21	2	CTS2RTS2_IVCMP3	22
3	Wn	23	4	Vn	24
5	Wp	25	6	Vp	26
7	Un	27	8	Up	28
9	TRDIOC0	29	10	TRDIOA0	30
11	DLCDD7	31	12	DLCDD6	32
13	DLCDD5	33	14	DLCDD4	34
15	SW1_INT1n	35	16	PIN36	36
17	107	37	18	IO6	38
19	105	39	20	104	40
21	-	-	22	-	-
23	-	-	24	-	-
25	-	-	26	-	-
27	-	-	28	-	-
29	-	-	30	-	-
31	-	-	32	-	-
33	-	-	34	-	-
35	-	-	36	-	-

Table 9-2: J2 microcontroller header

Header Pin	Circuit Net Name	Device pin	Header Pin	Circuit Net Name	Device pin
1	103	41	2	102	42
3	101	43	4	100	44
5	INT3n	45	6	SW2_INT2n	46
7	INT4n	47	8	SW3_ADTRGn_TRISTn	48
9	PIN49	49	10	LINNSLP_CLK0	50
11	LINRXD0_RXD0	51	12	LINTXD0_TXD0	52
13	PIN53	53	14	PIN54	54
15	PIN55	55	16	ADPOT	56
17	AN19	57	18	AN18	58
19	AN17	59	20	AN16	60
21	-	-	22	-	-
23	-	-	24	-	-
25	-	-	26	-	-
27	-	-	28	-	-
29	-	-	30	-	-
31	-	-	32	-	-
33	-	-	34	-	-
35	-	-	36	-	-

Table 9-3: J3 microcontroller header

Header Pin	Circuit Net Name	Device pin	Header Pin	Circuit Net Name	Device pin
1	AN15	61	2	AN14	62
3	AN13	63	4	AN12	64
5	AN0_DA1	65	6	AN1_DA0	66
7	AN2	67	8	AN3	68
9	LED3	69	10	LED2	70
11	LED1	71	12	LED0	72
13	RXD1	73	14	TXD1	74
15	CLK1	75	16	PIN76	76
17	TREO	77	18	DLCDRS	78
19	DLCDE	79	20	TRGIOB	80
21	-	-	22	-	-
23	-	-	24	-	-
25	-	-	26	-	-
27	-	-	28	-	-
29	-	-	30	-	-
31	-	-	32	-	-
33	-	-	34	-	-
35	-	-	36	-	-

Table 9-4: J4 microcontroller header

9.2. Application Headers

Standard application header connections are detailed in Table 9-5 to Table 9-8.

Header	Generic	RSK board Signal	Device Pin	Header	Generic	RSK board Signal	Device pin
Pin	Header Name	Name		Pin	Header	Name	
					Name		
1	5V	CON_5V		2	0V(5V)	GROUND	
3	3V3	CON_3V3		4	0V(3V3)	GROUND	
5	AVcc			6	AVss		
7	AVref	CON_VREF		8	ADTRG	ADTRGn	48*
9	AD0	AN0	65*	10	AD1	AN1	66*
11	AD2	AN2	67	12	AD3	AN3	68
13	DAC0	DA0	66*	14	DAC1	DA1	65*
15	IO_0	100	44	16	IO_1	IO1	43
17	10_2	IO2	42	18	IO_3	IO3	41
19	IO_4	IO4	40	20	IO_5	IO5	39
21	IO_6	IO6	38	22	10_7	107	37
23	IRQ3	INT4n	47	24	IIC_EX		
25	IIC_SDA	JA1_25	19*	26	IIC_SCL	JA1_26	20*

Table 9-5: JA1 Standard Generic Header

Header	Generic Header	RSK board Signal	Device Pin	Header	Generic Header	RSK board	Device Pin
Pin	Name	Name		Pin	Name	Signal Name	
1	RESET	RESETn	9	2	EXTAL	CON_XOUT	
3	NMI	INT0n	48*	4	Vss1	GROUND	
5	WDT_OVF			6	SCIaTX	TXD2	19*
7	IRQ0/WKUP	INT1n	35*	8	SCIaRX	RXD2	21*
9	IRQ1	INT2n	46*	10	SCIaCK	CLK2	20*
11	MO_up/down	UD	17	12	CTSRTS	CTS2RTS2	22*
13	MO_Up	Up	28	14	MO_Un	Un	27*
15	MO_Vp	Vp	26	16	MO_Vn	Vn	24*
17	MO_Wp	Wp	25	18	MO_Wn	Wn	23*
19	TimerOut	TRDIOC0	29	20	TimerOut	TREO	77
21	TimerIn	TRDIOA0	30	22	TimerIn	TRAIO	2
23	IRQ2	INT3n	45	24	TRISTn	TRISTn	48*
25	Spare	IVREF3	21*	26	Spare	IVCMP3	22*

Table 9-6: JA2 Standard Generic Header

Header	Generic Header	RSK board Signal	Device Pin	Header	Generic	RSK board Signal	Device Pin
Pin	Name	Name		Pin	Header Name	Name	
1	AD4	AN12	64	2	AD5	AN13	63
3	AD6	AN14	62	4	AD7	AN15	61
5	CAN1TX			6	CAN1RX		
7	CAN2TX			8	CAN2RX		
9	AD8	AN16	60	10	AD9	AN17	59
11	AD10	AN18	58	12	AD11	AN19	57
13	TIOCOA	TRGIOA	1	14	TIOCOB	TRGIOB	80
15	TIOCOC	TRCIOB	16	16	M2_TRISTn		
17	TCLKC	TRGCLKA	4	18	TCLKD	TRGCLKB	3
19	M2_Up			20	M2_Un		
21	M2_Vp			22	M2_Vn		
23	M2_Wp			24	M2_Wn		

Table 9-7: JA5 Standard Generic Header

Header	Generic Header	RSK board	Device Pin	Header	Generic	RSK board Signal	Device Pin
Pin	Name	Signal Name		Pin	Header Name	Name	
1	DREQ			2	DACK	NC	
3	TEND			4	STBYn	NC	
5	RS232TX	RS232TX		6	RS232RX	RS232RX	
7	SCIbRX	RXD0	51*	8	SCIbTX	TXD0	52*
9	SCIcTX	TXD1	74	10	SCIbCK	CLK0	50*
11	SCIcCK	CLK1	75	12	SCIcRX	RXD1	73
13	Reserved			14	Reserved		
15	Reserved			16	Reserved		
17	Reserved			18	Reserved		
19	Reserved			20	Reserved		
21	Reserved			22	Reserved		
23	Unregulated_Vcc			24	Vss	GROUND	

Table 9-8: JA6 Standard Generic Header

Header	Generic Header	RSK board	Device Pin
Pin	Name	Signal Name	
1	VBAT	VBAT	
2	LIN	LIN	51* & 52*
3	GROUND	GROUND	

Table 9-9: LIN Header

Note: Pins marked with '*' are connected via option links.

Chapter 10. Code Development

10.1. Overview

Note: For all code debugging using Renesas software tools, the RSK board must be connected to a PC USB port via an E8a.

Due to the continuous process of improvements undertaken by Renesas the user is recommended to review the information provided on the Renesas website at www.renesas.com to check for the latest updates to the Compiler and Debugger manuals.

10.2. Compiler Restrictions

The compiler supplied with this RSK is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the linker will limit the object size to a maximum of 64k code and data. To use the compiler with programs greater than this size you will need to purchase the full tools from your distributor.

Warning: The protection software for the compiler will detect changes to the system clock. Changes to the system clock back in time may cause the trial period to expire prematurely.

10.3. Breakpoint Support

This RSK is supplied with an E8a emulator which supports breakpoints in ROM and RAM. Double clicking in the breakpoint column in the code sets the breakpoint. Breakpoints will be retained unless they are double clicked to remove them. For more details on breakpoints & E8a functions please refer to the '*E8A-USB Emulator User's Manual*'.

10.4. Mode Support

High-performance Embedded Workspace connects to the Microcontroller and programs it via the E8a. Mode support is handled transparently to the user.

10.5. Memory Map

The memory map shown below gives the locations of each memory area.

Chapter 11. Component Placement

Figure 11-1: Component Placement (Top Layer)

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on the CD or installed in the Manual Navigator.

For information about the R8C/38C microcontrollers refer to the R8C/38C Group Hardware Manual

For information about the R8C/38C assembly language, refer to the R8C Family Software Programming Manual For information about the E8a Emulator, please refer to the E8A-USB Emulator User's Manual

Online technical support and information is available at: www.renesas.com/renesas_starter_kits

Technical Contact Details

- America: techsupport.america@renesas.com
- Europe: tools.support.eu@renesas.com
- Japan: <u>csc@renesas.com</u>

General information on Renesas Microcontrollers can be found on the Renesas website at: www.renesas.com

 Renesas Starter Kit for R8C/38C

 User's Manual

 Publication Date
 Rev.1.00 01.APR.2010

 Published by:
 Renesas Electronics Europe Ltd. Duke's Meadow, Millboard Road, Bourne End Buckinghamshire SL8 5FH, United Kingdom

©2010 Renesas Electronics Europe and Renesas Solutions Corp., All Rights Reserved.

Renesas Starter Kit for R8C/38C User's Manual

Renesas Electronics Europe Ltd. Dukes Meadow, Millboard Road, Bourne End Buckinghamshire SL8 5FH, United Kingdom