To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

-
»
)
ﬁ\
»
<
)
>
-
o

M3T-MR30/4 V.4.00

User’'s Manual

Real-time OS for M16C/10,M16C/20,M16C/30,
M16C/60,M16C/Tiny,R8C/Tiny Series

Renesas Electronics
WWW.renesas .com ReV200 2008.06

® Active X, Microsoft, MS-DOS, Visual Basic, Visual C++, Windows and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and other countries.

® IBM and AT are registered trademarks of International Business Machines Corporation.

® Intel and Pentium are registered trademarks of Intel Corporation.

® Adobe, Acrobat, and Acrobat Reader are trademarks of Adobe Systems Incorporated.

® TRON is an abbreviation of "The Real-time Operating system Nucleus."

® ITRON is an abbreviation of "Industrial TRON."

® LITRON is an abbreviation of "Micro Industrial TRON."

® TRON, ITRON, and uITRON do not refer to any specific product or products.

® All other brand and product names are trademarks, registered trademarks or service marks of their respective holders.

Keep safety first in your circuit designs!
® Renesas Technology Corporation and Renesas Solutions Corporation put the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appro-
priate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any
malfunction or mishap.

Notes regarding these materials

® These materials are intended as a reference to assist our customers in the selection of the Renesas Technology product best suited
to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corporation, Renesas Solutions Corporation or a third party.

® Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application exam-
ples contained in these materials.

® All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information
on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation and Rene-
sas Solutions Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation, Renesas Solutions Corporation or an authorized Renesas Technology product distributor
for the latest product information before purchasing a product listed herein. The information described here may contain technical in-
accuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility
for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by
Renesas Technology Corporation and Renesas Solutions Corporation by various means, including the Renesas home page
(http://www.renesas.com).

® When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algo-
rithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the informa-
tion and products. Renesas Technology Corporation and Renesas Solutions Corporation assume no responsibility for any damage,
liability or other loss resulting from the information contained herein.

® Renesas Technology semiconductors are not designed or manufactured for use in a device or system that is used under circum-
stances in which human life is potentially at stake. Please contact Renesas Technology Corporation, Renesas Solutions Corporation
or an authorized Renesas Technology product distributor when considering the use of a product contained herein for any specific pur-
poses, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

® The prior written approval of Renesas Technology Corporation and Renesas Solutions Corporation is necessary to reprint or repro-
duce in whole or in part these materials.

® |f these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from
the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport con-
trary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

® Please contact Renesas Technology Corporation or Renesas Solutions Corporation for further details on these materials or the prod-
ucts contained therein.

For inquiries about the contents of this document or product, fill in the text file the installer generates in the following
directory and email to your local distributor.
\SUPPORT\Product-name\SUPPORT.TXT

Renesas Tools Homepage http://www.renesas.com/en/tools

Preface
The M3T-MR30/4(abbreviated as MR30) is a real-time operating system® for the M16C/10, M16C/20, M16C/30,
M16C/60, M16C/Tiny and R8C/Tiny series microcomputers. The MR30 conforms to the uITRON Specification.’

This manual describes the procedures and precautions to observe when you use the MR30 for programming purposes. For
the detailed information on individual service call procedures, refer to the MR30 Reference Manual.

Requirements for MR30 Use
When creating programs based on the MR30, it is necessary to purchase the following product of Renesas.

® C-compiler package M3T-NC30WA(abbreviated as NC30) for the M16C/10, M16C/20, M16C/30,
M16C/60, M16C/Tiny and R8C/Tiny series microcomputers.

Document List
The following sets of documents are supplied with the MR30.

® Release Note
Presents a software overview and describes the corrections to the Users Manual and Reference Manual.

® Users Manual (PDF file)
Describes the procedures and precautions to observe when using the MR30 for programming purposes.

Right of Software Use

The right of software use conforms to the software license agreement. You can use the MR30 for your product development
purposes only, and are not allowed to use it for the other purposes. You should also note that this manual does not guarantee
or permit the exercise of the right of software use.

! Hereinafter abbreviated "real-time OS"

2 LITRON4.0 Specification is the open real-time kernel specification upon which the TRON association decided
The specification document of uITRON4.0 specification can come to hand from a TRON association homepage
(http://www.assoc.tron.org/).

The copyright of pITRON4.0 specification belongs to the TRON association.

Contents

Requirements fOr MBS0 USEuuuuiiiiiiiiiiiirieiee ettt eeee e e e oot e e e et e ettt e e e e e eeeeataraeeeeeeeaaseseeeeeeesaarereeeeeeeanaares i

B D 1oTe1 b h i TcY o Al 3 T AU UP U PPPPPPPRON i

RIGIE Of SOEWATE USE...uvviiiiiiiiiiiiiiii ettt e e e e et e e e e e e ettt e e e e e e e e e s atrbaaeaeeeesasstsaeeeeaasssssaseeaeeaasssssaneeeesassnnenes i
COMEENES. vvieerrerrrererernriserterssereesrnesssereressrisseesssstessnnesssseesssssssssnesssesessssesosneesssnesssnnessreesssnesssnsessnessranersrsnsssnnessnness il
LISE Of FLGUTES .eevveeiireerrieeteeeeeireeerrneteeeeesreesssssetesseeesiesssssntesseesssessssssssssseessessssssssssesssessssntsssesssessssssnsassesssesssnnnns ix
T A o =Y) =Y SRR xi
1. User’s Manual OrganiZation...........ccccceeeeeerreverreeeeeeieirrsrereeeeeesensssrsesseesesssesssssssssseesssesssssssssesssrsssssnsssess -1-
2. General INFOrMATIONccccccvveeeeeiieeecetteeeeeciteeeeesteeeeeceteeeeeeereeeeesesseeeessssaeeesassasessassaseesassssesssssenansssssesennnns -3-
2.1 Objective of MR30 Developmient.......cccuvveiiiiiiiieeiiieieeee et e e e e e e e e e e eeeaaarreaeee s -3-
2.2 Relationship between TRON Specification and MR3O0.........ccccccoeeiiiiiiiiiiiiiieeeeeeeeieeee e -5-
2.8 IMRB0 FALUTESueeviiiiiieeieeeiiiieeee e e e e ettt e e e e e ettt e e e e e e e e e ntastaeeeesesasssssssaaaeassessssssssaaseesansssssneaeaeeens -6 -
3. INtroduction t0 KEINEL ...ttt e ee e eeccesiere e e e e e see e e ssasaaaeesseeessssseaaasessasesssasaesssassnnssnnes -7-
3.1 Concept of Real-time OSoooiiiiiiiiieieiee ettt e e e e e e re e e e e e e e e e ataeaeeeeeseeensaareeeeeeeennes -7 -
3.1.1 Why Real-time OS 18 NECESSATY ...ccoeeoureeieeeeeeeeeeieeeeee e e e eeeeeaeeeeeeeeeeeeeaareeeeeeeseeesissreeeeeeeeeeeannes -7-
3.1.2 Operating Principles of Kernel.........ccccooiiiiiiiiiiiiiicccie et et -10 -

B3 1oy a4 (o1 O | USSR SRR -13-
3.2.1 Service Call PrOCESSING ...ccciiiiiiiiiiiiie e ettt e e e ee ettt e e e e e e e eeitbaeeeeeeeesssttaseaeeaseessssssssseesesranes -14 -
3.2.2 Processing Procedures for Service Calls from Handlers...........cccceeeveiiiiienciiiieenciiieee e -15-
Service Calls from a Handler That Caused an Interrupt during Task Execution..........cccooeeiiiiiiiiiiiiiieeiinninnnns -16 -
Service Calls from a Handler That Caused an Interrupt during Service Call Processing...........cccocvvveeeeennnns -17 -
Service Calls from a Handler That Caused an Interrupt during Handler Execution..........ccccceeevvviiecverennnennn. -18-

B B O] o) =Y c1 USSR -19-
3.3.1 The specification method of the object in a service callcooeeviivriiiiiiieiiiiiiriieee e, -19-

Bud TASK cettiieiciiie ettt e et e e ettt e e e et e e e e et aeeeaattaaee e taaeeaatbaee e tbaaeeataaaeeataeeaantaeeeeantaeaeanns -20-
34,1 TASK SEATUS couviii ittt ettt e e ettt e e e et e e e e eaba e e e e etae e e e abaeeeeebbeeeeatbaeeearraeeeannnes -20 -
3.4.2 Task Priority and Ready QUEUEoeeiiiiiiiiiiieieiice e eee e e e e -24 -
3.4.3 Task Priority and Waiting QUEUE............c.ooeieeirreeeeeeeeeeeeeeeeeeeee e e e eeeeeeeeeeeeeeeeeeeaaarereeeeeeeennanes -25-
3.4.4 Task Control BIOCK(TCB)couoiiiiiiieiieieeeeeeeeeeeeeeee ettt ettt ettt eas et eae e neneens -26 -

B T)21 1= 0o B 17 1< TSSO UUU U -28 -
3.5.1 Task Context and Non-task ConteXt......ccccciuiiiiiiiiiiiiiiiecciiiieeee e e e e eetirrre e e e e e e e eaeens -28 -
3.5.2 Dispatch Enabled/Disabled Statescccceeiiiiiiiiiiiiiiiieecciieeee et -30-
3.5.3 CPU Locked/UnlocKed Statescueiiiiieiiiiiiiiiie ettt eeeecite e e e e e eeivaeeee e e e e e eeeaaaraaeaaa e s -30-
3.5.4 Dispatch Disabled and CPU Locked States........cccceeeeiiieiiiiiiieeiiiieee et eeieeeeeveee e svvee e -30-

3.6 Regarding INterTUpPtS.....couiiiiiiiiiiiiiiiiiiiiiieieteee ettt e eeeeeereaeraaeaarerare—tae—————————————————.—araararannnnsnsnnssssrsrnsnres -31-
3.6.1 Types of Interrupt HAnAIErsccooiviiiieieiieeecieeeeee et e eeeeraee e e e e e -31-
3.6.2 The Use of Non-maskable INtErTUPtccooviiiriieiieiieeeiieeeee e e -31-
3.6.3 COoNtrOIIING INEEITUPES . ..coiii it e et e e e e e e e e e e e e e e e aaraeeeeeeeeeeeassrneeeeseennes -32-

BT SBACKS ciiitiiee ettt e e e e e e e tae e e e e taeeeeaattaeeeaataaeeaataaeeeatbaeeeataaeeeaateeeaantaeeeeantaeeeans -34-
3.7.1 System Stack and USer SEACK...........coiiiiiiiieiiiei e e e e re e e e e e -34-

. KEIMIEL...oiiiirereririereeiscereeesaeneeesesneeesessneeessssnnesssssnneessessneessessnnessessnnassessnnaesessnnnesessnnnesssseresssssenessssnanessss -35-
4.1 MOAUIE SEIUCEUT@....uvviiiii i ettt e e ettt e e e e e erett e e e e e e e eeaetbbareeaeeeessserssaaaseaeeeasssrsssasseesessssssrseeeeeens -35-
4.2 IMOAUIE OVEIVIEW ...uvvviiiiiieeiiiiiiiiieeeeeeeccittteeeeeeeeerttbraeeeeaeeeesatttaaaseaeeessasesssasaaaasessssssrassseeeessssssrseaaaeens - 36 -
4.3 Kernel FUNCEION c....cuviiiiiiic et e et e e e e e e e e e attb e e e e e e e e eeetsbesseeeseensrraeaeaaeas -37-
4.3.1 Task Management FUNCEIONcooooiiiiiiiiiiiiiiccieeee et e e e e eeaare e e e e e e e e eeaeanes -37-
4.3.2 Synchronization functions attached to taskcccovviviiiiiiiiiiiiii e -39 -
4.3.3 Synchronization and Communication Function (Semaphore)...........c.ccocveevevveveeveeeeeeeeeennns - 43 -
4.3.4 Synchronization and Communication Function (Eventflag)c..ccoccovvevviiivieeiiiieeeennn, - 45 -

4.3.5 Synchronization and Communication Function (Data QUeue)c.ccoeeveveeeeeeeeeeenennn. - 47 -

4.3.6 Synchronization and Communication Function (Mailbox)cccecvevvevveiiieeeeeeieeeeneennns - 48 -
4.3.7 Memory pool Management Function(Fixed-size Memory pool)ccccoveveieieeeeieeeieenns -50 -
4.3.8 Variable-size Memory Pool Management Functionccccceeeeiiiiiiiiiii e -51-
4.3.9 Time Management FUNCEION...........cccciiiiiiiiii et e et e e e e e e e eiarbraeeeeeeeenannnns -53-
4.3.10 Cyclic Handler FUNCEIONc.uviiiiiiiiieeciiee ettt et e e sitte e e e sete e e e snstaeeesnnsaaeeenes -55-
4.3.11 Alarm Handler FUNCEION............ooiiiiiiiiiiiic ettt e e e eita e e e e e e e e eeananes - 56 -
4.3.12 System Status Management FUNCEION...........cccoiiiiiiiiiiiiiiiieee et -57-
4.3.13 Interrupt Management FUNCEIONuiiiiiiiiiiiiiiiiiiii e ereeeeeeeeeeeeeaenaenees - 58 -
4.3.14 System Configuration Management FUNCEIONcooeiiiviiiiiiiiiiiiiiieieee e - 59 -
4.3.15 Extended Function (Long Data QUEUE)c..ccoeuievieveeeiieeeeeeeeeeeeteeeeteeeeeeeeeeee e eaeeneas - 59 -
4.3.16 Extended Function (Reset FUNCLION)c.ooiiviiiioieieieeeeeeeeeeee ettt eaeenea - 60 -
Service call TEIfEITICEcivuiiiiiiiiiiiiititi e st se e e s at e - 61
5.1 Task Management FUNCEIONooviiiiiiiiiiiiiieiiiieeeeeeeeeeeeeeeeereeeeeeereresesessrereraaerarar————————————————————————. -61 -
ACE_BSK ACTIVALE LASK ceeeneeeiii ettt e e e et e e et e e et e e et e ettt e e et e eaa—————aans - 63 -
iact_tsk Activate task (NAndIer ONLY)coocioiiiiiiiieeieee ettt ettt eneanea - 63 -
can_act Cancel task aCtIVATION FEQUEST.....uuuuueieeeeeeeeeeeeeee e e e ee e e e e e eens - 65 -
ican_act Cancel task activation request (handler only)c.cccoovevieieieieieeeeeieeeeeeee e - 65 -
sta_tsk Activate task With @ SEATT COUE counniiiiieiiee et e e e e e e e raaaeeeeanas - 67 -
ista_tsk Activate task with a start code (handler only)..........ccocoeoveiiiiiiieeceeeeeeeeeeeeee e - 67 -
ext_tsk Terminate INVOKING TASK ...ccccvvveiiiiiiiiieiiiieeeee ettt eeeetree e e e e e eeeaaaeeeeeeeeeeerarereeaeeeeas - 69 -
ter_tsk Terminate tASKcc.iiiiiciiiei et e et e e et e e e etta e e e enraeeeenraeeanns -71 -
chg pri Change tasK PIrIOTIEYcocoiiveiiieeeeeeiiiieeeee e e eeeeecire e e e e e eeeetetaeeeeeeeeeeseeaaaeeeeeeeeeesrasrreeeaeeeeannes -73 -
ichg pri Change task priority(handler 0nly)ccccoeioiiioieeeeeieeeeieeeeeeee et eeeenea -73 -
get_pri Reference tasK PriOTITY ..co.uveeiiiiiiiieiieeeeee ettt e e e e e e e e e e e e e aarreeeeeeeeennanes =75 -
iget_pri Reference task priority(handler only)ccccccooioieeieeieieeeieeeee et enens -75 -
ref tsk ReferenCe TASK STATUS «.ieienee ettt et e e et e e e et e e e eeaaeeeeaeeeeaneeeennaaanes - 77 -
iref_tsk Reference task status (handler ONLY)ccccoooieiiiovieiiiieeeeeeee ettt enens - 77 -
ref tst Reference task status (SIMPLfied VEISION) «.cveeeeeeeeeeeeeeeeeeeeee et eee e e eee s eeeeeeeeeeeeeeeens - 80 -
iref tst Reference task status (simplified version, handler only)cccccceevivvevieieieieeeeeeenae. - 80 -
5.2 Task Dependent Synchronization FUNCtION...........ccccooiiiiiiiiiiiiiiiiiicc e - 82 -
SIP_tSK PUt taASK 10 SlEEP..ciiiiiiiiiiiiieeeee e e e e e et aa e e e e erarees - 83 -
tslp_tsk Put task to sleep (With timeout).........c.ccveiiieioiiiitietceeece ettt eneas -83-
WUP_ESK WAKEUP TASK ...ooiiiiiiieiiie e et ee e e e e e e e e eeeeeeeeeeetareeeeeeennanes - 86 -
iwup_tsk Wakeup task (handler only)..........c.ocooioiiioioriereeieieeeeee ettt eae s - 86 -
can_wup Cancel WAKEUD TEQUESTuuvvviiiiiii ittt eee e e e e e e e e e eeeeeeeeeearareeeeeeeeens - 88 -
ican_wup Cancel wakeup request (handler only)oooveoieeeeeeeeeeee et - 88 -
rel_wal Release task from WaItIIGoooiiiiiiiiiiiieieie e e e e e e e e e e e e eearareeeeeeeeens -90 -
irel_wai Release task from waiting (handler only)cccooeeveieveieeieeeeeeeeeeeeeee e, -90 -
S =) G 10 1= 0 1< Yo B - 1= T -92 -
isus_tsk Suspend task (Nandler ONLY)ccoccoiviviioiiieieeeeee ettt ettt ene e -92 -
rsm_tsk Resume suspended taskc.eeeiiiiiiiiiiiiiiiic e a e -94 -
irsm_tsk Resume suspended task(handler only)ccoooueiieeieieieieeeeeeeeecee e -94 -
frsm_tsk Forcibly resume suspended taSKcooiiiiiiiiiiieie e e -94 -
ifrsm_tsk Forcibly resume suspended task(handler only)ccocooioiioeiiieeeeeieeeee e -94 -
ALY_tSK Delay taSK....ciiiiiiieeeeee et e e e e e e e e et e e e e e eeararees - 96 -
5.3 Synchronization & Communication Function (Semaphore)cccoeeeveeeeeeiveeeieieeeeeeeeeeeens -98 -
sig_ sem Release SemMapPRiOre TESOUICEuuuuuuuurrririiiiiirieiiittritrrerererarrerrrr....——————————————————————..........——————. -99 -
1sig_sem Release semaphore resource (handler only)cccocoeieeeeeveeeeieeeeeeeeeeeee e -99 -
wail_sem Acquire SemMAaPROre TESOUTCE.uvvveeeeeeeeeeiieeeeeeeeeeeeereeeeeeeeeeeeeareeeeeeeeeeessarneeeeeeeeeensnnes - 101 -
pol_sem Acquire semaphore resource (DOIIING)ceevirierereirieretiieiereee et - 101 -
ipol_sem Acquire semaphore resource (polling, handler only)ccccoooveiviviieivieeiieeeeeeene, - 101 -
twai_sem Acquire semaphore resource(with timeout)...........cooveiiieeiiviiieieeeceeeeeeeeeeee e - 101 -
ref_sem Reference semaphore StAtUScoooiiiiiiiiiiii e -104 -
iref sem Reference semaphore status (handler Only).........ccoocoevieviiiiiieiiiiiie e -104 -
5.4 Synchronization & Communication Function (Eventflag)............ccccccovvevieieieiiiieccceeiecieene, - 106 -
set_flg SEt @VENEILAG . ..eeeii it e e e e e e e - 107 -
iset_flg Set eventflag (handler ONLY)c.ocveiiiiiiiuieieeeeeeet ettt ettt e e e eaeeneas -107 -
Clr_flg Clear @VENEIIAZ.vvveeeeie e et ee et e e e e e et aa e e e e e e e e e arareaeeeenaaas -109 -

iclr_flg Clear eventflag (handler 0nly)c.cc.ocveieiiieeieieieeeeeeee ettt -109 -

Wal_flg Walt fOr @VENtLLAGooii it e e e a e - 111 -
pol_flg Wait for eventflag(DoIIing)........ccoeeveuieviiieieeieeeeeeeteee ettt eaeas - 111 -
ipol_flg Wait for eventflag(polling, handler 0nly)...........ccccceeeeeeieiereieeeeeeeeeeeeereeeee e - 111 -
twai_flg Wait for eventflag(with timeout)...........ccoeveriiviioieieeeeceee e - 111 -
ref flg Reference eventflag StatUSoooiiiiiiiiiiic et -114 -
iref flg Reference eventflag status (handler Only)..........cccociviirieiiieeiieieieeee e -114 -
5.5 Synchronization & Communication Function (Data QUeue)c.ccoevevveveeeieeeeeeereeeerenen, - 116 -
snd_dtq Send to data QUEUEcccvvviieiiie e e e e e et aaaaaeee e - 117 -
psnd_dtq Send to data queue (POLNEG)c.ccveveieieeeceeeeeceeeteeeeeeeee ettt ettt eae e -117 -
ipsnd_dtq Send to data queue (polling, handler only)...........cccocveieierieeerieeereceeeeeceeeeeeee e - 117 -
tsnd_dtq Send to data queue (With tiMeEOUL)..........c.ocvivviivieeieieeeeeeeeeeceeeeeee e - 117 -
fsnd_dtq Forcibly send to data QUEUE.............vvvvvvvrviiiiiiiiiiiiiiiiiirrreriirararareaeeeaaaeaaaeaanenenenannnennnnnnns - 117 -
ifsnd_dtq Forcibly send to data queue (handler Only)ocooeoeeeeeeeeeeee et - 117 -
rev_dtq Recelve from data QUEUE ...t e e e e - 120 -
prev_dtq Receive from data queue (POIING)ccooiiviiriieieeieeieeeeeeeeeee ettt eneas - 120 -
iprcv_dtq Receive from data queue (polling, handler only)...........ccoceeevvieiieeeieieeeieeeeeeeeeeees - 120 -
trev_dtq Receive from data queue (with timeout)c.ccoeveieieieiiieiceceeeeeeeeee e -120 -
ref_dtq Reference data qUeue StatUsSooocuiiiiiiiiiiiii e -123 -
iref_ dtq Reference data queue status (handler only)ccooeeviviiiiieiiieeee e -123 -
5.6 Synchronization & Communication Function (Mailbox)..........ccoeeverievieeuiiieeeeeeeeeeeeeeeer e -125 -
snd_mbx SeNd t0 MATIDOX ...iiiiiiiiiiiiciie e et e e et e e e e bae e e etbbe e e enbbeeeenabaeeeenraeas -126 -
isnd_mbx Send to mailbox (handler ONLY)ccoooviiuiiiieiiiieee ettt et - 126 -
rev_MDbX ReCEIVE fTOM MIAIIDOX . .enneee et e et e e e e e e e e ee e e e e e e eeeeaaaeeeeeeenanns - 128 -
prev_mbx Receive from mailbox (POILIIE)veoveiueeeeeeeeeee ettt eee e enes - 128 -
iprcv_mbx Receive from mailbox (polling, handler only)cccooveoeeeeeeeeeeeeeeeeeee e -128 -
trev_mbx Receive from mailbox (With tIEOUE)eeeeeeeeeeeeeee ettt e e eeeeeeee et eeeeseeseae e -128 -
ref mbx Reference MailboX STATUS couuu e iiee ettt e e e e et e e e et e e eeaaesereneeeeannns -131 -
iref mbx Reference mailbox status (handler Only)cc.ccooieviieiiieiieee et -131 -
5.7 Memory Pool Management Function (Fixed-size Memory Pool)c.cccccoevveieieiccereereieneneen. -133 -
get_mpf Aquire fixed-size Memory BlOCKccuvviiiiiiiiiiiiiii e -134 -
pget_mpf Aquire fixed-size memory block (POILING)........cccvevviieieierieiee ettt -134 -
ipget_mpf Aquire fixed-size memory block (polling, handler only)cccccevvevveveeveeeeiereeeereennns - 134 -
tget_mpf Aquire fixed-size memory block (wWith timeoULt)ccoeveeveeriereereereeeeeeeeeeee e - 134 -
rel_mpf Release fixed-size memory DLIOCK............ocooiiiiiiiiiiiiiiiiieieeeiiieeeee e -137 -
irel_ mpf Release fixed-size memory block (handler only)cccooveoeoieeeeeeeeeeeeeeee e -137 -
ref_mpf Reference fixed-size memory Pool SEATUScccvvvviiiiiiiiiieee e -139 -
iref mpf Reference fixed-size memory pool status (handler only)cccoooveeeeeeeeeveeeeeeeeeeeeeenene. - 139 -
5.8 Memory Pool Management Function (Variable-size Memory Pool)ccccovvveeereiereeerennne. - 141 -
pget_mpl Aquire variable-size memory block (DOIING)c.coveieriieiieiiiiieieeeeieeeeeeeeeeeeee e - 142 -
rel_mpl Release variable-size memory DIOCKccccouiiiiiiiiiiiiiiiieee e e e e - 144 -
ref_mpl Reference variable-size memory pool SEAtUSceiiiiiiiiiiiiiiieee e - 146 -
iref_ mpl Reference variable-size memory pool status (handler only)ccccoeveeieeerecieeieiennnee. - 146 -
5.9 Time Management FUNCEIONcociiiiiiiiii i e e et e e e e e e eaaraaeeeaaeas - 148 -
SEt_tIM St SYSTEIM BIMIC...uiiiiiiii ittt e e e e e ettt e e e e e e eeeetaaeaeeeeeeeeeeeararreeaeeeans - 149 -
iset_tim Set system time (handler ONLY)ccccooiiieiieeieeeceeeee ettt e e eneeaeas - 149 -
get_tim Reference SYSteIM Tluuuiiiiiiieiiiiieiee ettt eeeee e e e e e e e eeeearaereeeeeeeennanns - 151 -
iget_tim Reference system time (handler only)ccoeveeveieieieieeceeeeeeeee et - 151 -
181 tim SUPPLY & tIME TICK .evvviiiiiiiiieieeeee ettt e e e e e e e e e e e et eeeeeeeeenaarareeeeeeeanes - 153 -
5.10 Time Management Function (Cyclic HANALET).........oovooioeeoeeeeeeeeee oo - 154 -
sta_cyc Start cyclic handler 0peration...........cccciiiiiiiiiiiiiieee ettt e e e e e searrr e e e e e e e e eaeenns - 155 -
ista_cyc Start cyclic handler operation (handler only)ccccoeoveiiieieeeeeeeeeeeeeeeee e - 155 -
stp_cyc Stops cyclic handler Operationccccceieeiciiiiiieie et eeeeirrr e e e e e eeibraree e e e e e eeaeens - 157 -
istp_cyc Stops cyclic handler operation (handler only)...........c.ccocvovieieiiieeeeceecieeeeeeeeeeeee e - 157 -
ref cyc Reference cyclic handler StatUs.......cccuviiiiiiiiiiiiiiiiieee et - 158 -
iref cyc Reference cyclic handler status (handler only)ccccooveeuioiiiieciecieeeeeeeeeeeeee e - 158 -
5.11 Time Management Function (Alarm Handler)ccooooveoeiiiieeieeeeeee ettt - 160 -
sta_alm Start alarm handler OPErationcccc.coiieeiiiiieeiie e eeee e ee e e e eeeaans -161 -
ista_alm Start alarm handler operation (handler Only)..........cccooiveeeeiieeeeieeeeeeeeeeee e - 161 -
stp_alm Stop alarm handler OPerationoeiiiieiiireieeee et eeeeeree e e e e e e eeeaanns - 163 -

istp_alm Stop alarm handler operation (handler ONLY).........coocveeieeeeeeeeeeeeeeeeeeeeeeeee e -163 -
ref alm Reference alarm Bandler STAtUS ... oooei i e e e ee e e e e eeenees - 164 -
iref_alm Reference alarm handler status (handler only)cccocoeeieieieiiieeeeceeeeeeeeeee e -164 -
5.12 System Status Management FUNCIONcccvviiiiiiiiiiiiiecce e - 166 -
rot_rdq Rotate task PreCEAEIICE eeeeeeas - 167 -
irot_rdq Rotate task precedence (handler only)cccocveirieirieisieiiieieieeeeeeee e - 167 -
get_tid Reference task ID in the RUNNING StAte......uooviiiiiiiiiiiiieiiieiiiieeee et - 169 -
iget_tid Reference task ID in the RUNNING state (handler only)cccccoevevveieeeeeiereereenennn, - 169 -
1oC_CPU LOCK the CPU ..ot e e e e e e e e e e e e e e e eeeearneaee s -170 -
iloc_cpu Lock the CPU (handler 0nly).........c.ocooveveiiieeieieeeeeeeeteeeeeeeeeeeeee e v eteeseeseeaeseseeenseneas -170 -
UNL_Cpu UNIOCK the CPU ...ouviiiiiiiceeee et et e e ettt e e e e e e eeearaaeeaaeeeens -172 -
iunl_cpu Unlock the CPU (handler 0nly)ccooveiiierioreoeieeeeeeeeeeeeeeeeeeeeveeeeeeeseeeeeseseseeneeneeneas -172 -
dis_dsp Disable diSPatCRIIEuuuuuuuiiiiiicccce eeeeeeeeeeeaeeeeeas -173 -
ena_dsp Enables diSpatChiinig.. ..o e e e e e eeee e - 175 -
SNS_CEX RETOTEIICE COMBERE cvnniiiineeeeeeee ettt et e e et e e et e e s e et e e e eaa e e e et s e enaaeeennens -176 -
sns_loc RETETENCE CPU StaAtO e iiiiie et e et e e et e e e ee e e e et s e eraaeseraraeeeeanaees - 177 -
sns_dsp Reference dispatching Statecccvvviiiiiiiiiiiiiie e -178 -
sns_dpn Reference dispatching pending State..........ccoovviiiiiiiiiiiiiiiiiie e e e -179 -
5.13 Interrupt Management FUNCEION............oooiiiiiiiiiiiiiii et e e e e e eeaaareeee s - 180 -
ret_int Returns from an interrupt handler (when written in assembly language).................. -181 -
5.14 System Configuration Management FUNCtION............coooiivviiiiiiiiiiiiiiiieeee e - 182 -
ref_ver Reference version iNformationcccceiieiiiiiiiiiiiie ettt e e e e sere e e e eereee e eereas - 183 -
iref ver Reference version information (handler Only)ccocoeeveeiieieeiirieeeeeeee et -183 -
5.15 Extended Function (Long Data QUEUE)............c.ccveeeuieuieriereeeeeeeeeeeeeeeeee oot eeeeseeeeeseesenseneeneeneas -185 -
vsnd_dtq Send t0 Long data (UEUEooeeeuieeeeeee et e e e e e e earneeeeeeeeean - 186 -
vpsnd_dtq Send to Long data quete (POIIING)......ccooveeeeeeeeee et - 186 -
vipsnd_dtq Send to Long data queue (polling, handler only)...........ccccoccveiveeriieieeeieeeeieeeeeeeee e - 186 -
vtsnd_dtq Send to Long data queue (With timeoUL)c.ccveiivieviiieeeieieeeeeeee e - 186 -
vfsnd_dtq Forcibly send to Long data qUEUEeeeeiiiieiiiiiiiiiieec ettt - 186 -
vifsnd_dtq Forcibly send to Long data queue (handler only)............cccoceeveiereeirieeeeeeerceeeeeeeenenns - 186 -
vrev_dtq Receive from Long data qUEUEuvvviiiiiiiieccieee e - 189 -
vprev_dtq Receive from Long data queue (POIING)...........covveveeeueeerieeeeeeeeeeeieeeteeeeeeeeereesee e - 189 -
viprev_dtq Receive from Long data queue (polling,handler only)cccccvevveeivveeeiiveeeieieeeeeeenne. -189 -
vtrev_dtq Receive from Long data queue (With timeout)c.ooveeivieeiiieeeeieeeeeeeeeeeeeeeeeeeee -189 -
vref_dtq Reference Long data qUeue SEAtUS.......ccccuvviiiiiiiiiiiieeeee e -192 -
viref_dtq Reference Long data queue status (handler only)cccoovveeeeeeeeeeeeeeeeeeeeeeeee e -192 -
5.16 Extended Function (Reset FUNCEION)cccciiieriiriiriieiceeeeeeeeeeeeeeeeee et et et eseeeeseneeneeneeneas -194 -
vrst_dtq Clear data QUEUE QXAcoccuvveiiiieiiieeeieeeee e eeeeeeeeee e e e e e e e e e e e eeearee e e e e e e e eeearrereeeas - 195 -
vrst_vdtq Clear Long data qUEUE Areacooccuiviiiiiiiiieiiiiiiieee et e e eeivrrr e e e e e e e eeavaaaae s -197 -
vrst_mbx CLear MAIIDOK GFCA . eeevneeeeeee ettt e e e e e e et e e e etre e e eaeeeetaaeseeanaeeenanaaaanes -199 -
vrst_mpf Clear fixed-size MemOTrY POOL ATccceeeiiiiiiiiiieee e ettt e e et e e e e e e e e eierrareeeeaeeeas - 201 -
vrst_mpl Clear variable-size MemOTY POO] AT€a......c..ueeeeruiieeeiiiieeeiiieeeeiteeeerteeeesreeeeesereeeeenees -202 -
6. Applications Development Procedure OVerviewccovvivuiviiniiniiniininniiniiiiicicicsesn s - 203 -
B.1 O VOIVIEW ..uutiiiiiieeeeeeciiieieeeeeeeeeeeitereeeeeeeeeeetttaeeeaeeeeeaeabsasaaaaeeeeaastaasasaaseeeaassassaeaaeeeeaanssteseeeeeeansrsseees - 203 -
6.2 Development Procedure EXampPle........ccovvveiiiiiiiiiiiiiiiiecc et eeeeetraee e e e e e - 205 -
6.2.1 Applications Program COodiNg.........cccovveiiiiiiiiiiiiiiieeee et e e e eeeearre e e e e eeeeeannns - 205 -
6.2.2 Configuration File Preparationcccocviveiiiiiiiiiiiiiiieee et - 206 -
6.2.3 Configurator EXECUBTIONcooiiiiieeeie et e e e e e e e e e e eearaneeeeeeas - 207 -
6.2.4 SYSLEIM GEINETATIONeeiiiiiiieiieeeieeeeeeeeeeeeeeeeeeeeeeeareeeeeeeeeeeessareeeeeeeeeeasssseeeeeeeeeeanssraneeeeeennnes - 208 -
6.2.5 WIItING ROMottt ettt e e e e e e e e e e e e e e e e e e aasaeeeeeeeeeeensrnneeeeeannnes - 208 -
A 7Y 251 Y6 2N o] o) AT e o T - 209 -
7.1 Program Coding Procedure in C Language..........cccccceeeiiiiiiiiiieieeeieiciiiieee e eeeiivareee e e e e e e eeevraneeas -209 -
7.1.1 Task Description ProCEAUTE............uuuviiiiiiiiiiiiiiieiiiiiiiririvaaaaaa e nnnnnnnnnnnnnns - 209 -
7.1.2 Writing a Kernel (OS Dependent) Interrupt Handlerccocoeveveeveieeeeeeeeeeereeeeeenene - 210 -
7.1.3 Writing Non-kernel (OS-independent) Interrupt Handler..............ccccceevevveieeeeeecneeneenane. - 211 -
7.1.4 Writing Cyclic Handler/Alarm Handler..........ccceiiiioiiiiieiiiiieeiiiee et - 211 -
7.2 Program Coding Procedure in Assembly Languagecccccceeeeieeeiiiiiiieeeieeeeeeecceeeeee e -213 -
T.2.1 WEIEING TASK it e e e e e e e e et e e e e e e e e tarreeeeesearnreees -213 -

8.

10.

11.

7.2.2 Writing Kernel(OS-dependent) Interrupt Handlercoooveeveeeeeeeeeeeeeeeeeeeeee e, -214 -

7.2.3 Writing Non-kernel(OS-independent) Interrupt Handlercccoeveoveeeeveeeeeeeeeeeeeeeeeeenn -214 -
7.2.4 Writing Cyclic Handler/Alarm Handler............ccoeiiiiiiiiiiiiiiicee e -214 -
7.3 Modifying MR30 Startup Programi........ccccccoeiiiiiiiiiiii ittt e et e e e e e e eaeevaraee s - 216 -
7.3.1 C Language Startup Program (crtOmr.a80)..........c.ccvevveieuieriirieriirieieereeieeeeeeeeee e - 217 -
T4 MemOrY AlLOCATIONociiiiiiiiiiiiiee e ettt e e e e e ettt e e e e e e e eettaeeeeaaeeeeeartaaaeeaeeeeeaaaasaeeaaeens - 222 -
7.4.1 Section Allocation of SEATt.A30ccoiiiiiiiiiiiiei e e e e e e aa e - 223 -
7.4.2 Section Allocation of CrtOMI.A30ccooiiuiiiiiieieiiiiiiiiee e et e e e e eeearr e e e e e e eearaaraeeaaaeeas -224 -
UsSIng COnfIGUIATOToociviiiiiiiiiiiiiiiiiiiiitiitieert sttt be e bt st e s b e s bessbaesbtsnseosseosnees - 226
8.1 Configuration File Creation Procedurecccovveiiiiiiiiiiiiiiieiee e - 226 -
8.1.1 Configuration File Data Entry FOrmat...........ccooviiviiiiiiiiiiiiiiieiee e - 226 -
(0]613 - 1 o) SNUUUU R T TP U TP - 227 -
Direction Of COMPUEATIONciiiiuiieiiieiee it ee et e e e eeeeet e e e eeeeetaaaeeeeeeeeeeaareeeseseeesatreeeeeeeasssarseseeeeeennares - 227 -
8.1.2 Configuration File Definition TEeIScccuveeiiiiiiiiiieeeic e e - 228 -
[(System Definition Procedure)]c.cooiioiiiieieeeetie ettt ettt ettt et ettt et e et te e e re et - 228 -
[(System Clock Definition Procedure)].........cccciiiuiiioiiiioeeeetee ettt ettt ettt e et -230 -
[(Definition respective maximum numbers of 1tems)cccceeieieiiieieeeeeiee ettt -231-
[(TASK defITtION D...evieiee ittt ettt ettt ettt e et et eeae et e ene et e et e s et e sae s ensesaeeaeeneeasensensannesaeenes - 233 -
[(Eventflag definition)]cocooiiiiiieeeeiee ettt ettt ettt ettt e e ne et et eneeteetes et ereete s eneese s eneerenens - 235 -
[(Semaphore defiNition)]cc.oiiiieeeeeee ettt ettt ettt ettt et et a e et e et eneete et ere s ere et et ere et e e ereetennens - 236 -
[(Data quete definition)]c.ocooiiiieiieeee ettt ettt ettt ettt et et re et reetenns - 237 -
[(Long data queue definition)........c.ccoceiiiiiieiieceeeeeeee ettt ettt ettt ere et eneer et ene s s eneenensens - 238 -
[(MATIDOX AEFINTEION)] ..voveeeeieciciiee ittt - 239 -
[(Fixed-size memory pool defiNition)]..........ccccoeveuiieierieiiietieiee ettt ettt es et reae s - 240 -
[(Variable-size memory Pool definition)cccceviiiiiviiiiiiieeeee ettt et - 241 -
[(Cyclic handler definition)].........c.ccoieiiuerieiireieeeet ettt ettt ettt ettt ettt es et et esesese et seen e sene s - 243 -
[(Alarm handler definition)]ccovveeiiiiiiie ettt ettt ettt e ereeae e eteereeaeeneeneeneeseenes -244 -
[(Interrupt vector definition)]ocociiiieiiiieee ettt ettt ettt ettt et ettt e et ettt e et et ete et e e te et ns - 246 -
8.1.3 Configuration File EXampPle.......ccccciiiiiiiiiiiiiicccccieee ettt e e e e e e e eaaravaeaee e e - 249 -
8.2 Configurator Execution Proceduresccccocciiiiiiiiiiiiiiiiiiiieee ettt e - 253 -
8.2.1 CONTIGUIALOT OVEIVIEWuviiiiiiiiieeeiiiieeeiiieeeesitteeeseereeeseasrreeeesssseeeasssseeesssseeesassseeesasssseesensssees - 253 -
8.2.2 Setting Configurator ENvIronmentcccccooccviiiiiiiiieiiiiiie et et e e evvee e e - 254 -
8.2.3 Configurator Start Procedurecoiiiiiiiiiiiiie ettt ree e e e esetree e e - 254 -
8.2.4 makefile generate FUNCEIONcocciuviiiiii it e e e e et eeeeeeeeeeannes - 255 -
8.2.5 Precautions on Executing Configurator..........ccccuveiiiiiiiiiiiiieeieeeeeeeeeciiieeeeeeeeeeeeeereeeeeeeeeeeaanns - 255 -
8.2.6 Configurator Error Indications and Remediesccoovvvveiiiiiiiiiiiiiiiieee e - 255 -
D o 11 LTS Ve Y= ST PPPRN - 255 -
WATTIINZ MESSAZES 1oeeeuvvviiiieeeeeiieiiiiteeeeeeesittrteeeeeeessatrareeaeeeasesesaseaaeeessassssseeeesessssssssetesssasssseeeeesssssssssesseesesnnsnses - 258 -
(07 o 1oy a1 LT Ve Y- TP PPR PP - 258 -
8.2.7 Editing MAKETILE ...oueeiiiiiiiiiiieeiee et e e e e e e e e e ee et areeeeeanaas - 259 -
8.2.8 About an error when you execute Make.........cooeuviiiiiiiiiiiiiiiiiiieec e - 260 -
Sample Program DesCription........coccouivuiiiiniiniiniiniiiniiiiniieriniensnenreeeseesnesnessssssssesseesssssesas - 261
9.1 Overview of SAmple Programcccocciiiiiiiiiiiciiieece et e et e e e et r e e e e e e e e eraaaes - 261 -
9.2 Program SoUICE LISTING.......cccuiiiiiiii it e ettt eeeeet e e e e e e eeetrtaeeeeeeeeeeeaetsseeeaeeeeerenees - 262 -
9.3 Configuration FIle........ccouiiiiiiiiiiie ettt e e et e e e e e e e bbe e e esrbaeeeensbaeennraeeeennnees - 263 -
9.4 Generation of application using M3T-MR30/4 in High - performance Embedded Workshop 4. - 264 -
Stack Size Calculation Methodccccvviiiviiiiiiniiniiiiiiniiniiiiccice e ssees -271
10.1 Stack Size Calculation Method.........cccciiiiiiiiiiiiiiececee et e e e e e eerae e e e - 271 -
10.1.1 User Stack Calculation Method..........ccccocuiiiiiiiiiiiiiic et - 273 -
10.1.2 System Stack Calculation Methodcooouvvviiiiiiiiiieeeee e - 275 -
10.2 NeCESSATY STACK SIZE..uuviiiiiiiieciiieeiee et eeeee e e e e e e et e e e e e e e e taaeeeeeeeeeeeearaeeeeeesennranees - 279 -
N OB ettt e et re e e s et e e e e re s s s et e s e e e sas e et e e reeenas s s n et e neeass s naaenaeenasanans - 281
11.1 The Use of INT INStrUCEION ...ocviiiieiiiiieiie ittt s - 281 -
11.2 The Use of registers 0f DANKcoiiiiiiiiiiiiiiicc ettt e e e e e e e eatbaaa e e e e e e e e enranees - 281 -
11.3 Regarding Delay DiSpatChingcccooiiiiiiiiiiii ettt e e et e e e e e e s eeeetbraeee e e e e e nenveeas - 282 -
11.4 Regarding Initially Activated TasK........ccoouiiiiiiiiiiiiiiiieeee et e e e e e e - 282 -
11.5 Cautions for each mMiICrOCONTIOLETcccuiiiiiiii it e e e e eeaae e e e e e e eaareees - 283 -

11.5.1 To use the M16C/62 group MOUS.......ccoccciiiiiiiiiieeeiiee ettt e eerte e e vee e e staee s esnereeeesnneeas - 283 -

12, SeParate ROMS.....cciiciiieiiiiiieeiiiiieeeieiieeeeseisteeeseseesesesssesssesssssssessssssssssssasesesssssssesssssssssssssssssssassssnes - 285 -
12.1 How to Form Separate ROIMSot eee e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeens 285
13, ADDPEINAIX ..uunrveirireiirecrrrreeeereeereeerssreteeeeesreesssssstessseesiesssssstassseessessssssstssseessesssssssssssesssessssstessesssesssnnnnes -291 -
13.1 Common Constants and Packet Format of Structureccocoveviiiiiiiiiiiiiiiiiieeeee e -291 -
13.2 Assembly Language INterface.......c.cccooiiiiiiiiiii i e e - 293 -

viii

List of Figures

Figure 3.1 Relationship between Program Size and Development Period............ccceeeeenvieiennnnen. -7 -
Figure 3.2 Microcomputer-based System Example(Audio Equipment)cooeceevevveeeeveeeeenenenn. -8-
Figure 3.3 Example System Configuration with Real-time OS(Audio Equipment) -9-
Figure 3.4 Time-division Task Operationccccccceeiiiiiiiiiiiiee e e e e eeeeirre e e e e e e e eerrareeee e e -10 -
Figure 3.5 Task Execution Interruption and Resumptionccccoveviiiiiiiiiiiiiiiecce e -11-
Figure 3.6 Task SWILCHINGccciiiiiiiiiiiiieee e et e e e e e eeette e e e e e e e e eeetabaeaeeeens -11-
Figure 3.7 Task Re@IStOr AT@accccuviiiiiiieieeciiiiiieee ettt e e ettt e e e e e e e eettrraeeeeeeeeetaaraeeeeeens -12 -
Figure 3.8 Actual Register and Stack Area Managementcccccveeeiiiiiiiiiiiiiieec e, -12 -
FIgUre 3.9 Service Call........ovvviiiiiiiiiiiieieeee et e e aaeeaens -13-
Figure 3.10 Service Call Processing FIowchart..........ccccovvveiiiiiiiiiiiiiiiie e -14 -

Figure 3.11 Processing Procedure for a Service Call a Handler that caused an interrupt during Task
Execution - 16 -
Figure 3.12 Processing Procedure for a Service Call from a Handler that caused an interrupt during

SErVICE Call PrOCESSING ... uuvviveeiieeeeeieiieeeee e eeeeeee et ee e e e eeeta e e e e e eeeeearaeeeeeeeeeeesanrereeeeeeeeeennaeeens -17 -
Figure 3.13 Processing Procedure for a service call from a Multiplex interrupt Handler -18-
Figure 3.14 Task IdentifiCationccuuiiiiiiiiiiiiiiiiieie ettt e e e e estavrr e e e e e e e s etbbaaaeeeeans -19-
FIgure 3.15 TaSK StAtUS....uuuiiiiiiiiiiiiiiieee et e et e e e e e e ettt b r e e e e e e eseatbbaaeeaeeeesssssraeeaaseanns -20 -
Figure 3.16 MR30 Task Status TranSitlonceiiiiiiiiiiiiiiiee e ettt eeeeaarreee e -21-
Figure 3.17 Ready Queue (Execution QUEUE)coceevieiieiieueieeieeeeeeeeeeereeee ettt -24 -
Figure 3.18 Waiting queue of the TA_TPRI attributecccoecviiiiriiiiiiciieeeeiee e -25-
Figure 3.19 Waiting queue of the TA_TFIFO attribute.......cccccceiivciiiiiiiiiieeeiee e -25-
Figure 3.20 Task control DIOCKvveiiiiiiiieiiiiieiiee e e e e e e e e -27 -
Figure 3.21 Cyclic Handler/Alarm Handler Activationccccceeeeiveiieiciieieeciiee e -29-
Figure 3.22 Interrupt handler IPLS.............vuviiiiiiiiiiii e nees -31-
Figure 3.23 Interrupt control in a Service Call that can be Issued from only a Task.................. -32-
Figure 3.24 Interrupt control in a Service Call that can be Issued from a Task-independent...- 33 -
Figure 3.25 System Stack and User Stackeeeiiiiiiiiiiiiiiiiie et e e e eeraveeee e -34-
Figure 4.1 MR30 StIUCEUTE.ccciiiiiiiiiiiieee ettt e e ettt e e e e e e e eettr e e e e e e e e esseabraseeaeeeeeesssessaeaseanns -35-
Figure 4.2 Task ReSETEING.....uuiiiiiiiiiiiiiiiice ettt e e e e ettt r e e e e e e e s e atbbaaeeeeaeeeseasabeaeaeeans -37-
Figure 4.3 Alteration of task PrIOTItYcccoiiiiiiiiiiiiieieiiiiiiieee e e et e e e e eeeciire e e e e e e e eeeeeaarraeeeeens -38-
Figure 4.4 Task rearrangement in 8 WaltlNg QUEUEeeeeeeeeeeiiiiiiiireeeeeeeeiiiireeeeeeeeeeeennnreeeeeeeens -38-
Figure 4.5 Wakeup Request STOTAZE.......cccuviiiiiiiiiiciiie ettt ette e e sere e e e seaee e e -39 -
Figure 4.6 Wakeup Request Cancellation...............cooovriiivrieieeiieieiiiiieeeee e eeeeeccirreee e eeeeeearneeeae e -39 -
Figure 4.7 Forcible wait of a task and reSuUIme..........coooovvvviiiiiiiiiiiiieeee e -40 -
Figure 4.8 Forcible wait of a task and forcible resume............ccoevvvvviieeiiieiiiiiiieeeee e -41 -
Figure 4.9 dly_tsk ServiCe Call...........uuuiviuiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieaieenenennnnnnnnnnasesesesesesesesssssnes -42 -
Figure 4.10 Exclusive Control by Semaphoreccooovvuvviiiiiiiiiceeeeeee e -43 -
Figure 4.11 Semaphore COUNTETooeiiiiiiiiieeieee et eeeeeere e e e e e eeeaereeeeeeeeeenaranrreeeeeaens -43 -
Figure 4.12 Task Execution Control by Semaphore...........cccceeeeeeiiiiiiiiieee e -44 -
Figure 4.13 Task Execution Control by the Eventflag...........ccccooeiiiiiiiiiiiiiiiiiieeecveeee e, - 46 -
FIgUTe 4.14 DAta QUEUEuuviiiiiiiiiiiiiiiieee ettt e ettt e e e e e e e ttbbaeeeeeeeenettbraaeaeeeesanssssaeeaaeeanns -47 -
FIGUTE 4.15 MAIIDOX ..ottt e e e e e ettt e e e e e e e eeetabaaaeeaeeeeeeneraeaaaaaeaans -48 -
FIgUTe 4.16 MESSAZE (UEUE ..ooceeiieiiiiiiiieee ettt eeeet et e e e e e e eeetaaaeeeeeeeeeeetsbraeeeaeeeeeetssrraeeeeaans -49 -
Figure 4.17 Memory Pool Management.........cccuviiiiiiiiiiiiiiiiieeee ettt eeeivvaaee e -50 -
Figure 4.18 pget_MPl PrOCESSINGvvviiiiiiieeiiireeeeee e eeeeecrre e e e e e e eeeetrreeeeeeeeeeeeerrreeeaeeeens -52-
Figure 4.19 rel_mpPl PrOCESSINGuuvvveieieieieeiiiiieeeee et eeeeeeeree e e e e e eeeeeerreaeeeeeeeeeeetarrreeeeeeens -52-
Figure 4.20 Timeout ProCESSINEuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieierereaeraieeneeeaeeeneannnnnnnnnnnnnnnnnnnnnnnnaeeasesnnns - 53 -
Figure 4.21 Cyclic handler operation in cases where the activation phase is saved................... - 55 -
Figure 4.22 Cyclic handler operation in cases where the activation phase is not saved............. -55-
Figure 4.23 Typical operation of the alarm handlerccooovvvvviiiiiiiiiii e - 56 -
Figure 4.24 Ready Queue Management by rot_rdq Service Call..........cccooeevviiiiiiiiiiiiiiiiiiieeeeeen, -57-
Figure 4.25 Interrupt process flOW.t e et r e e e e e e e e ebbraeeeeens - 58 -
Figure5.1. Manipulation of the ready queue by the rot_rdq service call.............ccooevuvvrvieeennnnn. - 168 -
Figure 6.1 MR30 System Generation Detail Flowchartccceeeevciiiiiiiiiiiiiiiiie e -204 -

iX

Figure 6.2 Program EXAmPLeuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiineneennenenennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnses - 206

Figure 6.3 Configuration File EXampleccccuvvviiiiiiiiiiieeeeee e - 207 -
Figure 6.4 Configurator EXECULIONccooiiiiiiiiiiii et e e e et reee e e - 207 -
Figure 6.5 System GeNeration........cccveeiiiiiiiiiiiiiieee e ettt e e e e e esetirrreeeeeeeesitrrraeeeeeesssesssraseeaanans - 208

Figure 7.1 Example Infinite Loop Task Described in C Language..........ccccvvvveeeeeeeiiiniiineeeennn. - 209 -
Figure 7.2 Example Task Terminating with ext_tsk() Described in C Language...................... - 210 -
Figure 7.3 Example of Kernel(OS-dependent) Interrupt Handler............c.cccevevveveieiieeneenennn, -211

Figure 7.4 Example of Non-kernel(OS-independent) Interrupt Handler............cccoevvvvevveinrenns -211

Figure 7.5 Example Cyclic Handler Written in C Languagecccccceeeeeeeeeiciineeeeeeeeieeciieeeeeeeeen -212 -
Figure 7.6 Example Infinite Loop Task Described in Assembly Language...........ccccceeeveuvveennns -213 -
Figure 7.7 Example Task Terminating with ext_tsk Described in Assembly Language........... -213 -
Figure 7.8 Example of kernel(OS-depend) interrupt handler.........oocoooveeeeeeoeeeeeeeeeeeeeeeeeeennnn -214 -
Figure 7.9 Example of Non-kernel(OS-independent) Interrupt Handler of Specific Level....... -214 -
Figure 7.10 Example Handler Written in Assembly Languageccooevvuvveeeeeeeeiiivineeneneeennn. - 215

Figure 7.11 C Language Startup Program (crtOmr.a80)cccoveeeierierieieieieeieieieeeeeneereenas - 220 -
Figure 7.12 Selection Allocation in C Language Startup Program...........ccccocvvveiiiiiiiiiiiienneeeennn. - 225 -
Figure 8.1 The operation of the Configuratorccccuviiiiiiiiiiiiiiiee e - 254 -
Figure 10.1 System Stack and User StacKccooiiiiiiiiiiiiiieiiieeiciiieee et -271

Figure 10.2 Layout of StACKS......ccccvviiiiiiiiieeee ettt e e e e eeaaraa e e e -272 -
Figure 10.3 Example of Use Stack Size Calculation.........cccceeeeuviiieeciiieieiiiieeeiiieeeeeiieeeeeiieee e - 274 -
Figure 10.4 System Stack Calculation Method..........coocovviiiiiiiiiiiii e - 276 -
Figure 10.5 Stack size to be used by Kernel Interrupt Handler............cccccovvveiiiiiiiiiiinnnnnneeen. - 277

Figure 12.1 ROM SEPATALEcooiiiiiiiieeiee ettt eee e e e e e e eeeeraeeeeeeeeeeeearnreeeeeens - 287 -
Figure 12.2 MEIOTY IIAD .. .uuuuuereerrriiiiiiiiitentrtteeenenerenenenenenennnannnanennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnesesesssnses - 288 -

List of Tables

Table 3.1 Task Context and Non-task CONtEXtcccouiiiiiiiiiiiiiiiiiiee et eveee e esevaeee e -28 -
Table 3.2 Invocable Service Calls in a CPU Locked State.........ccccoeevciiiieeiiiiiiiiiieee e, -30-
Table 3.3 CPU Locked and Dispatch Disabled State Transitions Relating to dis_dsp and loc_cpu- 30 -
Table 5.1 Specifications of the Task Management Function...........cccoovveeeiiiiiiiiiiiiieeccce e, -61 -
Table 5.2 List of Task Management Function Service Call............ccccovviviiiiiiiiiiiiiiiiieecee e, -61 -
Table 5.3 Specifications of the Task Dependent Synchronization Functioncccccceuuvneee... -82-
Table 5.4 List of Task Dependent Synchronization Service Callcccccoviiiiiiiiiiiinciiieeeeciieeens -82-
Table 5.5 Specifications of the Semaphore Functionccccoooiiiiiiiiiiiiiciiiice e, -98 -
Table 5.6 List of Semaphore Function Service Call..........ccccvvviiiiiiiiiiiiiiieiicceeeeecieeeeeee e - 98-
Table 5.7 Specifications of the Eventflag Function..........ccccovveeiiiiiiiiiiiieeiec e, - 106 -
Table 5.8 List of Eventflag Function Service Call..........cccccveviiiiiiiiiiiiiiiiiicceeeecieeeeeeeeeeeeee, - 106 -
Table 5.9 Specifications of the Data Queue FUunctionccccoeoeeeeiiveeeeieeieeeeieeeeee e - 116 -
Table 5.10 List of Dataqueue Function Service Call.........cccoooviiiiiieiiieeeiieiiieeeieeeeee e - 116 -
Table 5.11 Specifications of the Mailbox FUunction........ccooovvuveeiiiiiiiiiieeec e -125 -
Table 5.12 List of Mailbox Function Service Callccccvviiiiiiiiiiiiiiiiieie e -125 -
Table 5.13 Specifications of the Fixed-size memory pool Function...........ccccoeeevivvieeieeiiicnninnenn.. -133 -
Table 5.14 List of Fixed-size memory pool Function Service Callccceeeevviriiiiiieiiniinnnnnnn. -133 -
Table 5.15 Specifications of the Variable-size memory Pool Function..........cccccccvveeerciiieennnnnnnn. - 141 -
Table 5.16 List of Variable -size memory pool Function Service Call...........ccccccvveeeviiiieennnnnnnn. - 141 -
Table 5.17 Specifications of the Time Management Functioncccccoeeveiiiiiiiiiiii i, - 148 -
Table 5.18 List of Time Management Function Service Callcccceevveiiiiieiiiiiieiiiie e, - 148 -
Table 5.19 Specifications of the Cyclic Handler Function...........ccccccveiivciiiieeiiiieeeiiiee e, - 154 -
Table 5.20 List of Cyclic Handler Function Service Call............cooovvvvvviiiiiiiiiiiiiiiieeeeeeeeeeecveneen. - 154 -
Table 5.21 Specifications of the Alarm Handler Function...........ccooevvvvveeiiiiiiieiiieeeeee e, - 160 -
Table 5.22 List of Alarm Handler Function Service Call...........ccccceoevviiiiiiiiiiiiiiiee e, - 160 -
Table 5.23 List of System Status Management Function Service Callccccvvveeiiiiiiveinnnnn.n. - 166 -
Table 5.24 List of Interrupt Management Function Service Call...........ccccooeveiviviieeieeiiiinnninnenn. - 180 -
Table 5.25 List of System Configuration Management Function Service Call.......................... -182 -
Table 5.26 Specifications of the Long Data Queue Function............cccceeeiiiiiiiiiiiiinee e, - 185 -
Table 5.27 List of Long Dataqueue Function Service Call............ccoeecvviiiiniiiiiiiiieeeeiieee e, - 185 -
Table 5.28 List of Reset Function Service Call.............coooiiiiiiiiiiiiiiiiiiiiiiieeee e -194 -
Table 7.1 C Language Variable Treatment.........ccccveeiiiiiiiiiiiieeiiiiie et eeieee e eireeeesiveeeeseveee s - 210 -
Table 8.1 Numerical Value Entry EXamplesvvveiiiiiiiiiiiiieiieecceeecireeeee e - 226 -
TADIE 8.2 OPEIATOLSeeeiieeeiiirieeee e eeeeeee e e e e e e e ettt e e e e e e e eeeettteeeeaeeeeeeeeaareeeeeeeentrnraeeens - 227 -
Table 8.3 Interrupt Causes and Vector NUMDErs..........ccocovvvvviiiiiiiieiiiieeeeee e - 248 -
Table 9.1 Functions in the Sample Programccccccooveeiiieeeiieeeeeeeeeeeeee e - 261 -
Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (n bytes)ocoevveevevveeeenenee. - 279 -
Table 10.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes)ccocuo....... - 280 -
Table 10.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes) - 280 -
Table 11.1 Interrupt Number ASSIZNMENt............ovviiiiiiiiiiiiiiieeee et eeeitrree e e e e e e evaareeas - 281 -

Xi

Xii

1.

User’s Manual Organization

The MR30 User’s Manual consists of nine chapters and thee appendix.

2 General Information
Outlines the objective of MR30 development and the function and position of the MR30.

3 Introduction to Kernel
Explains about the ideas involved in MR30 operations and defines some relevant terms.

4 Kernel
Outlines the applications program development procedure for the MR30.

5 Service call reffernce
Details MR30 service call API.

6 Applications Development Procedure Overview
Details the applications program development procedure for the MR30.

7 Detailed Applications
Presents useful information and precautions concerning applications program development with MR30.

8 Using Configurator
Describes the method for writing a configuration file and the method for using the configurator in detail.

9 Sample Program Description
Describes the MR30 sample applications program which is included in the product in the form of a source file.

10 Stack Size Calculation Method
Describes the calculation method of the task stack size and the system stack size.

11 Note
Presents useful information and precautions concerning applications program development with MR30.

12 Separate ROMs
Explains about how to Form Separate ROMs.

13 Appendix
Data type and assembly language interface.

2. General Information

2.1 Objective of MR30 Development

In line with recent rapid technological advances in microcomputers, the functions of microcomputer-based products have
become complicated. In addition, the microcomputer program size has increased. Further, as product development competi-
tion has been intensified, manufacturers are compelled to develop their microcomputer-based products within a short period
of time.

In other words, engineers engaged in microcomputer software development are now required to develop larger-size pro-
grams within a shorter period of time. To meet such stringent requirements, it is necessary to take the following considera-
tions into account.

1. To enhance software recyclability to decrease the volume of software to be developed.

One way to provide for software recyclability is to divide software into a number of functional modules wherever
possible. This may be accomplished by accumulating a number of general-purpose subroutines and other program
segments and using them for program development. In this method, however, it is difficult to reuse programs that
are dependent on time or timing. In reality, the greater part of application programs are dependent on time or tim-
ing. Therefore, the above recycling method is applicable to only a limited number of programs.

2. To promote team programming so that a number of engineers are engaged in the development
of one software package

There are various problems with team programming. One major problem is that debugging can be initiated only
when all the software program segments created individually by team members are ready for debugging. It is es-
sential that communication be properly maintained among the team members.

3. To enhance software production efficiency so as to increase the volume of possible software
development per engineer.

One way to achieve this target would be to educate engineers to raise their level of skill. Another way would be to
make use of a structured descriptive assembler, C-compiler, or the like with a view toward facilitating program-
ming. It is also possible to enhance debugging efficiency by promoting modular software development.

However, the conventional methods are not adequate for the purpose of solving the problems. Under these circumstances, it
is necessary to introduce a new system named real-time OS °

To answer the above-mentioned demand, Renesas has developed a real-time operating system, tradenamed MR30, for use
with the M16C/10, M16C/20, M16C/30, M16C/60 ,M16C/Tiny and R8C/Tiny series of 16-bit microcomputers .

When the MR30 is introduced, the following advantages are offered.

1. Software recycling is facilitated.

When the real-time OS is introduced, timing signals are furnished via the real-time OS so that programs depend-
ent on timing can be reused. Further, as programs are divided into modules called tasks, structured programming
will be spontaneously provided.

That is, recyclable programs are automatically prepared.

2. Ease of team programming is provided.

When the real-time OS is put to use, programs are divided into functional modules called tasks. Therefore, engi-
neers can be allocated to individual tasks so that all steps from development to debugging can be conducted inde-
pendently for each task.

Further, the introduction of the real-time OS makes it easy to start debugging some already finished tasks even if
the entire program is not completed yet. Since engineers can be allocated to individual tasks, work assignment is
easy.

3. Software independence is enhanced to provide ease of program debugging.

As the use of the real-time OS makes it possible to divide programs into small independent modules called tasks,

® OS:Operating System

the greater part of program debugging can be initiated simply by observing the small modules.
Timer control is made easier.

To perform processing at 10 ms intervals, the microcomputer timer function was formerly used to periodically in-
itiate an interrupt. However, as the number of usable microcomputer timers was limited, timer insufficiency was
compensated for by, for instance, using one timer for a number of different processing operations.

When the real-time OS is introduced, however, it is possible to create programs for performing processing at fixed
time intervals making use of the real-time OS time management function without paying special attention to the
microcomputer timer function. At the same time, programming can also be done in such a manner as to let the
programmer take that numerous timers are provided for the microcomputer.

Software maintainability is enhanced

When the real-time OS is put to use, the developed software consists of small program modules called tasks.
Therefore, increased software maintainability is provided because developed software maintenance can be carried
out simply by maintaining small tasks.

Increased software reliability is assured.

The introduction of the real-time OS makes it possible to carry out program evaluation and testing in the unit of a
small module called task. This feature facilitates evaluation and testing and increases software reliability.

The microcomputer performance can be optimized to improve the performance of microcom-
puter-based products.

With the real-time OS, it is possible to decrease the number of unnecessary microcomputer operations such as 1/0
waiting. It means that the optimum capabilities can be obtained from microcomputers, and this will lead to mi-
crocomputer-based product performance improvement.

2.2 Relationship between TRON Specification and MR30

MR30 is the real-time operating system developed for use with the M16C/10, M16C/20, M16C/30, M16C/60, M16C/Tiny
and R8C/Tiny series of 16-bit microcomputers compliant with p(ITRON 4.0 Specification. pFITRON 4.0 Specification
stipulates standard profiles as an attempt to ensure software portability. Of these standard profiles, MR30 has implemented
in it all service calls except for static APIs and task exception APIs.

2.3 MR30 Features

The MR30 offers the following features.

1.

Real-time operating system conforming to the uITRON Specification.

The MR30 is designed in compliance with the WITRON Specification which incorporates a minimum of the
ITRON Specification functions so that such functions can be incorporated into a one-chip microcomputer. As the
uITRON Specification is a subset of the ITRON Specification, most of the knowledge obtained from published
ITRON textbooks and ITRON seminars can be used as is.

Further, the application programs developed using the real-time operating systems conforming to the ITRON
Specification can be transferred to the MR30 with comparative ease.

High-speed processing is achieved.
MR30 enables high-speed processing by taking full advantage of the microcomputer architecture.

Only necessary modules are automatically selected to constantly build up a system of the
minimum size.

MR30 is supplied in the object library format of the M16C/10, M16C/20, M16C/30, M16C/60 ,M16C/Tiny and
R8C/Tiny series.

Therefore, the Linkage Editor LN30 functions are activated so that only necessary modules are automatically se-

lected from numerous MR30 functional modules to generate a system.

Thanks to this feature, a system of the minimum size is automatically generated at all times.

With the C-compiler NC30WA, it is possible to develop application programs in C language.

Application programs of MR30 can be developed in C language by using the C compiler NC30WA.. Furthermore,
the interface library necessary to call the MR30 functions from C language is included with the software package.

An upstream process tool named "Configurator" is provided to simplify development proce-
dures

A configurator is furnished so that various items including a ROM write form file can be created by giving simple
definitions.

Therefore, there is no particular need to care what libraries must be linked.

In addition, a GUI version of the configurator is available beginning with M3T-MR30/4 V.4.00. It helps the user
to create a configuration file without the need to learn how to write it.

3. Introduction to Kernel

3.1 Concept of Real-time OS

This section explains the basic concept of real-time OS.

3.1.1 Why Real-time OS is Necessary

In line with the recent advances in semiconductor technologies, the single-chip microcomputer ROM capacity has in-
creased. ROM capacity of 32K bytes.

As such large ROM capacity microcomputers are introduced, their program development is not easily carried out by con-
ventional methods. Figure 3.1 shows the relationship between the program size and required development time (program
development difficulty).

This figure is nothing more than a schematic diagram. However, it indicates that the development period increases expo-
nentially with an increase in program size.

For example, the development of four 8K byte programs is easier than the development of one 32K byte program.*

Development Period

[S
©

16 32 Kbyte

Program Size

Figure 3.1 Relationship between Program Size and Development Period

Under these circumstances, it is necessary to adopt a method by which large-size programs can be developed within a short
period of time. One way to achieve this purpose is to use a large number of microcomputers having a small ROM capacity.
Figure 3.2 presents an example in which a number of microcomputers are used to build up an audio equipment system.

Z_On condition that the ROM program burning step need not be performed

-7-

Key input Remote control LED illumination

| |
| |
| |

: . . |
: microcomputer microcomputer microcomputer |
| |
| |
| |
| |
| |
| Arbiter |
: microcomputer :
| |
| |
| |
| |
| |
| Volume control Monitor Mechanical |
| microcomputer microcomputer control :
: microcomputer I
| |
| |

Figure 3.2 Microcomputer-based System Example(Audio Equipment)

Using independent microcomputers for various functions as indicated in the above example offers the following advan-
tages.

1. Individual programs are small so that program development is easy.
2. ltis very easy to use previously developed software.
3. Completely independent programs are provided for various functions so that program devel-

opment can easily be conducted by a number of engineers.

On the other hand, there are the following disadvantages.

1. The number of parts used increases, thereby raising the product cost.
2. Hardware design is complicated.

3. Product physical size is enlarged.

Therefore, if you employ the real-time OS in which a number of programs to be operated by a number of microcomputers
are placed under software control of one microcomputer, making it appear that the programs run on separate microcomput-
ers, you can obviate all the above disadvantages while retaining the above-mentioned advantages.

Figure 3.3 shows an example system that will be obtained if the real-time OS is incorporated in the system indicated in
Figure 3.2.

Key input Remote control LED illumination

| |
| |
| |
: Task Task Task :
| |
| |
| |
| |
| |
: real-time :
[0S [
| |
| |
| |
| |
| |
| Volume control Monitor Mechanical |
| Task Task control '
: Task :
| |
| |

Figure 3.3 Example System Configuration with Real-time OS(Audio Equipment)
In other words, the real-time OS is the software that makes a one-microcomputer system look like operating a number of
microcomputers.

In the real-time OS, the individual programs, which correspond to a number of microcomputers used in a conventional sys-
tem, are called tasks.

3.1.2 Operating Principles of Kernel

A kernel is the core program of real-time OS. The kernel is the software that makes a one-microcomputer system look like
operating a number of microcomputers. You should be wondering how the kernel makes a one-microcomputer system
function like a number of microcomputers.

As shown in Figure 3.4 the kernel runs a number of tasks according to the time-division system. That is, it changes the task
to execute at fixed time intervals so that a number of tasks appear to be executed simultaneously.

Key input
Task

Remote control
Task

LED
illumination
Task

Volume control
Task

Monitor
Task

Mechanical
control
Task

v

Time
Figure 3.4 Time-division Task Operation

As indicated above, the kernel changes the task to execute at fixed time intervals. This task switching may also be referred
to as dispatching. The factors causing task switching (dispatching) are as follows.

® Task switching occurs upon request from a task.

® Task switching occurs due to an external factor such as interrupt.

When a certain task is to be executed again upon task switching, the system resumes its execution at the point of last inter-
ruption (See Figure 3.5).

-10 -

Key input
Task

Remote control
Task

Program execution
interrupt

Program execution
resumed

During this interval, it
appears that the key input
microcomputer is haled.

Figure 3.5 Task Execution Interruption and Resumption

In the state shown in Figure 3.5, it appears to the programmer that the key input task or its microcomputer is halted while

another task assumes execution control.

Task execution restarts at the point of last interruption as the register contents prevailing at the time of the last interruption
are recovered. In other words, task switching refers to the action performed to save the currently executed task register
contents into the associated task management memory area and recover the register contents for the task to switch to.

To establish the kernel, therefore, it is only necessary to manage the register for each task and change the register contents
upon each task switching so that it looks as if a number of microcomputers exist (See Figure 3.6).

RO
R1
T Actual
: Register
PC
y
Y
Kernel

y

Key input
Task

RO

Register

Task

Remote control

RO

Register

Figure 3.6 Task Switching

The example presented in Figure 3.7 * indicates how the individual task registers are managed. In reality, it is necessary
to provide not only a register but also a stack area for each task.

® It is figure where all the stack areas of the task were arranged in the same section.

-11 -

Memory map

Register
! !
1 1
1 1
Remote control :
Task —> !
PC
SpP
RO
I
Key input |
Task —> ! Stack
PC section
SP | |
| |
| |
RO | |
LED illumination :
Task — > |
1
PC
|
| SP
|
' ! v
| i i
I
Real-time SFR
0s N

Figure 3.7 Task Register Area

Figure 3.8 shows the register and stack area of one task in detail. In the MR30, the register of each task is stored in a stack
area as shown in Figure 3.8. This figure shows the state prevailing after register storage.

it ! PC

Register not stored FLG
FB
SB
Al
A0
R3
R2
: R1
Key i — w

Register stored : }

Key input task
stack

SFR

Figure 3.8 Actual Register and Stack Area Management

-12 -

3.2 Service Call

How does the programmer use the kernel functions in a program?

First, it is necessary to call up kernel function from the program in some way or other. Calling a kernel function is referred
to as a service call. Task activation and other processing operations can be initiated by such a service call (See Figure 3.9).

Key input
Task

This service call is realized by a function call when the application program is written in C language, as shown below.

—

Service call

Kernel

=

Task switching

Figure 3.9 Service call

act_tsk(ID main, 3);

Furthermore, if the application program is written in assembly language, it is realized by an assembler macro call, as shown

below.

act_tsk #ID main

Remote control
task

-13-

3.2.1

Service Call Processing

When a service call is issued, processing takes place in the following sequence.®

1.

2.

3.

4.

5.

6.

The current register contents are saved.

The stack pointer is changed from the task type to the real-time OS (system) type.
Processing is performed in compliance with the request made by the service call.
The task to be executed next is selected.

The stack pointer is changed to the task type.

The register contents are recovered to resume task execution.

The flowchart in Figure 3.10 shows the process between service call generation and task switching.

Key input Task

Register Save
I
SP<=0S8
|

Service call issuance

Processing

|
Task Selection
I
Task =>SP
| LED illumination Task

Register Restore

Figure 3.10 Service Call Processing Flowchart

° A different sequence is followed if the issued service call does not evoke task switching.

-14 -

3.2.2 Processing Procedures for Service Calls from Handlers

When a service call is issued from a handler, task switching does not occur unlike in the case of a service call from a task.
However, task switching occurs when a return from a handler ” is made.

The processing procedures for service calls from handlers are roughly classified into the following three types.
1. Aservice call from a handler that caused an interrupt during task execution
2. Aservice call from a handler that caused an interrupt during service call processing

3. A service call from a handler that caused an interrupt (multiplex interrupt) during handler exe-
cution

” The service call can't be issued from OS-independent handler. Therefore, The handler described here does not include the
OS-independent handler.

-15 -

Service Calls from a Handler That Caused an Interrupt during Task Execution
Scheduling (task switching) is initiated by the ret_int service call ®(See Figure 3.11).

TaskA Interrupt handler
oS
Interrupt Save Registers
. Service call processing
iset_flg

Restore Registers
I

ret_int

| A

Task selection
[

SP <= User Scheduler
[

Restore Registers

TaskB

[|

Figure 3.11 Processing Procedure for a Service Call a Handler that caused an interrupt during Task
Execution

® The ret_int service call is issued automatically when OS-dependent handler is written in C language (when #pragma INTHANDLER speci-
fied)

-16 -

Service Calls from a Handler That Caused an Interrupt during Service Call Processing
Scheduling (task switching) is initiated after the system returns to the interrupted service call processing (See Figure 3.12).

TaskA 0S

Interrupt handler

wup_tsk | Save Registers

[
SP <= System

Save

Interrupt . .
Service call processing

iset_flg

Restore Registers

Task selection
|
SP <= User
[

Restore Registers

=

TaskB

ret_int

Figure 3.12 Processing Procedure for a Service Call from a Handler that caused an interrupt during
Service Call Processing

-17 -

Service Calls from a Handler That Caused an Interrupt during Handler Execution

Let us think of a situation in which an interrupt occurs during handler execution (this handler is hereinafter referred to as
handler A for explanation purposes). When task switching is called for as a handler (hereinafter referred to as handler B)
that caused an interrupt during handler A execution issued a service call, task switching does not take place during the exe-
cution of the service call (ret_int service call) returned from handler B, but is effected by the ret_int service call from han-
dler A (See Figure 3.13).

TaskA Interrupt handler A
Interrupt handler A
[nterrupt .
Save Registers
[
SP <= System 0S
Save Registers
Interrupt]]
. Service call processing
iset_flg
. Restore Register
Restore Register
ret_int I—‘
Task selection ret_int
I
SP <= User
I
Restore Registers
I
TaskB

Figure 3.13 Processing Procedure for a service call from a Multiplex interrupt Handler

-18 -

3.3 Object

The object operated by the service call of a semaphore, a task, etc. is called an "object.” An object is identified by the 1D
number

3.3.1 The specification method of the object in a service call
Each task is identified by the ID number internally in MR30.
For example, the system says, "Start the task having the task ID number 1."

However, if a task number is directly written in a program, the resultant program would be very low in readability. If, for
instance, the following is entered in a program, the programmer is constantly required to know what the No. 2 task is.

act_tsk(2);
Further, if this program is viewed by another person, he/she does not understand at a glance what the No. 2 task is. To avoid
such inconvenience, the MR30 provides means of specifying the task by name (function or symbol name).

The program named "configurator cfg30 ,"which is supplied with the MR30, then automatically converts the task name to
the task ID number. This task identification system is schematized in Figure 3.14.

sta_tsk(Task name) Starting the task
—I; having the designated
| _p Name —p ID number —p| ID number
Configurator
Program Real-time OS

Figure 3.14 Task Identification

act_tsk(ID task);

This example specifies that a task corresponding to "ID_task" be invoked.

It should also be noted that task hame-to-ID number conversion is effected at the time of program generation. Therefore,
the processing speed does not decrease due to this conversion feature.

-19-

3.4 Task

This section describes how tasks are managed by MR30.

34.1 Task Status
The real-time OS monitors the task status to determine whether or not to execute the tasks.

Figure 3.15 shows the relationship between key input task execution control and task status. When there is a key input, the
key input task must be executed. That is, the key input task is placed in the execution (RUNNING) state. While the system
waits for key input, task execution is not needed. In that situation, the key input task in the WAITING state.

Key input
Task Key input Waiting for Key input
processing key input processing
RUNNIG state WAITING state RUNNING state

Figure 3.15 Task Status

The MR30 controls the following six different states including the RUNNING and WAITING states.
1. RUNNING state
2. READY state
3. WAITING state
4. SUSPENDED state
5. WAITING-SUSPENDED state

6. DORMANT state
Every task is in one of the above six different states. Figure 3.16 shows task status transition.

-20-

MPU execlusive right acquisition

READY state RUNNING state
MPU execlusive right relinquishment
Entering the
WAITING state WAITING state
WAITING state

SUSPENDED state clear SUSPEND request Forced Terminate

request from other task from other task zlgu“:;:tm task self
from other
task

WAITING-SUSPENDED

state

WAITING state

SUSPEND request clear
from other task

SUSPENDED

SUSPENDED state state
clear request

Forced termination
request from other task DORMANT

state

Task activation

Figure 3.16 MR30 Task Status Transition

1. RUNNING state

In this state, the task is being executed. Since only one microcomputer is used, it is natural that only one task is
being executed.
The currently executed task changes into a different state when any of the following conditions occurs.

14
L4
.

The task has normally terminated itself by ext_tsk service call.

The task has placed itself in the WAITING. °

Since the service call was issued from the RUNNING state task, the WAITING state of an-
other task with a priority higher than the RUNNING state task is cleared.

Due to interruption or other event occurrence, the interrupt handler has placed a different task
having a higher priority in the READY state.

The priority assigned to the task has been changed by chg_pri or ichg_pri service call so that
the priority of another READY task is rendered higher.

When the ready queue of the issuing task priority is rotated by the rot_rdq or irot_rdq service
call and control of execution is thereby abandoned

When any of the above conditions occurs, rescheduling takes place so that the task having the highest priority
among those in the RUNNING or READY state is placed in the RUNNING state, and the execution of that task

starts.

2. READY state

The READY state refers to the situation in which the task that meets the task execution conditions is still waiting
for execution because a different task having a higher priority is currently being executed.

When any of the following conditions occurs, the READY task that can be executed second according to the
ready queue is placed in the RUNNING state.

L2

A currently executed task has normally terminated itself by ext_tsk service call.

9 By issuing dly_tsk, slp_tsk, tslp_tsk, wai_flg, twai_flg, wai_sem, twai_sem, rcv_mbx, trcv_mbx,snd_dtqg,tsnd_dtqg,rcv_dtq, trcv_dtq,
vtsnd dtg, vsnd dtq,vtrcv _dtg,vrcv dtq, get mpf and tget mpf service call.

-21 -

A currently executed task has placed itself in the WAITING state.™

A currently executed task has changed its own priority by chg_pri or ichg_pri service call so
that the priority of a different READY task is rendered higher.

Due to interruption or other event occurrence, the priority of a currently executed task has
been changed so that the priority of a different READY task is rendered higher.

When the ready queue of the issuing task priority is rotated by the rot_rdq or irot_rdq service
call and control of execution is thereby abandoned

3. WAITING state

When a task in the RUNNING state requests to be placed in the WAITING state, it exits the RUNNING state and
enters the WAITING state. The WAITING state is usually used as the condition in which the completion of 1/0
device 1/0 operation or the processing of some other task is awaited.
The task goes into the WAITING state in one of the following ways.

L2

The task enters the WAITING state simply when the slp_tsk service call is issued. In this case,
the task does not go into the READY state until its WAITING state is cleared explicitly by
some other task.

The task enters and remains in the WAITING state for a specified time period when the
dly_tsk service call is issued. In this case, the task goes into the READY state when the
specified time has elapsed or its WAITING state is cleared explicitly by some other task.

The task is placed into WAITING state for a wait request by the wai_flg, wai_sem, rcv_mbx,
snd_dtq, rcv_dtq, vsnd_dtq, vrcv_dtq, or get_mpf service call. In this case, the task goes from
WAITING state to READY state when the request is met or WAITING state is explicitly can-
celed by another task.

The tslp_tsk, twai_flg, twai_sem, trcv_mbx, tsnd_dtq, trcv_dtq, vtsnd_dtq, vtrcv_dtg, and
tget_mpf service calls are the timeout-specified versions of the slp_tsk, wai_flg, wai_sem,
rcv_mbx, snd_dtq, rcv_dtq, vsnd_dtq, vrcv_dtq, and get_mpf service calls. The task is placed
into WAITING state for a wait request by one of these service calls. In this case, the task goes
from WAITING state to READY state when the request is met or the specified time has
elapsed.

If the task is placed into WAITING state for a wait request by the wai_flg, wai_sem, rcv_mbx,
snd_dtg, rcv_dtq, vsnd dtg, vrcv_dtq, get mpf, twai flg, twai_sem, trcv_mbx, tsnd_dtq,
trcv_dtq, vtsnd_dtq, vtrcv_dtq, or tget_mpf service call, the task is queued to one of the fol-
lowing waiting queues depending on the request.

Event flag waiting queue

Semaphore waiting queue

Mailbox message reception waiting queue

Data queue data transmission waiting queue

Data queue data reception waiting queue

Short data queue data transmission waiting queue
Short data queue data reception waiting queue
Fixed-size memory pool acquisition waiting queue

4. SUSPENDED state

When the sus_tsk service call is issued from a task in the RUNNING state or the isus_tsk service call is issued
from a handler, the READY task designated by the service call or the currently executed task enters the SUS-
PENDED state. If a task in the WAITING state is placed in this situation, it goes into the WAIT-
ING-SUSPENDED state.

The SUSPENDED state is the condition in which a READY task or currently executed task'' is excluded from
scheduling to halt processing due to 1/O or other error occurrence. That is, when the suspend request is made to a
READY task, that task is excluded from the execution queue.

10 Depends on the dly_tsk, slp_tsk, tslp_tsk, wai_flg, twai_flg, wai_sem, twai_sem, rcv_mbx, trcv_mbx,snd_dtq,tsnd_dtq,rcv_dtq, trcv_dtq,
vtsnd_dtq, vsnd_dtq,vtrcv_dtqg,tget_mpf, get_mpf or vrcv_dtqg service call.

™ |f the task under execution is placed into a forcible wait state by the isus_tsk service call from the handler, the task goes from an execut-
ing state directly to a forcible wait state. Please note that in only this case exceptionally, it is possible that a task will go from an executing
state directly to a forcible wait state.

-22 -

Note that no queue is formed for the suspend request. Therefore, the suspend request can only be made to the
tasks in the RUNNING, READY, or WAITING state."” If the suspend request is made to a task in the SUS-
PENDED state, an error code is returned.

5. WAITING-SUSPENDED

If a suspend request is issued to a task currently in a WAITING state, the task goes to a WAITING-SUSPENDED
state. If a suspend request is issued to a task that has been placed into a WAITING state for a wait request by the
slp_tsk, wai_flg, wai_sem, rcv_mbx, snd_dtg, rcv_dtq, vsnd_dtq, vrcv_dtq, get_mpf, tslp_tsk, twai_flg, twai_sem,
trcv_mbx, tsnd_dtq, trcv_dtg, vtsnd_dtg, vtrcv dtq, or tget mpf service call, the task goes to a WAIT-
ING-SUSPENDED state.

When the wait condition for a task in the WAITING-SUSPENDED state is cleared, that task goes into the SUS-
PENDED state. It is conceivable that the wait condition may be cleared, when any of the following conditions
occurs.

¢ The task wakes up upon wup_tsk, or iwup_tsk service call issuance.

¢ The task placed in the WAITING state by the dly_tsk or tslp_tsk service call wakes up after
the specified time elapse.

¢ The request of the task placed in the WAITING state by the wai_flg , wai_sem, rcv_mbyx,
snd_dtg, rcv_dtq, vsnd dtg, vrcv_dtq, get mpf, tslp_tsk, twai _flg, twai_sem, trcv_mbx,
tsnd_dtq, trcv_dtq, vtsnd_dtq, vtrcv_dtq, or tget_mpf service call is fulfilled.

¢ The WAITING state is forcibly cleared by the rel_wai or irel_wai service call

When the SUSPENDED state clear request by rsm_tsk or irsm_tsk is made to a task in the WAIT-
ING-SUSPENDED state, that task goes into the WAITING state. Since a task in the SUSPENDED state cannot
request to be placed in the WAITING state, status change from SUSPENDED to WAITING-SUSPENDED does
not possibly occur.

6. DORMANT

This state refers to the condition in which a task is registered in the MR30 system but not activated. This task
state prevails when either of the following two conditions occurs.

+ The task is waiting to be activated.
+ The task is normally terminated by ext_tsk service call or forcibly terminated by ter_tsk service
call.

2 |f a forcible wait request is issued to a task currently in a wait state, the task goes to a WAITING-SUSPENDED state.

-23-

3.4.2 Task Priority and Ready Queue

In the kernel, several tasks may simultaneously request to be executed. In such a case, it is necessary to determine which
task the system should execute first. To properly handle this kind of situation, the system organizes the tasks into proper
execution priority and starts execution with a task having the highest priority. To complete task execution quickly, tasks

related to processing operations that need to be performed immediately should be given higher priorities.

The MR30 permits giving the same priority to several tasks. To provide proper control over the READY task execution
order, the kernel generates a task execution queue called "ready queue." The ready queue structure is shown in Figure
3.17" The ready queue is provided and controlled for each priority level. The first task in the ready queue having the

highest priority is placed in the RUNNING state.'

Priority
1 | TCB
2
3 > TCB | TCB
n ™ TCB I TCB

Y

Figure 3.17 Ready Queue (Execution Queue)

2 The TCB(task control block is described in the next chapter.)
* The task in the RUNNING state remains in the ready queue.

TCB

-24 -

3.4.3 Task Priority and Waiting Queue

In The standard profiles in WITRON 4.0 Specification support two waiting methods for each object. In one method, tasks

are placed in a waiting queue in order of priority (TA_TPRI attribute); in another, tasks are placed in a waiting queue in
order of FIFO (TA_TFIFO).

Figure 3.18 and Figure 3.19 depict the manner in which tasks are placed in a waiting queue in order of "taskD," "taskC,"
"taskA," and "taskB."

ID No.
1
2 taskA taskB taskC taskD
Priority 1 Priority 5 Priority 6 Priority 9
n
Figure 3.18 Waiting queue of the TA_TPRI attribute
ID No.
1
2 " taskD " taskC " taskA " taskB
Priority 9 Priority 6 Priority 1 Priority 5
n

Figure 3.19 Waiting queue of the TA_TFIFO attribute

-25-

3.4.4

Task Control Block(TCB)

The task control block (TCB) refers to the data block that the real-time OS uses for individual task status, priority, and oth-
er control purposes.

The MR30 manages the following task information as the task control block

Task connection pointer
Task connection pointer used for ready queue formation or other purposes.

Task status
Task priority
Task register information and other data™® storage stack area pointer(current SP register value)

Wake-up counter
Task wake-up request storage area.

Time-out counter or wait flag pattern
When a task is in a time-out wait state, the remaining wait time is stored; if in a flag wait state, the flag's wait pat-
tern is stored in this area.

Flag wait mode
This is a wait mode during eventflag wait.

Timer queue connection pointer
This area is used when using the timeout function. This area stores the task connection pointer used when con-
structing the timer queue.

Flag wait pattern

This area is used when using the timeout function.

This area stores the flag wait pattern when using the eventflag wait service call with the timeout function
(twai_flg). No flag wait pattern area is allocated when the eventflag is not used.

Startup request counter
This is the area in which task startup requests are accumulated.

Extended task information
Extended task information that was set during task generation is stored in this area.

The task control block is schematized in Figure 3.20.

'® Called the task context

-26-

TCB

Task Connection pointer

TCB TCB

Status

Priority

SP

Wake-up counter

Flag wait mode

Time-out counter
or
Flag wait pattern

A/
A/

Timer queue
Connection pointer

Flag wait pattern

A

This area is allocated only when

the timeout function is used.

Figure 3.20 Task control block

-27 -

3.5 System States
351 Task Context and Non-task Context

The system runs in either context state, "task context" or "non-task context." The differences between the task content and
non-task context are shown in Table 3-1. Task Context and Non-task Context.

Table 3.1 Task Context and Non-task Context

Task context Non-task context

Invocable service call Those that can be invoked from Those that can be invoked from
task context non-task context

Task scheduling Occurs when the queue state has It does not occur.

changed to other than dispatch dis-
abled and CPU locked states.

Stack User stack System stack

The processes executed in non-task context include the following.

1. Interrupt Handler
A program that starts upon hardware interruption is called the interrupt handler. The MR30 is not concerned in interrupt
handler activation. Therefore, the interrupt handler entry address is to be directly written into the interrupt vector table.

There are two interrupt handlers: Non-kernel interrupts (OS independent interrupts) and kernel interrupts (OS dependent
interrupts). For details about each type of interrupt, refer to Section 3.6.

The system clock interrupt handler (isig_tim) is one of these interrupt handlers.

2. Cyclic Handler
The cyclic handler is a program that is started cyclically every preset time. The set cyclic handler may be started or stopped
by the sta_cyc(ista_cyc) or stp_cyc(istp_cyc) service call.

The cyclic handler startup time of day is unaffected by a change in the time of day by set_tim(iset_tim).

3. Alarm Handler

The alarm handler is a handler that is started after the lapse of a specified relative time of day. The alarm handler startup
time of day is determined by a time of day relative to the time of day set by sta_alm(ista_alm), and is unaffected by a
change in the time of day by set_tim(iset_tim).

The cyclic and alarm handlers are invoked by a subroutine call from the system clock interrupt (timer interrupt) handler.
Therefore, cyclic and alarm handlers operate as part of the system clock interrupt handler. Note that when the cyclic or
alarm handler is invoked, it is executed in the interrupt priority level of the system clock interrupt.

-28-

Task
System clock

interrupt handler

Cyclic handler

Alarm handler

Subroutine call

Timer interrupt

RTS

Figure 3.21 Cyclic Handler/Alarm Handler Activation

-29-

3.5.2 Dispatch Enabled/Disabled States

The system assumes either a dispatch enabled state or a dispatch disabled state. In a dispatch disabled state, no task sched-
uling is performed. Nor can service calls be invoked that may cause the service call issuing task to enter a wait state. ™

The system can be placed into a dispatch disabled state or a dispatch enabled state by the dis_dsp or ena_dsp service call,
respectively. Whether the system is in a dispatch disabled state can be known by the sns_dsp service call.

3.5.3 CPU Locked/Unlocked States

The system assumes either a CPU locked state or a CPU unlocked state. In a CPU locked state, all external interrupts are
disabled against acceptance, and task scheduling is not performed either.

The system can be placed into a CPU locked state or a CPU unlocked state by the loc_cpu(iloc_cpu) or unl_cpu(iunl_cpu)
service call, respectively. Whether the system is in a CPU locked state can be known by the sns_loc service call.

The service calls that can be issued from a CPU locked state are limited to those that are listed in Table 3-2.%

Table 3.2 Invocable Service Calls in a CPU Locked State

loc_cpu iloc_cpu unl_cpu iunl_cpu
ext_tsk sns_dpn sns_dsp sns_ctx
shs_loc

3.54 Dispatch Disabled and CPU Locked States

In uITRON 4.0 Specification, the dispatch disabled and the CPU locked states are clearly discriminated. Therefore, if the
unl_cpu service call is issued in a dispatch disabled state, the dispatch disabled state remains intact and no task scheduling
is performed. State transitions are summarized in Table 3.3.

Table 3.3 CPU Locked and Dispatch Disabled State Transitions Relating to dis_dsp and loc_cpu

State Content of state dis_dsp ena_dsp | loc_cpu unl_cpu
number CPU locked Dispatch disabled executed | executed | executed | executed
state state
1 O X X X =1 =>3
2 o]) X X =2 =>4
3 X X =>4 =3 =1 =>3
4 X O =>4 =3 =2 =>4

'8 |f a service call not issuable is issued when dispatch disabled, MR30 doesn't return the error and doesn't guarantee the operation.

" MR30 does not return an error even when an uninvocable service call is issued from a CPU locked state, in which case, however, its

operation cannot be guaranteed.

-30-

3.6 Regarding Interrupts

3.6.1

Types of Interrupt Handlers

MR30's interrupt handlers consist of kernel(OS-dependent) interrupt handlers and non-kernel (OS-independent) interrupt

handlers.

The following shows the definition of each type of interrupt handler.

Kernel(OS-dependent) interrupt handler

An interrupt handler whose interrupt priority level is lower than a kernel interruption mask level (OS interrupt
prohibition level) is called kernel (OS dependent) interrupt handler. That is, interruption priority level is from 0 to
system_IPL.

A service call can be issued within a kernel (OS dependent) interrupt handler. However, interrupt is delayed until
it becomes receivable [the kernel management (OS dependence) interrupt handler generated during service call
processing / kernel management (OS dependence) interruption].

Non-kernel(OS-independent) interrupt handler

An interrupt handler whose interrupt priority level is higher than a kernel interrupt mask level (OS interrupt pro-
hibition level)is called non-kernel interrupt handler (OS independent handler) That is, interruption priority level is
from system_IPL+1to 7.

A service call cannot be published within an interruption (OS independence)-kernel management outside hair
drier. However, the kernel management generated during service call processing outside, even if it is the section
where interruption cannot receive a kernel management (OS dependence) interrupt handler (OS independence), it
is possible to receive interruption kernel management outside (OS independence).:

Figure 3.22 shows the relationship between the non-kernel(OS-independent) interrupt handlers and kernel(OS-dependent)
interrupt handlers where the kernel mask level(OS interrupt disable level) is set to 3.

3.6.2

Kernel mask level

(OS Interrupt disable level)

Low l High
O 1 2 3 4 5 6 7
) Kernel 1 Non-kernel]
(0S-dependent) (OS-independent)
Interrupt handler Interrupt handler

Figure 3.22 Interrupt handler IPLs

The Use of Non-maskable Interrupt

An NMI interrupt and Watchdog Timer interrupt have to use be a non-kernel(OS independent) interrupt handler. If they are
a kernel(OS dependent) interrupt handler, the program will not work normally.

-31-

3.6.3 Controlling Interrupts

Interrupt enable/disable control in a service call is accomplished by IPL manipulation. The IPL value in a service call is set
to the kernel mask level(OS interrupt disable level = system.IPL) in order to disable interrupts for the kernel
(OS-dependent) interrupt handler. In sections where all interrupts can be enabled, it is returned to the initial IPL value when
the service call was invoked.

® [or service calls that can be issued from only task context.

When the I flag before issuing a service call is 1.

Task Service call issued Service call processing
\ 4
T T T
| | |
I flag 1 —>e— 0 — 1 le— 1
| | | | |
IPL 0 —44— system.IPL —»l«— 0 —>:<— system . IPL —»l«— 0
| |
| I I |
When the I flag before issuing a service call is 0.
Task Service call issued Service call processing
\ 4
T T T
| | |
I flag 0 —>«— 0 — 1 le— 0
[| | | |
IPL 0 —sj<— systemIPL —sle— 0 — |« systemIPL —»|«— 0
|
|

Figure 3.23 Interrupt control in a Service Call that can be Issued from only a Task

-32-

® [or service calls that can be issued from only non-task context or from both task context and non-task
context.

When the I flag before issuing a service call is 1

Task or Servi 1i d service call processin, Task or
Handler ervice call issue p g Handler
\ 4
i T T
| | |
Iflag 1—>:<—0—>:: 1 ::4— 1
| ! I I |
IPL 4 —sj<e—systemIPL —sle—— 4 — 1o systemIPL —»ja— 4
|
|

When the I flag before issuing a service call is 0

Task or Servi 11 d service call processin, Task or
Handler ervice catiissue P g Handler
\ 4
| I
[I
Iflag 0 —»l< 0 >le— 0
| | | |
TPL 4 —sje—systemIPL —sle—— 4 — 2l systemIPL —»ja— 4
I

Figure 3.24 Interrupt control in a Service Call that can be Issued from a Task-independent

As shown in Figure 3.23 and Figure 3.24, the interrupt enable flag and IPL change in a service call. For this reason, if you
want to disable interrupts in a user application, Renesas does not recommend using the method for manipulating the inter-
rupt disable flag and IPL to disable the interrupts.

The following two methods for interrupt control are recommended:
1. Modify the interrupt control register (SFR) for the interrupt you want to be disabled.

2. Use service calls loc_cpu(iloc_pu) and unl_cpu(iunl_cpu).

The interrupts that can be controlled by the loc_cpu(iloc_cpu) service call are only the kernel(OS-dependent) interrupt. Use
method 1 to control the non-kernel(OS-independent) interrupts.

-33-

3.7 Stacks

3.7.1 System Stack and User Stack
The MR30 provides two types of stacks: system stack and user stack.

® User Stack
One user stack is provided for each task. Therefore, when writing applications with the MR30, it is necessary to
furnish the stack area for each task.

® System Stack
This stack is used within the MR30 (during service call processing). When a service call is issued from a task, the

MR30 switches the stack from the user stack to the system stack (See Figure 3.25).
The system stack use the interrupt stack(ISP).

Task MR30 service call processing

User Stack

Y

Save Registers v
XXX_XXX() Stack switching L)

Y

Service call
processing

System Stack

Y

Task selection

Y

Stack switching v
Restore Registers 4

User Stack

Figure 3.25 System Stack and User Stack

Switchover from user stack to system stack occurs when an interrupt of vector numbers 0 to 31 or 247 to 255 is generated.
Consequently, all stacks used by the interrupt handler are the system stack.

-34-

4. Kernel

4.1 Module Structure

The MR30 kernel consists of the modules shown in Figure 4.1. Each of these modules is composed of functions that exer-

cise individual module features.

The MR30 kernel is supplied in the form of a library, and only necessary features are linked at the time of system genera-
tion. More specifically, only the functions used are chosen from those which comprise these modules and linked by means
of the Linkage Editor LN30. However, the scheduler module, part of the task management module, and part of the time

management module are linked at all times because they are essential feature functions.

The applications program is a program created by the user. It consists of tasks, interrupt handler, alarm handler, and cyclic

handler.®

Application Program
Task . Time
Management Mailbox Semaphore Management
Task-dependent Memorypool System stae
synchronization Eventﬂag Management Management
System configuration Scheduler Interrupt
Management Data queue Management
M16C Microcomputer

Figure 4.1 MR30 Structure

'8 For details, See 4.3.9

User Module

MR30 kernel

Hardware

-35-

4.2 Module Overview

The MR30 kernel modules are outlined below.

Scheduler
Forms a task processing queue based on task priority and controls operation so that the high-priority task at the
beginning in that queue (task with small priority value) is executed.

Task Management Module
Exercises the management of various task states such as the RUNNING, READY, WAIT, and SUSPENDED state.

Task Synchronization Module
Accomplishes inter-task synchronization by changing the task status from a different task.

Interrupt Management Module
Makes a return from the interrupt handler.

Time Management Module
Sets up the system timer used by the MR30 kernel and starts the user-created alarm handler”® and cyclic han-
dler..

System Status Management Module
Gets the system status of MR30.

System Configuration Management Module
Reports the MR30 kernel version number or other information.

Sync/Communication Module
This is the function for synchronization and communication among the tasks. The following three functional
modules are offered.

¢+ Eventflag
Checks whether the flag controlled within the MR30 is set up and then determines whether or not to initiate
task execution. This results in accomplishing synchronization between tasks.

¢ Semaphore
Reads the semaphore counter value controlled within the MR30 and then determines whether or not to initi-
ate task execution. This also results in accomplishing synchronization between tasks.

+ Mailbox
Provides inter-task data communication by delivering the first data address.

¢ Data queue
Performs 16-bit data communication between tasks.

Memory pool Management Module
Provides dynamic allocation or release of a memory area used by a task or a handler.

Extended Function Module
Outside the scope of LITRON 4.0 Specification , this function performs reset processing on objects and long data
queue function.

% This handler actuates once only at preselected times.
% This handler periodically actuates.

-36 -

4.3 Kernel Function

43.1

Task Management Function

The task management function is used to perform task operations such as task start/stop and task priority updating. The
MR30 kernel offers the following task management function service calls.

Activate Task (act_tsk, iact_tsk)
Activates the task, changing its status from DORMANT to either READY or RUNNING. In this service call, un-
like in sta_tsk(ista_tsk), startup requests are accumulated, but startup code cannot be specified.

Activate Task (sta_tsk, ista_tsk)
Activates the task, changing its status from DORMANT to either READY or RUNNING. In this service call, un-
like in act_tsk(iact_tsk), startup requests are not accumulated, but startup code can be specified.

Terminate Invoking Task (ext_tsk)
When the issuing task is terminated, its state changes to DORMANT state. The task is therefore not executed until
it is restarted. If startup requests are accumulated, task startup processing is performed again. In that case, the is-
suing task behaves as if it were reset.
If written in C language, this service call is automatically invoked at return from the task regardless of whether it
is explicitly written when terminated.

Terminate Task (ter_tsk)

Other tasks in other than DORMANT state are forcibly terminated and placed into DORMANT state. If startup
requests are accumulated, task startup processing is performed again. In that case, the task behaves as if it was re-
set. (See Figure 4.2).

Startup request count > 0

TaskB

Terminated

Task B reset

Figure 4.2 Task Resetting

Change Task Priority (chg_pri, ichg_pri)
If the priority of a task is changed while the task is in READY or RUNNING state, the ready queue also is up-

dated. (See Figure 4.3).
Furthermore, if the target task is placed in a waiting queue of objects with TA_TPRI attribute, the waiting queue

also is updated. (See Figure 4.4).

-37-

Priority

A4

Task A Task B

[y
\4

-
Task C ——™1 Task B l—’ Task D

w0
v

Task E > Task F

=1
v

When the priority of task B has been changed from 3 to 1

Figure 4.3 Alteration of task priority

ID Number
1
2
. v
3 taskA _": taskB _i_’ taskC taskB
Priority 1 Priority 2 Priority 3 Priority 4
n

When the priority of Task B is changed into 4

Figure 4.4 Task rearrangement in a waiting queue
Reference task priority (get_pri, iget_pri)
Gets the priority of a task.

Reference task status (simple version) (ref_tst, iref_tst)
Refers to the state of the target task.

Reference task status (ref_tsk, iref_tsk)
Refers to the state of the target task and its priority, etc.

-38 -

4.3.2 Synchronization functions attached to task

The task-dependent synchronization functions attached to task is used to accomplish synchronization between tasks by
placing a task in the WAIT, SUSPENDED, or WAIT-SUSPENDED state or waking up a WAIT state task.

The MR30 offers the following task incorporated synchronization service calls.

® Put Task to sleep (slp_tsk,tslp_tsk)

® \Wakeup task (wup_tsk, iwup_tsk)
Wakeups a task that has been placed in a WAIT state by the slp_tsk or tslp_tsk service call.
No task can be waked up unless they have been placed in a WAIT state by.*!
If a wakeup request is issued to a task that has been kept waiting for conditions other than the slp_tsk or tslp_tsk
service call or a task in other than DORMANT state by the wup_tsk or iwup_tsk service call, that wakeup re-
quest only will be accumulated.
Therefore, if a wakeup request is issued to a task RUNNING state, for example, this wakeup request is temporar-
ily stored in memory. Then, when the task in RUNNING state is going to be placed into WAIT state by the slp_tsk
or tslp_tsk service call, the accumulated wakeup request becomes effective, so that the task continues executing

again without going to WAIT state. (See Figure 4.5).

® Cancel Task Wakeup Requests (can_wup)
Clears the stored wakeup request.(See Figure 4.6).

wup_tsk wup_tsk wup_tsk

Task slp_tsi] | | slpjtsk
Wakeup request count 0 0 1 2 1
Figure 4.5 Wakeup Request Storage
wup_tsk wup_tsk can_wup
Task dotsk | | i
Wakeup request count 0 0 1 0 0

Figure 4.6 Wakeup Request Cancellation

2 Note that tasks in WAIT state, but kept waiting for the following conditions are not awaken.
Eventflag wait state, semaphore wait state, data transmission wait state, data reception wait state, timeout wait state, fixed length
memory pool acquisition wait, short data transmission wait, or short data reception wait

-39 -

Suspend task (sus_tsk, isus_tsk)

Resume suspended task (rsm_tsk, irsm_tsk)

These service calls forcibly keep a task suspended for execution or resume execution of a task. If a suspend re-
quest is issued to a task in READY state, the task is placed into SUSPENDED state; if issued to a task in WAIT
state, the task is placed into WAIT-SUSPENDED state. Since MR30 allows only one forcible wait request to be
nested, if sus_tsk is issued to a task in a forcible wait state, the error E_QOVR is returned. (See Figure 4.7).

E_QOVR
sus_tsk sus_tsk rsm_tsk
Task - Oy __ 3

RUNNING —»<—SUSPENDED——><+— READY state

state state
WAITING-
WAITING state |+ SUSPENDED ™" WAITING state
state
Number of
suspension 0 1 1 0

request

Figure 4.7 Forcible wait of a task and resume

-40 -

Forcibly resume suspended task (frsm_tsk, ifrsm_tsk)

Clears the number of suspension requests nested to 0 and forcibly resumes execution of a task. Since MR30 al-
lows only one suspension request to be nested, this service call behaves the same way as rsm_tsk and
irsm_tsk..(See Figure 4.8).

sus_tsk frsm_tsk

Task - 0y ___

READY state —»+——SUSPENDED—<— READYstate
state

WAITING — WAITING
WAITING state ~— |+ _SUSPENDED |+

state state
Number of
suspension 0 1 0
requests

Figure 4.8 Forcible wait of a task and forcible resume

Release task from waiting (rel_wai, irel_wai)
Forcibly frees a task from WAITING state. A task is freed from WAITING state by this service call when it is in
one of the following wait states.

Timeout wait state

Wait state entered by slp_tsk service call (+ timeout included)
Event flag (+ timeout included) wait state

Semaphore (+ timeout included) wait state

Message (+ timeout included) wait state

Data transmission (+ timeout included) wait state

Data reception (+ timeout included) wait state

Fixed—size memory block (+ timeout included) acquisition wait state
Short data transmission (+ timeout included) wait state

Short data reception (+ timeout included) wait state

L ZER R JER R R 2ER 2R R R 2

-41 -

Delay task (dly_tsk)

Keeps a task waiting for a finite length of time. Figure 4.9 shows an example in which execution of a task is kept
waiting for 10 ms by the dly_tsk service call. The timeout value should be specified in ms units, and not in time
tick units.

dly_tsk(10)

Figure 4.9 dly_tsk service call

-42 -

4.3.3 Synchronization and Communication Function (Semaphore)

The semaphore is a function executed to coordinate the use of devices and other resources to be shared by several tasks in
cases where the tasks simultaneously require the use of them. When, for instance, four tasks simultaneously try to acquire a
total of only three communication lines as shown in Figure 4.10, communication line-to-task connections can be made

without incurring contention.

S Task
ommunication
Line
Communication | | Task
Line
Communication
Line Task
Semaphore
>< - Task

Figure 4.10 Exclusive Control by Semaphore

The semaphore has an internal semaphore counter. In accordance with this counter, the semaphore is acquired or released to
prevent competition for use of the same resource.(See Figure 4.11).

Acquired
! ' ™ Task

Returned after use

Figure 4.11 Semaphore Counter

The MR30 kernel offers the following semaphore synchronization service calls.

® Release Semaphore Resource(sig_sem, isig_sem)
Releases one resource to the semaphore. This service call wakes up a task that is waiting for the semaphores ser-

vice, or increments the semaphore counter by 1 if no task is waiting for the semaphores service.

® Acquire Semaphore Resource(wai_sem, twai_sem)
Waits for the semaphores service. If the semaphore counter value is 0 (zero), the semaphore cannot be acquired.

Therefore, the WAITING state prevails.

® Acquire Semaphore Resource(pol_sem, ipol_sem)
Acquires the semaphore resource. If there is no semaphore resource to acquire, an error code is returned and the

WAITING state does not prevail.

-43-

® Reference Semaphore Status (ref_sem, iref_sem)
Refers the status of the target semaphore. Checks the count value and existence of the wait task for the target se-
maphore.
Figure 4.12 shows example task execution control provided by the wai_sem and sig_sem service calls.

Task wai_sem sig_sem
| wai_sem I
Task ! * !
| |
|
: : wai_sem :
TaSk | | |
! | M . :
| : | wail_sem |
| | |
Task | ' L e
| ' i . ¢
: : I : WAIT state :
H | | H
Semaphore 3 9 1 0 X 0
Counter

Figure 4.12 Task Execution Control by Semaphore

-44 -

4.3.4

Synchronization and Communication Function (Eventflag)

The eventflag is an internal facility of MR30 that is used to synchronize the execution of multiple tasks. The eventflag uses
a flag wait pattern and a 16-bit pattern to control task execution. A task is kept waiting until the flag wait conditions set are

met.

It is possible to determine whether multiple waiting tasks can be enqueued in one eventflag waiting queue by specifying the
eventflag attribute TA_WSGL or TA_WMUL.

Furthermore, it is possible to clear the eventflag bit pattern to 0 when the eventflag meets wait conditions by specifying
TA_CLR for the eventflag attribute.

There are following eventflag service calls that are provided by the MR30 kernel.

Set Eventflag (set_flg, iset_flg)
Sets the eventflag so that a task waiting the eventflag is released from the WAITING state.

Clear Eventflag (clr_flg, iclr_flg)
Clears the Eventflag.

Wait for Eventflag (wai_flg, twai_flg)
Waits until the eventflag is set to a certain pattern. There are two modes as listed below in which the eventflag is
waited for.

¢ AND wait
Waits until all specified bits are set.

¢ OR wait
Waits until any one of the specified bits is set

Wait for Eventflag (polling)(pol_flg, ipol_flg)
Examines whether the eventflag is in a certain pattern. In this service call, tasks are not placed in WAITING state.

Reference Eventflag Status (ref_flg, iref_flg)
Checks the existence of the bit pattern and wait task for the target eventflag.

=45 -

Figure 4.13 shows an example of task execution control by the eventflag using the wai_flg and set_flg service calls.
The eventflag has a feature that it can wake up multiple tasks collectively at a time.

In Figure 4.13, there are six tasks linked one to another, task A to task F. When the flag pattern is set to OxF by the set_flg
service call, the tasks that meet the wait conditions are removed sequentially from the top of the queue. In this diagram, the
tasks that meet the wait conditions are task A, task C, and task E. Out of these tasks, task A, task C, and task E are removed
from the queue.

If this event flag has a TA_CLR attribute, when the waiting of Task A is canceled, the bit pattern of the event flag will be
set to 0, and Task C and Task E will not be removed from queue.

Flag queue TaskA TaskB TaskC TaskD TaskE TaskF
e = [I =
Flag pattern
0
Wait pattern 0xOF OxFF 0xOF 0xFF OxFF 0x10
Wait mode OR AND AND AND OR OR
set_flg
TaskB TaskD TaskF
[] — T T
| ! | I I I
| I | I I I
Flag pattern | | | | | |
0x0F ! : ! : ! :

Figure 4.13 Task Execution Control by the Eventflag

-46 -

4.3.5

Synchronization and Communication Function (Data Queue)

The data queue is a mechanism to perform data communication between tasks. In Figure 4.14, for example, task A can
transmit data to the data queue and task B can receive the transmitted data from the data queue.

|l |l |

=4 =4 =4

& o o
Data Data
Task A Task B

Figure 4.14 Data queue

Data in width of 16 bits can be transmitted to this data queue.

The data queue has the function to accumulate data. The accumulated data is retrieved in order of FIFO%. However, the
number of data that can be accumulated in the data queue is limited. If data is transmitted to the data queue that is full of
data, the service call issuing task goes to a data transmission wait state.

There are following data queue service calls that are provided by the MR30 kernel.

Send to Data Queue(snd_dtq, tsnd_dtq)
The data is transmitted to the data queue. If the data queue is full of data, the task goes to a data transmission wait
state.

Send to Data Queue (psnd_dtq, ipsnd_dtq)
The data is transmitted to the data queue. If the data queue is full of data, the task returns error code without going
to a data transmission wait state.

Forced Send to Data Queue (fsnd_dtq, ifsnd_dtq)
The data is transmitted to the data queue. If the data queue is full of data, the data at the top of the data queue or
the oldest data is removed, and the transmitted data is stored at the tail of the data queue.

Receive from Data Queue (rcv_dtq, trcv_dtq)
The data is retrieved from the data queue. If the data queue has no data in it, the task is kept waiting until data is
transmitted to the data queue.

Receive from Data Queue (prcv_dtq,iprcv_dtq)
The data is received from the data queue. If the data queue has no data in it, the task returns error code without
going to a data reception wait state.

Reference Data Queue Status (ref_dtq,iref_dtq)
Checks to see if there are any tasks waiting for data to be entered in the target data queue and refers to the number
of the data in the data queue.

2 FEirst In First Out

=47 -

4.3.6 Synchronization and Communication Function (Mailbox)

The mailbox is a mechanism to perform data communication between tasks. In Figure 4.15, for example, task A can drop a
message into the mailbox and task B can retrieve the message from the mailbox. Since mailbox-based communication is
achieved by transferring the start address of a message from a task to another, this mode of communication is performed at
high speed independently of the message size.

The kernel manages the message queue by means of a link list. The application should prepare a header area that is to be
used for a link list. This is called the message header. The message header and the area actually used by the application to
store a message are called the message packet. The kernel rewrites the content of the message header as it manages the
message queue. The message header cannot be rewritten from the application. The structure of the message queue is shown
in Figure 4.16. The message header has its data types defined as shown below.

T_MSG: Mailbox message header
T_MSG_PRI: Mailbox message header with priority included

Messages in any size can be enqueued in the message queue because the header area is reserved on the application side. In
no event will tasks be kept waiting for transmission.

Messages can be assigned priority, so that messages will be received in order of priority beginning with the highest. In this
case, TA_MPRI should be added to the mailbox attribute. If messages need to be received in order of FIFO, add
TA_MFIFO to the mailbox attribute.?® Furthermore, if tasks in a message wait state are to receive a message, the tasks can
be prioritized in which order they can receive a message, beginning with one that has the highest priority. In this case, add
TA_TPRI to the mailbox attribute. If tasks are to receive a message in order of FIFO, add TA_TFIFO to the mailbox attrib-
ute.*

/F

Message Message

TaskA TaskB

Figure 4.15 Mailbox

% |t is in the mailbox definition "message_queue"” of the configuration file that the TA_MPRI or TA_MFIFO attribute should be added.
* |t is in the mailbox definition "wait queue” of the configuration file that the TA TPRI or TA_ TFIFO attribute should be added.

-48 -

Message |t i iise b Thisa T | [Thse

queue i header i i header i | header i
1 1 1 1 | 1
Message A Message B Message C

Figure 4.16 Message queue

There are following data queue service calls that are provided by the MR30 kernel.

Send to Mailbox (snd_mbyx, isnd_mbx)
Transmits a message. Namely, a message is dropped into the mailbox.

Receive from Mailbox (rcv_mbyx, trcv_mbx)
Receives a message. Namely, a message is retrieved from the mailbox. At this time, if the mailbox has no mes-
sages in it, the task is kept waiting until a message is sent to the mailbox.

Receive from Mailbox (polling) (prcv_mbx, iprcv_mbx)
Receives a message. The difference from the rcv_mbx service call is that if the mailbox has no messages in it, the
task returns error code without going to a wait state.

Reference Mailbox Status (ref_mbx, iref_mbx)
Checks to see if there are any tasks waiting for a message to be put into the target mailbox and refers to the mes-
sage present at the top of the mailbox.

=49 -

4.3.7

Memory pool Management Function(Fixed-size Memory pool)

A fixed-size memory pool is the memory of a certain decided size. The memory block size is specified at the time of a con-
figuration. Figure 4.17 is a figure about the example of a fixed-size memory pool of operation.

M Block 1: d by TaskA
emory Bl Used by Tas Memory block acquisition
Memory Block 2. | Used by TaskB request
n TaskC
Memory Block 3: - >
Memory block acquisition
Memory block acquisition
request
- TaskD
No blank memory —
blocks available *
Fixed Length Memorypool Goes to a
wait state

Figure 4.17 Memory Pool Management

Acquire Fixed-size Memory Block (get_mpf, tget_mpf)

Acquires a memory block from the fixed-size memory pool that has the specified ID. If there are no blank mem-
ory blocks in the specified fixed-size memory pool, the task that issued this service call goes to WAITING state
and is enqueued in a waiting queue.

Acquire Fixed-size Memory Block (polling) (pget_mpf, ipget_mpf)

Acquires a memory block from the fixed-size memory pool that has the specified ID. The difference from the
get_mpf and tget_mpf service calls is that if there are no blank memory blocks in the memory pool, the task re-
turns error code without going to WAITING state.

Release Fixed-size Memory Block (rel_mpf, irel_mpf)

Frees the acquired memory block. If there are any tasks in a wait state for the specified fixed-size memory pool,
the task enqueued at the top of the waiting queue is assigned the freed memory block. In this case, the task
changes its state from WAITING state to READY state. If there are no tasks in a wait state, the memory block is
returned to the memory pool.

Reference Fixed-size Memory Pool Status (ref_mpf, iref_mpf)
Checks the number and the size of blank blocks available in the target memory pool.

-B50 -

4.3.8 Variable-size Memory Pool Management Function

The technique that allows you to arbitrary define the size of memory block acquirable from the memory pool is termed Va-
riable-size scheme. The MR30 manages memory in terms of four fixed-size memory block sizes.

The MR30 calculates the size of individual blocks based on the maximum memory block size to be acquired. You specify
the maximum memory block size using the configuration file.

e.g.
variable memorypool [] {
max_memsize = 400; <---- Maximum size

heap size = 5000;

Defining a variable-size memory pool as shown above causes four fixed-size memory block sizes to become 56 bytes, 112
bytes, 224 bytes, and 448 bytes in compliance with max_memsize.

In the case of user-requested memory, the MR30 performs calculations based on the specified size and selects and allocates
the optimum one of four fixed-size memory block sizes. The MR30 cannot allocate a memory block that is not one of the
four sizes.

Service calls the MR30 provides include the following.

® Acquire Variable-size Memory Block (pget_mpl)
Round off a block size you specify to the optimal block size among the four block sizes, and acquires memory
having the rounded-off size from the memory pool.
The following equations define the block sizes:

a = (((max_memsize+(X-1))/ X *8) + 1) * 8

b=a*2
c=a*4
d=a*8

max_memsize: the value specified in the configuration file
X: data size for block control (8 byte)

For example, if you request 200-byte, the MR30 rounds off the size to 244 bytes, and acquires 244-byte memory.
If memory acquirement goes well, the MR30 returns the first address of the memory acquired along with the error
code "E_OK". If memory acquirement fails, the MR30 returns the error code "E_TMOUT".

-51-

3
200 bytes

Y

TaskA
l Rounding Memorypool
) 5 pget_mpl
9224 bytes — 200 bytes
\ \
Figure 4.18 pget_mpl processing
® Release Acquire Variable-size Memory Block (rel_mpl)
Releases a acquired memory block by pget_mpl service call.
TaskA
Memorypool Memorypool
[rel_mpl
— top of — —
y address |]

Figure 4.19 rel_mpl processing

® Reference Acquire Variable-size Memory Pool Status (ref_mpl, iref_mpl)

Checks the total free area of the memory pool, and the size of the maximum free area that can immediately be
acquired.

-52-

4.3.9

Time Management Function

The time management function provides system time management, time reading®, time setup?®, and the functions of the
alarm handler, which actuates at preselected times, and the cyclic handler, which actuates at preselected time intervals.

The MR30 kernel requires one timer for use as the system clock. There are following time management service calls that
are provided by the MR30 kernel. Note, however, that the system clock is not an essential function of MR30. Therefore, if
the service calls described below and the time management function of the MR30 are unused, a timer does not need to be
occupied for use by MR30.

Place a task in a finite time wait state by specifying a timeout value

A timeout can be specified in a service call that places the issuing task into WAITING state.?” This service call
includes tslp_tsk, twai_flg, twai_sem, tsnd_dtq, trcv_dtq, trcv_mbx, tget mpf, vtsnd_dtq, and vtrcv_dtq. If the
wait cancel condition is not met before the specified timeout time elapses, the error code E_TMOUT is returned,
and the task is freed from the wait state. If the wait cancel condition is met, the error code E_OK is returned.

The timeout time should be specified in ms units.

tslp_tsk(50)

E_TMOUT
READY state _I :—
| |
WAITING state L |
50
Timeout value
tslp_tsk(50) E_OK
RUN state —— i
| |
| |
WAITING state 7 -—-

iwup_tsk

Figure 4.20 Timeout Processing

MR30 guarantees that as stipulated in WITRON specification, timeout processing is not performed until a time
equal to or greater than the specified timeout value elapses. More specifically, timeout processing is performed
with the following timing.

1. If the timeout value is O (for only dly_tsk)?
The task times out at the first time tick after the service call is issued.?®

2. If the timeout value is a multiple of time tick interval
The timer times out at the (timeout value / time tick interval) + first time tick. For example, if the time
tick interval is 10 ms and the specified timeout value is 40 ms, then the timer times out at the fifth oc-
currence of the time tick. Similarly, if the time tick interval is 5 ms and the specified timeout value is 15
ms, then the timer times out at the fourth occurrence of the time tick.

25
26

get_tim service call
set_tim service call

% SUSPENDED state is not included.

28

N
©

Strictly, in a dly_tsk service call, the “timeout value" is not correct. "delay time" is correct.
Strictly, in a dly_tsk service call, a timeout is not carried out, but the waiting for delay is canceled and the service call carries out the nor-
mal end.

-B3 -

3. If the timeout value is not a multiple of time tick interval
The timer times out at the (timeout value / time tick interval) + second time tick. For example, if the time

tick interval is 10 ms and the specified timeout value is 35 ms, then the timer times out at the fifth oc-
currence of the time tick.

Set System Time (set_tim,iset_tim)
Reference System Time (get_tim,iget_tim)

The system time indicates an elapsed time from when the system was reset by using 48-bit data. The time is ex-
pressed in ms units.

-54-

4.3.10 Cyclic Handler Function
The cyclic handler is a time event handler that is started every startup cycle after a specified startup phase has elapsed.

The cyclic handler may be started with or without saving the startup phase. In the former case, the cyclic handler is started
relative to the point in time at which it was generated. In the latter case, the cyclic handler is started relative to the point in
time at which it started operating. Figure 4.21 and Figure 4.22 show typical operations of the cyclic handler.

If the startup cycle is shorter than the time tick interval, the cyclic handler is started only once every time tick supplied
(processing equivalent to isig_tim). For example, if the time tick interval is 10 ms and the startup cycle is 3 ms and the cy-
clic handler has started operating when a time tick is supplied, then the cyclic handler is started every time tick.

Start operating Stop operating
Cyeclic handler
created

A 4 A 4 o
v Ll »

[} [} [}

. .| . . } }

Activationy Activation | Activation Activation Activation

phase : cycle : cycle cycle cycle :

v v v
Handler does Handler does Handler starts Handler starts Handler does
not start not start not start

Figure 4.21 Cyclic handler operation in cases where the activation phase is saved

Start operating Stop operating
Cyeclic handler
created

\ 4 A 4 o
Ll L) »

[} [} 1

Activation: Activation : Activation Activation Activation :

phase : cycle : cycle cycle cycle :

v v v

Handler does Handler does Handler starts Handler starts Handler does
not start not start not start

Figure 4.22 Cyclic handler operation in cases where the activation phase is not saved

® Start Cyclic Handler Operation (sta_cyc, ista_cyc)
Causes the cyclic handler with the specified ID to operational state.

® Stop Cyclic Handler Operation (stp_cyc, istp_cyc)
Causes the cyclic handler with the specified ID to non-operational state.

® Reference Cyclic Handler Status (ref_cyc, iref_cyc)
Refers to the status of the cyclic handler. The operating status of the target cyclic handler and the remaining time
before it starts next time are inspected.

-B5 -

4.3.11

Alarm Handler Function

The alarm handler is a time event handler that is started only once at a specified time.

Use of the alarm handler makes it possible to perform time-dependent processing. The time of day is specified by a relative
time. Figure 4.23 shows a typical operation of the alarm handler.

Alarm handler Star.t Star.t Stop.
operating operating operating
created

A 4 A 4) g
l >

Activation Activation :

time time :

v

Handler starts Handler does
not start

Figure 4.23 Typical operation of the alarm handler

Start Alarm Handler Operation (sta_alm, ista_alm)
Causes the alarm handler with the specified ID to operational state.

Stop alarm Handler Operation (stp_alm, istp_alm)
Causes the alarm handler with the specified ID to non-operational state.

Reference Alarm Handler Status (ref_alm, iref_alm)
Refers to the status of the alarm handler. The operating status of the target alarm handler and the remaining time

before it starts are inspected.

-56 -

4.3.12 System Status Management Function

® Rotate Task Precedence (rot_rdq, irot_rdq)
This service call establishes the TSS (time-sharing system). That is, if the ready queue is rotated at regular inter-
vals, round robin scheduling required for the TSS is accomplished (See Figure 4.24)

Priority
1 ™ taskA
2
3 taskB taskC

Y

5
L
-
&
n
2,
S

| taskE taskF [~

—————— e —_—_—————— e e _I
Move the end of the queue

Figure 4.24 Ready Queue Management by rot_rdq Service Call

Reference task ID in the RUNNING state(get_tid, iget_tid)
References the ID number of the task in the RUNNING state. If issued from the handler, TSK_NONE(=0) is ob-
tained instead of the ID number.

® | ockthe CPU (loc_cpu, iloc_cpu)
Places the system into a CPU locked state.

® Unlock the CPU (unl_cpu, iunl_cpu)
Frees the system from a CPU locked state.

® Disable dispatching (dis_dsp)
Places the system into a dispatching disabled state.

® Enable dispatching (ena_dsp)
Frees the system from a dispatching disabled state.

® Reference context (sns_ctx)
Gets the context status of the system.

® Reference CPU state (sns_loc)
Gets the CPU lock status of the system.

® Reference dispatching state (sns_dsp)
Gets the dispatching disable status of the system.

® Reference dispatching pending state (sns_dpn)
Gets the dispatching pending status of the system.

-57-

4.3.13 Interrupt Management Function
The interrupt management function provides a function to process requested external interrupts in real time.

The interrupt management service calls provided by the MR30 kernel include the following:

® Returns from interrupt handler (ret_int)
The ret_int service call activates the scheduler to switch over tasks as necessary when returning from the interrupt

handler.
When using the C language,®, this function is automatically called at completion of the handler function. In this

case, therefore, there is no need to invoke this service call.

Figure 4.25 shows an interrupt processing flow. Processing a series of operations from task selection to register restoration
is called a "scheduler.".

TaskA
Interrupt
Save Registers
Handler Processing L >
#pragma INTHANDLER Declare
(C language)
iwup_tsk
ret_int
I
Task Selection
TaskB
Restore Registers

Figure 4.25 Interrupt process flow

% |n the case that the interruput handler is specified by "#pragma INTHANDLER".

-B8 -

4.3.14

System Configuration Management Function

This function inspects the version information of MR30.

4.3.15

References Version Information(ref_ver, iref_ver)
The ref_ver service call permits the user to get the version information of MR30. This version information can be
obtained in the standardized format of pITRON specification.

Extended Function (Long Data Queue)

The long data queue is a function outside the scope of uITRON 4.0 Specification. The data queue function handles data as
consisting of 16 bits, whereas the short data queue handles data as consisting of 32 bits. Both behave the same way except
only that the data sizes they handle are different.

Send to Long Data Queue (vsnd_dtq, vtsnd_dtq)
The data is transmitted to the long data queue. If the long data queue is full of data, the task goes to a data trans-
mission wait state.

Send to Long Data Queue (vpsnd_dtq, vipsnd_dtq)
The data is transmitted to the long data queue. If the long data queue is full of data, the task returns error code
without going to a data transmission wait state.

Forced Send to Long Data Queue (vfsnd_dtq, vifsnd_dtq)
The data is transmitted to the long data queue. If the long data queue is full of data, the data at the top of the long
data queue or the oldest data is removed, and the transmitted data is stored at the tail of the long data queue.

Receive from Long Data Queue(vrcv_dtq, vircv_dtq)
The data is retrieved from the long data queue. If the long data queue has no data in it, the task is kept waiting un-
til data is transmitted to the long data queue.

Receive from Long Data Queue (vprcv_dtq, viprcv_dtq)
The data is received from the long data queue. If the long data queue has no data in it, the task returns error code
without going to a data reception wait state.

Reference Long Data Queue Status (vref_dtq, viref_dtq)
Checks to see if there are any tasks waiting for data to be entered in the target long data queue and refers to the
number of the data in the long data queue.

-59 -

4.3.16 Extended Function (Reset Function)

The reset function is a function outside the scope of LFITRON 4.0 Specification. It initializes the mailbox, data queue, and
memory pool, etc.

® (Clear Data Queue Area (vrst_dtq)
Initializes the data queue. If there are any tasks waiting for transmission, they are freed from WAITING state and
the error code EV_RST is returned.

® (Clear Mailbox Area (vrst_mbx)
Initializes the mailbox.

® (Clear Fixed-size Memory Pool Area (vrst_mpf)
Initializes the fixed-size memory pool. If there are any tasks in WAITING state, they are freed from the WAIT-
ING state and the error code EV_RST is returned.

® (Clear Variable-size Memory Pool Area (vrst_mpl)
Initializes the variable length memory pool.

® (Clear Short Data Queue Area (vrst_vdtq)
Initializes the short data queue. If there are any tasks waiting for transmission, they are freed from WAITING
state and the error code EV_RST is returned.

-60 -

5. Service call reffernce

5.1 Task Management Function

Specifications of the task management function of MR30 are listed in Table 5.1 below. The task description languages in
item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR30 kernel
concerned with them.

The task stack permits a section hame to be specified for each task individually.

Table 5.1 Specifications of the Task Management Function

No. Item Content
1 Task ID 1-255
2 Task priority 1-255
3 Maximum number of activation request count 15
TA HLNG : Tgsks written in
- high-level language
4 Task attribute TA ASM : Tasks written in as-
— sem-bly language
TA_ACT: Startup attribute
5 Task stack Section specifiable

Table 5.2 List of Task Management Function Service Call

No. | Service Call Function System State
TIN|IE|D|U|L
1 | act_tsk | [S] Activates task @] 0O|0|O
2 | iact_tsk | [S] 0|0|0]|O
3 | can_act | [S] Cancels task activation request 0 0|0|O
4 | ican_act O|0|0O0|O
5 sta_tsk Starts task and specifies start code | O 0|0]|O
6 | ista tsk 0O|0|0|O0O
7 | ext_tsk | [S] Exits current task) O|0]0O]|O
8 | ter tsk | [S] Forcibly terminates a task @) 0O|0]|O
9 | chg pri | [S] Changes task priority 0 0O|0|O0
10 | ichg_pri 0O|0|0|O
11 | get_pri | [S] Refers to task priority o] O|0|O
12 | iget pri 0O|0|0|O0O
13 | ref tsk Refers to task state 0 0|0|O0
14 | iref tsk 0O|0|0|O0O
15 | ref tst Refers to task state (simple version) | O 0|0|O0
16 | iref tst 0O|O0|0O|O

-61-

Notes:
® [S]: Standard profile service calls

® FEach sign within " System State " is a following meaning.
¢ T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & 6 o o

-62-

act_tsk

Activate task

lact_tsk Activate task (handler only)

[[C Language API]]

ER ercd = act_tsk(ID tskid);
ER ercd = iact_tsk(ID tskid);
@ Parameters

ID tskid ID number of the task to be started

@ Return parameters

ER ercd Terminated normally (E_OK) or error code

[[Assembly language API 1]
.include mr30.inc
act_tsk TSKID
iact_tsk TSKID
® Parameters

TSKID ID number of the task to be started

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Task ID
[[Error Code 1]
E_QOVR

Queuing overflow

-63-

[[Functional description]]
This service call starts the task indicated by tskid. The started task goes from DORMANT state to READY state or RUN-
NING state.

The following lists the processing performed on startup.
1. Initializes the current priority of the task.

2. Clears the number of queued wakeup requests.

3. Clears the number of suspension requests.

Specifying tskid=TSK_SELF(0) specifies the issuing task itself. The task has passed to it as parameter the extended infor-
mation of it that was specified when the task was created. If TSK_SELF is specified for tskid in non-task context, operation
of this service call cannot be guaranteed.

If the target task is not in DORMANT state, a task activation request by this service call is enqueued. In other words, the
activation request count is incremented by 1. The maximum value of the task activation request is 15. If this limit is ex-
ceeded, the error code E_QOVR is returned.

If TSK_SELF is specified for tskid, the issuing task itself is made the target task.

If this service call is to be issued from task context, use act_tsk; if issued from non-task context, use iact_tsk.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>

#include “kernel id.h”

void taskl(VP_INT stacd)

ER ercd;

ercd = act_tsk(ID_task2);
void task2(VP_INT stacd)

ext tsk();

}

<<Example statement in assembly language>>
. INCLUDE mr30.inc

.GLB task
task:
pushm A0

act_tsk #ID_TASK3

-64 -

can_act Cancel task activation request
ican_act Cancel task activation request (handler only)

[[C Language API]]
ER_UINT actcnt
ER_UINT actcnt
® Parameters

ID tskid ID number of the task to cancel

can_act(ID tskid);
ican_act(ID tskid);

® Return Parameters

ER_UINT actent>0 Canceled activation request count
actent=0
actent<0 Error code
[[Assembly language API 1]

-.include mr30.inc
can_act TSKID
ican_act TSKID

® Parameters
TSKID ID number of the task to cancel

@ Register contents after service call is issued
Register name Content after service call is issued

RO Canceled startup request count or error code
A0 ID number of the target task

[[Error code]I
None

[[Functional description 1]

This service call finds the number of task activation requests enqueued for the task indicated by tskid, returns the result as a

return parameter, and at the same time invalidates all of the task’s activation requests.

Specifying tskid=TSK_SELF(0) specifies the issuing task itself. If TSK_SELF is specified for tskid in non-task context,

operation of this service call cannot be guaranteed.

This service call can be invoked for a task in DORMANT state as the target task. In that case, the return parameter is 0.

If this service call is to be issued from task context, use can_act; if issued from non-task context, use ican_act.

-65 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl ()

ER _UINT actcnt;

actcnt = can act(ID task2);
void task2 ()
ext tsk();

<<Example statement in assembly language>>
. INCLUDE mr30.1inc

.GLB task
task:
PUSHM AQ

can_act #ID_TASK2

- 66 -

sta_tsk

Activate task with a start code
ista_tsk

Activate task with a start code (handler only)

[[C Language API]l

ER ercd = sta_tsk(ID tskid,VP_INT stacd);
ER ercd = ista_tsk (ID tskid,VP_INT stacd);
® Parameters

ID tskid ID number of the target task
VP_INT stacd Task start code

® Return Parameters

ER ercd Terminated normally (E_OK) or error code

[[Assembly language API]]
-include mr30.inc
sta_tsk TSKID,STACD
ista tsk TSKID,STACD

@ Parameters
TSKID ID number of the target task

STATCD Task start code

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code

R1 Task start code

A0 ID number of the target task
[[Error code]I

E OBJ

Obiject status invalid (task indicated by tskid is not DOMANT state)

-67-

[[Functional description]]

This service call starts the task indicated by tskid. In other words, it places the specified task from DORMANT state into
READY state or RUNNING state. This service call does not enqueue task activation requests. Therefore, if a task activa-
tion request is issued while the target task is not DORMANT state, the error code E_OBJ is returned to the service call is-
suing task. This service call is effective only when the specified task is in DORMANT state. The task start code stacd is 16
bits long. This task start code is passed as parameter to the activated task.

If a task is restarted that was once terminated by ter_tsk or ext_tsk, the task performs the following as it starts up.
1. Initializes the current priority of the task.

2. Clears the number of queued wakeup requests.

3. Clears the number of nested forcible wait requests.

If this service call is to be issued from task context, use sta_tsk; if issued from non-task context, use ista_tsk.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

ER ercd;
VP_INT stacd = 0;
ercd = sta_ tsk(ID task2, stacd);

void task2 (VP_INT msg)

if (msg == 0)

}

<<Example statement in assembly language>>
. INCLUDE mr30.inc

.GLB task
task:
PUSHM AO,R1,R3

sta_tsk #ID TASK4,#012345678H

- 68 -

ext_tsk Terminate invoking task

[[C Language API]]
ER ercd = ext_tsk();

® Parameters
None

® Return Parameters
Not return from this service call

[[Assembly language API]]
.include mr30.1inc
ext_tsk
® Parameters

None

@ Register contents after service call is issued
Not return from this service call

[[Error code]

Not return from this service call

[[Functional description]

This service call terminates the invoking task. In other words, it places the issuing task from RUNNING state into DOR-
MANT state. However, if the activation request count for the issuing task is 1 or more, the activation request count is
decremented by 1, and processing similar to that of act_tsk or iact_tsk is performed. In that case, the task is placed from
DORMANT state into READY state. The task has its extended information passed to it as parameter when the task starts

up.
This service call is designed to be issued automatically at return from a task.

In the invocation of this service call, the resources the issuing task had acquired previously (e.g., semaphore) are not re-

leased.

This service call can only be used in task context. This service call can be used even in a CPU locked state, but cannot be

used in non-task context.

- 69 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task (void)

ext tsk();

<<Example statement in assembly language>>
. INCLUDE mr30.inc
.GLB task

task:

ext tsk

-70 -

ter_tsk Terminate task

[[C Language API]]
ER ercd = ter_tsk(ID tskid);

® Parameters

ID tskid ID number of the forcibly terminated task
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

-include mr30.inc
ter_tsk TSKID

® Parameters
TSKID ID number of the forcibly terminated task

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
A0 ID number of the target task
[[Error code]
E_OBJ Object status invalid(task indicated by tskid is an inactive state)
E_ILUSE Service call improperly used task indicated by tskid is the issuing task itself)

[[Functional description 1]

This service call terminates the task indicated by tskid. If the activation request count of the target task is equal to or greater
than 1, the activation request count is decremented by 1, and processing similar to that of act_tsk or iact_tsk is performed.
In that case, the task is placed from DORMANT state into READY state. The task has its extended information passed to it
as parameter when the task starts up.

If a task specifies its own task ID or TSK_SELF, an E_ILUSE error is returned.

If the specified task was placed into WAITING state and has been enqueued in some waiting queue, the task is dequeued
from it by execution of this service call. However, the semaphore and other resources the specified task had acquired pre-
viously are not released.

If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value for the service call.

This service call can only be used in task context, and cannot be used in non-task context.

-71 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

ter tsk(ID main);

}

<<Example statement in assembly language>>
. INCLUDE mr30.1inc

.GLB task
task:
PUSHM AQ

ter tsk #ID TASK3

-72 -

chg_pri Change task priority
ichg_pri Change task priority(handler only)

[[C Language API]]

ER ercd = chg_pri(ID tskid, PRI tskpri);
ER ercd = ichg _pri(ID tskid, PRI tskpri);
@ Parameters

ID tskid ID number of the target task
PRI tskpri Priority of the target task
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

-.include mr30.inc
chg_pri TSKID,TSKPRI
ichg_pri TSKID,TSKPRI

® Parameters

TSKID ID number of the target task

TSKPRI Priority of the target task
® Register contents after service call is issued
Register name Content after service call is issued

RO Error code

R3 Priority of the target task

A0 ID number of the target task

[[Error code]I
E_OBJ

Object status invalid(task indicated by tskid is an inactive state)

-73-

[[Functional description]]

This service call changes the priority of the task indicated by tskid to the value indicated by tskpri, and performs resched-
uling based on the result of that priority change. Therefore, if this service call is executed on a task enqueued in a ready
queue (including one that is in an executing state) or a task in a waiting queue in which tasks are enqueued in order of pri-
ority, the target task is moved to behind the tail of a relevant priority part of the queue. Even when the same priority as the
previous one is specified, the task is moved to behind the tail of the queue.

The smaller the number, the higher the task priority, with 1 assigned the highest priority. The minimum value specifiable as
priority is 1. The specifiable maximum value of priority is the maximum value of priority specified in a configuration file,
providing that it is within the range 1 to 255. For example, if system specification in a configuration file is as follows,

system{
stack_size
priority

0x100;
13;

}:
then priority can be specified in the range 1 to 13.

If TSK_SELF is specified, the priority of the issuing task is changed. If TSK_SELF is specified for tskid in non-task con-
text, operation of the service call cannot be guaranteed. If TPRI_INI is specified, the task has its priority changed to the
initial priority that was specified when the task was created. The changed task priority remains effective until the task is
terminated or this service call is executed again.

If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value for the service call.
Since the M3T-MR30 does not support the mutex function, in no case will the error code E_ILUSE be returned.

If this service call is to be issued from task context, use chg_pri; if issued from non-task context, use ichg_pri.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

chg pri(ID_task2, 2);

}

<<Example statement in assembly language>>
. INCLUDE mr30.inc

.GLB task
task:
pushm AO,R3

chg pri #ID TASK3, #1

-74 -

get_pri Reference task priority
iget_pri Reference task priority(handler only)

[[C Language API]]
ER ercd = get_pri(ID tskid, PRI *p_tskpri);
ER ercd = iget pri(ID tskid, PRI *p_tskpri);

® Parameters

ID tskid ID number of the target task
PRI *p_tskpri Pointer to the area to which task priority is returned
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

-.include mr30.inc
get pri TSKID
iget_pri TSKID
® Parameters
TSKID ID number of the target task

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Acquired task priority
[[Error code]I
E OBJ Obiject status invalid(task indicated by tskid is an inactive state)

[[Functional description]]

This service call returns the priority of the task indicated by tskid to the area indicated by p_tskpri. If TSK_SELF is speci-
fied, the priority of the issuing task itself is acquired. If TSK_SELF is specified for tskid in non-task context, operation of
the service call cannot be guaranteed.

If the task indicated by tskid is in DORMANT state, it returns the error code E_OBJ as a return value for the service call.

If this service call is to be issued from task context, use get_pri; if issued from non-task context, use iget_pri.

-75-

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

PRI p tskpri;
ER ercd;

ercd = get_pri(ID_task2, &p_ tskpri);

<<Example statement in assembly language>>
. INCLUDE mr30.inc

.GLB task
task:
PUSHM AQ

get_pri #ID_TASK2

-76 -

ref tsk Reference task status
iref_tsk Reference task status (handler only)

[[C Language API]]

ER ercd = ref_tsk(ID tskid, T_RTSK *pk_rtsk);
ER ercd = iref_tsk(ID tskid, T_RTSK *pk rtsk);

@ Parameters
ID tskid ID number of the target task

T_RTSK *pk_rtsk Pointer to the packet to which task status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)

Contents of pk_rtsk
typedef struct t_rtsk{

STAT tskstat +0 2 Task status
PRI tskpri +2 2 Current priority of task
PRI tskbpri +4 2 Base priority of task
STAT tskwait +6 2 Cause of wait
ID wobjid +8 2 Waiting object ID
TMO lefttmo +10 4 Left time before timeout
UINT actent +14 2 Number of queued activation request counts
UINT wupcnt +16 2 Number of queued wakeup request counts
UINT suscnt +18 2 Number of nested suspension request counts

} T_RTSK;

[[Assembly language API]]

-include mr30.inc

ref_tsk TSKID, PK_RTSK

iref_tsk TSKID, PK_RTSK

® Parameters

TSKID ID number of the target task

PK_RTSK Pointer to the packet to which task status is returned

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code

A0 ID number of the target task

Al Pointer to the packet to which task status is returned
[[Error code 1]

None

-77 -

[[Functional description]]

This service call inspects the status of the task indicated by tskid and returns the current information on that task to the area
pointed to by pk_rtsk as a return parameter. If TSK_SELF is specified, the status of the issuing task itself is inspected. If
TSK_SELF is specified for tskid in non-task context, operation of the service call cannot be guaranteed.

@ tskstat (task status)
tskstat has one of the following values returned to it depending on the status of the specified task.
e TTS_RUN(0x0001) RUNNING state

e TTS_RDY(0x0002) READY state

e TTS_WAI(0x0004) WAITING state

e TTS_SUS(0x0008) SUSPENDED state

e TTS_WAS(0x000C) WAITING-SUSPENDED state

e TTS_DMT(0x0010) DORMANT state

@ tskpri (current priority of task)
tskpri has the current priority of the specified task returned to it. If the task is in DOMANT state, tskpri is
indeterminate.

@ tskbpri (base priority of task)
tskbpri has the base priority of the specified task returned to it. Since the M3T-MR30 does not support
the mutex function, tskpri and tskbpri assume the same value. If the task is in DOMANT state, tskbpri is
indeterminate.

@ tskwait (cause of wait)
If the target task is in a wait state, one of the following causes of wait is returned. The values of the re-
spective causes of wait are listed below. If the task status is other than a wait state (TTS_WAI or
TTS_WAS), tskwait is indeterminate.
e TTW_SLP (0x0001) Kept waiting by slp_tsk or tslp_tsk

TTW_DLY (0x0002) Kept waiting by dly_tsk

TTW_SEM (0x0004) Kept waiting by wai_sem or twai_sem

TTW_FLG (0x0008) Kept waiting by wai_flg or twai_flg

TTW_SDTQ(0x0010) Kept waiting by snd_dtq or tsnd_dtq

TTW_RDTQ(0x0020) Kept waiting by rcv_dtq or trcv_dtq

TTW_MBX (0x0040) Kept waiting by rcv_mbx or trcv_mbx

TTW_MPF (0x2000) Kept waiting by get_mpf or tget_mpf

TTW_VSDTQ (0x4000) Kept waiting by vsnd_dtq or vtsnd_dtg**
e TTW_VRDTQ(0x8000) Keptwaiting by vrcv_dtg or vircv_dtq

¢ wobjid (waiting object ID)
If the target task is in a wait state (TTS_WAI or TTS_WAS), the ID of the waiting target object is re-
turned. Otherwise, wobijid is indeterminate.

& lefttmo(left time before timeout)
If the target task has been placed in WAITING state (TTS_WAI or TTS_WAS) by other than dly_tsk,
the left time before it times out is returned. If the task is kept waiting perpetually, TMO_FEVR is re-
turned. Otherwise, lefttmo is indeterminate.

@ actcnt(task activation request)
The number of currently queued task activation request is returned.

¢ wupcnt (wakeup request count)
The number of currently queued wakeup requests is returned. If the task is in DORMANT state, wupcnt
is indeterminate.

@ suscnt (suspension request count)
The number of currently nested suspension requests is returned. If the task is in DORMANT state,
suscnt is indeterminate.

If this service call is to be issued from task context, use ref_tsk; if issued from non-task context, use iref _tsk.

3 TTW VSDTQ and TTW VRDTQ are the causes of wait outside the scope of WITRON 4.0 Specification.

-78-

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RTSK rtsk;
ER ercd;

ercd = ref tsk(ID main, &rtsk);

}

<<Example statement in assembly language>>
_refdata: .blkb 20

.include mr30.inc

.GLB task
task:
PUSHM AQ,Al

ref tsk #TSK_SELF, #_refdata

-79-

ref tst Reference task status (simplified version)
iref_tst Reference task status (simplified version, handler

only)

[[C Language API]]
ER ercd = ref_tst(ID tskid, T _RTST *pk_rtst);
ER ercd = iref_tst(ID tskid, T_RTST *pk rtst);

® Parameters
ID tskid ID number of the target task

T_RTST *pk_rtst Pointer to the packet to which task status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)

Contents of pk_rtsk
typedef struct t_rtst{

STAT tskstat +0 2 Task status
STAT tskwait +2 2 Cause of wait
} T_RTST;
[[Assembly language API 1]

-include mr30.inc

ref_tst TSKID, PK_RTST
iref_tst TSKID, PK_RTST

® Parameters

TSKID ID number of the target task

PK_RTST Pointer to the packet to which task status is returned

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code

A0 ID number of the target task

Al Pointer to the packet to which task status is returned
[[Error code 1]

None

-80-

[[Functional description]]

This service call inspects the status of the task indicated by tskid and returns the current information on that task to the area
pointed to by pk_rtst as a return value. If TSK_SELF is specified, the status of the issuing task itself is inspected. If
TSK_SELF is specified for tskid in non-task context, operation of the service call cannot be guaranteed.

@ tskstat (task status)
tskstat has one of the following values returned to it depending on the status of the specified task.

e TTS_RUN(0x0001) RUNNING state

e TTS_RDY(0x0002) READY state

e TTS_WAI(0X0004) WAITING state

e TTS_SUS(0x0008) SUSPENDED state

e TTS_WAS(0x000C) WAITING-SUSPENDED state

e TTS_DMT(0x0010) DORMANT state

@ tskwait (cause of wait)
If the target task is in a wait state, one of the following causes of wait is returned. The values of the respective
causes of wait are listed below. If the task status is other than a wait state (TTS_WAI or TTS_WAS), tskwait is
indeterminate.
e TTW_SLP (0x0001) Kept waiting by slp_tsk or tslp_tsk

e TTW_DLY (0x0002) Kept waiting by dly_tsk

e TTW_SEM (0x0004) Kept waiting by wai_sem or twai_sem

e TTW_FLG (0x0008) Kept waiting by wai_flg or twai_flg

e TTW_SDTQ(0x0010) Kept waiting by snd_dtq or tsnd_dtq

e TTW_RDTQ(0x0020) Kept waiting by rcv_dtq or trcv_dtq

e TTW_MBX (0x0040) Kept waiting by rcv_mbx or trcv_mbx

e TTW_MPF (0x2000) Kept waiting by get_mpf or tget_ mpf

e TTW_VSDTQ (0x4000) Kept waiting by vsnd_dtq or vtsnd_dtq*?
e TTW_VRDTQ(0x8000) Kept waiting by vrcv_dtq or vtrcv_dtq

If this service call is to be issued from task context, use ref_tst; if issued from non-task context, use iref_tst.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

T RTST rtst;
ER ercd;

ercd = ref tst(ID main, &rtst);

<<Example statement in assembly language>>

_refdata: .blkb 4
.include mr30.inc
.GLB task
task:
PUSHM AQ,Al

ref tst #ID_TASK2,#_refdata

%2 TTW VSDTQ and TTW VRDTQ are the causes of wait outside the scope of WITRON 4.0 Specification.

-81-

5.2 Task Dependent Synchronization Function

Specifications of the task-dependent synchronization function are listed in below.

Table 5.3 Specifications of the Task Dependent Synchronization Function

No. Item Content
1| Maximum value of task wakeup request count 15
2 | Maximum number of nested forcible task wait requests count 1
Table 5.4 List of Task Dependent Synchronization Service Call

No. Service Call Function System State
T N E D U
1 slp_tsk [S] Puts task to sleep O 0)
2 tslp_tsk [S] Puts task to sleep O o] 0]

(with timeout)
3 wup_tsk | [S] Wakes up task O 0 0 0
4 iwup_tsk | [S]) 0 0 0
5 can_wup Cancels wakeup request 0 0 0 0
6 ican_wup 0 0 0 0
7 rel_wai [S] Releases task from waiting 0 0 0 0
8 irel_wai [S]) 0 0 0
9 sus_tsk [S] Suspends task 0 0 0 0
10 isus_tsk 0 0 0 0
11 rsm_tsk [S] Resumes suspended task 0 0 0 0
12 irsm_tsk O O 0 0
13 frsm_tsk | [S] Forcibly resumes suspended 0 O O O
14 ifrsm_tsk task) 0] 0 0
15 dly tsk [S] Delays task) @))
Notes:
® [S]: Standard profile service calls
® Each sign within " System State " is a following meaning.

*

* & 6 o o

T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

-82-

slp_tsk Put task to sleep
tslp_tsk Put task to sleep (with timeout)

[[C Language API]]
ER ercd = slp_tsk(Q);
ER ercd = tslp_tsk(TMO tmout);

® Parameters

® slp tsk
None
® tslp tsk
TMO tmout Timeout value

® Return Parameters

ER ercd Terminated normally (E_OK) or error code
[[Assembly language API]]
.include mr30.inc
slp_tsk

tslp_tsk TMO
® Parameters

TMO Timeout value
@ Register contents after service call is issued
tslp_tsk
Register name Content after service call is issued
RO Error code
R1 Timeout value (16 low-order bits)
R3 Timeout value (16 high-order bits)
slp_tsk
Register name Content after service call is issued
RO Error code
[[Error code 1]
E TMOUT Timeout
E_RLWAI Forced release from waiting

-83-

[[Functional description]]
This service call places the issuing task itself from RUNNING state into sleeping wait state. The task placed into WAIT-
ING state by execution of this service call is released from the wait state in the following cases:

€ When a task wakeup service call is issued from another task or an interrupt
The error code returned in this case is E_OK.

€ When aforcible awaking service call is issued from another task or an interrupt
The error code returned in this case is E_RLWAI.

€ When the first time tick occurred after tmout elapsed (for tslp_tsk)
The error code returned in this case is E_TMOUT.

If the task receives sus_tsk issued from another task while it has been placed into WAITING state by this service call, it
goes to WAITING-SUSPENDED state. In this case, even when the task is released from WAITING state by a task wakeup
service call, it still remains in SUSPENDED state, and its execution cannot be resumed until rsm_tsk is issued.

The service call tslp_tsk may be used to place the issuing task into sleeping state for a given length of time by specifying
tmout in a parameter to it. The parameter tmout is expressed in ms units. For example, if this service call is written as
tslp_tsk(10);, then the issuing task is placed from RUNNING state into WAITING state for a period of 10 ms. If specified
as tmout =TMO_FEVR(-1), the task will be kept waiting perpetually, with the service call operating the same way as
slp_tsk.

The values specified for tmout must be within Ox7fffffff - time tick. If any value exceeding this limit is specified, operation
of the service call cannot be guaranteed.

This service call can only be issued from task context, and cannot be issued from non-task context.

-84-

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

if(slp _tsk() != E_OK)
error (“Forced wakeup\n”) ;

if(tslp_tsk(10) == E_TMOUT)
error (“time out\n”) ;

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:

slp tsk

PUSHM R1,R3

tslp_tsk #TMO_FEVR

PUSHM R1,R3
tslp tsk #100

-85 -

wup_tsk Wakeup task
iwup_tsk Wakeup task (handler only)

[[C Language API]]
ER ercd = wup_tsk(ID tskid);
ER ercd = iwup_tsk(ID tskid);

® Parameters

ID tskid ID number of the target task
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

.include mr30.1inc
wup_tsk TSKID
iwup_tsk TSKID

® Parameters

TSKID ID number of the target task
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code
A0 ID number of the target task
[[Error code 1]
E OBJ Obiject status invalid(task indicated by tskid is an inactive state)
E QOVR Queuing overflow

[[Functional description]]

If the task specified by tskid has been placed into WAITING state by slp_tsk or tslp_tsk, this service call wakes up the task
from WAITING state to place it into READY or RUNNING state. Or if the task specified by tskid is in WAIT-
ING-SUSPENDED state, this service call awakes the task from only the sleeping state so that the task goes to SUS-
PENDED state.

If a wakeup request is issued while the target task remains in DORMANT state, the error code E_OBJ is returned to the
service call issuing task. If TSK_SELF is specified for tskid, it means specifying the issuing task itself. If TSK_SELF is
specified for tskid in non-task context, operation of the service call cannot be guaranteed.

If this service call is issued to a task that has not been placed in WAITING state or in WAITING-SUSPENDED state by
execution of slp_tsk or tslp_tsk, the wakeup request is accumulated. More specifically, the wakeup request count for the
target task to be awakened is incremented by 1, in which way wakeup requests are accumulated.

The maximum value of the wakeup request count is 15. If while the wakeup request count = 15 a new wakeup request is
generated exceeding this limit, the error code E_QOVR is returned to the task that issued the service call, with the wakeup
request count left intact.

If this service call is to be issued from task context, use wup_tsk; if issued from non-task context, use iwup_tsk.

-86 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

if(wup_tsk(ID main) != E OK)
printf (“Can’t wakeup main()\n”) ;

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:
PUSHM AQ

wup_tsk #ID_TASK1

-87-

can_wup Cancel wakeup request
ican_wup Cancel wakeup request (handler only)

[[C Language API]]
ER_UINT wupcnt = can_wup(ID tskid);

ER_UINT wupcnt = ican_wup(ID tskid);

® Parameters
ID tskid ID number of the target task

® Return Parameters
ER_UINT wupcnt >0 Canceled wakeup request count
wupcnt =0
wupcnt <0 Error code

[[Assembly language API]]
.include mr30.1inc
can_wup TSKID
ican_wup TSKID

® Parameters

TSKID ID number of the target task
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code,Canceled wakeup request count
A0 ID number of the target task
[[Exror code 1]
E_OBJ Obiject status invalid(task indicated by tskid is an inactive state)

[[Functional description 1]

This service call clears the wakeup request count of the target task indicated by tskid to 0. This means that because the tar-
get task was in either WAITING state nor WAITING-SUSPENDED state when an attempt was made to wake it up by
wup_tsk or iwup_tsk before this service call was issued, the attempt resulted in only accumulating wakeup requests and this
service call clears all of those accumulated wakeup requests.

Furthermore, the wakeup request count before being cleared to 0 by this service call, i.e., the number of wakeup requests
that were issued in vain (wupcnt) is returned to the issuing task. If a wakeup request is issued while the target task is in
DORMANT state, the error code E_OBJ is returned. If TSK_SELF is specified for tskid, it means specifying the issuing
task itself. If TSK_SELF is specified for tskid in non-task context, operation of this service call cannot be guaranteed.

If this service call is to be issued from task context, use can_wup; if issued from non-task context, use ican_wup.

-88 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

ER_UINT wupcnt;

wupcnt = can_wup (ID_main) ;
if(wup_cnt > 0)
printf (“wupcnt = %$d\n”,wupcnt) ;

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:
PUSHM AQ

can_wup #ID_ TASK3

-89 -

rel_wai Release task from waiting
irel_wai Release task from waiting (handler only)

[[C Language API]]
ER ercd = rel_wai(ID tskid);
ER ercd = irel_wai(ID tskid);

® Parameters

ID tskid ID number of the target task
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

.include mr30.inc
rel_wai TSKID
irel_wai TSKID

® Parameters

TSKID ID number of the target task
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code
A0 ID number of the target task
[[Error code 1]
E_OBJ Obiject status invalid(task indicated by tskid is not an wait state)

[[Functional description 1]

This service call forcibly release the task indicated by tskid from waiting (except SUSPENDED state) to place it into
READY or RUNNING state. The forcibly released task returns the error code E_RLWAII. If the target task has been en-
queued in some waiting queue, the task is dequeued from it by execution of this service call.

If this service call is issued to a task in WAITING-SUSPENDED state, the target task is released from WAITING state and
goes to SUSPENDED state.*®

If the target task is not in WAITING state, the error code E_OBJ is returned. This service call forbids specifying the issuing
task itself for tskid.

If this service call is to be issued from task context, use rel_wai; if issued from non-task context, use irel_wai.

* This means that tasks cannot be resumed from SUSPENDED state by this service call. Only the rsm_tsk, irsm_tsk, frsm_tsk, and
ifrsm_tsk service calls can release them from SUSPENDED state.

-90 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

if(rel wai(ID main) != E OK)
error(“*Can’t rel wai main()\n”);

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:
PUSHM AQ

rel wai #ID TASK2

-91-

sus_tsk Suspend task
iIsus_tsk Suspend task (handler only)

[[C Language API]]
ER ercd = sus_tsk(ID tskid);
ER ercd = isus_tsk(ID tskid);

® Parameters

ID tskid ID number of the target task
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

.include mr30.inc
sus_tsk TSKID
isus_tsk TSKID

® Parameters

TSKID ID number of the target task
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code
A0 ID number of the target task
[[Error code 1]
E OBJ Obiject status invalid(task indicated by tskid is an inactive state)
E QOVR Queuing overflow

[[Functional description]]

This service call aborts execution of the task indicated by tskid and places it into SUSPENDED state. Tasks are resumed
from this SUSPENDED state by the rsm_tsk, irsm_tsk, frsm_tsk, or ifrsm_tsk service call. If the task indicated by tskid is
in DORMANT state, it returns the error code E_OBJ as a return value for the service call.

The maximum number of suspension requests by this service call that can be nested is 1. If this service call is issued to a
task which is already in SUSPENDED state, the error code E_QOVR is returned.

This service call forbids specifying the issuing task itself for tskid.

If this service call is to be issued from task context, use sus_tsk; if issued from non-task context, use isus_tsk.

-92-

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

if(sus_tsk(ID main) != E _OK)
printf (“Can’t suspend task main()\n”);

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:
PUSHM AQ

sus_tsk #ID_TASK2

-03 -

rsm_tsk Resume suspended task

irsm_tsk Resume suspended task(handler only)
frsm_tsk Forcibly resume suspended task
ifrsm_tsk Forcibly resume suspended task(handler only)
[[C Language API]]
ER ercd = rsm_tsk(ID tskid);
ER ercd = irsm_tsk(ID tskid);
ER ercd = frsm_tsk(ID tskid);
ER ercd = ifrsm_tsk(ID tskid);
® Parameters
ID tskid ID number of the target task
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

-include mr30.inc
rsm_tsk TSKID
irsm _tsk TSKID
frsm_tsk TSKID
ifrsm _tsk TSKID

® Parameters

TSKID ID number of the target task
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code
A0 ID number of the target task
[[Error code 1]
E_OBJ Object status invalid(task indicated by tskid is not a forcible wait state)

[[Functional description 1]

If the task indicated by tskid has been aborted by sus_tsk, this service call resumes the target task from SUSPENDED state.
In this case, the target task is linked to behind the tail of the ready queue. In the case of frsm_tsk and ifrsm_tsk, the task is
forcibly resumed from SUSPENDED state.

If a request is issued while the target task is not in SUSPENDED state (including DORMANT state), the error code E_OBJ
is returned to the service call issuing task.

The rsm_tsk, irsm_tsk, frsm_tsk, and ifrsm_tsk service calls each operate the same way, because the maximum number of
forcible wait requests that can be nested is 1.

If this service call is to be issued from task context, use rsm_tsk/frsm_tsk; if issued from non-task context, use
irsm_tsk/ifrsm_tsk.

-94 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void taskl ()

if(rsm _tsk(ID main) != E OK)
printf (“Can’t resume main()\n”);

if (frsm tsk(ID task2) != E OK)
printf (“Can’t forced resume task2()\n”);

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:

PUSHM AQ

rsm_tsk #ID_TASK2

PUSHM AQ

frsm tsk #ID TASK1

-05 -

dly_tsk Delay task

[[C Language API]]
ER ercd = dly_tsk(RELTIM dlytim);

® Parameters
RELTIM dlytim Delay time

® Return Parameters
ER ercd Terminated normally (E_OK) or error code

[[Assembly language API 1]

.include mr30.inc
dly _tsk RELTIM

® Parameters
RELTIM Delay time

@ Register contents after service call is 1ssued

Register name Content after service call is issued
RO Error code
R1 Delay time (16 low-order bits)
R3 Delay time (16 high-order bits)
[[Error code]
E_RLWAI Forced release from waiting

[[Functional description 1]

This service call temporarily stops execution of the issuing task itself for a duration of time specified by dlytim to place the
task from RUNNING state into WAITING state. In this case, the task is released from the WAITING state at the first time
tick after the time specified by dlytim has elapsed. Therefore, if specified dlytim = 0, the task is placed into WAITING state
briefly and then released from the WAITING state at the first time tick.

The task placed into WAITING state by invocation of this service call is released from the WAITING state in the following
cases. Note that when released from WAITING state, the task that issued the service call is removed from the timeout
waiting queue and linked to a ready queue.

€ When the first time tick occurred after dlytim elapsed
The error code returned in this case is E_OK.

€ When the rel_wai or irel_wai service call is issued before dlytim elapses
The error code returned in this case is E_RLWAL.

Note that even when the wup_tsk or iwup_tsk service call is issued during the delay time, the task is not released from
WAITNG state.

The delay time dlytim is expressed in ms units. Therefore, if specified as dly_tsk(50);, the issuing task is placed from
RUNNING state into a delayed wait state for a period of 50 ms.

The values specified for dlytim must be within Ox7fffffff - time tick. If any value exceeding this limit is specified, the ser-
vice call may not operate correctly.

This service call can be issued only from task context. It cannot be issued from non-task context.

-06 -

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

if(dly tsk() != E _OK)
error (“Forced wakeup\n”) ;

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:
PUSHM R1,R3

dly tsk #500

-97-

5.3 Synchronization & Communication Function (Semaphore)
Specifications of the semaphore function of MR30 are listed in Table 5.5.

Table 5.5 Specifications of the Semaphore Function

No. Item Content
1 Semaphore 1D 1-255
2 Maximum number of resources 1-65535
. TA_FIFO: Tasks enqueued in order of FIFO
3 Semaphore attribute - . _
P TA_TPRI: Tasks enqueued in order of priority

Table 5.6 List of Semaphore Function Service Call

No. Service Call Function System State
T N E D U L
1 sig_sem [S] Releases semaphore 0) 0 0
2 isig_sem | [S] resource))) 0
3 wai_sem | [S] Acquires semaphore o] @] o]
resource
4 pol_sem [S] Acquires semaphore 0) 0 0
5 ipol_sem resource(polling) 0])) O
6 twai_sem | [S] Acquires semaphore o] @] 0]
resource(with timeout)
7 ref _sem References semaphore) O) 0
8 iref sem status 0 o] O O

Notes:
® [S]: Standard profile service calls

® FEach sign within " System State " is a following meaning.
¢ T Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & & o o

-08 -

sig_sem Release semaphore resource
iIsig_sem Release semaphore resource (handler only)

[[C Language API]]
ER ercd = sig_sem(ID semid);
ER ercd = isig_sem(ID semid);

® Parameters

ID semid Semaphore 1D number to which returned
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

.include mr30.1inc
sig_sem SEMID
isig_sem SEMID

® Parameters

SEMID Semaphore 1D number to which returned
@ Register contents after service call is issued
Register name Content after service call is issued
RO Error code
A0 Semaphore ID number to which returned
[[Exror code 1]
E QOVR Queuing overflow

[[Functional description]]
This service call releases one resource to the semaphore indicated by semid.

If tasks are enqueued in a waiting queue for the target semaphore, the task at the top of the queue is placed into READY
state. Conversely, if no tasks are enqueued in that waiting queue, the semaphore resource count is incremented by 1. If an
attempt is made to return resources (sig_sem or isig_sem service call) causing the semaphore resource count value to ex-
ceed the maximum value specified in a configuration file (maxsem), the error code E_QOVR is returned to the service call
issuing task, with the semaphore count value left intact.

If this service call is to be issued from task context, use sig_sem; if issued from non-task context, use isig_sem.

-99 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

if(sig sem(ID sem) == E _QOVR)
error (“Overflow\n”) ;

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:
PUSHM AQ

sig_sem #ID_SEM2

- 100 -

wai_sem Acquire semaphore resource

pol_sem Acquire semaphore resource (polling)
ipol_sem Acquire semaphore resource (polling, handler only)
twai_sem Acquire semaphore resource(with timeout)
[[C Language API]]
ER ercd = wai_sem(ID semid);
ER ercd = pol_sem(ID semid);
ER ercd = ipol_sem(ID semid);
ER ercd = twai_sem(ID semid, TMO tmout);
® Parameters
ID semid Semaphore 1D number to be acquired
TMO tmout Timeout value (for twai_sem)
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]

-include mr30.inc
wail_sem SEMID
pol_sem SEMID
ipol_sem SEMID
twai_sem SEMID,TMO

® Parameters
SEMID Semaphore 1D number to be acquired

TMO Timeout value(twai_sem)

® Register contents after service call is issued
wai_sem,pol_sem, ipol_sem

Register name Content after service call is issued

RO Error code

A0 Semaphore ID number to be acquired

twail_sem

Register name Content after service call is issued

RO Error code

R1 Timeout value(16 low-order bits)

R3 Timeout value(16 high-order bits)

A0 Semaphore ID number to be acquired
[[Error code 1]

E_RLWAI Forced release from waiting

E TMOUT Polling failure or timeout

-101 -

[[Functional description]]
This service call acquires one semaphore resource from the semaphore indicated by semid.

If the semaphore resource count is equal to or greater than 1, the semaphore resource count is decremented by 1, and the
service call issuing task continues execution. On the other hand, if the semaphore count value is 0, the wai_sem or
twai_sem service call invoking task is enqueued in a waiting queue for that semaphore. If the attribute of the semaphore
semid is TA_TFIFO, the task is enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For the
pol_sem and ipol_sem service calls, the task returns immediately and responds to the call with the error code E_TMOUT.

For the twai_sem service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
Ox7fffffff - time tick. If any value exceeding this limit is specified, operation of the service call cannot be guaranteed. If
TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as pol_sem. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as wai_sem.

The task placed into WAITING state by execution of the wai_sem or twai_sem service call is released from the WAITING
state in the following cases:

€ When the sig_sem or isig_sem service call is issued before the tmout time elapses, with
task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_ TMOUT.

@ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

If this service call is to be issued from task context, use wai_sem, twai_sem, or pol_sem; ; if issued from non-task context,
use ipol_sem.

-102 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”

void task()

if(wai_sem('ID_sem) != E OK)
printf (“Forced wakeup\n”) ;

if(pol sem(ID sem) != E OK)
printf (“Timeout\n”) ;

if(twai_sem(ID sem, 10) != E OK)
printf (*Forced wakeup or Timeout”n”) ;

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB
task:

PUSHM
pol sem

PUSHM
wal sem

PUSHM
twai_sem

task
AQ
#ID_ SEM1

A0
#ID SEM2

AO0,R1,R3
#ID SEM3,300

-103 -

ref_sem Reference semaphore status
iref_sem Reference semaphore status (handler only)

[[C Language API]]
ER ercd = ref_sem(ID semid, T_RSEM *pk_rsem);
ER ercd = iref_sem(ID semid, T_RSEM *pk rsem);
® Parameters

ID semid ID number of the target semaphore
T_RSEM *pk_rsem Pointer to the packet to which semaphore status is returned
@ Return Parameters
ER ercd Terminated normally (E_OK)
T_RSEM *pk_rsem Pointer to the packet to which semaphore status is returned
Contents of pk_rsem
typedef struct t_rsem{
ID wiskid +0 2 ID number of the task at the head of the semaphore’s wait queue
UINT semcnt +2 2 Current semaphore resource count
} T_RSEM,;
[[Assembly language API 1]

.include mr30.inc
ref_sem SEMID, PK_RSEM
iref_sem SEMID, PK_RSEM

® Parameters

SEMID ID number of the target semaphore

PK_RSEM Pointer to the packet to which semaphore status is returned
@ Register contents after service call is issued

Register name Content after service call is issued

RO Error code

A0 ID number of the target semaphore

Al Pointer to the packet to which semaphore status is returned

[[Error code]
None

[[Functional description 1]
This service call returns various statuses of the semaphore indicated by semid.

@ wtskid

Returned to wtskid is the ID number of the task at the head of the semaphore’s wait queue (the next task to be
dequeued). If no tasks are kept waiting, TSK_NONE is returned.
¢ semcnt

Returned to semcnt is the current semaphore resource count.
If this service call is to be issued from task context, use ref_sem; if issued from non-task context, use iref_sem.

-104 -

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel id.h”
void task()

T RSEM rsem;
ER ercd;

ercd = ref sem(ID seml, &rsem);

}

<<Example statement in assembly language>>

_ refsem: .blkb 4
.include mr30.inc
.GLB task

task:

PUSHM AQ0,Al
ref sem #ID SEM1,# refsem

- 105 -

5.4 Synchronization & Communication Function (Eventflag)
Specifications of the eventflag function of MR30 are listed in Table 5.7.

Table 5.7 Specifications of the Eventflag Function

No. Item Content
1 EventOflag ID 1-255
2 Number of bits comprising 16 bits
eventflag
3 Eventflag attribute TA_TFIFO: Waiting tasks enqueued in order of FIFO
TA_TPRI: Waiting tasks enqueued in order of priority
TA_WSGL.: Multiple tasks cannot be kept waiting
TA_WMUL: Multiple tasks can be kept waiting
TA CLR: Bit pattern cleared when waiting task is released

Table 5.8 List of Eventflag Function Service Call

No. Service Call Function System State
T N E D U L
1 set_flg [S] Sets eventflag O 0 0O)
2 iset flg | [S]) 0 0)
3 clr_flg [S] Clears eventflag O 0 0)
4 iclr_flg 0 0 0 0
5 wai_flg | [S] Waits for eventflag) 0 0
6 pol_flg | [S] | Waits for eventflag(polling) | O 0 0 0
7 ipol_flg | [S]) O 0)
8 twai_flg | [S] Waits for eventflag(with O o @]
timeout)
9 ref flg References eventflag status | O 0 0)
10 iref flg) 0 0)

Notes:
® [S]: Standard profile service calls

® FEach sign within " System State " is a following meaning.
¢ T Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & 6 o o

- 106 -

set_flg Set eventflag
iset_flg Set eventflag (handler only)

[[C Language API]]
ER ercd = set_flg(ID flgid, FLGPTN setptn);
ER ercd = iset _flg(ID flgid, FLGPTN setptn);

® Parameters

ID flgid ID number of the eventflag to be set
FLGPTN setptn Bit pattern to be set
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

-.include mr30.inc
set_flg FLGID,SETPTN
iset_flg FLGID,SETPTN

® Parameters
FLGID ID number of the eventflag to be set

SETPTN Bit pattern to be set

® Register contents after service call is issued

Register name Content after service call is issued
RO Error code
R3 Bit pattern to be set
A0 Eventflag ID number
[[Error code]
None

[[Functional description 1]

Of the 16-bit eventflag indicated by flgid, this service call sets the bits indicated by setptn. In other words, the value of the
eventflag indicated by flgid is OR’d with setptn. If the alteration of the eventflag value results in task-awaking conditions
for a task that has been kept waiting for the eventflag by the wai_flg or twai_flg service call becoming satisfied, the task is
released from WAITING state and placed into READY or RUNNING state.

Task-awaking conditions are evaluated sequentially beginning with the top of the waiting queue. If TA_WMUL is specified
as an eventflag attribute, multiple tasks kept waiting for the eventflag can be released from WAITING state at the same
time by one set_flg or iset_flg service call issued. Furthermore, if TA_CLR is specified for the attribute of the target event-
flag, all bit patterns of the eventflag are cleared, with which processing of the service call is terminated.

If all bits specified in setptn are 0, no operation will be performed for the target eventflag, in which case no errors are as-
sumed, however.

If this service call is to be issued from task context, use set_flg; if issued from non-task context, use iset_flg.

* The indivisibility of a service call is not guaranteed in the combination of this service call, and iclr_flg, iref_flg, iref_tsk and an iref_tst service call.
That is, being processed to the state under this service call execution may occur.

-107 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task (void)

set_flg(ID_flg, (FLGPTN) 0xE£00) ;

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:
PUSHM AO, R3

set flg #ID_FLG3,#0ff00H

-108 -

clr_flg Clear eventflag
iclr_flg Clear eventflag (handler only)

[[C Language API]]
ER ercd = clr_flg(ID flgid, FLGPTN clrptn);

ER ercd = iclr_flg(ID Fflgid, FLGPTN clrptn);
@ Parameters

ID flgid ID number of the eventflag to be cleared
FLGPTN clrptn Bit pattern to be cleared
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

-.include mr30.inc
clr_flg FLGID,CLRPTN
iclr_flg FLGID,CLRPTN

® Parameters
FLGID ID number of the eventflag to be cleared

CLRPTN Bit pattern to be cleared

® Register contents after service call is issued

Register name Content after service call is issued
RO Error code
A0 ID number of the eventflag to be cleared
R3 Bit pattern to be cleared
[[Error code]
None

[[Functional description]
Of the 16-bit eventflag indicated by flgid, this service call clears the bits whose corresponding values in clrptn are 0. In

other words, the eventflag bit pattern indicated by flgid is updated by AND’ing it with clrptn. If all bits specified in clrptn
are 1, no operation will be performed for the target eventflag, in which case no errors are assumed, however.

If this service call is to be issued from task context, use clr_flg; if issued from non-task context, use iclr_flg.

-109 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task (void)

clr flg(ID_flg, (FLGPTN) O0xf0£0);

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:
PUSHM AO, R3

clr flg #ID_FLG1,#0f0f0H

- 110 -

wai_flg

Wait for eventflag

pol_flg Wait for eventflag(polling)

ipol_flg Wait for eventflag(polling, handler only)

twai_flg Wait for eventflag(with timeout)

[[C Language API]]
ER ercd = wai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ercd = pol_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ercd = ipol _flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);
ER ercd = twai_¥flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn,

TMO tmout);

® Parameters
ID flgid ID number of the eventflag waited for

FLGPTN waiptn Wait bit pattern
MODE wfmode Wait mode

FLGPTN *p_flgptn Pointer to the area to which bit pattern is returned when released from wait
TMO tmout Timeout value (for twai_flg)
©® Return Parameters
ER ercd Terminated normally (E_OK) or error code
FLGPTN *p_flgptn Pointer to the area to which bit pattern is returned when released from wait

[[Assembly language API]]
-.include mr30.inc
wai_flg FLGID, WAIPTN, WFMODE
pol_flg FLGID, WAIPTN, WFMODE
ipol_flg FLGID, WAIPTN, WFMODE
twai_flg FLGID, WAIPTN, WFMODE, TMO

® Parameters

FLGID
WAIPTN
WFMODE
TMO

ID number of the eventflag waited for
Wait bit pattern
Wait mode

Timeout value (for twai_flg)

@ Register contents after service call is issued

Register name
RO
R1
R2
R3
A0

[[Error code]l
E_RLWAI
E_TMOUT
E_ILUSE

Content after service call is issued

Error code

Wait mode

bit pattern is returned when released from wait
Wait bit pattern

ID number of the eventflag waited for

Forced release from waiting
Polling failure or timeout or timed out
Service call improperly used (Tasks present waiting for TA_WSGL attribute eventflag)

- 111 -

[[Functional description]]
This service call waits until the eventflag indicated by flgid has its bits specified by waiptn set according to
task-awaking conditions indicated by wfmode. Returned to the area pointed to by p_flgptn is the eventflag
bit pattern at the time the task is released from WAITING state.
If the target eventflag has the TA_WSGL attribute and there are already other tasks waiting for the event-
flag, the error code E_ILUSE is returned.
If task-awaking conditions have already been met when this service call is invoked, the task returns im-
mediately and responds to the call with E_OK. If task-awaking conditions are not met and the invoked
service call is wai_flg or twai_flg, the task is enqueued in an eventflag waiting queue. In that case, if the
attribute of the specified eventflag is TA_TFIFO, the task is enqueued in order of FIFO; if TA_TPRI, the
task is enqueued in order of priority. For the pol_flg and ipol_flg service calls, the task returns immediately
and responds to the call with the error code E_TMOUT.
For the twai_flg service call, specify a wait time for tmout in ms units. The values specified for tmout must
be within Ox7fffffff - time tick. If any value exceeding this limit is specified, the service call may not operate
correctly. If TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case
the service call operates the same way as pol_flg. Furthermore, if specified as tmout=TMO_FEVR(-1), it
means specifying an infinite wait, in which case the service call operates the same way as wai_flg.

The task placed into a wait state by execution of the wai_flg or twai_flg service call is released from
WAITING state in the following cases:
€ When task-awaking conditions are met before the tmout time elapses
The error code returned in this case is E_OK.
€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain
unsatisfied
The error code returned in this case is E_TMOUT.
€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call
issued from another task or a handler
The error code returned in this case is E_RLWAI.

The following shows how wfmode is specified and the meaning of each mode.

wfmdoe (wait mode) Meaning

TWF_ANDW Wait until all bits specified by waiptn are set (wait for the
bits AND’ed)

TWF_ORW Wait until one of the bits specified by waiptn is set (wait
for the bits OR’ed)

If this service call is to be issued from task context, use wai_flg,twai_flg,pol_flg; if issued from non-task
context, use ipol_flg.

-112 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

UINT flgptn;

if (wai_flg(ID_flg2, (FLGPTN)Ox0ff0, TWF ANDW, &flgptn)!=E_OK)
error (“Wait Released\n”) ;

if (pol flg(ID flg2, (FLGPTN)Ox0ff0, TWF_ORW, &flgptn)!=E OK)
printf (“Not set EventFlag\n”) ;

if(twai flg(ID flg2, (FLGPTN)O0x0ff0, TWF_ANDW, &flgptn, 5) != E OK)
error (“Wait Released\n”) ;

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task

task:
PUSHM AO,R1,R3
wai_ flg #ID FLG1,#0003H, #TWF ANDW
PUSHM AO,R1,R3
pol flg #ID FLG2,#0008H, #TWF_ORW
PUSHM AO,R1,R3

wai flg #ID FLG3,#0003H, #TWF_ANDW, 20

-113 -

ref _flg Reference eventflag status
iref_flg Reference eventflag status (handler only)

[[C Language API]]
ER ercd = ref_flg(ID flgid, T_RFLG *pk_rflg);
ER ercd = iref _flg(ID flgid, T_RFLG *pk rflg);
® Parameters
ID flgid ID number of the target eventflag

T_RFLG *pk_rflg

Pointer to the packet to which eventflag status is returned

® Return Parameters

ER ercd Terminated normally (E_OK)
T _RFLG *pk_rflg Pointer to the packet to which eventflag status is returned

Contents of pk_rflg
typedef struct t rflg{

ID wiskid +0 2 Reception waiting task 1D
FLGPTN flgptn +2 2 Current eventflag bit pattern
} T_RFLG;
[[Assembly language API]]

.include mr30.1inc
ref flg FLGID, PK RFLG
iref_flg FLGID, PK RFLG

@ Parameters
FLGID ID number of the target eventflag

PK_RFLG Pointer to the packet to which eventflag status is returned

@ Register contents after service call is issued

Register name Content after service call is issued

RO Error code

A0 ID number of the target eventflag

Al Pointer to the packet to which eventflag status is returned
[[Error code]I

None

[[Functional description 1]
This service call returns various statuses of the eventflag indicated by flgid.
& wtskid

Returned to wtskid is the ID number of the task at the top of a waiting queue (the next task to be dequeued). If no
tasks are kept waiting, TSK_NONE is returned.
& flgptn

Returned to flgptn is the current eventflag bit pattern.

If this service call is to be issued from task context, use ref_flg; if issued from non-task context, use iref_flg.

-114 -

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel id.h”
void task()

T RFLG rflg;
ER ercd;

ercd': ref flg(ID FLG1l, &rflg);

}
<<Example statement in assembly language>>
_ refflg: .blkb 4
.include mr30.inc
.GLB task
task:

PUSHM AQ,Al
ref flg #ID FLG1,# refflg

-115-

5.5 Synchronization & Communication Function (Data Queue)

Specifications of the data queue function of MR30 are listed in Table 5.9.

Table 5.9 Specifications of the Data Queue Function

No. Item Content
1 Data queue ID 1-255
2 Capacity (data bytes) in data queue area 0-65535
3 Data size 16 bits
4 Data queue attribute TA_TFIFO: Waiting tasks enqueued in order of FIFO
TA_TPRI: Waiting tasks enqueued in order of priority

Table 5.10 List of Dataqueue Function Service Call

No. Service Call Function System State
T N E D U L
1 snd_dtq [S] Sends to data queue 0 O O
2 psnd_dtq [S] Sends to data queue O O O 0]
3 ipsnd_dtq [S] (polling) o] 0 O 0]
4 tsnd_dtq [S] Sends to data queue O O @)
(with timeout)
5 fsnd_dtq [S] Forced sends to data queue O] 0 0)
6 ifsnd_dtq [S] @)) 0 @)
7 rcv_dtq [S] Receives from data queue 0 0 0
8 prcv_dtq [S] Receives from data queue) 0 0 0
9 iprcv_dtg (polling) 0] (0] 0] 0]
10 trcv_dtq [S] Receives from data queue O 0 O
(with timeout)
11 ref dtq References data queue sta-) 0 0 0
12 iref _dtq tus 0 0 O)

Notes:
® [S]: Standard profile service calls

® FEach sign within " System State " is a following meaning.
¢ T Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & 6 o o

- 116 -

snd_dtq

Send to data queue

psnd_dtq Send to data queue (polling)
ipsnd_dtq Send to data queue (polling, handler only)
tsnd_dtq Send to data queue (with timeout)
fsnd_dtqg Forcibly send to data queue
ifsnd_dtq Forcibly send to data queue (handler only)
[[C Language API]l

ER ercd = snd_dtq(ID dtgid, VP_INT data);

ER ercd = psnd_dtq(ID dtqid, VP_INT data);

ER ercd = ipsnd_dtq(1D dtgid, VP_INT data);

ER ercd = tsnd_dtq(ID dtqid, VP_INT data, TMO tmout);

ER ercd = fsnd_dtq(ID dtqid, VP_INT data);

ER ercd = ifsnd _dtq(ID dtgid, VP_INT data);

@ Parameters

ID dtgid ID number of the data queue to which transmitted
TMO tmout Timeout value(tsnd_dtq)
VP_INT data Data to be transmitted

® Return Parameters

ER ercd

Terminated normally (E_OK) or error code

[[Assembly language API 1]

-.include mr30.inc

snd_dtq DTQID, DTQDATA
isnd_dtq DTQID, DTQDATA
psnd_dtq DTQID, DTQDATA
ipsnd_dtg DTQID, DTQDATA
tsnd_dtq DTQID, DTQDATA,TMO
fsnd_dtq DTQID, DTQDATA
ifsnd_dtg DTQID, DTQDATA

® Parameters

DTQID ID number of the data queue to which transmitted
DTQDATA Data to be transmitted
TMO Timeout value (tsnd_dtq)

@ Register contents after service call is 1ssued
snd_dtq,psnd_dtq, ipsnd_dtg,fsnd_dtq, ifsnd_dtq

Register name Content after service call is issued

RO Error code

R1 Data to be transmitted

A0 ID number of the data queue to which transmitted
tsnd_dtqg

Register name Content after service call is issued

RO Error code

R1 Data to be transmitted

R2 Timeout value (16 high-order bits)

A0 ID number of the data queue to which transmitted

-117 -

[[Error code]I

E_RLWAI Forced release from waiting
E TMOUT Polling failure or timeout or timed out
E ILUSE Service call improperly used
(fsnd_dtq or ifsnd_dtq is issued for a data queue whose dtqgcnt = 0)
EV_RST Released from WAITING state by clearing of the data queue area

[[Functional description 1]

This service call sends the 2-byte data indicated by data to the data queue indicated by dtqid. If any task is kept waiting for
reception in the target data queue, the data is not stored in the data queue and instead sent to the task at the top of the recep-
tion waiting queue, with which the task is released from the reception wait state.

On the other hand, if snd_dtq or tsnd_dtq is issued for a data queue that is full of data, the task that issued the service call
goes from RUNNING state to a data transmission wait state, and is enqueued in transmission waiting queue, kept waiting
for the data queue to become available. In that case, if the attribute of the specified data queue is TA_TFIFO, the task is
enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For psnd_dtq and ipsnd_dtq, the task re-
turns immediately and responds to the call with the error code E_ TMOUT.

For the tsnd_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
OX7FFffff - time tick. If any value exceeding this limit is specified, the service call may not operate correctly. If
TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as psnd_dtg. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as snd_dtq.

If there are no tasks waiting for reception, nor is the data queue area filled, the transmitted data is stored in the data queue.

The task placed into WAITING state by execution of the snd_dtq or tsnd_dtq service call is released from WAITING state
in the following cases:

€ When the rcv_dtq, trcv_dtq, prcv_dtq, or iprcv_dtq service call is issued before the tmout time
elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.
€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_TMOUT.
€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAL.
€ When the target data queue being waited for is removed by the vrst_dtq service call issued
from another task
The error code returned in this case is EV_RST.

For fsnd_dtqg and ifsnd_dtq, the data at the top of the data queue or the oldest data is removed, and the transmitted data is
stored at the tail of the data queue. If the data queue area is not filled with data, fsnd_dtq and ifsnd_dtq operate the same
way as snd_dtq.

If this service call is to be issued from task context, use snd_dtq,tsnd_dtq,psnd_dtq,fsnd_dtq; if issued from non-task con-
text, use ipsnd_dtq,ifsnd_dtq.

-118 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
VP_INT datal[10];
void task (void)

if (snd dtg(ID dtqg, datal0]) == E_RLWAI) {
error (“Forced released\n”) ;
!
if (psnd dtq(ID dtq, datalll])== E_TMOUT) {
error (“Timeout\n”) ;
!
if (tsnd_dtq(ID_dtq, datal2], 10) != E_ TMOUT) {
error (“Timeout \n”);
!
if (f£snd_dtq(ID_dtq, datal3]) != E OK){

error (“error\n”) ;

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
g dtg: .LWORD 12345678H
task:

PUSHM R1,R2,R3,A0

tsnd dtg #ID DTQ1, g dtq,#100

PUSHM R1,R3,A0
psnd dtq #ID DTQ2, #0FFFFH

PUSHM R1,R3,A0
fsnd dtg #ID DTQ3, #0ABCDH

-119 -

rcv_dtq Receive from data queue

prcv_dtq Receive from data queue (polling)
iprcv_dtq Receive from data queue (polling, handler only)
trcv_dtqg Receive from data queue (with timeout)
[[C Language API]]
ER ercd = rcv_dtq(ID dtqid, VP_INT *p _data);
ER ercd = prcv_dtq(ID dtqid, VP_INT *p_data);
ER ercd = iprcv_dtq(ID dtqgid, VP_INT *p_data);
ER ercd = trcv_dtq(ID dtqid, VP_INT *p_data, TMO tmout);
® Parameters
ID dtqid ID number of the data queue from which to receive
TMO tmout Timeout value (trcv_dtq)
VP_INT *p_data Pointer to the start of the area in which received data is stored
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
VP_INT *p_data Pointer to the start of the area in which received data is stored
[[Assembly language API 1]

.include mr30.inc
rcv_dtg DTQID
prcv_dtg DTQID
iprcv_dtg DTQID
trcv_dtqg DTQID,TMO
® Parameters
DTQID ID number of the data queue from which to receive

TMO Timeout value (trcv_dtq)

@ Register contents after service call is 1ssued
rcv_dtq,prcv_dtq, iprcv_dtg

Register name Content after service call is issued

RO Error code

R1 Received data

A0 Data queue 1D number

trcv_dtg

Register name Content after service call is issued

RO Error code

R1 Received data

R2 Timeout value(16 high-order bits)

A0 ID number of the data queue from which to receive
[[Error code]I

E_RLWAI Forced release from waiting

E_ TMOUT Polling failure or timeout or timed out

-120 -

[[Functional description]]

This service call receives data from the data queue indicated by dtgid and stores the received data in the area pointed to by
p_data. If data is present in the target data queue, the data at the top of the queue or the oldest data is received. This results
in creating a free space in the data queue area, so that a task enqueued in a transmission waiting queue is released from
WAITING state, and starts sending data to the data queue area.

If no data exist in the data queue and there is any task waiting to send data (i.e., data bytes in the data queue area = 0), data
for the task at the top of the data transmission waiting queue is received. As a result, the task kept waiting to send that data
is released from WAITING state.

On the other hand, if rcv_dtq or trcv_dtq is issued for the data queue which has no data stored in it, the task that issued the
service call goes from RUNNING state to a data reception wait state, and is enqueued in a data reception waiting queue. At
this time, the task is enqueued in order of FIFO. For the prcv_dtq and iprcv_dtq service calls, the task returns immediately
and responds to the call with the error code E_ TMOUT.

For the trcv_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
OXT7FFffff - time tick. If any value exceeding this limit is specified, the service call may not operate correctly. If
TMO_POL=0 is specified for tmout, it means specifying O as a timeout value, in which case the service call operates the
same way as prcv_dtg. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as rcv_dtq.

The task placed into a wait state by execution of the rcv_dtq or trcv_dtq service call is released from the wait state in the
following cases:

€ When the rcv_dtq, trcv_dtq, prcv_dtq, or iprcv_dtq service call is issued before the tmout time
elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_ TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

If this service call is to be issued from task context, use rcv_dtq,trcv_dtg,prcv_dtg; if issued from non-task context, use
iprcev_dtg.

-121 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

VP_INT data;

if (rev_dtg(ID_dtqg, &data) != E_RLWAI)
error (“forced wakeup\n”) ;

if (prcv_dtq(ID dtg, &data) != E_TMOUT)
error (“Timeout\n”) ;

if (trev_dtg(ID_dtg, &data, 10) != E_TMOUT)
error (“Timeout \n”);

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:
PUSHM A0
trcv_dtq #ID DTQ1, #TMO_POL
PUSHM AQ
prcv_dtg #ID DTQ2
PUSHM A0

rcv_dtqg #ID_DTQ2

-122 -

ref _dtq

Reference data queue status
iref_dtq

Reference data queue status (handler only)

[[C Language API]]
ER ercd = ref _dtq(ID dtgqid, T _RDTQ *pk_rdtq);
ER ercd = iref_dtq(ID dtqid, T_RDTQ *pk _rdtq);
@ Parameters
ID dtqid

T RDTQ *pk_rdtq
® Return Parameters

ER ercd
T RDTQ *pk_rdtq

ID number of the target data queue

Pointer to the packet to which data queue status is returned

Terminated normally (E_OK)
Pointer to the packet to which data queue status is returned

Contents of pk_rdtq
typedef struct t_rdtg{

ID stskid +0 2 Transmission waiting task 1D
ID wiskid +2 2 Reception waiting task ID
UINT sdtqent +4 2 Data bytes contained in data queue
} T_RDTQ;
[[Assembly language API]]

.include mr30.inc

ref dtq DTQID, PK_RDTQ

iref _dtq DTQID, PK_RDTQ

® Parameters

DTQID ID number of the target data queue

PK_RDTQ Pointer to the packet to which data queue status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0

Al

ID number of the target data queue

Pointer to the packet to which data queue status is returned

[[Error code 1]

None

[[Functional description 1]
This service call returns various statuses of the data queue indicated by dtqid.
& stskid

Returned to stskid is the ID number of the task at the top of a transmission waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.
& wtskid

Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.
@ sdtqgent

Returned to sdtqcnt is the number of data bytes stored in the data queue area.

If this service call is to be issued from task context, use ref_dtq; if issued from non-task context, use iref _dtq.

-123 -

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RDTQ rdtg;
ER ercd;

ercd = ref dtg(ID DTQ1l, &rdtqg);

}

<<Example statement in assembly language>>

_ refdtq: .blkb 6
.include mr30.inc
.GLB task

task:

PUSHM AQ,Al
ref dtqg #ID DTQ1,# refdtqg

-124 -

5.6 Synchronization & Communication Function (Mailbox)
Specifications of the mailbox function of MR30 are listed in Table 5.11.

Table 5.11 Specifications of the Mailbox Function

No. Item Content

1 Mailbox 1D 1-255

2 Mailbox priority 1-255
TA_TFIFO: Waiting tasks enqueued in order of FIFO
TA_TPRI: Waiting tasks enqueued in order of priori

3 Mailbox attribute N J X . priority
TA_MFIFO: Messages enqueued in order of FIFO
TA_MPRI: Messages enqueued in order of priority

Notes:

® [S]: Standard profile service calls

Table 5.12 List of Mailbox Function Service Call

No. Service Call Function System State

TIN|JE|D]|U
1 snd_mbx [S] Send to mailbox O] 0O]0]|O0
2 isnd_mbx O|O0O|0O0]|O
3 rcv_mbx [S] Receive from mailbox 0 @) @)
4 precv_mbx | [S] Receive from mailbox O] O|0O0]|O
5 iprcv._mbx (polling) O|O0O|0O0]| O
6 trev_mbx | [S] Receive from mailbox] @) O

(with timeout)

7 ref_mbx Reference mailbox status | O O|]0]|O0
8 iref_mbx O|]O0O|0O0]|O

® FEach sign within " System State " is a following meaning.
T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

¢

* & 6 o o

-125 -

snd_mbx Send to mailbox
isnd_mbx Send to mailbox (handler only)

[[C Language API]]
ER ercd = snd_mbx(ID mbxid, T_MSG *pk_msg);
ER ercd = isnd_mbx(ID mbxid, T_MSG *pk _msg);

® Parameters

ID mbxid ID number of the mailbox to which transmitted
T_MSG *pk_msg Message to be transmitted
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

-.include mr30.inc
snd_mbx MBXID,PK_MBX
isnd_mbx MBXID,PK MBX

® Parameters
MBXID ID number of the mailbox to which transmitted

PK_MBX Message to be transmitted (address)

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 ID number of the mailbox to which transmitted
Al Message to be transmitted (address)

[[Structure of the message packet]]
<<Mailbox message header>>
typedef struct t_msg{
VP msghead +0 2 Kernel managed area
} T_MSG;
<<Mailbox message header with priority included>>
typedef struct t msg{
T_MSG msgque +0 2 Message header
PRI msgpri +2 2 Message priority
} T_MSG_PRI;

[[Error code]

None

[[Functional description 1]

This service call sends the message indicated by pk_msg to the mailbox indicated by mbxid. T_MSG* should be specified
with a 16-bit address. If there is any task waiting to receive a message in the target mailbox, the transmitted message is
passed to the task at the top of the waiting queue, and the task is released from WAITING state.

To send a message to a mailbox whose attribute is TA_MFIFO, add a T_MSG structure at the beginning of the message
when creating it, as shown in the example below.

To send a message to a mailbox whose attribute is TA_MPRI, add a T_MSG_PRI structure at the beginning of the message
when creating it, as shown in the example below.

Messages should always be created in a RAM area regardless of whether its attribute is TA_MFIFO or TA_MPRI.

The T_MSG area is used by the kernel, so that it cannot be rewritten after a message has been sent. If this area is rewritten
before the message is received after it was sent, operation of the service call cannot be guaranteed.

If this service call is to be issued from task context, use snd_mbx; if issued from non-task context, use isnd_mbx.

-126 -

<<Example format of a message>>

typedef struct user_msg{
T_MSG t_msg; /* T_MSG structure */
B data[16]; /* User message data */
} USER_MSG;

<<kExample format of a message with priority included>>

/* T_MSG_PRI structure */

typedef struct user_msg{
User message data */

T_MSG_PRI t_msg;
B data[16]; /*

} USER_MSG;

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
typedef struct pri message

T MSG PRI msgheader;
char body [12] ;
} PRI MSG;

void task (void)

PRI_MSG * msg;
msg->msgheader.msgpri = 5;
snd_mbx (ID_msg, (T_MSG *)&msg) ;

}
<<Example statement in assembly language>>
.include mr30.inc

.GLB task
_g userMsg: .blkb 4 ; Header
.blkb 12 ; Body
task:
PUSHM AQ,Al

snd_mbx #ID MBX1,# g userMsg

-127 -

rcv_mbx Receive from mailbox

prcv_mbx Receive from mailbox (polling)
iprcv_mbx Receive from mailbox (polling, handler only)
trcv_mbx Receive from mailbox (with timeout)
[[C Language API]]
ER ercd = rcv_mbx(ID mbxid, T_MSG **ppk_msg);
ER ercd = prcv_mbx(ID mbxid, T_MSG **ppk _msg);
ER ercd = iprcv_mbx(ID mbxid, T_MSG **ppk _msg);
ER ercd = trcv_mbx(ID mbxid, T_MSG **ppk_msg, TMO tmout);
® Parameters
ID mbxid ID number of the mailbox from which to receive
TMO tmout Timeout value (for trcv_mbx)
T_MSG **ppk_msg Pointer to the start of the area in which received message is
stored
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
T_MSG **ppk_msg Pointer to the start of the area in which received message is
stored
[[Assembly language API 1]
.include mr30.inc
rcv_mbx MBXID
prcv_mbx MBXID
iprcv_mbx MBXID
trcv_mbx MBXID, TMO
® Parameters
MBXID ID number of the mailbox from which to receive
TMO Timeout value (for trcv_mbx)

@ Register contents after service call is issued
rcv_mbx, prcv_mbx, iprcv_mbx
Register name Content after service call is issued

RO Error code

R2 Received message

A0 ID number of the mailbox from which to receive

trcv_mbx

Register name Content after service call is issued

RO Error code

R2 Received message

R3 Timeout value(16 high-order bits)

A0 ID number of the mailbox from which to receive
[[Error code]

E RLWAI Forced release from waiting

E TMOUT Polling failure or timeout or timed out

-128 -

[[Functional description]]

This service call receives a message from the mailbox indicated by mbxid and stores the start address of the received mes-
sage in the area pointed to by ppk_msg. T_MSG™* should be specified with a 16-bit address. If data is present in the target
mailbox, the data at the top of the mailbox is received.

On the other hand, if rcv_mbx or trcv_mbx is issued for a mailbox that has no messages in it, the task that issued the ser-
vice call goes from RUNNING state to a message reception wait state, and is enqueued in a message reception waiting
queue. In that case, if the attribute of the specified mailbox is TA_TFIFO, the task is enqueued in order of FIFO; if
TA_TPRI, the task is enqueued in order of priority. For prcv_mbx and iprcv_mbx, the task returns immediately and re-
sponds to the call with the error code E_TMOUT.

For the trcv_mbx service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
Ox7fffffff - time tick. If any value exceeding this limit is specified, the service call may not operate correctly. If
TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as prcv_mbx. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as rcv_mbx.

The task placed into WAITING state by execution of the rcv_mbx or trcv_mbx service call is released from WAITING state
in the following cases:

€ When the rcv_mbx, trcv_mbx, prcv_mbx, or iprcv_mbx service call is issued before the tmout
time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_ TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

If this service call is to be issued from task context, use rcv_mbx,trcv_mbx,prcv_mbx; if issued from non-task context, use
iprcv_mbx.

-129 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”

typedef struct fifo message

T_MSG head;
char body [12] ;
} FIFO MSG;
void task()

FIFO_MSG *msg;

if (rev_mbx((T_MSG **)&msg, ID mbx) == E RLWAI)
error (“forced wakeup\n”) ;

if (prev_mbx((T _MSG **)&msg, ID mbx) != E TMOUT)
error (“Timeout\n”) ;

if (trev_mbx((T MSG **)&msg, ID mbx,10) != E TMOUT)
error (“Timeout\n”) ;

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task

task:
PUSHM R3,A0
trev_mbx #ID MBX1,#100
PUSHM R3,A0
rcv_mbx #ID MBX1
PUSHM R3,A0

prcv_mbx #ID_MBX1

-130 -

ref_mbx Reference mailbox status
iref_mbx Reference mailbox status (handler only)

[[C Language API]]
ER ercd = ref_mbx(ID mbxid, T_RMBX *pk_rmbx);
ER ercd = iref_mbx(ID mbxid, T_RMBX *pk_rmbx);
® Parameters
ID Mbxid ID number of the target mailbox

T_RMBX *pk_rmbx Pointer to the packet to which mailbox status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T_RMBX *pk_rmbx Pointer to the packet to which mailbox status is returned

Contents of pk_rmbx

typedef struct t_rmbx{
ID wiskid +0 2 Reception waiting task ID
T_MSG *pk_msg +4 4 Next message packet to be received
} T_RMBX;
[[Assembly language API]]

-include mr30.inc

ref_mbx MBXID, PK_RMBX
iref_mbx MBXID, PK_RMBX

@ Parameters

MBXID ID number of the target mailbox

PK_RMBX Pointer to the packet to which mailbox status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 ID number of the target mailbox

Al Pointer to the packet to which mailbox status is returned
[[Error code]I

None

[[Functional description]]
This service call returns various statuses of the mailbox indicated by mbxid.

& wtskid
Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.

€ *pk_msg
Returned to *pk_msg is the start address of the next message to be received. If there are no messages to be re-
ceived next, NULL is returned. T_MSG* should be specified with a 16-bit address.

If this service call is to be issued from task context, use ref_mbx; if issued from non-task context, use iref_mbx.

-131-

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RMBX rmbx;
ER ercd;

ercd = ref mbx(ID MBX1l, &rmbx);

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
_ refmbx: .blkb 6
task:

PUSHM A0,Al
ref_mbx #ID MBX1,#_ refmbx

-132 -

5.7 Memory Pool Management Function (Fixed-size Memory Pool)
Specifications of the fixed-size memory pool function of MR30 are listed in Table 5.13.

The memory pool area to be acquired can be specified by a section name for each memory pool during configuration.

Table 5.13 Specifications of the Fixed-size memory pool Function

No. Item Content
1 Fixed-size memory pool ID 1-255
2 Number of fixed-size memory block 1-65535
3 Size of fixed-size memory block 2-65535
4 Supported attributes TA_TFIFO: Waiting tasks enqueued in order of FIFO
TA_TPRI: Waiting tasks enqueued in order of priority
5 Specification of memory pool area Area to be acquired specifiable by a section
Table 5.14 List of Fixed-size memory pool Function Service Call
No. Service Call Function System State
T N E D U L
1 get_mpf [S] | Aquires fixed-size memory block | O 0)
2 pget_mpf | [S] | Aquires fixed-size memory block | O 0) 0
3 ipget_mpf (polling) (0] 0] o] O
4 tget_mpf | [S] | Aquires fixed-size memory block | O 0} O
(with timeout)
5 rel_mpf [S] Releases fixed-size memory 0 0 0 0
6 irel_mpf block 0 0) 0
7 ref_ mpf References fixed-size memory 0 0) 0
8 iref_mpf pool status O) O] 0
Notes:

® [S]: Standard profile service calls

® Each sign within " System State " is a following meaning.

¢

* & 6 o o

T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

-133 -

get_mpf Aquire fixed-size memory block

pget_mpf Aquire fixed-size memory block (polling)
ipget_mpf Aquire fixed-size memory block (polling, handler
only)
tget_mpf Aquire fixed-size memory block (with timeout)
[[C Language API]]
ER ercd = get_mpf(ID mpfid, VP *p_blk);
ER ercd = pget _mpf(ID mpfid, VP *p blk);
ER ercd = ipget mpf(ID mpfid, VP *p_blk);
ER ercd = tget_mpf(ID mpfid, VP *p_blk,TMO tmout);
® Parameters
ID mpfid ID number of the target fixed-size memory pool to be acquired
VP *p_blk Pointer to the start address of the acquired memory block
TMO tmout Timeout value(tget_mpf)
©® Return Parameters
ER ercd Terminated normally (E_OK) or error code
VP *p_blk Pointer to the start address of the acquired memory block
[[Assembly language API]]

.include mr30.inc
get_mpf MPFID
pget_mpf MPFID
ipget_mpf MPFID
tget_mpf MPFID,TMO
® Parameters
MPFID ID number of the target fixed-size memory pool to be acquired

T™MO Timeout value(tget_mpf)

-134 -

@ Register contents after service call is issued
get_mpfT,pget_mpf, ipget_mpf
Register name Content after service call is issued

RO Error code

R1 Start address of the acquired memory block

A0 ID number of the target fixed-size memory pool to be acquired

tget_mpf

Register name Content after service call is issued

RO Error code

R1 Start address of the acquired memory block

R2 Timeout value(16 high-order bits)

A0 ID number of the target fixed-size memory pool to be acquired
[[Error code]I

E_RLWAI Forced release from waiting

E_TMOUT Polling failure or timeout or timed out

EV_RST Released from WAITING state by clearing of the memory pool area

[[Functional description 1]
This service call acquires a memory block from the fixed-size memory pool indicated by mpfid and stores the start address
of the acquired memory block in the variable p_blk. The content of the acquired memory block is indeterminate.

If the fixed-size memory pool indicated by mpfid has no memory blocks in it and the used service call is tget_mpf or
get_mpf, the task that issued it goes to a memory block wait state and is enqueued in a memory block waiting queue. In that
case, if the attribute of the specified fixed-size memory pool is TA_TFIFO, the task is enqueued in order of FIFO; if
TA_TPRI, the task is enqueued in order of priority. If the issued service call was pget_mpf or ipget_mpf, the task returns
immediately and responds to the call with the error code E_ TMOUT.

For the tget_mpf service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
(OxTfffffff — time tick). If any value exceeding this limit is specified, the service call may not operate correctly. If
TMO_POL=0 is specified for tmout, it means specifying 0 as a timeout value, in which case the service call operates the
same way as pget_mpf. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as get_mpf.

The task placed into WAITING state by execution of the get_mpf or tget_mpf service call is released from WAITING state
in the following cases:

€ When the rel_mpf or irel_mpf service call is issued before the tmout time elapses, with
task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_ TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

€ When the target memory pool being waited for is removed by the vrst_mpf service call issued
from another task
The error code returned in this case is EV_RST.

The value of the memory block acquired by this service call is indeterminate because it is not initialized.

If this service call is to be issued from task context, use get_ mpf,pget_mpf,tget_mpf; if issued from non-task context, use
ipget_mpf.

-135-

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
VP p_blk;
void task()

if (get _mpf (ID mpf ,&p blk) != E OK) {
error (“Not enough memory\n”) ;

}

if (pget_mpf (ID mpf ,&p blk) != E _OK) {
error (“Not enough memory\n”) ;

}

if (tget mpf (ID mpf ,&p blk, 10) != E OK){
error (“Not enough memory\n”) ;

}

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:

PUSHM A0

get_mpf #ID_MPF1

PUSHM AQ

pget mpf #ID MPF1

PUSHM A0
tget_mpf #ID_MPF1,#200

-136 -

rel_mpf Release fixed-size memory block
irel_mpf Release fixed-size memory block (handler only)

[[C Language API]]
ER ercd = rel_mpf(ID mpfid, VP blk);
ER ercd = irel_mpf(ID mpfid, VP blk);

® Parameters

ID mpfid ID number of the fixed-size memory pool to be released
VP blk Start address of the memory block to be returned
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

-.include mr30.inc
rel_mpf MPFID,BLK
irel_mpf MPFID,BLK

® Parameters
MPFID ID number of the fixed-size memory pool to be released

BLK Start address of the memory block to be returned

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R1 Start address of the memory block to be returned
A0 ID number of the fixed-size memory pool to be released
[[Error code]
None

[[Functional description 1]

This service call releases a memory block whose start address is indicated by blk. The start address of the memory block to
be released that is specified here should always be that of the memory block acquired by get_mpf, tget_mpf, pget_mpf, or
ipget_mpf.

If tasks are enqueued in a waiting queue for the target memory pool, the task at the top of the waiting queue is dequeued
and linked to a ready queue, and is assigned a memory block. At this time, the task changes state from a memory block wait
state to RUNNING or READY state. This service call does not check the content of blk, so that if the address stored in blk
is incorrect, the service call may not operate correctly.

If this service call is to be issued from task context, use rel_mpf; if issued from non-task context, use irel_mpf.

-137 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

VP p blf;
if (get_mpf (ID mpfl,&p blf) != E OK)
error (“Not enough memory \n”) ;

rel_mpf(ID;mpfl,p_blf);

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
_g_blk: .blkb 4
task:
PUSHM AQ
get_mpf #ID_MPF1
MOV . L R3R1, g blk
PUSHM AQ

rel mpf #ID_MPF1l,_g blk

-138 -

ref_mpf Reference fixed-size memory pool status
iref_mpf Reference fixed-size memory pool status
(handler only)

[[C Language API]]
ER ercd = ref_mpf(ID mpfid, T_RMPF *pk_rmpf);
ER ercd = iref_mpf(ID mpfid, T_RMPF *pk rmpFf);
® Parameters
ID mpfid Task ID waiting for memory block to be acquired

T_RMPF *pk_rmpf Pointer to the packet to which fixed-size memory pool status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T_RMPF *pk_rmpf Pointer to the packet to which fixed-size memory pool status is returned

Contents of pk_rmpf
typedef struct t_rmpf{

ID wiskid +0 2 Task ID waiting for memory block to be acquired
UINT fblkent +2 2 Number of free memory blocks
} T_RMPF;
[[Assembly language API 1]

.include mr30.1inc
ref_mpf MPFID,PK RMPF
iref_mpf MPFID,PK RMPF

® Parameters
MPFID Task 1D waiting for memory block to be acquired

PK_RMPF Pointer to the packet to which fixed-size memory pool status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 Task ID waiting for memory block to be acquired
Al Pointer to the packet to which fixed-size memory pool status is returned
[[Error code 1]
None

[[Functional description]]
This service call returns various statuses of the message buffer indicated by mpfid.

& wiskid

Returned to wtskid is the ID number of the task at the top of a memory block waiting queue (the first queued

task). If no tasks are kept waiting, TSK_NONE is returned.
@ fblkent
The number of free memory blocks in the specified memory pool is returned.

If this service call is to be issued from task context, use rel_mpf; if issued from non-task context, use irel_mpf.

-139 -

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RMPF rmpf;
ER ercd;

ercd = ref mpf(ID MPFl, &rmpf);

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task

_ refmpf: .blkb 4
task:

PUSHM A0,Al
ref_mpf #ID MPF1,# refmpf

- 140 -

5.8 Memory Pool Management Function (Variable-size Memory Pool)
Specifications of the Variable-size Memaory pool function of MR30 are listed in Table 5.15.

The memory pool area to be acquired can be specified by a section name for each memory pool during configuration.

Table 5.15 Specifications of the Variable-size memory Pool Function

No. Item Content
1 Variable-size memory pool ID 1-255
2 Size of Variable-size Memory pool 16-65535
3 Maximum number of memory blocks to be ac- 1-65520
quired
4 Supported attributes When memory is insufficient, task-waiting APIs
are not supported.
5 Specification of memory pool area Avrea to be acquired specifiable by a section
Table 5.16 List of Variable -size memory pool Function Service Call
No. Service Call Function System State
TINJE|DJ|U]L
1 | pget_mpl Aquires variable-size memory) O|O
block (polling)
2 rel_mpl Releases variable-size memory) 0O|0]|O
block
3 ref_mpl References variable-size memory | O O|]0O0]|O
4 iref_mpl pool status O|lO0O| O] O
Notes:

® [S]: Standard profile service calls

® FEach sign within " System State " is a following meaning.

L4

* & & o o

T: Can be called from task context
N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

-141 -

pget_mpl Aquire variable-size memory block (polling)

[[C Language API]]
ER ercd = pget_mpl(ID mplid, UINT blksz, VP *p_blk);

® Parameters

ID mplid ID number of the target Variable-size Memory pool to be acquired
UINT blksz Memory size to be acquired (in bytes)
VP *p_blk Pointer to the start address of the acquired variable memory
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
VP *p_blk Pointer to the start address of the acquired variable memory
[[Assembly language API 1]

.include mr30.inc
pget_mpl MPLID,BLKSZ

® Parameters
MPLID ID number of the target Variable-size Memory pool to be acquired

BLKSZ Memory size to be acquired (in bytes)

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R1 Memory size to be acquired
A0 ID number of the target Variable-size Memory pool to be acquired
[[Error code]I
E_TMOUT No memory block

-142 -

[[Functional description]]
This service call acquires a memory block from the variable-size memory pool indicated by mplid and
stores the start address of the acquired memory block in the variable p_blk. The content of the acquired

memory block is indeterminate.

If the specified variable-size memory pool has no memory blocks in it, the task returns immediately and
responds to the call with the error code E_TMOUT.

The value of the memory block acquired by this service call is indeterminate because it is not initialized.
This service call can be issued only from task context. It cannot be issued from non-task context.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
VP p_blk;
void task()

if (pget mpl(ID mpl , 200, &p_blk) != E OK){
error (“Not enough memory\n”) ;
}
}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

PUSHM AQ
pget_mpl #ID MPL1,#200

- 143 -

rel_mpl Release variable-size memory block

[[C Language API]]
ER ercd = rel_mpl(ID mplid, VP blk);
® Parameters
ID mplid ID number of Variable-size Memory pool of the memory block to be released

VP Blk Start address of the memory block to be returned

® Return Parameters
ER ercd Terminated normally (E_OK) or error code

[[Assembly language API]]

.include mr30.1inc
rel_mpl MPLID,BLK

® Parameters
MPLID ID number of Variable-size Memory pool of the memory block to be released

BLK Start address of the memory block to be returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
R1 Start address of the memory block to be returned (16 low-order bits)
R3 Start address of the memory block to be returned (16 high-order bits)
A0 ID number of Variable-size Memory pool of the memory block to be released
[[Error code]
None

[[Functional description 1]
This service call releases a memory block whose start address is indicated by blk. The start address of
the memory block to be released that is specified here should always be that of the memory block ac-
quired by pget_mpl.
This service call does not check the content of blk, so that if the address stored in blk is incorrect, the ser-
vice call may not operate correctly.

- 144 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

VP p blk;
if (get mpl(ID mpll, 200, &p blk) != E OK)
error (“Not enough memory \n”) ;

rel_mpl(ID;mpl,p_blk);

<<Example statement in assembly language>>
.include mr30.inc

.GLB task

g blk: .blkb 4

task:
PUSHM A0
get_mpl #ID MPL1,#200
MOV.L R3R1, g blk
PUSHM A0

rel mpf #ID MPL1, g blk

- 145 -

ref_mpl Reference variable-size memory pool status
iref_mpl Reference variable-size memory pool status

(handler only)

[[C Language API]]
ER ercd = ref_mpl(ID mplid, T_RMPL *pk_rmpl);
ER ercd = iref_mpl(ID mplid, T_RMPL *pk_rmpl);
® Parameters
ID mplid ID number of the target variable-size memory pool

T_RMPL *pk_rmpl Pointer to the packet to which variable-size memory pool status is returned

@ Return Parameters
ER ercd Terminated normally (E_OK)
T_RMPL *pk_rmpl Pointer to the packet to which variable-size memory pool status is returned

Contents of pk_rmpl
typedef struct t_rmpl{

ID wiskid +0 2 Task ID waiting for memory block to be acquired (unused)
SIZE fmplsz +4 4 Free memory size (in bytes)
UINT fblksz +8 2 Maximum size of memory that can be acquired immediately (in
bytes)
} T_RMPL;
[[Assembly language API]]

-.include mr30.1inc

ref_mpl MPLID,PK_RMPL

iref_mpl MPLID,PK_RMPL

® Parameters

MPLID ID number of the target variable-size memory pool

PK_RMPL Pointer to the packet to which variable-size memory pool status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 ID number of the target variable-size memory pool
Al Pointer to the packet to which variable-size memory pool status is returned
[[Error code]I
None

[[Functional description 1]
This service call returns various statuses of the message buffer indicated by mplid.
¢ wtskid
Unused.
¢ fmplsz

A free memory size is returned.
@ fblksz

The maximum size of memory that can be acquired immediately is returned.

If this service call is to be issued from task context, use ref_mpl; if issued from non-task context, use iref_mpl.

- 146 -

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel id.h”
void task()

T RMPL rmpl;
ER ercd;

ercd': ref mpl(ID MPL1, &rmpl);

}
<<Example statement in assembly language>>
.include mr30.inc
.GLB task
refmpl: .blkb 8

task:

PUSHM AQ0,Al
ref mpl #ID MPL1, refmpl

- 147 -

5.9 Time Management Function
Specifications of the time management function of MR30 are listed in Table 5.17.

Table 5.17 Specifications of the Time Management Function

No. Item Content
1 System time value Unsigned 48 bits
2 Unit of system time value 1[ms]
3 System time updating cycle User-specified time tick updating time [ms]
4 Initial value of system time (at initial startup) 000000000000H

Table 5.18 List of Time Management Function Service Call

No. Service Call Function System State
T | N E| D] U L
1 get_tim [S] Reference system O O]l O] O
2 iget_tim time OlO|O] O
3 set_tim [S] Set system time O O]l O | O
4 iset_tim OO |O| O
5 isig_tim | [S] Supply a time tick O]l O | 0O |0

Notes:
® [S]: Standard profile service calls

® FEach sign within " System State " is a following meaning.
¢ T Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & & o o

-148 -

set_tim Set system time
iset_tim Set system time (handler only)

[[C Language API]]
ER ercd = set_tim(SYSTIM *p_systim);
ER ercd = iset_tim(SYSTIM *p_systim);
® Parameters
SYSTIM *p_systim Pointer to the packet that indicates the system time to be set

Contents of p_systim
typedef struct t_systim {

UH utime 0 2 (16 high-order bits)
uw Itime +4 4 (32 low-order bits)
} SYSTIM;
® Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

-include mr30.inc
set_tim PK TIM
iset_tim PK_TIM
® Parameters
PK_TIM Pointer to the packet that indicates the system time to be set

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 Pointer to the packet that indicates the system time to be set
[[Error code]

None

[[Functional description 1]
This service call updates the current value of the system time to the value indicated by p_systim. The time specified in
p_systim is expressed in ms units, and not by the number of time ticks.

The values specified for p_systim must be within 0x7FFFFFFFFFFF. If any value exceeding this limit is specified, the ser-
vice call may not operate correctly.

If this service call is to be issued from task context, use set_tim; if issued from non-task context, use iset_tim.

- 149 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

SYSTIME time; /* Time data storing variable */
time.utime = 0; /* Sets upper time data */
time.ltime = 0; /* Sets lower time data */
set_tim(&time); /* Sets the system time */

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task
_g_systim:
.WORD 1111H
.LWORD 22223333H
task:

PUSHM AO0
set_tim #_g_systim

- 150 -

get_tim Reference system time
iget_tim Reference system time (handler only)

[[C Language API]]
ER ercd = get_tim(SYSTIM *p_systim);
ER ercd = iget_tim(SYSTIM *p_systim);
® Parameters

SYSTIM *p_systim Pointer to the packet to which current system time is returned

® Return Parameters
ER ercd Terminated normally (E_OK)
SYSTIM *p_systim Pointer to the packet to which current system time is returned

Contents of p_systim
typedef struct t_systim {

UH utime 0 2 (16 high-order bits)
uw Itime +4 4 (32 low-order bits)
} SYSTIM;
[[Assembly language API 1]

-include mr30.inc
get _tim PK TIM
iget _tim PK_TIM
® Parameters
PK_TIM Pointer to the packet to which current system time is returned

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 Pointer to the packet to which current system time is returned
[[Error code]I

None

[[Functional description]
This service call stores the current value of the system time in p_systim.

If this service call is to be issued from task context, use get_tim; if issued from non-task context, use iget_tim

-151 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

SYSTIME time; /* Time data storing variable */
get_tim(&time); /* Refers to the system time */

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
_g_systim: .blkb 6
task:

PUS'HM AO0

get_tim #_g systim

-152 -

Isig_tim Supply a time tick

[[Functional description]]
This service call updates the system time.

The isig_tim is automatically started every tick_time interval(ms) if the system clock is defined by the configuration file.
The application cannot call this function because it is not implementing as service call.

When a time tick is supplied, the kernel is processed as follows:

(1) Updates the system time

(2) Starts an alarm handler

(3) Starts a cyclic handler

(4) Processes the timeout processing of the task put on WAITING state by service call with timeout such

as tslp_tsk.

-153 -

5.10Time Management Function (Cyclic Handler)

Specifications of the cyclic handler function of MR30 are listed in Table 5.19. The cyclic handler description languages in
item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR30 kernel

concerned with them.

Table 5.19 Specifications of the Cyclic Handler Function

No. Item Content
1 Cyclic handler ID 1-255
2 Activation cycle O-7fffffff[ms]
3 Activation phase O-7fffffff[ms]
4 Extended information 16 bits
5 Cyclic handler attribute TA_HLNG: Handlers written in high-level language
TA_ASM: Handlers written in assembly language
TA_STA: Starts operation of cyclic handler
TA_PHS: Saves activation phase
Table 5.20 List of Cyclic Handler Function Service Call
No. Service Call Function System State
TIN|E|D]|U
1 sta_cyc [S] Starts cyclic handler op-) 0O]0|O
2 ista_cyc eration O|]0|]0O0]|O
3 stp_cyc [S] Stops cyclic handler op- O 0O]0|O
4 istp_cyc eration O|0]0O0]|O
5 ref cyc Reference cyclic handler | O 0O]0]|O
6 iref cyc status O|O0O|0O0|O

Notes:

® [S]: Standard profile service calls

® Each sign within " System State " is a following meaning.

L

* & & o o

T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

- 154 -

sta_cyc Start cyclic handler operation
ista_cyc Start cyclic handler operation (handler only)

[[C Language API]]
ER ercd = sta_cyc(ID cycid);
ER ercd = ista cyc(ID cycid);
@ Parameters

ID cycid ID number of the cyclic handler to be operated
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

.include mr30.1inc
sta_cyc CYCNO
ista_cyc CYCNO

® Parameters
CYCNO ID number of the cyclic handler to be operated

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 ID number of the cyclic handler to be operated
[[Error code 1]

None

[[Functional description 1]

This service call places the cyclic handler indicated by cycid into an operational state. If the cyclic handler attribute of
TA_PHS is not specified, the cyclic handler is started every time the activate cycle elapses, start with the time at which this

service call was invoked.

If while TA_PHS is not specified this service call is issued to a cyclic handler already in an operational state, it sets the time

at which the cyclic handler is to start next.

If while TA_PHS is specified this service call is issued to a cyclic handler already in an operational state, it does not set the

startup time.

If this service call is to be issued from task context, use sta_cyc; if issued from non-task context, use ista_cyc.

- 155 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

sta_cyc (ID cycl);

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

PUSHM AO0
sta_cyc #ID_CYC1

- 156 -

stp_cyc Stops cyclic handler operation
iIstp_cyc Stops cyclic handler operation (handler only)

[[C Language API]]
ER ercd = stp_cyc(ID cycid);
ER ercd = istp_cyc(ID cycid);

® Parameters

ID cycid ID number of the cyclic handler to be stopped
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

.include mr30.1inc
stp_cyc CYCNO
istp_cyc CYCNO

® Parameters
CYCNO ID number of the cyclic handler to be stopped

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 ID number of the cyclic handler to be stopped
[[Error code 1]

None

[[Functional description]]
This service call places the cyclic handler indicated by cycid into a non-operational state.

If this service call is to be issued from task context, use stp_cyc; if issued from non-task context, use istp_cyc.

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

stp_cyc (ID cycl);

}
<<Example statement in assembly language>>
.include mr30.inc
.GLB task
task:

PUSHM AQ
stp_cyc #ID_CYC1

- 157 -

ref_cyc Reference cyclic handler status
iref_cyc Reference cyclic handler status (handler only)

[[C Language API]]
ER ercd = ref_cyc(ID cycid, T_RCYC *pk_rcyc);
ER ercd = iref_cyc(ID cycid, T_RCYC *pk_rcyc);
@ Parameters

ID cycid ID number of the target cyclic handler

T_RCYC *pk_rcyc Pointer to the packet to which cyclic handler status is returned
@ Return Parameters

ER ercd Terminated normally (E_OK)

T _RCYC *pk_recyc Pointer to the packet to which cyclic handler status is returned

Contents of pk_rcyc
typedef struct t reyc{

STAT cycstat +0 2 Operating status of cyclic handler
RELTIM lefttim +2 4 Left time before cyclic handler starts up
} T_RCYC;
[[Assembly language API]]

-include mr30.inc
ref cyc |ID,PK RCYC
iref_cyc ID,PK_RCYC
@ Parameters
CYCNO ID number of the target cyclic handler

PK_RCYC Pointer to the packet to which cyclic handler status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 ID number of the target cyclic handler

Al Pointer to the packet to which cyclic handler status is returned
[[Error code]I

None

[[Functional description 1]
This service call returns various statuses of the cyclic handler indicated by cycid.

@ cycstat
The status of the target cyclic handler is returned.
*TCYC_STA Cyclic handler is an operational state.
*TCYC_STP Cyclic handler is a non-operational state.
& lefttim

The remaining time before the target cyclic handler will start next is returned. This time is expressed in ms units.
If the target cyclic handler is non-operational state, the returned value is indeterminate.

If this service call is to be issued from task context, use ref_cyc; if issued from non-task context, use iref _cyc.

- 158 -

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel id.h”
void task()

T RCYC rcyc;
ER ercd;

ercd = ref cyc(ID CYC1l, &rcyc);

}
<<Example statement in assembly language>>
.include mr30.inc
.GLB task
refcyc: .blkb 6

task:

PUSHM AQ0,Al
ref cyc #ID CYC1,# refcyc

- 159 -

5.11Time Management Function (Alarm Handler)

Specifications of the alarm handler function of MR30 are listed in Table 5.21. The alarm handler description languages in
item No. 4 are those specified in the GUI configurator. They are not output to a configuration file, nor are the MR30 kernel

concerned with them.

Table 5.21 Specifications of the Alarm Handler Function

No. Item Content
1 Alarm handler ID 1-255
2 Activation time O-7Fffffff [ms]
3 Extended information 16 bits
4 Alarm handler attribute TA_HLNG: Handlers written in high-level language
TA_ASM: Handlers written in assembly language
Table 5.22 List of Alarm Handler Function Service Call
No. Service Call Function System State
TIN|E|D|JU]|L
1 sta_alm Starts alarm handler operation | O O|l0O| 0O
2 ista_alm OO0 | 0O
3 stp_alm Stops alarm handler operation | O Ol 0O | 0O
4 istp_alm O|lO0 |0 |0
5 ref_alm References alarm handler sta- | O O|l0O| 0O
6 iref_alm tus Ololo|O

Notes:

® [S]: Standard profile service calls

® FEach sign within " System State " is a following meaning.

L

* & & o o

T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

- 160 -

sta_alm Start alarm handler operation
ista_alm Start alarm handler operation (handler only)

[[C Language API]]
ER ercd = sta_alm(ID almid, RELTIM almtim);
ER ercd = ista_alm(ID almid, RELTIM almtim);
@ Parameters

ID almid ID number of the alarm handler to be operated
RELTIM almtim Alarm handler startup time (relative time)
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

-.include mr30.inc
sta_alm ALMID,ALMTIM
ista_alm ALMID,ALMTIM

® Parameters
ALMID ID number of the alarm handler to be operated

ALMTIM Alarm handler startup time (relative time)

® Register contents after service call is issued
Register name Content after service call is issued

RO Error code

R1 Alarm handler startup time (relative time)

A0 ID number of the alarm handler to be operated
[[Error code]I

None

[[Functional description]

This service call sets the activation time of the alarm handler indicated by almid as a relative time of day after the lapse of
the time specified by almtim from the time at which it is invoked, and places the alarm handler into an operational state.

If an already operating alarm handler is specified, the previously set activation time is cleared and updated to a new activa-
tion time. If almtim = 0 is specified, the alarm handler starts at the next time tick. The values specified for almtim must be
within (Ox7fffffff — time tick). If any value exceeding this limit is specified, the service call may not operate correctly. If 0

is specified for alImtim , the alarm handler is started at the next time tick.

If this service call is to be issued from task context, use sta_alm; if issued from non-task context, use ista_alm.

-161 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

sta_alm (ID alml,100);

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

PUSHM A0
sta_alm #ID ALMI1, #100

-162 -

stp_alm Stop alarm handler operation
iIstp_alm Stop alarm handler operation (handler only)

[[C Language API]]
ER ercd = stp_alm(ID almid);
ER ercd = istp_alm(ID almid);

® Parameters

ID almid ID number of the alarm handler to be stopped
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

.include mr30.1inc
stp_alm ALMID
istp_alm ALMID

® Parameters
ALMID ID number of the alarm handler to be stopped

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 ID number of the alarm handler to be stopped
[[Error code 1]
None

[[Functional description 1]
This service call places the alarm handler indicated by almid into a non-operational state.

If this service call is to be issued from task context, use stp_alm; if issued from non-task context, use istp_alm.

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

stp_alm (ID alml);

}
<<Example statement in assembly language>>
.include mr30.inc
.GLB task
task:

PUSHM AQ
stp_alm #ID_ALM1

- 163 -

ref _alm Reference alarm handler status
iref_alm Reference alarm handler status (handler only)

[[C Language API]]
ER ercd = ref_alm(ID almid, T_RALM *pk_ralm);
ER ercd = iref_alm(ID almid, T_RALM *pk_ralm);
® Parameters

ID almid ID number of the target alarm handler
T_RALM *pk_ralm Pointer to the packet to which alarm handler status is returned
@ Return Parameters
ER ercd Terminated normally (E_OK)
T _RALM *pk_ralm Pointer to the packet to which alarm handler status is returned

Contents of pk_ralm

typedef struct t ralm{
STAT almstat +0 2 Operating status of alarm handler
RELTIM lefttim +2 4 This service call returns various statuses of the alarm handler
indicat
} T_RALM;
[[Assembly language API]]
.include mr30.inc
ref_alm ALMID,PK_RALM
iref_alm ALMID,PK_RALM
® Parameters
ALMID ID number of the target alarm handler

PK_RALM Pointer to the packet to which alarm handler status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code
A0 ID number of the target alarm handler
Al Pointer to the packet to which alarm handler status is returned
[[Error code]I
None

[[Functional description 1]
This service call returns various statuses of the alarm handler indicated by almid.

€ almstat
The status of the target alarm handler is returned.
*TALM_STA Alarm handler is an operational state.
*TALM_STP Alarm handler is a non-operational state.
& lefttim

The remaining time before the target alarm handler will start next is returned. This time is expressed in ms units.
If the target alarm handler is a non-operational state, the returned value is indeterminate.

If this service call is to be issued from task context, use ref_alm; if issued from non-task context, use iref_alm.

- 164 -

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel_id.h”
void task()

T RALM ralm;
ER ercd;

ercd = ref _alm(ID ALM1l, &ralm);

<<Example statement in assembly language>>
.include mr30.inc

.GLB task

_ refalm: .blkb 6
task:

PUSHM A0,Al
ref_alm #ID ALM1,# refalm

- 165 -

5.12System Status Management Function

Table 5.23 List of System Status Management Function Service Call

No. Service Call Function System State
T E|D|U]|L
1 rot rdg | [S] Rotates task precedence) O]O0]O
2 irot_rdg | [S] 0O|0O0]| O
3 get_tid | [S] | Referencestask ID inthe RUN- | O O|0O0]| O
4 iget_tid | [S] NING state O|0O0]|O
5 loc_cpu | [S] Locks the CPU) O|lO0O]J]O0]O
6 iloc_cpu | [S] O|lO0O]J]O0]O
7 unl_cpu | [S] Unlocks the CPU) O|lO0O]J]O0]O
8 iunl_cpu | [S] O|lO0O]J]O0]O
9 dis_dsp | [S] Disables dispatching 0 O|]0]|O0
10 ena_dsp | [S] Enables dispatching) O|]0]|O0
11 sns_ctx | [S] References context 0 O] 0|0 O
12 sns_loc | [S] References CPU state 0 O|]O0]0O0]|O
13 sns dsp | [S] References dispatching state 0 O] 0|0]| O
14 sns_dpn | [S] | References dispatching pending | O Oj]O0O|0O]|O
state

Notes:

® [S]: Standard profile service calls

® Each sign within " System State " is a following meaning.
T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

L2

* & 6 o o

- 166 -

rot_rdq Rotate task precedence
irot_rdqg Rotate task precedence (handler only)

[[C Language API]]
ER ercd = rot_rdq(PRI tskpri);
ER ercd = irot_rdq(PRI tskpri);

® Parameters

PRI tskpri Task priority to be rotated
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

.include mr30.inc
rot_rdg TSKPRI
irot_rdq TSKPRI

® Parameters
TSKPRI Task priority to be rotated

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code

R3 Task priority to be rotated
[[Error code]]

None

- 167 -

[[Functional description]]

This service call rotates the ready queue whose priority is indicated by tskpri. In other words, it relocates the task enqueued
at the top of the ready queue of the specified priority by linking it to behind the tail of the ready queue, thereby switching
over the executed tasks that have the same priority. Figure5.1 depicts the manner of how this is performed.

Proprity 1 TCB
Priority 2 TCB TCB
Priority n TCB TCB TCB -->

Moved to behind the tail of the queue

Figure5.1. Manipulation of the ready queue by the rot_rdq service call

By issuing this service call at given intervals, it is possible to perform round robin scheduling. If tskpri=TPRI_SELF is
specified when using the rot_rdq service call, the ready queue whose priority is that of the issuing task is rotated.
TPRI_SELF cannot be specified in the irot_rdq service call. TPRI_SELF cannot be specified by irot_rdq service call.
However, an error is not returned even if it is specified.

If the priority of the issuing task itself is specified in this service call, the issuing task is relocated to behind the tail of the
ready queue in which it is enqueued. Note that if the ready queue of the specified priority has no tasks in it, no operation is
performed.

If this service call is to be issued from task context, use rot_rdg; if issued from non-task context, use irot_rdq.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel_id.h”
void task()

rot_qu(2);

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:
PUSHM R3

rot_rdqg #2

- 168 -

get_tid Reference task ID in the RUNNING state
iget_tid Reference task ID in the RUNNING state
(handler only)

[[C Language API]]
ER ercd = get_tid(ID *p_tskid);
ER ercd = iget _tid(ID *p_tskid);

® Parameters

ID *p_tskid Pointer to task ID
@ Return Parameters
ER ercd Terminated normally (E_OK)
ID *p_tskid Pointer to task ID
[[Assembly language API 1]
.include mr30.inc
get_tid
iget_tid
® Parameters
None

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 Acquired task 1D
[[Error code]I

None

[[Functional description]]
This service call returns the task ID currently in RUNNING state to the area pointed to by p_tskid. If this service call is
issued from a task, the ID number of the issuing task is returned. If this service call is issued from non-task context, the task

ID being executed at that point in time is returned. If there are no tasks currently in an executing state, TSK_NONE is re-
turned.

If this service call is to be issued from task context, use get_tid; if issued from non-task context, use iget_tid.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

ID tskid;
get_tid(&tskid) ;

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
task:
PUSHM AQ

get tid

- 169 -

loc_cpu Lock the CPU
iloc_cpu Lock the CPU (handler only)

[[C Language API]]
ER ercd = loc_cpu(Q);
ER ercd = iloc_cpuQ);

® Parameters

None
@ Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API]]
.include mr30.inc
loc_cpu
iloc_cpu
@ Parameters
None

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code

[[Error code 1]
None

[[Functional description]

This service call places the system into a CPU locked state, thereby disabling interrupts and task dispatches. The features of
a CPU locked state are outlined below.

(1) No task scheduling is performed during a CPU locked state.
(2) No external interrupts are accepted unless their priority levels are higher than the kernel interrupt
mask level defined in the configurator.
(3) Only the following service calls can be invoked from a CPU locked state. If any other service calls
are invoked, operation of the service call cannot be guaranteed.
* ext_tsk
*loc_cpu, iloc_cpu
*unl_cpu, iunl_cpu
* sns_ctx
*sns_loc
*sns_dsp
*sns_dpn

The system is freed from a CPU locked state by one of the following operations.

(a) Invocation of the unl_cpu or iunl_cpu service call
(b) Invocation of the ext_tsk service call

Transitions between CPU locked and CPU unlocked states occur only when the loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, or
ext_tsk service call is invoked. The system must always be in a CPU unlocked state when the interrupt handler or the time
event handler is terminated. If either handler terminates while the system is in a CPU locked state, handler operation cannot
be guaranteed. Note that the system is always in a CPU unlocked state when these handlers start.

Invoking this service call again while the system is already in a CPU locked state does not cause an error, in which case
task queuing is not performed, however.

If this service call is to be issued from task context, use loc_cpu; if issued from non-task context, use iloc_cpu.

-170 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

lac_cpu();

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

loc;cpu

-171 -

unl_cpu Unlock the CPU
iunl_cpu Unlock the CPU (handler only)

[[C Language API]]
ER ercd = unl_cpuQ);
ER ercd = iunl_cpuQ;

® Parameters

None
® Return Parameters
ER ercd Terminated normally (E_OK)

[[Assembly language API]]

.include mr30.inc

unl_cpu

iunl_cpu

® Parameters

None

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code

[[Error code]

None

[[Functional description 1]

This service call frees the system from a CPU locked state that was set by the loc_cpu or iloc_cpu service call. If the
unl_cpu service call is issued from a dispatching enabled state, task scheduling is performed. If the system was put into a
CPU locked state by invoking iloc_cpu within an interrupt handler, the system must always be placed out of a CPU locked
state by invoking iunl_cpu before it returns from the interrupt handler.

The CPU locked state and the dispatching disabled state are managed independently of each other. Therefore, the system
cannot be freed from a dispatching disabled state by the unl_cpu or iunl_cpu service call unless the ena_dsp service call is
used.

If this service call is to be issued from task context, use unl_cpu; if issued from non-task context, use iunl_cpu.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

uﬁl_cpu();

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

unl cpu

-172 -

dis_dsp Disable dispatching

[[C Language API]]
ER ercd = dis_dsp(Q);

® Parameters
None

® Return Parameters
ER ercd Terminated normally (E_OK)

[[Assembly language API 1]
-include mr30.inc
dis_dsp
® Parameters

None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code

[[Error code 1]

None

[[Functional description 1]
This service call places the system into a dispatching disabled state. The features of a dispatching disabled state are outlined
below.

(1) Since task scheduling is not performed anymore, no tasks other than the issuing task itself will be
placed into RUNNING state.

(2) Interrupts are accepted.

(3) No service calls can be invoked that will place tasks into WAITING state.

If one of the following operations is performed during a dispatching disabled state, the system status returns to a task exe-
cution state.

(a) Invocation of the ena_dsp service call
(b) Invocation of the ext_tsk service call

Transitions between dispatching disabled and dispatching enabled states occur only when the dis_dsp, ena_dsp, or ext_tsk
service call is invoked.

Invoking this service call again while the system is already in a dispatching disabled state does not cause an error, in which
case task queuing is not performed, however.

This service call can be issued only from task context. It cannot be issued from non-task context.

-173 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.hs>
#include “kernel_id.h”
void task()

dfs_dsp();

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

dis;dsp

-174 -

ena_dsp Enables dispatching

[[C Language API]]
ER ercd = ena_dsp(Q);
® Parameters
None

® Return Parameters
ER ercd Terminated normally (E_OK)

[[Assembly language API 1]
-include mr30.inc
ena_dsp
® Parameters

None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code

[[Error code 1]

None

[[Functional description 1]
This service call frees the system from a dispatching disabled state that was set by the dis_dsp service call. As a result, task
scheduling is resumed when the system has entered a task execution state.

Invoking this service call from a task execution state does not cause an error, in which case task queuing is not performed,
however.

This service call can be issued only from task context. It cannot be issued from non-task context.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

eﬂa_dsp();

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

ena_dsp

-175 -

sns_ctx Reference context

[[C Language API]]
BOOL state = sns_ctx();
® Parameters
None
® Return Parameters
BOOL state TRUE: Non-task context
FALSE: Task context

[[Assembly language API 1]
-include mr30.inc
sns_ctx

® Parameters
None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO TRUE:Non-Task context
FALSE: Task context

[[Error code]

None

[[Functional description 1]
This service call returns TRUE when it is invoked from non-task context, or returns FALSE when invoked from task con-
text. This service call can also be invoked from a CPU locked state.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel id.h”
void task()

BOOL stat;
stat = sns_ctx();
<<Example statement in assembly language>>
.include mr30.inc
.GLB task
task:

sns_ctx

-176 -

sns_loc Reference CPU state

[[C Language API]]
BOOL state = sns_loc();

® Parameters
None

® Return Parameters
BOOL state TRUE: CPU locked state
FALSE: CPU unlocked state

[[Assembly language API 1]
-include mr30.inc
sns_loc

® Parameters
None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO TRUE: CPU locked state
FALSE:CPUCPU unlocked state

[[Error code]

None

[[Functional description 1]
This service call returns TRUE when the system is in a CPU locked state, or returns FALSE when the system is in a CPU
unlocked state. This service call can also be invoked from a CPU locked state.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel id.h”
void task()

BOOL stat;

stat = sns_loc();

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

sns_loc

-177 -

sns_dsp Reference dispatching state

[[C Language API]]
BOOL state = sns_dsp(Q);
® Parameters
None
® Return Parameters
BOOL state TRUE: Dispatching disabled state
FALSE: Dispatching enabled state

[[Assembly language API 1]
.include mr30.inc
sns_dsp
® Parameters

None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO TRUE: Dispatching disabled state
FALSE: Dispatching enabled state

[[Error code]

None

[[Functional description 1]
This service call returns TRUE when the system is in a dispatching disabled state, or returns FALSE when the system is in
a dispatching enabled state. This service call can also be invoked from a CPU locked state.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel id.h”
void task()

BOOL stat;
stat = sns dsp();
<<Example statement in assembly language>>
.include mr30.inc
.GLB task
task:

sns_dsp

-178 -

sns_dpn Reference dispatching pending state

[[C Language API]]
BOOL state = sns_dpn();

® Parameters

None

® Return Parameters
BOOL state TRUE: Dispatching pending state
FALSE: Not dispatching pending state
[[Assembly language API 1]

-include mr30.inc
sns_dpn
@ Parameters

None

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO TRUE: Dispatching pending state
FALSE: Not dispatching pending state
[[Error code]I
None

[[Functional description 1]

This service call returns TRUE when the system is in a dispatching pending state, or returns FALSE when the system is not
in a dispatching pending state. More specifically, FALSE is returned when all of the following conditions are met; other-
wise, TRUE is returned.

(1) The system is not in a dispatching pending state.
(2) The system is not in a CPU locked state.
(3) The object made pending is a task.

This service call can also be invoked from a CPU locked state. It returns TRUE when the system is in a dispatching dis-
abled state, or returns FALSE when the system is in a dispatching enabled state.

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

BOOL stat;
stat = sns_dpn() ;
<<Example statement in assembly language>>
.include mr30.inc
.GLB task
task:

sns;dpn

-179 -

5.13Interrupt Management Function

Table 5.24 List of Interrupt Management Function Service Call

No. Service Call Function System State
N|E|D]|]U
1 ret_int Returns from an interrupt O|jO0O|]0O0|O
handler

Notes:

[S]: Standard profile service calls

Each sign within " System State " is a following meaning.
T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

¢

* & 6 o o

-180 -

ret_int Returns from an interrupt handler
(when written in assembly language)

[[C Language API]]

This service call cannot be written in C Ianguage.35

[[Assembly language API 1]
.include mr30.inc
ret_int

® Parameters
None

[[Error code 1]

Not return to the interrupt handler that issued this service call.

[[Functional description]]
This service call performs the processing necessary to return from an interrupt handler. Depending on return processing, it
activates the scheduler to switch tasks from one to another.

If this service call is executed in an interrupt handler, task switching does not occur, and task switching is postponed until
the interrupt handler terminates.

However, if the ret_int service call is issued from an interrupt handler that was invoked from an interrupt that occurred
within another interrupt, the scheduler is not activated. The scheduler is activated for interrupts from a task only.

When writing this service call in assembly language, be aware that the service call cannot be issued from a subroutine that
is invoked from an interrupt handler entry routine. Always make sure this service call is executed in the entry routine or
entry function of an interrupt handler. For example, a program like the one shown below may not operate normally.

.include mr30.inc

/* NG */
.GLB intr
intr:
jsr.b func
func:

ret int

Therefore, write the program as shown below.
.include mr30.inc

/* OK */
.GLB intr
intr:
jsr.b func
ret int
func:
rts

Make sure this service call is issued from only an interrupt handler. If issued from a cyclic handler, alarm handler, or a task,
this service call may not operate normally.

* |If the starting function of an interrupt handler is declared by #pragma INTHANDLER, the ret_int service call is automatically issued at the
exit of the function

-181 -

5.14System Configuration Management Function

Table 5.25 List of System Configuration Management Function Service Call

No. Service Call Function System State
TIN|JE|D]|U
1 ref_ver [S] References version in-) 0O|0O0]|O
2 iref ver formation O|0O0|]0]|O0

Notes:
® [S]: Standard profile service calls

® FEach sign within " System State " is a following meaning.
¢ T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state

D: Can be called from dispatch-disabled state

U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

* & 6 o o

-182 -

ref _ver Reference version information
iref_ver Reference version information (handler only)

[[C Language API]]
ER ercd = ref_ver(T_RVER *pk_rver);
ER ercd = iref_ver(T_RVER *pk _rver);
® Parameters
T _RVER *pk_rver Pointer to the packet to which version information is returned

Contents of pk_rver
typedef struct t_rver {

UH maker 0 2 Kernel manufacturer code
UH prid +2 2 Kernel identification number
UH spver +4 2 ITRON specification version number
UH prver +6 2 Kernel version number
UH prno[4] +8 2 Kernel product management information
} T_RVER;
©® Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API]]
-.include mr30.inc
ref ver PK VER
iref_ver PK VER
® Parameters
PK_VER Pointer to the packet to which version information is returned

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
A0 Pointer to the packet to which version information is returned
[[Error code 1]
None

-183 -

[[Functional description]]
This service call reads out information about the version of the currently executing kernel and returns the result to the area
pointed to by pk_rver.

The following information is returned to the packet pointed to by pk_rver.

¢ maker

The code H’115 denoting Renesas Technology Corporation is returned.
@ prid

The internal identification code IDH’150 of the M3T-MR30 is returned.
@ spver

The code H’5402 denoting that the kernel is compliant with WITRON Specification Ver 4.02.00 is returned.
@ prver

The code H’0401 denoting the version of the M3T-MR30/4 is returned.
@ prno

e prno[0]
Reserved for future extension.

e prno[l]
The 2 low-order digits of the product release year (calendar) and the month H'0806 are acquired.

e prno[2]
Reserved for future extension.

e prno[3]
Reserved for future extension.

If this service call is to be issued from task context, use ref _ver; if issued from non-task context, use iref_ver.

[[Example program statement 1]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

T RVER pk_rver;
ref ver(&pk rver);

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
_ refver: .blkb 6
task:
PUSHM AQ

ref_ver #_refver

-184 -

5.15Extended Function (Long Data Queue)

Specifications of the Long data queue function of MR30 are listed in Table 5.26. This function is outside the scope of
MITRON 4.0 Specification.

Table 5.26 Specifications of the Long Data Queue Function

No. Item Content
1 Data queue ID 1-255
2 Capacity (data bytes) in data queue area 0-65535
3 Data size 32 bits
4 Data queue attribute TA_TFIFO: Waiting tasks enqueued in order of FIFO
TA_TPRI: Waiting tasks enqueued in order of priority
Table 5.27 List of Long Dataqueue Function Service Call
No. Service Call Function System State
T N E D U L
1 vsnd_dtg [S] Sends to long data queue) O O]
2 vpsnd_dtq [S] Sends to long data queue O 0 0)
3 vipsnd_dtq [S] (polling) @))) 0
4 vtsnd_dtq [S] Sends to long data queue O O O
(with timeout)
5 vfsnd_dtq [S] Forced sends to long data) 0 0 0
6 vifsnd_dtq [S] queue @)) 0 O]
7 vrev_dtq [S] Receives from long data 0] 0] O
gueue
8 vprev_dtq [S] Receives from long data 0 0 0)
9 viprev_dtq queue (polling) (0] (0] 0] o]
10 vtrev_dtq [S] Receives from long data o] 0 O
gueue (with timeout)
1 vref_dtqg References long data queue | O 0 O) 0
12 viref_dtqg status 0]) 0 0
Notes:

® [S]: Standard profile service calls

® Each sign within " System State " is a following meaning.

*

* & 6 o o

T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

-185 -

vsnd_dtq Send to Long data queue

vpsnd_dtq Send to Long data queue (polling)
vipsnd_dtq Send to Long data queue (polling, handler only)
visnd_dtq Send to Long data queue (with timeout)
visnd_dtq Forcibly send to Long data queue
vifsnd_dtq Forcibly send to Long data queue (handler only)
[[C Language API]l
ER ercd = vsnd_dtq(ID vdtqgid, W data);
ER ercd = vpsnd_dtq(ID vdtqid, W data);
ER ercd = vipsnd_dtq(ID vdtqid, W data);
ER ercd = vtsnd_dtq(1D vdtqid, W data, TMO tmout);
ER ercd = vfsnd _dtq(1D vdtqid, W data);
ER ercd = vifsnd_dtq(ID vdtqgid, W data);
® Parameters
ID vdtqid ID number of the Long data queue to which transmitted
TMO tmout Timeout value(tsnd_dtq)
w data Data to be transmitted
@ Return Parameters
ER ercd Terminated normally (E_OK) or error code
[[Assembly language API 1]
.include mr30.inc
vsnd_dtq VDTQID, DTQDATA
visnd_dtq VDTQID, DTQDATA
vpsnd_dtq VDTQID, DTQDATA
vipsnd_dtq VDTQID, DTQDATA
vtsnd_dtq VDTQID, DTQDATA,TMO
vfsnd_dtq VDTQID, DTQDATA
vifsnd_dtq VDTQID, DTQDATA
® Parameters
VDTQID ID number of the Long data queue to which transmitted
DTQDATA Data to be transmitted
TMO Timeout value(tsnd_dtq)

@ Register contents after service call is 1ssued
vsnd_dtqg,vpsnd_dtq,vipsnd_dtq,vfsnd_dtq,vifsnd_dtq
Register name Content after service call is issued

RO Error code

R1 Data to be transmitted (16 low-order bits)

R3 Data to be transmitted (16 high-order bits)

A0 ID number of the Long data queue to which transmitted
vtsnd_dtq

Register name Content after service call is issued

RO Error code

R1 Data to be transmitted(16 low-order bits)

R2 Timeout value(16 high-order bits)

R3 Data to be transmitted (16 high-order bits)

A0 ID number of the Long data queue to which transmitted

- 186 -

[[Error code]

E RLWAI Forced release from waiting

E TMOUT Polling failure or timeout or timed out

E ILUSE Service call improperly used (vfsnd_dtq or vifsnd_dtq is issued for a Long data
queue whose dtgcnt = 0)

EV_RST Released from a wait state by clearing of the Long data queue area

[[Functional description 1]

This service call sends the signed 4-byte data indicated by data to the Long data queue indicated by vdtqgid. If any task is
kept waiting for reception in the target Long data queue, the data is not stored in the Long data queue and instead sent to
the task at the top of the reception waiting queue, with which the task is released from the reception wait state.

On the other hand, if vsnd_dtq or vitsnd_dtq is issued for a Long data queue that is full of data, the task that issued the ser-
vice call goes from RUNNING state to a data transmission wait state, and is enqueued in a transmission waiting queue,
kept waiting for the Long data queue to become available. In that case, if the attribute of the specified Long data queue is
TA_TFIFO, the task is enqueued in order of FIFO; if TA_TPRI, the task is enqueued in order of priority. For vpsnd_dtq and
vipsnd_dtq, the task returns immediately and responds to the call with the error code E_ TMOUT.

For the vtsnd_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
OX7Fffffff - time tick. If any value exceeding this limit is specified, the service call may not operate correctly. If
TMO_POL=0 is specified for tmout, it means specifying O as a timeout value, in which case the service call operates the
same way as vpsnd_dtq. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in
which case the service call operates the same way as vsnd_dtg.

If there are no tasks waiting for reception, nor is the Long data queue area filled, the transmitted data is stored in the Long
data queue.

The task placed into a wait state by execution of the vsnd_dtq or vtsnd_dtq service call is released from WAITING state in
the following cases:

€ When the vrcv_dtq, vtrcv_dtq, vprcv_dtq, or viprcv_dtqg service call is issued before the tmout
time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_ TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAI.

€ When the target Long data queue being waited for is removed by the vrst_vdtqg service call is-
sued from another task
The error code returned in this case is EV_RST.

For vfsnd_dtq and vifsnd_dtq, the data at the top of the Long data queue or the oldest data is removed, and the transmitted
data is stored at the tail of the Long data queue. If the Long data queue area is not filled with data, vfsnd_dtq and
vifsnd_dtq operate the same way as vsnd_dtq.

If this service call is to be issued from task context, use vsnd_dtq,vtsnd_dtq,vpsnd_dtg,vfsnd_dtq; if issued from non-task
context, use vipsnd_dtq,vifsnd_dtq.

- 187 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
W datal[10];
void task (void)

if (vend_dtq(ID_dtq, datal0]) == E RLWAI) {
error (“Forced released\n”) ;

if (vpsnd dtq(ID dtq, data[l]l)== E_TMOUT) {
error (“Timeout\n”) ;

if (vtsnd dtq(ID dtq, datal2], 10) != E_TMOUT) {
error (“Timeout \n”);

if (vfsnd dtg(ID dtg, data[3]) != E_OK){
error (“error\n”) ;

}

<<Example statement in assembly language>>
.include mr30.inc

.GLB task
g dtg: .LONG 12345678H
task:

PUSHM R1,R2,R3,A0

vtsnd dtg #ID DTQl, g dtqg,#100

PUSHM R1,R3,A0
vpsnd_dtq #ID DTQ2, #0FFFFH

PUSHM R1,R3,A0
vEsnd dtg #ID DTQ3, #0ABCDEFGHH

-188 -

vrcv_dtq Receive from Long data queue

vprcv_dtq Receive from Long data queue (polling)
viprcv_dtq Receive from Long data queue (polling,handler only)
vircv_dtq Receive from Long data queue (with timeout)
[[C Language API]]
ER ercd = vrcv_dtq(ID dtqid, W *p_data);
ER ercd = vprcv_dtq(ID dtqid, W *p_data);
ER ercd = viprcv_dtq(ID dtgqid, W *p_data);
ER ercd = vtrcv_dtq(1D dtqgid, W *p_data, TMO tmout);
® Parameters
ID vdtqid ID number of the Long data queue from which to receive
TMO tmout Timeout value(vtrcv_dtq)
W *p_data Pointer to the start of the area in which received data is stored
® Return Parameters
ER ercd Terminated normally (E_OK) or error code
W *p_data Pointer to the start of the area in which received data is stored
[[Assembly language API 1]
.include mr30.inc
vrcv_dtq VDTQID
vprcv_dtq VDTQID
viprcv_dtq VDTQID
vtrcv_dtq VDTQID,TMO
® Parameters
VDTQID ID number of the Long data queue from which to receive
TMO Timeout value(trev_dtq)

@ Register contents after service call is 1ssued
vrev_dtq,vprev_dtg,viprev_dtq
Register name Content after service call is issued

RO Error code

R1 Received data

A0 ID number of the Long data queue from which to receive

vtrcv_dtq

Register name Content after service call is issued

RO Error code

R1 Received data

R2 Timeout value(16 high-order bits)

A0 ID number of the Long data queue from which to receive
[[Error code]I

E_RLWAI Forced release from waiting

E_TMOUT Polling failure or timeout or timed out

-189 -

[[Functional description]]

This service call receives data from the Long data queue indicated by vdtqid and stores the received data in the area pointed
to by p_data. If data is present in the target Long data queue, the data at the top of the queue or the oldest data is received.
This results in creating a free space in the Long data queue area, so that a task enqueued in a transmission waiting queue is
released from WAITING state, and starts sending data to the Long data queue area.

If no data exist in the Long data queue and there is any task waiting to send data (i.e., data bytes in the Long data queue
area = 0), data for the task at the top of the data transmission waiting queue is received. As a result, the task kept waiting to
send that data is released from WAITING state.

On the other hand, if vrcv_dtq or vtrev_dtq is issued for the Long data queue which has no data stored in it, the task that
issued the service call goes from RUNNING state to a data reception wait state, and is enqueued in a data reception waiting
queue. At this time, the task is enqueued in order of FIFO. For the vprcv_dtq and viprcv_dtq service calls, the task returns
immediately and responds to the call with the error code E_TMOUT.

For the vtrcv_dtq service call, specify a wait time for tmout in ms units. The values specified for tmout must be within
OXT7FTFffff - time tick. If any value exceeding this limit is specified, the service call may not operate correctly. If
TMO_POL=0 is specified for tmout, it means specifying O as a timeout value, in which case the service call operates the
same way as vprcv_dtg. Furthermore, if specified as tmout=TMO_FEVR(-1), it means specifying an infinite wait, in which
case the service call operates the same way as vrcv_dtg.

The task placed into a wait state by execution of the vrcv_dtq or vtrev_dtq service call is released from the wait state in the
following cases:

€ When the vrev_dtq, vtrev_dtq, vprev_dtg, or viprcv_dtq service call is issued before the tmout
time elapses, with task-awaking conditions thereby satisfied
The error code returned in this case is E_OK.

€ When the first time tick occurred after tmout elapsed while task-awaking conditions remain un-
satisfied
The error code returned in this case is E_ TMOUT.

€ When the task is forcibly released from WAITING state by the rel_wai or irel_wai service call is-
sued from another task or a handler
The error code returned in this case is E_RLWAL.

If this service call is to be issued from task context, use vrcv_dtq,vtrev_dtg,vprev_dtg; if issued from non-task context, use
viprcv_dtg.

-190 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void task()

W data;

if (vrev_dtg(ID dtqg, &data) != E RLWAI)
error (“forced wakeup\n”) ;

if (vprcv_atq(ID dtqg, &data) != E TMOUT)
error (“Timeout\n”) ;

if (vtrev_dtg(ID dtg, &data, 10) != E TMOUT)
error (“Timeout\n”) ;

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

PUSHM A0, R3
vtrcev_dtq #ID _DTQ1, #TMO_POL

PUSHM AQ
vprcv_dtg #ID DTQ2

PUSHM A0
vrev_dtg #ID_DTQ2

-191 -

vref_dtq Reference Long data queue status
viref_dtq Reference Long data queue status (handler only)

[[C Language API]]
ER ercd = vref _dtq(ID vdtqid, T_RDTQ *pk _rdtq);
ER ercd = viref _dtq(ID vdtqid, T_RDTQ *pk_rdtq);
@ Parameters

ID vdtqid ID number of the target Long data queue

T_RDTQ *pk_rdtq Pointer to the packet to which Long data queue status is returned
@ Return Parameters

ER ercd Terminated normally (E_OK) or error code

T_RDTQ *pk_rdtq Pointer to the packet to which Long data queue status is returned

Contents of pk_rdtq
typedef struct t_rdtg{

ID stskid +0 2 Transmission waiting task 1D
ID wiskid +2 2 Reception waiting task ID
UINT sdtqent +4 2 Data bytes contained in Long data queue
} T_RDTQ;
[[Assembly language API]]

.include mr30.inc
vref _dtq VDTQID, PK_RDTQ
viref dtqVDTQID, PK_RDTQ
® Parameters
VDTQID ID number of the target Long data queue

PK_RDTQ Pointer to the packet to which Long data queue status is returned

@ Register contents after service call is issued
Register name Content after service call is issued

RO Error code

A0 ID number of the target Long data queue

Al Pointer to the packet to which Long data queue status is returned
[[Error code]I

None

-192 -

[[Functional description 1]

This service call returns various statuses of the Long data queue indicated by vdtqid.
@ stskid

Returned to stskid is the ID number of the task at the top of a transmission waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.
& wtskid

Returned to wtskid is the ID number of the task at the top of a reception waiting queue (the next task to be de-
queued). If no tasks are kept waiting, TSK_NONE is returned.
@ sdtgent

Returned to sdtqcnt is the number of data bytes stored in the Long data queue area.
If this service call is to be issued from task context, use ref_dtq; if issued from non-task context, use iref _dtq.

[[Example program statement]]

<<Example statement in C language>>
#include <itron.h>

#include <kernel.h>
#include “kernel id.h”
void task()

T RDTQ rdtq;
ER ercd;

ercd': vref dtg(ID DTQ1l, &rdtqg);

<<Example statement in assembly language>>

_ refdtqg: .blkb 6
.include mr30.inc
.GLB task

task:

PUSHM AQ,Al

vref dtqg #ID DTQ1,# refdtqg

-193 -

5.16 Extended Function (Reset Function)

This function initializes the content of an object. This function is outside the scope of LITRON 4.0 Specification.

Table 5.28 List of Reset Function Service Call

No. Service Call Function System State
TIN|JE|D]|U
1 vrst_dtq Clear data queue area) O|0]|O0
2 vrst_vdtg Clear Long data queue area 0 O|0]|O0
3 vrst_ mbx Clear mailbox area o] O] 0|0
4 vrst_mpf Clear fixed-size memory pool @] O|O0|O
area
5 vrst_mpl Clear variable-size memory 0 O|l0O0|O
pool area

Notes:

® [S]: Standard profile service calls

® Each sign within " System State " is a following meaning.
T: Can be called from task context

N: Can be called from non-task context

E: Can be called from dispatch-enabled state
D: Can be called from dispatch-disabled state
U: Can be called from CPU-unlocked state

L: Can be called from CPU-locked state

¢

* & 6 o o

-194 -

vrst_dtq Clear data queue area

[[C Language API]]
ER ercd = vrst_dtq(ID dtqid);

® Parameters

ID dtgid Data queue ID to be cleared
® Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

-include mr30.inc
vrst_dtq DTQID

® Parameters
DTQID Data queue ID to be cleared

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
A0 Data queue ID to be cleared
[[Error code]
None

[[Functional description 1]

This service call clears the data stored in the data queue indicated by dtqid. If the data queue area has no more areas to be
added and tasks are enqueued in a data transmission waiting queue, all of the tasks enqueued in the data transmission wait-
ing queue are released from WAITING state. Furthermore, the error code EV_RST is returned to the tasks that have been
released from WAITING state.

Even when the number of data queues defined is 0, all of the tasks enqueued in a data transmission waiting queue are re-
leased from WAITING state.

This service call can be issued only from task context. It cannot be issued from non-task context.

-195 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrst_dtq(ID dtql) ;

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

PUSHM A0
vrst_dtqg #ID_DTQ1

-196 -

vrst_vdtq Clear Long data queue area

[[C Language API]]
ER ercd = vrst_vdtq(1D vdtqid);

® Parameters

ID vdtqid Long data queue ID to be cleared
® Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

-include mr30.inc
vrst_vdtq VDTQID
® Parameters
VDTQID Long data queue ID to be cleared

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
A0 Long data queue ID to be cleared
[[Error code]
None

[[Functional description 1]

This service call clears the data stored in the Long data queue indicated by vdtqgid. If the Long data queue area has no more
areas to be added and tasks are enqueued in a data transmission waiting queue, all of the tasks enqueued in the data trans-
mission waiting queue are released from WAITING state. Furthermore, the error code EV_RST is returned to the tasks that

have been released from WAITING state.

Even when the number of Long data queues defined is 0, all of the tasks enqueued in a data transmission waiting queue are
released from WAITING state.

This service call can be issued only from task context. It cannot be issued from non-task context.

-197 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrst_vdtq(ID vdtqgl) ;

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

PUSHM A0
vrst_vdtqg #ID_VDTQ1

-198 -

vrst_mbx Clear mailbox area

[[C Language API]]
ER ercd = vrst_mbx(ID mbxid);

® Parameters

ID mbxid Mailbox ID to be cleared
® Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

-include mr30.inc
vrst_mbx MBXID

® Parameters
MBXID Mailbox ID to be cleared

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
A0 Mailbox ID to be cleared
[[Error code 1]
None

[[Functional description 1]
This service call clears the messages stored in the mailbox indicated by mbxid.
This service call can be issued only from task context. It cannot be issued from non-task context.

-199 -

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrst_mbx(ID mbxl) ;

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

PUSHM A0
vrst_mbx #ID_MBX1

- 200 -

vrst_mpf Clear fixed-size memory pool area

[[C Language API]]
ER ercd = vrst_mpf(ID mpfid);

® Parameters

ID mpfid Fixed-size memory pool ID to be cleared
® Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

-include mr30.inc
vrst_mpf MPFID

® Parameters
MPFID Fixed-size memory pool ID to be cleared

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
A0 Fixed-size memory pool ID to be cleared
[[Error code]
None

[[Functional description 1]

This service call initializes the fixed-size memory pool indicated by mpfid. If tasks are enqueued in a memory block wait-
ing queue, all of the tasks enqueued in the memory block waiting queue are released from WAITING state. Furthermore,
the error code EV_RST is returned to the tasks that have been released from WAITING state.

This service call can be issued only from task context. It cannot be issued from non-task context.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.h>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrét_mpf(ID mpfl);

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

PUSHM AQ
vrst mpf #ID_MPF1

-201 -

vrst_mpl Clear variable-size memory pool area

[[C Language API]]
ER ercd = vrst_mpl(ID mplid);

® Parameters

ID mplid Variable-size memory pool ID to be cleared
® Return Parameters
ER ercd Terminated normally (E_OK)
[[Assembly language API 1]

-include mr30.inc
vrst_mpl MPLID

® Parameters
MPLID Variable-size memory pool ID to be cleared

@ Register contents after service call is 1ssued
Register name Content after service call is issued

RO Error code
A0 Variable-size memory pool ID to be cleared
[[Error code]
None

[[Functional description]
This service call initializes the variable-size memory pool indicated by mplid.

This service call can be issued only from task context. It cannot be issued from non-task context.

[[Example program statement]]
<<Example statement in C language>>
#include <itron.hs>
#include <kernel.h>
#include “kernel id.h”
void taskl (void)

vrét_mpl(ID mpll);

}

<<Example statement in assembly language>>
.include mr30.inc
.GLB task

task:

PUSHM AQ
vrst_mpl #ID MPL1

-202 -

6. Applications Development Procedure
Overview

6.1 Overview

Application programs for MR30 should generally be developed following the procedure described below.

1. Generating a project
When using HEW?®, create a new project using MR30 on HEW.

2. Coding the application program
Write the application program in code form using C or assembly language. If necessary, correct the sample star-
tup program (crtOmr.a30) and section definition file (c_sec.inc or asm_sec.inc).

3. Creating a configuration file
Create a configuration file which has defined in it the task entry address, stack size, etc. by using an editor.
The GUI configurator available for MR30 may be used to create a configuration file.

4. Executing the configurator

From the configuration file, create system data definition files (sys_rom.inc, sys ram.inc), include files
(mr30.inc, kernel_id.h), and a system generation procedure description file (makefile).

5. System generation
Execute the make® command or execute build on HEW to generate a system.

6. Writing to ROM
Using the ROM programming format file created, write the finished program file into the ROM. Or load it into
the debugger to debug.

Figure 6.1 shows a detailed flow of system generation.

% |t is abbreviation of High-performance Embedded Workshop.
%" The make command comes the UNIX standard and UNIX compatible

- 203 -

HEW

/ Configuration file /

/ Cstandard ; MR30 include file Configurator
header file / kernelh cfg30

v
Include file
kernel idh

kemel svsinth

Application Include file System data definition file
include file mr30.inc sys_ram.inc, sys_rom.inc
| V] ! :
\ A v v
Application Application Startup program
C source Assembler source start.a30, crtOmr.a 30

C compiler
nc30 /' Jamptable file
I ! \ t / mrtable.a30
Relocatable Assembler
as30 Create Jamp table utility
mkmrtbl

A

L 5 Systemcall
file (.mre) ‘
C standard Application MR30
Library object Library

Linkage Editor
In30

Absolute
module

Load module converter

Imc30

'

[ROM write format]

Figure 6.1 MR30 System Generation Detail Flowchart

- 204 -

6.2 Development Procedure Example

This chapter outlines the development procedures on the basis of a typical MR30 application example.

6.2.1 Applications Program Coding

Figure 6.2 shows a program that simulates laser beam printer operations. Let us assume that the file describing the laser
beam printer simulation program is named Ibp.c. This program consists of the following three tasks and one interrupt han-
dler.

® Main Task
® |mage expansion task
® Printer engine task

® Centronics interface interrupt handler

This program uses the following MR30 library functions.

® sta tsk()
Starts a task. Give the appropriate ID number as the argument to select the task to be activated. When the ker-
nel_id.h file, which is generated by the configurator, is included, it is possible to specify the task by name (char-
acter string).®

® wai flg()
Waits until the eventflag is set up. In the example, this function is used to wait until one page of data is entered
into the buffer via the Centronics interface.

® wup_tsk()
Wakes up a specified task from the WAITING state. This function is used to start the printer engine task.

® sip_tsk()
Causes a task in the RUNNING state to enter the WAITING state. In the example, this function is used to make
the printer engine task wait for image expansion.

® jset flg()
Sets the eventflag. In the example, this function is used to notify the image expansion task of the completion of
one-page data input.

*® The configurator converts the ID number to the associated name(character string) in accordance with the information entered int the con-
figuration file.

- 205 -

#include <itron.h>
#include <kernel.h>
#include "kernel_ id.h"
void main() /* main task */

printf ("LBP start simulation \n") ;

sta_tsk(ID idle,1); /* activate idle task */
sta_tsk(ID image, 1) ; /* activate image expansion task */
sta_tsk(ID printer,1l); /* activate printer engine task */

}

void image () /* activate image expansion task */

while (1) {
wai flg(ID pagein,waiptn, TWF _ANDW, &flgptn);/* wait for l-page input */

printf (" bit map expansion processing \n") ;
wup_tsk (ID printer) ; /* wake up printer engine task */

}

b | .

void printer() /* printer engine task */
while (1) {

slp tsk();
printf (" printer engine operation \n") ;

}
}

void sent _in() /* Centronics interface handler */

/* Process input from Centronics interface */
if (/* 1l-page input completed */)
iset flg(ID pagein, setptn) ;

Figure 6.2 Program Example

6.2.2 Configuration File Preparation

Create a configuration file which has defined in it the task entry address, stack size, etc. Use of the GUI configurator avail-
able for MR30 helps to create a configuration file easily without having to learn how to write it.

Figure 6.3 Configuration File Example

shows an example configuration file for a laser beam printer simulation program (filename "lbp.cfg").

- 206 -

// System Definition

system{
stack size = 1024;
priority =5;
system IPL = 4;
tick nume = 10;
//System Clock Definition
clock{
mpu_clock = 20MHz;
timer = AO;
} IPL = 4;
//Task Definition
task[1]{
name = ID main;
entry address = main() ;
stack size = 512;
priority =1;
| initial_start = ON;
task [2]{
name = ID image;
entry address = image () ;
stack size = 512;
} priority = 2;
task [3]{
name = ID printer;
entry address = printer() ;
stack size = 512;
} priority = 4;
task[4]{
name = ID idle;
entry address = idle() ;
stack size = 256;
} priority =5;
//Eventflag Definition
flagl1]{
} name = pagein;
//Interrupt Vector Definition
interrupt vector [0x23] {
os_int = YES;
entry address = sent_in();
Figure 6.3 Configuration File Example
6.2.3 Configurator Execution

When using HEW, select "Build all,” which enables the user to execute the procedures described in 6.2.3, "Executing the
Configurator,” and 6.2.4, "System Generation."

Execute the configurator cfg30 to generate system data definition files (sys_rom.inc, sys_ram.inc), include files (mr30.inc,
kernel_id.h), and a system generation procedure description file (makefile) from the configuration file.

A> cfg30 -mv 1lbp.cfg

MR30 system configurator V.4.00.06

Copyright 2003,2005 RENESAS TECHNOLOGY CORPORATION
AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED.
MR30 version ==> V.4.00 Release 01

A>

Figure 6.4 Configurator Execution

- 207 -

6.2.4 System generation

Execute the make command *° to generate the system.

A> make -f makefile

as30 -F -Dtest=1 crtOmr.a30
nc30 -c task.c

1n30 @1ln30.sub

A>

Figure 6.5 System Generation

6.2.5 Writing ROM

Using the Imc30 load module converter, convert the absolute module file into a ROM writable format and then write it into
ROM. Or read the file into the debugger and debug it.

* There are two types of make commands, one of which conforms to the MS-DOS standard, and the other conforms to or is compliant with
the UNIX standard. MR30 accepts only the make command that conforms to or is compliant with the UNIX standard. When using MS-DOS,
use a UNIX compatible make command (e.g., the make command included with the C compiler from Microsoft Corporation). For details

about the usefulness of UNIX compatible make commands, refer to the release notes from Renesas. The description in this chapter is made
for the case where a UNIX compatible make command is executed, as an example.

- 208 -

7. Detailed Applications

7.1 Program Coding Procedure in C Language

7.1.1 Task Description Procedure

1. Describe the task as a function.
To register the task for the MR30, enter its function name in the configuration file. When, for instance, the func-
tion name "task()" is to be registered as the task ID number 3, proceed as follows.

task [3]{
name = ID_task;
entry address = task();
stack size = 100;
priority = 3;

}i

2. At the beginning of file, be sure to include "itron.h",”kernel.h” which is in system directory
as well as "kernel_id.h" which is in the current directory. That is, be sure to enter the fol-
lowing two lines at the beginning of file.

#include <itron.h>

#include <kernel.h>
#include "kernel_ id.h"

3. No return value is provided for the task start function. Therefore, declare the task start
function as a void function.

A function that is declared to be static cannot be registered as a task.

It isn't necessary to describe ext_tsk() at the exit of task start function.*If you exit the task
from the subroutine in task start function, please describe ext_tsk() in the subroutine.
6. Itis also possible to describe the task startup function, using the infinite loop.
#include <itron.h>
#include <kernel.h>

#include "kernel_id.h"

void task (void)

/* process */

}

Figure 7.1 Example Infinite Loop Task Described in C Language

“ The task is ended by ext_tsk() automatically if #pramga TASK is declared in the MR30. Similarly, it is ended by ext_tsk when returned
halfway of the function by return sentence

- 209 -

10.

11.
12.

#include <itron.h>
#include <kernel.h>
#include "kernel id.h"
void task (void)
for (; ;) {
/* process */

}

Figure 7.2 Example Task Terminating with ext_tsk() Described in C Language

To specify atask, use the string written in the task definition item “name” of the configura-
tion file.*

wup_tsk (ID main) ;

To specify an event flag, semaphore, or mailbox, use the respective strings defined in the
configuration file.
For example, if an event flag is defined in the configuration file as shown below,

flagl1]{
name = ID abc;
bi

To designate this eventflag, proceed as follows.

set _flg(ID abc, &setptn) ;

To specify a cyclic or alarm handler, use the string written in the cyclic or alarm handler
definition item “name” of the configuration file.

sta_cyc (ID cyc);
When a task is reactivated by the sta_tsk() service call after it has been terminated by the
ter_tsk() service call, the task itself starts from its initial state.* However, the external va-
riable and static variable are not automatically initialized when the task is started. The ex-

ternal and static variables are initialized only by the startup program (crtOmr.a30), which
actuates before MR30 startup.

The task executed when the MR30 system starts up is setup.

The variable storage classification is described below.
The MR30 treats the C language variables as indicated in Table 7.1 C Language Variable Treatment.

Table 7.1 C Language Variable Treatment

Variable storage class Treatment
Global Variable Variable shared by all tasks
Non-function static variable Variable shared by the tasks in the same file
Auto Variable
Register Variable Variable for specific task
Static variable in function

7.1.2 Writing a Kernel (OS Dependent) Interrupt Handler

When describing the kernel (OS-dependent) interrupt handler in C language, observe the following precautions.

I The configurator generates the file “kernel_id.h” that is used to convert the ID number of a task into the string to be specified. This means
that the #define declaration necessary to convert the string specified in the task definition item “name” into the ID number of the task is
made in “kernel_id.h.” The same applies to the cyclic and alarm handlers.

2 The task starts from its start function with the initial priority in a wakeup counter cleared state.

- 210 -

Describe the kernel(OS-dependent) interrupt handler as a function *®

Be sure to use the void type to declare the interrupt handler start function return value and
argument.

At the beginning of file, be sure to include "itron.h",”kernel.h” which is in the system di-
rectory as well as "kernel_id.h" which is in the current directory.

Do not use the ret_int service call in the interrupt handler.*

The static declared functions can not be registered as an interrupt handler.
#include <itron.h>
#include <kernel.h>

#include "kernel id.h"

void inthand (void)

{

/* process */

iwup_ tsk(ID _main) ;

}

Figure 7.3 Example of Kernel(OS-dependent) Interrupt Handler

7.1.3 Writing Non-kernel (OS-independent) Interrupt Handler

When describing the non-kernel(OS-independent) interrupt handler in C language, observe the following precautions.

1.

Be sure to declare the return value and argument of the interrupt handler start function as
avoid type.

No service call can be issued from a non-kernel(an OS-independent) interrupt handler.
NOTE: If this restriction is not observed, the software may malfunction.

A function that is declared to be static cannot be registered as an interrupt handler.

If you want multiple interrupts to be enabled in a non-kernel(an OS-independent) interrupt
handler, always make sure that the non-kernel(OS-independent) interrupt handler is as-
signed a priority level higher than other kernel(OS-dependent) interrupt handlers.*

#include <itron.h>

#include <kernel.h>

#include "kernel id.h"

void inthand (void)

/* process */

}

Figure 7.4 Example of Non-kernel(OS-independent) Interrupt Handler

7.1.4 Writing Cyclic Handler/Alarm Handler

When describing the cyclic or alarm handler in C language, observe the following precautions.

3 A configuration file is used to define the relationship between handlers and functions.

44

When an kernel(OS-dependent) interrupt handler is declared with #pragma INTHANDLER ,code for the ret_int service call is automati-

cally generated.
> If you want the non-kernel(OS-independent) interrupt handler to be assigned a priority level lower than kernel(OS-dependent) interrupt
handlers, change the description of the non-kernel(OS-independent) interrupt handler to that of the kernel (OS-dependent) interrupt handler.

-211 -

1. Describe the cyclic or alarm handler as a function.*®

2. Be sure to declare the return value and argument of the interrupt handler start function as
a void type.

3. At the beginning of file, be sure to include "itron.h",”kernel.h” which is in the system di-
rectory as well as "kernel_id.h" which is in the current directory.

The static declared functions cannot be registered as a cyclic handler or alarm handler.

The cyclic handler and alarm handler are invoked by a subroutine call from a system clock
interrupt handler.

#include <itron.hs>

#include <kernel.h>

#include "kernel id.h"

void cychand (void)

/*process */

}

Figure 7.5 Example Cyclic Handler Written in C Language

5 The handler-to-function name correlation is determined by the configuration file.

-212 -

7.2 Program Coding Procedure in Assembly Language

This section describes how to write an application using the assembly language.

7.2.1 Writing Task

This section describes how to write an application using the assembly language.

1. Be suretoinclude "mr30.inc" at the beginning of file.
For the symbol indicating the task start address, make the external declaration.*

Be sure that an infinite loop is formed for the task or the task is terminated by the ext_tsk
service call.

.INCLUDE mr30.inc ----- (1)
.GLB task @ ----- (2)
task:
; process
jmp task = ----- (3)

Figure 7.6 Example Infinite Loop Task Described in Assembly Language

.INCLUDE mr30.1inc
.GLB task

task:

; process
ext_tsk

Figure 7.7 Example Task Terminating with ext_tsk Described in Assembly Language

4. The initial register values at task startup are indeterminate except the PC, SB, RO and FLG
registers.

5. To specify a task, use the string written in the task definition item “name” of the configura-
tion file.

wup_tsk #ID_task

6. To specify an event flag, semaphore, or mailbox, use the respective strings defined in the
configuration file.
For example, if a semaphore is defined in the configuration file as shown below,:

semaphore [1] {
name = abc;
Vi

To specify this semaphore, write your specification as follows:
sig_sem #ID_abc

7. To specify a cyclic or alarm handler, use the string written in the cyclic or alarm handler

definition item “name” of the configuration file
For example, if you want to specify a cyclic handler "cyc," write your specification as follows:

sta_cyc #ID_cyc

4" Use the .GLB pseudo-directive

-213 -

8. Set atask that is activated at MR30 system startup in the configuration file *
7.2.2 Writing Kernel(OS-dependent) Interrupt Handler

When describing the kernel(OS-dependent) interrupt handler in assembly language, observe the following precautions

1. Atthe beginning of file, be sure to include "mr30.inc" which is in the system directory.

2. For the symbol indicating the interrupt handler start address, make the external declara-
tion(Global declaration).*

3. Make sure that the registers used in a handler are saved at the entry and are restored after
use.

4. Return to the task by ret_int service call.

.INCLUDE mr30.inc ------ (1)
.GLB inth ------ (2)
inth:
; Registers used are saved to a stack ------ (3)

iwup tsk #ID taskl

process

; Registers used are restored ------ (3)

ret_ int ~ ------ (4)

Figure 7.8 Example of kernel(OS-depend) interrupt handler

7.2.3 Writing Non-kernel(OS-independent) Interrupt Handler
1. For the symbol indicating the interrupt handler start address, make the external declaration
(public declaration).

2. Make sure that the registers used in a handler are saved at the entry and are restored after
use.

Be sure to end the handler by REIT instruction.

No service calls can be issued from a non-kernel(an OS-independent) interrupt handler.
NOTE: If this restriction is not observed, the software may malfunction.

5. If you want multiple interrupts to be enabled in a non-kernel(an OS-independent) interrupt
handler, always make sure that the non-kernel(OS-independent) interrupt handler is as-
signed a priority level higher than other non-kernel(OS-dependent) interrupt handlers.*

.GLB inthand ~ ----- (1)
inthand:

; Registers used are saved to a stack ----- (2)

; interrupt process

; Registers used are restored - ----- (2)

rRgr T === (3)

Figure 7.9 Example of Non-kernel(OS-independent) Interrupt Handler of Specific Level

7.24 Writing Cyclic Handler/Alarm Handler

When describing the cyclic or alarm handler in Assembly Language, observe the following precautions.

“® The relationship between task ID numbers and tasks(program) is defined in the configuration file.

 Use the .GLB peudo-directive.

0 f you want the non-kernel(OS-independent) interrupt handler to be assigned a priority level lower than kernel(OS-dependent) interrupt
handlers, change the description of the non-kernel(OS-independent) interrupt handler to that of the kernel (OS-dependent) interrupt handler.

-214 -

1. Atthe beginning of file, be sure to include "mr30.inc" which is in the system directory.
For the symbol indicating the handler start address, make the external declaration.**

3. Always use the RTS instruction (subroutine return instruction) to return from cyclic han-
dlers and alarm handlers.
For examples:

. INCLUDE mr30.inc = ----- (1)
.GLB cychand ----- (2)
cychand:

; handler process
rts —---= (3)

Figure 7.10 Example Handler Written in Assembly Language

1 Use the .GLB pseudo-directive.

- 215 -

7.3 Modifying MR30 Startup Program

MR30 comes with two types of startup programs as described below.

® start.a30
This startup program is used when you created a program using the assembly language.

® crtOmr.a30
This startup program is used when you created a program using the C language.

This program is derived from "start.a30" by adding an initialization routine in C language.

The startup programs perform the following:
® |nitialize the processor after a reset.
® |nitialize C language variables (crtOmr.a30 only).

® Set the system timer.

® |nitialize MR30's data area.

Copy these startup programs from the directory indicated by environment variable "LIB30" to the current directory.

If necessary, correct or add the sections below:

® Setting processor mode register
Set a processor mode matched to your system to the processor mode register. (76th line in crtOmr.a30)

® Adding user-required initialization program
When there is an initialization program that is required for your application, add it to the 175th line in the C lan-
guage startup program (crtOmr.a30).

® |[nitialization of the standard 1/O function
Comment out the 133th — 134th line in the C language startup program (crtOmr.a30) if no standard 1/0O function
is used.

- 216 -

7.3.1 C Language Startup Program (crtOmr.a30)

Figure 7.11 shows the C language startup program(crtOmr.a30).

WoOoOJOUTdd WNR

khkhkkhkhkhkdhkhkhhkdhhhkdhkhkdhkhdbhkhdddhhhkdhkhkdhdhdrkdhdrdhkrkdrrkdhrrdrddkrdrrdrkdxk

; MR30 start up program for C language
H COPYRIGHT (C) 2003,2006 RENESAS TECHNOLOGY CORPORATION
H AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

khkhkhkdkhkhkdkhkhhkhdhhhkhhkhkdhkhdbhkhhdrdhhhkdhkhkdhdhdrdhhrdhrkdrrkdhrrdrdhrdrrdrkdxk

$Id: crtOmr.a30 519 2006-04-24 13:36:30Z inui $

.list OFF

.include c_sec.inc
.include mr30.inc
.include sys_rom.inc
.include sys_ram.inc
.list ON

N_BZERO .macro TOP_,SECT
mov.b #00H, ROL
mov.w #(TOP_ & OFFFFH), Al
mov.w #sizeof SECT , R3
sstr.b
.endm

N_BCOPY .macro FROM ,TO ,SECT
mov.w #(FROM_ & OFFFFH) ,A0
mov.b # (FROM_>>16) ,R1H
mov.w #TO_,Al
mov.w #sizeof SECT , R3
smovf.b
.endm

BZERO .macro TOP_,SECT_
push.w #sizeof SECT_ >> 16
push.w #sizeof SECT & Offffh
pusha TOP_>>16
pusha TOP_ & Offffh

.glb _bzero
jsr.a _bzero
.endm
BCOPY .macro FROM ,TO_,SECT

push.w #sizeof SECT >> 16
push.w #sizeof SECT & Offffh
pusha TO_ >>16

pusha TO_ & O0ffffh

pusha FROM >>16

pusha FROM_ & Offffh

.glb _bcopy
jsr.a _bcopy
.endm

.glb __SYS_INITIAL
.section MR_KERNEL, CODE, ALIGN
_ SYS INITIAL:

ldc #(_Sys Sp&OFFFFH),ISP ; set initial ISP

-217 -

mov.b #2H, OAH

mov.b #00, PMOD ; Set Processor Mode Regsiter

mov.b #0H, OAH

1ldc #00H, FLG

ldc #(_ Sys Sp&OFFFFH) , fb
1dc # SB ,sb

; For PD30

P MR RAM DATA O (zero) clear

N BZERO bss_SE top,bss SE
N_BZERO bss_SO_top,bss_SO

N_BZERO bss_NE_top,bss_NE
N _BZERO bss_NO top,bss NO

N_BCOPY data_SEI_top,data SE_top,data SE
N _BCOPY data SOI top,data SO top,data_ SO
N_BCOPY data NEI_top,data NE_top,data NE
N _BCOPY data NOI top,data NO top,data NO

BZERO bss FE top,bss_FE
BZERO bss FO top,bss FO

BCOPY data FEI_top,data_FE top,data_FE
BCOPY data FOI top,data FO top,data FO

ldc #(__Sys_Sp&OFFFFH)
1dc #(__Sys Sp&OFFFFH)

sSp

Hh
o

; Set System IPL
; and
; Set Interrupt Vector

mov.b #0,ROL
mov.b # SYS IPL,ROH

ldc RO, FLG ; set system IPL
1dc #((__INT VECTOR>>16)&0FFFFH) , INTBH
ldc #(__INT VECTOR&OFFFFH) , INTBL

.IF USE_TIMER

mov.b #stmr_mod_val, stmr_mod_reg
; mov.b #1H, OAH
H bset 6,07H

mov.b #stmr_int IPL,stmr_ int reg

;set timer mode

;set timer IPL

-218 -

155 ; bclr 6,07H

156 ; mov.b #0, 0AH

157 mov.w #stmr_cnt,stmr_ctr_reg ;jset interval count
158 or.b #stmr_bit+1l,stmr_start ;jsystem timer start
159 .ENDIF

160

161 ; +-—-----———m - e - +
162 ; | System timer initialize

163 ; +-—----—-——m - e - - +
164 .IF USE_SYSTEM TIME

165 MOV.W #_ D Sys TIME L, _ Sys_ time+4

166 MOV.W # D Sys TIME M, _ Sys time+2

167 MOV.W # D Sys TIME H, _ Sys time

168 .ENDIF

169

B O e e e e e e R +
171 ; | User Initial Routine (if there are)

A e e e e e R +
173 ;

174

175

176 ; jmp __MR_INIT ; for Separate ROM

177

B e i +
179 ; | Initalization of System Data Area

S O e e i e +
181 .GLB __init_sys, init tsk, END INIT

182 JSR.W _ init_sys

183 JSR.W _init_tsk

184

185 IF __MR_TIMEOUT

186 .GLB ~_init_tout

187 JSR.W __init_tout

188 .ENDIF

189

190 .IF __NUM_FLG

191 .GLB —_init_flg

192 JSR.W __init_flg

193 .ENDIF

194

195 .IF __NUM_SEM

196 .GLB __init_sem

197 JSR.W _ init sem

198 .ENDIF

199

200 JIF __NUM_DTQ

201 .GLB ~—_init_dtg

202 JSR.W __init_dtg

203 .ENDIF

204

205 .IF __NUM_VDTQ

206 .GLB ~_init_vdtg

207 JSR.W __init vdtg

208 .ENDIF

209

210 JIF __NUM_MBX

211 .GLB __init mbx

212 JSR.W __init mbx

213 .ENDIF

214

215 IF ALARM_ HANDLER

216 .GLB __init_alh

217 JSR.W _init_alh

218 .ENDIF

219

220 .IF CYCLIC_HANDLER

221 .GLB __init cyh

222 JSR.W __init_cyh

223 .ENDIF

224

225 .IF __NUM_MPF

226 ; Fixed Memory Pool

227 .GLB __init mpf

228 JSR.W _ init mpf

229 .ENDIF

230

231 .IF __NUM_MPL

232 ; Variable Memory Pool

233 .GLB __init mpl

234 JSR.W _ init mpl

-219 -

235 .ENDIF

236

237

238 ; For PD30

239 _ LAST INITIAL

240

241 __END_INIT:

A e e i R +
243 ; | Start initial active task

Y R e e e +
245 ___START TASK

246

247 .glb __rdyqg search

248 jmp . W __rdyq search

249

A I e i e +
251 ; | Define Dummy

Y A e e e +
253 .glb __SYS DMY INH

254 _ SYS DMY INH:

255 reit

256

257 .IF CUSTOM_SYS END

Aoy I e e e +
259 ; | Syscall exit rouitne to customize

A e e e +
261 .GLB __sys_end

262 _ sys_end:

263 ; Customize here.

264 REIT

265 .ENDIF

266

267 ; 4 m e e e e e - +
268 ; | exit () function

269 ; 4o e et e - +
270 .glb _exit, Sexit

271 exit:

272 Sexit:

273 jmp _exit

274

275 .if USE TIMER

A I e e e +
277 ;| System clock interrupt handler |
A I e e e +
279 .SECTION MR_KERNEL, CODE, ALIGN

280 .glb __SYS_STMR_INH, _ SYS TIMEOUT
281 .glb __DBG_MODE, _ SYS ISS

282 _ SYS STMR_INH:

283 ; process issue system call

284 ; For PD30

285 _ ISSUE_SYSCALL

286

287

288

289 ; System timer interrupt handler

290 _STMR_hdr

291 ret int

292 .endif

293

294 .end

Figure 7.11 C Language Startup Program (crtOmr.a30)
The following explains the content of the C language startup program (crtOmr.a30).

Incorporate a section definition file [11 in Figure 7.11]
Incorporate an include file for MR30 [12 in Figure 7.11]
Incorporate a system ROM area definition file [13 in Figure 7.11]

Incorporate a system RAM area definition file [14 in Figure 7.11]

a M wnh e

This is the initialization program __ SYS_INITIAL that is activated immediately after a reset.
[69 - 249 in Figure 7.11]
+ Setting the System Stack pointer [73 in Figure 7.11]

- 220 -

6
7
8.
9

Setting the processor mode register [75- 77 in Figure 7.11]
Setting the SB,FB register [78 - 80 in Figure 7.11]
Initial set the C language. [99 - 126 in Figure 7.11]
Setting OS interrupt disable level [141 - 143 in Figure 7.11]
Setting the address of interrupt vector table [144 and 155 in Figure 7.11]
Set MR30's system clock interrupt [151-158 in Figure 7.11]
Initialization of standard 1/O function[133-134 in Figure 7.11]
hen using no standard input/output functions, remove the lines 133 and 134 in Figure 7.11.
Initial set MR30's system timer [165-167 in Figure 7.11]

050000000

Initial set parameters inherent in the application [176 in Figure 7.11]
Initialize the RAM data used by MR30 [181- 235 in Figure 7.11]

Sets the bit which shows the end of start-up processing[239 in Figure 7.11]
Activate the initial startup task. [245-249 in Figure 7.11]

10. This is a system clock interrupt handler [279-292 in Figure 7.11]

-221 -

7.4 Memory Allocation

This section describes how memory is allocated for the application program data.
Use the section file provided by MR30 to set memory allocation.

MR30 comes with the following two types of section files:

® asm_sec.inc
This file is used when you developed your applications with the assembly language.

Refer to 7.4.1 for details about each section.

® C sec.inc
This file is used when you developed your applications with the C language.

c¢_sec.inc is derived from "asm_sec.inc" by adding sections generated by C compiler NC30.
Refer to 7.4.2 for details about each section.
Modify the section allocation and start address settings in this file to suit your system.

The following shows how to modify the section file.

e.g.
If you want to change the program section start address from FOO0OH to F1000H
.section program
.org OF0000H ; Correct this address to F1000H
\
.section program
.0org OF1000H ;

-222 -

7.4.1

Section Allocation of start.a30

The section allocation of the sample startup program for the assembly language "start.a30" is defined in "asm_sec.inc".

Edit "asm_sec.inc" if section reallocation is required.

The following explains each section that is defined in the sample section definition file "asm_sec.inc".

MR_RAM_DBG section
This section is stored MR30's debug function RAM data.

This section must be mapped in the Internal RAM area.

MR_RAM section
This section is where the RAM data, MR30's system management data, is stored that is referenced in absolute
addressing.

This section must be mapped between 0 and FFFFH(near area).

stack section
This section is provided for each task's user stack and system stack.

This section must be mapped between 0 and FFFFH(near area).

MR_HEAP section
This section stores the variable-size memorypool.

MR_KERNEL section
This section is where the MR30 kernel program is stored.

MR_CIF section
This section stores the MR30 C language interface library.

MR_ROM section
This section stores data such as task start addresses that area referenced by the MR30 kernel.

program section
This section stores user programs.

This section is not used by the MR30 kernel at all. Therefore, you can use this section as desired.

INTERRUPT_VECTOR section

FIX_INTERRUPT_VECTOR section

This section stores interrupt vectors. The start address of this section varies with the type of M16C/60 series mi-
crocomputer used. The address in the sample startup program is provided for use by the M16C/60 series mi-
cro-computers. This address must be modified if you are using a microcomputer of some other group.

-223 -

7.4.2 Section Allocation of crtOmr.a30
The section allocation of the sample startup program for the C language "crtOmr.a30" is defined in "c_sec.inc".
Edit "c_sec.inc" if section reallocation is required.

The sections defined in the sample section definition file "c_sec.inc" include the following sections that are defined in the
section definition file "asm_sec.inc" of the sample startup program for the assembly language.

® data_SE section
® bss SE section
® data_ SO section
® pbss SO section
® data_ NE section
® pbss NE section
® data NO section
® pbss NO section
® rom_NE section
® rom_NO section
® data_FE section
® Dbss FE section
® data_FO section
® Dbss FO section
® rom_FE section
® rom_FO section
® data_SEl section
® data_SOlI section
® data_NEI section
® data_NOI section
® data_FEI section
® data_FOI section

These sections are those that are generated by NC30. These sections are not defined in the section file for the as-
sembly language.

Refer to the NC30 manual for details.

The diagram below shows the section allocation in the sample startup program. (See Figure 7.12 Selection Allocation in C
Language Startup Program)

- 224 -

00000H

SFR
00400H (data_SE
| Section generated by NC30 | / gss_sgo
I | ata_
| | bss_SO
N—
MR_RAM_DBG " data NE
bss_I:IE
MR_RAM data_NO
I bss_NO
| Section generated by NC30 ! ~
stack igz—gg
MR_HEAP
data_FE
: Section generated by NC30 : gss_Fgo
____________________ | ata_.
lr- ____________________ ; bss_FO
010000H | Section generated by NC30 |
L i rrom_FE
i ____________________ 1' / rom_FO
0F0000H | . I data SEI
Sect; ted by NC30 -
: ection generated by : data_SOI
data_NEI
MR_KERNEL gata_ggll
ata_
MR_CIF kdata_FOI
MR_ROM \ This section is no linked
when the program is
program written in the assembly
OFFDOOH language.
INTERRUPT_VECTOR
OFFFDCH
FIX_INTERRUPT_VECTOR

Figure 7.12 Selection Allocation in C Language Startup Program

- 225 -

8. Using Configurator

8.1 Configuration File Creation Procedure

When applications program coding and startup program modification are completed, it is then necessary to register the ap-
plications program in the MR30 system.

This registration is accomplished by the configuration file.

8.1.1 Configuration File Data Entry Format

This chapter describes how the definition data are entered in the configuration file.

| Comment Statement |
A statement from '//' to the end of a line is assumed to be a comment and not operated on.

| End of statement |
Statements are terminated by ';'.

| Numerical Value |
Numerical values can be entered in the following format.

1. Hexadecimal Number

Add "0x" or "0X" to the beginning of a numerical value, or "h" or "H" to the end. If the value begins with an al-
phabetical letter between A and F with "h" or "H" attached to the end, be sure to add "0" to the beginning. Note
that the system does not distinguish between the upper- and lower-case alphabetical characters (A-F) used as
numerical values.*

2. Decimal Number

Use an integer only as in '23'. However, it must not begin with '0".

3. Octal Numbers

Add '0' to the beginning of a numerical value of 'O' or '0' to end.

4. Binary Numbers

Add 'B' or 'b' to the end of a numerical value. It must not begin with '0".

Table 8.1 Numerical Value Entry Examples

0xf12
0Xxf12
Oal2h
Hexadecimal Oal2H
12h

12H
Decimal 32

017
Octal 170

170
Binary 101110b
101010B

52 The system distinguishes between the upper- and lower-case letters except for the numbers A-F and a-f.

- 226 -

It is also possible to enter operators in numerical values. Table 8.2 Operators lists the operators available.

Table 8.2 Operators

Operator Priority | Direction of computation
0 High From left to right
- (Unary_minus) From right to left
* [% From left to right
+ - (Binary_minus) Low From loft to right

Numerical value examples are presented below.

o 123
® 123+0x23
® (23/4+3)%2

® 100B + 0aH

The symbols are indicated by a character string that consists of numerals, upper- and lower-case alphabetical let-
ters, _(underscore), and ?, and begins with a non-numeric character.

Example symbols are presented below.

e TASK1

® |DLES

| Function Name |
The function names are indicated by a character string that consists of numerals, upper and lower-case alpha-
betical letters,'$'(dollar) and '_'(underscore), begins with a non-numeric character, and ends with ‘().

The following shows an example of a function name written in the C language.

® main()

® func()
When written in the assembly language, the start label of a module is assumed to be a function name.

| Frequency |
The frequency is indicated by a character string that consist of numerals and . (period), and ends with MHz. The
numerical values are significant up to six decimal places. Also note that the frequency can be entered using de-
cimal numbers only.

Frequency entry examples are presented below.

® 16MHz

® 38.1234MHz
It is also well to remember that the frequency must not begin with . (period).

The time is indicated by a character string that consists of numerals and . (period), and ends with ms. The time
values are effective up to three decimal places when the character string is terminated with ms. Also note that the

- 227 -

time can be entered using decimal numbers only.

® 10ms

® 10.5ms
It is also well to remember that the time must not begin with . (period).

8.1.2 Configuration File Definition Items

The following definitions > are to be formulated in the configuration file

® System definition

® System clock definition

® Respective maximum number of items
® Task definition

® Eventflag definition

® Semaphore definition

® Mailbox definition

® Data queue definition

® Short data queue definition

® Fixed-size Memory Pool definition

® Variable-size Memory Pool definition
® Cyclic handler definition

® Alarm handler definition

® Interrupt vector definition

[(System Definition Procedure)]
<< Format >>

// System Definition

system{
stack_size = | System stack size | ;
priority = | Maximum value of priority | ;
system_ IPL = | Kernel mask level (OS interrupt disable level) |;
timeout = | Timeout function | ;
task_pause - | Task Pause| ;
tic_deno = | Time tick denominator] ;
tic_nume = | Time tick numerator] ;
} message pri = | Maximum message priority value ;

3 All items except task definition can omitted. If omitted, definitions in the default configuration file are referenced.

- 228 -

<< Content >>

1. System stack size

[(Definition format)] Numeric value
[(Definition range)] 6 to OXxFFFF
[(Default value)] 400H

Define the total stack size used in service call and interrupt processing.

2. Maximum value of priority (value of lowest priority)

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] 63

Define the maximum value of priority used in MR30's application programs. This must be the value of the high-
est priority used.

3. Kernel mask level (OS interrupt disable level)

[(Definition format)] Numeric value
[(Definition range)] lto7
[(Default value)] 7

Set the IPL value in service calls, that is, the OS interrupt disable level.

4. Timeout function

[(Definition format)] Symbol
[(Definition range)] YES or NO
[(Default value)] NO

Specify YES when using or NO when not using tslp_tsk, twai_flg, twai_sem, tsnd_dtq, trcv_dtq, tget mpf,
vtsnd_dtq, vtrcv_dtq and trcv_msg.

5. Task Pause

[(Definition format)] Symbol
[(Definition range)] YES or NO
[(Default value)] NO

Specify YES when using or NO when not using the Task Pause function of OS Debug Function of the debugger.

6. Time tick denominator

[(Definition format)] Numeric value
[(Definition range)] Fixedto 1
[(Default value)] 1

Set the denominator of the time tick.

- 229 -

7. Time tick numerator

[(Definition format)] Numeric value
[(Definition range)] 1to 65,535
[(Default value)] 1

Set the numerator of the time tick. The system clock interrupt interval is determined by the time tick denomina-
tor and numerator that are set here. The interval is the time tick numerator divided by time tick denominator [ms].
That is, the time tick numerator [ms].

The tic_nume value that can be specified for the M32C/82 or 83 operating with 20 MHz is 26 ms because of the
microcomputer specification.

8. Maximum message priority value

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] None

Define the maximum value of message priority.

[(System Clock Definition Procedure)]

<< Format >>

// System Clock Definition

clock({
mpu_clock = | MPU clock] ;
timer = | Timers used for system clock |;
IPL - | System clock interrupt priority level |;

Vi

<< Content >>

1. MPU clock
[(Definition format)] Frequency(in MHz)
[(Definition range)] None
[(Default value)] 20MHz

Define the MPU operating clock frequency of the microcomputer in MHz units.

2. Timers used for system clock

[(Definition format)] Symbol
[(Definition range)] A0, A1, A2, A3, A4, A5,A6,A7,B0, B1, B2, B3, B4, B5, OTHER, NOTIMER
[(Default value)] NOTIMER

Define the hardware timers used for the system clock.

If you do not use a system clock, define "NOTIMER."

- 230 -

3. System clock interrupt priority level

[(Definition format)] Numeric value
[(Definition range)] 1 to Kernel mask(OS interrupt disable) level in system definition
[(Default value)] 4

Define the priority level of the system clock timer interrupt. The value set here must be smaller than the kernel
mask(OS interrupt disable level.

Interrupts whose priority levels are below the interrupt level defined here are not accepted during system clock
interrupt handler processing.

[(Definition respective maximum numbers of items)]
This definition is to be given only in forming the separate ROMs.**

Here, define respective maximum numbers of items to be used in two or more applications.

<< Format >>

// Max Definition
maxdefine

max_task = | the maximum number of tasks defined |;
max_flag = | the maximum number of eventflags defined |;
max_dtg = | the maximum number of data queues defined |;
max_mbx = | the maximum number of mailboxes defined |;
max_sem = | the maximum number of semaphores defined |;
max_mpf = | the maximum number of fixed-size |
emory pools defined |;
max_mpl = | the maximum number of variable-size |
emory pools defined |;
max_cyh = | the maximum number of cyclic handlers|
defined |;
max_alh = | the maximum number of alarm handlers]
defined |;
max_vdtg = | the maximum number of short data queues defined |;

}i

<< Contents >>

1. The maximum number of tasks defined

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] None

Define the maximum number of tasks defined.

5 For details of forming the into separate ROMs, see page - 285 -.

-231-

The maximum number of eventflags defined

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] None

The maximum number of data queues defined.

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] None

Define the maximum number of data queues defined.

The maximum number of mailboxes defined

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] None

Define the maximum number of mailboxes defined.

The maximum number of semaphores defined

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] None

Define the maximum number of semaphores defined.

The maximum number of fixed-size memory pools defined

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] None

The maximum number of variable length memory blocks defined.

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] None

Define the maximum number of variable length memory blocks defined.

The maximum number of cyclic activation handlers defined

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] None

The maximum number of cyclic handler defined

The maximum number of alarm handler defined

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] None

-232 -

Define the maximum number of alarm handlers defined.

10. The maximum number of short data queues defined.

[(Definition format)] Numeric value
[(Definition range)] 1to 255
[(Default value)] None

Define the maximum number of short data queues defined.

[(Task definition)]

<< Format >>

// Tasks Definition

task[[ID No. | I{

name = | ID name |;

entry address = | Start task of address |;

stack_size = | User stack size of task |;

priority = | Initial priority of task |;

context = | Registers used |;

stack_section = | Section name in which the stack is located |;
initial start = | TA ACT attribute (initial startup state) |;
exinf = | Extended information |;

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each task ID number.

1. Task ID name

[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] None

Define the ID name of a task. Note that the function name defined here is output to the kernel_id.h file, as shown
below.

#define Task ID Name task ID

2. Start address of task

[(Definition format)] Symbol or function name
[(Definition range)] None
[(Default value)] None

Define the entry address of a task. When written in the C language, add () at the end or _at the beginning of the
function name you have defined.

The function name defined here causes the following declaration statement to be output in the kernel_id.h file:

-233 -

#pragma TASK Function Name

3. User stack size of task

[(Definition format)] Numeric value
[(Definition range)] 6 or more
[(Default value)] 256

Define the user stack size for each task. The user stack means a stack area used by each individual task. MR30
requires that a user stack area be allocated for each task, which amount to at least 12 bytes.

4. Initial priority of task

[(Definition format)] Numeric value
[(Definition range)] 1 to (maximum value of priority in system definition)
[(Default value)] 1

Define the priority of a task at startup time.

As for MR30's priority, the lower the value, the higher the priority.

5. Regisers Used

[(Definition format)] Symbol[,Symbol,....]
[(Definition range)] Selected from RO,R1,R2,R3,A0,A1,SB,FB
[(Default value)] All registers

Define the registers used in a task. MR30 handles the register defined here as a context. Specify the RO register
because task startup code is set in it when the task starts.

However, the registers used can only be selected when the task is written in the assembly language. Select all
registers when the task is written in the C language. When selecting a register here, be sure to select all registers
that store service call parameters used in each task.

MR30 kernel does not change the registers of bank.

If this definition is omitted, it is assumed that all registers are selected.

6. Section name in which the stack is located

[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] stack

Define the section name in which the stack is located. The section defined here must always have an area allo-
cated for it in the section file (asm_sec.inc or ¢_sec.inc).

If no section names are defined, the stack is located in the stack section.

-234 -

7. TA_ACT attribute (initial startup state)

[(Definition format)] Symbol
[(Definition range)] ON or OFF
[(Default value)] OFF

Define the initial startup state of a task.
If this attribute is specified ON, the task goes to a READY state at the initial system startup time.

The task startup code of the initial startup task is 0. One or more tasks must have TA_ACT attribute.

8. Extended information

[(Definition format)] Numeric value
[(Definition range)] 0 to OXFFFF
[(Default value)] 0

Define the extended information of a task. This information is passed to the task as argument when it is restarted
by a queued startup request, for example.

[(Eventflag definition)]
This definition is necessary to use Eventflag function.

<< Format >>

// Eventflag Definition
flagl 14

name = | Name |;

wait queue = | Selecting an event flag waiting queue |;
initial pattern = | Initial value of the event flag—|;

wait multi = | Multi-wait attribute |;

clear_attribute = | Clear attribute |;

The 1D number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each eventflag ID number.

1. ID Name
[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] None

Define the name with which an eventflag is specified in a program.

-235 -

2. Selecting an event flag waiting queue

[(Definition format)] Symbol
[(Definition range)] TA_TFIFO or TA_TPRI
[(Default value)] TA_TFIFO

Select a method in which tasks wait for the event flag. If TA_TFIFO is selected, tasks are enqueued in order of
FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the highest
priority.

3. Initial value of the event flag

[(Definition format)] Numeric value
[(Definition range)] 0 to OXFFFF
[(Default value)] 0

Specify the initial bit pattern of the event flag.

4. Multi-wait attribute

[(Definition format)] Symbol
[(Definition range)] TA_WMUL or TA_WSGL
[(Default value)] TA_WSGL

Specify whether multiple tasks can be enqueued in the eventflag waiting queue. If TA_ WMUL is selected, the
TA_WMUL attribute is added, permitting multiple tasks to be enqueued. If TA WSGL is selected, the
TA_WSGL attribute is added, prohibiting multiple tasks from being enqueued.

5. Clear attribute

[(Definition format)] Symbol
[(Definition range)] YES or NO
[(Default value)] NO

Specify whether the TA _CLR attribute should be added as an eventflag attribute. If YES is selected, the
TA_CLR attribute is added. If NO is selected, the TA_CLR attribute is not added.

[(Semaphore definition)]
This definition is necessary to use Semaphore function.

<< Format >>

// Semaphore Definition

semaphore[| ID No. |]{
name =| ID name|;
wait queue = | Selecting a semaphore waiting queue |;

Initial value of semaphore counter |;
Maximum value of the semaphore counter

initial count
max_count

7

i

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

- 236 -

<< Content >>

Define the following for each semaphore 1D number.

1. ID Name
[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] None

Define the name with which a semaphore is specified in a program.

2. Selecting a semaphore waiting queue

[(Definition format)] Symbol
[(Definition range)] TA_TFIFO or TA_TPRI
[(Default value)] TA_TFIFO

Select a method in which tasks wait for the semaphore. If TA_TFIFO is selected, tasks are enqueued in order of
FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the highest
priority.

3. Initial value of semaphore counter

[(Definition format)] Numeric value
[(Definition range)] 0 to 65535
[(Default value)] 1

Define the initial value of the semaphore counter.

4. Maximum value of the semaphore counter

[(Definition format)] Numeric value
[(Definition range)] 1 to 65535
[(Default value)] 1

Define the maximum value of the semaphore counter.

[(Data queue definition)]
This definition must always be set when the data queue function is to be used.

<< Format >>

// Dataqueue Definition

datagueue[| ID No. | 1{
name = | ID name |;
buffer size = | Number of data queues |;
\ wait_queue = | Select data queue waiting queue |;

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

- 237 -

<< Content >>

For each data queue ID number, define the items described below.

1. ID name
[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] None

Define the name by which the data queue is specified in a program.

2. Number of data

[(Definition format)] Numeric Value

[(Definition range)] 0 to OX3FFF

[(Default value)] 0

S[()jecify_the number of data that can be transmitted. What should be specified here is the number of data, and not
a data size.

3. Selecting a data queue waiting queue

[(Definition format)] Symbol
[(Definition range)] TA_TFIFO or TA_TRPI
[(Default value)] TA_TFIFO

Select a method in which tasks wait for data queue transmission. If TA_TFIFO is selected, tasks are enqueued in
order of FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the
highest priority.

[(Long data queue definition)]
This definition must always be set when the long data queue function is to be used.

<< Format >>

// Vdataqueue Definition

vdataqueue [| ID No. | I{

name = | ID name |;
buffer size - [Number of data queues |;
wait_ queue = | Select data queue waiting queue |;

}i

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

For each long data queue 1D number, define the items described below.

- 238 -

1. ID name

[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] None

Define the name by which the short data queue is specified in a program.

2. Number of data

[(Definition format)] Numeric Value

[(Definition range)] 0 to OX1FFF

[(Default value)] 0

S%ecify'the number of data that can be transmitted. What should be specified here is the number of data, and not
a data size.

3. Selecting a data queue waiting queue

[(Definition format)] Symbol
[(Definition range)] TA_TFIFO or TA_TRPI
[(Default value)] TA_TFIFO

Select a method in which tasks wait for short data queue transmission. If TA_TFIFO is selected, tasks are en-
queued in order of FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one

that has the highest priority.

[(Mailbox definition)]
This definition must always be set when the mailbox function is to be used.

<< Format >>

// Mailbox Definition
mailbox[| ID No. | 1{

name = | ID name |;

wait_ queue - | Select mailbox waiting queue |;
message queue = | Select message queue |;

max_pri = | Maximum message priority |;

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>
For each mailbox ID number, define the items described below.

1. ID name
[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] None

Define the name by which the mailbox is specified in a program.

- 239 -

2. Select mailbox waiting queue

[(Definition format)] Symbol
[(Definition range)] TA_TFIFO or TA_TPRI
[(Default value)] TA_TFIFO

Select a method in which tasks wait for the mailbox. If TA_TFIFO is selected, tasks are enqueued in order of
FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning with the one that has the highest
priority.

3. Select message queue

[(Definition format)] Symbol
[(Definition range)] TA_MFIFO or TA_MRPI
[(Default value)] TA_MFIFO

Select a method by which a message queue of the mailbox is selected. If TA_MFIFO is selected, messages are
enqueued in order of FIFO. If TA_MPRI is selected, messages are enqueued in order of priority beginning with
the one that has the highest priority.

4. Maximum message priority

[(Definition format)] Numeric Value

[(Definition range)] 1 to "maximum value of message priority" that was specified
in "definition of maximum number of items"

[(Default value)] 1

Specify the maximum priority of message in the mailbox.

[(Fixed-size memory pool definition)]
This definition must always be set when the fixed-size memory pool function is to be used.

<< Format >>

// Fixed Memor ool Definition
memorypool [| ID No.| 1{

}i

name =| ID name | ;

section = | Section Name | ;

num_block = | Number of blocks in memory pool | ;
siz_block = | Block size of Memory pool | ;
siz_block = | Select memory pool waiting queue | ;

The 1D number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

<< Content >>

For each memory pool ID number, define the items described below.

1.

ID name

[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] None

Define the name by which the memory pool is specified in a program.

- 240 -

2. Section name

[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] MR_HEAP

Define the name of the section in which the memory pool is located. The section defined here must always have
an area allocated for it in the section file (asm_sec.inc or ¢_sec.inc).

If no section names are defined, the memory pool is located in the MR_HEAP section.

3. Number of block

[(Definition format)] Numeric value
[(Definition range)] 1to 65,535
[(Default value)] 1

Define the total number of blocks that comprise the memory pool.

4. Size (in bytes)

[(Definition format)] Numeric value
[(Definition range)] 2 t0 65,535
[(Default value)] 256

Define the size of the memory pool per block. The RAM size to be used as a memory pool is determined by this
definition: (number of blocks) x (size) in bytes.

5. Selecting a memory pool waiting queue

[(Definition format)] Symbol
[(Definition range)] TA_TFIFO or TA_TPRI
[(Default value)] TA_TFIFO

Select a method in which tasks wait for acquisition of the fixed-size memory pool. If TA_TFIFO is selected,
tasks are enqueued in order of FIFO. If TA_TPRI is selected, tasks are enqueued in order of priority beginning
with the one that has the highest priority.

[(Variable-size memory pool definition)]
This definition is necessary to use Variable-size memory pool function.

<< Format >>

// Variable-Size Memor ool Definition
variable_memorypool[| ID No.| 1{
name = | ID Name |;

}i

max_memsize = | The maximum memory block size to be allocated |;
mpl_ section = | Section name |;
heap size = | Memory pool size | ;

The ID number must be in the range 1 to 255. The ID number can be omitted. If omitted, ID numbers are automatically
assigned in order of numbers beginning with the smallest.

-241 -

<< Content >>

1. ID name
[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] None

Define the name by which the memory pool is specified in a program.

2. The maximum memory block size to be allocated

[(Definition format)] Numeric value
[(Definition range)] 1 to 65520
[(Default value)] None

Specify, within an application program, the maximum memory block size to be allocated.

3. Section name

[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] MR_HEAP

Define the name of the section in which the memory pool is located. The section defined here must always have
an area allocated for it in the section file (asm_sec.inc or ¢_sec.inc).

If no section names are defined, the memory pool is located in the MR_HEAP section.

4. Memory pool size

[(Definition format)] Numeric value
[(Definition range)] 16 to OxFFFF
[(Default value)] None

Specify a memory pool size.

Round off a block size you specify to the optimal block size among the four block sizes, and acquires memory
having the rounded-off size from the memory pool.

The following equations define the block sizes:

a = (((max_memsize+(X-1))/ (X x 8))+1) x 8

b=ax2
c=ax4
d=ax8

max_memsize: the value specified in the configuration file

X: data size for block control (8 byte per a block control)
Variable-size memory pool function needs 8 byte RAM area per a block control. Memory pool size needs a size
more than a, b, ¢ or d that can be stored max_memsize + 8.

-242 -

[(Cyclic handler definition)]
This definition is necessary to use Cyclic handler function.

<< Format >>

// Cyclic Handlar Definition

cyclic_hand[14

i

name = | ID name | ;

interval counter = | Activation cycle | ;
start = | TA STA attribute ;
phsatr = | TA PHS attribute ;
phs_counter = | Activation phase | ;
entry address - | Start address |;

exitf - | Extended information |;

The 1D number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each cyclic handler ID number.

1.

ID name

[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] None

Define the name by which the memory pool is specified in a program.

2. Activation cycle

[(Definition format)] Numeric value
[(Definition range)] 1 to OX7FFFFFFF
[(Default value)] None

Define the activation cycle at which time the cyclic handler is activated periodically. The activation cycle here
must be defined in the same unit of time as the system clock’s unit time that is defined in system clock definition
item. If you want the cyclic handler to be activated at 1-second intervals, for example, the activation cycle here
must be set to 1000.

3. TA_STA attribute

[(Definition format)] Symbol
[(Definition range)] ON or OFF
[(Default value)] OFF

Specify the TA_STA attribute of the cyclic handler. If ON is selected, the TA_STA attribute is added; if OFF is
selected, the TA_STA attribute is not added.

4. TA_PHS attribute

[(Definition format)] Symbol
[(Definition range)] ON or OFF
[(Default value)] OFF

Specify the TA_PHS attribute of the cyclic handler. If ON is selected, the TA_PHS attribute is added; if OFF is
selected, the TA_PHS attribute is not added.

- 243 -

5.

6.

7.

Activation phase

[(Definition format)] Numeric value
[(Definition range)] 0 to OX7FFFFFFF
[(Default value)] None

Define the activation phase of the cyclic handler. The time representing this startup phase must be defined in ms
units.

Start Address

[(Definition format)] Symbol or Function Name
[(Definition range)] None

[(Default value)] None

Define the start address of the cyclic handler.

Note that the function name defined here will have the declaration statement shown below output to the ker-
nel_id.h file.

#pragma CYCHANDLER function name

Extended information

[(Definition format)] Numeric value
[(Definition range)] 0 to OXFFFF
[(Default value)] 0

Define the extended information of the cyclic handler. This information is passed as argument to the cyclic han-
dler when it starts.

[(Alarm handler definition)]
This definition is necessary to use Alarm handler function.

<< Format >>

// Alarm Handlar Definition
alarm hand[| ID No. | 1{

}i

name = | ID name |;
entry address = | Start address |;
exitf = | Extended information |;

The ID number must be in the range of 1 to 255. The ID number can be omitted.

If omitted, numbers are automatically assigned sequentially beginning with the smallest.

<< Content >>

Define the following for each alarm handler ID number.

1.

ID name

[(Definition format)] Symbol
[(Definition range)] None
[(Default value)] None

Define the name by which the alarm handler is specified in a program.

- 244 -

2. Start address
[(Definition format)] Symbol or Function Name

[(Definition range)] None

Define the start address of the alarm handler. The function name defined here causes the following declaration
statement to be output in the kernel_id.h file.

3. Extended information

[(Definition format)] Numeric value
[(Definition range)] 0 to OXFFFF
[(Default value)] 0

Define the extended information of the alarm handler. This information is passed as argument to the alarm han-
dler when it starts.

- 245 -

[(Interrupt vector definition)]
This definition is necessary to use Interrupt function.

<< Format >>

// Interrupt Vector Definition
interrupt_vector[| Vector No. | I{

}i

os_int - | Kernel-managed (OS dependent) interrupt handler |;
entry_address = | Start address |;
pragma_switch = | Switch passed to PRAGMA extended function |;

The vector number can be written in the range of 0 to 63 and 247 to 255. However, whether or not the defined vector num-
ber is valid depends on the microcomputer used

The relationship between interrupt causes and interrupt vector numbers for the M16C/80 series is shown in Table 8.3 Inter-
rupt Causes and Vector Numbers.

Configurator can’t create an Initialize routine (interrupt control register, interrupt causes etc.) for this defined interrupt. You
need to create that.

<< Content >>

1. Kernel (OS dependent) interrupt handler

[(Definition format)] Symbol
[(Definition range)] YES or NO

Define whether the handler is a kernel(OS dependent) interrupt handler. If it is a kernel(OS dependent) interrupt
handler, specify YES; if it is a non-kernel(OS independent) interrupt handler, specify No.

If this item is defined as YES, the declaration statement shown below is output to the kernel_id.h file.
#pragma INTHANDLER /V4 function name

If this item is defined as NO, the declaration statement shown below is output to the kernel_id.h file.
#pragma INTERRUPT /V4 function name

2. Start address

[(Definition format)] Symbol or function name
[(Definition range)] None
[(Default value)] __SYS_DMY_INH

Define the entry address of the interrupt handler. When written in the C language, add () at the end or at the be-
ginning of the function name you have defined.

3. Switch passed to PRAGMA extended function

[(Definition format)] Symbol
[(Definition range)] E,ForB
[(Default value)] None

Specify the switch to be passed to #pragma INTHANDLER or #pragma INTERRUPT. If "E" is specified, the
"/E" switch is assumed, in which case multiple interrupts (another interrupt within an interrupt) are enabled. If
"F" is specified, the "/F" switch is assumed, in which case the FREIT instruction is output at return from the in-
terrupt handler. If "B" is specified, the "/B" switch is assumed, in which case register bank 1 is specified.

Two or more switches can be specified at the same time. For kernel (OS dependent) interrupt handlers, however,
only the "E" switch can be specified. For non-kernel (OS independent) interrupt handlers, the "E," "F," and "B"
switches can be specified, subject to a limitation that "E" and "B" cannot be specified at the same time.

- 246 -

[Precautions]
1. Regarding the method for specifying a register bank

A kernel (OS dependent) interrupt handler that uses register bank 1 cannot be written in C language. Such an interrupt han-
dler can only be written in assembly language. When writing in assembly language, make sure the statements at the entry
and exit of the interrupt handler are written as shown below.

(Always be sure to clear the B flag before issuing the ret_int service call.)

Example: interrupt;

fset B
fclr B
ret_int

Internally in the MR30 kernel, register banks are not switched over.

2. Regarding the method for specifying a high-speed interrupt

To ensure an effective use of high-speed interrupts, make sure the registers of register bank 1 are used in the high-speed
interrupt. Note also that high-speed interrupts cannot be used for the kernel (OS dependent) interrupt handler.

3. Do not use NMI and watchdog timer interrupts in the kernel (OS dependent) interrupt.

- 247 -

Table 8.3 Interrupt Causes and Vector Numbers

Interrupt cause

Interrupt vector number

Section Name

DMAO 8 INTERRUPT VECTOR
DMA1 9 INTERRUPT VECTOR
DMA2 10 INTERRUPT VECTOR
DMA3 11 INTERRUPT VECTOR
Timer AO 12 INTERRUPT VECTOR
Timer Al 13 INTERRUPT VECTOR
Timer A2 14 INTERRUPT VECTOR
Timer A3 15 INTERRUPT VECTOR
Timer A4 16 INTERRUPT VECTOR
UARTO transmit 17 INTERRUPT VECTOR
UARTO receive 18 INTERRUPT VECTOR
UART1 transmit 19 INTERRUPT VECTOR
UART1 receive 20 INTERRUPT VECTOR
Timer BO 21 INTERRUPT VECTOR
Timer B1 22 INTERRUPT VECTOR
Timer B2 23 INTERRUPT VECTOR
Timer B3 24 INTERRUPT VECTOR
Timer B4 25 INTERRUPT VECTOR
INT5 external interrupt 26 INTERRUPT VECTOR
INT4 external interrupt 27 INTERRUPT VECTOR
INT3 external interrupt 28 INTERRUPT VECTOR
INT2 external interrupt 29 INTERRUPT VECTOR
INT1 external interrupt 30 INTERRUPT VECTOR
INTO external interrupt 31 INTERRUPT VECTOR
Timer B5 32 INTERRUPT VECTOR
UART?2 transmit /NACK 33 INTERRUPT VECTOR
UART?2 receive /ACK 34 INTERRUPT VECTOR
UART3 transmit /NACK 35 INTERRUPT VECTOR
UART3 receive /ACK 36 INTERRUPT VECTOR
UART4 transmit /NACK 37 INTERRUPT VECTOR
UART4 receive /ACK 38 INTERRUPT VECTOR
BUS conflict (UART2) 39 INTERRUPT VECTOR
BUS conflict (UART3) 40 INTERRUPT VECTOR
BUS conflict (UART4) 41 INTERRUPT VECTOR
A/D 42 INTERRUPT VECTOR
Key input interrupt 43 INTERRUPT VECTOR
User Software interrupt 44 INTERRUPT VECTOR
: INTERRUPT VECTOR
: INTERRUPT VECTOR
User Software interrupt 54 INTERRUPT VECTOR
Software interrupt for MR30 55 INTERRUPT VECTOR
User Software interrupt 56 INTERRUPT VECTOR
User Software interrupt 57 INTERRUPT VECTOR
Software interrupt for MR30 58 INTERRUPT VECTOR
: INTERRUPT VECTOR
Software interrupt for MR30 62 INTERRUPT VECTOR
Software interrupt for MR30 63 INTERRUPT VECTOR
Undefined instruction 247 FIX INTERRUPT VECTOR
Over flow 248 FIX_INTERRUPT_VECTOR
BRK instruction 249 FIX_INTERRUPT_VECTOR
Address match 250 FIX_INTERRUPT_VECTOR
FIX_INTERRUPT_VECTOR
Watch dog timer 252 FIX_INTERRUPT_VECTOR
FIX_INTERRUPT_VECTOR
NMI 254 FIX_INTERRUPT_VECTOR
Reset 255 FIX_INTERRUPT_VECTOR

- 248 -

8.1.3 Configuration File Example

The following is the configuration file example.

/;//
// kernel.cfg : building file for MR30 Ver.4.00

!/
// Generated by M3T-MR30 GUI Configurator at 2005/02/28 19:01:20

//
L1117 177770 77777777 777

// system definition

VWO JOUTBd WNRE
~

10 system{

11 stack_size = 256;
12 sysTm_IPL = 4;

13 message pri = 64;
14 timeout = NO;

15 task pause = NO;
16 tick_nume = 10;

17 tick deno = 1;

18 };

19

20 // max definition
21 maxdefine(

22 max_task = 3;

23 max flag = 4;

24 max sem = 3;

25 max _dtg = 3;

26 max_mbx = 4;

27 max mpf = 3;

28 max_mpl = 3;

29 max _cyh = 4;

30 max_alh = 2;

31 };

32

33 // system clock definition

34 clock({

35 timer clock = 20.000000MHz;
36 timer = AO;

37 IPL = 3;

38 };

39

40 task[]{

41 entry address = taskl() ;
42 name = ID_taskl;

43 stack size = 256;

44 priority = 1;

45 initial start = OFF;

46 exinf = 0x0;

47 };

48 task[]{

49 entry address = task2() ;
50 name = ID task2;

51 stack size = 256;

52 priority = 5;

53 initial start = ON;

54 exinf = OxFFFF;

55 };

56 task[3]{

57 entry address = task3 () ;
58 name = ID task3;

59 stack size = 256;

60 priority = 7;

61 initial start = OFF;

62 exinf = 0x0;

63 };

64

65 flagl]{

66 name = ID flgl;

67 initial pattern = 0x00000000;
68 wait_queue = TA _TFIFO;
69 clear attribute = NO;

70 wait multi = TA WSGL;
71 t;

72 flag[1]{

73 name = ID flg2;

74 initial pattern = 0x00000001;
75 wait queue = TA TFIFO;

- 249 -

clear attribute = NO;
\ wait multi = TA WMUL;
flag(2]{
name = ID fl1g3;
initial pattern = OxO0000ffff;
wait queue = TA TPRI;
clear attribute = YES;
| wait multi = TA WMUL;
flagl]{
name = ID flg4;
initial pattern = 0x00000008;
wait queue = TA TPRI;
clear attribute = YES;
\ wait multi = TA WSGL;
semaphore [] {
name = ID_seml;
wait queue = TA TFIFO;
initial count =0;
} max_count= 10;
semaphore [2] {
name = ID_sem2;
wait queue = TA TFIFO;
initial count =5;
max_count= 10;
semaphore [] {
name = ID_sem3;
wait queue = TA TPRI;
initial count = 255;
} max_count= 255;
dataqueue [] {
name = ID dtqgl;
wait queue = TA TFIFO;
buffer size = 10;
dataqueue [2] {
name = ID dtqg2;
wait queue = TA TPRI;
buffer size =5;
dataqueue [3] {
name = ID dtg3;
wait queue = TA TFIFO;
buffer size = 256;
mailbox[]
name = ID mbx1;
wait queue = TA TFIFO;
message_queue = TA MFIFO;
max pri = 4;
mailbox[]
name = ID mbx2;
wait queue = TA TPRI;
message_queue = TA MPRI;
max_pri = 64;
mailbox[]
name = ID mbx3;
wailt_queue = TA_TFIFO;
message_queue = TA MPRI;
max_pri = 5;
mailbox [4] {
name = ID mbx4;
wailt_queue = TA TPRI;
message_queue = TA MFIFO;
| max_pri = 6;
memorypool [] {
name = ID mpfl;

- 250 -

156 wait queue = TA TFIFO;
157 section = MR_RAM;

158 siz block= 16;

159 num block= 5;

160 };

161 memorypool [2] {

162 name = ID mpf2;

163 wailt_queue = TA TPRI;
164 section = MR_RAM;

165 siz_block= 32;

166 num _block= 4;

167 };

168 memorypool [3] {

169 name = ID mpf3;

170 wait queue = TA TFIFO;
171 section = MPF3;

172 siz block= 64;

173 num_block= 256;

174 };

175

176 variable memorypool [] {

177 name = ID mpll;

178 max memsize = 8;

179 heap_size= 16;

180 };

181 variable memorypool [] {

182 name = ID mpl2;

183 max_memsize = 64;
184 heap size= 256;

185 };

186 variable memorypool [3] {

187 name = ID mpl3;

188 max memsize = 256;
189 heap_size= 1024;

190 };

191

192 cyclic_hand[] {

193 entry address = cyhl();
194 name = ID cyhil;

195 exinf = 0x0;

196 start = ON;

197 phsatr = OFF;

198 interval counter = 0x1;
199 phs_counter = 0x0;
200 };

201 cyclic_hand[]{

202 entry address = cyh2 () ;
203 name = ID cyh2;

204 exinf = 0x1234;

205 start = OFF;

206 phsatr = ON;

207 interval counter = 0x20;
208 phs_counter = 0x10;
209 };

210 cyclic_handl[] {

211 entry address = cyh3;
212 name = ID cyh3;

213 exinf = OxXFFFF;

214 start = ON;

215 phsatr = OFF;

216 interval counter = 0x20;
217 phs_counter = 0x0;
218 };

219 cyclic_hand[4]{

220 entry address = cyh4 () ;
221 name = ID_cyh4;

222 exinf = 0x0;

223 start = ON;

224 phsatr = ON;

225 interval counter = 0x100;
226 phs_counter = 0x80;
227 };

228

229 alarm hand[] {

230 entry address = alml () ;
231 name = ID_alml;

232 exinf = OxXFFFF;

233 };

234 alarm_hand[2] {

235

entry address = alm2;

- 251 -

236 name
237 exinf
238 };

239

240

241 //

242 // End of Configuration
243 //

ID alm2;
0x12345678;

- 252 -

8.2 Configurator Execution Procedures

8.2.1

Configurator Overview

The configurator is a tool that converts the contents defined in the configuration file into the assembly language include file,
etc.Figure 8.1 outlines the operation of the configurator.

When used on HEW, the configurator is automatically started, and an application program is built.

1. Executing the configurator requires the following input files:

Configuration file (XXXX.cfg)
This file contains description of the system's initial setup items. It is created in the current directory.

Default configuration file (default.cfg)
This file contains default values that are referenced when settings in the configuration file are omitted. This file
is placed in the directory indicated by environment variable "LIB30" or the current directory. If this file exists in

both directories, the file in the current directory is prioritized over the other.

makefile template files (makefile.dos, makefile, Makefile)
This file is used as a template file when generating makefile.” (Refer to Section 6.2.4)

include template file(mr30.inc, sys_ram.inc)
This file serves as the template file of include file "mr30.inc" and “sys_ram.inc”. It resides in the directory indi-

cated by environment variable "L1B30."

MR30 version file (version)
This file contains description of MR30's version. It resides in the directory indicated by environment variable

"LIB30." The configurator reads in this file and outputs MR30's version information to the startup message.

2. When the configurator is executed, the files listed below are output.
Do not define user data in the files output by the configurator. Starting up the configurator after entering data definitions

may result in the user defined data being lost.

System data definition file (sys_rom.inc, sys_ram.inc)
This file contains definition of system settings.

Include file (mr30.inc)
This is an include file for the assembly language.

System generation procedure description file(makefile)
This file is used to generate the system automatically.

* This makefile is a system generation procedure description file that can be processed by UNIX standard make commands or those con-
forming to UNIX standards.

- 253 -

Configuration File
xxx.cfg
Default
Configuration File
default cfg System Data Difinition File
/ Sys_ram.ing, Sys_rom.inc
makefile Template File
makefile.dos —_— cf 230 —_— System generation File
makefile,Makefile makefile
Template File Include File
sys_ram.inc, mr30.inc mr30.inc,kernel_id.h
MR30 Version File
version
Figure 8.1 The operation of the Configurator
8.2.2 Setting Configurator Environment

Before executing the configurator, check to see if the environment variable "LIB30" is set correctly.

The configurator cannot be executed normally unless the following files are present in the directory indicated by the envi-
ronment variable "LIB30":

® Default configuration file (default.cfg)
This file can be copied to the current directory for use. In this case, the file in the current directory is given priority.

® System RAM area definition database file (sys_ram.inc)
® mr30.inc template file (mr30.inc)

® Section definition file(c_sec.inc or asm_sec.inc)

® Startup file(crtOmr.a30 or start.a30)

® makefile template file(makefile.dos)

® MR30 version file(version)

8.2.3 Configurator Start Procedure

Start the configurator as indicated below.

A> cfg30 [-vmV] Configuration file name

Normally, use the extension .cfg for the configuration file name.

- 254 -

| Command Options |

-v Option
Displays the command option descriptions and detailed information on the version.

-V Option
Displays the information on the files generated by the command.

-m Option
Creates the UNIX standard or UNIX-compatible system generation procedure description file (makefile). If this
option is not selected, makefile creation does not occur.*®

If the startup file (crtOmr.a30 or start.a30) and the section definition file are not in the current directory, the con-
figurator copies them to the current directory form the directory indicated by the environment variable “LI1B30”.

8.24 makefile generate Function
The configurator follows the procedure below to generate makefile.
1. Examine the source file's dependency relationship.
Assuming that the files bearing extensions .c and .a30 in the current directory respectively to be the C language

and the assembly language files, the configurator examines the dependency relationship of the files to be in-
cluded by those.

Consequently, observe the following precautions when creating a source file:

+ The source file must be placed in the current directory.
+ Use the extension '.c' for the C language source file and '.a30' for the assembly language
source file.

2. Write the file dependency relationship to makefile
Using "makefile” or "Makefile" in the current directory or "makefile.dos" in the directory indicated by the envi-
ronment variable "LIB30" as a template file, the configurator creates "makefile™ in the current directory.

8.2.5 Precautions on Executing Configurator

The following lists the precautions to be observed when executing the configurator:

® |f you have re-run the configurator, always be sure to execute make clean or delete all object files (ex-
tension .r30) and execute the make command. In this case, an error may occur during linking.

® Do not modify the startup program name and the section definition file name. Otherwise, an error may
be encountered when executing the configurator.

® The configurator cfg30 can only generate UNIX standard makefile or one conforming to UNIX stan-
dards. Namely, it does not generate MS-DOS standard makefile.

8.2.6 Configurator Error Indications and Remedies

If any of the following messages is displayed, the configurator is not normally functioning. Therefore, correct the configu-
ration file as appropriate and the execute the configurator again.
Error messages

cfg30 Error : syntax error near line xxx (xxxx.cfg)
There is an syntax error in the configuration file.

% UNIX standard "makefile" and one conforming to UNIX standards have a function to delete the work file by a "clean" target. Namely,if you
want to delete the object file generated by the make command,for example,enter the following:
> make clean

- 255 -

cfg30 Error : not enough memory
Memory is insufficient.

cfg30 Error : illegal option --> <x>
The configurator's command option is erroneous.

cfg30 Error : illegal argument --> <xx>
The configurator's startup format is erroneous.

cfg30 Error : can't write open <XXXX>
The XXXX file cannot be created. Check the directory attribute and the remaining disk capacity available.

cfg30 Error : can't open <XXXX>
The XXXX file cannot be accessed. Check the attributes of the XXXX file and whether it actually exists.

cfg30 Error : can't open version file
The MR30 version file "version" cannot be found in the directory indicated by the environment variable
"LIB30".

cfg30 Error : can't open default configuration file
The default configuration file cannot be accessed. "default.cfg" is needed in the current directory or directory
"LIB30" specifying.

cfg30 Error : can't open configuration file <xxxx.cfg>
The configuration file cannot be accessed. Check that the file name has been properly designated.

cfg30 Error : illegal XXXX --> <xx> near line xxx (xxxx.cfq)
The value or ID number in definition item XXXX is incorrect. Check the valid range of definition.

cfg30 Error : Unknown XXXX --> <xx> near line xx (xxxx.cfg)
The symbol definition in definition item XXXX is incorrect. Check the valid range of definition.

cfg30 Error : too big XXXX's ID number --> <xx> (xxxx.cfg)
A value is set to the ID number in XXXX definition that exceeds the total number of objects defined.The 1D
number must be smaller than the total number of objects.

cfg30 Error : too big task[x]'s priority --> <xx> near line xxx (xxxx.cfg)
The initial priority in task definition of ID number x exceeds the priority in system definition.

cfg30 Error : too big IPL --> <xx> near line xxx (xxxx.cfq)
The system clock interrupt priority level for system clock definition item exceeds the value of IPL within service
call of system definition item.

cfg30 Error : system timer's vector <x>conflict near line xxx
A different vector is defined for the system clock timer interrupt vector. Confirm the vector No.x for interrupt
vector definition.

cfg30 Error : XXXX is not defined (xxxx.cfg)
"XXXX" item must be set in your configuration file.

cfg30 Error : system's default is not defined
These items must be set int the default configuration file.

- 256 -

cfg30 Error : double definition <XXXX> near line xxx (xxx.cfg)
XXXX is already defined. Check and delete the extra definition.

cfg30 Error : double definition XXXX[x] near line xxx (default.cfg)
cfg30 Error : double definition XXXX[x] near line xxx (xxxx.cfg)
The ID number in item XXXX is already registered. Modify the ID number or delete the extra definition.

cfg30 Error : you must define XXXX near line xxx (xxxx.cfg)
XXXX cannot be omitted.

cfg30 Error : you must define SYMBOL near line xxx (xxxx.cfg)
This symbol cannot be omitted.

cfg30 Error : start-up-file (XXXX) not found
The start-up-file XXXX cannot be found in the current directory. The startup file "start.a30" or "crtOmr.a30" is
required in the current directory.

cfg30 Error : bad start-up-file(XXXX)
There is unnecessary start-up-file in the current directory.

cfg30 Error : no source file
No source file is found in the current directory.

cfg30 Error : zero divide error near line xxx (xxxx.cfg)
A zero divide operation occurred in some arithmetic expression.

cfg30 Error : task[X].stack_size must set XX or more near line xxx (xxxx.cfg)
You must set more than XX bytes.in task[x].stack_size.

cfg30 Error : “R0” must exist in task[x].context near line xxx (xxxx.cfg)
You must select RO register in task[x].context.

cfg30 Error : can’t define address match interrupt definition for Task Pause Function
near line xxx (xxxx.cfg)
Another interrupt is defined in interrupt vector definition needed by Task Pause Function.

cfg30 Error : Set system timer [system.timeout = YES] near line xxx (xxxx.cfg)
Set clock.timer symbol except “NOTIMER”.

cfg30 Error : Initial Start Task not defined
No initial startup task is defined in the configuration file.

- 257 -

Warning messages
The following message are a warning. A warning can be ignored providing that its content is understood.

cfg30 Warning : system is not defined (xxxx.cfg)

cfg30 Warning : system.XXXX is not defined (xxxx.cfq)
System definition or system definition item XXXX is omitted in the configuration file.

cfg30 Warning : system.message_size is not defined (xxxx.cfg)
The message size definition is omitted in the system definition. Please specify message size (16 or 32) of the
Mailbox function.

cfg30 Warning : task[x].XXXX is not defined near line xxx (xxxx.cfg)
The task definition item XXXX in ID number is omitted.

cfg30 Warning : Already definition XXXX near line xxx (xxxx.cfg)
XXXX has already been defined.The defined content is ignored, check to delete the extra definition.

cfg30 Warning : interrupt_vector[x]'s default is not defined (default.cfg)
The interrupt vector definition of vector number x in the default configuration file is missing.

cfg30 Warning : interrupt_vector[x]'s default is not defined near line xxx (xxxx.cfq)
The interrupt vector of vector number x in the configuration file is not defined in the default configuration file.

cfg30 Warning : system.stack_size is an uneven number near line Xxxx
cfg30 Warning : task[x].stack_size is an uneven number near line xxx
Please set even size in system.stack_size or task[x].stack_size.

Other messages
The following message are a warning message that is output only when generating makefile. The configurator skips the
sections that have caused such a warning as it generates makefile.

cfg30 Error : xxxx (line xxx): include format error.
The file read format is incorrect. Rewrite it to the correct format.

cfg30 Warning : xxxx (line xxx): can't find <XXXX>

cfg30 Warning : xxxx (line xxx): can't find "XXXX"
The include file XXXX cannot be found. Check the file name and whether the file actually exists.

cfg30 Warning : over character number of including path-name
The path-name of include file is longer than 255 characters.

- 258 -

8.2.7 Editing makefile
Here you edit makefile the configurator generated, and set compilation options, libraries, and so on. The procedure for set-
ting them is given below.
1. NC30WA command options
You define command options of the C compiler in "CFLAGS". Be sure to define the "-c" option.

2. AS30 command options
You define command options of the assembler in "ASFLAGS".

3. LN30 command options
You define command options of the linker in "LDFLAGS". There are no particular options you need to specify.

4. Specifying libraries
You define libraries in "LIBS".

The configurator picks up necessary libraries from the configuration file and from the current directory, and de-
fines them in 'LIBS". Either add or delete libraries when necessary.

If you create the own makefile for MR30 system, be sure to describe the following 4 items in the makefile.

1. MRS3O0 Library Specifications

you must specify libraries mr30.lib and c30mr.lib.

2. Assemble Option Specifications

Make sure to specify assemble option "-F" when assembling the source file, described in the assemble language,
which issues the service call.

3. Process Before Linking
Before executing a link, make sure to execute the following two processes, in the order as are listed.
1. mkmrtbl
2. as30 mrtable.a30

MR30 comes equipped with the mkmrtbl utility. Execute it in the directory where Configurator (cfg30) executes.
If that is not the same directory where the service call file (XXX.mrc) and the r30 file are output by C Compiler
or Assembler, you need to specify the directory at parameters of mr30tbl as following. .

Ex) mkmrtbl outputdir
If you use Service call Issue Function on Renesas debugger, you need to add $(LIB30) at parameter of mkmrtbl.

Once mkmrtbl is executed, the mrtable.a30 file will be created. After these two processes are completed, execute
the link including the mrtable.r30 file.

- 259 -

8.2.8

About an error when you execute make

The following warning message of mr30thl is displayed when you execute make.

mr30tbl Warning : You need not specify systime.timeout YES in configuration file

Unless the following service calls are used, there is no need to set "Timeout=YES" in the system definition of a
configuration file.

tslp_tsk, twai_flg, trcv_mbx, twai_sem, tsnd_dtq, trcv_dtq, vtsnd_dtq, vtrcv_dtq
This waning will disappear when you define “TIMEOUT = NO;” of the system definition in your configuration

file.
If you don’t use the following service call, you had better to define “TIMEOUT = NO;” in the configuration file

- 260 -

9. Sample Program Description

9.1 Overview of Sample Program

As an example application of MR30, the following shows a program that outputs a string to the standard output device
from one task and another alternately.

Table 9.1 Functions in the Sample Program

Function Type ID No. Priority | Description

Name

main() Task 1 1 Starts task1 and task?.
task1() Task 2 2 Outputs "task1 running."
task2() Task 3 3 Outputs "task2 running."”
cyhl() Handler 1 Wakes up task1().

The content of processing is described below.

] The main task starts taskl, task2, and cyh1, and then terminates itself.

] taskl operates in order of the following.
1. Gets a semaphore.
2. Goes to a wakeup wait state.
3. Outputs "taskl running."
4

Frees the semaphore.

] task2 operates in order of the following.
1. Gets a semaphore.

2. Outputs "task2 running."
3. Frees the semaphore.

cyhl starts every 100 ms to wake up taskZ.

- 261 -

9.2 Program Source Listing

1 /***
2 * MR30 smaple program

3 *

4 * COPYRIGHT (C) 2003(2005) RENESAS TECHNOLOGY CORPORATION

5 * AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED

6 *

7 *

8 * $Id: demo.c,v 1.2 2005/06/15 05:29:02 inui Exp $

9 ***/
10

11 #include <itron.h>
12 #include <kernel.h>
13 #include "kernel id.h"
14 #include <stdio.h>

15

16

17 void main(VP_INT stacd)

18

19 sta_tsk(ID taskl,0);

20 sta_tsk(ID task2,0);

21 sta_cyc(ID cyhl);

22 }

23 void taskl(VP_INT stacd)

24

25 while (1) {

26 wail_sem(ID_seml) ;
27 slp tsk();

28 printf ("taskl running\n") ;
29 sig sem(ID seml) ;
30 }

31 }

32

33 void task2(VP_INT stacd)

34

35 while (1) {

36 wal_sem(ID_seml) ;
37 printf ("task2 running\n") ;
38 sig sem(ID_seml) ;
39 }

40 }

41

42 void cyhl (VP_INT exinf)

43

44 iwup_tsk (ID_taskl);

45 }

46

- 262 -

9.3 Configuration File

l //***
2//

3 // ~COPYRIGHT(C) 2003,2005 RENESAS TECHNOLOGY CORPORATION
4 // AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS RESERVED
5//

6 // MR30 System Configuration File.
7// "$Id: smp.cfg,v 1.5 2005/06/15 05:41:54 inui Exp $"
8

9 ;;***
10

11 // System Definition

12 system{

13 stack _size = 1024;

14 priority = 10;

15 system_ IPL = 4;

16 task pause = NO;

17 timeout = YES;

18 tic nume =1;

19 tic_deno =1;

20 message pri = 255;

21 };

22 //System Clock Definition

23 clock({

24 mpu_clock = 20MHz;
25 timer = A0;

26 IPL = 4;

27 t;

28 //Task Definition

29 //

30 task[]{

31 entry address = main() ;

32 name = ID main;

33 stack _size = 100;

34 priority =1;

35 initial_start = ON;

36 };

37 task[]{

38 entry address = taskl();

39 name = ID taskl;

40 stack_size = 500;

41 priority =2;

42 };

43 task[]{

44 entry address = task2();

45 name = ID_task2;

46 stack size = 500;

47 priority = 3;

48 };

49

50 semaphore [] {

51 name = ID seml;

52 max_count =1;

53 initial_ count =1;

54 wait queue = TA TPRI;

55 };

56

57

58

59 cyclic_hand [1] {

60 name = ID cyhil;
61 interval_counter = 100;

62 start = OFF;

63 phsatr = OFF;

64 phs counter =0;

65 entry address = cyhl () ;
66 exinf =1;

67 };

- 263 -

9.4 Generation of application using M3T-MR30/4 in High - performance
Embedded Workshop 4

An explanation is given here of the method for creating an application using the M3T-MR30/4 at the High-performance
Embedded Workshop 4. The procedure is explained, taking the sample program attached to the M3T-MR30/4 as an exam-

ple.

1. Generation of new project work space
As illustrated below, create a work space as an application project.

New Project Workspace

Projects l
@ &pplication Workspace Mame:
@ C zource startup Application |3~3ITIF'|E

@ Empty &pplication
@ Impaort b ak.efile
@] Library |sample

Directory:

|F:'\Wu:urk5 pacezample Browse. ..

CPU Family:
IM16C |

Taool chain:
|Henesas M1EC Standard ﬂ

Project Hame:

Properties. ..

| k. | Cancel

- 264 -

Tool Chain Setting
According to the operating environment, set up CPU series, CPU type and the toolchain version.

New Project-1/6-Select Target CPL. Toolchain version

T aalchain version
|5 40.00 -l

Which CPL do wou want o uge for this
project?

CPU Senes

b1 ED’SD
M1EC/20
M16CA0
M1EC Tirny |

CPU Group:

B2P A
BZP(ROM128K) =
B2P

EEF‘[HEIM51 2K]

E

[f there iz no CPU group to be zelected,
zelect the "CPU Group' that a similar to
hardware zpecification or select 'Other’’.

¢ Back | et » I Finizh Cancel

- 265 -

Selection of RTOS
In the dialog on New Project-2/6-Select RTOS, select “MR30” from the RTOS item. For the startup file type, select
“Default C Linkage”.

New Project-2/6-Select RTOS

Target type I.-i‘-.ll Targets ;’
RTOS :

Statupfiletype: |Defaul CLinkege |

Startup files
= Project 2
43 € source file
Add

&l 9 Aszembly source file
Pk crtmr.a30 ”

= 9 Aszembly include file _|i
Eo C_set.inG Remave
=425 Configuration file

i ternplate.cfg

[T Show file path

¢ Back | et » I Finizh Cancel

- 266 -

Generated File Setting
Select “None” in “Generate main () Function”.

New Project-3/6-Setting the Contents of Files to be Generated

“What kind of initialization routine
would pau like ta create?

[T Use Standard /0 Libram
¥ Use Heap Memon
Heap Size; |[I::I'.IEI!-I

Generate mainf] Function

Mone -

[™ Use FolSE

Firmnware Sized |'-"="-"--"'I

Cancel

- 267 -

Completion of Project Generation

Press the “Finish” button if selection of a debugger and a simulator is unnecessary.

Since the project summary is displayed as shown below, press the “OK” button located in the lowermost part to
generate the project.

Summary

Project Surmmary:

-------- PROJECT GENERATOR —mrm

PROJECT HAME : zample2

PROJECT DIRECTORY : F:WwiorkS paceisampleszample:
CPL SERIES : t1EC/R0

CPU GROUP : B2P[ROR 384K

TOOLCHAIM MAME : Renezaz M16C Standard Toolch.

TOOLCHAIMN WERSIOM : 5.40.00

GEMERATIOM FILES :

START UF FILES :
F:\wforkSpacehzample2izampletc_zec.inc
F:\WwiorkSpacessample2hzample2htemnplate. cfg
F:\WworkSpaceszample2hzample2hertOnr. 230

DATE & TIME : 02/23/2006 7:43:41 PM

3 ?

Click OF. ta generate the project or Cancel to abart.

v Generate Readme.tst as a summary file in the project directony

Cancel

- 268 -

Link Option Setting
Specify the library “mr30.lib,c30mr.lib” in the link option.
"nc30lib.lib™ must be specified because this sample program is using the printf function.

Renesas M16C Standard Toolchain |2|E|
Configuration : C] Azzembly Link lLibrarian] Lmec] Cfa] MLlLl
[Debug | categon: .
= l@ All Loaded Projects Shows Entries Far :
= sample - -
-2 C source file |L|brar_l,l filez ﬂ
+-[_7] Aszembly source file [-L -LD] Specifies directory of library and Add.
library file ta be referenced : g
Fath Filz Q
rr30.lib
3l lib
nic30lib.lib + | + |

[-E]15pecifies start address
of absolute module :

Optiohz Link, :

-L M3 lib" -L Me30me k" L Mhe30ib k" -G M5 -0
"HCOMFIGDIRNVPROJECTNAME] w30

4 | Cancel

M3T-MR30/4 Relative Option Setting
Select the “4.0” in the “Category: ulTRON specification” of “RTOS” tab.

Renesas M16C Standard Toolchain

LConfiguration : C] Asmmhl_l,l] Lirik,] Librarian] Lmz RTOS II: L
|Debug ﬂ Category : |uITHDN specification j
= @ All Loaded Projects
- @ m UITROM version: 40 -

+-_7 C source file
+1-_] Assembly source fils

] | Cancel

- 269 -

8. Ading Sample Program File to Project
Add “demo.c” and “smp.cfg” provided in the sample program to the project. Delete the sample configuration file
“template.cfg” already registered from the project, and add “smp.cfg” to the project.
In cases where the cfg file was generated with the GUI configurator, register the cfg file thus generated in the pro-
ject.

sample - High-performance Embedded Workshop - [F:\Renesas\NC 30WAW 540R00\smp30imr30idemo.c]
<+ File Edit Wiew Project Build Debug Setup Tools Window Help -8 x

(=2 ﬁ = Eﬁ - |y @ 4 ‘Debug j |DefauItSesslon ﬂ i
x|
- E— 1 R R R R R R R R R R R R R R R R R R R A R R R R s =
ﬁémzample 2 * MRIO0 swaple progrsm e |
—1-i23 Assembly source 9 N
it 530 4 * COPYRIGHT(C) 2003 (2005) RENEZLZ TECHMOLOGY CORPCRATICN
- 63 source file 5 * LMD RENESLS SOLUTIONS CORFORATICON ALL RIGHTS RESERVED
5 £ ¢
—1-#=3 Corfiguiation file ¥ N . .
smp.clg g * §Id: dewo.c 61 2005-06-15 05:29:03Z inui §
- £3 Dependencics g L Ly
. i0
eseeine 11 #include <itron.hs>
1z #include <kernel.hs
13 #include "kernel id.h'"
14 #include <stdio.h>
15
16
17 void main(VP_INT stacd | -
i {
19 sta_tsk(ID_taskl,O):
20 sta_tsk(ID_task2,0);
21 sta_cyc(ID_cyhl):
22 }
23 wvoid taskl(VP_INT stacd)
24 {
25 while (1) {
26 wai_ sem(ID_seml);
27 slp tski]:
28 printf("taskl runningin"); =
‘| | el 2

< democ

2llphase M16¢C Configurator starting ~
JMRBD aystem configurator v.4.00.17

Copyright Z005-Z006 RENESAS TECHNOLOGY CORPORATION

AND RENESAS SCOLUTICNS CORPORATION ALL RIGHTS RESERVED.

MR30 wersion ==> V.4.00 Release 00 E31

rading defanlt conficuration file
Build /i Debug A FindinFles j, Version Contral /

Ready [EZ EE| F7| FR| Defauli desktop Read-write 1/47 1 NS HUM

9. Execution of “Build”
Select “Build " -> “Build All” to execute Build.*

* In the sample program, timeout=YES is specified with the configuration file, but since no service call having the timeout function is used,
there arises a warning when “mr30tnl” is executed. There is no problem, however, in operation, etc.

- 270 -

10. Stack Size Calculation Method

10.1Stack Size Calculation Method

The MR30 provides two kinds of stacks: the system stack and the user stack. The stack size calculation method differ be-
tween the stacks.

® User stack

This stack is provided for each task. Therefore, writing an application by using the MR30 requires to allocate the
stack area for each stack.

® System stack
This stack is used inside the MR30 or during the execution of the handler.

When a task issues a service call, the MR30 switches the user stack to the system stack. (See Figure
10.1 System Stack and User Stack

)

The system stack uses interrupt stack(ISP).

Task MR30 Service Cal | Processing Position

\ 4 User Stack
Register save \
Stack switching A
Service call
rocessing
XXXXXX() System Stack

(interruput stack)

Task Selection

Stack switching Y

Register return A
User Stack

\ 4

Figure 10.1 System Stack and User Stack

The sections of the system stack and user stack each are located in the manner shown below. However, the diagram shown
below applies to the case where the stack areas for all tasks are located in the stack section during configuration.

-271 -

SFR

System Stack

User satck of
TaskID No. 1

User satck of
TaskID No. 2

User satck of
TaskID No.n

Stack Section

Figure 10.2 Layout of Stacks

-272 -

10.1.1 User Stack Calculation Method

User stacks must be calculated for each task. The following shows an example for calculating user stacks in cases when an
application is written in the C language and when an application is written in the assembly language.

® \When an application is written in the C language

Using the stack size calculation utility STK Viewer®, calculate the stack size of each task. The necessar%/ stack
size of a task is the sum of the stack size output by STK Viewer plus a context storage area of 30 bytes™ The
following shows how to calculate a stack size using

® \When an application is written in the assembly language

¢ Sections used in user program
The necessary stack size of a task is the sum of the stack size used by the task in subroutine call plus the size

used to save registers to a stack in that task.

¢ Sections used in MR30
The sections used in MR30 refer to a stack size that is used for the service calls issued.

MR30 requires that if you issue only the service calls that can be issued from tasks, 6 bytes of area be allocated.
Also, if you issue the service calls that can be issued from both tasks and handlers, see the stack sizes listed in
Table 10.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes) to ensure that the necessary stack
area is allocated.

Furthermore, when issuing multiple service calls, include the maximum value of the stack sizes used by those
service calls as the sections used by MR30 as you calculate the necessary stack size.

Therefore,

User stack size =
Sections used in user program + size of registers used + Sections used in MR30

(Size of registers used should be added 2bytes by each register.)

Figure 3.1 shows an example for calculating a user stack. In the example below, the registers used by the task are RO, R1,
and AOQ.

% STK Viewer is a utility to calculate the stack size included with Renesas C Compiler NC30WA.
59 |f written in the C language, this size is fixed.

-273 -

Stack growing direction

18bytes

>
When use register RO,R1,R2,A0(8bytes)
2bytes
—
jsr subl 12bytes(PC+FLG+size of registers used)
< ~
< >
sta_tsk

16bytes(PC+FLG+size of registers used

stack size used by prev_msg)

< ~

N e

prev_dtq
‘
]
1
]
]
]
]
]
]
1
‘
< >

1
]
]

Figure 10.3 Example of Use Stack Size Calculation

-274 -

10.1.2 System Stack Calculation Method

The system stack is most often consumed when an interrupt occurs during service call processing followed by the occur-
rence of multiple interrupts.60 The necessary size (the maximum size) of the system stack can be obtained from the fol-
lowing relation:

Necessary size of the system stack = o + Zi(+)

The maximum system stack size among the service calls to be used.®".

When sta_tsk, ext_tsk, slp_tsk and dly_tsk are used for example, according to the Table 10.1 Stack Sizes Used
by Service Calls Issued from Tasks (in bytes),each of system stack size is the following.

Service Call name System Stack Size
sta_tsk 2bytes
ext tsk Obytes
slp_tsk 2bytes
dly tsk 4bytes

Therefore,the maximum system stack size among the service calls to be used is the 8 bytes of dly_tsk.

® fi
The stack size to be used by the interrupt handler.®® The details will be described later.
oy

Stack size used by the system clock interrupt handler. This is detailed later.

0 After switchover from user stack to system stack

¢ Refer from Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) to Table 10.3 Stack Sizes Used by Service Calls
Issued from Tasks and Handlers (in bytes) for the system stack size used for each individual service call.
2. 0S-dependent interrupt handler (not including the system clock interrupt handler here) and OS-independent interrupt handler.

- 275 -

o'The maximum system stack size among the service calls to be used.

P @ ~ B1'The system stack size to be used by the interrupt handler.
Y 7
B1
\/\ <>
2
Interrupt \/\ p
Interrupt
_______ Bn
1
1
_______ 1
]
]
1
1
|
:
1
]
]
]
1
1
1
1
]
1
i
' The necessary system stack E
[P S
< rd!

Figure 10.4 System Stack Calculation Method

- 276 -

[(Stack size Bi used by interrupt handlers)]
The stack size used by an interrupt handler that is invoked during a service call can be calculated by the equation below.

The stack size Bi used by an interrupt handler is shown below.

+ Clanguage
Using the stack size calculation utility STK Viewer®, calculate the stack size of each interrupt handler.

Refer to the manual of STK Viewer for detailed use of STK Viewer.

¢ Assembly language
The stack size to be used by OS-dependent interrupt handler
=register to be used + user size + stack size to be used by service call

The stack size to be used by OS-independent interrupt handler
=register to be used + user size

User size is the stack size of the area written by user.

Context(20bytes)
\/\ < N
& >

Interrupt 2bytes
jsr func
20bytes
< ~
N 7
iset_flg

|

]

]

]

]

]

]

1

]

]

]

i

]

ret_int !

|

]]
]]
& N
) 2
! 42bytes '

Context: 20 bytes when written in C language.
When written in assembly language,
Context = size of registers used + 4(PC+FLG)bytes

Figure 10.5 Stack size to be used by Kernel Interrupt Handler

% STK Viewer is a utility to calculate the stack size included with Renesas C Compiler NC30WA..

- 277 -

[(System stack size y used by system clock interrupt handler)]
When you do not use a system timer, there is no need to add a system stack used by the system clock interrupt handler.

The system stack size y used by the system clock interrupt handler is whichever larger of the two cases below:

¢ 24 + maximum size used by cyclic handler
¢ 24 + maximum size used by alarm handler
.

¢ Clanguage
Using the stack size calculation utility STK Viewer ®, calculate the stack size of each Alarm or Cyclic han-

dler.
Refer to the manual of STK Viewer for detailed use of STK Viewer.

¢ Assembly language
The stack size to be used by Alarm or Cyclic handler
=register to be used + user size + stack size to be used by service call

If neither cyclic handler nor alarm handler is used, then

v = 14bytes

When using the interrupt handler and system clock interrupt handler in combination, add the stack sizes used by both.

% STK Viewer is a utility to calculate the stack size included with Renesas C Compiler NC30WA.

-278 -

10.2Necessary Stack Size

Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes) lists the stack sizes (system stack) used by
service calls that can be issued from tasks.

Table 10.1 Stack Sizes Used by Service Calls Issued from Tasks (in bytes)

Service call Stack size Service call Stack size
User stack System User stack System
stack stack
act_tsk 0 2 rcv_mbx (5) 20
can_act 10 0 prcv_mbx 14(5) 0
sta_tsk 0 2 trcv_mbx (5) 20
ext tsk 0 0 ref_mbx 10 0
ter_tsk 0 4 get_mpf (5) 24
chg_pri 0 22 pget_mpf 16(5) 0
get_pri 10(5) 0 tget_mpf (5) 24
ref tsk 22 0 rel_mpf 0 4
ref tst 10 0 ref mpf 10 0
slp_tsk 0 2 pget mpl (5) 32
tslp_tsk 0 4 rel_mpl 0 50
wup_tsk 0 4 ref_mpl 12 0
can_wup 10 0 set tim 10 0
rel_wai 0 4 get tim 10 0
sus_tsk 0 2 sta_cyc 10 0
rsm_tsk 0 2 stp_cyc 10 0
frsm_tsk 0 2 ref cyc 10 0
dly tsk 0 4 sta_alm 10 0
sig_sem 0 4 stp_alm 10 0
wai_sem 0 20 ref alm 10 0
pol_sem 10 0 rot_rdq 0 0
twai_sem 0 22 get tid 10(5) 0
ref sem 10 0 loc_cpu 4 0
set flg 0 8 unl_cpu 0 0
clr_flg 10 0 ref ver 12 0
wai_flg (5) 20 vsnd_dtq 0 20
pol flg 10(5) 0 vpsnd_dtq 0 4
twai_flg (7 20 visnd_dtq (5) 22
ref_flg 10 0 vfsnd_dtg 0 4
snd_dtq 0 20 vrev_dtq (7 4
psnd_dtq 0 4 vprev_dtq (7) 4
tsnd_dtq (5) 22 vircv_dtq (7) 4
fsnd_dtqg 0 4 vref dtg 10 0
rcv_dtq (5) 4 vrst_dtq 0 18
prcv_dtg (5) 4 vrst_vdtq 0 18
trcv_dtqg (5) 4 vrst_mbx 10 0
ref _dtqg 10 0 vrst_mpf 0 18
snd_mbx 0 18 vrst_mpl 60 0
dis_dsp 4 0 ena_dsp 0 0

(): Stack sizes used by service call in C programs.

- 279 -

Table 10. 2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes) lists the stack sizes (system
stack) used by service calls that can be issued from handlers.

Table 10.2 Stack Sizes Used by Service Calls Issued from Handlers (in bytes)

Service call Stack size Service call Stack size
jact tsk 14 iprcv_mbx 14(5)
ican_act 10 iref_mbx 10
ista_tsk 14 ipget_mpf 16(5)
ichg_pri 32 irel_mpf 18
iget pri 10(5) iref_mpf 10
iref tsk 22 iset_tim 10
iref tst 10 iget tim 10
iwup_tsk 16 ista_cyc 10
ican_wup 10 istp_cyc 10
irel_wai 14 iref_cyc 10
isus_tsk 12 ista_alm 10
irsm_tsk 12 istp_alm 10
ifrsm_tsk 12 iref alm 10
isig_sem 16 irot_rdq 10
ipol_sem 10 iget_tid 10(5)
iref sem 10 iloc_cpu 4
iset_flg 24 iunl_cpu 10
iclr_flg 10 ret int 10
ipol_flg 10(5) iref_ver 12
iref flg 10 vipsnd_dtq 18
ipsnd_dtq 18 vifsnd_dtq 18
ifsnd_dtq 18 viprev_dtq 20(7)
iprcv_dtq 18(5) viref dtg 10
iref dtq 10 isnd mbx 30
iref_mpl 12

(): Stack sizes used by service call in C programs.

Table 10.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes) lists the stack
sizes (system stack) used by service calls that can be issued from both tasks and handlers. If the service call
issued from task, system uses user stack. If the service call issued from handler, system uses system stack.

Table 10.3 Stack Sizes Used by Service Calls Issued from Tasks and Handlers (in bytes)

Service call Stack size Service call Stack size
sns_ctx 10 sns_loc 10
sns_dsp 10 sns_dpn 10

- 280 -

11. Note

11.1The Use of INT Instruction

MR30 has INT instruction interrupt numbers reserved for issuing service calls as listed in Table 11.1 Interrupt Number As-
signment. For this reason, when using software interrupts in a user application, do not use interrupt numbers 63 through 48
and be sure to use some other numbers.

Table 11.1 Interrupt Number Assignment

Interrupt No. Service calls Used
32 Service calls that can be issued from only task context
33 Service calls that can be issued from only non-task context.
Service calls that can be issued from both task context and non-task context.
34 ret_int service call
35 dis_dsp service call
36 loc_cpu, iloc_cpu service call
37 ext tsk service call
38 tsnd_dtq, twai_flg, vtsnd_dtq service call
39 Reserved for future extension
40 Reserved for future extension

11.2The Use of registers of bank

The registers of bank is 0, when a task starts on MR30.
MR30 does not change the registers of bank in processing kernel.

You must pay attention to the followings.

® Don't change the regisers of bank in processing a task.

® |f an interrupt handler with regisers of bank 1 have multiple interrupts of an interrupt handler with regis-
ers of bank 1, the program can not execute normally.

-281 -

11.3Regarding Delay Dispatching

MR30 has four service calls related to delay dispatching.

® dis dsp
® ena_dsp
® |oc_cpuiiloc_cpu

® unl_cpu,iunl_cpu

The following describes task handling when dispatch is temporarily delayed by using these service calls.

1. When the execution task in delay dispatching should be preempted
While dispatch is disabled, even under conditions where the task under execution should be preempted, no time
is dispatched to new tasks that are in an executable state. Dispatching to the tasks to be executed is delayed until
the dispatch disabled state is cleared. When dispatch is being delayed.

® Task under execution is in a RUN state and is linked to the ready queue

® Task to be executed after the dispatch disabled state is cleared is in a READY state and is linked to the
highest priority ready queue (among the queued tasks).

2. isus_tsk,irsm_tsk during dispatch delay
In cases when isus_tsk is issued from an interrupt handler that has been invoked in a dispatch disabled state to
the task under execution (a task to which dis_dsp was issued) to place it in a SUSPEND state. During delay dis-
patching.

® The task under execution is handled inside the OS as having had its delay dispatching cleared. For this
reason, in isus_tsk that has been issued to the task under execution, the task is removed from the
ready queue and placed in a SUSPEND state. Error code E_OK is returned. Then, when irsm_tsk is
issued to the task under execution, the task is linked to the ready queue and error code E_OK is re-
turned. However, tasks are not switched over until delay dispatching is cleared.

® The task to be executed after disabled dispatching is re-enabled is linked to the ready queue.

3. rot_rdq, irot_rdq during dispatch delay
When rot_rdg (TPRI_RUN = 0) is issued during dispatch delay, the ready queue of the own task's priority is ro-
tated. Also, when irot_rdqg (TPRI_RUN = 0) is issued, the ready queue of the executed task's priority is rotated.
In this case, the task under execution may not always be linked to the ready queue. (Such as when isus_tsk is is-
sued to the executed task during dispatch delay.)

4, Precautions

® No service call (e.g., slp_tsk, wai_sem) can be issued that may place the own task in a wait state while
in a state where dispatch is disabled by dis_dsp, loc_cpu or iloc_cpu.

® ena_dsp and dis_dsp cannot be issued while in a state where interrupts and dispatch are disabled by
loc_cpu, iloc_cpu.

® Disabled dispatch is re-enabled by issuing ena_dsp once after issuing dis_dsp several times.
The above status transition can be summarized in Table 3.3.

11.4Regarding Initially Activated Task

MR30 allows you to specify a task that starts from a READY state at system startup. This specification is made by setting
the configuration file.

Refer to 8.1.2 for details on how to set.

-282 -

11.5Cautions for each microcontroler

11.5.1

To use the M16C/62 group MCUs

® To use the memory expansion function in memory space expansion mode 1 (1.2M available memory)

Locate the MR30 kernel (MR_KERNEL section) between addresses 30000H and FFFFFH.

® To use the memory expansion function in memory space expansion mode 2 (4M available memory)

Locate the MR30 kernel (MR_KERNEL section) between addresses 3C0000H and 3FFFFFH.

11.5.2

To use the M16C/6N group MCUs

Please append the following program to the point of the MR30’s system timer setting in the startup program.(The
setting point of MR30’s system timer is lines 160 in crtOmr.a30 or lines 73 in start.a30. These startup files are in
“MR30’s install directory\LIB30” directory.)

If you select no division by changing the value of the peripheral function clock register, need not append the fol-
lowing program.

T +
| System timer interrupt setting |
P +
mov.b #stmr_mod_val,stmr_mod_reg ; set timer mode
; mov.b #1H, OAH
; bset 6,07H
mov.b #stmr_int_IPL,stmr_int_reg ; set timer IPL
; bclr 6,07H
; mov.b #0,0AH
mov.w #stmr_cnt_stmr_ctr_reg ; set interval count
mov.b stmr_mod_reg,ROL <---- append
and.b #0COH,ROL <---- append
jnz __ MR_SYSTIME_END <---- append
mov.w #stmr_cnt/2,stmr_ctr_reg <---- append
__MR_SYSTIME_END: <---- append
or.b #stmr_bit+l,stmr_start

- 283 -

12.

Separate ROMs

12.1How to Form Separate ROMs

This chapter describes how to form the MR30's kernel and application programs into separate ROMs.

Figure 12.1 shows an instance in which the sections common to two different applications together with the kernel are al-
located in the kernel ROM and the applications are allocated in separate ROMs.

Here is how to divide a ROM based on this example.

1.

System configuration
Here you set up a system configuration of application programs.

Here, descriptions are given on the supposition that the system configuration of two application programs is as
shown below.

Application 1 Application 2
The number of Tasks 4 5

The number of Eventflags

The number of Semaphores

The number of Fixed-size memory pools

1 3
4 2
The number of Mailboxes 3 5
3 1
3 3

The number of Cyclic handlers

Preparing configuration files
Prepare configuration files based on the result brought by setting up the system configuration.
® maxdefine definition

You must specify the greater of the two numbers of definitions as to the respective applications for a value to be
set in the maxdefine definition division.Thus the individual items must be equal in number to each other in these
applications.

maxdefine{
max_task
max flag
max_sem

3

[

b

3

o

B
([T I TR T
Wwuld wum

}i

No means is available to deal with variable-length memory pools in the maxdefine definition. So if you use the
variable-length memory pool functions in either of two applications, give the same definitions of variable-length
memory pools in the two configuration files.

- 285 -

® system definition

You need to make the following items, which are dealt with in the system definition, common to two applica-

tions.
¢ timeout
¢ task pause
¢ priority

® clock definition

The value assigned to this item in one of two applications can be different from its counterpart. Avoid defining
this item in one application and omitting it in the other application. Be sure to deal with this item in the same
manner, either define or omit, in two applications.

® task definition

+ initial_start
Switch this item ON only in the task first started up after the System is stared up, and switch this item
OFF in any other tasks.

Other definitions, though different from each other between two configuration files, raise no problem.

3. Changing the processor mode register

You change the processor mode register for a startup program in compliance with the system.

4. Preparing application programs

You prepare two application programs.

5. Changing of the section name of start-up program
Change the name of the section name of start-up program(start.a30,crtOmr.a30) from MR_KERNEL section to
other name.

[before] .section MR_KERNEL, CODE, ALIGN

[after] .section MR_STARTUP, CODE, ALIGN

6. Locating respective sections

Programs to be located in the kernel ROM and in the application ROM are given below.

® Programs to be located in the kernel ROM
¢ MR30's kernel(MR_KERNEL section)
+ Programs common to two applications(program section)

This example assumes that the task identified by 1 is a program common to two applications. Locating a com-
mon program in the application ROM raises no problem. With a common program located in the kernel ROM,
the system calls given below cannot be issued, so be careful.

get_mpf, get_pri, get_tid, iprcv_dtq, pget_mpf, pget_mpl, pol_flg, prcv_dtg, prcv_mbx, rcv_dtq, rev_mbx,
tget_mpf, trcv_dtq, trcv_mbx, tsnd_dtq, twai_flg, viprcv_dtg, vprev_dtq, vrev_dtq, vtrev_dtg, visnd_dtg,
wai_flg

To issue these system calls from a common program, locate it in the application ROM.

- 286 -

kernel ROM
(Internal ROM)

MR_KERNEL Startup
Program

MR30 kernel

program Task of ID=1

Application ROM1 Application ROM2
MR_ROM MR30’s ROM MR30’s ROM
data MR_ROM data
MR_CIF C language I/F routine MR_CIF | Clanguage I/F routine
A application change
Pp_prog Task2 App_pro Task2
—>
Task3 Task3
Task4 Task4
. I | Task5
Use Function I I
* Mailbox I I Use Function I I
! Eventflag Interrust voctor arce : Mailbox Interrupt vector area
: semaphore : Eventflag :
Number of Task4 Fix Interrupt Fix Interrupt
umber of las Victor area Number of Task5 v

Figure 12.1 ROM separate

® Programs to be located in the application ROM
¢ MR30's ROM data (the MR_ROM section)
C language I/F routines (the MR_CIF section)
Application programs (the app_prog section)
Interrupt vector area (the INTERRUPT_VECTOR section)
Fixed interrupt vector area(FIX_INTERRUPT_VECTOR section)

* & o o

® How to locate individual programs is given below.
¢ Changing the section name of user program
In dealing with application programs written in C language, you change the section name of the programs to be
located in the application ROM by use of #pragma SECTION as shown below. In NC30WA, the section name of
user program, if not given, turns to program section. So you need to assign a different section name to the task
you locate in the application ROM.

#pragma SECTION program app_prog/* Changing section of program */
/* The section names of task2 and task3 turn to app prog */
void task2 (void) {

}

void task3 (void) {
}

+ Locating sections
Here you change the section files (c_sec.inc, asm_sec.inc), and set addresses of programs you locate in the ap-
plication ROM. In this instance, the respective first addresses of the sections given below must agree with each
other between two applications. Also, you need to invariably locate the MR_ROM section at the beginning of the

% You need not change the names of sections for tasks to be located int the kernel ROM.

- 287 -

application ROM. The sequence of other sections are free of restrictions.

MR30's RAM data (MR_RAM, MR_RAM_DBG section)

MR_HEAP section

MR30's kernel(MR_KERNEL section)

MR30's ROM data(MR_ROM section)

Interrupt vector area(INTERRUPT_VECTOR section)

Settings of the section files are given below.

.section MR_RAM DBG, DATA
.org 500H

.section MR_RAM, DATA
.0org 600H

.section MR_HEAP,DATA

.org

10000H

.section MR_ROM, ROMDATA

.org

0e0000H

.section MR_STARTUP, CODE

.org

0el000H

.section MR_CIF, CODE

.section app_ prog, CODE

.section INTERRUPT VECTOR

.org

0efd00H

.section MR_KERNEL, CODE

.org

0£0000H

7
7
1
7

.section FIX INTERRUPT VECTOR ;

.org

0fffdcH

7

MR30's RAM data
The address common
MR30's RAM data
The address common

to two

to two
MR30's RAM data

The address common to two
MR30's ROM data

The address common to two
start-up program
The address common to two

C language I/F routine
Use Program

Interrupt Vector
The address common to two
MR30’s kernel

The address common to two

Fixed Interrupt Vector
The address common to two

The memory map turns to give below.(See Figure 12.2)

applications

applications

applications

applications

applications

applications

applications

applications

E0000H Startup .
program MR_KERNEL section
kernel ROM MR30 kernel
Task of ID=1 program section
(common program)
FO000H MR30’s ROM
data MR_ROM section
C language I/F routine
Task2 app_prog section
c Task3
Application ROM
Task4
Interrupt vector area | INTERRUPT_VECTOR section
Fix Interrupt .
vector area FIX_INTERRUPT_VECTOR section

Figure 12.2 Memory map

7. Executing the configurator cfg30.

8. Create an mrc file in which every system call is described. (Compiling the source program cre-

- 288 -

ates a file having the extension mrc in the work directory. Create an mrc file making reference to
this.) Executing make clean in makefile created by cfg30 deletes the mrc file, so be careful.
9. Generating a system
You execute the make command to generate a system.®
10. Carrying out steps 4 through 9 with respect to application 2 allows you to generate the system
for application 2.
The steps given above allows you to form the separate ROMs.

% |f the file mrtable.a30 is not held in the current directory, execute make command to generate a system.

- 289 -

13. Appendix

13.1Common Constants and Packet Format of Structure

----Common formats----

TRUE 1 /* True */
FALSE 0 [* False */
----Formats related to task management----
TSK_SELF 0 /* Specifies the issuing task itself */
TPRI_RUN 0 /* Specifies priority of task being executed then */
typedef struct t_rtsk {
STAT tskstat; /* Task status */
PRI tskpri; /* Current priority of task */
PRI tskbpri; /* Base priority of task */
STAT tskwait; /* Reason for which task is kept waiting */
1D wid; /* Object ID for which task is kept waiting */
TMO tskatr; /* Remaining time before task times out */
UINT actent; /* Number of activation requests */
UINT wupcent; /* Number of wakeup requests */
UINT suscnt; /* Number of suspension requests */
} T_RTSK;
typedef struct t_rtst {
STAT tskstat; /* Task status */
STAT tskwait; /* Reason for which task is kept waiting */
} T_RTST;

----Formats related to semaphore----
typedef struct t_rsem {

1D wtskid; /* ID number of task at the top of waiting queue */
INT sement; /* Current semaphore count value */

}T_RSEM;

----Formats related to eventflag----

wfmod:

TWF_ANDW H’0000 /* AND wait */
TWF_ORW H’0001 /* OR wait */
typedef struct t_rflg {

ID wtskid; /* ID number of task at the top of waiting queue */
UINT flgptn; /* Current bit pattern of eventflag */
}T_RFLG;

----Formats related to data queue and short data queue----
typedef struct t_rdtq {

ID stskid; /* ID number of task at the top of transmission waiting queue */
ID rtskid; /* ID number of task at the top of reception waiting queue */
UINT sdtgcnt; /* Number of data bytes contained in data queue */

}T_RDTQ;

----Formats related to mailbox----
typedef struct t msg {

VP msghead; [* Message header */
} T_MSG;
typedef struct t_msg_pri {
T_MSG msgque; /* Message header */
PRI msgpri; /* Message priority */
}T_MSG_PRI;
typedef struct t_mbx {
1D wtskid; /* ID number of task at the top of waiting queue */
T _MSG *pk_msg; /* Next message to be received */
} T_RMBX;

----Formats related to fixed-size memory pool----
typedef struct t_rmpf {

ID wtskid; /* ID number of task at the top of memory acquisition waiting queue */
UINT frbent; /* Number of memory blocks */
} T_RMPF;

-291 -

----Formats related to Variable-size Memory pool----
typedef struct t_rmpl {

1D wtskid; /* ID number of task at the top of memory acquisition waiting queue */

SIZE fmplsz; /* Total size of free areas */

UINT fblksz; /* Maximum memory block size that can be acquired immediately */
}T_RMPL;

----Formats related to cyclic handler----
typedef struct t_rcyc {

STAT cycstat; /* Operating status of cyclic handler */
RELTIM lefttim; /* Remaining time before cyclic handler starts */
} T_RCYC;

----Formats related to alarm handler----
typedef struct t_ralm {

STAT almstat; /* Operating status of alarm handler */
RELTIM lefttim; /* Remaining time before alarm handler starts */
} T_RALM;

----Formats related to system management----
typedef struct t_rver {

UH maker; I* Maker */

UH prid; /* Type number */

UH spvers; /* Specification version */

UH prver; /* Product version */

UH prno[4]; /* Product management information */
}T_RVER;

-292 -

13.2Assembly Language Interface
When issuing a service call in the assembly language, you need to use macros prepared for invoking service
calls.

Processing in a service call invocation macro involves setting each parameter to registers and starting ex-
ecution of a service call routine by a software interrupt. If you issue service calls directly without using a ser-
vice call invocation macro, your program may not be guaranteed of compatibility with future versions of
MR30.

The table below lists the assembly language interface parameters. The values set forth in uITRON specifica-
tions are not used for the function code.

Task Management Function

Parameter ReturnParameter
ServiceCall INTNo. | FuncCode Al
RO R1 R3 AO FuncGode RO AO

ista_tsk 33 8 | stacd - tskid - ercd -
sta_tsk 32 6 | stacd - tskid - ercd -
act_tsk 32 0| - - tskid - ercd -
jact_tsk 33 2| - - tskid - ercd -
ter_tsk 32 10 | - - tskid - ercd -
can_act 33 4| - - tskid - actent -
ican_act 33 4| - - tskid - actent -
chg_pri 32 12 | - tskpri tskid - ercd -
ichg_pri 33 14 | - tskpri tskid - ercd -
rot_rdq 32 140 | - tskpri - - ercd -
irot_rdq 33 142 | - tskpri - - ercd -
rel_wai 32 32 | - - tskid - ercd -
irel_wai 33 34| - - tskid - ercd -

ref tst 33 20 | - - tskid pk_rtst ercd -

iref tst 33 20 | - - tskid pk_rtst ercd -

ref tsk 33 18 | - - tskid pk_rtsk ercd -
iref_tsk 33 18 | - - tskid pk_rtsk ercd -
ext_tsk 37 -1 - - - - - -
get_tid 33 144 | - - - - ercd tskid
iget_tid 33 144 | - - - - ercd tskid
get_pri 33 16 | - - tskid - ercd tskpri
iget_pri 33 16 | - - tskid - ercd tskpri

-293 -

Task Dependent Synchronization Function

Parameter ReturnParameter
ServiceCall INTNo. FuncCode N i, o Al o
RO FuncCode
slp_tsk 32 22 | - - - - ercd
wup_tsk 32 26 | - - tskid - ercd
iwup_tsk 33 28 | - - tskid - ercd
can_wup 33 30| - - tskid - wupcnt
ican_wup 33 30 | - - tskid - wupcnt
tslp_tsk 32 24 | tmout tmout - - ercd
sus_tsk 32 36 | - - tskid - ercd
isus_tsk 33 38 | - - tskid - ercd
rsm_tsk 32 40 | - - tskid - ercd
irsm_tsk 33 42 | - - tskid - ercd
frsm_tsk 32 40 | - - tskid - ercd
ifrsm_tsk 33 42 | - - tskid - ercd

- 294 -

Synchronization & Communication Function

Parameter ReturnParameter
ServiceCall | INTNo. | FuncCode Al
RO R1 R2 R3 AO FuncGode RO R1 R2

wai_sem 32 50 | - - - semid | - ercd - -
pol_sem 33 52 | - - - semid | - ercd - -
ipol_sem 33 52 | - - - semid | - ercd - -

sig_ sem 32 46 | - - - semid | - ercd - -
isig_sem 33 48 | - - - semid | - ercd - -
twai_sem 32 54 | tmout - tmout | semid | — ercd - -

ref sem 33 56 | - - - semid pk_rsem ercd - -
iref_sem 33 56 | - - - semid | pk_rsem ercd - -
wai_flg 32 64 | wfmode - waiptn | flgid - ercd - flgptn
twai_flg 38 | tmout wfmode tmout | waiptn | flgid 68 | ercd - flgptn
pol_flg 33 66 | wfmode - waiptn | flgid - ercd - flgptn
ipol_flg 33 66 | wfmode - waiptn | flgid - ercd - flgptn
set flg 32 58 | - - setptn | flgid - ercd - -
iset_flg 33 60 | - - setptn | flgid - ercd - -

ref flg 33 70 | - - - flgid pk_rflg ercd - -
iref flg 33 70 | - - - flgid pk_rflg ercd - -

clr flg 33 62 | - - clrptn | flgid - ercd - -
iclr_flg 33 62 | - - clrptn | flgid - ercd - -
snd_dtq 32 72 | data - - dtqid - ercd - -
psnd_dtg 32 74 | data - - dtqid - ercd - -
ipsnd_dtq 33 76 | data - - dtqid - ercd - -
fsnd_dtq 32 80 | data - - dtqid - ercd - -
ifsnd_dtq 33 82 | data - - dtqid - ercd - -
tsnd_dtq 38 | tmout data tmout | - dtqid 78 | ercd - -

-295 -

Synchronization & Communication Function

Parameter ReturnParameter

ServiceCall | INTNo. | FuncCode Al

RO R1 R2 R3 AO FuncGode RO R1 R2 | R3
rcv_dtq 32 84 | - - - dtqid - ercd data - -
prcv_dtq 32 86 | - - - dtqid - ercd data - -
iprev_dtq 33 88 | - - - dtqid - ercd data - -
trev_dtq 32 90 | tmout - tmout | dtqgid - ercd data - -
ref_dtq 33 92 | - - - dtqid pk_rdtq ercd - - -
iref_dtq 33 92 | - - - dtqid pk_rdtq ercd - - -
snd_mbx 32 94 | - - - mbxid pk_msg ercd - - -
isnd_mbx 33 96 | - - - mbxid | pk_msg ercd - - -
rcv_mbx 32 98 | - - - mbxid | — ercd pk.msg | — -
prcv_mbx 33 100 | - - - mbxid | — ercd pk.msg | — -
iprcv_mbx 33 100 | - - - mbxid | — ercd pk.msg | — -
trcv_mbx 32 102 | tmout - tmout | mbxid | — ercd pk_msg | - -
ref_mbx 33 104 | - - - mbxid pk_rmbx ercd - - -
iref mbx 33 104 | - - - mbxid | pk_rmbx ercd - - -
Interrupt Management Functions

Parameter | ReturnParameter
ServiceCall INTNo. FuncCode o
RO

loc_cpu 36 - | ercd
iloc_cpu 36 - | ercd
dis_dsp 35 - | ercd
ena_dsp 32 150 | ercd
unl_cpu 32 146 | ercd
iunl_cpu 33 148 | ercd
sns_ctx 33 152 | ercd
shs_loc 33 154 | ercd
sns_dsp 33 156 | ercd
sns_dpn 33 158 | ercd

- 296 -

Memorypool Management Functions

Parameter ReturnParameter
ServiceCall INTNo. | FuncCode Al
R1 R2 R3 A0 RO R1 R2 | R3
RO FuncCode
get_mpf 32 108 | - - - mpfid - ercd p_blk | - -
pget_mpf 33 106 | - - - mpfid - ercd pblk | - -
ipget_mpf 33 106 | - - - mpfid - ercd p_blk | - -
tget_mpf 32 110 | tmout | - tmout | mpfid - ercd p_blk | - -
rel_mpf 32 112 | blk - - mpfid - ercd - - -
irel_mpf 33 114 | blk - - mpfid - ercd - - -
ref_mpf 33 116 | - - - mpfid pk_rmpf ercd - - -
iref_mpf 33 116 | — - - mpfid pk_rmpf ercd - - -
pget_mpl 32 118 | - - - mplid - ercd p_blk | - -
rel_mpl 32 120 | blk - - mplid - ercd - - -
ref_mpl 33 122 | - - - mplid pk_rmpl ercd - - -
iref_mpl 33 122 | - - - mplid pk_rmpl ercd - - -

- 297 -

Time Management Functions

Parameter ReturnParameter
ServiceCall INTNo. FuncCode N i, o A o
RO FuncCode
set_tim 33 124 | - - p_systim - ercd
iset_tim 33 124 | - - p_systim - ercd
get_tim 33 126 | - - p_systim - ercd
iget_tim 33 126 | - - p_systim - ercd
sta_cyc 33 128 | - - cycid - ercd
ista_cyc 33 128 | - - cycid - ercd
stp_cyc 33 130 | - - cycid - ercd
istp_cyc 33 130 | - - cycid - ercd
ref_cyc 33 132 | - - cycid pk_rcyc ercd
iref_cyc 33 132 | - - cycid pk_rcyc ercd
dly_tsk 32 44 | tmout tmout - - ercd
sta_alm 33 134 | almtim almtim almid - ercd
ista_alm 33 134 | almtim almtim almid - ercd
stp_alm 33 136 | - - almid - ercd
istp_alm 33 136 | - - almid - ercd
ref_alm 33 138 | - - almid pk_ralm ercd
iref_alm 33 138 | - - almid pk_ralm ercd
System Management Functions
Parameter ReturnParameter
ServiceCall INTNo. FuncCode o o
RO
ref ver 33 160 | pk_rver ercd
iref_ver 33 160 | pk_rver ercd

- 298 -

Extended Function(Reset functions)

Parameter ReturnParameter
ServiceCall INTNo. FuncCode
AO RO
RO
vrst_vdtq 32 192 | vdtqid ercd
vrst_dtq 32 184 | dtagid ercd
vrst_mbx 33 186 | mbxid ercd
vrst_mpf 32 188 | mpfid ercd
vrst_mpl 33 190 | mplid ercd
Extended Function(Long data queue functions)
Parameter ReturnParameter
ServiceCall | INTNo. | FuncCode Al
R1 R2 R3 AO RO R1 R2 | R3
RO FuncCode
vsnd_dtq 32 162 | data - data vdtqid | - ercd - - -
vpsnd_dtqg 32 164 | data - data vdtagid | - ercd - - -
vipsnd_dtq 33 166 | data - data vdtgid | - ercd - - -
vfsnd_dtq 32 170 | data - data vdtagid | - ercd - - -
vifsnd_dtq 33 172 | data - data vdtgid | - ercd - - -
vtsnd_dtq 38 | tmout data tmout | data vdtaqid 168 | ercd - - -
vrev_dtq 32 174 | - - - vdtgid | - ercd data - data
vprcv_dtqg 32 176 | - - - vdtaid | - ercd data - data
viprev_dtg 33 178 | - - - vdtagid | - ercd data - data
vtrev_dtq 32 180 | tmout - tmout | vdtgid | — ercd data - data
vref_dtq 33 182 | - - - vdtagid | pk_rdtg ercd - - -
viref_dtq 33 182 | - - - vdtaid | pk_rdtq ercd - - -

- 299 -

Real-time OS for M16C/10,M16C/20,M16C/30,M16C/60,M16C/Tiny, R8C/Tiny Series
M3T-MR30/4 User's Manual

Publication Date: June. 1, 2008 Rev.2.00

Sales Strategic Planning Div.

Published by: Renesas Technology Corp.

Application Engineering Department 1

Edited by.: Renesas Solutions Corp.

© 2006,2008. Renesas Technology Corp. and Renesas Solutions Corp.,
All rights reserved. Printed in Japan.

M3T-MR30/4 V.4.00
User’'s Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJ10J1249-0200

	Requirements for MR30 Use
	Document List
	Right of Software Use
	1. User’s Manual Organization
	2. General Information
	2.1 Objective of MR30 Development
	2.2 Relationship between TRON Specification and MR30
	2.3 MR30 Features

	3. Introduction to Kernel
	3.1 Concept of Real-time OS
	3.1.1 Why Real-time OS is Necessary
	3.1.2 Operating Principles of Kernel

	3.2 Service Call
	3.2.1 Service Call Processing
	3.2.2 Processing Procedures for Service Calls from Handlers
	Service Calls from a Handler That Caused an Interrupt during Task Execution
	Service Calls from a Handler That Caused an Interrupt during Service Call Processing
	Service Calls from a Handler That Caused an Interrupt during Handler Execution

	3.3 Object
	3.3.1 The specification method of the object in a service call

	3.4 Task
	3.4.1 Task Status
	3.4.2 Task Priority and Ready Queue
	3.4.3 Task Priority and Waiting Queue
	3.4.4 Task Control Block(TCB)

	3.5 System States
	3.5.1 Task Context and Non-task Context
	3.5.2 Dispatch Enabled/Disabled States
	3.5.3 CPU Locked/Unlocked States
	3.5.4 Dispatch Disabled and CPU Locked States

	3.6 Regarding Interrupts
	3.6.1 Types of Interrupt Handlers
	3.6.2 The Use of Non-maskable Interrupt
	3.6.3 Controlling Interrupts

	3.7 Stacks
	3.7.1 System Stack and User Stack

	4. Kernel
	4.1 Module Structure
	4.2 Module Overview
	4.3 Kernel Function
	4.3.1 Task Management Function
	4.3.2 Synchronization functions attached to task
	4.3.3 Synchronization and Communication Function (Semaphore)
	4.3.4 Synchronization and Communication Function (Eventflag)
	4.3.5 Synchronization and Communication Function (Data Queue)
	4.3.6 Synchronization and Communication Function (Mailbox)
	4.3.7 Memory pool Management Function(Fixed-size Memory pool)
	4.3.8 Variable-size Memory Pool Management Function
	4.3.9 Time Management Function
	4.3.10 Cyclic Handler Function
	4.3.11 Alarm Handler Function
	4.3.12 System Status Management Function
	4.3.13 Interrupt Management Function
	4.3.14 System Configuration Management Function
	4.3.15 Extended Function (Long Data Queue)
	4.3.16 Extended Function (Reset Function)

	5. Service call reffernce
	5.1 Task Management Function
	5.2 Task Dependent Synchronization Function
	5.3 Synchronization & Communication Function (Semaphore)
	5.4 Synchronization & Communication Function (Eventflag)
	5.5 Synchronization & Communication Function (Data Queue)
	5.6 Synchronization & Communication Function (Mailbox)
	5.7 Memory Pool Management Function (Fixed-size Memory Pool)
	5.8 Memory Pool Management Function (Variable-size Memory Pool)
	5.9 Time Management Function
	5.10 Time Management Function (Cyclic Handler)
	5.11 Time Management Function (Alarm Handler)
	5.12 System Status Management Function
	5.13 Interrupt Management Function
	5.14 System Configuration Management Function
	5.15 Extended Function (Long Data Queue)
	5.16 Extended Function (Reset Function)

	6. Applications Development Procedure Overview
	6.1 Overview
	6.2 Development Procedure Example
	6.2.1 Applications Program Coding
	6.2.2 Configuration File Preparation
	6.2.3 Configurator Execution
	6.2.4 System generation
	6.2.5 Writing ROM

	7. Detailed Applications
	7.1 Program Coding Procedure in C Language
	7.1.1 Task Description Procedure
	7.1.2 Writing a Kernel (OS Dependent) Interrupt Handler
	7.1.3 Writing Non-kernel (OS-independent) Interrupt Handler
	7.1.4 Writing Cyclic Handler/Alarm Handler

	7.2 Program Coding Procedure in Assembly Language
	7.2.1 Writing Task
	7.2.2 Writing Kernel(OS-dependent) Interrupt Handler
	7.2.3 Writing Non-kernel(OS-independent) Interrupt Handler
	7.2.4 Writing Cyclic Handler/Alarm Handler

	7.3 Modifying MR30 Startup Program
	7.3.1 C Language Startup Program (crt0mr.a30)

	7.4 Memory Allocation
	7.4.1 Section Allocation of start.a30
	7.4.2 Section Allocation of crt0mr.a30

	8. Using Configurator
	8.1 Configuration File Creation Procedure
	8.1.1 Configuration File Data Entry Format
	Operator
	Direction of computation

	8.1.2 Configuration File Definition Items
	[(System Definition Procedure)]
	[(System Clock Definition Procedure)]
	[(Definition respective maximum numbers of items)]
	[(Task definition)]
	[(Eventflag definition)]
	 [(Semaphore definition)]
	[(Data queue definition)]
	[(Long data queue definition)]
	[(Mailbox definition)]
	[(Fixed-size memory pool definition)]
	[(Variable-size memory pool definition)]
	[(Cyclic handler definition)]
	[(Alarm handler definition)]
	[(Interrupt vector definition)]

	8.1.3 Configuration File Example

	8.2 Configurator Execution Procedures
	8.2.1 Configurator Overview
	8.2.2 Setting Configurator Environment
	8.2.3 Configurator Start Procedure
	8.2.4 makefile generate Function
	8.2.5 Precautions on Executing Configurator
	8.2.6 Configurator Error Indications and Remedies
	Error messages
	Warning messages
	Other messages

	8.2.7 Editing makefile
	8.2.8 About an error when you execute make

	9. Sample Program Description
	9.1 Overview of Sample Program
	9.2 Program Source Listing
	9.3 Configuration File
	9.4 Generation of application using M3T-MR30/4 in High - performance Embedded Workshop 4

	10. Stack Size Calculation Method
	10.1 Stack Size Calculation Method
	10.1.1 User Stack Calculation Method
	10.1.2 System Stack Calculation Method

	10.2 Necessary Stack Size

	11. Note
	11.1 The Use of INT Instruction
	11.2 The Use of registers of bank
	11.3 Regarding Delay Dispatching
	11.4 Regarding Initially Activated Task
	11.5 Cautions for each microcontroler
	11.5.1 To use the M16C/62 group MCUs
	11.5.2 To use the M16C/6N group MCUs

	12. Separate ROMs
	12.1 How to Form Separate ROMs

	13. Appendix
	13.1 Common Constants and Packet Format of Structure
	13.2 Assembly Language Interface

