
www.renesas.com

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

U
ser's M

anual

CubeSuite+ V2.01.00
Integrated Development Environment

User's Manual: RH850 Coding
Target Device
RH850 Family

Rev.1.01 Sep 2013

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

How to Use This Manual

This manual describes the role of the CubeSuite+ integrated development environment for developing applications and

systems for RH850 family, and provides an outline of its features.

CubeSuite+ is an integrated development environment (IDE) for RH850 family, integrating the necessary tools for the

development phase of software (e.g. design, implementation, and debugging) into a single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without the

need to use many different tools separately.

Readers This manual is intended for users who wish to understand the functions of the

CubeSuite+ and design software and hardware application systems.

Purpose This manual is intended to give users an understanding of the functions of the

CubeSuite+ to use for reference in developing the hardware or software of systems

using these devices.

Organization This manual can be broadly divided into the following units.

CHAPTER 1 GENERAL

CHAPTER 2 FUNCTIONS

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

CHAPTER 5 SECTION ALLOCATION

CHAPTER 6 FUNCTIONAL SPECIFICATIONS

CHAPTER 7 STARTUP

CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

CHAPTER 9 CAUTIONS

APPENDIX A WINDOW REFERENCE

APPENDIX B INDEX

How to Read This Manual It is assumed that the readers of this manual have general knowledge of electricity,

logic circuits, and microcontrollers.

Conventions Data significance: Higher digits on the left and lower digits on the right

Active low representation: XXX (overscore over pin or signal name)

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Decimal ... XXXX

Hexadecimal ... 0xXXXX

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Caution The related documents listed above are subject to change without

notice. Be sure to use the latest edition of each document when

designing.

All trademarks or registered trademarks in this document are the property of their respective owners.

Document Name Document No.

CubeSuite+

Integrated Development Environment

User's Manual

Start R20UT2682E

RX Design R20UT2683E

V850 Design R20UT2134E

R8C Design R20UT2135E

RL78 Design R20UT2684E

78K0R Design R20UT2137E

78K0 Design R20UT2138E

RH850 Coding This manual

RX Coding R20UT2470E

V850 Coding R20UT0553E

Coding for CX Compiler R20UT2659E

R8C Coding R20UT0576E

RL78,78K0R Coding R20UT2140E

78K0 Coding R20UT2141E

RH850 Build R20UT2585E

RX Build R20UT2472E

V850 Build R20UT0557E

Build for CX Compiler R20UT2142E

R8C Build R20UT0575E

RL78,78K0R Build R20UT2143E

78K0 Build R20UT0783E

RH850 Debug R20UT2685E

RX Debug R20UT2702E

V850 Debug R20UT2446E

R8C Debug R20UT0770E

RL78 Debug R20UT2445E

78K0R Debug R20UT0732E

78K0 Debug R20UT0731E

Analysis R20UT2686E

Message R20UT2687E

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 9

1.1 Outline ... 9
1.2 Special Features ... 9
1.3 Limits ... 9

CHAPTER 2 FUNCTIONS ... 11

2.1 Variables (C Language) ... 11
2.1.1 Allocating to sections accessible with short instructions ... 11
2.1.2 Changing allocated section ... 13
2.1.3 Change the allocated area using the -Xpreinclude option ... 15
2.1.4 Defining variables for use during standard and interrupt processing ... 16
2.1.5 Defining const constant pointer ... 18

2.2 Functions ... 19
2.2.1 Changing area to be allocated to ... 19
2.2.2 Calling away function ... 19
2.2.3 Embedding assembler instructions ... 20
2.2.4 Executing in RAM ... 20

2.3 Variables (Assembler) ... 21
2.3.1 Defining variables with no initial values ... 21
2.3.2 Defining variable with initial values ... 22
2.3.3 Defining const constants ... 23

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS ... 24

3.1 Basic Language Specifications ... 24
3.1.1 Unspecified behavior ... 24
3.1.2 Undefined behavior ... 25
3.1.3 Processing system dependent items ... 27
3.1.4 C99 language function ... 37
3.1.5 Option to process in strict accordance with ANSI standard ... 39
3.1.6 Internal representation and value area of data ... 40
3.1.7 Section name ... 48
3.1.8 Register mode ... 49

3.2 Extended Language Specifications ... 51
3.2.1 Macro name ... 51
3.2.2 Reserved words ... 52
3.2.3 Compiler generated symbols ... 52
3.2.4 #pragma directive ... 52
3.2.5 Using extended language specifications ... 54
3.2.6 Modification of C source ... 94

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS ... 95

4.1 Description of Source ... 95
4.1.1 Description ... 95
4.1.2 Expressions and operators ... 104
4.1.3 Arithmetic operators ... 106
4.1.4 Logic operators ... 114
4.1.5 Relational operators ... 119
4.1.6 Shift operators ... 128
4.1.7 Byte separation operators ... 131
4.1.8 2-byte separation operators ... 134
4.1.9 Section aggregation operators ... 138
4.1.10 Other operator ... 143
4.1.11 Restrictions on operations ... 145
4.1.12 Identifiers ... 146

4.2 Directives ... 147
4.2.1 Outline ... 147
4.2.2 Section definition directives ... 148
4.2.3 Symbol definition directives ... 158
4.2.4 Compiler output directives ... 161
4.2.5 Data definition/Area reservation directives ... 167
4.2.6 External definition/External reference directives ... 181
4.2.7 Macro directives ... 185

4.3 Control Instructions ... 197
4.3.1 Outline ... 197
4.3.2 Assembler control instructions ... 198
4.3.3 File input control instructions ... 206
4.3.4 Conditional assembly control instructions ... 209

4.4 Macro ... 218
4.4.1 Outline ... 218
4.4.2 Usage of macro ... 218
4.4.3 Macro operator ... 219

4.5 Reserved Words ... 220
4.6 Assembler Generated Symbols ... 221
4.7 Instruction Set ... 222
4.8 Description of Instructions ... 234

4.8.1 Load/Store instructions ... 235
4.8.2 Arithmetic operation instructions ... 247
4.8.3 Saturated operation instructions ... 301
4.8.4 Logical instructions ... 311
4.8.5 Branch instructions ... 346
4.8.6 Bit manipulation instructions ... 366
4.8.7 Stack manipulation instructions ... 375
4.8.8 Special instructions ... 380
4.8.9 Loop instructions ... 416
4.8.10 Floating-point operation instructions ... 419
4.8.11 Other instructions ... 499

CHAPTER 5 SECTION ALLOCATION ... 500

5.1 Sections ... 500
5.1.1 Section concatenation ... 500

5.2 Special Symbol ... 502

CHAPTER 6 FUNCTIONAL SPECIFICATIONS ... 504

6.1 Supplied Libraries ... 504
6.2 Header Files ... 504
6.3 Re-entrant ... 505
6.4 Library Function ... 506

6.4.1 Program diagnostic functions ... 506
6.4.2 Functions with variable arguments ... 508
6.4.3 Character string functions ... 512
6.4.4 Memory management functions ... 528
6.4.5 Character conversion functions ... 534
6.4.6 Character classification functions ... 537
6.4.7 Standard I/O functions ... 550
6.4.8 Standard utility functions ... 584
6.4.9 Non-local jump functions ... 613
6.4.10 Mathematical functions ... 617
6.4.11 RAM section initialization function ... 663
6.4.12 Initialization peripheral devices function ... 666
6.4.13 Operation runtime functions ... 668

CHAPTER 7 STARTUP ... 670

7.1 Outline ... 670
7.2 Startup Routine ... 670

7.2.1 Exception vector table ... 670
7.2.2 Startup routine for the boot loader project ... 671
7.2.3 Startup routine for the application project ... 674
7.2.4 Passing information from the application project to the boot loader project ... 679

7.3 Coding Example ... 680
7.4 Symbols ... 691

7.4.1 Global pointer (gp) ... 692
7.4.2 Element pointer (ep) ... 694

7.5 ROMization ... 698
7.5.1 Outline ... 698
7.5.2 Creating ROMized load module file ... 699

CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER ... 701

8.1 Function Call Interface ... 701
8.1.1 General-purpose registers guaranteed before and after function calls ... 701
8.1.2 Setting and referencing arguments and return values ... 701
8.1.3 Address indicating stack pointer ... 704
8.1.4 Stack frame ... 704

8.2 Calling of Assembly Language Routine from C Language ... 707
8.3 Calling of C Language Routine from Assembly Language ... 708

8.4 Reference of Argument Defined by Other Language ... 709
8.5 General-purpose Registers ... 709

CHAPTER 9 CAUTIONS ... 711

9.1 Volatile Qualifier ... 711
9.2 V850E3v5 G3K Core Specification for Assembler (-Xcpu=g3k Option) ... 712

APPENDIX A WINDOW REFERENCE ... 713

A.1 Description ... 713

APPENDIX B INDEX ... 739

CubeSuite+ V2.01.00 CHAPTER 1 GENERAL

R20UT2584EJ0101 Rev.1.01 Page 9 of 751
Sep 01, 2013

CHAPTER 1 GENERAL

This chapter provides a general outline of the RH850 family's C compiler package (CC-RH).

1.1 Outline

CC-RH is a program that converts programs described in C language or assembly language into machine language.

1.2 Special Features

CC-RH is equipped with the following special features.

(1) Language specifications in accordance with ANSI standard

The C language specifications conform to the ANSI standard.

(2) Advanced optimization

Advanced optimization is used, applying global program optimization as well as conventional optimization.

This yields smaller, faster code, and also reduces build times.

(3) High portability

The program supports porting programs from the existing SuperH RISC engine C/C++ compiler.

In addition, the industry-standard DWARF2 format is used for debugging information.

(4) Multifunctional

Static analysis and other functionality is provided via linking between CubeSuite+.

1.3 Limits

The maximum values that can be coded in C and assembly-language programs are indicated below.

(1) Compiler limits

There are no limits on translation. The maximum translatable value depends on the memory of the host machine

on which the program is running. Exceeding the maximum value an assembler specified will result in an error.

Remark The maximum number of bytes for one object is 2 Gbytes (in the host environment).

(2) Assembler limits

The maximum values that can be coded in assembly-language programs are indicated below.

Table 1-1. Assembler Limits

Description Limit

Symbol length (Token length) 4,294,967,294Note

Label length (Token length) 4,294,967,294Note

Number of symbols 4,294,967,294Note

Number of parameters in LOCAL directive 4,294,967,294Note

Number of automatically generated LOCAL directive symbols 4,294,967,294Note

Nesting levels in INCLUDE directive 4,294,967,294 Note

TDATA relocation attribute section 256 bytes

CubeSuite+ V2.01.00 CHAPTER 1 GENERAL

R20UT2584EJ0101 Rev.1.01 Page 10 of 751
Sep 01, 2013

Note Depends on memory of host machine on which it is running.

ALIGN directive Even number of 2 or more, but less

than 231

Number of arguments in IRP directive 4,294,967,294Note

Description Limit

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 11 of 751
Sep 01, 2013

CHAPTER 2 FUNCTIONS

This chapter explains the programming method and how to use the expansion functions for more efficient use of the

CC-RH.

2.1 Variables (C Language)

This section explains variables (C language).

2.1.1 Allocating to sections accessible with short instructions

CC-RH normally uses two instructions (for a total of 8 bytes) to access variables: a movhi instruction (4 bytes) and an

ld/st instruction (4 bytes). By using a #pragma section directive, however, it generates code to access variables using

one instruction: an ld/st instruction (4 or 6 bytes) or a sld/sst instruction (2 bytes). This makes it possible to reduce the

code size. See below for details.

(1) GP relative access

This generates code to access variables using one instruction by placing variables in sections that can be

accessed via the global pointer (GP) and an ld/st instruction.

Use a #pragma section directive when defining or accessing variables, and specify either gp_disp16 or gp_disp23

as the attribute strings.

Examples 1. Accessing via a GP-relative 4-byte load/store instruction

2. Accessing via a GP-relative 6-byte load/store instruction

#pragma section attribute-strings

variable-declaration/definition

#pragma section default

#pragma section gp_disp16

int a = 1; /*allocated to .sdata section*/

int b; /*allocated to .sbss section*/

#pragma section default

#pragma section gp_disp23

int a = 1; /*allocated to .sdata23 section*/

int b; /*allocated to .sbss23 section*/

#pragma section default

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 12 of 751
Sep 01, 2013

(2) EP relative access

You can reduce the code size by locating variables in a section that can be accessed via the element pointer (EP)

and a sld/sst instruction or ld/st instruction. You can locate variables in a section that can be accessed relative to

the EP using the following methods.

(a) Specifying the -Omap/-Osmap option

This optimizes access to external variables. It outputs code that accesses frequently accessed external vari-

ables relative to the EP.

(b) #pragma section directive

Use a #pragma section directive when defining or accessing variables, and specify either ep_disp4, ep_disp5,

ep_disp7, ep_disp8, ep_disp16, ep_disp23, or ep_auto as the attribute string.

Examples 1. Accessing via a EP-relative 2-byte load/store instruction

Even if ep_disp5, ep_disp7, or ep_disp8 is specified as the attribute string, access is via an EP-rela-

tive 2-byte load/store instruction (i.e. is the same as in the case of ep_disp4).

2. Accessing via a EP-relative 4-byte load/store instruction

3. Accessing via a EP-relative 6-byte load/store instruction

#pragma section attribute-strings

variable-declaration/definition

#pragma section default

#pragma section ep_disp4

int a = 1; /*allocated to .tdata4 section*/

int b; /*allocated to .tbss4 section*/

#pragma section default

#pragma section ep_disp16

int a = 1; /*allocated to .edata section*/

int b; /*allocated to .ebss section*/

#pragma section default

#pragma section ep_disp23

int a = 1; /*allocated to .edata23 section*/

int b; /*allocated to .ebss23 section*/

#pragma section default

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 13 of 751
Sep 01, 2013

2.1.2 Changing allocated section

The default allocation sections are as follows:

- Variables with no initial value: .bss section

- Variables with initial value: .data section

- const constants: .const section

To change the allocated section, specify the attribute strings using #pragma section directive.

The relationship between attribute strings and the section generated is as follows.

Attribute Strings Initial Value Default Section

Name

Section Name

Change

Base Register Access Instruction

r0_disp16 Yes .zdata Possible r0 ld/st 1 instruction

No .zbss Possible r0 ld/st 1 instruction

r0_disp23 Yes .zdata23 Possible r0 ld23/st23 1 instruction

No .zbss23 Possible r0 ld23/st23 1 instruction

r0_disp32 Yes .data Possible r0 movhi+ld/st 2 instruction

No .bss Possible r0 movhi+ld/st 2 instruction

ep_auto Yes/No Automatically

selected from

among .tdata4,

.tdata5, .tdata7,

and .tdata8

Impossible ep sld/sst 1 instruction

ep_disp4 Yes .tdata4 Possible ep sld/sst 1 instruction

No .tbss4 Possible ep sld/sst 1 instruction

ep_disp5 Yes .tdata5 Possible ep sld/sst 1 instruction

No .tbss5 Possible ep sld/sst 1 instruction

ep_disp7 Yes .tdata7 Possible ep sld/sst 1 instruction

No .tbss7 Possible ep sld/sst 1 instruction

ep_disp8 Yes .tdata8 Possible ep sld/sst 1 instruction

No .tbss8 Possible ep sld/sst 1 instruction

ep_disp16 Yes .edata Possible ep ld/st 1 instruction

No .ebss Possible ep ld/st 1 instruction

ep_disp23 Yes .edata23 Possible ep ld23/st23 1 instruction

No .ebss23 Possible ep ld23/st23 1 instruction

gp_disp16 Yes .sdata Possible gp ld/st 1 instruction

No .sbss Possible gp ld/st 1 instruction

gp_disp23 Yes .sdata23 Possible gp ld23/st23 1 instruction

No .sbss23 Possible gp ld23/st23 1 instruction

const Yes .const Possible r0 movhi+ld/st 2 instruction

zconst Yes .zconst Possible r0 ld/st 1 instruction

zconst23 Yes .zconst23 Possible r0 ld23/st23 1 instruction

default After this statement, any previous #pragma section will be ignored, and the default allocation will be

used.

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 14 of 751
Sep 01, 2013

Example #pragma section directive description

When referencing a variable using the #pragma section directive from a function in another file (i.e. reference file), it is

necessary to also specify the #pragma section directive in the reference file and to define the affected variable as extern

format.

Unlike when specifying a variable by means of a definition or declaration, it outputs the following error if the variable

cannot be accessed with the specified section attribute.

Examples 1. File that defines a table

2. File that references a table

Code such as the following can be used if portability of C source to the SH family of compilers is a concern.

Example #pragma section directive description

#pragma section gp_disp16 "mysdata"

int a = 1; /*allocated to mysdata.sdata attribute section*/

int b; /*allocated to mysdata.sbss attribute section*/

#pragma section default

E0562330 : Relocation size overflow : "file"-"section"-"offset"

#pragma section zconst

const unsigned char table_data[9] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; /*allocated to .zconst
section*/

#pragma section default

#pragma section zconst

extern const unsigned char table_data[]; /*allocated to .zconst section*/

#pragma section default

#pragma section mydata

int a = 1; /*allocated to mydata.data section*/

int b; /*allocated to mydata.bss section*/

#pragma section default

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 15 of 751
Sep 01, 2013

2.1.3 Change the allocated area using the -Xpreinclude option

You can use the -Xpreinclude option to allocate all variables declared or defined in a file into an arbitrary section, with-

out changing the C source file. You can reduce the code size by allocating them in a section with efficient access.

(1) Prepare a header file (.h) containing a #pragma section directive.

Example Allocating in .sdata/.sbss section [section.h]

(2) Use the -Xpreinclude option to include the header you created in (1) at the beginning of the compilation

unit.

Example If the header file with the specified section is section.h

Compiled as if main.c starts with an include of "section.h".

However, a link-time error will be output if the variables do not fit in the section specified in (1). In this case, change the

section of the variables in the C source file.

Example Changing variables to .sdata23/.sbss23 section

#pragma section gp_disp16

>ccrh main.c -Xpreinclude=section.h

E0562330 : Relocation size overflow : "file"-"section"-"offset"

int a = 1; /*Allocated in section specified in (1)*/

int b; /*Allocated in section specified in (1)*/

#pragma section gp_disp23

int c = 1; /*Allocated in .sdata23 section*/

int d; /*Allocated in .sbss23 section*/

#pragma section default

int e = 1; /*Allocated in default .data section*/

int f; /*Allocated in default .bss section*/

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 16 of 751
Sep 01, 2013

2.1.4 Defining variables for use during standard and interrupt processing

Specify as volatile variables that are to be used during both standard and interrupt processing.

When a variable is defined with the volatile qualifier, the variable is not optimized. When manipulating variables

specified as volatile, always read the value from memory, and when substituting the value, always write the value to

memory. You cannot change the access order or access width of variables specified as volatile. A variable for which vol-

atile is not specified is assigned to a register as a result of optimization and the code that loads the variable from the

memory may be deleted. When the same value is assigned to variables for which volatile is not specified, the instruction

may be deleted as a result of optimization because it is interpreted as a redundant instruction.

Examples 1. Example of source and output code image when volatile is not specified

If variables a and b are not specified with the volatile quantifier, they are assigned to a register, and may

be optimized. If, for example, an interrupt occurs within this code, and a variable value is modified within

the interrupt, the value will not be reflected.

int a;

int b;

void func(void){

 if(a <= 0){

 b++;

 } else {

 b+=2;

 }

 b++;

}

_func:

 movhi highw1(#_a), r0, r6

 ld.w loww(#_a)[r6], r6

 cmp 0x00000000, r6

 movhi highw1(#_b), r0, r6

 ld.w loww(#_b)[r6], r6

 bgt .bb1_2 ; bb3

.bb1_1: ; bb1

 add 0x00000001, r6

 br .bb1_3 ; bb9

.bb1_2: ; bb3

 add 0x00000002, r6

.bb1_3: ; bb9

 add 0x00000001, r6

 movhi highw1(#_b), r0, r7

 st.w r6, loww(#_b)[r7]

 jmp [r31]

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 17 of 751
Sep 01, 2013

2. Source and output code when volatile has been specified

If the volatile qualifier is specified for variables a, b, and c, the output code is such that the values of

these variables are read from and written to memory whenever they must be assigned new values.

Even if an interrupt occurs in the meantime and the values of the variables are changed by the interrupt,

for example, the result in which the change is reflected can be obtained.

When volatile is specified, the code size increases compared with when volatile is not specified because

the memory has to be read and written.

volatile int a;

volatile int b;

void func(void){

 if(a <= 0){

 b++;

 } else {

 b+=2;

 }

 b++;

}

_func:

 movhi highw1(#_a), r0, r6

 ld.w loww(#_a)[r6], r6

 cmp 0x00000000, r6

 bgt .bb1_2 ; bb3

.bb1_1: ; bb1

 movhi highw1(#_b), r0, r6

 ld.w loww(#_b)[r6], r6

 add 0x00000001, r6

 br .bb1_3 ; bb9

.bb1_2: ; bb3

 movhi highw1(#_b), r0, r6

 ld.w loww(#_b)[r6], r6

 add 0x00000002, r6

.bb1_3: ; bb9

 movhi highw1(#_b), r0, r7

 st.w r6, loww(#_b)[r7]

 ld.w loww(#_b)[r7], r6

 add 0x00000001, r6

 st.w r6, loww(#_b)[r7]

 jmp [r31]

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 18 of 751
Sep 01, 2013

2.1.5 Defining const constant pointer

The pointer is interpreted differently depending on the "const" specified location.

To assign the const section to the zconst section, specify #pragma section zconst. To assign the const section to the

zconst23 section, specify #pragma section zconst23.

- const char *p;

This indicates that the object (*p) indicated by the pointer cannot be rewritten.

The pointer itself (p) can be rewritten.

Therefore the state becomes as follows and the pointer itself is allocated to RAM (.data etc.).

- char *const p;

This indicates that the pointer itself (p) cannot be rewritten.

The object (*p) indicated by the pointer can be rewritten.

Therefore the state becomes as follows and the pointer itself is allocated to ROM (.const/.zconst/.zconst23).

- const char *const p;

This indicates that neither the pointer itself(p) nor the object (*p) indicated by the pointer can be rewritten.

Therefore the state becomes as follows and the pointer itself is allocated to ROM (.const/.zconst/.zconst23).

*p = 0; /*error*/

p = 0; /*correct*/

*p = 0; /*correct*/

p = 0; /*error*/

*p = 0; /*error*/

p = 0; /*error*/

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 19 of 751
Sep 01, 2013

2.2 Functions

This section explains functions.

2.2.1 Changing area to be allocated to

When changing a program area's section name, specify the function using the #pragma section directive as shown

below.

If you create an arbitrary section with a text attribute using the #pragma section directive, the name of the section that

is generated will be "specified-string + text".

Specify the start address of the section with the -start option, as follows.

Specify the address as a base-16 number. If the address is not specified, it will be assigned from address 0.

The -start option is a link option. For details, see "CubeSuite+ Integrated Development Environment User's Manual:

RH850 Build".

2.2.2 Calling away function

The C compiler uses the jarl instruction to call functions.

However, depending on the program allocation the address may not be able to be resolved, resulting in an error when

linking because the jarl instruction is 22-bit displacement.

One way to resolve the error above is to first specify -Xcall_jump=32 to generate jarl32 and jr32 instructions.

If the -Xcall_jump=22 option is specified, then you can make function calls that do not depend on the displacement

width by specifying the C compiler's -Xfar_jump option.

When calling a function set as far jump, the jarl32 and jr32 instruction rather than the jarl instruction is output.

One function is described per line in the file where the -Xfar_jump option is specified. The names described should be

C language function names prefixed with "_" (an underscore).

Example The file where the -Xfar_jump option is specified

If the following is described in place of "_function-name", all functions will be called using far jump.

#pragma section text ["section name"]

-start=sec.text/1000

_func_led

_func_beep

_func_motor

 :

_func_switch

{all_function}

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 20 of 751
Sep 01, 2013

2.2.3 Embedding assembler instructions

With the CC-RH assembler instructions can be described in the following formats within C source programs. This

treats the function itself as an assembler instruction, and performs inline expansion at the call site.

- #pragma directive

Remarks 1. Note the following when using inline assembly.

- Specify #pragma inline_asm before the definition of the function body.

- Also generate external definitions of functions specified with #pragma inline_asm.

- If you use a register to guarantee the entrance and exit of an inline function with embedded assem-

bly, you must save and restore this register at the beginning and end of the function.

- RH850 assembly language can use comments starting with the hash character ("#"). Do not use #

comments inside functions coded in assembly, because the preprocessor will interpret these as pre-

processing directives.

- If you write a label in a function coded in assembly, labels with the same name will be created for

each inline expansion. In this situation, use local labels coded in assembly. Although local labels

have the same name in the assembly source, the assembler converts them to different names auto-

matically.

2. See "Describing assembler instruction".

2.2.4 Executing in RAM

A program allocated to external ROM can be copied to internal RAM and executed in internal RAM while linking and

after copying if the relative value of each section and each symbol (TP, EP, GP) is not destroyed. Use caution, as some

programs can be copied while others cannot.

After resetting, it is copied to internal RAM, and if the program is not changed, then the ROMization function can be

used to easily pack the text section.

#pragma inline_asm

static int func(int a, int b) {

 /*Assembler instruction*/

}

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 21 of 751
Sep 01, 2013

2.3 Variables (Assembler)

This section explains variables (Assembler).

2.3.1 Defining variables with no initial values

Use the .ds directive in a section with no initial value to allocate area for a variable with no initial value.

In order that it may be referenced from other files as well, it is necessary to define the label with the .public directive.

Example Defining variables with no initial values

[label:] .ds (size)

.public label name[, absolute-expression]

 .dseg sdata

 .public _val0, 0x4 --Sets _val0 as able to be referenced from other files

 .public _val1, 0x2 --Sets _val1 as able to be referenced from other files

 .public _val2, 0x1 --Sets _val2 as able to be referenced from other files

 .align 4 --Aligns _val0 to 4 bytes

_val0:

 .ds (4) --Allocates 4 bytes of area for val0

_val1:

 .ds (2) --Allocates 2 bytes of area for val1

_val2:

 .ds (1) --Allocates 1 byte of area for val2

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 22 of 751
Sep 01, 2013

2.3.2 Defining variable with initial values

To allocate a variable area with a default value, use the .db directives/.db2/.dhw directives/.db4/.dw directives in the

section with the default value.

- 1-byte values

- 2-byte values

- 4-byte values

In order that it may be referenced from other files as well, it is necessary to define the label with the .public directive.

Example Defining variable with initial values

[label:] .db value

[label:] .db2 value

[label:] .db4 value

.public label name[, absolute-expression]

 .dseg sbss

 .public _val0, 0x4 --Sets _val0 as able to be referenced from other files

 .public _val1, 0x2 --Sets _val1 as able to be referenced from other files

 .public _val2, 0x1 --Sets _val2 as able to be referenced from other files

 .align 4 --Aligns _val0 to 4 bytes

_val0:

 .db4 100 --Allocates a 4-byte area for _val0, and stores 100 in it

_val1:

 .db2 10 --Allocates a 2-byte area for _val0, and stores 10 in it

_val2:

 .db 1 --Allocates a 1-byte area for _val0, and stores 1 in it

CubeSuite+ V2.01.00 CHAPTER 2 FUNCTIONS

R20UT2584EJ0101 Rev.1.01 Page 23 of 751
Sep 01, 2013

2.3.3 Defining const constants

To define a const, use the .db directives/.db2/.dhw directives/.db4/.dw directives within the .const, .zconst or .zconst23

section.

- 1-byte values

- 2-byte values

- 4-byte values

Example Defining const constants

[label:] .db value

[label:] .db2 value

[label:] .db4 value

 .cseg const

 .public _p, 0x2 --Sets _p as able to be referenced from other files

 .align 4 --Aligns _val0 to 4 bytes

_p:

 .db2 10 --Allocates a 2-byte area for _p, and stores 10 in it

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 24 of 751
Sep 01, 2013

CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

This chapter explains Compiler language specifications (basic language specification, extended language

specifications, etc.)supported by the CC-RH.

3.1 Basic Language Specifications

The CC-RH supports the language specifications stipulated by the ANSI standards. These specifications include items

that are stipulated as processing definitions. This section describes language specifications that are not specified or

defined by the ANSI standard, or that are process-dependent.

It describes the differences between when the option for processing in strict compliance with the ANSI standard (-

Xansi) is specified, and when it is not.

See "3.2 Extended Language Specifications" for extended language specifications explicitly added by the CC-RH.

3.1.1 Unspecified behavior

This section describes behavior that is not specified by the ANSI standard.

(1) Execution environment - initialization of static storage

Static data is output during compilation as a data section.

(2) Meanings of character displays - final line location, backspace (\b), horizontal tab (\t), vertical tab (\t)

This is dependent on the design of the display device.

(3) Types - floating point

IConforms to IEEE754Note.

Note IEEE: Institute of Electrical and Electronics Engineers

IEEE754 is a system for handling floating-point calculations, providing a uniform standard for data formats,

numerical ranges, and the like handled.

(4) Expressions - evaluation order

Unspecified.

(5) Function calls - parameter evaluation order

Unspecified.

(6) Structure and union specifiers

See "(8) Bit field" for the boundary alignment of structure objects with bit fields.

(7) Function definitions - storage of formal parameters

Unspecified.

(8) # operator

Unspecified.

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 25 of 751
Sep 01, 2013

3.1.2 Undefined behavior

This section describes behavior that is not defined by the ANSI standard.

(1) Character set

A message is output if a source file contains a character not specified by the character set.

(2) Lexical elements

A message is output if there is a single or double quotation mark ("/") in the last category (a delimiter or a single

non-whitespace character that does not lexically match another preprocessing lexical type).

(3) Identifiers

Since all identifier characters have meaning, there are no meaningless characters.

(4) Identifier binding

A message is output if both internal and external binding was performed on the same identifier within a translation

unit.

(5) Compatible type and composite type

All declarations referencing the same object or function must be compatible. Otherwise, a message will be output.

(6) Character constants

Specific non-graphical characters can be expressed by means of extended notation, consisting of a backslash (\)

followed by a lower-case letter. The following are available: \a, \b, \f, \n, \r, \t, and \v. There is no other extended

notation; other letters following a backslash (\) become that letter.

(7) String literals - concatenation

When a simple string literal is adjacent to a wide string literal token, they are concatenated into a wide string literal.

(8) String literals - modification

Users modify string literals at their own risk.

(9) Header names

If the following characters appear in strings between the delimiter characters < and >, or between two double quo-

tation marks ("), then they are treated as part of the file name: characters, comma (,), double quote ("), two slashes

(//), or slash-asterisk (/*). The backslash (\) is treated as a folder separator.

(10)Floating point type and integral type

If a floating-point type is typecast into an integral type, and the integer portion cannot be expressed as an integral

type, then it is undefined.

(11) lvalues and function specifiers

If an incomplete type becomes an value, then it is undefined..

(12)Function calls - number of arguments

If there are not enough actual parameters, then it is undefined.

(13)Function calls - types of extended parameters

If a function is defined without a function prototype, and the types of the extended arguments do not match the

types of the extended formal parameters, then the values of the formal parameters will be undefined.

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 26 of 751
Sep 01, 2013

(14)Function calls - incompatible types

If a function is defined with a type that is not compatible with the type specified by the expression indicating the

called function, then the return value of the function will be invalid.

(15)Function calls - incompatible types

If a function is defined in a form that includes a function prototype, and the type of an extended argument is not

compatible with that of a formal parameter, or if the function prototype ends with an ellipsis, then it will be inter-

preted as the type of the formal parameter.

(16)Addresses and indirection operators

If an incorrect value is assigned to a pointer, then the behavior of the unary * operator will either obtain an unde-

fined value or result in an illegal access, depending on the hardware design and the contents of the incorrect value.

(17)Cast operator - function pointer casts

If a typecast pointer is used to call a function with other than the original type, then it is undefined.

(18)Cast operator - integral type casts

If a pointer is cast into an integral type, and the amount of storage is too small, then it is undefined.

(19)Multiplicative operators

A message will be output if a divide by zero is detected during compilation.

(20)Additive operators - non-array pointers

If addition or subtraction is performed on a pointer that does other than indicate elements in an array object, then it

is undefined.

(21)Additive operators - subtracting a pointer from another array

If subtraction is performed using two pointers that do not indicate elements in the same array object, then it is

undefined.

(22)Bitwise shift operators

If the right operand is negative or the expanded left operand is wider than the bit width, then it is undefined.

(23)Function operators - pointers

If the objects referred to by the pointers being compared are not members of the same aggregate or union object,

then it is undefined.

(24)Simple assignment

If a value stored in an object is accessed via another object that overlaps that object's storage area in some way,

then the overlapping portion must match exactly. Furthermore, the types of the two objects must have modified or

non-modified versions with compatible types. Assignment to non-matching overlapping storage could cause the

value of the assignment source to become corrupted.

(25)Structure and union specifiers

If the member declaration list does not include named members, then a message will be output warning that the list

has no effect. Note, however, that the same message will be output accompanied by an error if the -Xansi option

is specified.

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 27 of 751
Sep 01, 2013

(26)Type modifiers - const

If an object defined with a const modifier is modified using an lvalue that is the non-const modified version, then it

is undefined.

(27)Type modifiers - volatile

If an object defined with a const modifier is modified using an lvalue that is the non-const modified version, then it

is undefined.

(28)return statements

A message will be output if a return statement without an expression is executed, and the caller uses the return

value of the function, and there is a declaration. If there is no declaration, then the return value of the function will

be undefined.

(29)Function definitions

If a function taking a variable number of arguments is defined without a parameter type list that ends with an ellip-

sis, then the values of the formal parameters will be undefined.

(30)Conditional inclusion

If a replacement operation generates a "defined" token, or if the usage of the "defined" unary operator before

macro replacement does not match one of the two formats specified in the constraints, then it will be handled as an

ordinary "defined".

(31)Macro replacement - arguments not containing preprocessing tokens

A message is output if the arguments (before argument replacement) do not contain preprocessing tokens.

(32)Macro replacement - arguments with preprocessing directives

A message is output if an argument list contains a preprocessor token stream that would function as a processing

directive in another circumstance.

(33)# operator

A message is output if the results of replacement are not a correct simple string literal.

(34)## operator

A message is output if the results of replacement are not a correct simple string literal.

3.1.3 Processing system dependent items

This section explains items dependent on processing system in the ANSI standards.

(1) Data types and sizes

The byte order in a word (4 bytes) is "from least significant to most significant byte" Signed integers are expressed

by 2's complements. The sign is added to the most significant bit (0 for positive or 0, and 1 for negative).

- The number of bits of 1 byte is 8.

- The number of bytes, byte order, and encoding in an object files are stipulated below.

Table 3-1. Data Types and Sizes

Data Types Sizes

char 1 byte

short 2 bytes

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 28 of 751
Sep 01, 2013

(2) Translation stages

The ANSI standards specify eight translation stages (known as "phases") of priorities among syntax rules for trans-

lation. The arrangement of "non-empty white space characters excluding line feed characters" which is defined as

processing system dependent in phase 3 "Decomposition of source file into preprocessing tokens and white space

characters" is maintained as it is without being replaced by single white space character.

(3) Diagnostic messages

When syntax rule violation or restriction violation occurs on a translation unit, the compiler outputs as error mes-

sage containing source file name and (when it can be determined) the number of line containing the error. These

error messages are classified: "Warning", "Abort error", "Fatal error" and "other" messages. For output formats of

messages, see the "CubeSuite+ Integrated Development Environment User's Manual: Message".

(4) Program startup processing

The name and type of a function that is called on starting program processing are not stipulted.

Therefore, it is dependent on the user-own coding and target system.

(5) Program execution

The configuration of the interactive unit is not stipulated.

Therefore, it is dependent on the user-own coding and target system.

(6) Character set

The values of elements of the execution environment character set are ASCII codes.

(7) Multi-byte characters

Supported multi-byte characters are ECU, SJIS, UTF-8, big5 and gb2312.

Japanese and Chinese description in comments and character strings is supported.

(8) Significance of character display

The values of expanded notation are stipulated as follows.

Table 3-2. Expanded Notation and Meaning

int, long, float 4 bytes

double, long double, long long 8 bytes

pointer Same as unsigned int

Expanded Notation Value (ASCII) Meaning

\a 07 Alert (Warning tone)

\b 08 Backspace

\f 0C Form feed (New Page)

\n 0A New line (Line feed)

\r 0D Carriage return (Restore)

\t 09 Horizontal tab

\v 0B Vertical tab

Data Types Sizes

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 29 of 751
Sep 01, 2013

(9) Translation limit

There are no limits on translation. The maximum translatable value depends on the memory of the host machine

on which the program is running.

(10)Quantitative limit

(a) The limit values of the general integer types (limits.h file)

The limits.h file specifies the limit values of the values that can be expressed as general integer types (char

type, signed/unsigned integer type, and enumerate type).

Because multi-byte characters are not supported, MB_LEN_MAX does not have a corresponding limit. Con-

sequently, it is only defined with MB_LEN_MAX as 1.

The limit values defined by the limits.h file are as follows.

Table 3-3. Limit Values of General Integer Type (limits.h File)

(b) The limit values of the floating-point type (float.h file)

The limit values related to characteristics of the floating-point type are defined in float.h file.

The limit values defined by the float.h file are as follows.

Name Value Meaning

CHAR_BIT +8 The number of bits (= 1 byte) of the minimum

object not in bit field

SCHAR_MIN -128 Minimum value of signed char

SCHAR_MAX +127 Maximum value of signed char

UCHAR_MAX +255 Maximum value of unsigned char

CHAR_MIN -128 Minimum value of char

CHAR_MAX +127 Maximum value of char

SHRT_MIN -32768 Minimum value of short int

SHRT_MAX +32767 Maximum value of short int

USHRT_MAX +65535 Maximum value of unsigned short int

INT_MIN -2147483648 Minimum value of int

INT_MAX +2147483647 Maximum value of int

UINT_MAX +4294967295 Maximum value of unsigned int

LONG_MIN -2147483648 Minimum value of long int

LONG_MAX +2147483647 Maximum value of long int

ULONG_MAX +4294967295 Maximum value of unsigned long int

LLONG_MIN -9223372036854775807 Minimum value of long long int

LLONG_MAX +9223372036854775807 Maximum value of long long int

ULLONG_MAX +18446744073709551615 Maximum value of unsigned long long int

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 30 of 751
Sep 01, 2013

Table 3-4. Definition of Limit Values of Floating-point Type (float.h File)

(11) Identifier

All identifiers are considered to have meaning. There are no restrictions on identifier length.

Uppercase and lowercase characters are distinguished.

Name Value Meaning

FLT_ROUNDS +1 Rounding mode for floating-point addition.

1 for the RH850 family (rounding in the nearest

direction).

FLT_RADIX +2 Radix of exponent (b)

FLT_MANT_DIG +24 Number of numerals (p) with FLT_RADIX of

floating- point mantissa as base
DBL_MANT_DIG +53

LDBL_MANT_DIG +53

FLT_DIG +6 Number of digits of a decimal number (q) that

can round a decimal number of q digits to a

floating-point number of p digits of the radix b

and then restore the decimal number of q

DBL_DIG +15

LDBL_DIG +15

FLT_MIN_EXP -125 Minimum negative integer (emin) that is a nor-

malized floating-point number when

FLT_RADIX is raised to the power of the value

of FLT_RADIX minus 1.

DBL_MIN_EXP -1021

LDBL_MIN_EXP -1021

FLT_MIN_10_EXP -37 Minimum negative integerlog10bemin-1 that falls in

the range of a normalized floating-point number

when 10 is raised to the power of its value.
DBL_MIN_10_EXP -307

LDBL_MIN_10_EXP -307

FLT_MAX_EXP +128 Maximum integer (emax) that is a finite floating-

point number that can be expressed when

FLT_RADIX is raised to the power of its value

minus 1.

DBL_MAX_EXP +1024

LDBL_MAX_EXP +1024

FLT_MAX_10_EXP +38 Maximum integer that falls in the range of a nor-

malized floating-point number when 10 is raised

to this power.

log10 ((1 - b-p) * bemaxx)

DBL_MAX_10_EXP +308

LDBL_MAX_10_EXP +308

FLT_MAX 3.40282347E + 38F Maximum value of finite floating-point numbers

that can be expressed

(1 - b-p) * bemax

DBL_MAX 1.7976931348623158E+308

LDBL_MAX 1.7976931348623158E+308

FLT_EPSILON 1.19209290E - 07F Difference between 1.0 that can be expressed

by specified floating-point number type and the

lowest value which is greater than 1.

b1 - p

DBL_EPSILON 2.2204460492503131E-016

LDBL_EPSILON 2.2204460492503131E-016

FLT_MIN 1.17549435E - 38F Minimum value of normalized positive floating-

point number

bemin - 1

DBL_MIN 2.2250738585072014E-308

LDBL_MIN 2.2250738585072014E-308

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 31 of 751
Sep 01, 2013

(12)char type

If a value larger than a char is stored in a char type, then the value is converted to type char.

A char type with no type specifier (signed, unsigned) specified is treated as a signed integer as the default assump-

tion.

(13)Floating-point constants

The floating-point constants conform to IEEE754Note.

Note IEEE: Institute of Electrical and Electronics Engineers

IEEE754 is a system for handling floating-point calculations, providing a uniform standard for data formats,

numerical ranges, and the like handled.

(14)Character constants

(a) Both the character set of the source program and the character set in the execution environment are

basically ASCII codes, and correspond to members having the same value.

However, for the character set of the source program, character codes in Japanese can be used (see

"(8) Significance of character display").

(b) The last character of the value of an integer character constant including two or more characters is

valid.

(c) A character that cannot be expressed by the basic execution environment character set or escape

sequence is expressed as follows.

<1> An octal or hexadecimal escape sequence takes the value indicated by the octal or hexadecimal

notation

<2> The simple escape sequence is expressed as follows.

<3> Values of \a, \b, \f, \n, \r, \t, \v are same as the values explained in "(8) Significance of character dis-

play".

(d) Character constants of multi byte characters are not supported.

char c = '\777'; /*Value of c is -1.*/

\777 511

\' '

\" "

\? ?

\\ \

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 32 of 751
Sep 01, 2013

(15)Character string

A character string can be described in Japanese and Chinese.

The default character code is Shift JIS.

A character code in input source file can be selected by using the -Xcharacter_set option of the CC-RH.

(16)Header file name

The method to reflect the string in the two formats (< > and " ") of a header file name on the header file or an

external source file name is stipulated in "(33) Loading header file".

(17)Comment

A comment can be described in Japanese and Chinese. The character code is the same as the character string in

"(15) Character string".

(18)Signed constants and unsigned constants

If the value of a general integer type is converted into a signed integer of a smaller size, the higher bits are trun-

cated and a bit string image is copied.

If an unsigned integer is converted into the corresponding signed integer, the internal representation is not

changed.

(19)Floating-points and general integers

If the value of a general integer type is converted into the value of a floating-point type, and if the value to be con-

verted is within a range that can be expressed but not accurately, the result is rounded to the closest expressible

value.

(20)double type and float type

When casting a double to a float, or a long double to a double or a float, if the typecast value cannot be repre-

sented accurately in the available value range, then the result will be rounded to the nearest value that can be rep-

resented.

(21)Signed type in operator in bit units

The characteristics of the shift operator conform to the stipulation in "(27) Shift operator in bit units".

The other operators in bit units for signed type are calculated as unsigned values (as in the bit image).

(22)Members of structures and unions

If the value of a union member is stored in a different member, the value will be stored in accordance with the align-

ment condition. As a result, access to members of the union will be of the subsequently accessed type.

(23)sizeof operator

The value resulting from the "sizeof" operator conforms to the stipulation related to the bytes in an object in "(1)

Data types and sizes".

For the number of bytes in a structure and union, it is byte including padding area.

(24)Cast operator

When a pointer is converted into a general integer type, the required size of the variable is the same as the size of

the unsigned long type. The bit string is saved as is as the conversion result.

Also, although it is possible to typecast an arbitrary integer to a pointer, after the integer is typecast to a pointer, the

integer's bit pattern is retained unchanged.

-Xcharacter_set=[none | euc_jp | sjis | utf8 | big5 | gb2312]

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 33 of 751
Sep 01, 2013

(25)Division/remainder operator

The result of the division operator ("/") when the operands are negative and do not divide perfectly with integer divi-

sion, is as follows: If either the divisor or the dividend is negative, the result is the smallest integer greater than the

algebraic quotient.

If both the divisor and the dividend are negative, the result is the largest integer less than the algebraic quotient.

If the operand is negative, the result of the "%" operator takes the sign of the first operand in the expression.

(26)Addition and subtraction operators

If two pointers indicating the elements of the same array are subtracted, the type of the result is unsigned long

type.

(27)Shift operator in bit units

If E1 of "E1 >> E2" is of signed type and takes a negative value, an arithmetic shift is executed.

(28)Storage area class specifier

Optimize for the fastest possible access, regardless of whether there is a storage-class area specifier "register"

declaration.

(29)Structure and union specifier

(a) A simple int type bit field without signed or unsigned appended is treated as a signed field, and the

most significant bit is treated as the sign bit.

(b) To retain a bit field, a storage area unit to which any address with sufficient size can be assigned can

be allocated. If there is insufficient area, however, the bit field that does not match is packed into to

the next unit according to the alignment condition of the type of the field.

The allocation sequence of the bit field in unit is from lower to higher.

(c) Each member of the non-bit field of one structure or union is aligned at a boundary as follows:

If packing is used, however, the boundaries of all members will be the byte boundary.

(30)Enumerate type specifier

The type of an enumeration specifier is signed int.

However, when the -Xenum_type=auto option is specified, each enumerated type is treated as the smallest integer

type capable of expressing all the enumerators in that type.

(31)Type qualifier

The configuration of access to data having a type qualified to be "volatile" is dependent upon the address (I/O port,

etc.) to which the data is mapped. If packing is used, however, the boundaries of all members will be the byte

boundary.

char, unsigned char type, and its array Byte boundary

short, unsigned short type, and its array 2-byte boundary

Others (including pointer) 4-byte boundary

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 34 of 751
Sep 01, 2013

(32)Condition embedding

(a) The value for the constant specified for condition embedding and the value of the character constant

appearing in the other expressions are equal.

(b) A single-character character constant cannot have a negative value.

(33)Loading header file

(a) A preprocessing directive in the form of "#include <character string>"

A preprocessing directive in the form of "#include <character string>" searches for a header file from the folder

specified by the -I option if "character string" does not begin with "\"Note, and then searches standard include

file folder (..\inc folder with a relative path from the bin folder where the ccrh is placed).

If a header file uniformly identified is searched with a character string specified between delimiters "<" and ">",

the whole contents of the header file are replaced.

Note "/" are regarded as the delimiters of a folder.

Example

The search order is as follows.

- Folder specified by -I

- Standard include file folder

(b) A preprocessing directive in the form of "#include "character string""

A preprocessing directive in the form of "#include "character string"" searches for a header file from the folder

where the source file exists, then searches specified folder (-I option) and then searches standard include file

folder (..\inc folder with a relative path from the bin folder where the ccrh is placed).

If a header file uniformly identified is searched with a character string specified between delimiters " " " and " "

", the whole contents of the header file are replaced.

Example

The search order is as follows.

- Folder where source file exists

- Folder specified by -I

- Standard include file folder

(c) The format of "#include preprocessing character phrase string"

The format of "#include preprocessing character phrase string" is treated as the preprocessing character

phrase of single header file only if the preprocessing character phrase string is a macro that is replaced to the

form of <character string> or "character string".

#include <header.h>

#include "header.h"

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 35 of 751
Sep 01, 2013

(d) A preprocessing directive in the form of "#include <character string>"

Between a string delimited (finally) and a header file name, the length of the alphabetic characters in the

strings is identified,

The folder that searches a file conforms to the above stipulation.

(34)#pragma directive

The CC-RH can specify the following #pragma directives.

(a) Data or program memory allocation

Allocates variables to an arbitrary section.

For details about the allocation method, see "(1) Allocation of data and program to section".

(b) Describing assembler instruction

Assembler directives can be described in a C source program.

For the details of description, see "(2) Describing assembler instruction".

(c) Inline expansion specification

A function that is expanded inline can be specified.

For the details of expansion specification, see "(3) Inline expansion".

(d) Interrupt/exception handler specification

Interrupt/Exception handlers are described in C language.

For the details of description, see "(c) Describing interrupt/exception handler".

(e) Interrupt disable function specification

Interrupts are disabled for the entire function.

For details of description, see "(b) Disabling interrupts in entire function".

And the file name length valid in the compiler operating environment is valid.

#pragma section section-type ["section-name"]

#pragma inline_asm

#pragma inline [(]function-name[, function-name ...][)]

#pragma noinline [(]function-name[, function-name ...][)]

#pragma interrupt interrupt-request-name function-name [allocation-method] [Option
[Option]...]

#pragma block_interrupt [(]function-name[)]

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 36 of 751
Sep 01, 2013

(f) Structure type packing specification

Specifies the packing of a structure type. The packing value, which is an alignment value of the member, is

specified as the numeric value. A value of 1, 2, 4 can be specified. When the numeric value is not specified, it

is by default alignment.

For details of description, see "(8) Structure type packing".

(g) Specifying bit field assignment

This specifies a change to the order of the bit field.

For details of description, see "(9) Bit field assignment".

(h) Core number specification (for a multi-core device)

A function to which a core number is to be assigned can be specified.

For details of description, see "(10) Core number specification (for a multi-core device)".

(35)Predefined macro names

All the following macro names are supported.

Table 3-5. List of Supported Macros

#pragma pack [(][1|2|4][)]

#pragma bit_order [{left|right}]

#pragma pmodule pm-specification

Macro Name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of source file (character string constant).

__DATE__ Date of translating source file (character string constant in the form of "Mmm dd

yyyy"). Here, the name of the month is the same as that created by the asctime

function stipulated by ANSI standards (3 alphabetic characters with only the first

character is capital letter) (The first character of dd is blank if its value is less than

10).

__TIME__ Translation time of source file (character string constant having format "hh:mm:ss"

similar to the time created by the asctime function).

__STDC__ Decimal constant 1 (defined when the -Xansi option is specified).Note

__RENESAS__ This value is not set.

__RENESAS_VERSION__ If the version is V.XX.YY.ZZ, this will be 0xXXYYZZ00.

Example) V.1.00.00 -> -D__RENESAS_VERSION__=0x01000000

__CCRH__ This value is not set .

__CCRH This value is not set.

__RH850__ This value is not set.

__RH850 This value is not set.

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 37 of 751
Sep 01, 2013

Note For the processing to be performed when the -Xansi option is specified, see "3.1.5 Option to process in

strict accordance with ANSI standard".

3.1.4 C99 language function

This section describes the C99 language functions supported by the CC-RH.

(1) Comment by //

Text from two slashes (//) until a newline character is a comment. If there is a backslash character (\) immediately

before the newline, then the next line is treated as a continuation of the current comment.

(2) Concatenating wide character strings

The result of concatenating a character string constant with a wide character string constant is a wide character

string constant.

(3) _Bool type

_Bool type is supported.

(4) long long int type

long long int type is supported. long long int type is 8-byte of integer type.

Appending "LL" to a constant value is also supported. It is also possible to specify this for bit field types.

(5) Integer promotion

In accordance with support for types _Bool and long long, integer promotion is also in accordance with the C99

specification.

__v850e3v5__ This value is not set (defined when v850e3v5 or rh850 is specified by the -Xcommon

option is specified).

__v850e3v5 This value is not set (defined when v850e3v5 or rh850 is specified by the -Xcommon

option is specified).

__DBL8 This value is not set.

__DOUBLE_IS_64BITS__ This value is not set.

__BITLEFT This value is not set (defined when left is specified by the -Xbit_order option).

__BITRIGHT This value is not set (defined when right is specified by the -Xbit_order option).

__AUTO_ENUM This value is not set (defined when auto is specified by the -Xenum_type option).

__FPU This value is not set (defined when fpu is specified by the -Xfloat option).

__CHAR_SIGNED__ This value is not set..

Register mode macro Since this macro indicates the target CPU, its value is not set.

Macro defined with register mode is as follows.

32 register mode: __reg32__

22 register mode: __reg22__

Universal register mode: __reg_common__

_LIT This value is not set.

__MULTI_LEVEL__ level value designated in Xmulti_level = level

Macro Name Definition

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 38 of 751
Sep 01, 2013

(6) Existing argument expansion

In accordance with support for types _Bool and long long, existing argument expansion is also in accordance with

the C99 specification..

- Functions are called after expanding type _Bool_ to type int (4 bytes).

- Functions are called with type (unsigned) long long remaining as an 8 bytes value.

(7) Comma permission behind the last enumeration child of a enum definition

When defining an enum type, it is permissible for the last enumerator in the enumeration to be followed by a

comma (,).

(8) Inline keyword (inline function)

Inline keyword is supported.

This can also be specified using a pragma directive, via the following format.

For the details of expansion specification, see "(3) Inline expansion".

(9) Types of integer constants

In accordance with the addition of type long long, the types of integer constants are as follows.

The type of an integer constant will be the first type in the lists below capable of representing that value.

Table 3-6. Types of Integer Constants (If type long long is enabled (when -Xansi is not specified))

Note Different from C99 specification

enum EE {a, b, c,};

#pragma inline [(]function-name[, function-name, ...][)]

Suffix Decimal Constant Octal Constant or Hexadecimal

None int

long int

unsigned long intNote

long long int

int

unsigned int

long int

unsigned long int

long long int

unsigned long long int

u or U unsigned int

unsigned long int

unsigned long long int

unsigned int

unsigned long int

unsigned long long int

l or L long int

long long int

long int

unsigned long int

long long int

unsigned long long int

Both u or U, and l or L unsigned long int

unsigned long long int

unsigned long int

unsigned long long int

ll or LL long long int long long int

unsigned long long int

Both u or U, and ll or LL unsigned long long int unsigned long long int

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 39 of 751
Sep 01, 2013

Table 3-7. Types of Integer Constants (If type long long is disabled (when -Xansi is specified))

3.1.5 Option to process in strict accordance with ANSI standard

If the -Xansi option is specified to CC-RH, it will perform processing in strict accordance with the ANSI standard. The

differences between when the -Xansi option is specified and when not specified are as follows.

Table 3-8. Processing When -Xansi Option Strictly Conforming to Language Specifications is Specified

Notes 1. Normal error beginning with "E". The same applies hereafter.

2. See the ANSI standards.

Suffix Decimal Constant Octal Constant or Hexadecimal

None int

long int

unsigned long int

int

unsigned int

long int

unsigned long int

u or U unsigned int

unsigned long int

unsigned int

unsigned long int

l or L long int long int

unsigned long int

Both u or U, and l or L unsigned long int unsigned long int

Item With -Xansi Specification Without -Xansi Specification

Bit field An errorNote 1 occurs if type other than int is

specified for bit field.

Specification of types other than int is allowed.

line number An error occurs. Treated in same manner as "#line line num-

ber".Note 2

Parameters of func-

tions declared with

#pragma inline

If the type of a return value or parameter is dif-

ferent but type conversion is possible between

the specified function call and definition, then an

error will occur.

The type of the return value is converted to the

type at the call site, the parameters are con-

verted to the type of the function definition, and

inline expansion is performed.

__STDC__ Defines value as macro with value 1. Does not define.

_Bool type

long long type

An error occurs. Specification is allowed.

Structure and union

specifiers

If the member declaration list does not include

named members, then an error message will be

output indicating that the list has no effect.

If the member declaration list does not include

named members, then an warning message will

be output indicating that the list has no effect.

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 40 of 751
Sep 01, 2013

3.1.6 Internal representation and value area of data

This section explains the internal representation and value area of each type for the data handled by the CC-RH.

(1) Integer type

(a) Internal representation

The leftmost bit in an area is a sign bit with a signed type (type declared without "unsigned"). The value of a

signed type is expressed as 2' s complement.

Figure 3-1. Internal Representation of Integer Type

signed char (no sign bit for unsigned)

short (no sign bit for unsigned)

7 0

15 0

long long (no sign bit for unsigned)

int, long (no sign bit for unsigned)

31

063

0

_Bool

7 0

char

7 0

Only the 0th bit has meaning. Bits 1 to 7 are undefined.

When the -Xansi option is used, _Bool type will cause a C90 violation error.

When the -Xansi option is used, long long type will cause a C90 violation error.

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 41 of 751
Sep 01, 2013

(b) Value area

Table 3-9. Value Area of Integer Type

(2) Floating-point type

(a) Internal representation

Internal Representation of floating-point data type conforms to IEEE754Note. The leftmost bit in an area of a

sign bit. If the value of this sign bit is 0, the data is a positive value; if it is 1, the data is a negative value.

Note IEEE: Institute of Electrical and Electronics Engineers

IEEE754 is a standard to unify specifications such as the data format and numeric range in systems

that handle floating-point operations.

Figure 3-2. Internal Representation of Floating-Point Type

Type Value Area

charNote -128 to +127

short -32768 to +32767

int -2147483648 to +2147483647

long -2147483648 to +2147483647

long long -9223372036854775808 to +9223372036854775807

unsigned char 0 to 255

unsigned short 0 to 65535

unsigned int 0 to 4294967295

unsigned long 0 to 4294967295

unsigned long long 0 to 18446744073709551615

float

M

031 30

S

double

ME

063 62

S

E

23 22

52 51

S: Sign bit of mantissa

E: Exponent (8 bits)

M: Mantissa (23 bits)

S: Sign bit of mantissa

E: Exponent (11 bits)

M: Mantissa (52 bits)

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 42 of 751
Sep 01, 2013

(b) Value area

Table 3-10. Value Area of Floating-Point Type

(3) Pointer type

(a) Internal representation

The internal representation of a pointer type is the same as that of an unsigned int type.

Figure 3-3. Internal Representation of Pointer Type

(4) Enumerate type

(a) Internal representation

The internal representation of an enumerate type is the same as that of a signed int type. The leftmost bit in

an area of a sign bit.

Figure 3-4. Internal Representation of Enumerate Type

When the -Xenum_type=auto option is specified, see "(30) Enumerate type specifier".

(5) Array type

(a) Internal representation

The internal representation of an array type arranges the elements of an array in the form that satisfies the

alignment condition (alignment) of the elements

Example

The internal representation of the array shown above is as follows.

Type Value Area

float 1.17549435E-38F to 3.40282347E+38F

double 2.2250738585072014E-308 to 1.7976931348623158E+308

long double 2.2250738585072014E-308 to 1.7976931348623158E+308

char a[8] = {1, 2, 3, 4, 5, 6, 7, 8};

031

031 30

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 43 of 751
Sep 01, 2013

Figure 3-5. Internal Representation of Array Type

(6) Structure type

(a) Internal representation

The internal representation of a structure type arranges the elements of a structure in a form that satisfies the

alignment condition of the elements.

Example

The internal representation of the structure shown above is as follows.

Figure 3-6. Internal Representation of Structure Type

For the internal representation when the structure type packing function is used, see "(8) Structure type pack-

ing".

(7) Union type

(a) Internal representation

A union is considered as a structure whose members all start with offset 0 and that has sufficient size to

accommodate any of its members. The internal representation of a union type is like each element of the

union is placed separately at the same address.

Example

struct {

 short s1;

 int s2;

 char s3;

 long s4;

} tag;

union {

 int u1;

 short u2;

 char u3;

 long u4;

} tag;

07 07070707070707

15

s2

0

s1

16

s3

31731

s4

031 0 8 0 31

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 44 of 751
Sep 01, 2013

The internal representation of the union shown in the above example is as follows.

Figure 3-7. Internal Representation of Union Type

(8) Bit field

(a) Internal representation

The most significant bit of a bit field declared as a signed type, or without an explicit sign declaration, will be

the sign bit. The first bit field to be declared will be allocated starting from the least significant bit in the area

with the sign of the type when the bit field was declared. If the alignment condition of the type specified in the

declaration of a bit field is exceeded as a result of allocating an area that immediately follows the area of the

preceding bit field to the bit field, the area is allocated starting from a boundary that satisfies the alignment con-

dition.

You can allocate the members of a bit field starting from the most significant bit using the -Xbit_order=left

option or by specifying #pragma bit_order left. See "(9) Bit field assignment" or "CubeSuite+ Integrated

Development Environment User's Manual: RH850 Build" for details.

Examples 1.

The internal representation for the bit field in the above example is as follows.

Figure 3-8. Internal Representation of Bit Field

struct {

 unsigned int f1:30;

 int f2:14;

 unsigned int f3:6;

} flag;

0

tag.u3 (1 byte)

tag.u1, tag.u4 (4 bytes)

31

tag.u2 (2 bytes)

16 15 8 7

f1f2

52

f3

4551 3246 063 30

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 45 of 751
Sep 01, 2013

2.

The internal representation for the bit field in the above example is as follows.

Figure 3-9. Internal Representation of Bit Field

The ANSI standards do allow only int and unsigned int types to be specified for a bit field, but the CC-RH

allows char, short, long, long long and those unsigned types.

For the internal representation of bit field when the structure type packing function is used, see "(8) Structure

type packing".

(9) Alignment condition

(a) Alignment condition for basic type

Alignment condition for basic type is as follows.

If the -Xinline_strcpy option of the CC-RH is specified, however, all the arrey types are 4-byte boundaries.

Table 3-11. Alignment Condition for Basic Type

(b) Alignment condition for union type

The alignment conditions for a union type are the same as those of the structure's member whose type has the

largest alignment condition.

Here are examples of the respective cases:

struct {

 int f1:5;

 char f2:4;

 int f3:6;

} flag;

Basic Type Alignment Conditions

(unsigned) char and its array type

_Bool type

Byte boundary

(unsigned) short and its array type 2-byte boundary

Other basic types (including pointer)

(unsigned) long long and its array type

double and its array type

4-byte boundary

long double and its array type 4-byte boundary

f1f2

18

f3

717 58 4 031 12 11

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 46 of 751
Sep 01, 2013

Examples 1.

2.

(c) Alignment condition for structure type

The alignment conditions for a structure type are the same as those of the structure's member whose type has

the largest alignment condition.

Here are examples of the respective cases:

Examples 1.

2.

3.

union tug1 {

 unsigned short i; /*2 bytes member*/

 unsigned char c; /*1 bytes member*/

}; /*The union is aligned with 2-byte.*/

union tug2 {

 unsigned int i; /*4 bytes member*/

 unsigned char c; /*1 byte member*/

}; /*The union is aligned with 4-byte.*/

struct ST {

 char c; /*1 byte member*/

}; /*Structure is aligned with 1-byte.*/

struct ST {

 char c; /*1 byte member*/

 short s; /*2 bytes member*/

}; /*Structure is aligned with 2-byte.*/

struct ST {

 char c; /*1 byte member*/

 short s; /*2 bytes member*/

 short s2; /*2 bytes member*/

}; /*Structure is aligned with 2-byte.*/

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 47 of 751
Sep 01, 2013

4.

5.

(d) Alignment condition for function argument

The alignment condition for a function argument is a 4-byte boundary.

(e) Alignment condition for executable program

The alignment condition when an executable object module file is created by linking object files is 2-byte

boundary.

struct ST {

 char c; /*1 byte member*/

 short s; /*2 bytes member*/

 int i; /*4 bytes member*/

}; /*Structure is aligned with 4-byte.*/

struct ST {

 char c; /*1 byte member*/

 short s; /*2 bytes member*/

 int i; /*4 bytes member*/

 long long ll; /*4 bytes member*/

}; /*Structure is aligned with 4-byte.*/

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 48 of 751
Sep 01, 2013

3.1.7 Section name

The following table lists the names, section types, and section attributes of these reserved sections.

Table 3-12. Reserved Sections

Section

Type

Default

Section

Name

Description Section Type Section Attribute Align

ment

Size

Program

areas

.text Executable program SHT_PROGBI

TS

SHF_ALLOC +

SHF_EXECINSTR

2

Uninitial-

ized data

areas

.bss Sections accessed with r0-relative ld/st (two instruc-

tions)

SHT_NOBITS SHF_ALLOC +

SHF_WRITE

4

.zbss Sections that can be accessed with r0-relative ld/st

instruction

Generation when #pragma section r0_disp* is speci-

fied

.zbss23

.ebss Sections that can be accessed with ep-relative ld/st

instruction

Generation when #pragma section ep_disp* is spec-

ified

.ebss23

.tbss4 Sections that can be accessed with ep-relative sld/

sst instruction

Generation when #pragma section ep_disp* is spec-

ified

.tbss5

.tbss7

.tbss8

.sbss Sections that can be accessed with gp-relative ld/st

instruction

Generation when #pragma section gp_disp* is spec-

ified

.sbss23

Initial-

ized data

areas

.data Sections accessed with r0-relative ld/st (two instruc-

tions)

SHT_PROGBI

TS

SHF_ALLOC +

SHF_WRITE

4

.zdata Sections that can be accessed with r0-relative ld/st

instruction

Generation when #pragma section r0_disp* is speci-

fied

.zdata23

.edata Sections that can be accessed with ep-relative ld/st

instruction

Generation when #pragma section ep_disp* is spec-

ified

.edata23

.tdata4 Sections that can be accessed with ep-relative sld/

sst instruction

Generation when #pragma section ep_disp* is spec-

ified

.tdata5

.tdata7

.tdata8

.sdata Sections that can be accessed with gp-relative ld/st

instruction

Generation when #pragma section gp_disp* is spec-

ified

.sdata23

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 49 of 751
Sep 01, 2013

The default section name can be changed using #pragma section.

3.1.8 Register mode

The CC-RH provides three register modes. By specifying these register modes efficiently, the contents of some

registers do not need to be saved or restored when an interrupt occurs or the task is switched. As a result, the processing

speed can be improved. The register modes are specified by using the register mode specification option (-Xreg_mode)

of the CC-RH. This function reduces the number of registers internally used by the CC-RH on a step-by-step basis. As a

result, the following effects can be expected:

- The registers not used can be used for the application program (that is, a source program in assembly language).

- The overhead required for saving and restoring registers can be reduced.

Caution In an application program that has many variables to be allocated to registers by the CC-RH, the

variables so far allocated to a register are accessed from memory when a register mode has been

specified. As a result, the processing speed may drop.

Next table and next Figure show the three register modes supplied by the CC-RH.

Table 3-13. Register Modes Supplied by CC-RH

Con-

stant

data

areas

.const Sections accessed with r0-relative ld/st (two instruc-

tions)

SHT_PROGBI

TS

SHF_ALLOC 4

.zconst Sections that can be accessed with r0-relative ld/st

instruction

Generation when #pragma section .zconst* is speci-

fied

.zconst23

Register Modes Work Registers Register Variable Registers

32-register mode (Default) r10 to r19 r20 to r29

22-register mode r10 to r14 r25 to r29

common register mode r10 to r14 r25 to r29

Section

Type

Default

Section

Name

Description Section Type Section Attribute Align

ment

Size

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 50 of 751
Sep 01, 2013

Figure 3-10. Register Modes and Usable Registers

Specification example on command line

> ccrh -Xreg_mode=22 file.c <- compiled in 22-register mode

common register mode22-register mode

r14

0

r0

r10

r29

32-register mode

r20

r15

Other registers

31 0 31 031

r24
r25

r31

r29

r31

r19

r10

r0

r29

r31

r10

r0

Other registers

Work register

Register Variable Registers

Registers that can be used freely in application

r14
r15

r24
r25

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 51 of 751
Sep 01, 2013

3.2 Extended Language Specifications

This section explains the extended language specifications supported by the CC-RH.

3.2.1 Macro name

Below are #pragma directives supported as extended language specifications.

Table 3-14. List of Supported Macros

Macro Name Definition

__LINE__ Line number of source line at that point (decimal).

__FILE__ Name of source file (character string constant).

__DATE__ Date of translating source file (character string constant in the form of "Mmm dd yyyy"). Here,

the name of the month is the same as that created by the asctime function stipulated by ANSI

standards (3 alphabetic characters with only the first character is capital letter) . The first char-

acter of dd is blank if its value is less than 10.

__TIME__ Translation time of source file (character string constant having format "hh:mm:ss" similar to

the time created by the asctime function).

__STDC__ Decimal constant 1 (defined when the -Xansi option is specified).Note

__RENESAS__ This value is not set.

__RENESAS_VERSION__ If the version is V.XX.YY.ZZ, this will be 0xXXYYZZ00.

Example) V.1.00.00 -> -D__RENESAS_VERSION__=0x01000000

__CCRH__ This value is not set .

__CCRH This value is not set .

__CC850__ This value is not set.

__CC850 This value is not set.

__v850e3v5__ This value is not set (defined when v850e3v5 or rh850 is specified by the -Xcommon option is

specified).

__v850e3v5 This value is not set (defined when v850e3v5 or rh850 is specified by the -Xcommon option is

specified).

__DBL8 This value is not set .

__DOUBLE_IS_64BITS__ This value is not set.

__BITLEFT This value is not set (defined when left is specified by the -Xbit_order option).

__BITRIGHT This value is not set (defined when right is specified by the -Xbit_order option).

__AUTO_ENUM This value is not set (defined when auto is specified by the -Xenum_type option).

__FPU This value is not set (defined when fpu is specified by the -Xfloat option).

__CHAR_SIGNED__ This value is not set.).

Register mode macro Since this macro indicates the target CPU, its value is not set.

Macro defined with register mode is as follows.

32 register mode: __reg32__

22 register mode: __reg22__

Universal register mode: __reg_common__

_LIT This value is not set.

__MULTI_LEVEL__ level value designated in Xmulti_level = level

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 52 of 751
Sep 01, 2013

Note For the processing to be performed when the -Xansi option is specified, see "3.1.5 Option to process in strict

accordance with ANSI standard".

3.2.2 Reserved words

The CC-RH adds the following characters as reserved words to implement the expanded function. These words are

similar to the ANSI C keywords, and cannot be used as a label or variable name.

Reserved words that are added by the CC-RH are listed below.

_Bool, __bsh, __bsw, __caxi, __clr1, __di, __ei, __halt, __hsw, inline, __ldlw, __ldsr, __mul32, __mul32u, __nop,

__not1, __satadd, __satsub, __sch0l, __sch0r, __sch1l, __sch1r, __set1, __set_il, __stcw, __stsr, __synce,

__synci, __syncm, __syncp

All names that include two underscores (__) are also invalid as label or variable names.

3.2.3 Compiler generated symbols

The following is a list of symbols generated by the compiler for use in internal processing.

Symbols with the same names as the symbols below cannot be used.

Table 3-15. Compiler Generated Symbols

Note num, num1, and num2 are arbitrary numbers.

3.2.4 #pragma directive

Below are #pragma directives supported as extended language specifications.

Table 3-16. List of Supported #pragma Directive

Target Generated Symbol

extern function name _function name

static function name _function name.numNote

extern variable name _variable name

static variable in the file _variable name.numNote

static variable in the function _variable name.numNote.function label

Label in the function .BB.LABEL.num1_num2Note

Character string .STR.num

switch table .SWITCH.LABEL.num1_num2Note

.SWITCH.LABEL.num1_num2Note.END

#pragma directive Definition

#pragma section attribute-strings "section-name" Data or program memory allocation

#pragma section attribute-strings

#pragma section [character string]

#pragma inline_asm [(]function-name[(size=numerical value)][,...][)] Description with assembler instruction

#pragma inline [(]function-name[, function-name ...][)] Inline expansion

#pragma noinline [(]function-name[, function-name, ...][)]

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 53 of 751
Sep 01, 2013

(1) Data or program memory allocation

Allocates variables to an arbitrary section.

For details about the allocation method, see "(1) Allocation of data and program to section".

(2) Description with assembler instruction

Assembler directives can be described in a C source program.

For the details of description, see "(2) Describing assembler instruction".

(3) Inline expansion

(a) Inline expansion specification

A function that is expanded inline can be specified.

For the details of expansion specification, see "(3) Inline expansion".

(b) Specifying functions ineligible for inline expansion

You can specify that a function is not eligible for inline expansion.

See "(3) Inline expansion" for details about specifying functions to be ineligible for inline expansion.

(4) Interrupt/Exception handler specification

Interrupt/Exception handlers are described in C language.

For details, see "(c) Describing interrupt/exception handler".

(5) Interrupt disable function specification

Interrupts are disabled for the entire function.

For details, see "(b) Disabling interrupts in entire function".

(6) Structure type packing specification

Specifies the packing of a structure type. The packing value, which is an alignment value of the member, is speci-

fied as the numeric value. A value of 1, 2, 4 can be specified. When the numeric value is not specified, the setting

is the default alignment.

For details, see "(8) Structure type packing".

#pragma interrupt [(]function-name[(interrupt specification [, interrupt

specification]...)] [,...] [)]

Interrupt/Exception handler specification

#pragma block_interrupt [(]function-name[)] Interrupt disable function specification

#pragma pack [(][1|2|4][)] Structure type packing specification

#pragma bit_order [{left|right}] Bit field assignment

#pragma pmodule pm-specification Core number specification (for a multi-core device)

#pragma interrupt [(]function-name[(interrupt specification [,interrupt specification]...)] [,...]
[)]

#pragma block_interrupt [(]function-name[)]

#pragma pack [(][1|2|4][)]

#pragma directive Definition

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 54 of 751
Sep 01, 2013

(7) Bit field assignment

CC-RH can switch the order of a bit field.Specifies the switching the order of a bit field.

For details, see "(9) Bit field assignment".

(8) Core number specification (for a multi-core device)

A function to which a core number is to be assigned can be specified.

For details, see "(10) Core number specification (for a multi-core device)".

3.2.5 Using extended language specifications

This section explains using expanded specifications.

- Allocation of data and program to section

- Describing assembler instruction

- Inline expansion

- Controlling interrupt level

- Interrupt/Exception processing handler

- Disabling or enabling maskable interrupts

- Embedded functions

- Structure type packing

- Bit field assignment

- Core number specification (for a multi-core device)

(1) Allocation of data and program to section

CC-RH can allocate modules and data to arbitrary sections at the C-language level. This makes it possible to

specify placement using the relocation attribute characteristics of each section.

(a) #pragma section directive

Describe the #pragma section directive in the following format.

Section relocation attributes are specified using attribute strings, and section names are specified in the form

"section-name". All static variables included after this pragma will be placed in the specified section in accor-

dance with the section relocation attribute.

If "attribute string" in the format "#pragma section attribute-string" is identical to "character string" in the format

"#pragma section [character-string]", then it will be treated as the format "#pragma section attribute-string" for-

#pragma bit_order [{left|right}]

#pragma pmodule pm-specification

#pragma section attribute-strings "section-name"

Variable declaration/definition

#pragma section attribute-strings

Variable declaration/definition

#pragma section [character string]

Variable declaration/definition

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 55 of 751
Sep 01, 2013

mat, without outputting a message. However, if the -check=shc option is specified, then a message will be

output if treated as the "#pragma section attribute-string" format.

The identity test of attribute-string and character-string is case sensitive. To give an example, the all-caps

string R0_DISP32 will not be treated as an attribute string.

Example

If the section name starts with a number (0-9), an underscore ("_") is prepended to the section name.

Example #pragma section 123 -> Section name : _123.bss, _123.const, _123.text, ...

The following characters can be used in the character string.

- 0 - 9

- a - z, A - Z

- _

- @

- .

If #pragma section is specified for either a declaration or a definition, the one specified with #pragma section is

valid.

If different #pragma section directives are specified for declarations or definitions, the #pragma section that

appears first is valid.

<1> Specifying "#pragma section attribute-string "section-name""

Renames the default section, and places variables declared after the #pragma in the new section name.

- This pragma directive renames the default section to the name specified by the user.

- This pragma directive is valid for external variables, string literals, function-internal static variables,

and functions.

- This pragma directive invalidates specifications of the same attribute coded prior to this point, and

enables the new section specification. If no new section is specified, then it is valid to the end of the

file.

- If default is specified as the relocation attribute, then subsequent assignments revert to the default

with no #pragma section declared. "default" disables all #pragma section statements.

- If there is no variable initialization, then it is placed in the bss section corresponding to the specified

relocation attribute

- By default, string literals are assigned to .const. The placement for #pragma section declarations is

the same as for other const objects.

- A section name consists of the user-specified string, followed automatically by a string representing

the relocation attribute. Thus depending on whether initialization is enabled, if the relocation

attribute is switched automatically, it is possible that a section with the same name will be produced.

Example: #pragma section r0_disp32 "xxx" -> Section name : xxx.data

#pragma section r0_disp32 /*Here, "data" matches an attribute string, so it is*/

 /*seen as the format "#pragma section*/

 /*attribute-string"*/

#pragma section R0_DISP32 /*This does not match the case of an attribute*/

 /*string, and so it is treated as the format*/

 /*"#pragma section [character-string]"*/

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 56 of 751
Sep 01, 2013

- If a const relocation attribute is specified, then only variables with the const modifier are allocated to

the section, and variables without this modifier are allocated to the default section.

Table 3-17. Section Relocation Attribute

Note This is the actual section name when the section name of "xxx" is given.

Target Renamable Attribute Strings Default Section Name User-modified Section NameNot2

Definition

(type data)

r0_disp16

r0_disp23

r0_disp32

ep_disp4

ep_disp5

ep_disp7

ep_disp8

ep_disp16

ep_disp23

gp_disp16

gp_disp23

.zdata

.zdata23

.data

.tdata4

.tdata5

.tdata7

.tdata8

.edata

.edata23

.sdata

.sdata23

xxx.zdata

xxx.zdata23

xxx.data

xxx.tdata4

xxx.tdata5

xxx.tdata7

xxx.tdata8

xxx.edata

xxx.edata23

xxx.sdata

xxx.sdata23

Declaration

(type bss)

The compiler automatically

determines variable definitions

without an initial value to be of

type bss. It is thus not a bss

attribute string.

.zbss

.zbss23

.bss

.tbss4

.tbss5

.tbss7

.tbss8

.ebss

.ebss23

.sbss

.sbss23

xxx.zbss

xxx.zbss23

xxx.bss

xxx.tbss4

xxx.tbss5

xxx.tbss7

xxx.tbss8

xxx.ebss

xxx.ebss23

xxx.sbss

xxx.sbss23

Type const const

zconst

zconst23

.const

.zconst

.zconst23

xxx.const

xxx.zconst

xxx.zconst23

Type text text .text xxx.text

Clearing of

specification

default Clears all specifications, and restores the default section name.

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 57 of 751
Sep 01, 2013

Examples 1.

2.

3.

#pragma section r0_disp32 "mydata"

int i = 0; /*Allocated to "mydata.data"*/

int j; /*Allocated to "mydata.bss"*/

#pragma section gp_disp16 "mydata2"

int i2 = 1; /*Allocated to "mydata2.sdata"*/

#pragma section const "myconst"

const int c2 = 0; /*Allocated to "myconst.const"*/

int j2; /*Allocated to ".bss"*/

#pragma section ep_disp4 "XXX"

extern int i;

void func()

{

 i = 5;

}

#pragma section r0_disp32 "OOO"

int i = 5; /*Allocated to "XXX.tdata4"*/

 /*When #pragma section is specified for the first*/

 /*declaration, it takes priority*/

#pragma section ep_disp4

int i;

#pragma section ep_disp23

int i; /*Allocated to "tbss4"*/

 /*When #pragma section is specified for the first*/

 /*declaration, it takes priority*/

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 58 of 751
Sep 01, 2013

4.

5.

6.

<def.c>

#pragma section ep_disp4

extern int i;

#pragma section ep_disp4 "XXX"

int i = 5; /*Allocated to ".tdata4"*/

 /*When #pragma section is specified for the*/

 /*first declaration, it takes priority*/

<use.c>

#pragma section ep_disp4

extern int i;

void func()

{

 i = 5; /*No problems with access*/

}

#pragma section ep_disp4 "XXX"

extern int i;

#pragma section ep_disp4 "OOO"

int i = 5; /*Allocated to ".tdata4"*/

 /*When #pragma section is specified for the*/

 /*first declaration, it takes priority*/

#pragma section r0_disp16 "myzdata"

#pragma section const "myconst" /*Specification of "myzdata" ends*/

 /*at this line*/

int i = 0; /*No effect, because not .data const*/

const int ci = 0; /*myconst.const*/

#pragma section r0_disp16 "myzadata" /*Re-specify*/

int j = 0; /*Becomes myzdata.zdata*/

const int cj = 0; /*The myconst specification in the*/

 /*pragma immediately preceding the*/

 /*.const is erased, and it is*/

 /*placed in ".const".*/

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 59 of 751
Sep 01, 2013

7.

8.

<2> Specifying "#pragma section attribute-strings"

Variables declared after the #pragma will be placed in the default section.

- Specifies placement of data in the default section name.

- The placement rules are the same as for "#pragma section attribute-string "section-name"", except

for the fact that they are placed in the default section name.

extern int i;

#pragma section ep_disp4

int i; /*Allocated to ".tdata4"*/

 /*Although this differs from the declaration side, even if*/

 /*this is accessed without #pragma section ep_disp23 in*/

 /*other translation units, access is correctly done in*/

 /*long-distance addressing mode (however, it is not*/

 /*efficient)*/

#pragma section ep_disp23

#pragma section default

extern int i;

#pragma section ep_disp4

int i; /*Allocated to ".tdata4"*/

 /*#pragma section default, which restores the section name*/

 /*to the default name, is not regarded as a section*/

 /*specification*/

 /*The extern declaration is handled as a declaration*/

 /*without section specification*/

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 60 of 751
Sep 01, 2013

Table 3-18. Section Relocation Attribute

Example

- -ep_auto produces the same behavior as ep_disp4, ep_disp5, ep_disp7, or ep_disp8 depending on

the type of declaration.

Target Attribute Strings Default Section Name

Definition (type

data)

r0_disp16

r0_disp23

r0_disp32

ep_auto

ep_disp4

ep_disp5

ep_disp7

ep_disp8

ep_disp16

ep_disp23

gp_disp16

gp_disp23

.zdata

.zdata23

.data

Automatically selected from among .tdata4,

.tdata5, .tdata7, and .tdata8

.tdata4

.tdata5

.tdata7

.tdata8

.edata

.edata23

.sdata

.sdata23

Declaration (type

bss)

The compiler automatically determines variable

definitions without an initial value to be of type

bss. It is thus not a bss attribute string.

.zbss

.zbss23

.bss

.tbss4

.tbss5

.tbss7

.tbss8

.ebss

.ebss23

.sbss

.sbss23

Type const const

zconst

zconst23

.const

.zconst

.zconst23

Type text text .text

Clearing of speci-

fication

default Clears all specifications, and restores the

default section name.

#pragma section gp_disp16

int a = 1; /*Allocated to ".sdata"*/

int b; /*Allocated to ".sbss"*/

Type of Declaration Corresponding ep_dispn

unsigned char ep_disp4

unsigned short ep_disp5

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 61 of 751
Sep 01, 2013

Remarks 1. The ep_dispn for array-type variables depends on the type of the elements. In a multi-

dimensional array (an array of arrays), however, the selected ep_dispn corresponds to

the type of the elements stored in the array.

2. If a variable of the enumerate type is smaller than one of the int type due to the -

Xenum_type option having been specified, the ep_dispn that corresponds to the given

smaller type is selected.

3. Structures and unions are not allocated as any from among .tdata4, .tdata5, .tdata7, and

.tdata8.

- Since ep_auto produces the same behavior as ep_disp4, ep_disp5, ep_disp7, or ep_disp8 depend-

ing on the type of declaration, ep_auto and the ep_dispn that produces the same behavior being

specified for the declaration and definition of the same variable does not lead to an error. ep_auto

and an ep_dispn that produces different behavior being specified for the declaration and definition of

the same variable will lead to an error.

Examples 1.

signed char

char

_Bool

ep_disp7

signed short

signed int

unsigned int

signed long

unsigned long

signed long long

unsigned long long

float

double

long double

pointer

enumerate type (when the size of the elements is

that of the int type)

ep_disp8

#pragma section ep_auto

char c_ary[3][5] = {0}; /*.tdada7 (char)*/

char* p_ary[3][5] = {0}; /*.tdata8 (pointer)*/

#pragma section ep_auto

extern unsigned char ch;

#pragma section ep_disp4

unsigned char ch; /*Allocated as .tdata4 with no errors or warnings*/

Type of Declaration Corresponding ep_dispn

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 62 of 751
Sep 01, 2013

2.

<3> Specifying "#pragma section [character-string]"

This switches the section name output by the compiler.

The section name after switching from the default section name is as follows.

- If the string is omitted, all section names are set to the default.

Example

#pragma section ep_auto

extern unsigned char ch;

#pragma section ep_disp7

unsigned char ch; /*Allocated as .tdata4 with no errors or warnings*/

 /*When #pragma section is specified for the first*/

 /*declaration, it takes priority*/

Target Specifying Default After Switching

Program #pragma section xxx text xxx.text

Constant const xxx.const

Initialized data data xxx.data

Uninitialized data bss xxx.bss

#pragma section abc

int a; /*a is allocated to the section abc.bss*/

const int d=1; /*d is allocated to the section abc.const*/

void f(void) /*f is allocated to the section abc.text*/

{

 a = d;

}

#pragma section

int b; /*b is allocated to the section .bss*/

void g(void) /*g is allocated to the section .text*/

{

 b = d;

}

#pragma section 123

int c; /*c is allocated to the section _123.bss*/

void h(void) /*h is allocated to the section _123.text*/

{

 c = d;

}

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 63 of 751
Sep 01, 2013

(2) Describing assembler instruction

With the CC-RH, assembler instruction can be described in the functions of a C source program.

(a) #pragma directives

One of the #pragma directives to embed assembler instructions is #pragma inline_asm.

This treats the function itself as an assembler instruction only, and performs inline expansion at the call site.

Performs inline expansion on functions coded in assembly and declared with #pragma inline_asm.

The calling conventions for an inline function with embedded assembly are the same as for ordinary function

calls.

Specifying (size = numerical value) does not affect the result of compilation.

Example

- C source

- Output codes

(b) Notes for Use of #pragma inline_asm

- Specify #pragma inline_asm before the definition of the function body.

- Also generate external definitions of functions specified with #pragma inline_asm.

- If you use a register to guarantee the entrance and exit of an inline function with embedded assembly, you

must save and restore this register at the beginning and end of the function.

- The compiler passes strings in #pragma inline_asm to the assembler as-is, without checking or modifying

them.

- Only positive integer constants are specifiable for (size = numerical value). Specifying a floating-point number

or value less than 0 will cause an error.

- If #pragma inline_asm is specified for a static function, then the function definition will be deleted after inline

expansion.

- Assembly code is targeted by the preprocessor. Caution is therefore needed when using #define to define a

macro with the same name as an instruction or register used in assembly language (e.g. "MOV" or "r5").

#pragma inline_asm func_add

static int func_add(int a, int b){

 add r6, r7

 mov r7, r10

}

void func(int *p){

 *p = func(10,20);

}

_func:

prepare r20, 0

mov r6, r20

movea 0x0014, r0, r7

mov 10, r6

add r6, r7

mov r7, r10

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 64 of 751
Sep 01, 2013

- Although it is possible to use comments starting with a hash ("#") in RH850 assembly language, if you use this

comment, do not use # comments inside functions coded in assembly, because the preprocessor will interpret

these as preprocessing directives.

- If you write a label in a function coded in assembly, labels with the same name will be created for each inline

expansion.

In this situation, use local labels coded in assembly. Although local labels have the same name in the assem-

bly source, the assembler converts them to different names automatically.

(3) Inline expansion

The CC-RH allows inline expansion of each function. This section explains how to specify inline expansion.

(a) Inline Expansion

Inline expansion is used to expand the main body of a function at a location where the function is called. This

decreases the overhead of function call and increases the possibility of optimization. As a result, the execution

speed can be increased.

If inline expansion is executed, however, the object size increases.

Specify the function to be expanded inline using the #pragma inline directive.

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify

"func1". Two or more function names can be specified with each delimited by "," (comma).

(b) Conditions of inline expansion

At least the following conditions must be satisfied for inline expansion of a function specified using the

#pragma inline directive.

Inline expansion may not be executed even if the following conditions are satisfied, because of the internal

processing of the CC-RH.

<1> A function that expands inline and a function that is expanded inline are described in the same

file

A function that expands inline and a function that is expanded inline, i.e., a function call and a function

definition must be in the same file. This means that a function described in another C source cannot be

expanded inline. If it is specified that a function described in another C source is expanded inline, the

CC-RH does not output a warning message and ignores the specification.

<2> The #pragma inline directive is described before function definition.

If the #pragma inline directive is described after function definition, the CC-RH outputs a warning mes-

sage and ignores the specification. However, prototype declaration of the function may be described in

any order. Here is an example.

#pragma inline [(]function-name[, function-name, ...][)]

#pragma inline func1, func2

void func1() {...}

void func2() {...}

void func(void) {

 func1(); /*function subject to inline expansion*/

 func2(); /*function subject to inline expansion*/

}

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 65 of 751
Sep 01, 2013

Example

<3> The number of arguments is the same between "call" and "definition" of the function to be

expanded inline.

If the number of arguments is different between "call" and "definition" of the function to be expanded

inline, the CC-RH ignores the specification.

<4> The types of return value and argument are the same between "call" and "definition" of the func-

tion to be expanded inline.

If the number of arguments is different between "call" and "definition" of the function to be expanded

inline, the CC-RH ignores the specification. If the type of the argument is the integer type (including

enum) or pointer-type, and in the same size, however, inline expansion is executed.

<5> The number of arguments of the function to be expanded inline is not variable.

If inline expansion is specified for a function with a variable arguments, the CC-RH outputs neither an

error nor warning message and ignores the specification.

<6> Recursive function is not specified to be expanded inline.

If a recursive function that calls itself is specified for inline expansion, the CC-RH outputs neither an error

nor warning message and ignores the specification. If two or more function calls are nested and if a

code that calls itself exists, however, inline expansion may be executed.

<7> The addresses of formal parameters are not referenced from inside the function.

If you reference the address of a formal parameter from inside a function, then the inline expansion spec-

ification will be ignored, without outputting an error or warning message.

<8> does not make calls via the addresses of functions for inline expansion.

If you call a function for inline expansion via its address, then the inline expansion specification will be

ignored, without outputting an error or warning message.

<9> An interrupt handler is not specified to be expanded inline.

A function specified by the #pragma interrupt is recognized as an interrupt handler. If inline expansion is

specified for this function, the CC-RH outputs a warning message and ignores the specification.

[Valid Inline Expansion Specification]

#pragma inline func1, func2

void func1(); /*prototype declaration*/

void func2(); /*prototype declaration*/

void func1() {...} /*function definition*/

void func2() {...} /*function definition*/

[Invalid Inline Expansion Specification]

void func1(); /*prototype declaration*/

void func2(); /*prototype declaration*/

void func1() {...} /*function definition*/

void func1() {...} /*function definition*/

#pragma inline func1, func2

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 66 of 751
Sep 01, 2013

<10> Interrupts are not disabled in a function by the #pragma block_interrupt directive.

#If inline expansion is specified for a function in which interrupts are declared by the #pragma

block_interrupt directive to be disabled, the CC-RH outputs a warning message and ignores the specifi-

cation.

<11> If #pragma inline_asm is specified, then a #pragma inline specification will be ignored.

If you specify inline expansion for a function coded in assembly using #pragma inline_asm, then a warn-

ing message will be output, and the #pragma inline specification will be ignored.

<12> If you specify -merge_files, then functions may be inlined even if they are not coded within the

file.

(c) Functions ineligible for inline expansion

When using the -Oinline option, use #pragma noinline to prevent inline expansion of a specific function.

Specifying #pragma inline and #pragma noinline for the same function simultaneously within a single transla-

tion unit will cause an error.

(d) Examples of differences in inline expansion operation depending on option specification

Here are differences in inline expansion operation depending on whether the #pragma inline directive or an

option is specified.

(e) Sample inline expansion

Below is an example of inline expansion.

- C source

#pragma noinline [(]function-name[, function-name, ...][)]

-Oinline=0 Inline expansion specification will be ignored, without outputting an error or warning mes-

sage.

-Oinline=1 Inline expansion will be performed on functions specified for it.

-Oinline=2 Inline expansion will be performed on functions automatically, even if it is not specified.

However, inline expansion will not be performed on functions specified as ineligible for

inline expansion.

-Oinline=3 Inline expansion will be performed on functions automatically, even if it is not specified.

However, inline expansion will not be performed on functions specified as ineligible for

inline expansion.

pragma inline (func)

static int func(int a, int b)

{

 return (a+b)/2;

}

int x;

main()

{

 x = func (10, 20);

}

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 67 of 751
Sep 01, 2013

- Sample expansion

(4) Controlling interrupt level

The CC-RH can manipulate the interrupts of the RH850 family as follows in a C source.

- By controlling interrupt level

- By enabling or disabling acknowledgment of maskable interrupts (by masking interrupts)

In other words, the interrupt control register can be manipulated.

(a) Controlling the interrupt priority level

For this purpose, the "__ set_il" function is used. Specify this function as follows to manipulate the interrupt

priority level.

Integer values 1 to 16 can be specified as the interrupt priority level. With RH850, sixteen steps, from 0 to 15,

can be specified as the interrupt priority level. To set the interrupt priority level to "5", therefore, specify the

interrupt priority level as "6" by this function.

(b) Enable or disable acknowledgement of maskable interrupts (interrupt mask)

Specify the __ set_il function as follows to enable or disable acknowledgment of a maskable interrupt.

Integer values -3 to 0 can be specified to enable or disable the maskable interrupt.

int x;

main()

{

 int func_result;

{

 int a_1 = 10, b_1 = 20;

 func_result = (a_1+b_1)/2;

}

 x = func_result;

}

__set_il_rh(int interrupt-priority-level, void* address of interrupt control
register);

__set_il_rh(int enables/disables maskable interrupt, void* address of interrupt
control register);

Set Value Operation

0 Enables acknowledgement of maskable interrupt (unmasks interrupt).

-1 Disables acknowledgment of maskable interrupt (masks interrupt).

-2 To use direct branching (standard specification) as the interrupt vector method

-3 To use table lookup (extended specification) as the interrupt vector method

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 68 of 751
Sep 01, 2013

(5) Interrupt/Exception processing handler

The CC-RH can describe an "Interrupt handler" or "Exception handler" that is called if an interrupt or exception

occurs. This section explains how to describe these handlers.

(a) Occurrence of interrupt/exception

If an interrupt or exception occurs in the RH850 family, the program jumps to a handler address corresponding

to the interrupt or exception.

The arrangement of the handler addresses and the available interrupts vary depending on the device of the

RH850. See the Relevant Device's User's Manual of each device for details.

How to describe interrupt servicing is explained specifically in "(c) Describing interrupt/exception handler".

(b) Processing necessary in case of interrupt/exception

If an interrupt/exception occurs while a function is being executed, interrupt/exception processing must be

immediately executed. When the interrupt/exception processing is completed, execution must return to the

function that was interrupted.

Therefore, the register information at that time must be saved when an interrupt/exception occurs, and the reg-

ister information must be restored when interrupt/exception processing is complete.

(c) Describing interrupt/exception handler

The format in which an interrupt/exception handler is described does not differ from ordinary C functions, but

the functions described in C must be recognized as an interrupt/exception handler by the CC-RH. With the

CC-RH, an interrupt/exception handler is specified using the #pragma interrupt directive.

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify

"func1".

Always give interrupt functions a return type of void.

The function exit code of an interrupt function is different from that of an ordinary function. You must therefore

not call them in the same way as ordinary functions.

- Define an interrupt function

You can define an interrupt function with either no parameters or one parameter.

Examples 1. Using no parameters

2. Using one parameter

#pragma interrupt [(]Function-name[(interrupt specification [, interrupt
specification]...)] [,...] [)]

void i_func(void)

{

 :

}

void i_func(unsigned long dummy)

{

 :

}

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 69 of 751
Sep 01, 2013

- interrupt specification

The following interrupt specification can be specified.

If you write an interrupt specification, you must include a term to the right of the equals sign ("=").

For example, writing only "enable=" will cause a compilation error. The default interrupt specification sig-

nifies the behavior when individual interrupt specifications are not written.

enable= Specifies whether multiplex interrupts are enabled. This can be set to true, false, or manual.

- true

Output ei/di.

Outputs code to save or restore eipc/eipsw.

- false (default)

Does not output ei/di.

Does not output code to save or restore eipc/eipsw.

- manual

Does not output ei/di.

Outputs code to save or restore eipc/eipsw.

priority=

channel=

You can only specify one of either "priority" or "channel", but not both (writing both will cause

a compilation error).

- priority=

Specifies the exception trigger. You can write only one of the following tokens.

SYSERR/HVTRAP/FETRAP/TRAP0/TRAP1/RIE/FPP/FPI/UCPOP/MIP/MDP/ITLBE/

DTLBE/PIE/MAE/FENMI/FEINT/EIINT_priorityX (X is 0 -15)

- channel=

Specifies the interrupt channel. Select this if you are using the extended specification for

interrupts.

Generates code determining the EI compiler to be used.

If you did not specify either "priority" or "channel", it will determine the EIINT.

fpu= Specifies saving and restoration of fpepc/fpsr in the fpu context. This can be set to true,

false, or auto.

- true

Saves and restores fpepc/fpsr.

- false

Does not save or restore fpepc/fpsr.

- auto (default)

Interpreted as true when the -Xfloat option is specified.

Interpreted as false when -Xfloat=soft is specified.

callt= Specifies saving/restoration of ctpc/ctpsw in the callt context. This can be set to true, false.

- true (default)

Saves and restore ctpc/ctpsw.

- false

Does not save or restore ctpc/ctpsw.

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 70 of 751
Sep 01, 2013

- Output code for EI level exception

The compiler inserts the following instructions at the entrance and exit of an EI level exception interrupt

function. EIINT and FPI are some of the main corresponding items.

However, this is not inserted into all interrupt functions. Necessary processing is output in accordance

with user-defined #pragma statements, compiler options, etc.

- [Entrance code of interrupt functions]

(1) Allocates stack area for saving context

(2) Saves Caller-Save register used in interrupt function

(3) Saves EIPC and EIPSW

(4) If the function has a formal parameter, set EIIC to R6

(5) Enables multiplex interrupts

(6) Saves WCTPC and CTPSW

(7) Saves WFPEPC and FPSR

- [Exit code of interrupt functions]

(8) Sets imprecise interrupt standby

(9) Restorse FPEPC and FPSR

(10) Restores CTPC and CTPSW

(11) Disables multiplex interrupts

(12) Restores EIPC and EIPSW

(13) Restores Caller-Save register used in interrupt function

(14) Frees stack area for saving context

(15) eiret

Below is a specific example of the output code. Numbers (1) to (15) in the code correspond to the num-

bered actions above.

Note that the instructions in the output code will not necessarily be identical to this example. The instruc-

tions, general-purpose registers, and other details may differ from this example.

Examples 1. Sample1: output of EI level exception

#pragma interrupt func1(enable=true, callt=true, fpu=true)

void func1(unsigned long eiic)

{

 User-coded processing;

}

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 71 of 751
Sep 01, 2013

_func1:

 movea -0x00000038, r3, r3 ; (1)

 st23.dw r6, 0x00000030[r3] ; (2)

 stsr 0, r6 ; (3)

 stsr 1, r7 ; (3)

 st23.dw r6, 0x00000028[r3] ; (3)

 stsr 13, r6 ; (4)

 ei ; (5)

 st23.dw r4, 0x00000020[r3] ; (2)

 st23.dw r8, 0x00000018[r3] ; (2)

 st23.dw r10, 0x00000010[r3] ; (2)

 stsr 16, r8 ; (6)

 stsr 17, r9 ; (6)

 st23.dw r8, 0x00000008[r3] ; (6)

 stsr 7, r8 ; (7)

 stsr 6, r9 ; (7)

 st23.dw r8, 0x00000000[r3] ; (7)

 prepare ; Saves Callee-Save register

 : ; User-coded processing

 dispose ; Restores Callee-Save register

 synce ; (8)

 ld23.dw 0x00000000[r3], r8 ; (9)

 ldsr r9, 6 ; (9)

 ldsr r8, 7 ; (9)

 ld23.dw 0x00000008[r3], r8 ; (10)

 ldsr r9, 17 ; (10)

 ldsr r8, 16 ; (10)

 ld23.dw 0x00000010[r3], r10 ; (13)

 ld23.dw 0x00000018[r3], r8 ; (13)

 ld23.dw 0x00000020[r3], r4 ; (13)

 di ; (11)

 ld23.dw 0x00000028[r3], r6 ; (12)

 ldsr r7, 1 ; (12)

 ldsr r6, 0 ; (12)

 ld23.dw 0x00000030[r3], r6 ; (13)

 movea 0x00000038, r3, r3 ; (14)

 eiret ; (15)

Compiler embeds

entrance code into

beginning of

interrupt function

Interrupt processing

coded by user

Compiler embeds

exit code into end of

interrupt function

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 72 of 751
Sep 01, 2013

2. Sample2: output of EI level exception

If there are no formal parameters, and interrupt multiplexing is set to manual (enable=manual)

#pragma interrupt func1(enable=true, callt=true, fpu=true)

void func1(unsigned long eiic)

 {

 User-coded processing;

}

_func1:

 movea -0x00000038, r3, r3 ; (1)

 st23.dw r6, 0x00000030[r3] ; (2)

 stsr 0, r6 ; (3)

 stsr 1, r7 ; (3)

 st23.dw r6, 0x00000028[r3] ; (3)

 st23.dw r4, 0x00000020[r3] ; (2)

 st23.dw r8, 0x00000018[r3] ; (2)

 st23.dw r10, 0x00000010[r3] ; (2)

 stsr 16, r8 ; (6)

 stsr 17, r9 ; (6)

 st23.dw r8, 0x00000008[r3] ; (6)

 stsr 7, r8 ; (7)

 stsr 6, r9 ; (7)

 st23.dw r8, 0x00000000[r3] ; (7)

 prepare ; Saves Callee-Save register

 : ; User-coded processing

 dispose ; Restores Callee-Save register

 ld23.dw 0x00000000[r3], r8 ; (9)

 ldsr r9, 6 ; (9)

 ldsr r8, 7 ; (9)

 ld23.dw 0x00000008[r3], r8 ; (10)

 ldsr r9, 17 ; (10)

 ldsr r8, 16 ; (10)

 ld23.dw 0x00000010[r3], r10 ; (13)

 ld23.dw 0x00000018[r3], r8 ; (13)

 ld23.dw 0x00000020[r3], r4 ; (13)

 ld23.dw 0x00000028[r3], r6 ; (12)

 ldsr r7, 1 ; (12)

 ldsr r6, 0 ; (12)

 ld23.dw 0x00000030[r3], r6 ; (13)

 movea 0x00000038, r3, r3 ; (14)

 eiret ; (15)

Compiler embeds

entrance code into

beginning of

interrupt function

Interrupt processing

coded by user

Compiler embeds

exit code into end of

interrupt function

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 73 of 751
Sep 01, 2013

- Output code for FE level exception

The compiler inserts the following instructions at the entrance and exit of an FE level exception interrupt

function. FEINT and PIE are some of the main corresponding items.

However, this is not inserted into all interrupt functions. Necessary processing is output in accordance

with user-defined #pragma statements, compiler options, etc.

- [Entrance code of interrupt functions]

(1) Allocates stack area for saving context

(2) Saves all Caller-Save register used in interrupt function

(3) If the function has a formal parameter, sets FEIC to R6

(4) Saves CTPC and CTPSW

(5) Saves FPEPC and FPSR

- [Exit code of interrupt functions]

(6) Restores FPEPC and FPSR

(7) Restores CTPC and CTPSW

(8) Restores all Caller-Save register used in interrupt function

(9) Frees stack area for saving context

(10) feret

Below is a specific example of the output code. Numbers (1) to (10) in the code correspond to the num-

bered actions above.

Note that the instructions in the output code will not necessarily be identical to this example. The instruc-

tions, general-purpose registers, and other details may differ from this example.

Example Sample output of FE level exception

#pragma interrupt func1(priority=feint, callt=true, fpu=true)

void func1(unsigned long feic)

{

 User-coded processing;

}

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 74 of 751
Sep 01, 2013

- Output code for FE level exception (cannot recover/restore)

The compiler inserts the following instructions at the entrance and exit of an FE level exception (cannot

recover/restore) interrupt function. FENMI and SYSERR are some of the main corresponding items.

- [Entrance code of interrupt functions]

(1) If the function has a formal parameter, sets FEIC to R6

Nothing is output if the function does not have any parameters.

- [Exit code of interrupt functions]

None

Remark No saving or restoration of context is output.

Code the save and restore the Callee-Save register is also not output.

Below is a specific example of the output code. Numbers (1) in the code correspond to the numbered

actions above.

_func1:

 movea -0x00000030, r3, r3 ; (1)

 st23.dw r4, 0x00000028[r3] ; (2)

 st23.dw r6, 0x00000020[r3] ; (2)

 st23.dw r8, 0x00000018[r3] ; (2)

 st23.dw r10, 0x00000010[r3] ; (2)

 stsr 14, r6 ; (3)

 stsr 16, r8 ; (4)

 stsr 17, r9 ; (4)

 st23.dw r8, 0x00000008[r3] ; (4)

 stsr 7, r8 ; (5)

 stsr 6, r9 ; (5)

 st23.dw r8, 0x00000000[r3] ; (5)

 prepare ; Saves Callee-Save registe

 : ; User-coded processing

 dispose ; Restores Callee-Save register

 ld23.dw 0x00000000[r3], r8 ; (6)

 ldsr r9, 6 ; (6)

 ldsr r8, 7 ; (6)

 ld23.dw 0x00000008[r3], r8 ; (7)

 ldsr r9, 17 ; (7)

 ldsr r8, 16 ; (7)

 ld23.dw 0x00000010[r3], r10 ; (8)

 ld23.dw 0x00000018[r3], r8 ; (8)

 ld23.dw 0x00000020[r3], r6 ; (8)

 ld23.dw 0x00000028[r3], r4 ; (8)

 movea 0x00000030, r3, r3 ; (9)

 feret ; (10)

Compiler embeds

entrance code into

beginning of FEINT

FEINT processing

coded by user

Compiler embeds

exit code into end of

FEIN

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 75 of 751
Sep 01, 2013

Example Sample output of FE level exception (cannot recover/restore)

(d) Notes on describing interrupt/exception handler

- A function specified as an interrupt/exception handler cannot be expanded inline. The #pragma inline direc-

tive is ignored even if specified.

(6) Disabling or enabling maskable interrupts

The CC-RH can disable the maskable interrupts in a C source.

This can be done in the following two ways.

- Locally disabling interrupt in function

- Disabling interrupts in entire function

(a) Locally disabling interrupt in function

The "di instruction" and "ei instruction" of the assembler instruction can be used to disable an interrupt locally

in a function described in C language. However, the CC-RH has functions that can control the interrupts in a C

language source.

Table 3-19. Interrupt Control Function

#pragma interrupt func1(priority=fenmi)

void func1(unsigned long feic)

{

 User-coded processing;

}

Interrupt Control Function Operation Processing by CC-RH

__DI Disables the acceptance of all maskable

interrupts.

Generates di instruction.

__EI Enables the acceptance of all maskable inter-

rupts.

Generates ei instruction.

_func1:

 stsr 14, r6 ; (1)

 :

 : ; User-coded processing

 :

FENMI processing

coded by user

No code is output at

the end

Compiler embeds

entrance code into

beginning of FENMI

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 76 of 751
Sep 01, 2013

Example How to use the __DI and __EI functions and the codes to be output are shown below.

- C source

- Output codes

(b) Disabling interrupts in entire function

The CC-RH has a "#pragma block_interrupt" directive that disables the interrupts of an entire function.

This directive is described as follows.

Describe functions that are described in the C language. In the case of a function, "void func1() {}", specify

"func1".

The interrupt to the function specified by "function-name" above is disabled. As explained in "(a) Locally dis-

abling interrupt in function", __ DI()" can be described at the beginning of a function and "__ EI()", at the end.

In this case, however, an interrupt to the prologue code and epilogue code output by the CC-RH cannot be dis-

abled or enabled, and therefore, interrupts in the entire function cannot be disabled.

Using the #pragma block_interrupt directive, interrupts are disabled immediately before execution of the pro-

logue code, and enabled immediately after execution of the epilogue code. As a result, interrupts in the entire

function can be disabled.

void func1(void) {

 :

 __DI();

 /*Describe processing to be performed with interrupt disabled.*/

 __EI();

 :

}

_func1:

 -- prologue code

 :

 di

 -- processing to be performed with interrupt disabled

 ei

 :

 -- epilogue code

 jmp [lp]

#pragma block_interrupt [(]function-name[)]

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 77 of 751
Sep 01, 2013

Example How to use the #pragma block_interrupt directive and the code that is output are shown below.

- C source

- Output codes

(c) Notes on disabling interrupts in entire function

Note the following points when disabling interrupts in an entire function.

- If an interrupt handler and a #pragma block_interrupt directive are specified for the same interrupt, the

interrupt handler takes precedence, and the setting of disabling interrupts is ignored.

- If the following functions are called in a function in which an interrupt is disabled, the interrupt is enabled

when execution has returned from the call.

- Function specified by #pragma block_interrupt.

- Function that disables interrupt at the beginning and enables interrupt at the end.

- Describe the #pragma block_interrupt directive before the function definition in the same file; otherwise an

error occurs during compilation.

- However, the order of prototype declaration of a function is not affected.

- Neither #pragma inline nor inline expansion can be specified by an optimization option for the function

specified by a #pragma block_interrupt directive. The inline expansion specification is ignored.

- A code that manipulates the ep flag (that indicates exception processing is in progress) in the program

status word (PSW) is not output even if #pragma block_interrupt is specified.

(7) Embedded functions

In the CC-RH, some of the assembler instructions can be described in C source as "Embedded Functions". How-

ever, it is not described "as assembler instruction", but as a function format set in the CC-RH.

If a parameter is specified whose type cannot be implicitly converted to that of the parameter of the embedded

function, then an warning is output, and it is treated as an embedded function.

A error is also output if a register number that does not exist in the hardware is specified for ldsr()/stsr().

The instructions that can be described as functions are as follows.

#pragma block_interrupt func1

void func1(void) {

 :

 /*Describe processing to be performed with interrupt disabled.*/

 :

}

_func1:

 di

 -- prologue code

 :

 -- processing to be performed with interrupt disabled

 :

 -- epilogue code

 ei

 jmp [lp]

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 78 of 751
Sep 01, 2013

Table 3-20. Assembler Instruction

Assembler

Instruction

Function Embedded Function

di Interrupt control void __DI(void);

ei void __EI(void);

- Interrupt-priority-level control int NUM;

void* ADDRNote 1;

void __set_il_rh(NUM, ADDR);

- NUM : 1 - 16

 movhi highw1(ADDR), r0, rX

 ld.b loww(ADDR)[rX], rY

 andi 0x00F0, rY, rY

 ori (Priority - 1), rY, rY

 st.b loww(ADDR)[rX]

- NUM : 0

 movhi highw1(ADDR), r0, rX

 clr1 7, loww(ADDR)[rX]

- NUM : -1

 movhi highw1(ADDR), r0, rX

 set1 7, loww(ADDR)[rX]

- NUM : -2

 movhi highw1(ADDR), r0, rX

 clr1 6, loww(ADDR)[rX]

- NUM : -3

 movhi highw1(ADDR), r0, rX

 set1 6, loww(ADDR)[rX]

- NUM : No greater than 4 and no less than 17

 Out-of-range error

nop No operation void __nop(void);

halt Stops the processor void __halt(void);

satadd Saturated addition long a, b;

long __satadd(a, b);

satsub Saturated subtraction long a, b;

long __satsub(a, b);

bsh Halfword data byte swap long a;

long __bsh(a);

bsw Word data byte swap long a;

long __bsw(a);

hsw Word data halfword swap long a;

long __hsw(a);

mul Instruction that assigns higher

32 bits of multiplication result

to variable

long a, b;

long __mul32(a, b);

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 79 of 751
Sep 01, 2013

mulu Instruction that assigns higher

32 bits of unsigned multiplica-

tion result to variable

unsigned long a, b;

unsigned long __mul32u(a, b);

sch0l Bit (0) search from MSB side long a;

long __sch0l(a);

sch0r Bit (0) search from LSB side long a;

long __sch0r(a);

sch1l Bit (1) search from MSB side long a;

long __sch1l(a);

sch1r Bit (1) search from LSB side long a;

long __sch1r(a);

ldsr Loads to system register long regID;

unsigned long a;

void __ldsr(regIDNote 2, a);

ldsr Loads to system register long regID;

long selID;

unsigned long a;

void __ldsr_rh(regIDNote 2, selIDNote 2, a);

stsr Stores contents of system

register

long regID;

unsigned long __stsr(regIDNote 2);

stsr Stores contents of system

register

long regID;

long selID;

unsigned long __stsr_rh(regIDNote 2, selIDNote 2);

caxi Compare and Exchange long *a;

long b, c;

long __caxi(a, b, c);

clr1 Bit clear unsigned char *a;

int bit;

void __clr1(a, bit);

set1 Bit set unsigned char *a;

int bit;

void __set1(a, bit);

not1 Bit not unsigned char *a;

int bit;

void __not1(a, bit);

ldl.wNote 3 Atomic load. long *a;

long __ldlw(a);

stc.wNote 3 Store long *a;

long b;

void __stcw(a, b);

synce Exception synchronization void __synce(void);

Assembler

Instruction

Function Embedded Function

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 80 of 751
Sep 01, 2013

Notes 1. For ADDR, specify the address of the interrupt control register.

2. Specified the system register number (0 to 31) in regID and 0 to 7 in selID.

3. A warning is output when the -Xcpu=g3k option is used.

Caution Even if a function is defined with the same name as an embedded function, it cannot be used.

If an att isempt made to call such a function, processing for the embedded function provided by

the compiler takes precedence.

(8) Structure type packing

In the CC-RH, the alignment of structure members can be specified at the C language level. This function is equiv-

alent to the -Xpack option, however, the structure type packing directive can be used to specify the alignment value

in any location in the C source.

Caution The data area can be reduced by packing a structure type, but the program size increases and

the execution speed is degraded.

(a) Format of structure type packing

The structure type packing function is specified in the following format.

#pragma pack changes to an alignment value of the structure member upon the occurrence of this directive.

The numeric value is called the packing value and the specifiable numeric values are 1, 2, 4. When the

numeric value is not specified, the setting is the default alignment.Since this directive becomes valid upon

occurrence, several directives can be described in the C source.

Example

synce Instruction pipeline synchroni-

zation

void __synci(void);

syncm Memory synchronization void __syncm(void);

syncp Pipeline synchronization void __syncp(void);

#pragma pack [(][1|2|4][)]

#pragma pack 1 /*structure member aligned using 1-byte alignment*/

struct TAG {

 char c;

 int i;

 short s;

};

Assembler

Instruction

Function Embedded Function

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 81 of 751
Sep 01, 2013

(b) Rules of structure type packing

The structure members are aligned in a form that satisfies the condition whereby members are aligned accord-

ing to whichever is the smaller value: the structure type packing value or the member's alignment value.

For example, if the structure type packing value is 2 and member type is int type, the structure members are

aligned in 2-byte alignment.

Example

struct S {

 char c; /*satisfies 1-byte alignment condition*/

 int i; /*satisfies 4-byte alignment condition*/

};

#pragma pack 1

struct S1 {

 char c; /*satisfies 1-byte alignment condition*/

 int i; /*satisfies 1-byte alignment condition*/

};

#pragma pack 2

struct S2 {

 char c; /*satisfies 1-byte alignment condition*/

 int i; /*satisfies 2-byte alignment condition*/

};

struct S sobj; /*size of 8 bytes*/

struct S1 s1obj; /*size of 5 bytes*/

struct S2 s2obj; /*size of 6 bytes*/

0

0

0

7

7

7

8

8

1615

31 32

39

47

63

s2obj

s1obj

sobj

8

i

i

c

c

c i

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 82 of 751
Sep 01, 2013

(c) Union

A union is treated as subject to packing and is handled in the same manner as structure type packing.

Examples 1.

2.

union U {

 char c;

 int i;

};

#pragma pack 1

union U1 {

 char c;

 int i;

};

#pragma pack 2

union U2 {

 char c;

 int i;

};

union U uobj; /*size of 4 bytes*/

union U1 u1obj; /*size of 4 bytes*/

union U2 u2obj; /*size of 4 bytes*/

union U {

 int i:7;

};

#pragma pack 1

union U1 {

 int i:7;

};

#pragma pack 2

union U2 {

 int i:7;

};

union U uobj; /*size of 4 bytes*/

union U1 u1obj; /*size of 1 byte*/

union U2 u2obj; /*size of 2 bytes*/

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 83 of 751
Sep 01, 2013

(d) Bit field

Data is allocated to the area of the bit field element as follows.

<1> When the structure type packing value is equal to or larger than the alignment condition value of

the member type

Data is allocated in the same manner as when the structure type packing function is not used. That is, if

the data is allocated consecutively and the resulting area exceeds the boundary that satisfies the align-

ment condition of the element type, data is allocated from the area satisfying the alignment condition.

<2> When the structure type packing value is smaller than the alignment condition value of the ele-

ment type

- If data is allocated consecutively and results in the number of bytes including the area becoming

larger than the element type

The data is allocated in a form that satisfies the alignment condition of the structure type packing

value.

- Other conditions

The data is allocated consecutively.

Example

(e) Alignment condition of top structure object

The alignment condition of the top structure object is the same as when the structure packing function is not

used.

struct S {

 short a:7; /*0 to 6th bit*/

 short b:7; /*7 to 13th bit*/

 short c:7; /*16 to 22nd bit (aligned to 2-byte boundary)*/

 short d:15; /*32 to 46th bit (aligned to 2-byte boundary)*/

} sobj;

#pragma pack 1

struct S1 {

 short a:7; /*0 to 6th bit*/

 short b:7; /*7 to 13th bit*/

 short c:7; /*14 to 20th bit*/

 short d:15; /*24 to 38th bit (aligned to byte boundary)*/

} s1obj;

3122

0 386

46

7 2013

0

21
23

cba

d

14

s1obj

sobj

24

a b

39

c

d

13 16 23 32 63476 7

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 84 of 751
Sep 01, 2013

(f) Size of structure objects

Perform packing so that the size of structure objects becomes a multiple value of whichever is the smaller

value: the structure alignment condition value or the structure packing value. The alignment condition of the

top structure object is the same as when the structure packing function is not used.

Examples 1.

struct S {

 int i;

 char c;

};

#pragma pack 1

struct S1 {

 int i;

 char c;

};

#pragma pack 2

struct S2 {

 int i;

 char c;

};

struct S sobj; /*size of 8 bytes*/

struct S1 s1obj; /*size of 5 bytes*/

struct S2 s2obj; /*size of 6 bytes*/

310

39

40

310

31

32

c

c

39

s1obj

sobj

32

i

i

39

40

i

c

32 63

47

s2obj

0

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 85 of 751
Sep 01, 2013

2.

struct S {

 int i;

 char c;

};

struct T {

 char c;

 struct S s;

};

#pragma pack 1

struct S1 {

 int i;

 char c;

};

struct T1 {

 char c;

 struct S1 s1;

};

#pragma pack 2

struct S2 {

 int i;

 char c;

};

struct T2 {

 char c;

 struct S2 s2;

};

struct T tobj; /*size of 12 bytes*/

struct T1 t1obj; /*size of 6 bytes*/

struct T2 t2obj; /*size of 8 bytes*/

7

c

4740

c2

0

s1.i

7

s2.c

16

39

t1obj

tobj

s1.c

47
48

558

s2.i

15

8

63
56

t2obj

0

c1

31
7264

9532 63 71

s.i s.c

0 7 8

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 86 of 751
Sep 01, 2013

(g) Size of structure array

The size of the structure object array is a value that is the sum of the number of elements multiplied to the size

of structure object.

Example

struct S {

 int i;

 char c;

};

#pragma pack 1

struct S1 {

 int i;

 char c;

};

#pragma pack 2

struct S2 {

 int i;

 char c;

};

struct S sobj[2]; /*size of 16 bytes*/

struct S1 s1obj[2]; /*size of 10 bytes*/

struct S2 s2obj[2]; /*size of 12 bytes*/

c

c

64

40

31

0

i

40

95

71

39

s1obj

sobj

i

47 79
80

40
39

72
39

88
87

s2obj

0

c

31

ci

95
32

c

32
63

i

0

i i

48

79

104
127103

96

32

31

c

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 87 of 751
Sep 01, 2013

(h) Area between objects

For example, sobj.c, sobj.i, and cobj may be allocated consecutively without a gap in the following source pro-

gram (the allocation order of sobj and cobj is not guaranteed).

Example

(i) Notes concerning structure packing function

<1> Specification of the -Xpack option and #pragma pack directive at the same time

If the -Xpack option is specified when structure packing is specified with the #pragma pack directive in

the C source, the specified option value is applied to all the structures until the first #pragma pack direc-

tive appears. After this, the value of the #pragma pack directive is applied.

If you subsequently write #pragma pack (no value), then the value specified with this option is applied

following that line.

Example When -Xpack=4 is specified

<2> Structure packing value and alignment value of members

Structure members are arranged so that the alignment conditions match the smaller of the structure's

packing value and the members' alignment value. For example, if the structure's packing value is 2, and

a member type is long, then it is ordered to meet the 2-byte alignment condition.

#pragma pack 1

struct S {

 char c;

 int i;

} sobj;

char cobj;

struct S2 {...}; /*Packing value is specified as 4 in option.

 -Xpack=4 option is valid: packing value is 4.*/

#pragma pack 2 /*Packing is specified as 2 in #pragma directive

struct S1 {...}; pragma pack(2) is valid: packing value is 2.*/

#pragma pack /*No specification of packing value with #pragma directive

struct S2_2 {...}; -Xpack=4 option is valid: packing value is 4.*/

0 7 39 4740

sobj, cobj

8

ic cobj

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 88 of 751
Sep 01, 2013

Example

<3> Nested #pragma pack specification

Specify nested #pragma pack specifications for a structure as follows.

A warning is output for structure or union members with different alignment.

The alignment of members generating the warning will be in accordance with the #pragma pack state-

ments in the source code.

Example

struct S {

 char c; /*Meets 1-byte alignment condition*/

 long i; /*Meets 4-byte alignment condition*/

};

#pragma pack(1)

struct S1 {

 char c; /*Meets 1-byte alignment condition*/

 long i; /*Meets 1-byte alignment condition*/

};

#pragma pack(2)

struct S2 {

 char c; /*Meets 1-byte alignment condition*/

 long i; /*Meets 2-byte alignment condition*/

};

struct S sobj; /*Size 8 bytes*/

struct S1 s1obj; /*Size 5 bytes*/

struct S2 s2obj; /*Size 6 bytes*/

#pragma pack 1

struct ST1

{

 char c;

#pragma pack 4

 struct ST4 //size=8, align=4 (Type is 4)

 {

 char c; //offset=1

 short s; //offset=3

 int i; //offset=5

 } st4; //size=8, align=1 (1, because this is an ST1 member)

 //Warning at location of member st4

 int i;

} st1; //size=13, align=1

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 89 of 751
Sep 01, 2013

(9) Bit field assignment

CC-RH can switch the order of a bit field.

(a) Format for specifying bit field assignment

Specify bit field assignment using the following format.

If left is specified, then members are assigned from the MSB; if right is specified, then they are assigned from

the LSB.

Examples 1. The default is right.

The internal representation for the bit field in the above example is as follows.

Figure 3-11. Internal Representation of Bit Field

2.

The internal representation for the bit field in the above example is as follows.

Figure 3-12. Internal Representation of Bit Field

#pragma bit_order [{left|right}]

#pragma bit_order right

struct {

 unsigned int f1:30;

 int f2:14;

 unsigned int f3:6;

} flag;

#pragma bit_order left

struct {

 unsigned int f1:30;

 int f2:14;

 unsigned int f3:6;

} flag;

f1f2

52

f3

4551 3246 063 30

f1f2

50

f3

4349 24463 32 31 1 0

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 90 of 751
Sep 01, 2013

3.

The internal representation for the bit field in the above example is as follows.

Figure 3-13. Internal Representation of Bit Field

4.

The internal representation for the bit field in the above example is as follows.

Figure 3-14. Internal Representation of Bit Field

#pragma bit_order right

struct {

 int f1:5;

 char f2:4;

 int f3:6;

} flag;

#pragma bit_order left

struct {

 int f1:5;

 char f2:4;

 int f3:6;

} flag;

f1f2

18

f3

717 58 4 031 12 11

f1

28

f3

727 38 2 031 22 21

f2

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 91 of 751
Sep 01, 2013

(10)Core number specification (for a multi-core device)

The core number specification function enables selection of data allocation area (the local memory in a specified

core or the global memory shared by all cores) or selection of the core for function execution (a specified core or

any core) when a multi-core device is used.

This function is specified by a combination of the #pragma directive described below and link options.

For example, to allocate variable x (assumed to be allocated to a data section) to the local memory for core num-

ber 1, specify as follows.

- Specify a pragma directive as follows before the first definition or declaration of variable x in the file:

This makes the compiler and assembler allocate variable x to section .data.pm1.

- Specify the following link option:

This makes the linker allocate section .data.pm1 to the local memory for core number 1 (This example

assumes 0xfe8f0000 as an address in the local memory for core number 1).

Specifying core numbers for variables or functions has the following merits.

- When a core number is added to each section name, the user can manage the correspondence between

cores and variables or functions; that is, which variable is allocated to the local memory of which core and

which function is executed in which core.

This information can be viewed through CubeSuite+.

- As core numbers are added to all section names including the default section names, the user does not need

to change the section names for every core.

- The compiler can check the correspondence between core numbers and data or functions (If a function that

should be executed only in core 1 calls a function that should be executed only in core 2, the compiler can

detect it as an error).

(a) Format for specifying core number

Specify a core number for a multi-core device in the following format.

This pragma directive is valid only when the -Xmulti_level option is specified. If the -Xmulti_level option is not

specified, a warning is output and the core number specification is ignored.

The following table shows the available pm specification forms and the names of the corresponding allocated

sections.

Only pm1 to pm255 or cmn can be written as pm specification. For a variable or a function with pm specifica-

tion, a period (.) and the string used for pm specification is added at the end of the allocated section name.

#pragma pmodule pm1

-start=.data.pm1/fe8f0000

#pragma pmodule pm-specification

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 92 of 751
Sep 01, 2013

- If a pm specification other than cmn or pm1 to pm255 is written, a compilation error is generated.

- #pragma pmodule is applied to all static variable declarations, function declarations, and string literalsNote

that appear after the #pragma pmodule declaration line.

Note This directive is applied to all items allocated to the section; it is also applied to the string literals

allocated to the const section.

- #The #pragma pmodule directive adds the string described above to both the default section names and

user-specified section names.

Example .data -> .data.pm1

mydata.data -> mydata.data.pm1

- When the same variable or function declaration is specified multiple times within a single translation unit,

if different #pragma pmodule specifications are written for them, the first specification is valid.

Example

The following shows specification examples.

These examples assume that the -Xmulti_level=1 is specified.

-Xmulti_level

Value

pm Specification

Value

Meaning Name of Allocation

Section

1 None Default (cmn) is specified. ***.cmn

cmn - For data

Allocated to the global shared memory

used in common for all cores.

- For a function

The function can be executed in any core

***.cmn

pm1 Data or function for core 1 ***.pm1

 : : :

pm255 Data or function for core 255 ***.pm255

0 A warning message is output and the core number specification is

ignored.

(No string is added at the

end of the section

name.)

#pragma pmodule pm1

extern int i;

#pragma pmodule pm2

int i = 5; //pm1 is valid

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 93 of 751
Sep 01, 2013

Examples 1.

2.

3.

#pragma section r0_disp16

int i; //.zbss.pm1

--

#pragma pmodule pm2

int i; //.bss.pm2

int j = 5; //.data.pm2

const int k = 10; //.const.pm2

void func(void) //.text.pm2

{

 func2("abcde"); //"abcde" = .const.pm2

}

--

#pragma pmodule pm2

#pragma section r0_disp16

int i; //.zbss.pm2

--

#pragma section r0_disp16

#pragma pmodule pm2

int i; //.zbss.pm2

--

#pragma pmodule pm2

#pragma pmodule pm3

#pragma section r0_disp16

int i; //.zbss.pm3

#pragma pmodule pm1

int j; //.zbss.pm1

extern int i;

#pragma pmodule pm2

int i; //.bss.pm2 (No warning)

#pragma pmodule pm2

extern int i;

int i; //.bss.pm2 (No warning)

CubeSuite+ V2.01.00 CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 94 of 751
Sep 01, 2013

4.

3.2.6 Modification of C source

By using expanded function object with high efficiency can be created. However, as expanded function is adapted in

RH850 family, C source needs to be modified so as to use in other than RH850 family.

Here, 2 methods are described for shifting to the CC-RH from other C compiler and shifting to C compiler from the CC-

RH.

<From other C compiler to the CC-RH>

- #pragmaNote

C source needs to be modified, when C compiler supports the #pragma. Modification methods are examined

according to the C compiler specifications.

- Expanded Specifications

It should be modified when other C compilers are expanding the specifications such as adding keywords etc.

Modified methods are examined according to the C compiler specifications.

Note #pragma is one of the pre-processing directives supported by ANSI. The character string next to #pragma

is made to be recognized as directives to C compiler. If that directive does not supported by the compiler,

#pragma directive is ignored and the compiler continues the process and ends normally.

<From the CC-RH to other C compiler>

- The CC-RH, either deletes key word or divides # fdef in order shift to other C compiler as key word has been

added as expanded function.

Examples 1. Disable the keywords

2. Change to other type

#pragma pmodule pm2

extern int i;

#pragma pmodule pm3

int i; //.bss.pm2 (No warning)

#ifndef __CCRH__

#define interrupt /*considered interrupt function as normal function*/

#endif

#ifdef __v850e3v5__

#define _Bool char /*change _Bool type variable to char type variable*/

#endif

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 95 of 751
Sep 01, 2013

CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

This chapter explains the assembly language specifications supported by the CC-RH assembler.

4.1 Description of Source

This section explains description of source, expressio, and operators.

4.1.1 Description

An assembly language statement consists of a "symbol", a "mnemonic", "operands", and a "comment".

Separate labels by colons or one or more whitespace characters. Whether colons or spaces are used, however,

depends on the instruction coded by the mnemonic.

It is irrelevant whether blanks are inserted in the following location.

- Between the symbol name and colon

- Between the colon and mnemonic

- Before the second and subsequent operands

- Before semicolon that indicates the beginning of a comment

One or more blank is necessary in the following location.

- Between the mnemonic and the operand

Figure 4-1. Organization of Assembly Language Statement

One assembly language statement is described on one line. There is a line feed (return) at the end of the statement.

(1) Character set

The characters that can be used in a source program (assembly language) supported by the asembler are the

following 3 types of characters.

- Language characters

- Character data

- Comment characters

[symbol][:Δ] [mnemonic] [operand], [operand] ;[comment]

Symbol

Mnemonic

Operand Comment

Symbol: add 0x10, r19 ;For example

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 96 of 751
Sep 01, 2013

(a) Language characters

These characters are used to code instructions in the source.

Table 4-1. Language Characters and Usage of Characters

Character Usage

Numerals Constitutes an identifier and constant

Lowercase letter (a-z) Constitutes a mnemonic, identifier, and constant

Uppercase letter (A-Z) Constitutes an identifier and constant

@ Constitutes an identifier and constant

_ (underscore) Constitutes an identifier

.(period) Constitutes an identifier and constant

~ Constitutes an identifier and constant

, (comma) Delimits an operand

: (colon) Delimits a label

; (semicolon) Beginning of comment

* Multiplication operator

/ Division operator

+ Positive sign and addition operator

- (hyphen) Negative sign and subtraction operator

' (single quotation) Character constant and symbol indicating a complete macro parameter

< Relational operator

> Relational operator

() Specifies an operation sequence

$ Symbol indicating the start of a control instruction equivalent to an

assembler option

Symbol specifying relative addressing

gp offset reference of label

= Relational operator

! Beginning immediate addressing and negation operator

Δ (blank) Field delimiter

~ Concatenation symbol (in macro body)

& Logical product operator

Beginning indicates and comment

[] Indirect indication symbol

"(double quotation) Start and end of character string constant

% ep offset referring of a label and remainder operator

<< Left shift operator

>> Right shift operator

| Logical sum operator

^ Exclusive OR operator

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 97 of 751
Sep 01, 2013

(b) Character data

Character data refers to characters used to write character string constant, character constant, and the quote-

enclosed operands of some control instructions.

Caution Character data can use all characters except 0x00 (including multibyte kanji, although the

encoding depends on the OS). If 0x00 is encountered, an error occurs and all characters

from the 0x00 to the closing single quote (') are ignored.

(c) Comment characters

Comment characters are used to write comments.

Caution Comment characters and character data have the same character set.

(2) Symbol

The symbol field is for symbols, which are names given to addresses and data objects. Symbols make programs

easier to understand.

(a) Symbol types

Symbols can be classified as shown below, depending on their purpose and how they are defined.

(b) Conventions of symbol description

Observe the following conventions when writing symbols.

- The characters which can be used in symbols are the alphanumeric characters and special characters

(@, _, .).

The first character in a symbol cannot be a digit (0 to 9). If you wish to specify a number as first character

with a section name, enclose each file name with a double quotation (").

- The maximum number of characters for a symbol is 4,294,967,294 (=0xFFFFFFFE) (theoretical value).

The actual number that can be used depends on the amount of memory, however.

- Reserved words cannot be used as symbols.

See "4.5 Reserved Words" for a list of reserved words.

- The same symbol cannot be defined more than once.

However, a symbol defined with the .set directive can be redefined with the .set directive.

- The assembler distinguishes between lowercase and uppercase characters.

- When a label is written in a symbol field, the colon (:) must appear immediately after the label name.

Symbol Type Purpose Definition Method

Name Used as names for addresses and data

objects in source programs.

Write in the symbol field of a Symbol

definition directive.

Label Used as labels for addresses and data

objects in source programs.

Write a symbol followed by a colon (:).

External

reference name

Used to reference symbols defined by other

source modules.

Write in the operand field of an external

reference directive.

Section name Used at link time. Write in the symbol field of a section

definition directive.

Macro name Use to name macros in source programs. Write in the symbol field of macro directive.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 98 of 751
Sep 01, 2013

Example Correct symbols

Example Incorrect symbols

Example A statement composed of a symbol only

(c) Points to note about symbols

The assembler generates a name automatically when a section definition directive does not specify a name.

These section names are listed below.

Duplicate section name definitions are errors.

CODE01 .cseg ; "CODE01" is a section name.

VAR01 .set 0x10 ; "VAR01" is a name.

LAB01: .dw 0 ; "LAB01" is a label.

1ABC .set 0x3 ; The first character is a digit.s

LAB mov 1, r10 ; "LAB"is a label and must be separated from the mnemonic

 ; field by a colon (:).

FLAG: .set 0x10 ; The colon (:) is not needed for symbols.

ABCD: ; ABCD is defined as a label.

Section Name Directive Relocation Attribute

.text .cseg directive TEXT

.const CONST

.zconst ZCONST

.zconst23 ZCONST23

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 99 of 751
Sep 01, 2013

(d) Symbol attributes

Every symbol and label has both a value and an attribute.
The value is the value of the defined data object, for example a numerical value, or the value of the address
itself.
Macro names do not have values.
The following table lists symbol attributes.

.bss .dseg directive BSS

.data DATA

.sbss SBSS

.sdata SDATA

.sbss23 SBSS23

.sdata23 SDATA23

.tdata TDATA

.tbss4 TBSS4

.tdata4 TDATA4

.tbss5 TBSS5

.tdata5 TDATA5

.tbss7 TBSS7

.tdata7 TDATA7

.tbss8 TBSS8

.tdata8 TDATA8

.ebss EBSS

.edata EDATA

.ebss23 EBSS23

.edata23 EDATA23

.zbss ZBSS

.zdata ZDATA

.zbss23 ZBSS23

.zdata23 ZDATA23

Attribute Type Classification Value

BIT - Symbols defined as bit values

- Symbols defined with the EXTBIT directive

Decimal notation:

-2147483648 to 2147483647

Hexadecimal notation:

0x80000000 to 0x7FFFFFFF (signed)

MACRO Macro names defined with the Macro directive These attribute types have no values.

FNUMBER Symbols defined with the FLOAT directive

(Single precision floating point)

1.40129846e-45 to 3.40282347e+38

Section Name Directive Relocation Attribute

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 100 of 751
Sep 01, 2013

Example

(3) Mnemonic field

Write instruction mnemonics, directives, and macro references in the mnemonic field.

If the instruction or directive or macro reference requires an operand or operands, the mnemonic field must be

separated from the operand field with one or more blanks or tabs.

However, if the first operand begins with "#", "$","!", or "[", the statement will be assembled properly even if nothing

exists between the mnemonic field and the first operand field.

Example Correct mnemonics

Example Incorrect mnemonics

(4) Operand field

In the operand field, write operands (data) for the instructions, directives, or macro references that require them.

Some instructions and directives require no operands, while others require two or more.

When you provide two or more operands, delimit them with a comma (,).

The following types of data can appear in the operand field:

- Constants (numeric constants, character constants, character string constants)

- Register names

- Symbols

- Expressions

See the user's manual of the target device for the format and notational conventions of instruction set operands.

The following sections explain the types of data that can appear in the operand field.

(a) Constants

A constant is a fixed value or data item and is also referred to as immediate data.

There are numeric constants, character constants and character string constants.

- Numeric constants

Integer constants can be written in binary, octal, decimal, or hexadecimal notation.

Integer constants has a width of 32 bits. A negative value is expressed as a 2's complement. If an integer

value that exceeds the range of the values that can be expressed by 32 bits is specified, the assembler

DFNUMBER Symbols defined with theDOUBLE directive

(Double-precision floating point)

4.9406564584124654e-324 to

1.7976931348623157e+308

BIT1 .set 0xFFE20.0 ; The symbol BIT1 has the BIT attribute and a value of 0xFFE20.0.

mov 1, r10

mov1, r10 ; There is no blank between the mnemonic and operand fields.

mo v 1, r10 ; The mnemonic field contains a blank.

MOVE ; This is an instruction that cannot be coded in the mnemonic field.

Attribute Type Classification Value

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 101 of 751
Sep 01, 2013

uses the value of the lower 32 bits of that integer value and continues processing (it does not output any

message).

Floating constants consist of the following elements. Specify the exponent and mantissa as decimal

constants. Do not use (3), (4), or (5) if an exponent expression cannot be used.

(1) sign of mantissa part ("+" is optional)

(2) mantissa part

(3) 'e' or 'E' indicating the exponent part

(4) sign of exponent part ("+" is optional)

(5) exponent part

Example

You can indicate that the number is a floating constant by appending "0f" or "0F" to the front of the

mantissa.

Example

- Character constants

A character constant consists of a single character enclosed by a pair of single quotation marks (' ') and

indicates the value of the enclosed characterNote.

If any of the escape sequences listed below is specified in " ' " and " ' ", the assembler regards the

sequence as being a single character.

Example

Note If a character constant is specified, the assembler assumes that an integer having the value of

that character constant is specified.

Type Notation Example

Binary Append an "0b" suffix to the number. 0b1101

Octal Append an "0" suffix to the number. 074

Decimal Simply write the number. 128

Hexadecimal Append an "0x" suffix to the number. 0xA6

123.4

-100.

10e-2

-100.2E+5

0f10

'A' ; 0x00000041

' ' ; 0x00000020 (1 blank)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 102 of 751
Sep 01, 2013

Table 4-2. Value and Meaning of Escape Sequence

Note If a value exceeding "\377" is sp value of the escape sequence becomes the lower 1 byte. Cannot

be of value more than 0377. For example value of"\777"is 0377.

- Character string constants

A character-string constant is expressed by enclosing a string of characters from those shown in "(1)

Character set", in a pair of single quotation marks (").

To include the single quote character in the string, write it twice in succession.

Example

(b) Register names

The following registers can be named in the operand field:

- r0, zero, r1, r2, hp, r3, sp, r4, gp, r5, tp, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21,

r22, r23, r24, r25, r26, r27, r28, r29, r30, ep, r31, lp

r0 and zero (Zero register), r2 and hp (Handler stack pointer), r3 and sp (Stack pointer), r4 and gp (Global

pointer), r5 and tp (Text pointer), r30 and ep (Element pointer), r31 and lp (Link pointer) shows the same regis-

ter.

Remark For the ldsr and stsr instructions, the PSW, and system registers are specified by using the num-

bers. Further, in assembler, PC cannot be specified as an operand.

Escape Sequence Value Meaning

\0 0x00 null character

\a 0x07 Alert

\b 0x08 Backspace

\f 0x0C Form feed

\n 0x0A Line feed

\r 0x0D Carriage return

\t 0x09 Horizontal tab

\v 0x0B Vertical tab

\\ 0x5C Back slash

\' 0x27 Single quotation marks

\" 0x22 Double quotation mark

\? 0x3F Question mark

\ddd 0 to 0377 Octal number of up to 3 digits (0 < d < 7) Note

\xhh 0 to 0xFF Hexadecimal number of up to 2 digits

(0 < h < 9, a < h < f, or A < h < F)

"ab" ; 0x6162

"A" ; 0x41

" " ; 0x20 (1 blank)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 103 of 751
Sep 01, 2013

(c) Symbols

The assembler supports the use of symbols as the constituents of the absolute expressions or relative expres-

sions that can be used to specify the operands of instructions and directives.

(d) Expressions

An expression is a combination of constants and symbols, by an operator.

Expressions can be specified as instruction operands wherever a numeric value can be specified.

See "4.1.2 Expressions and operators" for more information about expressions.

Example

In this example, "TEN - 0x05" is an expression.

In this expression, a symbol and a numeric value are connected by the - (minus) operator. The value of the

expression is 0x0B, so this expression could be rewritten as "mov 0x0B, r10".

(5) Comment

Describe comments in the comment field, after a semicolon (;).

The comment field continues from the semicolon to the new line code at the end of the line, or to the EOF code of

the file.

Comments make it easier to understand and maintain programs.

Comments are not processed by the assembler, and are output verbatim to assembly lists.

Characters that can be described in the comment field are those shown in "(1) Character set".

TEN .set 0x10

 mov TEN - 0x05, r10

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 104 of 751
Sep 01, 2013

4.1.2 Expressions and operators

An expression is a symbol, constant or location counter (indicated by $), an operator combined with one of the above,

or a combination of operators.

Elements of an expression other than the operators are called terms, and are referred to as the 1st term, 2nd term, and

so forth from left to right, in the order that they occur in the expression.

The assembler supports the operators shown in "Table 4-3. Operator Types". Operators have priority levels, which
determine when they are applied in the calculation. The priority order is shown in "Table 4-4. Operator Precedence
Levels".

The order of calculation can be changed by enclosing terms and operators in parentheses "()".

Example

In the above example, "5 * (SYM+1)" is an expression. "5" is the 1st term, "SYM" is the 2nd term, and "1" is the 3rd

term. The operators are "*", "+", and "()".

Table 4-3. Operator Types

The above operators can also be divided into unary operators and binary operators.

Table 4-4. Operator Precedence Levels

Expressions are operated according to the following rules.

mov32 5 * (SYM + 1), r12

Operator Type Operators

Arithmetic operators +, -, *, /, %, +sign, -sign

Logic operators !, &, |, ^

Relational operators ==, !=, >, >=, <, <=, &&, ||

Shift operators >>, <<

Byte separation operators HIGH, LOW

2-byte separation operators HIGHW, LOWW, HIGHW1

Section aggregation operators STARTOF, SIZEOF

Other operator ()

Unary operators +sign, -sign, !, HIGH, LOW, HIGHW, LOWW, HIGHW1

Binary operators +, -, *, /, %, &, |, ^, ==, =, >, >=, <, <=, >>, <<, &&, ||

Priority Level Operators

Higher

Lower

1 +sign, -sign, !

2 *, /, %, >>, <<

3 &, |, ^

4 +, -

5 ==, !=, >, >=, <, <=

6 &&, ||

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 105 of 751
Sep 01, 2013

- The order of operation is determined by the priority level of the operators.

When two operators have the same priority level, operation proceeds from left to right, except in the case of unary

operators, where it proceeds from right to left.

- Sub-expressions in parentheses "()" are operated before sub-expressions outside parentheses.

- Expressions are operated using unsigned 32-bit values.

If intermediate values overflow 32 bits, the overflow value is ignored.

- If the value of a constant exceeds 32 bits, an error occurs, and its value is calculated as 0.

- In division, the decimal fraction part is discarded.

If the divisor is 0, an error occurs and the result is 0.

- Negative values are represented as two's complement.

- External reference symbols are evaluated as 0 at the time when the source is assembled (the evaluation value is

determined at link time).

(1) Evaluation examples

Note EXT: External reference symbols

Expression Evaluation

2 + 4 * 5 22

(2 + 3) * 4 20

10/4 2

0 - 1 0xFFFFFFFF

-1 > 1 0x0 (False)

EXTNote + 1 1

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 106 of 751
Sep 01, 2013

4.1.3 Arithmetic operators

The following arithmetic operators are available.

Operator Overview

+ Addition of values of first and second terms.

- Subtraction of value of first and second terms.

* Multiplacation of value of first and second terms.

/ Divides the value of the 1st term of an expression by the value of its 2nd term

and returns the integer part of the result.

% Obtains the remainder in the result of dividing the value of the 1st term of an

expression by the value of its 2nd term.

+sign Returns the value of the term as it is.

-sign The term value 2 complement is sought.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 107 of 751
Sep 01, 2013

Addition of values of first and second terms.

[Function]

Returns the sum of the values of the 1st and 2nd terms of an expression.

[Application example]

(1) The jr instruction causes a jump to "address assigned to START plus 6", namely, to address "0x100 + 0x6

= 0x106" when START label is 0x100.

+

 .org 0x100

START: jr START + 6 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 108 of 751
Sep 01, 2013

Subtraction of value of first and second terms.

[Function]

Returns the result of subtraction of the 2nd-term value from the 1st-term value.

[Application example]

(1) The jr instruction causes a jump to "address assigned to BACK minus 6", namely, to address "0x100 - 0x6

= 0xFA" when BACK label is 0x100.

-

 .org 0x100

BACK: jr BACK - 6 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 109 of 751
Sep 01, 2013

Multiplacation of value of first and second terms.

[Function]

Returns the result of multiplication (product) between the values of the 1st and 2nd terms of an expression.

[Application example]

(1) With the .set directive, the value "0x10" is defined in the symbol "TEN".

The expression "TEN * 3" is the same as "0x10 * 3" and returns the value "0x30".

Therefore, (1) in the above expression can also be described as: mov 0x30, r10.

*

TEN .set 0x10

 mov TEN * 3, r10 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 110 of 751
Sep 01, 2013

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.

[Function]

Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of the result.

The decimal fraction part of the result will be truncated. If the divisor (2nd term) of a division operation is 0, an error

occurs

[Application example]

(1) The result of the division "256 / 50" is 5 with remainder 6.

The operator returns the value "5" that is the integer part of the result of the division.

Therefore, (1) in the above expression can also be described as: mov 5, r10.

/

mov 256 / 50, r10 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 111 of 751
Sep 01, 2013

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.

[Function]

Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its 2nd term.

An error occurs if the divisor (2nd term) is 0.

[Application example]

(1) The result of the division "256 / 50" is 5 with remainder 6.

The MOD operator returns the remainder 6.

Therefore, (1) in the above expression can also be described as: mov 6, r10.

%

mov 256 % 50, r10 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 112 of 751
Sep 01, 2013

Returns the value of the term as it is.

[Function]

Returns the value of the term of an expression without change.

[Application example]

(1) The value "5" of the term is returned without change.

The value "5" is defined in symbol "FIVE" with the .set directive.

+sign

FIVE .set +5 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 113 of 751
Sep 01, 2013

The term value 2 complement is sought.

[Function]

Returns the value of the term of an expression by the two's complement.

[Application example]

(1) -1 becomes the two's complement of 1.

0000 0000 0000 0000 0000 0000 0000 0001 becomes:

1111 1111 1111 1111 1111 1111 1111 1111

Therefore, with the .set directive, the value "0xFFFFFFFF" is defined in the symbol "NO".

-sign

NO .set -1 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 114 of 751
Sep 01, 2013

4.1.4 Logic operators

The following logic operators are available.

Operator Overview

! Obtains the logical negation (NOT) by each bit.

& Obtains the logical AND operation for each bit of the first and second term

values.

| Obtains the logical OR operation for each bit of the first and second term values.

^ Obtains the exclusive OR operation for each bit of the first and second term

values.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 115 of 751
Sep 01, 2013

Obtains the logical negation by each bit.

[Function]

Negates the value of the term of an expression on a bit-by-bit basis and returns the result.

[Application example]

(1) Logical negation is performed on "0x3" as follows:

0xFFFC is returned.

Therefore, (1) can also be described as: mov 0xFFFC, r10.

!

mov !0x3, r10 ; (1)

NOT) 0000 0000 0000 0000

1111 1111 1111 1111

0000 0000 0000 0011

1111 1111 1111 1100

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 116 of 751
Sep 01, 2013

Obtains the logical AND operation for each bit of the first and second term values.

[Function]

Performs an AND (logical product) operation between the value of the 1st term of an expression and the value of its

2nd term on a bit-by-bit basis and returns the result.

[Application example]

(1) AND operation is performed between the two values "0x6FA" and "0xF" as follows:

The result "0xA" is returned. Therefore, (1) in the above expression can also be described as:

mov 0xA, r10.

&

mov 0x6FA & 0xF, r10 ; (1)

&) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 1111

0000 0000 0000 1010

0000 0110 1111 1010

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 117 of 751
Sep 01, 2013

Obtains the logical OR operation for each bit of the first and second term values.

[Function]

Performs an OR (Logical sum) operation between the value of the 1st term of an expression and the value of its 2nd

term on a bit-by-bit basis and returns the result.

[Application example]

(1) OR operation is performed between the two values "0xA" and "0b1101" as follows:

The result "0xF" is returned.

Therefore, (1) in the above expression can also be described as: mov 0xF, r10.

|

mov 0xA | 0b1101, r10 ; (1)

|) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 1101

0000 0000 0000 1111

0000 0000 0000 1010

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 118 of 751
Sep 01, 2013

Obtains the exclusive OR operation for each bit of the first and second term values.

[Function]

Performs an Exclusive-OR operation between the value of the 1st term of an expression and the value of its 2nd term

on a bit-by-bit basis and returns the result.

[Application example]

(1) XOR operation is performed between the two values "0x9A" and "0x9D" as follows:

The result "0x7" is returned.

Therefore, (1) in the above expression can also be described as: mov32 0x7, r12.

^

mov32 0x9A ^ 0x9D, r12 ; (1)

^) 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 1001 1101

0000 0000 0000 0111

0000 0000 1001 1010

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 119 of 751
Sep 01, 2013

4.1.5 Relational operators

The following relational operators are available.

Operator Overview

== Compares whether values of first term and second term are equivalent.

!= Compares whether values of first term and second term are not equivalent.

> Compares whether value of first term is greater than value of the second.

>= Compares whether value of first term is greater than or equivalent to the value of

the second term.

< Compares whether value of first term is smaller than value of the second.

<= Compares whether value of first term is smaller than or equivalent to the value of

the second term.

&& Calculates the logical product of the logical value of the first and second

operands.

|| Calculates the logical sum of the logical value of the first and second operands.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 120 of 751
Sep 01, 2013

Compares whether values of first term and second term are equivalent.

[Function]

Returns ∼0 (True) if the value of the 1st term of an expression is equal to the value of its 2nd term, and 0 (False) if both

values are not equal.

==

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 121 of 751
Sep 01, 2013

Compares whether values of first term and second term are not equivalent.

[Function]

Returns ∼0 (True) if the value of the 1st term of an expression is not equal to the value of its 2nd term, and 0 (False) if

both values are equal.

!=

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 122 of 751
Sep 01, 2013

Compares whether value of first term is greater than value of the second.

[Function]

Returns ∼0(True) if the value of the 1st term of an expression is greater than the value of its 2nd term, and 0 (False) if

the value of the 1st term is equal to or less than the value of the 2nd term.

>

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 123 of 751
Sep 01, 2013

Compares whether value of first term is greater than or equivalent to the value of the second term.

[Function]

Returns ∼0 (True) if the value of the 1st term of an expression is greater than or equal to the value of its 2nd term, and

0 (False) if the value of the 1st term is less than the value of the 2nd term.

>=

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 124 of 751
Sep 01, 2013

Compares whether value of first term is smaller than value of the second.

[Function]

Returns ∼0 (True) if the value of the 1st term of an expression is less than the value of its 2nd term, and 0 (False) if the

value of the 1st term is equal to or greater than the value of the 2nd term.

<

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 125 of 751
Sep 01, 2013

Compares whether value of first term is smaller than or equivalent to the value of the second term.

[Function]

Returns ∼0 (True) if the value of the 1st term of an expression is less than or equal to the value of its 2nd term, and 0

(False) if the value of the 1st term is greater than the value of the 2nd term.

<=

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 126 of 751
Sep 01, 2013

Calculates the logical product of the logical value of the first and second operands.

[Function]

Calculates the logical product of the logical value of the first and second operands.

&&

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 127 of 751
Sep 01, 2013

Calculates the logical sum of the logical value of the first and second operands.

[Function]

Calculates the logical sum of the logical value of the first and second operands.

||

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 128 of 751
Sep 01, 2013

4.1.6 Shift operators

The following shift operators are available.

Operator Overview

>> Obtains only the right-shifted value of the first term which appears in the second

term.

<< Obtains only the left-shifted value of the first term which appears in the second

term.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 129 of 751
Sep 01, 2013

Obtains only the right-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the right the number of bits specified

by the value of the 2nd term.

The sign bit is not shifted.

The sign bit is inserted in the high-order bits, the same number of times as the number of bits that were shifted.

If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits exceeds 31, 0

is returned.

[Application example]

(1) The value "0x800001AF" is shifted 5 bits to the right, leaving the sign bit.

"0xFC00000D" is forwarded to r20.

Therefore, (1) in the above example can also be described as: mov32 0xFC00000D,r20.

>>

mov32 0x800001AF >> 5, r20 ; (1)

1000 0000 0000 0000 0000 0001 1010 1111

1111 1100 0000 0000 0000 0000 0000 1101 0111 1

1's of a sign bit are inserted. For 5 bits, the right shift

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 130 of 751
Sep 01, 2013

Obtains only the left-shifted value of the first term which appears in the second term.

[Function]

Returns a value obtained by shifting the value of the 1st term of an expression to the left the number of bits specified by

the value of the 2nd term.

Zeros equivalent to the specified number of bits shifted move into the low-order bits.

If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits exceeds 31, 0

is returned.

[Application example]

(1) This operator shifts the value "0x21" to the left by 2 bits.

"0x84" is forwarded to r20.

Therefore, (1) in the above example can also be described as: mov32 0x84, r20.

(2) This operator shifts the value "0x3B" to the right by 2 bits, and shifts to the left by 2 bits.

"0x3BC" is forwarded to r20.

Therefore, (2) in the above example can also be described as: mov32 0x3BC, r20.

<<

mov32 0x21 << 2, r20 ; (1)

mov32 0x3BF >> 2 << 2, r20 ; (2)

0000 0000 0000 0000 0000 0000 0010 0001

0000 0000 0000 0000 0000 0000 1000 010000

For 2 bits, the left shift 0's are inserted.

0000 0000 0000 0000 0000 0011 1011 110000

For 2 bits, the left shift 0's are inserted.

0000 0000 0000 0000 0000 0011 1011 1111

0000 0000 0000 0000 0000 0000 1110 1111 11

0's are inserted. For 2 bits, the right shift

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 131 of 751
Sep 01, 2013

4.1.7 Byte separation operators

The following byte separation operators are available.

Operator Overview

HIGH Returns the high-order 8-bit value of a term.

LOW Returns the low-order 8-bit value of a term.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 132 of 751
Sep 01, 2013

Returns the high-order 8-bit value of a term.

[Function]

Returns the high-order 8-bit value of a term.

[Application example]

(1) By executing a mov instruction, this operator returns the high-order 8-bit value "0x12" of the expression

"0x1234".

Therefore, (1) in the above example can also be described as: mov 0x12, r10.

HIGH

mov HIGH(0x1234), r10 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 133 of 751
Sep 01, 2013

Returns the low-order 8-bit value of a term.

[Function]

Returns the low-order 8-bit value of a term.

[Application example]

(1) By executing a mov instruction, this operator returns the low-order 8-bit value "0x34" of the expression

"0x1234".

Therefore, (1) in the above example can also be described as: mov 0x34, r10.

LOW

mov LOW(0x1234), r10 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 134 of 751
Sep 01, 2013

4.1.8 2-byte separation operators

The following 2-byte separation operators are available.

Operator Overview

HIGHW Returns the high-order 16-bit value of a term.

LOWW Returns the low-order 16-bit value of a term.

HIGHW1 The value calculated by adding the value at the 15th bit to the uppermost 16 bits

of the term.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 135 of 751
Sep 01, 2013

Returns the high-order 16-bit value of a term.

[Function]

Returns the high-order 16-bit value of a term.

[Application example]

(1) By executing a movea instruction, this operator returns the high-order 16-bit value "0x1234" of the

expression "0x12345678".

Therefore, (1) in the above example can also be described as: movea 0x1234, R0, r10.

HIGHW

movea HIGHW(0x12345678), R0, r10 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 136 of 751
Sep 01, 2013

Returns the low-order 16-bit value of a term.

[Function]

Returns the low-order 16-bit value of a term.

[Application example]

(1) By executing a movea instruction, this operator returns the low-order 16-bit value "0x5678" of the

expression "0x12345678".

Therefore, (1) in the above example can also be described as: movea 0x5678, R0, r10.

LOWW

movea LOWW(0x12345678), R0, r10 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 137 of 751
Sep 01, 2013

The value calculated by adding the value at the 15th bit to the uppermost 16 bits of the term.

[Function]

The value calculated by adding the value at the 15th bit to the uppermost 16 bits of the term.

[Application example]

(1) Given the value 0x12348765, a movhi instruction adds the value at the 15th bit (1) to the top 16 bits

(0x1234), returning the value 0x1235.

Therefore, (1) in the above example can also be described as: movhi 0x1235, R0, r10.

HIGHW1

movhi HIGHW1(0x12348765), R0, r10 ; (1)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 138 of 751
Sep 01, 2013

4.1.9 Section aggregation operators

The following section aggregation operators are available.

Operator Overview

STARTOF Returns the start address of the term section after linking.

SIZEOF Returns the size of the term section after linking.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 139 of 751
Sep 01, 2013

Returns the start address of the term section after linking.

[Function]

Returns the start address of the term section after linking.

[Application example]

(1) Allocates a 4-byte area, and initializes it with the start address of the .text section.

Each section and its alignment condition must be specified.

The alignment condition can be omitted if the default condition for that section is to be used.

The section definition and alignment condition can be omitted if the default section name and default alignment

condition are to be used for that section.

To use this operator in conjunction with SIZEOF:

To specify a section name that begins with a number:

[Caution]

- STARTOF can only be written as an operand of the data definition directive, .dw.

- Section names that are not defined in the same module are not specifiable.

For this reason, if a section is defined in another module, the section definition directive you use to define the

section and the .align directive you use to adjust its alignment condition must match those of the definitions of the

same section in other modules.

If a section is specified but has not been defined or has a different alignment condition to that selected in another

module, the following messages are output.

STARTOF

.DW STARTOF(.text) ; (1)

.DW STARTOF(user.text)

.SECTION user.text, TEXT

.ALIGN 4

.DW STARTOF(user.text)

.SECTION user.text, TEXT

.DW STARTOF(.text)

.DW STARTOF(.data) + SIZEOF(.data)

.DW STARTOF(123.user.text)

.SECTION "123.user.text", TEXT

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 140 of 751
Sep 01, 2013

- When the section has not been defined:

- When the section has a different alignment condition:

- You can omit the section definitions and .align directives when default section names and default values of the

alignment conditions are to be used, respectively.

- This operator can be specified in combination with SIZEOF by using the binary operator "+".

Note, however, that it is not possible on the same line to write multiple instances of STARTOF and SIZEOF or

include an expression other than STARTOF or SIZEOF.

E0550249: Illegal syntax.

W0561322: Section alignment mismatch : "section"

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 141 of 751
Sep 01, 2013

Returns the size of the term section after linking.

[Function]

Returns the size of the term section after linking.

[Application example]

(1) Allocates a 4-byte area, and initializes it with the size of the .text section.

Each section and its alignment condition must be specified.

The alignment condition can be omitted if the default condition for that section is to be used.

The section definition and alignment condition can be omitted if the default section name and default alignment

condition are to be used for that section.

To use this operator in conjunction with STARTOF:

To specify a section name that begins with a number:

[Caution]

- SIZEOF can only be written as an operand of the data definition directive, .dw.

- Section names that are not defined in the same module are not specifiable.

For this reason, if a section is defined in another module, the section definition directive you use to define the

section and the .align directive you use to adjust its alignment condition must match those of the definitions of the

same section in other modules.

If a section is specified but has not been defined or has a different alignment condition to that selected in another

module, the following messages are output.

SIZEOF

.DW SIZEOF(.text) ; (1)

.DW SIZEOF(user.text)

.SECTION user.text, TEXT

.ALIGN 4

.DW SIZEOF(user.text)

.SECTION user.text, TEXT

.DW SIZEOF(.text)

.DW STARTOF(.data) + SIZEOF(.data)

.DW SIZEOF(123.user.text)

.SECTION "123.user.text", TEXT

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 142 of 751
Sep 01, 2013

- When the section has not been defined:

- When the section has a different alignment condition:

- You can omit the section definitions and .align directives when default section names and default values of the

alignment conditions are to be used, respectively.

- This operator can be specified in combination with STARTOF by using the binary operator "+".

Note, however, that it is not possible on the same line to write multiple instances of STARTOF and SIZEOF or

include an expression other than STARTOF or SIZEOF.

E0550249: Illegal syntax.

W0561322: Section alignment mismatch : "section"

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 143 of 751
Sep 01, 2013

4.1.10 Other operator

The following operators is also available.

Operator Overview

() Prioritizes the calculation within ().

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 144 of 751
Sep 01, 2013

Prioritizes the calculation within ().

[Function]

Causes an operation in parentheses to be performed prior to operations outside the parentheses.

This operator is used to change the order of precedence of other operators.

If parentheses are nested at multiple levels, the expression in the innermost parentheses will be calculated first.

[Application example]

Calculations are performed in the order of expressions (1), (2) and the value "14" is returned as a result.

If parentheses are not used,

Calculations are performed in the order (1), (2) shown above, and the value "10" is returned as a result.

See "Table 4-4. Operator Precedence Levels", for the order of precedence of operators.

()

mov (4 + 3) * 2, r10

(4 + 3) * 2

(1)

(2)

4 + 3 * 2

(1)

(2)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 145 of 751
Sep 01, 2013

4.1.11 Restrictions on operations

An expression consists of a "constant", "symbol", "label reference", "operator", and "parentheses".It indicates a value

consisting of these elements. The expression distinguishes between Absolute expression and Relative expressions.

(1) Absolute expression

An expression indicating a constant is called an "absolute expression". An absolute expression can be used when

an operand is specified for an instruction or when a value etc. is specified for a directive. An absolute expression

usually consists of a constant or symbol. The following format is treated as an absolute expression.

(a) Constant expression

If a reference to a previously defined symbol is specified, assumes that the constant of the value defined for

the symbol has been specified. Therefore, a defined symbol reference can be used in a constant expression.

Example

(b) Symbol

The expressions related to symbols are the following ("+" is either "+" or "-").

- Symbol

- Symbol + constant expression

- Symbol - symbol

- Symbol - symbol + constant expression

A "symbol" here means an undefined symbol reference at that point. If a reference to a previously defined

symbol is specified, assumes that the "constant" of the value defined for the symbol has been specified.

Example

(c) Label reference

The following expressions are related to label reference ("+" is either "+" or "-").

- Label reference - label reference

- Label reference - label reference + constant expression

Here is an example of an expression related to a label reference.

Example

A "reference to two labels" as shown in this example must be referenced as follows.

- The same section has a definition in the specified file.

- Same reference method (such as $label and $label, and #label and #label)

SYM1 .set 0x100 --Define symbol SYM1

 mov SYM1, r10 --SYM1, already defined, is treated as a constant

 expression.

 add SYM1 + 0x100, r11 --SYM1 is an undefined symbol at this point

SYM1 .set 0x10 --Defines SYM1

mov $label1 - $label2, r11

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 146 of 751
Sep 01, 2013

When not meeting these conditions, a message is output, and assembly is canceled.

However, if a reference to the absolute address of a label not having a definition in the specified file is

specified as label reference on one side of "- label reference" in an "expression related to label reference", it is

assumed that the same reference method as that of the label on the other side is used, because of the current

organization of the assembler. Note that an absolute expression in this format cannot be specified for a

branch instruction. If such an expression is specified, a message is output, and assembly is canceled.

The .DW directive can be assembled if two label accesses are absolute address references, even if the

definitions are in different sections of different files.

(2) Relative expressions

An expression indicating an offset from a specific addressNote 1 is called a "relative expression". A relative

expression is used to specify an operand by an instruction or to specify a value by data definition directive. A

relative expression usually consists of a label reference. The following formatNote 2 is treated as an relative

expression.

Notes 1. This address is determined when the optimizing linker is executed. Therefore, the value of this offset

may also be determined when the optimizing linker is executed.

2. The absolute value system and the relative value system can regard an expression in the format of "-

symbol + label reference", as being an expression in the format of "label reference - symbol," but it

cannot regard an expression in the format of "label reference - (+symbol)" as being an expression in the

format of "label reference - symbol". Therefore, use parentheses "()" only in constant expressions.

(a) Label reference

The following expressions are related to label reference ("+" is either "+" or "-").

- Label reference

- Label reference + constant expression

- Label reference - symbol

- Label reference - symbol + constant expression

Here is an example of an expression related to a label reference.

Example

4.1.12 Identifiers

An identifier is a name used for symbols, labels, macros etc.

Identifiers are described according to the following basic rules.

- Identifiers consist of alphanumeric characters and symbols that are used as characters (@,_, .)

However, the first character cannot be a number (0 to 9).

- Reserved words cannot be used as identifiers.

With regard to reserved words, see "4.5 Reserved Words".

- The assembler distinguishes between uppercase and lowercase.

SIZE .set 0x10

 add #label1, r10

 add #label1 + 0x10, r10

 add #label2 ? SIZE, r10

 add #label2 ? SIZE + 0x10, r10

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 147 of 751
Sep 01, 2013

4.2 Directives

This section explains the directives.

Directives are instructions that direct all types of instructions necessary for the assembler.

4.2.1 Outline

Instructions are translated into machine language as a result of assembling, but directives are not converted into

machine language in principle.

Directives contain the following functions mainly:

- To facilitate description of source programs

- To initialize memory and reserve memory areas

- To provide the information required for assemblers and optimizing linkers to perform their intended processing

The following table shows the types of directives.

Table 4-5. List of Directives

The following sections explain the details of each directive.

In the description format of each directive, "[]" indicates that the parameter in square brackets may be omitted from

specification, and "..." indicates the repetition of description in the same format.

Type Directives

Section definition directives .cseg, .dseg, .section, .org

Symbol definition directives .set

Compiler output directives .file, .line, .stack, ._line_top, ._line_end

Data definition/Area reservation directives .db, .db2/.dhw, .dshw, .db4/.dw, .db8/.ddw, .float, .double, .ds, .align

External definition/External reference directives .public, .extern

Macro directives .macro, .local, .rept, .irp, .exitm, .exitma, .endm

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 148 of 751
Sep 01, 2013

4.2.2 Section definition directives

A section is a block of routines or data of the same type. A "section definition directive" is a directive that declares the

start or end of a section.

Sections are the unit of allocation in the optimizing linker.

Example

Two sections with the same section name must have the same relocation attribute. Consequently, multiple sections

with differing relocation attributes cannot be given the same section name. If two sections with the same section name

have different relocation attributes, an error will occur.

Sections can be broken up. In other words, sections in a single source program file with the same relocation attribute

and section name will be processed as a single continuous section in the assembler.

If the sections are broken into separate source program files, then they will be processed by the optimizing linker.

Section names cannot be referenced as symbols.

The following section definition directives are available.

Table 4-6. Section Definition Directives

 .cseg

 :

 .dseg

 :

Directive Overview

.cseg Indicates to the assembler the starting of a code section

.dseg Indicates to the assembler the start of a data section

.section Indicates to the assembler the start of a section

.org Indicates to the assembler the start of a section at an absolute address

.offset Specifies an offset from the first address of a section

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 149 of 751
Sep 01, 2013

Indicate to the assembler the start of a code section.

[Syntax]

[Function]

- The .cseg directive indicates to the assembler the start of a code section.

- All instructions described following the .cseg directive belong to the code section until it comes across a section

definition directives.

[Use]

- The .cseg directive is used to describe instructions, .db, .dw directives, etc. in the code section defined by the

.cseg directive.

- Description of one functional unit such as a subroutine should be defined as a single code section.

[Description]

- The start address of a code section can be specified with the .org directive.

- A relocation attribute defines a range of location addresses for a code section.

Table 4-7. Relocation Attributes of .cseg

- If there is a label or an instruction to output object code before a section definition directive, a relocatable code

section is generated as the default section. The section name here will be ".text", and the relocation attribute will

be "TEXT".

- The assembler will output an error if a relocation attribute other than "Table 4-7. Relocation Attributes of .cseg" is

specified.

- By describing a section name in the symbol field of the .cseg directive, the code section can be named. If no sec-

tion name is specified for a code section, the assembler will automatically give a default section name to the code

section.

The default section names of the code sections are shown below.

.cseg

Relocation

Attribute

Description

Format

Explanation Default Value of

Alignment

Condition

TEXT TEXT Allocates the program. 2

ZCONST ZCONST This section is for constant (read-only) data. It allocates a mem-

ory range (up to 32 Kbytes, in the positive direction from r0), refer-

enced with 1 instructions using r0 and 16-bit displacement.

4

ZCONST23 ZCONST23 This section is for constant (read-only) data. It allocates a mem-

ory range (up to 4 Mbytes, in the positive direction from r0), refer-

enced with 1 instructions using r0 and 23-bit displacement.

4

CONST CONST This section is for constant (read-only) data. It allocates a mem-

ory range (up to 4 Gbytes, in the positive direction from r0), refer-

enced with 2 instructions using r0 and 32-bit displacement.

4

Symbol field Mnemonic field Operand field Comment field

[section-name] .cseg [relocation-attribute] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 150 of 751
Sep 01, 2013

The default section names have the relocation attributes shown above. Giving them any other attributes is not pos-

sible.

- If you wish to specify a number as first character with a section name, enclose each file name with a double

quotation (").

Example

- The following characters are usable in section names.

- Alphanumeric characters (0-9, a-z, A-Z)

- Special characters (@, _, .)

Relocation Attribute Default Section Name

TEXT .text

ZCONST .zconst

ZCONST23 .zconst23

CONST .const

test .cseg text

 nop

 nop

"test" .cseg text

 nop

 nop

"123test" .cseg text

 nop

 nop

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 151 of 751
Sep 01, 2013

Indicate to the assembler the start of a data section.

[Syntax]

[Function]

- The .dseg directive indicates to the assembler the start of a data section.

- A memory following the .dseg directive belongs to the data section until it comes across a section definition direc-

tives.

[Use]

- The .ds directive is mainly described in the data section defined by the .dseg directive.

[Description]

- The start address of a data section can be specified with the .org directive.

- A relocation attribute defines a range of location addresses for a data section.

The relocation attributes available for data sections are shown below.

Table 4-8. Relocation Attributes of .dseg

.dseg

Relocation

Attribute

Description

Format

Explanation Default Value of

Alignment

Condition

SDATA SDATA Allocates a memory range (up to 64 Kbytes, combined with SBSS

section), referenced with 1 instructions using gp and 16-bit dis-

placement, having an initial value.

4

SBSS SBSS Allocates a memory range (up to 64 Kbytes, combined with

SDATA section), referenced with 1 instructions using gp and 16-

bit displacement, not having an initial value.

4

SDATA23 SDATA23 Allocates a memory range (up to 8MKbytes, combined with

SBSS23 section), referenced with 1 instructions using gp and 23-

bit displacement, having an initial value.

4

SBSS23 SBSS23 Allocates a memory range (up to 8Mbytes, combined with

SDATA23 section), referenced with 1 instructions using gp and

23-bit displacement, not having an initial value.

4

TDATA TDATA Allocates a memory range (up to 256 bytes, in the positive direc-

tion from ep), referenced with 1 instructions using ep, having an

initial value.

4

TDATA4 TDATA4 Allocates a memory range(up to 16 bytes, in the positive direction

from ep), referenced with 1 instructions using ep and 4-bit dis-

placement, having an initial value.

4

Symbol field Mnemonic field Operand field Comment field

[section-name] .dseg [relocation-attribute] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 152 of 751
Sep 01, 2013

TBSS4 TBSS4 Allocates a memory range (up to 16 bytes, in the positive direction

from ep), referenced with 1 instructions using ep and 4-bit dis-

placement, not having an initial value.

4

TDATA5 TDATA5 Allocates a memory range(up to 32 bytes, in the positive direction

from ep), referenced with 1 instructions using ep and 5-bit dis-

placement, having an initial value.

4

TBSS5 TBSS5 Allocates a memory range (up to 32 bytes, in the positive direction

from ep), referenced with 1 instructions using ep and 5-bit dis-

placement, not having an initial value.

4

TDATA7 TDATA7 Allocates a memory range(up to 128 bytes, in the positive direc-

tion from ep), referenced with 1 instructions using ep and 7-bit dis-

placement, having an initial value.

4

TBSS7 TBSS7 Allocates a memory range (up to 128 bytes, in the positive direc-

tion from ep), referenced with 1 instructions using ep and 7-bit dis-

placement, not having an initial value.

4

TDATA8 TDATA8 Allocates a memory range(up to 256 bytes, in the positive direc-

tion from ep), referenced with 1 instructions using ep and 8-bit dis-

placement, having an initial value.

4

TBSS8 TBSS8 Allocates a memory range (up to 256 bytes, in the positive direc-

tion from ep), referenced with 1 instructions using ep and 8-bit dis-

placement, not having an initial value.

4

EDATA EDATA Allocates a memory range (up to 64 Kbytes, combined with EBSS

section), referenced with 1 instructions using ep and 16-bit dis-

placement, having an initial value.

4

EBSS EBSS Allocates a memory range (up to 64 Kbytes, combined with

EDATA section), referenced with 1 instructions using ep and 16-

bit displacement, not having an initial value.

4

EDATA23 EDATA23 Allocates a memory range (up to 8 Mbytes, combined with

EBSS23 section), referenced with 1 instructions using ep and 16-

bit displacement, having an initial value.

4

EBSS23 EBSS23 Allocates a memory range (up to 8 Mbytes, combined with

EDATA23 section), referenced with 1 instructions using ep and

16-bit displacement, not having an initial value.

4

ZDATA ZDATA Allocates a memory range (up to 32 Kbytes, combined with ZBSS

section, in the negative direction from r0), referenced with 1

instructions using r0 and 16-bit displacement, having an initial

value.

4

ZBSS ZBSS Allocates a memory range (up to 32 Kbytes, combined with

ZDATA section, in the negative direction from r0), referenced with

1 instructions using r0 and 16-bit displacement, not having an ini-

tial value.

4

ZDATA23 ZDATA23 Allocates a memory range (up to 4 Mbytes, combined with

ZBSS23 section, in the negative direction from r0), referenced

with 1 instructions using r0 and 23-bit displacement, having an ini-

tial value.

4

Relocation

Attribute

Description

Format

Explanation Default Value of

Alignment

Condition

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 153 of 751
Sep 01, 2013

Note If a section with the TDATA relocation attribute is defined in multiple files of source code, linkage of the code

will lead to an error.

- The assembler will output an error if a relocation attribute other than "Table 4-8. Relocation Attributes of .dseg" is

specified.

- Machine language instructions cannot be described in a data section with BSS relocation attributes. If described,

an error is output.

- By describing a section name in the symbol field of the .dseg directive, the data section can be named. If no sec-

tion name is specified for a data section, the assembler automatically gives a default section name.

The default section names of the data sections are shown below.

ZBSS23 ZBSS23 Allocates a memory range (up to 4 Mbytes, combined with

ZDATA23 section, in the negative direction from r0), referenced

with 1 instructions using r0 and 23-bit displacement, not having an

initial value.

4

DATA DATA Allocates a memory range (up to 4 Gbytes, combined with BSS

section, in the negative direction from r0), referenced with 1

instructions using r0 and 32-bit displacement, having an initial

value.

4

BSS BSS Allocates a memory range (up to 4 Gbytes, combined with DATA

section, in the negative direction from r0), referenced with 1

instructions using r0 and 32-bit displacement, not having an initial

value.

4

Relocation Atribute Default Section Name

SDATA .sdata

SBSS .sbss

SDATA23 .sdata23

SBSS23 .sbss23

TDATANote .tdata

TDATA4 .tdata4

TBSS4 .tbss4

TDATA5 .tdata5

TBSS5 .tbss5

TDATA7 .tdata7

TBSS7 .tbss7

TDATA8 .tdata8

TBSS8 .tbss8

EDATA .edata

EBSS .ebss

EDATA23 .edata23

EBSS23 .ebss23

Relocation

Attribute

Description

Format

Explanation Default Value of

Alignment

Condition

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 154 of 751
Sep 01, 2013

Note A specification possible section name is only a default section name in TDATA relocation attributes. But, it

is possible to omit.

The default section names have the relocation attributes shown above. Giving them any other attributes is not pos-

sible.

- If you wish to specify a number as first character with a section name, enclose each file name with a double

quotation (").

Example

- The following characters are usable in section names.

- Alphanumeric characters (0-9, a-z, A-Z)

- Special characters (@, _, .)

ZDATA .zdata

ZBSS .zbss

ZDATA23 .zdata23

ZBSS23 .zbss23

DATA .data

BSS .bss

test .dseg data

 .dw 0x1234

 .dw 0x5678

"test" .dseg data

 .dw 0x1234

 .dw 0x5678

"123test" .dseg data

 .dw 0x1234

 .dw 0x5678

Relocation Atribute Default Section Name

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 155 of 751
Sep 01, 2013

Indicate to the assembler the start of section.

[Syntax]

[Function]

- The .section directive indicates to the assembler the start of a section (no separation of code and data).

[Use]

- You can define all sections that can be defined via .cseg or .dseg directives using the .section directive, rather than

differentiating code and data sections using the .cseg and .dseg directives.

.section

Symbol field Mnemonic field Operand field Comment field

 .section section-name, relocation-attribute [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 156 of 751
Sep 01, 2013

Indicate the start of a section at an absolute address to the assembler.

[Syntax]

[Function]

- Indicate the start of a section at an absolute address to the assembler.

- After the .org directive, it is valid until the next section definition directive.

- The range from the .org directive to the line with the next section definition directive (.cseg, .dseg, .section or .org)

is regarded as a section where the code is placed at absolute addresses.

- The name of each section starting at an absolute address takes the form of "section for which .org was written" +

".AT" + "specified address". The relocation attribute is the same as that of the section for which .org was written.

- If .org is written prior to a section definition directive at the beginning of a file of source code, the name of the sec-

tion will be ".text.AT" + "specified address" and the relocation attribute will be "TEXT".

[Example]

If .org is written immediately after a section definition directive, the section is only generated from the absolute address.

If the .org directive does not immediately follow the section definition directive, only the range of code from the .org

directive is a section starting at the given absolute address.

[Caution]

- The operand value is in accordance with "Absolute expression". An illegal value will lead to an error and cause

processing to end.

- The overall definition of a single section may contain multiple .org directives. Note, however, that an error will

occur if an address specified for a section by .org is in an address range to which another section starting at an

absolute address has been allocated in the same file.

- A .org directive is not allowed for a section that has the TDATA relocation attribute. Doing so will lead to an error

and cause processing to end.

.org

.section "My_text", text

.org 0x12 ;"My_text.AT12" is allocated to address 0x12

mov r10, r11

.org 0x30 ;"My_text.AT30" is allocated to address 0x30

mov r11, r12

.section "My_text", text

nop ;Allocated in "My_text"

.org 0x50

mov r10, r11 ;Allocated in "My_text.AT50"

Symbol field Mnemonic field Operand field Comment field

 .org absolute-expression [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 157 of 751
Sep 01, 2013

Specifies an offset from the first address of a section.

[Syntax]

[Function]

- The .offset directive specifies an offset from the first address of a section that holds instruction code for the lines

following the .offset directive.

- After the .org directive, it is valid until the next section definition directive.

- If .offset is written prior to any section definition directive at the beginning of a source program, the name of the

section will be ".text" and the relocation attribute will be "TEXT".

- Section names can also be enclosed in double-quotation marks (").

If you wish to specify a number as first character with a section name, enclose each file name with a double quota-

tion (").

Example

[Caution]

- The operand value is in accordance with "Absolute expression". An illegal value will lead to an error and cause

processing to end.

- The overall definition of a single section may contain multiple .org directives. Note, however, that an error occurs

when the specified value is smaller than that for a preceding .offset directive.

- The value specified as an operand of the .offset directive must be an Absolute expression in the range of 0x0 to

0x7fffffff.

The actual value is limited by the memory size of the host machine where the program runs.

.offset

.section "My_data", data

.offset 0x12

mov r10, r11 ; The offset is 0x12

Symbol field Mnemonic field Operand field Comment field

 .offset absolute-expression [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 158 of 751
Sep 01, 2013

4.2.3 Symbol definition directives

Symbol definition directives specify symbols for the data that is used when writing to source modules. With these, the

data value specifications are made clear and the details of the source module are easier to understand.

Symbol definition directives indicate the symbols of values used in the source module to the assembler.

The following symbol definition directives are available.

Table 4-9. Symbol Definition Directives

Directive Overview

.set Defines a name

.equ Defines a symbol

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 159 of 751
Sep 01, 2013

Defines a name.

[Syntax]

[Function]

Defines a symbol having a symbol name specified by the symbol field and a absolute-expression value specified by the

operand field.

[Use]

- You can use this directive to define names for numerical data that can be used instead of the actual numbers in the

operands of machine-language instructions and directives in source code.

- We recommend defining frequently used numerical values as names. Even if a given value in the source program

is to be changed, you will only need to change the value corresponding to the name.

[Description]

- Incorrect formats for an operand will cause processing to end.

- The .set directive may be described anywhere in a source program.

- Each name is a redefinable symbol.

- Names cannot be externally defined.

[Example]

Defines the value of symbol sym1 as 0x10.

[Caution]

- Any label reference or undefined symbol reference must not be used to specify a value.

Otherwise, the assembler outputs the following message then stops assembling.

- If a label name, a macro name defined by the .macro directive, or a symbol of the same name as a formal param-

eter of a macro is specified, the assembler outputs the following message and stops assembling.

.set

sym1 .set 0x10

E0550203: illegal expression (string)

E0550212: symbol already define as string

Symbol field Mnemonic field Operand field Comment field

 name .set absolute-expression [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 160 of 751
Sep 01, 2013

Defines a symbol.

[Syntax]

[Function]

Defines a symbol having a symbol name specified by the symbol field and a absolute-expression value specified by the

operand field.

[Use]

- You can use this directive to define symbols for numerical data that can be used instead of the actual numbers in

the operands of machine-language instructions and directives in source code.

[Description]

- Incorrect formats for an operand will cause processing to end.

- The .set directive may be described anywhere in a source program.

- Symbols that have already been defined by using .equ cannot be redefined.

- The symbol generated by the .equ directive can be externally defined by the .public directive.

.equ

Symbol field Mnemonic field Operand field Comment field

 symbol .equ absolute-expression [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 161 of 751
Sep 01, 2013

4.2.4 Compiler output directives

Compiler output directives inform the assembler of information output by the compiler, such as compiler debugging

information.

The following compiler output directives are available.

Table 4-10. Compiler Output Directives

Directive Overview

.file Generates a symbol table entry

.line Line-number information from the C source program

.stack Defines the stack amount of consumption for a symbol

._line_top Information specified by the compiler #pragma inline_asm statement

._line_end Information specified by the compiler #pragma inline_asm statement

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 162 of 751
Sep 01, 2013

Generates a symbol table entry (FILE type).

[Syntax]

[Function]

- The ".file" directive is compiler debugging information.

[Description]

- The file name is written with the specified image.

- This is the name of the C source program file that the compiler outputs.

.file

Symbol field Mnemonic field Operand field Comment field

 .file "file-name" [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 163 of 751
Sep 01, 2013

Line-number information from the C source program.

[Syntax]

[Function]

- The ".func" directive is compiler debugging information.

[Description]

- Modifies the line numbers and filenames referenced during debugging.

- The line numbers and filenames in the source program are not updated between the first .line directive and the

next one.

- If the filename is omitted, then only the line number is changed.

- This is the line-number information of the C source program that the compiler outputs.

.line

Symbol field Mnemonic field Operand field Comment field

 .line ["file-name",] line-number [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 164 of 751
Sep 01, 2013

Defines the stack amount of consumption for a symbol.

[Syntax]

[Function]

- The ".stack" directive is compiler debugging information.

[Description]

- This defines the stack amount of consumption for a symbol.

- The stack amount of consumption for a symbol can only be defined once, and subsequent definitions are ignored.

- The stack amount of consumption can only be defined as a 4-byte range of 0x0 to 0xFFFFFFFC. If a different

value is specified, then the definition is ignored.

- This is the function information of the C source program that the compiler outputs.

.stack

Symbol field Mnemonic field Operand field Comment field

 .stack symble-name=value [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 165 of 751
Sep 01, 2013

Information specified by the compiler #pragma inline_asm statement.

[Syntax]

[Function]

- The ._line_top directive is the information specified by the compiler #pragma inline_asm statement.

[Description]

- This is the #pragma inline_asm statement information of the C source program that the compiler outputs.

- The ._line_top directive indicates the start of the instructions for a function which has been specified as inline_asm.

[Caution]

- Assembler control instructions are not usable in assembly code for functions specified as inline_asm. In addition,

only the directives listed below are usable. Specifying any other directive will lead to an error.

- data definition directives (.db/.db2/.dhw/.db4/.dw/.db8/.ddw/.dshw/.ds/.float/.double)

- macro directives (.macro/.irp/.rept/.local)

- Defining labels other than local labels is forbidden in functions specified as inline_asm. Defining any other labels

will lead to errors.

._line_top

Symbol field Mnemonic field Operand field Comment field

 ._line_top inline_asm [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 166 of 751
Sep 01, 2013

Information specified by the compiler #pragma inline_asm statement.

[Syntax]

[Function]

- The ._line_end directive is the information specified by the compiler #pragma inline_asm statement.

[Description]

- This is the #pragma inline_asm statement information of the C source program that the compiler outputs.

- The ._line_end directive indicates the end of the instructions for a function which has been specified as inline_asm.

[Caution]

- Assembler control instructions are not usable in assembly code for functions specified as inline_asm. In addition,

only the directives listed below are usable. Specifying any other directive will lead to an error.

- data definition directives (.db/.db2/.dhw/.db4/.dw/.db8/.ddw/.dshw/.ds/.float/.double)

- macro directives (.macro/.irp/.rept/.local)

- Defining labels other than local labels is forbidden in functions specified as inline_asm. Defining any other labels

will lead to errors.

._line_end

Symbol field Mnemonic field Operand field Comment field

 ._line_end inline_asm [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 167 of 751
Sep 01, 2013

4.2.5 Data definition/Area reservation directives

The data definition directive defines the constant data used by the program.

The defined data value is generated as object code.

The area reservation directive secures the area for memory used by the program.

The following data definition and partitioning directives are available.

Table 4-11. Data Definition/Area Reservation Directives

Directive Overview

.db Initialization of byte area

.db2/.dhw Initialization of 2-byte area

.dshw Initializes a 2-byte area with the specified value, right-shifted one bit

.db4/.dw Initialization of 4-byte area

.db8/.ddw Initialization of 8-byte area

.float Initialization of 4-byte area

.double Initialization of 8-byte area

.ds Secures the memory area of the number of bytes specified by operand

.align Aligns the value of the location counter

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 168 of 751
Sep 01, 2013

Initialization of byte area.

[Syntax]

[Function]

- The .db directive tells the assembler to initialize a byte area.

The number of bytes to be initialized can be specified as "size".

- The .db directive also tells the assembler to initialize a memory area in byte units with the initial value(s) specified

in the operand field.

[Use]

- Use the .db directive when defining an expression or character string used in the program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-

tial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler initializes an area equivalent to the specified

number of bytes with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CC-RH outputs

an error message and will not execute initialization.

(2) With initial value specification:

(a) Expression

The value of an expression must be 1-byte data. Therefore, the value of the operand must be in the range of

0x0 to 0xFF. If the value exceeds 1 byte, the assembler will use only lower 1 byte of the value as valid data.

(b) Character string constants

If the first operand is surrounded by corresponding double quotes ("), then it is assumed to be a string con-

stant.

If a character string constants is described as the operand, an 8-bit ASCII code will be reserved for each char-

acter in the string.

.db

Symbol field Mnemonic field Operand field Comment field

 [label:] .db (absolute-expression) [; comment]

 or

 [label:] .db expression[, ...] [; comment]

 or

 [label:] .db "Character string constants" [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 169 of 751
Sep 01, 2013

- Two or more initial values may be specified within a statement line of the .db directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

- If the relocation attribute of the section containing the .db directive is "BSS", then an error is output because initial

values cannot be specified.

[Example]

(1) Because the size is specified, the assembler will initialize each byte area with the value "0".

(2) A 6-byte area is initialized with character string 'ABCDEF'

(3) A 3-byte area is initialized with "0xA, 0xB, 0xC".

(4) A 4-byte area is initialized with "0x0".

(5) This description occurs in an error.

 .cseg text

WORK1: .db (1) ; (1)

WORK2: .db (2) ; (1)

 .cseg text

MASSAG: .db "ABCDEF" ; (2)

DATA1: .db 0xA, 0xB, 0xC ; (3)

DATA2: .db (3 + 1) ; (4)

DATA3: .db "AB" + 1 ; (5) <- Error

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 170 of 751
Sep 01, 2013

Initialization of 2-byte area.

[Syntax]

[Function]

- The .db2 and .dhw directive tells the assembler to initialize 2-byte area.

The number of 2-byte data to be initialized can be specified as "size".

- The .db2 and .dhw directive also tells the assembler to initialize a memory area in 2-byte units with the initial

value(s) specified in the operand field.

[Use]

- Use the .db2 and .dhw directive when defining a 2-byte numeric constant such as an address or data used in the

program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-

tial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler initializes an area equivalent to the specified

number of 2-byte with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CC-RH outputs

an error message and will not execute initialization.

(2) With initial value specification:

(a) Expression

The value of an expression must be 2-byte data. Therefore, the value of the operand must be in the range of

0x0 to 0xFFFF. If the value exceeds 2-byte, the assembler will use only lower 2-byte of the value as valid

data.

No character string constants can be described as an initial value.

.db2/.dhw

Symbol field Mnemonic field Operand field Comment field

 [label:] .db2 (absolute-expression) [; comment]

 or

 [label:] .db2 expression[, ...] [; comment]

 or

 [label:] .dhw (absolute-expression) [; comment]

 or

 [label:] .dhw expression[, ...] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 171 of 751
Sep 01, 2013

- If the relocation attribute of the section containing the .db2 and .dhw directive is "BSS", then an error is output

because initial values cannot be specified.

- Two or more initial values may be specified within a statement line of the .db2 and .dhw directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 172 of 751
Sep 01, 2013

Initializes a 2-byte area with the specified value, right-shifted one bit.

[Syntax]

[Function]

- Initializes a 2-byte area with the specified value, right-shifted one bit.

[Description]

- The value is secured as 2-byte data, as the value of the expression right-shifted 1 bit.

- If the relocation attribute of the section is "BSS", then an error is output because the .dshw directive cannot be

described.

- It is possible to code an absolute expression in the operand expression.

- The value of the expression, right-shifted one bit, must be in the range 0x0 to 0xFFF. In other cases, the data from

the lower two bytes will be secured.

- Any number of expressions may be specified on a single line, by separating them with commas.

- It is not possible to code string constants in the operand.

.dshw

Symbol field Mnemonic field Operand field Comment field

 [label:] .dshw expression[, ...] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 173 of 751
Sep 01, 2013

Initialization of 4-byte area.

[Syntax]

[Function]

- The .db4 and .dw directive tells the assembler to initialize 4-byte area.

The number of 4-byte data to be initialized can be specified as "size".

- The .db4 and .dw directive also tells the assembler to initialize a memory area in 4-byte units with the initial

value(s) specified in the operand field.

[Use]

- Use the .db4 and .dw directive when defining a 4-byte numeric constant such as an address or data used in the

program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-

tial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler initializes an area equivalent to the specified

number of 4-byte with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CC-RH outputs

an error message and will not execute initialization.

(2) With initial value specification:

(a) Expression

The value of an expression must be 4-byte data. Therefore, the value of the operand must be in the range of

0x0 to 0xFFFFFFFF. If the value exceeds 4-byte, the assembler will use only lower 2-byte of the value as

valid data.

No character string constants can be described as an initial value.

- Two or more initial values may be specified within a statement line of the .db4 and .dw directive.

.db4/.dw

Symbol field Mnemonic field Operand field Comment field

 [label:] .db4 (absolute-expression) [; comment]

 or

 [label:] .db4 expression[, ...] [; comment]

 or

 [label:] .dw (absolute-expression) [; comment]

 or

 [label:] .dw expression[, ...] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 174 of 751
Sep 01, 2013

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

- If the relocation attribute of the section containing the .db4 and .dw directive is "BSS", then an error is output

because initial values cannot be specified.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 175 of 751
Sep 01, 2013

Initialization of 8-byte area.

[Syntax]

[Function]

- The .db8 and .ddw directive tells the assembler to initialize 8-byte area.

The number of 8-byte data to be initialized can be specified as "size".

- The .db8 and .ddw directive also tells the assembler to initialize a memory area in 8-byte units with the initial

value(s) specified in the operand field.

[Use]

- Use the .db8 and .ddw directive when defining a 8-byte numeric constant such as an address or data used in the

program.

[Description]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-

tial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler initializes an area equivalent to the specified

number of 8-byte with the value "0".

(b) An absolute expression can be described as a size. If the size description is illegal, the CC-RH outputs

an error message and will not execute initialization.

(2) With initial value specification:

(a) Expression

The value of an expression must be 8-byte data. Therefore, the value of the operand must be in the range of

0x0 to 0xFFFFFFFFFFFFFFFF. If the value exceeds 8-byte, the assembler will use only lower 8-byte of the

value as valid data.

No character string constants can be described as an initial value.

.db8/.ddw

Symbol field Mnemonic field Operand field Comment field

 [label:] .db8 (absolute-expression) [; comment]

 or

 [label:] .db8 absolute-expression[, ...] [; comment]

 or

 [label:] .ddw (absolute-expression) [; comment]

 or

 [label:] .ddw absolute-expression[, ...] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 176 of 751
Sep 01, 2013

- If the relocation attribute of the section is "BSS", then an error is output because the .db8 and .ddw directive can-

not be described.

- Two or more initial values may be specified within a statement line of the .db8 and .ddw directive.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 177 of 751
Sep 01, 2013

Initialization of 4-byte area.

[Syntax]

[Function]

- The .float directive tells the assembler to initialize 4-byte area.

- The .float directive also tells the assembler to initialize a memory area in 4-byte units with the absolute-expression

specified in the operand field.

[Description]

- The value of the absolute expression is secured as a single-precision floating-point number. Consequently, the

value of the expression must be between 1.40129846e-45 and 3.40282347e+3. In other cases, the data from the

lower four bytes will be secured as a single-precision floating-point number.

- If the relocation attribute of the section is "BSS", then an error is output because the .float directive cannot be

described.

- Two or more absolute-expression may be specified within a statement line of the .float directive.

.float

Symbol field Mnemonic field Operand field Comment field

 [label:] .float absolute-expression[, ...] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 178 of 751
Sep 01, 2013

Initialization of 8-byte area.

[Syntax]

[Function]

- The .double directive tells the assembler to initialize 8-byte area.

- The .double directive also tells the assembler to initialize a memory area in 8-byte units with the initial value(s)

specified in the operand field.

[Description]

- The value of the absolute expression is secured as a double-precision floating-point number. Consequently, the

value of the expression must be between 4.9406564584124654e-324 and 1.7976931348623157e+308. In other

cases, the data from the lower eight bytes will be secured as a double-precision floating-point number.

- If the relocation attribute of the section is "BSS", then an error is output because the .double directive cannot be

described.

- Two or more absolute-expression may be specified within a statement line of the .double directive.

.double

Symbol field Mnemonic field Operand field Comment field

 [label:] .double absolute-expression[, ...] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 179 of 751
Sep 01, 2013

Secures the memory area of the number of bytes specified by operand.

[Syntax]

[Function]

- The .ds directive tells the assembler to reserve a memory area for the number of bytes specified in the operand

field.

[Use]

- The .ds directive is mainly used to reserve a memory (RAM) area to be used in the program.

If a label is specified, the value of the first address of the reserved memory area is assigned to the label. In the

source module, this label is used for description to manipulate the memory.

[Description]

- If a value in the first operand is parenthesized, the assembler assumes that a size is specified. Otherwise, an ini-

tial value is assumed.

- The first operand is a size specification. If a second operand is also specified, then it will be treated as the initial

value for that value.

(1) With size specification:

(a) If a size is specified in the operand, then if an initial value is specified, the compiler will fill the speci-

fied number of bytes with the specified value; otherwise, it will fill that number of bytes with zeroes

("0"). Note, however, that no area will be secured if the specified number of bytes is 0.

(b) An absolute expression can be described as a size. If the size description is illegal, the CC-RH outputs

an error message and will not execute initialization.

(2) With initial value specification:

(a) Expression

The value of an expression must be byte data. Therefore, the value of the operand must be in the range of

0x0 to 0xFF. If the value exceeds byte, the assembler will use only lower 1-byte of the value as valid data.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

- If the relocation attribute of the section containing this directive is "BSS", then an error is output and this directive

is ignored because initial values cannot be specified.

.ds

Symbol field Mnemonic field Operand field Comment field

 [label:] .ds (absolute-expression)[, ...] [; comment]

 or

 [label:] .ds absolute-expression [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 180 of 751
Sep 01, 2013

Aligns the value of the location counter.

[Syntax]

[Function]

- Aligns the value of the location counter.

[Description]

- Aligns the value of the location counter for the current section, specified by the previously specified section defini-

tion directive under the alignment condition specified by the first operand. If a hole results from aligning the value

of the location counter, it is filled with the value of the absolute expression specified by the second operand, or with

the default value of 0.

- Specify an even number of 2 or more, but less than 231, as the alignment condition. Otherwise, the CC-RH

outputs the error message then stops assembling.

- The value of the second operand's absolute-expression must be in the range of 0x0 to 0xFF. If the value exceeds

range of 0x0 to 0xFF, the assembler will use only lower 1-byte of the value as valid data.

- This directive merely aligns the value of the location counter in a specified file for the section. It does not align an

address after arrangement.

.align

Symbol field Mnemonic field Operand field Comment field

 [label:] .align line-condition[, absolute-expression] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 181 of 751
Sep 01, 2013

4.2.6 External definition/External reference directives

External definition, external reference directives clarify associations when referring to symbols defined by other mod-

ules.

This is thought to be in cases when one program is written that divides module 1 and module 2. In cases when you

want to refer to a symbol defined in module 2 in module 1, there is nothing declared in either module and and so the sym-

bol cannot be used. Due to this, there is a need to display "I want to use" or "I don't want to use" in respective modules.

An "I want to refer to a symbol defined in another module" external reference declaration is made in module 1. At the

same time, a "This symbol may be referred to by other symbols" external definition declaration is made in module 2.

This symbol can only begin to be referred to after both external reference and external definition declarations in effect.

External definition, external reference directives are used to to form this relationship and the following instructions are

available.

Table 4-12. External Definition/External Reference Directives

Directive Overview

.public Declares to the optimizing linker that the symbol described in the operand field is

a symbol to be referenced from another module

.extern Declares to the optimizing linker that a symbol (other than bit symbols) in another

module is to be referenced in this module

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 182 of 751
Sep 01, 2013

Declares to the optimizing linker that the symbol described in the operand field is a symbol to be referenced from

another module.

[Syntax]

[Function]

- The .public directive declares to the optimizing linker that the symbol described in the operand field is a symbol to

be referenced from another module.

[Use]

- When defining a symbol to be referenced from another module, the .public directive must be used to declare the

symbol as an external definition.

[Description]

- A label with the same name as the one specified by the first operand is declared as an external labelNote.

Note that if a second operand was specified, this specifies the size of the data indicated by that label. However,

specifications of size are ignored (although including them has been allowed to retain compatibility with CX).

Note This is an external symbol (symbol with a GLOBAL binding class).

- Although this directive does not function any differently than an ".extern" directive in that it declares an external

label, if this directive is used to declare a label with a definition in the specified file as an external label, use the

".extern" directive to declare labels without definitions in the specified file as external labels.

- The .public directive may be described anywhere in a source program.

- The ".public" directive can only define one symbol per line.

- When the symbol(s) to be described in the operand field isn't defined within the same module, an warning is out-

put. When the symbol(s) isn't defined in any file, it will cause an error during linking.

- The following symbols cannot be used as the operand of the .public directive:

(1) Symbol defined with the .set directive

(2) Externally referenced symbol (symbol defined with the .extern directive)

(3) Section name

(4) Module name

(5) Macro name

(6) Undefined symbol in the source program

.public

Symbol field Mnemonic field Operand field Comment field

 [label:] .public label-name[, absolute-expression] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 183 of 751
Sep 01, 2013

[Example]

- Module 1

- Module 2

(1) This .public directive declares that symbol "A1" is to be referenced from other modules.

(2) This .public directive declares that symbol "B1" is to be referenced from another module.

 .public A1 ; (1)

 .extern B1

A1:

 .db2 0x10

 .cseg text

 jr B1

 .public B1 ; (2)

 .extern A1

 .cseg text

B1:

 mov A1, r12

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 184 of 751
Sep 01, 2013

Declares to the optimizing linker that a symbol (other than bit symbols) in another module is to be referenced in this

module.

[Syntax]

[Function]

- The .extern directive declares to the optimizing linker that a symbol in another module is to be referenced in this

module.

[Use]

- When referencing a symbol defined in another module, the .extern directive must be used to declare the symbol as

an external reference.

[Description]

- A label with the same name as the one specified by the first operand is declared as an external labelNote.

Note that if a second operand was specified, this specifies the size of the data indicated by that label. However,

specifications of size are ignored (although including them has been allowed to retain compatibility with CX).

Note This is an external symbol (symbol with a GLOBAL binding class).

- Although this directive does not function any differently than an ".public" directive in that it declares an external

label, if this directive is used to declare a label without a definition in the specified file as an external label, use the

".public" directive to declare labels with definitions in the specified file as external labels.

- The .extern directive may be described anywhere in a source program.

- The ".extern" directive can only define one symbol per line.

- No error is output even if a symbol declared with the .extern directive is not referenced in the module.

- An error will occur if the symbol specified as the first operand has already been defined or declared with a .public

or .extern directive in the given module. The symbol name is output in the error message.

- Names of macros cannot be used as the first operand.

.extern

Symbol field Mnemonic field Operand field Comment field

 [label:] .extern label-name[, absolute-expression] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 185 of 751
Sep 01, 2013

4.2.7 Macro directives

When describing a source it is inefficient to have to describe for each series of high usage frequency instruction groups.

This is also the source of increased errors.

Via macro directives, using macro functions it becomes unnecessary to describe many times to the same kind of

instruction group series, and coding efficiency can be improved.

Macro basic functions are in substitution of a series of statements.

The following macro directives are available.

Table 4-13. Macro Directives

Directive Overview

.macro Executes a macro definition by assigning the macro name specified in the sym-

bol field to a series of statements described between .macro directive and the

.endm directive.

.local The specified string is declared as a local symbol that will be replaced as a spe-

cific identifier.

.rept Tells the assembler to repeatedly expand a series of statements described

between .rept directive and the .endm directive the number of times equivalent to

the value of the expression specified in the operand field.

.irp Tells the assembler to repeatedly expand a series of statements described

between .irp directive and the .endm directive the number of times equivalent to

the number of actual parameters while replacing the formal parameter with the

actual parameters (from the left, the order) specified in the operand field.

.exitm This directive skips the repetitive assembly of the .irp and .rept directives enclos-

ing this directive at the innermost position.

.exitma This directive skips the repetitive assembly of the irp and .rept directives enclos-

ing this directive at the outermost position.

.endm Instructs the assembler to terminate the execution of a series of statements

defined as the functions of the macro.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 186 of 751
Sep 01, 2013

Executes a macro definition by assigning the macro name specified in the symbol field to a series of statements

described between .macro directive and the .endm directive.

[Syntax]

[Function]

- The .macro directive executes a macro definition by assigning the macro name specified in the symbol field to a

series of statements (called a macro body) described between this directive and the .endm directive.

[Use]

- Define a series of frequently used statements in the source program with a macro name. After its definition only

describe the defined macro name, and the macro body corresponding to the macro name is expanded.

[Description]

- If the .endm directive corresponding to .macro directive does not exist, the CC-RH outputs the message.

- For the macro name to be described in the symbol field, see the conventions of symbol description in "(2) Sym-

bol".

- To reference a macro, describe the defined macro name in the mnemonic field.

- For the formal parameter(s) to be described in the operand field, the same rules as the conventions of symbol

description will apply.

- Formal parameters are valid only within the macro body.

- An error occurs if any reserved word is described as a formal parameter. However, if a user-defined symbol is

described, its recognition as a formal parameter will take precedence.

- The number of formal parameters must be the same as the number of actual parameters. If a shortage of actual

parameters, the CC-RH outputs the error message.

- The theoretical maximum number of formal parameters is 4,294,967,294 (i.e. 0xFFFFFFFE). The actual number

that can be used depends on the amount of memory, however.

- A name or label defined within the macro body if declared with the .local directive becomes effective with respect

to one-time macro expansion.

- The number of macros that can be defined within a single source module is not specifically limited. In other words,

macros may be defined as long as there is memory space available.

- Formal parameter definition lines, reference lines, and symbol names are not output to a cross-reference list.

- Two or more sections must not be defined in a macro body. If defined, an error will be output.

- An error will be output if there are extra formal parameters that are not referenced in the macro body.

- If an undefined macro is called in a macro body, the CC-RH outputs the message then stops assembling.

- If a currently defined macro is called in a macro body, the CC-RH outputs the message then stops assembling.

- If a parameter defined by a label or directive is specified for a formal parameter, the CC-RH outputs the message

and stops assembling.

.macro

Symbol field Mnemonic field Operand field Comment field

 macro-name .macro [formal-parameter[, ...]] [; comment]

 :

 Macro body

 :

 .endm [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 187 of 751
Sep 01, 2013

- The only actual parameters that can be specified in the macro call are label names, symbol names, numbers,

registers, and instruction mnemonics.

If a label expression (LABEL-1), addressing-method specification label (#LABEL), or base register specification

([gp]) or the like is specified, then a message will be output depending on the actual parameter specified, and

assembly will halt.

- A line of a sentence can be designated in the macro-body. Such as operand can't designate the part of the sen-

tence. If operand has a macro call, performs a label reference is undefined macro name, or the CC-RH outputs

the message then stops assembling.

- An error will be output if a macro is defined in the macro body of a macro definition, but processing will continue

(the content up to the corresponding ".endm" directive is ignored). Referencing a macro name will cause a defini-

tion error.

[Example]

(1) A macro is defined by specifying macro name "ADMAC" and two formal parameters "PARA1" and

"PARA2".

(2) This directive indicates the end of the macro definition.

(3) Macro "ADMAC" is referenced.

ADMAC .macro PARA1, PARA2 ; (1)

 mov PARA1, r12

 add PARA2, r12

 .endm ; (2)

 ADMAC 0x10, 0x20 ; (3)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 188 of 751
Sep 01, 2013

The specified string is declared as a local symbol that will be replaced as a specific identifier.

[Syntax]

[Function]

- The .local directive declares a specified symbol name as a local symbol that will be replaced as an assembler-spe-

cific symbol.

[Use]

- If a macro that defines a symbol within the macro body is referenced more than once, the assembler will output a

double definition error for the symbol.

By using the .local directive, you can reference (or call) a macro, which defines symbol(s) within the macro body,

more than once.

[Description]

- The theoretical maximum number of symbol names is 4,294,967,294 (i.e. 0xFFFFFFFE). The actual number that

can be used depends on the amount of memory, however.

- Specifying 4,294,967,294 or more local symbols as formal parameters to ".local" quasi directives will cause the fol-

lowing error message to be output, and the assembly will halt.

- Local symbol names generated by the assembler are generated in the range of .??00000000 to .??FFFFFFFF.

- Only an undefined symbol or a symbol that has been declared as a local symbol can be declared as a local sym-

bol.

- A specific symbol that will replace the specified symbol name is generated for each declaration.

- To make the declared symbol valid, the symbol should be defined as a label.

- The symbol name declared as a local symbol cannot be defined for any purpose other than a label.

[Example]

The expansion is as follows.

.local

F0550514 : Paramater table overflow.

m1 .macro x

 .local a, b

 a: .dw a

 b: .dw x

.endm

m1 10

m1 20

Symbol field Mnemonic field Operand field Comment field

 .local symbol-name[, ...] [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 189 of 751
Sep 01, 2013

.??00000000: .dw .??00000000

.??00000001: .dw 10

.??00000002: .dw .??00000002

.??00000003: .dw 20

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 190 of 751
Sep 01, 2013

Tells the assembler to repeatedly expand a series of statements described between this directive and the .endm direc-

tive the number of times equivalent to the value of the expression specified in the operand field.

[Syntax]

[Function]

- The .rept directive tells the assembler to repeatedly expand a series of statements described between this direc-

tive and the .endm directive (called the REPT-ENDM block) the number of times equivalent to the value of the

expression specified in the operand field.

[Use]

- Use the .rept and .endm directives to describe a series of statements repeatedly in a source program.

[Description]

- An error occurs if the .rept directive is not paired with the .endm directive.

- If the .exitm directive appears in the REPT-ENDM block, subsequent expansion of the REPT-ENDM block by the

assembler is terminated.

- Assembly control instructions may be described in the REPT-ENDM block.

- Macro definitions cannot be described in the REPT-ENDM block.

- The value is evaluated as a 32-bit signed integer.

- If there is no arrangement of statements (block), nothing is executed.

- If the result of evaluating the expression is negative, the CC-RH outputs the message then stops assembling.

- An error will be output if a macro is defined in the macro body of a macro definition, and processing will continue,

without performing expansion.

[Example]

(1) This .rept directive tells the assembler to expand the REPT-ENDM block three consecutive times.

(2) This directive indicates the end of the REPT-ENDM block.

.rept

.cseg text

 ; REPT-ENDM block

.rept 3 ; (1)

 nop

 ; Source text

.endm ; (2)

Symbol field Mnemonic field Operand field Comment field

 [label:] .rept absolute-expression [; comment]

 :

 .endm [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 191 of 751
Sep 01, 2013

Tells the assembler to repeatedly expand a series of statements described between .irp directive and the .endm direc-

tive the number of times equivalent to the number of actual parameters while replacing the formal parameter with the

actual parameters (from the left, the order) specified in the operand field.

[Syntax]

[Function]

- The .irp directive tells the assembler to repeatedly expand a series of statements described between this directive

and the .endm directive (called the IRP-ENDM block) the number of times equivalent to the number of actual

parameters while replacing the formal parameter with the actual parameters (from the left, the order) specified in

the operand field.

[Use]

- Use the .irp and .endm directives to describe a series of statements, only some of which become variables, repeat-

edly in a source program.

[Description]

- If the .endm directive corresponding to .irp directive does not exist, the CC-RH outputs the message.

- If the .exitm directive appears in the IRP-ENDM block, subsequent expansion of the IRP-ENDM block by the

assembler is terminated.

- Macro definitions cannot be described in the IRP-ENDM block.

- Assembly control instructions may be described in the IRP-ENDM block.

- The theoretical maximum number of actual parameters is 4,294,967,294 (i.e. 0xFFFFFFFE). The actual number

that can be used depends on the amount of memory, however.

- If the same parameter name is specified for a formal parameter and an actual parameter, the CC-RH outputs the

message and stops assembling.

- If a parameter defined by a label or other directive is specified for a formal parameter and an actual parameter, the

CC-RH outputs the message and stops assembling.

- An error will be output if a macro is defined in the macro body of a macro definition, and processing will continue,

without performing expansion.

.irp

Symbol field Mnemonic field Operand field Comment field

 [label:] .irp formal-parameter[actual-parameter[, ...]] [; comment]

 :

 .endm [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 192 of 751
Sep 01, 2013

[Example]

(1) The formal parameter is "PARA" and the actual parameters are the following three: "0xA", "0xB", and

"0xC".

This .irp directive tells the assembler to expand the IRP-ENDM block three times (i.e., the number of actual

parameters) while replacing the formal parameter "PARA" with the actual parameters "0xA", "0xB", and

"0xC"

(2) This directive indicates the end of the IRP-ENDM block.

.cseg text

.irp PARA 0xA, 0xB, 0xC ; (1)

 ; IRP-ENDM block

 add PARA, r12

 mov r11, r12

.endm ; (2)

 ; Source text

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 193 of 751
Sep 01, 2013

This directive skips the repetitive assembly of the .irp and .rept directives enclosing this directive at the innermost posi-

tion.

[Syntax]

[Function]

- This directive skips the repetitive assembly of the .irp and .rept directives enclosing this directive at the innermost

position.

[Description]

- If this directive is not enclosed by .irp and .rept directives, the CC-RH outputs the message then stops assembling.

.exitm

Symbol field Mnemonic field Operand field Comment field

 [label:] .exitm [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 194 of 751
Sep 01, 2013

This directive skips the repetitive assembly of the irp and .rept directives enclosing this directive at the outermost posi-

tion.

[Syntax]

[Function]

- This directive skips the repetitive assembly of the irp and .rept directives enclosing this directive at the outermost

position.

[Description]

- If this directive is not enclosed by .irp and .rept directives, the CC-RH outputs the message then stops assembling.

.exitma

Symbol field Mnemonic field Operand field Comment field

 [label:] .exitma [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 195 of 751
Sep 01, 2013

Instructs the assembler to terminate the execution of a series of statements defined as the functions of the macro.

[Syntax]

[Function]

- The .endm directive instructs the assembler to terminate the execution of a series of statements defined as the

functions of the macro.

[Use]

- The .endm directive must always be described at the end of a series of statements following the .macro, .rept, and/

or the .irp directives.

[Description]

- A series of statements described between the .macro directive and .endm directive becomes a macro body.

- A series of statements described between the .rept directive and .endm directive becomes a REPT-ENDM block.

- A series of statements described between the .irp directive and .endm directive becomes an IRP-ENDM block.

- If the .macro, .rept, or .irp directive corresponding to this directive does not exist, the CC-RH outputs the message

then stops assembling.

[Example]

(1) MACRO-ENDM

(2) REPT-ENDM

.endm

ADMAC .macro PARA1, PARA2

 mov A, #PARA1

 add A, #PARA2

 .endm

.cseg text

 :

.rept 3

 inc B

 DEC C

.endm

Symbol field Mnemonic field Operand field Comment field

 .endm [; comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 196 of 751
Sep 01, 2013

(3) IRP-ENDM

.cseg text

 :

.irp PARA, <1, 2, 3>

 add A, #PARA

 mov [DE], A

.endm

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 197 of 751
Sep 01, 2013

4.3 Control Instructions

Control Instructions provide detailed instructions for assembler operation.

4.3.1 Outline

Control instructions provide detailed instructions for assembler operation and so are written in the source.

Control instructions do not become the target of object code generation.

Control instruction categories are displayed below.

Table 4-14. Control Instruction List

As with directives, control instructions are specified in the source.

Control Instruction Type Control Instruction

Assembler control instructions REG_MODE, NOMACRO, MACRO, DATA, SDATA, NOWARNING,

WARNING

File input control instructions INCLUDE, BINCLUDE

Conditional assembly control instructions IFDEF, IFNDEF, IF, IFN, ELSEIF, ELSEIFN, ELSE, ENDIF

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 198 of 751
Sep 01, 2013

4.3.2 Assembler control instructions

The assembler control instruction can be used to control the processing performed by the assembler.

The following assembler control instructions are available.

Table 4-15. Assembler Control Instructions

Control Instruction Overview

REG_MODE Outputs a register mode information section

NOMACRO Does not expand the subsequent instructions

MACRO Cancels the specification made with the NOMACRO directive

DATA Assumes that external data having symbol name extern_symbol has been allo-

cated to the data or bss attribute section, and expands the instructions which ref-

erence that data

SDATA Assumes that external data having symbol name extern_symbol has been allo-

cated to the sdata or sbss attribute section, and dose not expand the instructions

which reference that data

NOWARNING Does not output warning messages

WARNING Output warning messages

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 199 of 751
Sep 01, 2013

A register mode information section is output.

[Syntax]

[Function]

- A register mode information section is output into the object module file generated by the assembler.

[Description]

- Specify the register mode as "22" (indicating register mode 22); "32" (indicating register mode 32); or "common"

(indicating universal register mode).

- A register mode information section stores information about the number of working registers and register-variable

registers used by the compiler. It is set in the object module file via this control instruction.

- If register mode 22 is used, then there are 5 working registers and 5 register-variable registers; and if register

mode 32 is used, then there are 10 of each.

- If register mode 32 is used, a register mode information section is not output into the object module file generated

by the assembler.

- If the register mode of this control instruction differs from the register mode specified via options, then CC-RH will

output a warning, and ignore the register mode specified via the options.

- If the register modes specified by this control instruction span multiple lines, and the specified register modes are

different, then the first register-mode specification will be valid. CC-RH will output warnings for the different regis-

ter-mode specifications, and ignore those specifications.

REG_MODE

[Δ]$[Δ]REG_MODE[Δ]specify-register-mode[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 200 of 751
Sep 01, 2013

Does not expand the subsequent instructions.

[Syntax]

[Function]

- Does not expand the subsequent instructions, other than the setfcond/jcond/jmp/cmovcond/sasfcond instructions.

NOMACRO

[Δ]$[Δ]NOMACRO[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 201 of 751
Sep 01, 2013

Cancels the specification made with the NOMACRO directive.

[Syntax]

[Function]

- Cancels the specification made with the NOMACRO directive for the subsequent instructions.

MACRO

[Δ]$[Δ]MACRO[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 202 of 751
Sep 01, 2013

Assumes that external data having symbol name extern_symbol has been allocated to the data or bss attribute section,

and expands the instructions which reference that data.

[Syntax]

[Function]

- Assumes that external data having symbol name extern_symbol has been allocated to the data or bss attribute

section, and expands the instructions which reference that data.

- This format is used when a variable for which "data" is specified in #pragma section is externally referenced by an

assembler source file.

DATA

[Δ]$[Δ]DATA[Δ]symbol-name[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 203 of 751
Sep 01, 2013

Assumes that external data having symbol name extern_symbol has been allocated to the sdata or sbss attribute sec-

tion, and dose not expand the instructions which reference that data.

[Syntax]

[Function]

- Assumes that external data having symbol name extern_symbol has been allocated to the sdata or sbss attribute

section, and does not expand the instructions which reference that data.

- This format is used when a variable for which "sdata" is specified in #pragma section is externally referenced by an

assembler source file.

SDATA

[Δ]$[Δ]SDATA[Δ]symbol-name[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 204 of 751
Sep 01, 2013

Does not output warning messages.

[Syntax]

[Function]

- Does not output warning messages for the subsequent instructions.

NOWARNING

[Δ]$[Δ]NOWARNING[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 205 of 751
Sep 01, 2013

Output warning messages.

[Syntax]

[Function]

- Output warning messages for the subsequent instructions.

WARNING

[Δ]$[Δ]WARNING[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 206 of 751
Sep 01, 2013

4.3.3 File input control instructions

Using the file input control instruction, the CC-RH can input an assembler source file or binary file to a specified posi-

tion.

The following file input control instructions are available.

Table 4-16. File Input Control Instructions

Control Instruction Overview

INCLUDE Quotes a series of statements from another source module file

BINCLUDE Inputs a binary file

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 207 of 751
Sep 01, 2013

Quote a series of statements from another source module file.

[Syntax]

[Function]

- The INCLUDE control instruction tells the assembler to insert and expand the contents of a specified file beginning

on a specified line in the source program for assembly.

[Use]

- A relatively large group of statements that may be shared by two or more source modules should be combined into

a single file as an INCLUDE file.

If the group of statements must be used in each source module, specify the filename of the required INCLUDE file

with the INCLUDE control instruction.

With this control instruction, you can greatly reduce time and labor in describing source modules.

[Description]

- The INCLUDE control instruction can only be described in ordinary source programs.

- The search pass of an INCLUDE file can be specified with the option (-I).

- The assembler searches INCLUDE file read paths in the following sequence:

(1) Folder specified by the option (-I)

(2) Standard include file folder

(3) Folder in which the source file exists

(4) Folder containing the (original) C source file

(5) Currently folder

- The INCLUDE file can do nesting (the term "nesting" here refers to the specification of one or more other

INCLUDE files in an INCLUDE file).

- The maximum nesting level for include files is 4,294,967,294 (=0xFFFFFFFE) (theoretical value). The actual num-

ber that can be used depends on the amount of memory, however.

- If the specified INCLUDE file cannot be opened, the CC-RH outputs the message and stops assembling.

- If an include file contains a block from start to finish, such as a section definition directive, macro definition direc-

tive, or conditional assembly control instruction, then it must be closed with the corresponding code. If it is not so

closed, then an error will be output, and assembly will continue assuming the include file is closed.

- Section definition directive, macro definition directives, and conditional assembly control instructions that are not

targets for assembly are not checked.

INCLUDE

[Δ]$[Δ]INCLUDE[Δ]([Δ]file-name[Δ])[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 208 of 751
Sep 01, 2013

Inputs a binary file.

[Syntax]

[Function]

- Assumes the contents of the binary file specified by the operand to be the result of assembling the source file at

the position of this control instruction.

[Description]

- The search pass of an INCLUDE file can be specified with the option (-I).

- The assembler searches INCLUDE file read paths in the following sequence:

(1) Folder specified by the option (-I)

(2) Standard include file folder

(3) Folder in which the source file exists

(4) Folder containing the (original) C source file

(5) Currently folder

- This control instruction handles the entire contents of the binary files. When a relocatable file is specified, this con-

trol instruction handles files configured in ELF format. Note that it is not just the contents of the .text selection, etc.

that are handled.

- If a non-existent file is specified, the CC-RH outputs the message then stops assembling.

BINCLUDE

[Δ]$[Δ]BINCLUDE[Δ]([Δ]file-name[Δ])[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 209 of 751
Sep 01, 2013

4.3.4 Conditional assembly control instructions

Using conditional assembly control instruction, the CC-RH can control the range of assembly according to the result of

evaluating a conditional expression.

The following conditional assembly control instructions are available.

Table 4-17. Conditional Assembly Control Instructions

The maximum number of nest level of the conditional assembly control instruction is 4,294,967,294 (=0xFFFFFFFE)

(theoretical value). The actual number that can be used depends on the amount of memory, however.

Control Instruction Overview

IFDEF Control based on symbol (assembly performed when the symbol is defined)

IFNDEF Control based on symbol (assembly performed when the symbol is not defined)

IF Control based on absolute expression (assembly performed when the value is

true)

IFN Control based on absolute expression (assembly performed when the value is

false)

ELSEIF Control based on absolute expression (assembly performed when the value is

true)

ELSEIFN Control based on absolute expression (assembly performed when the value is

false)

ELSE Control based on absolute expression/symbol

ENDIF End of control range

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 210 of 751
Sep 01, 2013

Control based on symbol (assembly performed when the symbol is defined).

[Syntax]

[Function]

- If the switch name specified by the operand is defined.

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,

assembles the block enclosed within this control instruction and the corresponding control instruc-

tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed

within this control instruction and the corresponding ENDIF control instruction.

- If the specified switch name is not defined.

Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(2)

Symbol").

- Switch names can overlap with user-defined symbols other than reserved words. Note, however, that overlapping

between switch names is checked.

- Switch names are not output to the assembly list file's symbol-list information or cross-reference information.

IFDEF

[Δ]$[Δ]IFDEF[Δ]switch-name[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 211 of 751
Sep 01, 2013

Control based on symbol (assembly performed when the symbol is not defined).

[Syntax]

[Function]

- If the switch name specified by the operand is defined.

Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

- If the specified switch name is not defined.

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,

assembles the block enclosed within this control instruction and the corresponding control instruc-

tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed

within this control instruction and the corresponding ENDIF control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

- The rules of describing switch names are the same as the conventions of symbol description (for details, see "(2)

Symbol").

- Switch names can overlap with user-defined symbols other than reserved words. Note, however, that overlapping

between switch names is checked.

- Switch names are not output to the assembly list file's symbol-list information or cross-reference information.

IFNDEF

[Δ]$[Δ]IFNDEF[Δ]switch-name[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 212 of 751
Sep 01, 2013

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,

assembles the block enclosed within this control instruction and the corresponding control instruc-

tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed

within this control instruction and the corresponding ENDIF control instruction.

- If the absolute expression is evaluated as being false (= 0).

Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

- Absolute expressions are evaluated as 32-bit signed integers.

IF

[Δ]$[Δ]IF[Δ]absolute-expression[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 213 of 751
Sep 01, 2013

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0).

Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

- If the absolute expression is evaluated as being false (= 0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,

assembles the block enclosed within this control instruction and the corresponding control instruc-

tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed

within this control instruction and the corresponding ENDIF control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

- Absolute expressions are evaluated as 32-bit signed integers.

IFN

[Δ]$[Δ]IFN[Δ]absolute-expression[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 214 of 751
Sep 01, 2013

Control based on absolute expression (assembly performed when the value is true).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,

assembles the block enclosed within this control instruction and the corresponding control instruc-

tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed

within this control instruction and the corresponding ENDIF control instruction.

- If the absolute expression is evaluated as being false (= 0).

Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

- Absolute expressions are evaluated as 32-bit signed integers.

ELSEIF

[Δ]$[Δ]ELSEIF[Δ]absolute-expression[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 215 of 751
Sep 01, 2013

Control based on absolute expression (assembly performed when the value is false).

[Syntax]

[Function]

- If the absolute expression specified by the operand is evaluated as being true (≠ 0).

Skips to the ELSEIF, ELSEIFN, ELSE, or ENDIF control instruction corresponding to this control instruction.

- If the absolute expression is evaluated as being false (= 0).

(a) If this control instruction and the corresponding ELSEIF, ELSEIFN, or ELSE control instruction exist,

assembles the block enclosed within this control instruction and the corresponding control instruc-

tion.

(b) If none of the corresponding control instruction detailed above exist, assembles the block enclosed

within this control instruction and the corresponding ENDIF control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

- Absolute expressions are evaluated as 32-bit signed integers.

ELSEIFN

[Δ]$[Δ]ELSEIFN[Δ]absolute-expression[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 216 of 751
Sep 01, 2013

Control based on absolute expression/symbol.

[Syntax]

[Function]

- If the specified switch name is not defined by the IFDEF control instruction, if the absolute expression of the IF, or

ELSEIF control instruction is evaluated as being false (= 0), or if the absolute expression of the IFN, or ELSEIFN

control instruction is evaluated as being true (≠ 0), assembles the arrangement of statements (block) enclosed

within this control instruction and the corresponding ENDIFcontrol instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

ELSE

[Δ]$[Δ]ELSE[Δ]absolute-expression[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 217 of 751
Sep 01, 2013

End of control range.

[Syntax]

[Function]

Indicates the end of the control range of a conditional assembly control instruction.

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be changed with-

out major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in a

source program, whether or not the debugging statement should be assembled (translated into machine language)

can be specified by setting switches for conditional assembly.

[Description]

- This control instruction can be placed in an ordinary source program.

ENDIF

[Δ]$[Δ]ENDIF[Δ]absolute-expression[Δ][;comment]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 218 of 751
Sep 01, 2013

4.4 Macro

This section lainshe hthe cro function.

This is very convenient function to describe serial instruction group for number of times in the program.

4.4.1 Outline

This macro function is very convenient function to describe serial instruction group for number of times in the program.

Macro function is the function that is deployed at the location where serial instruction group defined as macro body is

referred by macros as per .macro, .endm directives.

Macro differs from subroutine as it is used to improve description of the source.

Macro and subroutine has features respectively as follows. Use them effectively according to the respective purposes.

- Subroutine

Process required many times in program is described as one subroutine. Subroutine is converted in machine lan-

guage only once by assembler.

Subroutine/call instruction (generally instruction for argument setting is required before and after it) is described

only in subroutine reference. Consequently, memory of program can be used effectively by using subroutine.

It is possible to draw structure of program by executing subroutine for process collected serially in program

(Because program is structured, entire program structure can be easily understood as well setting of the program

also becomes easy.).

- Macro

Basic function of macro is to replace instruction group.

Serial instruction group defined as macro body by .macro, .endm directives are deployed in that location at the

time of referring macro. Assembler deploys macro/body that detects macro reference and converts the instruction

group to machine language while replacing temporary parameter of macro/body to actual parameter at the time of

reference.

Macro can describe a parameter.

For example, when process sequence is the same but data described in operand is different, macro is defined by

assigning temporary parameter in that data. When referring the macro, by describing macro name and actual

parameter, handling of various instruction groups whose dercription is different in some parts only is possible.

Subroutine technique is used to improve efficiency of coding for macro to use to draw structure of program and reduc-

ing memory size.

4.4.2 Usage of macro

A macro is described by registering a pattern with a set sequence and by using this pattern. A macro is defined by the

user. A macro is defined as follows. The macro body is enclosed by ".macro" and ".endm".

If the following description is made after the above definition has been made, the macro is replaced by a code that

"stores r19 in the stack".

PUSHMAC .macro REG ;The following two statements constitute the macro body.

 add -4, sp

 st.w REG, 0x0[sp]

.endm

PUSHMAC r19

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 219 of 751
Sep 01, 2013

In other words, the macro is expanded into the following codes.

4.4.3 Macro operator

This section describes the combination symbols "~" and "$", which are used to link strings in macros.

(1) ∼ (Concatenation)

- The concatenation "∼" concatenates one character or one character string to another within a macro body.

At macro expansion time, the character or character string on the left of the concatenation is concatenated to

the character or character string on the right of the sign. The "∼" itself disappears after concatenating the

strings.

- The symbols before and after the combination symbol "~" in the symbols of a macro definition can be recog-

nized as formal parameters or local symbols, and combination symbols can also be used as delimiter sym-

bols. At macro expansion time, strings before and after the "∼" in the symbol are evaluated as the local

symbols and formal parameters, and concatenated into single symbols.

- The character "~" can only be used as a combination symbol in a macro definition.

- The "∼" in a character string and comment is simply handled as data.

- Two "∼" signs in succession are handled as a single "∼" sign.

Examples 1.

2.

add -4, sp

st.w r19, 0x0[sp]

abc .macro x

 abc~x: mov r10, r20

 sub def~x, r20

.endm

abc STU

[Development result]

abcSTU: mov r10, r20

 sub defSTU, r20

abc .macro x, xy

 a_~xy: mov r10, r20

 a_~x~y: mov r20, r10

.endm

abc necel, STU

[Development result]

a_STU: mov r10, r20

a_stuy: mov r20, r10

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 220 of 751
Sep 01, 2013

3.

(2) $ (Dollar symbol)

If a symbol prefixed with a dollar symbol ($) is specified as an actual argument for a macro call, the assembler

assumes the symbol to be specified as an actual argument. If, however, an identifier other than a symbol or an

undefined symbol name is specified immediately after the dollar symbol ($), the as850 outputs the message then

stops assembling.

Example

4.5 Reserved Words

The assembler has reserved words. Reserve word cannot be used in symbol, label, section name, macro name. If a

reserved word is specified, the CC-RH outputs the message and stops assembling. Reserve word doesn't distinguish

between uppercase and lowercase.

The reserved words are as follows.

- Instructions (such as add, sub, and mov)

- Directives

- Control instructions

- Register names, Internal register name

- GHS reserved sections ("_GHS", ".ghs", and section names starting with ".__ghs")

abc .macro x, xy

 ~ab: mov r10, r20

.endm

abc stu, STU

[Development result]

ab: mov r10, r20

mac1 .macro x

 mov x, r10

.endm

mac2 .macro

value .set 10

 mac1 value

 mac1 $value

.endm

mac2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 221 of 751
Sep 01, 2013

4.6 Assembler Generated Symbols

The following is a list of symbols generated by the assembler for use in internal processing.

Symbols with the same names as the symbols below cannot be used.

The assembler does not output object files for symbols starting with a period ("."), treating these as symbols for internal

processing.

Table 4-18. Assembler Generated Symbols

Symbol Name Explanation

.??00000000 to .??FFFFFFFF .local directive generation local symbols

.LMn_n

(n:0 - 4294967294)

Example :

 .LM0_1

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 222 of 751
Sep 01, 2013

4.7 Instruction Set

This section explains the instruction set supported by the CC-RH.

(1) Description of symbols

Next table lists the meanings of the symbols used further.

Table 4-19. Meaning of Symbols

Symbols Meaning

CMD Instruction

CMDi Instruction(andi, ori, or xori)

reg, reg1, reg2 Register

r0, R0 Zero register

R1 Assembler-reserved register

gp Global pointer (r4)

ep Element pointer (r30)

[reg] Base register

disp Displacement (Displacement from the address)

32 bits unless otherwise stated.

dispn n-bit displacement

imm Immediate

32 bits unless otherwise stated.

immn n-bit immediate

bit#3 3-bit data for bit number specification

cc#3 3-bit data for specifying CC0 to CC7 (bits 24 to 31) of the FPSR floating-point system register

#label Absolute address reference of label

label Offset reference of label in section or PC offset reference

$label gp offset reference of label

!label Absolute address reference of label (without instruction expansion)

%label Offset reference of label within the section (no instruction expansion) or offset reference of ep

HIGHW(value) Higher 16 bits of value

LOWW(value) Lower 16 bits of value

HIGHW1(value) Higher 16 bits of value + bit valueNote of bit number 15 of value

HIGH(value) Upper 8 bits of the lower 16 bits of value

LOW(value) Lower 8 bits of value

addr Address

PC Program counter

PSW Program status word

regID System register number (0 to 31)

vector Trap vector (0 to 31)

BITIO Peripheral I/O register (for 1-bit manipulation only)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 223 of 751
Sep 01, 2013

Note The bit number 0 is LSB (Least Significant Bit).

(2) Operand

This section describes the description format of operand in assembler. In assembler, register, constant, symbol,

label reference, and expression that composes of constant, symbol, label reference, operator and parentheses can

be specified as the operands for instruction, and directives.

(a) Register

The registers that can be specified with the assembler are listed below.Note

r0, zero, r1, r2, hp, r3, sp, r4, gp, r5, tp, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21,

r22, r23, r24, r25, r26, r27, r28, r29, r30, ep, r31, lp

Note For the ldsr and stsr instructions, the PSW, and system registers are specified by using the numbers.

Further, in assembler, PC cannot be specified as an operand.

r0 and zero (Zero register), r2 and hp (Handler stack pointer), r3 and sp (Stack pointer), r4 and gp (Global

pointer), r5 and tp (Text pointer), r30 and ep (Element pointer), r31 and lp (Link pointer) shows the same regis-

ter.

(b) r0

r0 is the register which normally contains 0 value. This register does not substitute the result of an operation

even if used as a destination register. When r0 is specified as a destination register, the assembler outputs

the following messageNote, and then continues assembling.

Note Output of this message can be suppressed by specifying the warning message suppression option (-

Xno_warning) upon starting the assembler.

(c) r1

The assembler-reserved register (r1) is used as a temporary register when instruction expansion is performed

using the assembler. If r1 is specified as a source or destination register, the assembler outputs the following

messageNote, then continues assembling.

Note Output of this message can be suppressed by specifying the warning message suppression option (-

Xno_warning) upon starting the assembler.

mov 0x10, r0

 ↓

W0550013: register r1 used as destination register.

mov 0x10, r1

 ↓

W0550013: register r1 used as destination register.

mov r1, r10

 ↓

W0550013: register r1 used as source register.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 224 of 751
Sep 01, 2013

(d) Constants

As the constituents of the absolute expressions or relative expressions that can be used to specify the oper-

ands of the instructions and pseudo-instruction in the assembler, integer constants and character constants

can be used.

Floating-point constants can be used to specify the operand of the .float pseudo-instruction.

(e) Symbols

The assembler supports the use of symbols as the constituents of the absolute expressions or relative expres-

sions that can be used to specify the operands of instructions and directives.

(f) Label reference

In assembler, label reference can be used as a component of available relative value as shown in operand

designation of instruction/directive.

- Memory reference instruction (Load/store instruction, and bit manipulation instruction)

- Operation instruction (arithmetic operation instruction, saturated operation instruction, logical operation

instruction)

- Branch instruction

- Area reservation directive

In assembler, the meaning of a label reference varies with the reference method and the differences used in

the instructions/directives Details are shown below.

Table 4-20. Label Reference

Reference

Method

Instructions Used Meaning

#label Memory reference instruc-

tion, operation instruction

and jmp instruction

The absolute address of the position at which the definition of

label (label) exists (Offset from address 0Note 1).

This has a 32-bit address and must be expanded into two

instructions except ld23, st23 or mov instruction.

Area reservation directive The absolute address of the position at which the definition of

label (label) exists (Offset from address 0Note 1).

Note that the 32-bit address is a value masked in accordance

with the size of the area secured.

!label Memory reference instruc-

tion, operation instruction

The absolute address of the position at which the definition of

label (label) exists (Offset from address 0 Note 1).

This has a 16-bit address and cannot expand instructions if

instructions with 16-bit displacement or immediate are speci-

fied.

If any other instructions are specified, expansion into appro-

priate one instruction is possible.

If the address defined by label (label) is not within a range

expressible by 16 bits, an error will be occur at the time of

link.

Area reservation directive The absolute address of the position at which the definition of

label (label) exists (Offset from address 0 Note 1).

Note that the 32-bit address is a value masked in accordance

with the size of the area secured.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 225 of 751
Sep 01, 2013

Notes 1. The offset from address 0 in object module file after link.

2. The offset from the first address of the section (output section) in which the definition of label (label)

exists is allocated in the linked object module file.

The meanings of label references for memory reference instructions, operation instructions, branch instruc-

tions, and area allocation pseudo-instruction are shown below.

Table 4-21. Memory Reference Instruction

label Memory reference instruc-

tion, operation instruction

The offset in the section of the position where definition of the

label (label) exists (offset from the initial address of the sec-

tion where the definition of label (label) existsNote 2).

This has a 32-bit offset and must be expanded into two

instructions except ld23, st23 or mov instruction.

Branch instruction except

jmp instruction

The PC offset at the position where definition of label (label)

exists (offset from the initial address of the instruction using

the reference of label (label)).

Area reservation directive The offset in the section of the position where definition of the

label (label) exists (offset from the initial address of the sec-

tion where the definition of label (label) existsNote 2).

Note that the 32-bit offset is a value masked in accordance

with the size of the area secured.

%label Memory reference instruc-

tion, operation instruction

This has a 16-bit offset and cannot expand instructions if

instructions with 16-bit displacement or immediate are speci-

fied.

If any other instructions are specified, expansion into appro-

priate one instruction is possible.

If the address defined by label (label) is not within a range

expressible by 16 bits, an error will be occurred at the time of

link.

Area reservation directive The ep offset at the position where definition of the label

(label) exists (offset from the address showing the element

pointer).

Note that the 32-bit offset is a value masked in accordance

with the size of the area secured.

$label Memory reference instruc-

tion, operation instruction

The gp offset at the position where definition of the label

(label) exists (offset from the address showing the global

pointer).

Reference Method Meaning

#label[reg] The absolute address of label (label) is treated as a displacement.

This has a 32-bit value and must be expanded into two instructions except

ld23 or st23 instruction. By setting #label[r0], reference by an absolute

address can be specified.

Part of [reg] can be omitted. If omitted, the assembler assumes that [r0] has

been specified.

Reference

Method

Instructions Used Meaning

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 226 of 751
Sep 01, 2013

Note See "(h) gp offset reference".

Table 4-22. Operation Instructions

label[reg] The offset in the section of label (label) is treated as a displacement.

This has a 32-bit value and must be expanded into two instructions except

ld23 or st23 instruction. By specifying a register indicating the first address

of section as reg and thereby setting label[reg], general register relative ref-

erence can be specified.

$label[reg] The gp offset of label (label) is treated as a displacement.

This has either a 32-bit or 16-bit value, from the section defined by label

(label), and pattern of instruction expansion changes accordingly Note. If an

instruction with a 16-bit value is expanded and the offset calculated from the

address defined by label (label) is not within a range that can be expressed

in 16 bits, an error is output at the time of link. By setting $label [gp], relative

reference of the gp register (called a gp offset reference) can be specified.

Part of [reg] can be omitted. If omitted, the assembler assumes that [gp] has

been specified.

!label[reg] The absolute address of label (label) is treated as a displacement.

This has a 16-bit value and instruction is not expanded. If the address

defined by label (label) cannot be expressed in 16 bits, an error is output at

the time of link. By setting !lable[r0], reference by an absolute address can

be specified.

Part of [reg] can be omitted. If omitted, the assembler assumes that [r0] has

been specified.

However, unlike #label[reg] reference, instruction expansion is not executed.

%label[reg] The offset from the ep symbol in the position where definition of the label

(label) exists is treated as a displacement.

This either has a 16-bit value, or depending on the instruction a value lower

than this, and if it is not a value that can be expressed within this range, an

error is output at the time of link.

Part of [reg] can be omitted. If omitted, the assembler assumes that [ep] has

been specified.

Reference Method Significance

#label The absolute address of label (label) is treated as an immediate.

This has a 32-bit value and must be expanded into two instructions.

label The offset in the section of label (label) is treated as an immediate.

This has a 32-bit value and must be expanded into two instructions.

$label The gp offset of label (label) is treated as an immediate.

This either has a 32-bit or 16-bit value, from the section defined by label

(label), and pattern of instruction changes accordingly Note 1. If an instruction

with a 16-bit value is expanded and the offset calculated from the address

defined by label (label) is not within a range that can be expressed in 16 bits,

an error is output at the time of link.

Reference Method Meaning

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 227 of 751
Sep 01, 2013

Notes 1. See "(h) gp offset reference".

2. The instructions for which a 16-bit value can be specified as an immediate are the addi, andi,

movea, mulhi, ori, satsubi, and xori instructions.

Table 4-23. Branch Instructions

Table 4-24. Area Reservation Directives

!label The absolute address of label (label) is treated as an immediate.

This has a 16-bit value. If operation instruction of an architecture for which a

16-bit value can be specify Note 2 as an immediate are specified, and instruc-

tion is not expanded. If the add, mov, and mulh instructions are specified,

expansion into appropriate 1-instruction is possible. No other instructions

can be specified. If the value is not within a range that can be expressed in

16 bits, an error is output at the time of link.

%label The offset from the ep symbol in the position where definition of the label

(label) exists is treated as an immediate.

This has a 16-bit value. If operation instruction of an architecture for which a

16-bit value can be specify Note 2 as an immediate are specified, and instruc-

tion is not expanded. This reference method can be specified only for oper-

ation instructions of an architecture for which a 16-bit value can be specified

as an immediate, and add, mov, and mulh instructions. If the add, mov, and

mulh instructions are specified, expansion into appropriate 1-instruction is

possible. No other instructions can be specified. If the value is not within a

range that can be expressed in 16 bits, an error is output at the time of link.

Reference Method Meaning

#label In jmp instruction, the absolute address of label (label) is treated as a jump

destination address.

This has a 32-bit value and must be expanded into two instructions.

label In branch instructions other than the jmp instruction, PC offset of the label

(label) is treated as a displacement.

This has a 22-bit value, and if it is not within a range that can be expressed

in 22 bits, an error is output at the time of link.

Reference Method Meaning

#label

!label

In .db4/.db2/.db directive, the absolute address of the label (label) is treated

as a value.

This has a 32-bit value, but is masked in accordance with the bit width of

each directives

label In .db4/.db2/.db directive, the offset in the section defined by label (label) is

treated as a value.

This has a 32-bit value, but is masked in accordance with the bit width of

each directives

%label The .db4, .db2, and .db directives treat the ep offset of label label as a value.

This has a 32-bit value, but is masked in accordance with the bit width of

each directives

Reference Method Significance

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 228 of 751
Sep 01, 2013

(g) ep offset reference

This section describes the ep offset reference. The CC-RH assumes that data explicitly stored in internal RAM

is shown below.

Data in the internal RAM is divided into the following two groups.

- TDATA/TDATA4/TBSS4/TDATA5/TBSS5/TDATA7/TBSS7/TDATA8/TBSS8 section (Data is referred by

memory reference instructions (sld/sst) in a small code size)

- EDATA/EBSS section (Data is referred by memory reference instructions (ld/st) in a large code size)

- EDATA23/EBSS23 section (Data is referred by memory reference instructions (ld23/st23) in a large code

size)

Figure 4-2. Memory Location Image of Internal RAM

<1> Data allocation

In internal RAM, data is allocated to the sections as follows:

- When developing a program in C

Allocate data by specifying the "sdata", or "sdata23" section type in the "#pragma section" instruc-

tion.

- When developing a program in assembly language

Data is allocated to the section of tdata, tdata4, tbss4, tdata5, tbss5, tdata7, tbss7, tdata8, tbss8,

sdata, sbss, sdata23, or sbss23 relocation attribute sections by the section definition directives.

<2> Data reference

In cases where a reference via %label is made, the assembler generates a sequence of machine-lan-

guage instructions to perform reference to the data at the corresponding ep offset.

$label The .db4, .db2, and .db directives treat the gp offset of label label as a value.

This has a 32-bit value, but is masked in accordance with the bit width of

each directives

Reference through the offset from address indicated by the element pointer (ep).

Reference Method Meaning

Higher address

Lower address

EDATA23 section

EDATA section

TDATA section

EDATA section

EDATA23 section

ep
Internal RAM

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 229 of 751
Sep 01, 2013

Example

The assembler generates machine-language instructions that treat references via %label as ep-offset

references in the cases of both (1) and (2).

The assembler assumes that the section in which the data is located is correct. As a result, it will not

detect errors in data placement.

Example

Instructions are coded to allocate a label to the EDATA section and to perform reference by ep offset.

However, label is allocated to the DATA section because of the allocation error. In this case, the assem-

bler loads the data in the base register ep symbol value + offset value in the DATA section of label.

(h) gp offset reference

This section describes the gp offset reference. The CC-RH assumes that data stored in external RAM (other

than .sedata/.sebss section explained on the previous page) is basically shown below.

If r0-relative memory allocation for internal ROM or RAM is not done with the "#pragma section" command of

C, or an assembly language section definition directive, all data is subject to gp offset reference.

<1> Data allocation

The memory reference instruction (ld/st) of the machine instruction of the RH850 family can accept 16-bit

immediate or 23-bit immediate as a displacement. For this reason, the CC-RH classifies data into the

following three types. Data of the first type is allocated to the sdata or sbss section, the second type is

allocated to the sdata23 or sbss23 section, the 3rd type is allocated to the data or bss section.

- Data allocated to a memory range that can be referred by using the global pointer (gp) and a 16-bit

displacement.

- Data allocated to a memory range that can be referred by using the global pointer (gp) and a 23-bit

displacement.

- Data allocated to a memory range that can be referred by using the global pointer (gp) and (con-

structed by many instructions) a 32-bit displacement.

 .dseg EDATA

sdata: .db2 0xFFF0

 .dseg DATA

data: .db2 0xFFF0

 .cseg TEXT

 ld.h %sdata, r20 ; (1)

 ld.h %data, r20 ; (2)

 .dseg DATA

label:

 .dhw 0x0001

 .cseg TEXT

 ld.h %label[ep], r20

Referred by the offset from the address indicated by global pointer (gp).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 230 of 751
Sep 01, 2013

Figure 4-3. Memory Location Image for gp Offset Reference Section

Remark The sum of sdata- and sbss-attribute sections is 64 KB. gp is the center of the sdata section

and sbss section.

Data in the sdata/sbss/sdata23/sbss23 sections can be referred by using a single instruction. To refer-

ence data in the data/bss sections, however, two or more instructions are necessary. Therefore, the

more data allocated to the sdata/sbss/sdata23/sbss23 sections, the higher the execution efficiency and

object efficiency of the generated machine instructions. However, the size of the memory range that can

be referred with a 16-bit and 23-bit displacement is limited.

If all the data cannot be allocated to the sdata/sbss/sdata23/sbss23 sections, it becomes necessary to

determine which data is to be allocated to the sdata/sbss/sdata23/sbss23 sections.

The CC-RH "allocates as much data as possible to the sdata/sbss/sdata23/sbss23 sections". By default,

all data items are allocated to the sdata/sbss/sdata23/sbss23 sections. The data to be allocated can be

selected as follows:

- When using a program to specify the section to which data will be allocated.

Explicitly allocate data that will be frequently referred to the sdata/sbss/sdata23/sbss23 sections.

For allocation, use a section definition directive when using the assembly language, or the #pragma

section command when using C.

<2> Data reference

Using the data allocation method explained above, the assembler generates a machine instruction string

that performs:

- Reference by using a 16-bit displacement for gp offset reference to data allocated to the sdata- and

sbss- attribute sections.

- Reference by using a 32-bit displacement (consisting of two or more machine instructions) for gp

offset reference to data allocated to the data- and bss-attribute sections.

Higher address

Lower address

sdata23 section

64KBgp

sbss23 section

sdata section

sbss23 section

sdata section

sbss section

sbss23 section

sbss section
8MB

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 231 of 751
Sep 01, 2013

Example

The assembler generates a machine instruction string, equivalent to the following instruction string for

the ld.w instruction in (2), that performs gp offset reference of the data defined in (1).Note

Note See "(i) About HIGH/LOW/HIGHW/LOWW/HIGHW1", for details of HIGHW1/LOWW.

The assembler processes files on a one-by-one basis. Consequently, it can identify to which attribute

section data having a definition in a specified file has been allocated, but cannot identify the section to

which data not having a definition in a specified file has been allocated.

To develop a program in an assembly language, therefore, specify the size of the data (actually, a label

for which there is no definition in a specified file and which is referred by a gp offset) for which there is no

definition in a specified file, by using the .extern directives.

To develop a program in C, the C compiler of the CC-RH automatically generates the .extern directive,

thus output the code which specifies the size of data not having a definition in the specified file (actually,

a label for which there is no definition in a specified file and which is referred by a gp offset).

Remark The handling of gp offset reference (specifically, memory reference instructions that use a

relative expression having the gp offset of a label as their displacement) by the assembler is

summarized below.

- If the data has a definition in a specified file.

- If the data is to be allocated to the sdata or sbss sectionNote.

Generates a machine instruction that performs reference by using a16-bit displacement.

- If the data is not allocated to the sdata or sbss section.

Generates a machine instruction string that performs reference by using a 32-bit displacement.

Note If the value of the constant expression of a relative expression in the form of "label + constant

expression" exceeds 16 bits, the assembler generates a machine instruction string that performs

reference using a 32-bit displacement.

 .dseg DATA

data: .db4 0xFFF00010 ; (1)

 .cseg TEXT

 ld.w $data[gp], r20 ; (2)

movhi HIGHW1($data), gp, r1

ld.w LOWW($data)[r1], r20

.extern data, 4 ; (1)

.cseg TEXT

ld.w $data[gp], r20 ; (2)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 232 of 751
Sep 01, 2013

- If the data does not have a definition in a specified file.

Assumes that the data is to be allocated to the sdata or sbss section (the label referenced by gp offset has

a definition in the sdata/sbss section) and generates a machine instruction that performs reference by

using a 16-bit displacement.

(i) About HIGH/LOW/HIGHW/LOWW/HIGHW1

<1> To store 32-bit constant value in a register

To store a 32-bit constant value in a register, the assembler performs instruction expansion, and gener-

ates an instruction string, by using the movhi and movea instructions. These divide the 32-bit constant

value into the higher 16 bits and lower 16 bits.

Example

At this time, the movea instruction, used to store the lower 16 bits in the register, sign-extends the speci-

fied 16-bit value to a 32-bit value. To adjust the sign-extended bits, the assembler does not merely store

the higher 16 bits in a register when using the movhi instruction, instead it stores the following value in

the register.

<2> To refer memory by using 32-bit displacement

The assembler performs instruction expansion to refer the memory by using a 32-bit displacement, and

generates an instruction string that performs the reference, by using the movhi and memory reference

instructions and thereby constituting a 32-bit displacement from the higher 16 bits and lower 16 bits of

the 32-bit displacement.

Example

At this time, the memory reference instruction of machine instructions that uses the lower 16 bits as a

displacement sign-extends the specified 16-bit displacement to a 32-bit value. To adjust the sign-

extended bits, the assembler does not merely configure the displacement of the higher 16 bits by using

the movhi instruction, instead it configures the following displacement.

mov 0x18000, r11 movhi HIGHW1(0x18000), r0, r1

movea LOWW(0x18000), r1, r11

Higher 16 bits + the most significant bit (bit of bit number 15) of the lower 16 bits

ld.w 0x18000[r11], r12 movhi HIGHW1(0x18000), r11, r1

ld.w LOWW(0x18000)[r1], r12

Higher 16 bits + the most significant bit (bit of bit number 15) of the lower 16 bits

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 233 of 751
Sep 01, 2013

<3> HIGHW/LOWW/HIGHW1/HIGH/LOW

In the next table, the assembler can specify the higher 16 bits of a 32-bit value, the lower 16 bits of a 32-

bit value, the value of the higher 16 bits + bit 15 of a 32-bit value, the higher 8 bits of a 16-bit value, and

the lower 8 bits of a 16-bit value by using HIGHW, LOWW, HIGHW, HIGH, and LOW.Note

Note If this information cannot be internally resolved by the assembler, it is reflected in the relocation

information and subsequently resolved by the link editor.

Table 4-25. Area Reservation Directives

Example

HIGHW/LOWW/HIGHW1/

HIGH/LOW

Meaning

HIGHW (value) Higher 16 bits of value

LOWW (value) Lower 16 bits of value

HIGHW1 (value) Higher 16 bits of value + bit value of bit number 15 of value

HIGH (value) Upper 8 bits of the lower 16 bits of value

LOW (value) Lower 8 bits of value

 .dseg DATA

L1:

 :

 .cseg TEXT

 movhi HIGHW ($L1), r0, r10 ; Stores the higher 16 bits of the gp

 ; offset value of L1 in the higher 16

 ; bits of r10, and the lower 16 bits to 0

 movea LOWW ($L1), r0, r10 ; Sign-extends the lower 16 bits of the gp

 ; offset of L1 and stores to r10

 :

 movhi HIGHW1 ($L1), r0, r1 ; Stores the gp offset value of L1 in r10

 movea LOWW ($L1), r1, r10

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 234 of 751
Sep 01, 2013

4.8 Description of Instructions

This section describes the instructions of the assembly language supported by the assembler.

For details of the machine instructions generated by the assembler, see the "Each Device User Manual".

Indicates the meaning of instruction.

[Syntax]

Indicates the syntax of instruction.

[Function]

Indicates the function of instruction.

[Description]

Indicates the operating method of instruction.

[Flag]

Indicates the operation of flag (PSW) by the execution of instruction.

However, in (set1, clr1, not1) bit operation instruction, indicates the flag value before execution.

"---" of table indicates that the flag value is not changed.

[Caution]

Indicates the caution in instruction.

 Instruction

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 235 of 751
Sep 01, 2013

4.8.1 Load/Store instructions

This section describes the load/store instructions. Next table lists the instructions described in this section.

See the RH850 product user's manual and architecture edition for details.

Table 4-26. Load/Store Instructions

Instruction Meaning

ld ld.b Byte data load

ld.h Halfword data load

ld.w Word data load

ld.bu Unsigned byte data load

ld.hu Unsigned halfword data load

sld sld.b Byte data load (short format)

sld.h Halfword data load (short format)

sld.w Word data load (short format)

sld.bu Unsigned byte data load (short format)

sld.hu Unsigned halfword data load (short format)

ld23 ld23.b Byte data load

ld23.h Halfword data load

ld23.w Word data load

ld23.bu Unsigned byte data load

ld23.hu Unsigned halfword data load

ld23.dw Doubleword data load

st st.b Byte data store

st.h Halfword data store

st.w Word data store

sst sst.b Byte data store (short format)

sst.h Halfword data store (short format)

sst.w Word data store (short format)

st23 st23.b Byte data store

st23.h Halfword data store

st23.w Word data store

st23.dw Doubleword data store

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 236 of 751
Sep 01, 2013

Data is loaded.

[Syntax]

- ld.b disp[reg1], reg2

- ld.h disp[reg1], reg2

- ld.w disp[reg1], reg2

- ld.bu disp[reg1], reg2

- ld.hu disp[reg1], reg2

The following can be specified for displacement (disp):

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with LOWW applied

[Function]

The ld.b, ld.bu, ld.h, ld.hu, and ld.w instructions load data of 1 byte, 1 halfword, and 1 word, from the address specified

by the first operand, int the register specified by the second operand.

[Description]

- If any of the following is specified for disp, the assembler generates one ld machine instructionNote. In the follow-

ing explanations, ld denotes the ld.b/ld.h/ld.w/ld.bu/ld.hu instructions.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Absolute expression having !label or %label

(d) Expression with , LOWW

Note The ld machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to

0x7FFF) as the displacement

- If any of the following is specified for disp, the assembler performs instruction expansion to generate multiple

machine instructions.

ld

ld disp16[reg1], reg2 ld disp16[reg1], reg2

ld $label[reg1], reg2 ld $label[reg1], reg2

ld !label[reg1], reg2 ld !label[reg1], reg2

ld %label[reg1], reg2 ld %label[reg1], reg2

ld disp16[reg1], reg2 ld disp16[reg1], reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 237 of 751
Sep 01, 2013

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having definition in the

sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.

- If a relative expression having #label, or a relative expression having #label and with LOWW applied is specified

as disp, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.

- If a relative expression having $label, or a relative expression having $label and with LOWW applied, is specified

as disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.

- Specify an ld23 instruction to specify an ld instruction with a 23 bit-wide disp..

[Flag]

[Caution]

- ld.b and ld.h sign-extend the data of 1 byte and 1 halfword, respectively, and load the data into a register as 1

word.

- If a value that is not a multiple of 2 is specified as disp of ld.h, ld.w, or ld.hu, the assembler and link editor aligns

disp with 2 and generates a code. Then, the assembler and link editor outputs either one of the following mes-

sages.

- If r0 is specified as the second operand of ld.bu and ld.hu, the assembler outputs the following message and stops

assembling.

ld disp[reg1], reg2 movhi HIGHW1(disp), reg1, r1

ld LOWW(disp)[r1], reg2

ld #label[reg1], reg2 movhi HIGHW1(#label), reg1, r1

ld LOWW(#label)[r1], reg2

ld label[reg1], reg2 movhi HIGHW1(label), reg1, r1

ld LOWW(label)[r1], reg2

ld $label[reg1], reg2 movhi HIGHW1($label), reg1, r1

ld LOWW($label)[r1], reg2

CY ---

OV ---

S ---

Z ---

SAT ---

W0550010 : Illegal displacement in ld instruction.

E0562332 : Relocation value is odd number : "file"-"section"-"offset"

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 238 of 751
Sep 01, 2013

Data is loaded (short format).

[Syntax]

- sld.b disp7[ep], reg2

- sld.h disp8[ep], reg2

- sld.w disp8[ep], reg2

- sld.bu disp4[ep], reg2

- sld.hu disp5[ep], reg2

The following can be specified for displacement (disp4/5/7/8):

- Absolute expression having a value of up to 7 bits for sld.b, 8 bits for sld.h and sld.w, 4 bits for sld.bu, and 5 bits for

sld.hu.

- Relative expression

[Function]

The sld.b, sld.bu, sld.h, sld.hu, and sld.w instructions load the data of 1 byte, 1 halfword, and 1 word, from the address

obtained by adding the displacement specified by the first operand to the contents of register ep, to the register specified

by the second operand.

[Description]

The assembler generates one sld machine instruction. Base register specification "[ep]" can be omitted.

[Flag]

[Caution]

- sld.b and sld.h sign-extend and store data of 1 byte and 1 halfword, respectively, in the register as 1 word.

- If a value that is not a multiple of 2 is specified as disp8 of sld.h or disp5 of sld.hu, and if a value that is not a multi-

ple of 4 is specified as disp8 of sld.w, the assembler aligns disp8 or disp5 with multiples of 2 and 4, respectively,

and generates a code. Then, the assembler and link editor outputs either one of the following messages.

sld

CY ---

OV ---

S ---

Z ---

SAT ---

W0550010 : Illegal displacement in ld instruction.

E0562332 : Relocation value is odd number : "file"-"section"-"offset"

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 239 of 751
Sep 01, 2013

- If a value exceeding 127 is specified for disp7 of sld.b, a value exceeding 255 is specified for disp8 of sld.h and

sld.w, a value exceeding 16 is specified for disp4 of sld.bu, and a value exceeding 32 is specified for disp5 of

sld.hu, the assembler outputs the following message, and generates code in which disp7, disp8, disp4, and disp5

are masked with 0x7F, 0xFF, 0xF, and 0x1F, respectively.

- If r0 is specified as the second operand of the sld.bu and sld.hu, the assembler outputs the following message and

stops assembling.

W0550011 : Illegal operand (range error in immediate).

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 240 of 751
Sep 01, 2013

Data is loaded.

[Syntax]

- ld23.b disp23[reg1], reg2

- ld23.h disp23[reg1], reg2

- ld23.w disp23[reg1], reg2

- ld23.bu disp23[reg1], reg2

- ld23.hu disp23[reg1], reg2

- ld23.dw disp23[reg1], reg2

The following can be specified for displacement (disp):

- Absolute expression having a value of up to 23 bits

- Relative expression

[Function]

The ld23.b, ld23.bu, ld23.h, ld23.hu, and ld23.w instructions load data of 1 byte, 1 halfword, and 1 word, from the

address specified by the first operand, int the register specified by the second operand. The ld23.dw instruction loads a

double word of data from the address specified in the first operand, then register reg2 specified in the second operand

into the lower 32 bits, and reg2 + 1 into the upper 32 bits.

[Description]

- The assembler generates a 48-bit ldNote instruction in machine language.

Note The ld machine instruction takes an immediate value in the range of -4,194,304 to +4,194,303

(0xFFC00000 to 0x3FFFFF) as the displacement

- If disp23 is omitted, the assembler assumes 0.

- If a relative expression having #labelis specified as disp23, [reg1] can be omitted. If omitted, the assembler

assumes that [r0] is specified.

- If a relative expression having $label is specified as disp23, [reg1] can be omitted. If omitted, the assembler

assumes that [gp] is specified.

[Flag]

ld23

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 241 of 751
Sep 01, 2013

[Caution]

- ld23.b and ld23.h sign-extend the data of 1 byte and 1 halfword, respectively, and load the data into a register as 1

word.

- If a value that is not a multiple of 2 is specified as disp of ld23.h, ld23.w, ld23.hu, or ld23.dw, the assembler and

link editor aligns disp with 2 and generates a code. Then, the assembler and link editor outputs either one of the

following messages.

- If r0 is specified as the second operand of ld.bu and ld.hu, the assembler outputs the following message and stops

assembling.

- A message is output if an odd-numbered register is specified in the second operand of the ld23.dw instruction.

W0550010 : Illegal displacement in ld instruction.

E0562332 : Relocation value is odd number : "file"-"section"-"offset"

E0550240 : Illegal operand (cannot use r0 as destination in V850E mode).

W0550013 : register used as kind register.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 242 of 751
Sep 01, 2013

Data is stored.

[Syntax]

- st.b reg2, disp[reg1]

- st.h reg2, disp[reg1]

- st.w reg2, disp[reg1]

The following can be specified as a displacement (disp):

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with LOWW applied

[Function]

The st.b, st.h, and st.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word, respectively, of the

register specified by the first operand to the address specified by the second operand.

[Description]

- If any of the following is specified as disp, the assembler generates one st machine instructionNote. In the following

explanations, st denotes the st.b/st.h/st.w instructions.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Absolute expression having !label or %label

(d) Expression withLOWW

Note The st machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to

0x7FFF) as the displacement.

st

st reg2, disp16[reg1] st disp16[reg1], reg2

st reg2, $label[reg1] st $label[reg1], reg2

st reg2, !label[reg1] st !label[reg1], reg2

st reg2, %label[reg1] st %label[reg1], reg2

st reg2, disp16[reg1] st disp16[reg1], reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 243 of 751
Sep 01, 2013

- If any of the following is specified as disp, the assembler executes instruction expansion to generate two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.

- If a relative expression with #label, or a relative expression with #label and with LOWW applied is specified as

disp, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.

- If a relative expression with $label, or a relative expression with $label and with LOWW applied is specified as

disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.

- Specify an st23 instruction to specify an st instruction with a 23 bit-wide disp.

[Flag]

[Caution]

- If a value that is not a multiple of 2 is specified as the disp of st.h or st.w, the assembler aligns disp with 2 and gen-

erates a code. Then, the assembler outputs either one of the following messages.

st reg2, disp[reg1] movhi HIGHW1(disp), reg1, r1

st LOWW(disp)[r1], reg2

st reg2, #label[reg1] movhi HIGHW1(#label), reg1, r1

st LOWW(#label)[r1], reg2

st reg2, label[reg1] movhi HIGHW1(label), reg1, r1

st LOWW(label)[r1], reg2

st reg2, $label[reg1] movhi HIGHW1($label), reg1, r1

st LOWW($label)[r1], reg2

CY ---

OV ---

S ---

Z ---

SAT ---

W0550010 : Illegal displacement in ld instruction.

E0562332 : Relocation value is odd number : "file"-"section"-"offset"

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 244 of 751
Sep 01, 2013

Data is stored (short format).

[Syntax]

- sst.b reg2, disp7[ep]

- sst.h reg2, disp8[ep]

- sst.w reg2, disp8[ep]

The following can be specified for displacement (disp7/8):

- Absolute expression having a value of up to 7 bits for sst.b or 8 bits for sst.h and sst.w

- Relative expression

[Function]

The sst.b, sst.h, and sst.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word, respectively, of

the register specified by the first operand to the address obtained by adding the displacement specified by the second

operand to the contents of register ep.

[Description]

The assembler generates one sst machine instruction. Base register specification "[ep]" can be omitted.

[Flag]

[Caution]

- If a value that is not a multiple of 2 is specified as disp8 of sst.h, and if a value that is not a multiple of 4 is specified

as disp8 of sst.w, the assembler aligns disp8 with multiples of 2 and 4, respectively, and generates a code. Then,

the assembler outputs either one of the following messages.

- If a value exceeding 127 is specified as disp7 of sst.b, and if a value exceeding 255 is specified as disp8 of sst.h

and sst.w, the assembler outputs the following message, and generates codes disp7 and disp8, masked with 0x7F

and 0xFF, respectively.

sst

CY ---

OV ---

S ---

Z ---

SAT ---

W0550010 : Illegal displacement in ld instruction.

E0562332 : Relocation value is odd number : "file"-"section"-"offset"

W0550011 : Illegal operand (range error in immediate).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 245 of 751
Sep 01, 2013

Data is stored.

[Syntax]

- st23.b reg2, disp23[reg1]

- st23.h reg2, disp23[reg1]

- st23.w reg2, disp23[reg1]

- st23.dw reg2, disp23[reg1]

The following can be specified as a displacement (disp):

- Absolute expression having a value of up to 23 bits

- Relative expression

[Function]

The st23.b, st23.h, and st23.w instructions store the data of the lower 1 byte, lower 1 halfword, and 1 word, respec-

tively, of the register specified by the first operand to the address specified by the second operand. The st23.dw

instruction loads the word data from the register specified in the first operand into the lower 32 bits, and the word data at

reg2 + 1 into the upper 32 bits, and then stores this double-word data into the address specified in the second operand.

[Description]

- The assembler generates one st machine instructionNote.

Note The st machine instruction takes an immediate value in the range of -4,194,304 to +4,194,303

(0xFFC00000 to 0x3FFFFF) as the displacement.

- If disp23 is omitted, the assembler assumes 0.

- If a relative expression with #label is specified as disp23, [reg1] can be omitted. If omitted, the assembler assumes

that [r0] is specified.

- If a relative expression with $label is specified as disp23, [reg1] can be omitted. If omitted, the assembler assumes

that [gp] is specified.

[Flag]

[Caution]

- If a value that is not a multiple of 2 is specified as the disp of st.h or st.w, the assembler aligns disp with 2 and gen-

erates a code. Then, the assembler outputs either one of the following messages.

st23

CY ---

OV ---

S ---

Z ---

SAT ---

W0550010 : Illegal displacement in ld instruction.

E0562332 : Relocation value is odd number : "file"-"section"-"offset"

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 246 of 751
Sep 01, 2013

- A message is output if an odd-numbered register is specified in the first operand of the st23.dw instruction.

W0550013 : register used as kind register.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 247 of 751
Sep 01, 2013

4.8.2 Arithmetic operation instructions

This section describes the arithmetic operation instructions. Next table lists the instructions described in this section.

See the RH850 product user's manual and architecture edition for details.

Table 4-27. Arithmetic Operation Instructions

See the device with an instruction set of RH850 product user's manual and architecture edition for details about the

device with an instruction set of RH850.

Instruction Meaning

add Adds

addi Adds (immediate)

adf Adds with condition

sub Subtracts

subr Subtracts reverse

sbf Subtracts with condition

mulh Multiplies signed data (halfword)

mulhi Multiplies signed data (halfword immediate)

mul Multiplies signed data (word)

mulu Multiplies unsigned data

mac Multiplies and adds signed word data

macu Multiplies and adds unsigned word data

divh Divides signed data (halfword)

div Divides signed data (word)

divhu Divides unsigned data (halfword)

divu Divides unsigned data (word)

divq Division of (signed) word data (variable steps)

divqu Division of (unsigned) word data (variable steps)

cmp Compares

mov Moves data

movea Moves execution address

movhi Moves higher half-word

mov32 Moves 32-bit data

cmov Moves data depending on the flag condition

setf Sets flag condition

sasf Sets the flag condition after a logical left shift

bins Insert bit in register

rotl Rotate

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 248 of 751
Sep 01, 2013

Adds.

[Syntax]

- add reg1, reg2

- add imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "add reg1, reg2"

Adds the value of the register specified by the first operand to the value of the register specified by the second

operand, and stores the result into the register specified by the second operand.

- Syntax "add imm, reg2"

Adds the value of the absolute expression or relative expression specified by the first operand to the value of the

register specified by the second operand, and stores the result in the register specified by the second operand.

[Description]

- If this instruction is executed in syntax "add reg1, reg2", the assembler generates one add machine instruction.

- If the following is specified as imm in syntax "add imm, reg2", the assembler generates one add machine instruc-

tionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The add machine instruction takes a register or immediate value in the range of -16 to +15 (0xFFFFFFF0 to

0xF) as the first operand.

- If the following is specified for imm in syntax "add imm, reg2", the assembler executes instruction expansion to

generate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

add

add imm5, reg add imm5, reg

add imm16, reg addi imm16, reg, reg

add imm, reg movhi HIGHW(imm), r0, r1

add r1, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 249 of 751
Sep 01, 2013

Else

(c) Relative expression having !label or %label, or that having $label for a label with a definition in the

sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

add imm, reg mov imm, r1

add r1, reg

add !label, reg addi !label, reg, reg

add %label, reg addi %label, reg, reg

add $label, reg addi $label, reg, reg

add #label, reg mov #label, r1

add r1, reg

add label, reg mov label, r1

add r1, reg

add $label, reg mov $label, r1

add r1, reg

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 250 of 751
Sep 01, 2013

Adds immediate.

[Syntax]

- addi imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

Adds the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1

applied, specified by the first operand, to the value of the register specified by the second operand, and stores the result

into the register specified by the third operand.

[Description]

- If the following is specified for imm, the assembler generates one addi machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

Note The addi machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to

0x7FFF)as the first operand.

addi

addi imm16, reg1, reg2 addi imm16, reg1, reg2

addi $label, reg1, reg2 addi $label, reg1, reg2

addi !label, reg1, reg2 addi !label, reg1, reg2

addi %label, reg1, reg2 addi %label, reg1, reg2

addi imm16, reg1, reg2 addi imm16, reg1, reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 251 of 751
Sep 01, 2013

- If the following is specified for imm, the assembler executes instruction expansion to generate two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

<1> If all the lower 16 bits of the value of imm are 0

If reg2 is r0

Else

<2> Else

If reg2 is r0

Else

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

If reg2 is r0

Else

addi imm, reg1, r0 movhi HIGHW(imm), r0, r1

add reg1, r1

addi imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

add reg1, reg2

addi imm, reg1, r0 mov imm, r1

add reg1, r1

addi imm, reg1, reg2 mov imm, reg2

add reg1, reg2

addi #label, reg1, r0 mov #label, r1

add reg1, r1

addi label, reg1, r0 mov label, r1

add reg1, r1

addi $label, reg1, r0 mov $label, r1

add reg1, r1

addi #label, reg1, reg2 mov #label, reg2

add reg1, reg2

addi label, reg1, reg2 mov label, reg2

add reg1, reg2

addi $label, reg1, reg2 mov $label, reg2

add reg1, reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 252 of 751
Sep 01, 2013

[Flag]

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 253 of 751
Sep 01, 2013

Adds on condition flag.

[Syntax]

- adf imm4, reg1, reg2, reg3

- adfcnd reg1, reg2, reg3

The following can be specified for imm4:

- Absolute expression having a value up to 4 bits (0xD cannot be specified)

[Function]

- Syntax "adf imm4, reg1, reg2, reg3"

It compares the current flag condition with the flag condition indicated by the value of the lower 4 bits of the abso-

lute expression (see "Table 4-28. adfcnd Instruction List") specified by the first operand.

If the values match, adds the word data of the register specified by the second operand to the word data of the reg-

ister specified by the third operand. And 1 is added to the addition result and that result is stored in the register

specified by the fourth operand.

If the values not match, adds the word data of the register specified by the second operand to the word data of the

register specified by the third operand. And that result is stored in the register specified by the fourth operand.

- Syntax "adfcnd reg1, reg2, reg3"

It compares the current flag condition with the flag condition indicated by the string in the cnd"part.

If the values match, adds the word data of the register specified by the first operand to the word data of the register

specified by the second operand. And 1 is added to the addition result and that result is stored in the register spec-

ified by the third operand.

If the values not match, adds the word data of the register specified by the first operand to the word data of the reg-

ister specified by the second operand. And that result is stored in the register specified by the third operand.

[Description]

- For the adf instruction, the assembler generates one adf machine instruction.

- For the adfcnd instruction, the assembler generates the corresponding adf instruction (see "Table 4-28. adfcnd

Instruction List") and expands it to syntax "adf imm4, reg1, reg2, reg3".

Table 4-28. adfcnd Instruction List

adf

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

adfgt ((S xor OV) or Z) = 0 Greater than (signed) adf 0xF

adfge (S xor OV) = 0 Greater than or equal (signed) adf 0xE

adflt (S xor OV) = 1 Less than (signed) adf 0x6

adfle ((S xor OV) or Z) = 1 Less than or equal (signed) adf 0x7

adfh (CY or Z) = 0 Higher (Greater than) adf 0xB

adfnl CY = 0 Not lower (Greater than or equal) adf 0x9

adfl CY = 1 Lower (Less than) adf 0x1

adfnh (CY or Z) = 1 Not higher (Less than or equal) adf 0x3

adfe Z = 1 Equal adf 0x2

adfne Z = 0 Not equal adf 0xA

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 254 of 751
Sep 01, 2013

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the adf instruction, the following

message is output, and assembly continues using the lower 4 bits of the specified value.

- If 0xD is specified as imm4 of the adf instruction, the following message is output, and assembly is stopped.

adfv OV = 1 Overflow adf 0x0

adfnv OV = 0 No overflow adf 0x8

adfn S = 1 Negative adf 0x4

adfp S = 0 Positive adf 0xC

adfc CY = 1 Carry adf 0x1

adfnc CY = 0 No carry adf 0x9

adfz Z = 1 Zero adf 0x2

adfnz Z = 0 Not zero adf 0xA

adft always 1 Always 1 adf 0x5

CY 1 if there is carry from MSB (Most Significant Bit), 0 if not

OV 1 if overflow occurred, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W0550011 : illegal operand (range error in immediate).

E0550261 : illegal condition code.

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 255 of 751
Sep 01, 2013

Subtracts.

[Syntax]

- sub reg1, reg2

- sub imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "sub reg1, reg2"

Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-

ond operand, and stores the result in the register specified by the second operand.

- Syntax "sub imm, reg2"

Subtracts the value of the absolute expression or relative expression specified by the first operand from the value

of the register specified by the second operand, and stores the result into the register specified by the second oper-

and.

[Description]

- If the instruction is executed in syntax "sub reg1, reg2", the assembler generates one sub machine instruction.

- If the instruction is executed in syntax "sub imm, reg2", the assembler executes instruction expansion and gener-

ates one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

sub

sub 0, reg sub r0, reg

sub imm5, reg mov imm5, r1

sub r1, reg

sub imm16, reg movea imm16, r0, r1

sub r1, reg

sub imm, reg movhi HIGHW(imm), r0, r1

sub r1, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 256 of 751
Sep 01, 2013

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The sub machine instruction does not take an immediate value as an operand.

[Flag]

sub imm, reg mov imm, r1

sub r1, reg

sub $label, reg movea $label, r0, r1

sub r1, reg

sub #label, reg mov #label, r1

sub r1, reg

sub label, reg mov label, r1

sub r1, reg

sub $label, reg mov $label, r1

sub r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 257 of 751
Sep 01, 2013

Subtracts reverse.

[Syntax]

- subr reg1, reg2

- subr imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "subr reg1, reg2"

Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-

ond operand, and stores the result in the register specified by the second operand.

- Syntax "subr imm, reg2"

Subtracts the value of the absolute expression or relative expression specified by the first operand from the value

of the register specified by the second operand, and stores the result into the register specified by the second oper-

and.

[Description]

- If the instruction is executed in syntax "subr reg1, reg2", the assembler generates one subr machine instruction.

- If the instruction is executed in syntax "subr imm, reg2", the assembler executes instruction expansion and gener-

ates one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

subr

subr 0, reg subr r0, reg

subr imm5, reg mov imm5, r1

subr r1, reg

subr imm16, reg movea imm16, r0, r1

subr r1, reg

subr imm, reg movhi HIGHW(imm), r0, r1

subr r1, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 258 of 751
Sep 01, 2013

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The subr machine instruction does not take an immediate value as an operand.

[Flag]

subr imm, reg mov imm, r1

subr r1, reg

subr $label, reg movea $label, r0, r1

subr r1, reg

subr #label, reg mov #label, r1

subr r1, reg

subr label, reg mov label, r1

subr r1, reg

subr $label, reg mov $label, r1

subr r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 259 of 751
Sep 01, 2013

Subtracts on condition flag.

[Syntax]

- sbf imm4, reg1, reg2, reg3

- sbfcnd reg1, reg2, reg3

The following can be specified for imm4:

- Absolute expression having a value up to 4 bits (0xD cannot be specified)

[Function]

- Syntax "sbf imm4, reg1, reg2, reg3"

It compares the current flag condition with the flag condition indicated by the value of the lower 4 bits of the abso-

lute expression (see "Table 4-29. sbfcnd Instruction List") specified by the first operand.

If the values match, subtracts the word data of the register specified by the second operand from the word data of

the register specified by the third operand. And 1 is subtracted from the subtraction result and that result is stored

in the register specified by the fourth operand.

If the values not match, subtracts the word data of the register specified by the second operand from the word data

of the register specified by the third operand. And that result is stored in the register specified by the fourth oper-

and.

- Syntax "sbfcnd reg1, reg2, reg3"

It compares the current flag condition with the flag condition indicated by the string in the "cnd" part.

If the values match, subtracts the word data of the register specified by the first operand from the word data of the

register specified by the second operand. And 1 is subtracted from the subtraction result and that result is stored

in the register specified by the third operand.

If the values not match, subtracts the word data of the register specified by the first operand from the word data of

the register specified by the second operand. And that result is stored in the register specified by the third oper-

and.

[Description]

- For the sbf instruction, the assembler generates one sbf machine instruction.

- For the adcond instruction, the assembler generates the corresponding sbf instruction (see "Table 4-29. sbfcnd

Instruction List") and expands it to syntax "sbf imm4, reg1, reg2, reg3".

Table 4-29. sbfcnd Instruction List

sbf

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

sbfgt ((S xor OV) or Z) = 0 Greater than (signed) sbf 0xF

sbfge (S xor OV) = 0 Greater than or equal (signed) sbf 0xE

sbflt (S xor OV) = 1 Less than (signed) sbf 0x6

sbfle ((S xor OV) or Z) = 1 Less than or equal (signed) sbf 0x7

sbfh (CY or Z) = 0 Higher (Greater than) sbf 0xB

sbfnl CY = 0 Not lower (Greater than or equal) sbf 0x9

sbfl CY = 1 Lower (Less than) sbf 0x1

sbfnh (CY or Z) = 1 Not higher (Less than or equal) sbf 0x3

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 260 of 751
Sep 01, 2013

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the sbf instruction, the following

message is output, and assembly continues using the lower 4 bits of the specified value.

- If 0xD is specified as imm4 of the sbf instruction, the following message is output, and assembly is stopped.

sbfe Z = 1 Equal sbf 0x2

sbfne Z = 0 Not equal sbf 0xA

sbfv OV = 1 Overflow sbf 0x0

sbfnv OV = 0 No overflow sbf 0x8

sbfn S = 1 Negative sbf 0x4

sbfp S = 0 Positive sbf 0xC

sbfc CY = 1 Carry sbf 0x1

sbfnc CY = 0 No carry sbf 0x9

sbfz Z = 1 Zero sbf 0x2

sbfnz Z = 0 Not zero sbf 0xA

sbft always 1 Always 1 sbf 0x5

CY 1 if a borrow occurs from MSB (Most Significant Bit), 0 if not

OV 1 if overflow occurred, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W0550011 : illegal operand (range error in immediate).

E0550261 : illegal condition code.

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 261 of 751
Sep 01, 2013

Multiplies half-word.

[Syntax]

- mulh reg1, reg2

- mulh imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The assembler does not check whether the value of the expression exceeds 16 bits. The generated mulh

instruction performs the operation by using the lower 16 bits.

[Function]

- Syntax "mulh reg1, reg2"

Multiplies the value of the lower halfword data of the register specified by the first operand by the value of the lower

halfword data of the register specified by the second operand as a signed value, and stores the result in the regis-

ter specified by the second operand.

- Syntax "mulh imm, reg2"

Multiplies the value of the lower halfword data of the absolute expression or relative expression specified by the

first operand by the value of the lower halfword data of the register specified by the second operand as a signed

value, and stores the result in the register specified by the second operand.

[Description]

- If the instruction is executed in syntax "mulh reg1, reg2", the assembler generates one mulh machine instruction.

- If the following is specified as imm in syntax "mulh imm, reg2", the assembler generates one mulh machine instruc-

tionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The mulh machine instruction takes a register or immediate value in the range of -16 to +15 (0xFFFFFFF0

to 0xF) as the first operand.

- If the following is specified for imm in syntax "mulh imm, reg2", the assembler executes instruction expansion to

generate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

mulh

mulh imm5, reg mulh imm5, reg

mulh imm16, reg mulhi imm16, reg, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 262 of 751
Sep 01, 2013

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having !label or %label, or that having $label for a label with a definition in the

sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

[Caution]

- If r0 is specified by the second operand, the assembler outputs the following message and stops assembling.

mulh imm, reg movhi HIGHW(imm), r0, r1

mulh r1, reg

mulh imm, reg mov imm, r1

mulh r1, reg

mulh !label, reg mulhi !label, reg, reg

mulh %label, reg mulhi %label, reg, reg

mulh $label, reg mulhi $label, reg, reg

mulh #label, reg mov #label, r1

mulh r1, reg

mulh label, reg mov label, r1

mulh r1, reg

mulh $label, reg mov $label, r1

mulh r1, reg

CY ---

OV ---

S ---

Z ---

SAT ---

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 263 of 751
Sep 01, 2013

Multiplies half-word Immediate.

[Syntax]

- mulhi imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 16 bitsNote

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

Note The assembler does not check whether the value of the expression exceeds 16 bits. The generated mulhi

machine instruction performs the operation by using the lower 16 bits.

[Function]

Multiplies the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1

applied specified by the first operand by the value of the register specified by the second operand, and stores the result in

the register specified by the third operand.

[Description]

- If the following is specified for imm, the assembler generates one mulhi machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

Note The mulhi machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to

0x7FFF) as the first operand.

mulhi

mulhi imm16, reg1, reg2 mulhi imm16, reg1, reg2

mulhi $label, reg1, reg2 mulhi $label, reg1, reg2

mulhi !label, reg1, reg2 mulhi !label, reg1, reg2

mulhi %label, reg1, reg2 mulhi %label, reg1, reg2

mulhi imm16, reg1, reg2 mulhi imm16, reg1, reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 264 of 751
Sep 01, 2013

- If the following is specified for imm, the assembler executes instruction expansion to generate two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

[Caution]

- If r0 is specified by the third operand, the assembler outputs the following message and stops assembling.

mulhi imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

mulh reg1, reg2

mulhi imm, reg1, reg2 mov imm, reg2

mulh reg1, reg2

mulhi #label, reg1, reg2 mov #label, reg2

mulh reg1, reg2

mulhi label, reg1, reg2 mov label, reg2

mulh reg1, reg2

mulhi $label, reg1, reg2 mov $label, reg2

mulh reg1, reg2

CY ---

OV ---

S ---

Z ---

SAT ---

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 265 of 751
Sep 01, 2013

Multiplies word.

[Syntax]

- mul reg1, reg2, reg3

- mul imm, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "mul reg1, reg2, reg3"

Multiplies the register value specified by the first operand by the register value specified by the second operand as

a signed value and stores the lower 32 bits of the result in the register specified by the second operand, and the

higher 32 bits in the register specified by the third operand. If the same register is specified by the second and

third operands, the higher 32 bits of the multiplication result are stored in that register.

- Syntax "mul imm, reg2, reg3"

Multiplies the value of the absolute or relative expression specified by the first operand by the register value speci-

fied by the second operand as a signed value and stores the lower 32 bits of the result in the register specified by

the second operand, and the higher 32 bits in the register specified by the third operand. If the same register is

specified by the second and third operands, the higher 32 bits of the multiplication result are stored in that register.

[Description]

- If the instruction is executed in syntax "mul reg1, reg2, reg3", the assembler generates one mul machine instruc-

tion.

- If the instruction is executed in syntax "mul imm, reg2, reg3", the assembler executes instruction expansion to gen-

erate one or more machine instructions.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -256 to +255

(c) Absolute expression exceeding the range of -256 to +255, but within the range of -32,768 to +32,767

mul

mul 0, reg2, reg3 mul r0, reg2, reg3

mul imm9, reg2, reg3 mul imm9, reg2, reg3

mul imm16, reg2, reg3 movea imm16, r0, r1

mul r1, reg2, reg3

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 266 of 751
Sep 01, 2013

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

mul imm, reg2, reg3 movhi HIGHW(imm), r0, r1

mul r1, reg2, reg3

mul imm, reg2, reg3 mov imm, r1

mul r1, reg2, reg3

mul $label, reg2, reg3 movea $label, r0, r1

mul r1, reg2, reg3

mul #label, reg2, reg3 mov #label, r1

mul r1, reg2, reg3

mul label, reg2, reg3 mov label, r1

mul r1, reg2, reg3

mul $label, reg2, reg3 mov $label, r1

mul r1, reg2, reg3

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 267 of 751
Sep 01, 2013

Multiplies unsigned word.

[Syntax]

- mulu reg1, reg2, reg3

- mulu imm, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "mulu reg1, reg2, reg3"

Multiplies the register value specified by the first operand by the register value specified by the second operand as

an unsigned value and stores the lower 32 bits of the result in the register specified by the second operand, and

the higher 32 bits in the register specified by the third operand. If the same register is specified by the second and

third operands, the higher 32 bits of the multiplication result are stored in that register.

- Syntax "mulu imm, reg2, reg3"

Multiplies the value of the absolute or relative expression specified by the first operand by the register value speci-

fied by the second operand as an unsigned value and stores the lower 32 bits of the result in the register specified

by the second operand, and the higher 32 bits in the register specified by the third operand. If the same register is

specified by the second and third operands, the higher 32 bits of the multiplication result are stored in that register.

[Description]

- If the instruction is executed in syntax "mulu reg1, reg2, reg3", the assembler generates one mulu machine instruc-

tion.

- If the instruction is executed in syntax "mulu imm, reg2, reg3", the assembler executes instruction expansion to

generate one or more machine instructions.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of 0 to 511

(c) Absolute expression exceeding the range of -256 to +255, but within the range of -32,768 to +32,767

mulu

mulu 0, reg2, reg3 mulu r0, reg2, reg3

mulu imm9, reg2, reg3 mulu imm9, reg2, reg3

mulu imm16, reg2, reg3 movea imm16, r0, r1

mulu r1, reg2, reg3

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 268 of 751
Sep 01, 2013

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

mulu imm, reg2, reg3 movhi HIGHW(imm), r0, r1

mulu r1, reg2, reg3

mulu imm, reg2, reg3 mov imm, r1

mulu r1, reg2, reg3

mulu $label, reg2, reg3 movea $label, r0, r1

mulu r1, reg2, reg3

mulu #label, reg2, reg3 mov #label, r1

mulu r1, reg2, reg3

mulu label, reg2, reg3 mov label, r1

mulu r1, reg2, reg3

mulu $label, reg2, reg3 mov $label, r1

mulu r1, reg2, reg3

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 269 of 751
Sep 01, 2013

Multiplies and adds signed word data.

[Syntax]

- mac reg1, reg2, reg3, reg4

[Function]

Adds the multiplication result of the general-purpose register reg2 word data and the general-purpose register reg1

word data with the 64-bit data made up of general-purpose register reg3 as the lower 32 bits and general-purpose regis-

ter reg3+1 (for example, if reg3 were r6, "reg3+1" would be r7) as the upper 32 bits, and stores the upper 32 bits of that

result (64-bit data) in general-purpose register reg4+1 and the lower 32 bits in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are treated as 32-bit signed integers.

General-purpose registers reg1, reg2, reg3, and reg3+1 are unaffected.

[Description]

The assembler generates one mac machine instruction.

[Flag]

[Caution]

- The general-purpose registers that can be specified to reg3 or reg4 are limited to even numbered registers (r0, r2,

r4, ..., r30). When specifying an odd numbered register, the following message is output, and assembly continues,

specifying the register as an even numbered register (r0, r2, r4, ..., r30).

mac

CY ---

OV ---

S ---

Z ---

SAT ---

W0550026 : illegal register number, aligned odd register(rXX) to be even register(rYY).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 270 of 751
Sep 01, 2013

Multiply and adds unsigned word data.

[Syntax]

- macu reg1, reg2, reg3, reg4

[Function]

Adds the multiplication result of the general-purpose register reg2 word data and the general-purpose register reg1

word data with the 64-bit data made up of general-purpose register reg3 as the lower 32 bits and general-purpose regis-

ter reg3+1 (for example, if reg3 were r6, "reg3+1" would be r7) as the upper 32 bits, and stores the upper 32 bits of that

result (64-bit data) in general-purpose register reg4+1 and the lower 32 bits in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are treated as 32-bit unsigned integers.

General-purpose registers reg1, reg2, reg3, and reg3+1 are unaffected.

[Description]

The assembler generates one macu machine instruction.

[Flag]

[Caution]

- The general-purpose registers that can be specified to reg3 or reg4 are limited to even numbered registers (r0, r2,

r4, ..., r30). When specifying an odd numbered register, the following message is output, and assembly continues,

specifying the register as an even numbered register (r0, r2, r4, ..., r30).

macu

CY ---

OV ---

S ---

Z ---

SAT ---

W0550026 : illegal register number, aligned odd register(rXX) to be even register(rYY).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 271 of 751
Sep 01, 2013

Divides half-word.

[Syntax]

- divh reg1, reg2

- divh imm, reg2

- divh reg1, reg2, reg3

- divh imm, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The assembler does not check whether the value of the expression exceeds 16 bits. The generated machine

instruction performs execution using the lower 16 bits.

[Function]

- Syntax "divh reg1, reg2"

Divides the register value specified by the second operand by the value of the lower halfword data of the register

specified by the first operand as a signed value, and stores the quotient in the register specified by the second

operand.

- Syntax "divh imm, reg2"

Divides the register value specified by the second operand by the value of the lower halfword data of the absolute

or relative expression specified by the first operand as a signed value and stores the quotient in the register speci-

fied by the second operand.

- Syntax "divh reg1, reg2, reg3"

Divides the register value specified by the second operand by the value of the lower halfword data of the register

specified by the first operand as a signed value and stores the quotient in the register specified by the second

operand, and the remainder in the register specified by the third operand. If the same register is specified by the

second and third operands, the remainder is stored in that register.

- Syntax "divh imm, reg2, reg3"

Divides the register value specified by the second operand by the value of the lower halfword data of the absolute

or relative expression specified by the first operand as a signed value and stores the quotient in the register speci-

fied by the second operand, and the remainder in the register specified by the third operand. If the same register is

specified by the second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntaxes "divh reg1, reg2" and "divh reg1, reg2, reg3", the assembler generates

one divh machine instruction.

- If the instruction is executed in syntax "divh imm, reg2", the assembler executes instruction expansion to generate

one or more machine instructionsNote.

(a) Absolute expression having a value of other than 0 within the range of -16 to +15

divh

divh imm5, reg mov imm5, r1

divh r1, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 272 of 751
Sep 01, 2013

(b) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(e) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The divh machine instruction does not take an immediate value as an operand.

- If the instruction is executed in syntax "divh imm, reg2, reg3", the assembler executes instruction expansion to

generate one or more machine instructions.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

divh imm16, reg movea imm16, r0, r1

divh r1, reg

divh imm, reg movhi HIGHW(imm), r0, r1

divh r1, reg

divh imm, reg mov imm, r1

divh r1, reg

divh $label, reg movea $label, r0, r1

divh r1, reg

divh #label, reg mov #label, r1

divh r1, reg

divh label, reg mov label, r1

divh r1, reg

divh $label, reg mov $label, r1

divh r1, reg

divh 0, reg2, reg3 divh r0, reg2, reg3

divh imm5, reg2, reg3 mov imm5, r1

divh r1, reg2, reg3

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 273 of 751
Sep 01, 2013

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

divh imm16, reg2, reg3 movea imm16, r0, r1

divh r1, reg2, reg3

divh imm, reg2, reg3 movhi HIGHW(imm), r0, r1

divh r1, reg2, reg3

divh imm, reg2, reg3 mov imm, r1

divh r1, reg2, reg3

divh $label, reg2, reg3 movea $label, r0, r1

divh r1, reg2, reg3

divh #label, reg2, reg3 mov #label, r1

divh r1, reg2, reg3

divh label, reg2, reg3 mov label, r1

divh r1, reg2, reg3

divh $label, reg2, reg3 mov $label, r1

divh r1, reg2, reg3

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 274 of 751
Sep 01, 2013

[Caution]

- If r0 is specified by the first operand in syntax "divh reg1, reg2", the assembler outputs the following message and

stops assembling.

- If r0 is specified by the second operand (reg2) in syntaxes "divh imm, reg2", the assembler outputs the message

and stops assembling.

- If 0 is specified by the second operand (imm) in syntaxes "divh imm, reg2", the assembler outputs the message

and stops assembling.

E0550239 : Illegal operand (cannot use r0 as source in RH850 mode).

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

E0550239 : Illegal operand (cannot use r0 as source in RH850 mode).

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

E0550239 : Illegal operand (cannot use r0 as source in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 275 of 751
Sep 01, 2013

Divides word.

[Syntax]

- div reg1, reg2, reg3

- div imm, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "div reg1, reg2, reg3"

Divides the register value specified by the second operand by the register value specified by the first operand as a

signed value and stores the quotient in the register specified by the second operand, and the remainder in the reg-

ister specified by the third operand. If the same register is specified by the second and third operands, the remain-

der is stored in that register.

- Syntax "div imm, reg2, reg3"

Divides the register value specified by the second operand by the value of the absolute or relative expression

specified by the first operand as a signed value and stores the quotient in the register specified by the second

operand, and the remainder in the register specified by the third operand. If the same register is specified by the

second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "div reg1, reg2, reg3", the assembler generates one div machine instruction.

- If the instruction is executed in syntax "div imm, reg2, reg3", the assembler executes instruction expansion to gen-

erate two or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

div

div 0, reg2, reg3 div r0, reg2, reg3

div imm5, reg2, reg3 mov imm5, r1

div r1, reg2, reg3

div imm16, reg2, reg3 movea imm16, r0, r1

div r1, reg2, reg3

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 276 of 751
Sep 01, 2013

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The div machine instruction does not take an immediate value as an operand.

[Flag]

div imm, reg2, reg3 movhi HIGHW(imm), r0, r1

div r1, reg2, reg3

div imm, reg2, reg3 mov imm, r1

div r1, reg2, reg3

div $label, reg2, reg3 movea $label, r0, r1

div r1, reg2, reg3

div #label, reg2, reg3 mov #label, r1

div r1, reg2, reg3

div label, reg2, reg3 mov label, r1

div r1, reg2, reg3

div $label, reg2, reg3 mov $label, r1

div r1, reg2, reg3

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 277 of 751
Sep 01, 2013

Divides unsigned half-word.

[Syntax]

- divhu reg1, reg2, reg3

- divhu imm, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 16 bitsNote

- Relative expression

Note The assembler does not check whether the value of the expression exceeds 16 bits. The generated machine

instruction uses only the lower 16 bits for execution.

[Function]

- Syntax "divhu reg1, reg2, reg3"

Divides the register value specified by the second operand by the value of the lower halfword data of the register

value specified by the first operand as an unsigned value and stores the quotient in the register specified by the

second operand, and the remainder in the register specified by the third operand. If the same register is specified

by the second and third operands, the remainder is stored in that register.

- Syntax "divhu imm, reg2, reg3"

Divides the register value specified by the second operand by the value of the lower halfword data of the absolute

or relative expression specified by the first operand as an unsigned value and stores the quotient in the register

specified by the second operand, and the remainder in the register specified by the third operand. If the same reg-

ister is specified by the second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "divhu reg1, reg2, reg3", the assembler generates one divhu machine

instruction.

- If the instruction is executed in syntax "divhu imm, reg2, reg3", the assembler executes instruction expansion to

generate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

divhu

divhu 0, reg2, reg3 divhu r0, reg2, reg3

divhu imm5, reg2, reg3 mov imm5, r1

divhu r1, reg2, reg3

divhu imm16, reg2, reg3 movea imm16, r0, r1

divhu r1, reg2, reg3

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 278 of 751
Sep 01, 2013

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The divhu machine instruction does not take an immediate value as an operand.

[Flag]

divhu imm, reg2, reg3 movhi HIGHW(imm), r0, r1

divhu r1, reg2, reg3

divhu imm, reg2, reg3 mov imm, r1

divhu r1, reg2, reg3

divhu $label, reg2, reg3 movea $label, r0, r1

divhu r1, reg2, reg3

divhu #label, reg2, reg3 mov #label, r1

divhu r1, reg2, reg3

divhu label, reg2, reg3 mov label, r1

divhu r1, reg2, reg3

divhu $label, reg2, reg3 mov $label, r1

divhu r1, reg2, reg3

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 279 of 751
Sep 01, 2013

Divides unsigned word.

[Syntax]

- divu reg1, reg2, reg3

- divu imm, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "divu reg1, reg2, reg3"

Divides the register value specified by the second operand by the register value specified by the first operand as

an unsigned value and stores the quotient in the register specified by the second operand, and the remainder in

the register specified by the third operand. If the same register is specified by the second and third operands, the

remainder is stored in that register.

- Syntax "divu imm, reg2, reg3"

Divides the register value specified by the second operand by the value of the absolute or relative expression

specified by the first operand as an unsigned value and stores the quotient in the register specified by the second

operand, and the remainder in the register specified by the third operand. If the same register is specified by the

second and third operands, the remainder is stored in that register.

[Description]

- If the instruction is executed in syntax "divu reg1, reg2, reg3", the assembler generates one divu machine instruc-

tion.

- If the instruction is executed in syntax "divu imm, reg2, reg3", the assembler executes instruction expansion to

generate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 whithin the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

divu

divu 0, reg2, reg3 divu r0, reg2, reg3

divu imm5, reg2, reg3 mov imm5, r1

divu r1, reg2, reg3

divu imm16, reg2, reg3 movea imm16, r0, r1

divu r1, reg2, reg3

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 280 of 751
Sep 01, 2013

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The divu machine instruction does not take an immediate value as an operand.

[Flag]

divu imm, reg2, reg3 movhi HIGHW(imm), r0, r1

divu r1, reg2, reg3

divu imm, reg2, reg3 mov imm, r1

divu r1, reg2, reg3

divu $label, reg2, reg3 movea $label, r0, r1

divu r1, reg2, reg3

divu #label, reg2, reg3 mov #label, r1

divu r1, reg2, reg3

divu label, reg2, reg3 mov label, r1

divu r1, reg2, reg3

divu $label, reg2, reg3 mov $label, r1

divu r1, reg2, reg3

CY ---

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 281 of 751
Sep 01, 2013

Division of (signed) word data (variable steps) (Divide Word Quickly)

[Syntax]

- divq reg1, reg2, reg3

[Function]

Divides the word data in general-purpose register reg2 by the word data in general-purpose register reg1, stores the

quotient in reg2, and stores the remainder in general-purpose register reg3. General-purpose register reg1 is not

affected.

The minimum number of steps required for division is determined from the values in reg1 and reg2, then this operation

is executed.

When division by zero occurs, an overflow results and all operation results except for the OV flag are undefined.

[Description]

- The assembler generates one divq machine instruction.

[Flag]

divq

CY ---

OV "1" when overflow occurs; otherwise, "0"

S "1" when operation result quotient is a negative value; otherwise, "0"

Z "1" when operation result quotient is a "0"; otherwise, "0"

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 282 of 751
Sep 01, 2013

Division of (unsigned) word data (variable steps) (Divide Word Unsigned Quickly)

[Syntax]

- divqu reg1, reg2, reg3

[Function]

Divides the word data in general-purpose register reg2 by the word data in general-purpose register reg1, stores the

quotient in reg2, and stores the remainder in general-purpose register reg3. General-purpose register reg1 is not

affected.

The minimum number of steps required for division is determined from the values in reg1 and reg2, then this operation

is executed.

When division by zero occurs, an overflow results and all operation results except for the OV flag are undefined.

[Description]

- The assembler generates one divqu machine instruction.

[Flag]

divqu

CY ---

OV "1" when overflow occurs; otherwise, "0"

S "1" when the MSB in the word data of the operation result quotient is a negative value; otherwise, "0"

Z "1" when operation result quotient is a "0"; otherwise, "0"

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 283 of 751
Sep 01, 2013

Compares.

[Syntax]

- cmp reg1, reg2

- cmp imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "cmp reg1, reg2"

Compares the value of the register specified by the first operand with the value of the register specified by the sec-

ond operand, and indicates the result using a flag. Comparison is performed by subtracting the value of the regis-

ter specified by the first operand from the value of the register specified by the second operand.

- Syntax "cmp imm, reg2"

Compares the value of the absolute expression or relative expression specified by the first operand with the value

of the register specified by the second operand, and indicates the result using a flag. Comparison is performed by

subtracting the value of the register specified by the first operand from the value of the register specified by the

second operand.

[Description]

- If the instruction is executed in syntax "cmp reg1, reg2", the assembler generates one cmp machine instruction.

- If the following is specified as imm in syntax "cmp imm, reg2", the assembler generates one cmp machine instruc-

tionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The cmp machine instruction takes a register or immediate value in the range of -16 to +15 (0xFFFFFFF0 to

0xF) as the first operand.

- If the following is specified as imm in syntax "cmp imm, reg2", the assembler executes instruction expansion to

generate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

cmp

cmp imm5, reg cmp imm5, reg

cmp imm16, reg movea imm16, r0, r1

cmp r1, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 284 of 751
Sep 01, 2013

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

cmp imm, reg movhi HIGHW(imm), r0, r1

cmp r1, reg

cmp imm, reg mov imm, r1

cmp r1, reg

cmp $label, reg movea $label, r0, r1

cmp r1, reg

cmp #label, reg mov #label, r1

cmp r1, reg

cmp label, reg mov label, r1

cmp r1, reg

cmp $label, reg mov $label, r1

cmp r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit),0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 285 of 751
Sep 01, 2013

Moves.

[Syntax]

- mov reg1, reg2

- mov imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "mov reg1, reg2"

Stores the value of the register specified by the first operand in the register specified by the second operand.

- Syntax "mov imm, reg2"

Stores the value of the absolute expression or relative expression specified by the first operand in the register

specified by the second operand.

[Description]

- If the instruction is executed in syntax "mov reg1, reg2", the assembler generates one mov machine instruction.

- If the following is specified as imm in syntax "mov imm, reg2", the assembler generates one mov machine instruc-

tionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The mov machine instruction takes a register or immediate value in the range of -16 to +15 (0xFFFFFFF0 to

0xF) as the first operand.

- If the following is specified as imm in syntax "mov imm, reg2", the assembler executes instruction expansion to

generate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

ElseNote

mov

mov imm5, reg mov imm5, reg

mov imm16, reg movea imm16, r0, reg

mov imm, reg movhi HIGHW(imm), r0, reg

mov imm, reg mov imm, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 286 of 751
Sep 01, 2013

Note A 16-bit mov instruction is replaced by a 48-bit mov instruction.

(c) Relative expression having !label or %label, or that having $label for a label with a definition in the

sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute sectionNote

Note A 16-bit mov instruction is replaced by a 48-bit mov instruction.

[Flag]

[Caution]

- If an absolute expression having a value in the range between -16 and 15 is specified by the first operand and r0 is

specified by the second operand of syntax "mov imm, reg2", or r0 is specified by the second operand of syntax

"mov reg1, reg2", the assembler outputs the following message and stops assembling.

- For the "mov imm, reg2" instruction, if an absolute expression exceeding the range of -32768 to 32767, a relative

expression with a #label or label, and a relative expression with label $label without a definition in an sdata/sbss

attribute section is specified in the first operand, then the assembler performs instruction expansion, and converts

the 16-bit mov instruction into a 48-bit mov instruction. If you prevent instruction expansion using the .option

nomacro directive and this instruction expansion occurs, then the following message is output, and the assembler

halts.

mov !label, reg movea !label, r0, reg

mov %label, reg movea %label, r0, reg

mov $label, reg movea $label, r0, reg

mov #label, reg mov #label, reg

mov label, reg mov label, reg

mov $label, reg mov $label, reg

CY ---

OV ---

S ---

Z ---

SAT ---

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

E0550249 : illegal syntax

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 287 of 751
Sep 01, 2013

Moves execution address.

[Syntax]

- movea imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

Adds the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1

applied, specified by the first operand, to the value of the register specified by the second operand, and stores the result

in the register specified by the third operand.

[Description]

- If the following is specified for imm, the assembler generates one movea machine instructionNote.

- If r0 is specified by reg1, the assembler recognizes specified syntax "mov imm, reg2".

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

Note The movea machine instruction takes an immediate value in a range of -32,768 to +32,767 (0xFFFF8000 to

0x7FFF) as the first operand.

movea

movea imm16, reg1, reg2 movea imm16, reg1, reg2

movea $label, reg1, reg2 movea $label, reg1, reg2

movea !label, reg1, reg2 movea !label, reg1, reg2

movea %label, reg1, reg2 movea %label, reg1, reg2

movea imm16, reg1, reg2 movea imm16, reg1, reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 288 of 751
Sep 01, 2013

- If the following is specified for imm, the assembler executes instruction expansion to generate one or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

[Caution]

- If r0 is specified by the third operand, the assembler outputs the following message and stops assembling.

movea imm, reg1, reg2 movhi HIGHW(imm), reg1, reg2

movea imm, reg1, reg2 movhi HIGHW1(imm), reg1, r1

movea LOWW(imm), r1, reg2

movea #label, reg1, reg2 movhi HIGHW1(#label), reg1, r1

movea LOWW(#label), r1, reg2

movea label, reg1, reg2 movhi HIGHW1(label), reg1, r1

movea LOWW(label), r1, reg2

movea $label, reg1, reg2 movhi HIGHW1($label), reg1, r1

movea LOWW($label), r1, reg2

CY ---

OV ---

S ---

Z ---

SAT ---

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 289 of 751
Sep 01, 2013

Moves higher half-word.

[Syntax]

- movhi imm16, reg1, reg2

The following can be specified for imm16:

- Absolute expression having a value of up to 16 bits

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

Adds word data for which the higher 16 bits are specified by the first operand and the lower 16 bits are 0, to the value

of the register specified by the second operand, and stores the result in the register specified by the third operand.

[Description]

The assembler generates one movhi machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 65,535 is specified as imm16, the assembler

outputs the following message and stops assembling.

- If r0 is specified by the third operand, the assembler outputs the following message and stops assembling.

movhi

CY ---

OV ---

S ---

Z ---

SAT ---

E0550231 : illegal operand (range error in immediate)

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 290 of 751
Sep 01, 2013

Moves 32-bit data.

[Syntax]

- mov32 imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expressionNote

Note If the operand is a relative expression, HIGHW, LOWW, and HIGHW1 cannot be used.

[Function]

Stores the value of the absolute or relative expression specified as the first operand in the register specified as the sec-

ond operand.

[Description]

The assembler generates one 48-bit machine language mov instruction.

[Flag]

mov32

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 291 of 751
Sep 01, 2013

Moves data depending on the flag condition.

[Syntax]

- cmov imm4, reg1, reg2, reg3

- cmov imm4, imm, reg2, reg3

- cmovcnd reg1, reg2, reg3

- cmovcnd imm, reg2, reg3

The following can be specified for imm4:

- Absolute expression having a value up to 4 bitsNote

Note The cmov machine instruction takes an immediate value in the range of 0 to 15 (0x0 to 0xF) as the first operand.

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "cmov imm4, reg1, reg2, reg3"

Compares the flag condition indicated by the value of the lower 4 bits of the value of the constant expression spec-

ified by the first operand with the current flag condition. If a match is found, the register value specified by the sec-

ond operand is stored in the register specified by the fourth operand; otherwise, the register value specified by the

third operand is stored in the register specified by the fourth operand.

- Syntax "cmov imm4, imm, reg2, reg3"

Compares the flag condition indicated by the value of the lower 4 bits of the constant expression specified by the

first operand with the current flag condition. If a match is found, the value of the absolute expression specified by

the second operand is stored in the register specified by the fourth operand; otherwise, the register value specified

by the third operand is stored in the register specified by the fourth operand.

- Syntax "cmovcnd reg1, ret2, reg3"

Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the register

value specified by the first operand is stored in the register specified by the third operand; otherwise, the register

value specified by the second operand is stored in the register specified by the third operand.

- Syntax "cmovcnd imm, reg2, reg3"

Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the value of

the absolute expression specified by the first operand is stored in the register specified by the third operand; other-

wise, the register value specified by the second operand is stored in the register specified by the third operand.

Table 4-30. cmovcnd Instruction List

cmov

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

cmovgt ((S xor OV) or Z) = 0 Greater than (signed) cmov 0xF

cmovge (S xor OV) = 0 Greater than or equal (signed) cmov 0xE

cmovlt (S xor OV) = 1 Less than (signed) cmov 0x6

cmovle ((S xor OV) or Z) = 1 Less than or equal (signed) cmov 0x7

cmovh (CY or Z) = 0 Higher (Greater than) cmov 0xB

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 292 of 751
Sep 01, 2013

[Description]

- If the instruction is executed in syntax "cmov imm4, reg1, reg2, reg3", the assembler generates one cmov machine

instructionNote.

Note The cmov machine instruction takes a register or immediate value in the range of -16 to +15 (0xFFFFFFF0

to 0xF) as the second operand.

- If the following is specified as imm in syntax "cmov imm4, imm, reg2, reg3", the assembler generates one cmov

machine instruction.

(a) Absolute expression having a value in the range of -16 to +15

- If the following is specified as imm in syntax "cmov imm4, imm, reg2, reg3", the assembler executes instruction

expansion to generate two or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

cmovnl CY = 0 Not lower (Greater than or equal) cmov 0x9

cmovl CY = 1 Lower (Less than) cmov 0x1

cmovnh (CY or Z) = 1 Not higher (Less than or equal) cmov 0x3

cmove Z = 1 Equal cmov 0x2

cmovne Z = 0 Not equal cmov 0xA

cmovv OV = 1 Overflow cmov 0x0

cmovnv OV = 0 No overflow cmov 0x8

cmovn S = 1 Negative cmov 0x4

cmovp S = 0 Positive cmov 0xC

cmovc CY = 1 Carry cmov 0x1

cmovnc CY = 0 No carry cmov 0x9

cmovz Z = 1 Zero cmov 0x2

cmovnz Z = 0 Not zero cmov 0xA

cmovt always 1 Always 1 cmov 0x5

cmovsa SAT = 1 Saturated cmov 0xD

cmov imm4, imm5, reg2, reg3 cmov imm4, imm5, reg2, reg3

cmov imm4, imm16, reg2, reg3 movea imm16, r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, imm, reg2, reg3 movhi HIGHW(imm), r0, r1

cmov imm4, r1, reg2, reg3

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 293 of 751
Sep 01, 2013

Else

(c) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the

sdata/sbss-attribute section

- If the instruction is executed in syntax "cmovcnd reg1, ret2, reg3", the assembler generates the corresponding

cmov instruction (see "Table 4-30. cmovcnd Instruction List") and expands it to syntax "cmov imm4, reg1, reg2,

reg3".

- If the following is specified as imm in syntax "cmovcnd imm, reg2, reg3", the assembler generates the correspond-

ing cmov instruction (see "Table 4-30. cmovcnd Instruction List") and expands it to syntax "cmov imm, reg2,

reg3".

(a) Absolute expression having a value in the range of -16 to +15

- If the following is specified as imm in syntax "cmovcnd imm, reg2, reg3", the assembler executes instruction

expansion to generate two or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

cmov imm4, imm, reg2, reg3 mov imm, r1

cmov imm4, r1, reg2, reg3

cmov imm4, #label, reg2, reg3 mov #label, r1

cmov imm4, r1, reg2, reg3

cmov imm4, label, reg2, reg3 mov label, r1

cmov imm4, r1, reg2, reg3

cmov imm4, $label, reg2, reg3 mov $label, r1

cmov imm4, r1, reg2, reg3

cmov imm4, !label, reg2, reg3 movea !label, r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, %label, reg2, reg3 movea %label, r0, r1

cmov imm4, r1, reg2, reg3

cmov imm4, $label, reg2, reg3 movea $label, r0, r1

cmov imm4, r1, reg2, reg3

cmovcnd imm16, reg2, reg3 movea imm16, r0, r1

cmovcnd r1, reg2, reg3

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 294 of 751
Sep 01, 2013

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

(d) Relative expression having !label or %label, or that having $label for a label with a definition in the

sdata/sbss-attribute section

[Flag]

[Caution]

- If a constant expression having a value exceeding 4 bits is specified as imm4 of the cmov instruction, the assem-

bler outputs the following message.

If the value exceeds 4 bits, the assembler masks the value with 0xF and continues assembling.

cmovcnd imm, reg2, reg3 movhi HIGHW(imm), r0, r1

cmovcnd r1, reg2, reg3

cmovcnd imm, reg2, reg3 mov imm, r1

cmovcnd r1, reg2, reg3

cmovcnd #label, reg2, reg3 mov #label, r1

cmovcnd r1, reg2, reg3

cmovcnd label, reg2, reg3 mov label, r1

cmovcnd r1, reg2, reg3

cmovcnd $label, reg2, reg3 mov $label, r1

cmovcnd r1, reg2, reg3

cmovcnd !label, reg2, reg3 movea !label, r0, r1

cmovcnd r1, reg2, reg3

cmovcnd %label, reg2, reg3 movea %label, r0, r1

cmovcnd r1, reg2, reg3

cmovcnd $label, reg2, reg3 movea $label, r0, r1

cmovcnd r1, reg2, reg3

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011 : illegal operand (range error in immediate)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 295 of 751
Sep 01, 2013

Sets flag condition.

[Syntax]

- setf imm4, reg

- setfcnd reg

The following can be specified for imm4:

- Absolute expression having a value up to 4 bits

[Function]

- Syntax "setf imm4, reg"

Compares the status of the flag specified by the value of the lower 4 bits of the absolute expression specified by

the first operand with the current flag condition. If they are found to match, 1 is stored in the register specified by

the second operand; otherwise, 0 is stored in the register specified by the second operand.

- Syntax "setfcnd reg"

Compares the status of the flag indicated by string cnd with the current flag condition. If they are found to match, 1

is stored in the register specified by the second operand; otherwise, 0 is stored in the register specified by the sec-

ond operand.

[Description]

- If the instruction is executed in syntax"setf imm4, reg",the assembler generates one satf machine instruction.

- If the instruction is executed in syntax "setfcnd reg", the assembler generates the corresponding setf instruction

(see "Table 4-31. setfcnd Instruction List") and expands it to syntax "setf imm4, reg".

Table 4-31. setfcnd Instruction List

setf

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

setfgt ((S xor OV) or Z) = 0 Greater than (signed) setf 0xF

setfge (S xor OV) = 0 Greater than or equal (signed) setf 0xE

setflt (S xor OV) = 1 Less than (signed) setf 0x6

setfle ((S xor OV) or Z) = 1 Less than or equal (signed) setf 0x7

setfh (CY or Z) = 0 Higher (Greater than) setf 0xB

setfnl CY = 0 Not lower (Greater than or equal) setf 0x9

setfl CY = 1 Lower (Less than) setf 0x1

setfnh (CY or Z) = 1 Not higher (Less than or equal) setf 0x3

setfe Z = 1 Equal setf 0x2

setfne Z = 0 Not equal setf 0xA

setfv OV = 1 Overflow setf 0x0

setfnv OV = 0 No overflow setf 0x8

setfn S = 1 Negative setf 0x4

setfp S = 0 Positive setf 0xC

setfc CY = 1 Carry setf 0x1

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 296 of 751
Sep 01, 2013

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the setf instruction, the assem-

bler outputs the following message and continues assembling using four low-order bits of a specified value.

setfnc CY = 0 No carry setf 0x9

setfz Z = 1 Zero setf 0x2

setfnz Z = 0 Not zero setf 0xA

setft always 1 Always 1 setf 0x5

setfsa SAT = 1 Saturated setf 0xD

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011: illegal operand (range error in immediate).

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 297 of 751
Sep 01, 2013

Sets the flag condition after a logical left shift.

[Syntax]

- sasf imm4, reg

- sasfcnd reg

The following can be specified for imm4:

- Absolute expression having a value up to 4 bits

[Function]

- Syntax "sasf imm4, reg"

Compares the flag condition indicated by the value of the lower 4 bits of the absolute expression specified by the

first operand with the current flag condition. If a match is found, the contents of the register specified by the second

operand are shifted logically 1 bit to the left and ORed with 1, and the result stored in the register specified by the

second operand; otherwise, the contents of the register specified by the second operand are logically shifted 1 bit

to the left and the result stored in the register specified by the second operand.

- Syntax "sasfcnd reg"

Compares the flag condition indicated by string cnd with the current flag condition. If a match is found, the con-

tents of the register specified by the second operand are shifted logically 1 bit to the left and ORed with 1, and the

result stored in the register specified by the second operand; otherwise, the contents of the register specified by

the second operand are shifted logically 1 bit to the left and the result stored in the register specified by the second

operand.

[Description]

- If the instruction is executed in syntax "sasf imm4, reg", the assembler generates one sasf machine instruction.

- If the instruction is executed in syntax "sasfcnd reg", the assembler generates the corresponding sasf instruction

(see "Table 4-32. sasfcnd Instruction List") and expands it to syntax "sasf imm4, reg".

Table 4-32. sasfcnd Instruction List

sasf

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

sasfgt ((S xor OV) or Z) = 0 Greater than (signed) sasf 0xF

sasfge (S xor OV) = 0 Greater than or equal (signed) sasf 0xE

sasflt (S xor OV) = 1 Less than (signed) sasf 0x6

sasfle ((S xor OV) or Z) = 1 Less than or equal (signed) sasf 0x7

sasfh (CY or Z) = 0 Higher (Greater than) sasf 0xB

sasfnl CY = 0 Not lower (Greater than or equal) sasf 0x9

sasfl CY = 1 Lower (Less than) sasf 0x1

sasfnh (CY or Z) = 1 Not higher (Less than or equal) sasf 0x3

sasfe Z = 1 Equal sasf 0x2

sasfne Z = 0 Not equal sasf 0xA

sasfv OV = 1 Overflow sasf 0x0

sasfnv OV = 0 No overflow sasf 0x8

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 298 of 751
Sep 01, 2013

[Flag]

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the sasf instruction, the assem-

bler outputs the following message and continues assembling using four low-order bits of a specified value.

sasfn S = 1 Negative sasf 0x4

sasfp S = 0 Positive sasf 0xC

sasfc CY = 1 Carry sasf 0x1

sasfnc CY = 0 No carry sasf 0x9

sasfz Z = 1 Zero sasf 0x2

sasfnz Z = 0 Not zero sasf 0xA

sasft always 1 Always 1 sasf 0x5

sasfsa SAT = 1 Saturated sasf 0xD

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011 : illegal operand (range error in immediate).

Instruction Flag Condition Meaning of Flag Condition Instruction Expansion

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 299 of 751
Sep 01, 2013

Insert bit in register (Bitfield Insert)

[Syntax]

- bins reg1, pos, width, reg2

The following can be specified as ipos and width:

- Absolute expression having a value of up to 5 bits

[Function]

Loads the lower width bits in general-purpose register reg1 and stores them from the bit position bit pos + width - 1 in

the specified field in general-purpose register reg2 in bit pos. This instruction does not affect any fields in general-pur-

pose register reg2 except the specified field, nor does it affect general-purpose register reg1.

[Description]

- The assembler generates one bins machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as pos or width, the assembler

outputs the following message.

bins

CY ---

OV 0

S "1" if the word data MSB of the result is "1", otherwise, "0"

Z "1" if the operation result is "0"; otherwise, "0"

SAT ---

W0550011 : Illegal operand (range error in immediate).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 300 of 751
Sep 01, 2013

Rotate (Rotate Left)

[Syntax]

- rotl imm, reg2, reg3

- rotl reg1, reg2, reg3

The following can be specified as imm:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "rotl imm, reg2, reg3"

Rotates the word data of general-purpose register reg2 to the left by the specified shift amount, which is indicated

by a 5-bit immediate value zero-extended to word length. The result is written to general-purpose register reg3.

General-purpose register reg2 is not affected.

- Syntax "rotl reg1, reg2, reg3"

Rotates the word data of general-purpose register reg2 to the left by the specified shift amount indicated by the

lower 5 bits of general-purpose register reg1. The result is written to general-purpose register reg3. General-pur-

pose registers reg1 and reg2 are not affected.

[Description]

- If the following is specified as imm in syntax "rotl imm, reg2, reg3", the assembler generates one rotlNote machine

instruction.

(a) Absolute expression having a value in the range of 0 to 31

Note The rotl machine instruction takes a register or immediate value in the range of 0 to 31 (0 to 0x1F) as the first

operand.

- Syntax "rotl reg1, reg2, reg3"

The assembler generates one rotl machine instruction.

[Flag]

rotl

CY "1" if operation result bit 0 is "1"; otherwise "0", including if the rotate amount is "0"

OV 0

S "1" if the operation result is negative; otherwise, "0"

Z "1" if the operation result is "0"; otherwise, "0"

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 301 of 751
Sep 01, 2013

4.8.3 Saturated operation instructions

This section describes the saturated operation instructions. Next table lists the instructions described in this section.

See the RH850 product user's manual and architecture edition for details.

Table 4-33. Saturated Operation Instructions

Instruction Meaning

satadd Adds saturated

satsub Subtracts saturated

satsubi Subtracts saturated (immediate)

satsubr Subtracts reverse saturated

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 302 of 751
Sep 01, 2013

Adda saturated.

[Syntax]

- satadd reg1, reg2

- satadd imm, reg2

- satadd reg1, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "satadd reg1, reg2"

Adds the value of the register specified by the first operand to the value of the register specified by the second

operand, and stores the result in the register specified by the second operand. If the result exceeds the maximum

positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register specified by the second operand.

Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the register

specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satadd imm, reg2"

Adds the value of the absolute expression or relative expression specified by the first operand to the value of the

register specified by the second operand, and stores the result in the register specified by the second operand. If

the result exceeds the maximum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register

specified by the second operand. Likewise, if the result exceeds the maximum negative value of 0x80000000,

0x80000000 is stored in the register specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satadd reg1, reg2, reg3"

Adds the value of the register specified by the first operand to the value of the register specified by the second

operand, and stores the result in the register specified by the third operand. If the result exceeds the maximum

positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register specified by the second operand.

Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the register

specified by the third operand. In both cases, the SAT flag is set to 1.

[Description]

- If the instruction is executed in syntax "satadd reg1, reg2" or "satadd reg1, reg2, reg3", the assembler generates

one satadd machine instruction.

- If the following is specified for imm in syntax "satadd imm, reg2", the assembler generates one satadd machine

instructionNote.

(a) Absolute expression having a value in the range of -16 to +15

Note The satadd machine instruction takes a register or immediate value in the range of -16 to +15 (0xFFFFFFF0

to 0xF) as the first operand.

satadd

satadd imm5, reg satadd imm5, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 303 of 751
Sep 01, 2013

- If the following is specified for imm in syntax "satadd imm, reg2", the assembler executes instruction expansion to

generate one or more machine instructions.

(a) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

(b) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(c) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(d) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

satadd imm16, reg movea imm16, r0, r1

satadd r1, reg

satadd imm, reg movhi HIGHW(imm), r0, r1

satadd r1, reg

satadd imm, reg mov imm, r1

satadd r1, reg

satadd $label, reg movea $label, r0, r1

satadd r1, reg

satadd #label, reg mov #label, r1

satadd r1, reg

satadd label, reg mov label, r1

satadd r1, reg

satadd $label, reg mov $label, r1

satadd r1, reg

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 304 of 751
Sep 01, 2013

[Caution]

- If the instruction is executed in syntax "satadd reg1, reg2" or "satadd imm, reg2", if r0 is specified as the second

operand, the assembler outputs the following message and stops assembling.

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 305 of 751
Sep 01, 2013

Subtracts saturated.

[Syntax]

- satsub reg1, reg2

- satsub imm, reg2

- satsub reg1, reg2, reg3

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "satsub reg1, reg2"

Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-

ond operand, and stores the result in the register specified by the third operand. If the result exceeds the maxi-

mum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register specified by the second

operand. Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the

register specified by the second operand. In both cases, the SAT flag is set to 1

- Syntax "satsub imm, reg2"

Subtracts the value of the absolute expression or relative expression specified by the first operand from the value

of the register specified by the second operand, and stores the result in the register specified by the second oper-

and. If the result exceeds the maximum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the

register specified by the second operand. Likewise, if the result exceeds the maximum negative value of

0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT flag is

set to 1.

- Syntax "satsub reg1, reg2, reg3"

Subtracts the value of the register specified by the first operand from the value of the register specified by the sec-

ond operand, and stores the result in the register specified by the second operand. If the result exceeds the maxi-

mum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register specified by the second

operand. Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the

register specified by the third operand. In both cases, the SAT flag is set to 1.

[Description]

- If the instruction is executed in syntax "satsub reg1, reg2" or "satsub reg1, reg2, reg3", the assembler generates

one satsub machine instruction.

- If the instruction is executed in syntax "satsub imm, reg2", the assembler executes instruction expansion to gener-

ate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value in the range of -32,768 to +32,767

satsub

satsub 0, reg satsub r0, reg

satsub imm16, reg satsubi imm16, reg, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 306 of 751
Sep 01, 2013

(c) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(e) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The satsub machine instruction does not take an immediate value as an operand.

[Flag]

[Caution]

- If the instruction is executed in syntax "satsub reg1, reg2" or "satsub imm, reg2", if r0 is specified as the second

operand, the assembler outputs the following message and stops assembling.

satsub imm, reg movhi HIGHW(imm), r0, r1

satsub r1, reg

satsub imm, reg mov imm, r1

satsub r1, reg

satsub $label, reg satsubi $label, reg, reg

satsub #label, reg mov #label, r1

satsub r1, reg

satsub label, reg mov label, r1

satsub r1, reg

satsub $label, reg mov $label, r1

satsub r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 307 of 751
Sep 01, 2013

Subtracts saturated (immediate).

[Syntax]

- satsubi imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

Subtracts the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1

applied specified by the first operand from the value of the register specified by the second operand, and stores the result

in the register specified by the third operand. If the result exceeds the maximum positive value of 0x7FFFFFFF, however,

0x7FFFFFFF is stored in the register specified by the third operand. Likewise, if the result exceeds the maximum nega-

tive value of 0x80000000, 0x80000000 is stored in the register specified by the third operand. In both cases, the SAT flag

is set to 1.

[Description]

- If the following is specified for imm, the assembler generates one satsubi machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

Note The satsubi machine instruction takes an immediate value, in the range of -32,768 to +32,767 (0xFFFF8000

to 0x7FFF), as the first operand.

satsubi

satsubi imm16, reg1, reg2 satsubi imm16, reg1, reg2

satsubi $label, reg1, reg2 satsubi $label, reg1, reg2

satsubi !label, reg1, reg2 satsubi !label, reg1, reg2

satsubi %label, reg1, reg2 satsubi %label, reg1, reg2

satsubi imm16, reg1, reg2 satsubi imm16, reg1, reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 308 of 751
Sep 01, 2013

- If the following is specified for imm, the assembler executes instruction expansion to generate one or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

<1> If all the lower 16 bits of the value of imm are 0

<2> Else

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

[Flag]

[Caution]

- If r0 is specified by the second operand, the assembler outputs the following message and stops assembling.

satsubi imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

satsubr reg1, reg2

satsubi imm, reg1, reg2 mov imm, reg2

satsubr reg1, reg2

satsubi #label, reg1, reg2 mov #label, reg2

satsubr reg1, reg2

satsubi label, reg1, reg2 mov label, reg2

satsubr reg1, reg2

satsubi $label, reg1, reg2 mov $label, reg2

satsubr reg1, reg2

CY 1 if a borrow occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 309 of 751
Sep 01, 2013

Subtracts reverse saturated.

[Syntax]

- satsubr reg1, reg2

- satsubr imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "satsubr reg1, reg2"

Subtracts the value of the register specified by the second operand from the value of the register specified by the

first operand, and stores the result in the register specified by the second operand. If the result exceeds the maxi-

mum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the register specified by the second oper-

and. Likewise, if the result exceeds the maximum negative value of 0x80000000, 0x80000000 is stored in the

register specified by the second operand. In both cases, the SAT flag is set to 1.

- Syntax "satsubr imm, reg2"

Subtracts the value of the register specified by the second operand from the value of the absolute expression or

relative expression specified by the first operand, and stores the result in the register specified by the second oper-

and. If the result exceeds the maximum positive value of 0x7FFFFFFF, however, 0x7FFFFFFF is stored in the

register specified by the second operand. Likewise, if the result exceeds the maximum negative value of

0x80000000, 0x80000000 is stored in the register specified by the second operand. In both cases, the SAT flag is

set to 1.

[Description]

- If the instruction is executed in syntax "satsubr reg1, reg2", the assembler generates one satsubr machine instruc-

tion.

- If the instruction is executed in syntax "satsubr imm, reg2", the assembler executes instruction expansion to gener-

ate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

satsubr

satsubr 0, reg satsubr r0, reg

satsubr imm5, reg mov imm5, r1

satsubr r1, reg

satsubr imm16, reg movea imm16, r0, r1

satsubr r1, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 310 of 751
Sep 01, 2013

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The satsubr machine instruction does not take an immediate value as an operand.

[Flag]

[Caution]

- If r0 is specified by the second operand, the assembler outputs the following message and stops assembling.

satsubr imm, reg movhi HIGHW(imm), r0, r1

satsubr r1, reg

satsubr imm, reg mov imm, r1

satsubr r1, reg

satsubr $label, reg movea $label, r0, r1

satsubr r1, reg

satsubr #label, reg mov #label, r1

satsubr r1, reg

satsubr label, reg mov label, r1

satsubr r1, reg

satsubr $label, reg mov $label, r1

satsubr r1, reg

CY 1 if a borrow occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT 1 if OV = 1, - if not

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 311 of 751
Sep 01, 2013

4.8.4 Logical instructions

This section describes the logical instructions. Next table lists the instructions described in this section.

See the RH850 product user's manual and architecture edition for details.

Table 4-34. Logical Instructions

Instruction Meanings

or Logical sum

ori Logical sum (immediate)

xor Exclusive OR

xori Exclusive OR (immediate)

and Logical product

andi Logical product (immediate)

not Logical negation (takes 1's complement)

shr Logical right shift

sar Arithmetic right shift

shl Logical left shift

sxb Sign extension of byte data

sxh Sign extension of 2-byte data

zxb Zero extension of byte data

zxh Zero extension of 2-byte data

bsh Byte swap of half-word data

bsw Byte swap of word data

hsh Half-word swap of half-word data

hsw Half-word swap of word data

tst Test

sch0l Bit (0) search from MSB side

sch0r Bit (0) search from LSB side

sch1l Bit (1) search from MSB side

sch1r Bit (1) search from LSB side

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 312 of 751
Sep 01, 2013

Logical sum.

[Syntax]

- or reg1, reg2

- or imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "or reg1, reg2"

ORs the value of the register specified by the first operand with the value of the register specified by the second

operand, and stores the result in the register specified by the second operand.

- Syntax "or imm, reg2"

ORs the value of the absolute expression or relative expression specified by the first operand with the value of the

register specified by the second operand, and stores the result in the register specified by the second operand.

[Description]

- When this instruction is executed in syntax "or reg1, reg2", the assembler generates one or machine instruction.

- When this instruction is executed in syntax "or imm, reg2", the assembler executes instruction expansion to gener-

ate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value in the range of 1 to 65,535

(c) Absolute expression having a value in the range of -16 to -1

(d) Absolute expression having a value in the range of -32,768 to -17

or

or 0, reg or r0, reg

or imm16, reg ori imm16, reg, reg

or imm5, reg mov imm5, r1

or r1, reg

or imm16, reg movea imm16, r0, r1

or r1, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 313 of 751
Sep 01, 2013

(e) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(g) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The or machine instruction does not take an immediate value as an operand.

[Flag]

or imm, reg movhi HIGHW(imm), r0, r1

or r1, reg

or imm, reg mov imm, r1

or r1, reg

or $label, reg movea $label, r0, r1

or r1, reg

or #label, reg mov #label, r1

or r1, reg

or label, reg mov label, r1

or r1, reg

or $label, reg mov $label, r1

or r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 314 of 751
Sep 01, 2013

Logical sum (immediate).

[Syntax]

- ori imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

ORs the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1 applied

specified by the first operand with the value of the register specified by the second operand, and stores the result in the

register specified by the third operand.

[Description]

- If the following is specified for imm, the assembler generates one ori machine instructionNote 1.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %labelNote 2

(c) Expression with HIGHW, LOWW, or HIGHW1

Notes 1. The ori machine instruction takes an immediate value of 0 to 65,535 (0 to 0xFFFF) as the first operand.

2. Values from -32768 to 32767 are specifiable for !label and $label and handled as immediate values

(padded with zeros).

- If the following is specified for imm, the assembler executes instruction expansion to generate one or more

machine instructions.

(a) Absolute expression having a value in the range of -16 to -1

If reg2 is r0

ori

ori imm16, reg1, reg2 ori imm16, reg1, reg2

ori !label, reg1, reg2 ori !label, reg1, reg2

ori %label, reg1, reg2 ori %label, reg1, reg2

ori imm16, reg1, reg2 ori imm16, reg1, reg2

ori imm5, reg1, r0 mov imm5, r1

or reg1, r1

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 315 of 751
Sep 01, 2013

Else

(b) Absolute expression having a value in the range of -32,768 to -17

If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges

<1> If all the lower 16 bits of the value of imm are 0

If reg2 is r0

Else

<2> Else

If reg2 is r0

Else

ori imm5, reg1, reg2 mov imm5, reg2

or reg1, reg2

ori imm16, reg1, r0 movea imm16, r0, r1

or reg1, r1

ori imm16, reg1, reg2 movea imm16, r0, reg2

or reg1, reg2

ori imm, reg1, r0 movhi HIGHW(imm), r0, r1

or reg1, r1

ori imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

or reg1, reg2

ori imm, reg1, r0 mov imm, r1

or reg1, r1

ori imm, reg1, reg2 mov imm, reg2

or reg1, reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 316 of 751
Sep 01, 2013

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

If reg2 is r0

Else

(e) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

If reg2 is r0

Else

[Flag]

ori $label, reg1, r0 movea $label, r0, r1

or reg1, r1

ori $label, reg1, reg2 movea $label, r0, reg2

or reg1, reg2

ori #label, reg1, r0 mov #label, r1

or reg1, r1

ori label, reg1, r0 mov label, r1

or reg1, r1

ori $label, reg1, r0 mov $label, r1

or reg1, r1

ori #label, reg1, reg2 mov #label, reg2

or reg1, reg2

ori label, reg1, reg2 mov label, reg2

or reg1, reg2

ori $label, reg1, reg2 mov $label, reg2

or reg1, reg2

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 317 of 751
Sep 01, 2013

Exclusive OR.

[Syntax]

- xor reg1, reg2

- xor imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "xor reg1, reg2"

Exclusive-ORs the value of the register specified by the first operand with the value of the register specified by the

second operand, and stores the result in the register specified by the second operand.

- Syntax "xor imm, reg2"

Exclusive-ORs the value of the absolute expression or relative expression specified by the first operand with the

value of the register specified by the second operand, and stores the result in the register specified by the second

operan.

[Description]

- When this instruction is executed in syntax "xor reg1, reg2", the assembler generates one xor machine instruction.

- When this instruction is executed in syntax "xor imm, reg2", the assembler executes instruction expansion to gen-

erate two or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value in the range of 1 to 65,535

(c) Absolute expression having a value in the range of -16 to -1

(d) Absolute expression having a value in the range of -32,768 to -17

xor

xor 0, reg xor r0, reg

xor imm16, reg xori imm16, reg, reg

xor imm5, reg mov imm5, r1

xor r1, reg

xor imm16, reg movea imm16, r0, r1

xor r1, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 318 of 751
Sep 01, 2013

(e) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(g) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The xor machine instruction take an immediate value as an operand.

[Flag]

xor imm, reg movhi HIGHW(imm), r0, r1

xor r1, reg

xor imm, reg mov imm, r1

xor r1, reg

xor $label, reg movea $label, r0, r1

xor r1, reg

xor #label, reg mov #label, r1

xor r1, reg

xor label, reg mov label, r1

xor r1, reg

xor $label, reg mov $label, r1

xor r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 319 of 751
Sep 01, 2013

Exclusive OR (Immediate).

[Syntax]

- xori imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

Exclusive-ORs the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or

HIGHW1 applied specified by the first operand with the value of the register specified by the second operand, and stores

the result in the register specified by the third operand.

[Description]

- If the following is specified for imm, the assembler generates one xori machine instructionNote 1.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %labelNote 2

(c) Expression with HIGHW, LOWW, or HIGHW1

Notes 1. The xori machine instruction takes an immediate value of 0 to 65,535 (0 to 0xFFFF) as the first oper-

and.

2. Values from -32768 to 32767 are specifiable for !label and $label and handled as immediate values

(padded with zeros).

xori

xori imm16, reg1, reg2 xori imm16, reg1, reg2

xori !label, reg1, reg2 xori !label, reg1, reg2

xori %label, reg1, reg2 xori %label, reg1, reg2

xori imm16, reg1, reg2 xori imm16, reg1, reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 320 of 751
Sep 01, 2013

- If the following is specified for imm, the assembler executes instruction expansion to generate one or more

machine instructions.

(a) Absolute expression having a value in the range of -16 to -1

If reg2 is r0

Else

(b) Absolute expression having a value in the range of -32,768 to -17

If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges

<1> If all the lower 16 bits of the value of imm are 0

If reg2 is r0

Else

<2> Else

If reg2 is r0

Else

xori imm5, reg1, r0 mov imm5, r1

xor reg1, r1

xori imm5, reg1, reg2 mov imm5, reg2

xor reg1, reg2

xori imm16, reg1, r0 movea imm16, r0, r1

xor reg1, r1

xori imm16, reg1, reg2 movea imm16, r0, reg2

xor reg1, reg2

xori imm, reg1, r0 movhi HIGHW(imm), r0, r1

xor reg1, r1

xori imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

xor reg1, reg2

xori imm, reg1, r0 mov imm, r1

xor reg1, r1

xori imm, reg1, reg2 mov imm, reg2

xor reg1, reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 321 of 751
Sep 01, 2013

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

If reg2 is r0

Else

(e) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

If reg2 is r0

Else

[Flag]

xori $label, reg1, r0 movea $label, r0, r1

xor reg1, r1

xori $label, reg1, reg2 movea $label, r0, reg2

xor reg1, reg2

xori #label, reg1, r0 mov #label, r1

xor reg1, r1

xori label, reg1, r0 mov label, r1

xor reg1, r1

xori $label, reg1, r0 mov $label, r1

xor reg1, r1

xori #label, reg1, reg2 mov #label, reg2

xor reg1, reg2

xori label, reg1, reg2 mov label, reg2

xor reg1, reg2

xori $label, reg1, reg2 mov $label, reg2

xor reg1, reg2

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 322 of 751
Sep 01, 2013

Logical product.

[Syntax]

- and reg1, reg2

- and imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "and reg1, reg2"

ANDs the value of the register specified by the first operand with the value of the register specified by the second

operand, and stores the result in the register specified by the second operand.

- Syntax "and imm, reg2"

ANDs the value of the absolute expression or relative expression specified by the first operand with the value of the

register specified by the second operand, and stores the result in the register specified by the second operand.

[Description]

- When this instruction is executed in syntax "and reg1, reg2", the assembler generates one and machine instruc-

tion.

- When this instruction is executed in syntax "and imm, reg2", the assembler executes instruction expansion to gen-

erate one or more machine instructionNote.

(a) 0

(b) Absolute expression having a value in the range of 1 to 65,535

(c) Absolute expression having a value in the range of -16 to -1

(d) Absolute expression having a value in the range of -32,768 to -17

and

and 0, reg and r0, reg

and imm16, reg andi imm16, reg, reg

and imm5, reg mov imm5, r1

and r1, reg

and imm16, reg movea imm16, r0, r1

and r1, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 323 of 751
Sep 01, 2013

(e) Absolute expression exceeding the above ranges

If all the lower 16 bits of the value of imm are 0

Else

(f) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(g) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The and machine instruction does not take an immediate value as an operand.

[Flag]

and imm, reg movhi HIGHW(imm), r0, r1

and r1, reg

and imm, reg mov imm, r1

and r1, reg

and $label, reg movea $label, r0, r1

and r1, reg

and #label, reg mov #label, r1

and r1, reg

and label, reg mov label, r1

and r1, reg

and $label, reg mov $label, r1

and r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 324 of 751
Sep 01, 2013

Logical product (immediate).

[Syntax]

- andi imm, reg1, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

[Function]

ANDs the value of the absolute expression, relative expression, or expression with HIGHW, LOWW, or HIGHW1

applied specified by the first operand with the value of the register specified by the second operand, and stores the result

into the register specified by the third operand.

[Description]

- If the following is specified as imm, the assembler generates one andi machine instructionNote 1.

(a) Absolute expression having a value in the range of 0 to 65,535

(b) Relative expression having !label or %labelNote 2

(c) Expression with HIGHW, LOWW, or HIGHW1

Notes 1. The andi machine instruction takes an immediate value of 0 to 65,535 (0 to 0xFFFF) as the first oper-

and.

2. Values from -32768 to 32767 are specifiable for !label and $label and handled as immediate values

(padded with zeros).

andi

andi imm16, reg1, reg2 andi imm16, reg1, reg2

andi !label, reg1, reg2 andi !label, reg1, reg2

andi %label, reg1, reg2 andi %label, reg1, reg2

andi imm16, reg1, reg2 andi imm16, reg1, reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 325 of 751
Sep 01, 2013

- If the following is specified for imm, the assembler executes instruction expansion to generate one or more

machine instructions.

(a) Absolute expression having a value in the range of -16 to -1

If reg2 is r0

Else

(b) Absolute expression having a value in the range of -32,768 to -17

If reg2 is r0

Else

(c) Absolute expression exceeding the above ranges

<1> If all the lower 16 bits of the value of imm are 0

If reg2 is r0

Else

<2> Else

If reg2 is r0

Else

andi imm5, reg1, r0 mov imm5, r1

and reg1, r1

andi imm5, reg1, reg2 mov imm5, reg2

and reg1, reg2

andi imm16, reg1, r0 movea imm16, r0, r1

and reg1, r1

andi imm16, reg1, reg2 movea imm16, r0, reg2

and reg1, reg2

andi imm, reg1, r0 movhi HIGHW(imm), r0, r1

and reg1, r1

andi imm, reg1, reg2 movhi HIGHW(imm), r0, reg2

and reg1, reg2

andi imm, reg1, r0 mov imm, r1

and reg1, r1

andi imm, reg1, reg2 mov imm, reg2

and reg1, reg2

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 326 of 751
Sep 01, 2013

(d) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

If reg2 is r0

Else

(e) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

If reg2 is r0

Else

[Flag]

andi $label, reg1, r0 movea $label, r0, r1

and reg1, r1

andi $label, reg1, reg2 movea $label, r0, reg2

and reg1, reg2

andi #label, reg1, r0 mov #label, r1

and reg1, r1

andi label, reg1, r0 mov label, r1

and reg1, r1

andi $label, reg1, r0 mov $label, r1

and reg1, r1

andi #label, reg1, reg2 mov #label, reg2

and reg1, reg2

andi label, reg1, reg2 mov label, reg2

and reg1, reg2

andi $label, reg1, reg2 mov $label, reg2

and reg1, reg2

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 327 of 751
Sep 01, 2013

Logical negation (takes 1's complement).

[Syntax]

- not reg1, reg2

- not imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "not reg1, reg2"

NOTs (1's complement) the value of the register specified by the first operand, and stores the result in the register

specified by the second operand.

- Syntax "not imm, reg2"

NOTs (1's complement) the value of the absolute expression or relative expression specified by the first operand,

and stores the result in the register specified by the second operand.

[Description]

- When this instruction is executed in syntax "not reg1, reg2", the assembler generates one not machine instruction.

- When this instruction is executed in syntax "not imm, reg2", the assembler executes instruction expansion to gen-

erate one or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

not

not 0, reg not r0, reg

not imm5, reg mov imm5, r1

not r1, reg

not imm16, reg movea imm16, r0, r1

not r1, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 328 of 751
Sep 01, 2013

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The not machine instruction does not take an immediate value as an operand.

[Flag]

not imm, reg movhi HIGHW(imm), r0, r1

not r1, reg

not imm, reg mov imm, r1

not r1, reg

not $label, reg movea $label, r0, r1

not r1, reg

not #label, reg mov #label, r1

not r1, reg

not label, reg mov label, r1

not r1, reg

not $label, reg mov $label, r1

not r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 329 of 751
Sep 01, 2013

Logical right shift.

[Syntax]

- shr reg1, reg2

- shr imm5, reg2

- shr reg1, reg2, reg3

The following can be specified for imm5:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "shr reg1, reg2"

Logically shifts to the right the value of the register specified by the second operand by the number of bits indicated

by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified

by the second operand.

- Syntax "shr imm5, reg2"

Logically shifts to the right the value of the register specified by the second operand by the number of bits specified

by the value of the absolute expression specified by the first operand, then stores the result in the register specified

by the second operand.

- Syntax "shr reg1, reg2, reg3"

Logically shifts to the right the value of the register specified by the second operand by the number of bits indicated

by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified

by the third operand.

[Description]

The assembler generates one shr machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as imm5 in syntax "shr imm5,

reg2", the assembler outputs the following message, and continues assembling by using the lower 5 bitsNote of the

specified value.

Note The shr machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1F) as the first operand.

shr

CY 1 if the value of the bit shifted out last is 1, 0 if not

(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W0550011 : illegal operand (range error in immediate).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 330 of 751
Sep 01, 2013

Arithmetic right shift.

[Syntax]

- sar reg1, reg2

- sar imm5, reg2

- sar reg1, reg2, reg3

The following can be specified for imm5:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "sar reg1, reg2"

Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits indi-

cated by the lower 5 bits of the register value specified by the first operand, then stores the result in the register

specified by the second operand.

- Syntax "sar imm5, reg2"

Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits

specified by the value of the absolute expression specified by the first operand, then stores the result in the register

specified by the second operand.

- Syntax "sar reg1, reg2, reg3"

Arithmetically shifts to the right the value of the register specified by the second operand by the number of bits indi-

cated by the lower 5 bits of the register value specified by the first operand, then stores the result in the register

specified by the third operand.

[Description]

The assembler generates one sar machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified for imm5 in syntax "sar imm5,

reg2", the assembler outputs the following message, and continues assembling using the lower 5 bitsNote of the

specified value.

Note The sar machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1F) as the first operand.

sar

CY 1 if the value of the bit shifted out last is 1, 0 if not

(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W0550011 : illegal operand (range error in immediate).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 331 of 751
Sep 01, 2013

Logical left shift.

[Syntax]

- shl reg1, reg2

- shl imm5, reg2

- shl reg1, reg2, reg3

The following can be specified for imm5:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "shl reg1, reg2"

Logically shifts to the left the value of the register specified by the second operand by the number of bits indicated

by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified

by the second operand.

- Syntax "shl imm5, reg2"

Logically shifts to the left the value of the register specified by the second operand by the number of bits specified

by the value of the absolute expression specified by the first operand, then stores the result in the register specified

by the second operand.

- Syntax "shl reg1, reg2, reg3"

Logically shifts to the left the value of the register specified by the second operand by the number of bits indicated

by the lower 5 bits of the register value specified by the first operand, then stores the result in the register specified

by the third operand.

[Description]

The assembler generates one shl machine instruction.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified for imm5 in syntax "shl imm5,

reg2", the assembler outputs the following message, and continues assembling by using the lower 5 bitsNote of the

specified value.

Note The shl machine instruction takes an immediate value of 0 to 31 (0x0 to 0x1F) as the first operand.

shl

CY 1 if the value of the bit shifted out last is 1, 0 if not

(0 if the specified number of bits is 0)

OV 0

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

W0550011 : illegal operand (range error in immediate).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 332 of 751
Sep 01, 2013

Sign extension of byte data.

[Syntax]

- sxb reg

[Function]

Sign-extends the data of the lowermost byte of the register specified by the first operand to word length.

[Description]

The assembler generates one sxb machine instruction.

[Flag]

sxb

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 333 of 751
Sep 01, 2013

Sign extension of 2-byte data.

[Syntax]

- sxh reg

[Function]

Sign-extends the data of the lower 2 bytes of the register specified by the first operand to word length.

[Description]

The assembler generates one sxh machine instruction.

[Flag]

sxh

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 334 of 751
Sep 01, 2013

Zero extension of byte data.

[Syntax]

- zxb reg

[Function]

Zero-extends the data of the lowermost byte of the register specified by the first operand to word length.

[Description]

The assembler generates one zxb machine instruction.

[Flag]

zxb

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 335 of 751
Sep 01, 2013

Zero extension of 2-byte data

[Syntax]

- zxh reg

[Function]

Zero-extends the data of the lower 2 bytes of the register specified by the first operand to word length.

[Description]

The assembler generates one zxh machine instruction.

[Flag]

zxh

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 336 of 751
Sep 01, 2013

Byte swap of half-word data.

[Syntax]

- bsh reg1, reg2

[Function]

Byte-swaps the register value specified by the first operand in halfword units and stores the result in the register speci-

fied by the second operand.

[Description]

The assembler generates one bsh machine instruction.

[Flag]

bsh

CY 1 if either or both of the bytes in the lower halfword of the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the lower half-word data of the result is 0, 0 if not

SAT ---

bit 23-16 bit 7-0 bit 15-8bit 31-24

reg2

Byte-swap of reg1 in halfword units

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 337 of 751
Sep 01, 2013

Byte swap of word data.

[Syntax]

- bsw reg1, reg2

[Function]

Byte-swaps the register value specified by the first operand and stores the result in the register specified by the second

operand.

[Description]

The assembler generates one bsw machine instruction.

[Flag]

bsw

CY 1 if one or more bytes of the word in the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the word data of the result is 1, 0 if not

SAT ---

bit 23-16 bit 31-24bit 15-8

reg2

Byte-swap of reg1 for entire word

bit 7-0

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 338 of 751
Sep 01, 2013

Half-word swap of half-word data.

[Syntax]

- hsh reg1, reg2

[Function]

Stores the register value specified by the first operand in the register specified by the second operand, and stores the

flag assessment result in the PSW register.

[Description]

The assembler generates one hsh machine instruction.

[Flag]

hsh

CY 1 if the lower half-word data of the result is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the lower half-word data of the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 339 of 751
Sep 01, 2013

Half-word swap of word data.

[Syntax]

- hsw reg1, reg2

[Function]

Halfword-swaps the register value specified by the first operand and stores the result in the register specified by the

second operand.

[Description]

The assembler generates one hsw machine instruction.

[Flag]

hsw

CY 1 if one or more halfwords in the word of the register is 0, 0 if not

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the word data of the result is 1, 0 if not

SAT ---

bit 15-0 bit 31-16

reg2

Halfword swap of reg1

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 340 of 751
Sep 01, 2013

Test.

[Syntax]

- tst reg1, reg2

- tst imm, reg2

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

- Relative expression

[Function]

- Syntax "tst reg1, reg2"

ANDs the value of the register specified by the second operand with the value of the register specified by the first

operand, and sets only the flags without storing the result.

- Syntax "tst imm, reg2"

ANDs the value of the register specified by the second operand with the value of the absolute expression or rela-

tive expression specified by the first operand, and sets only the flags without storing the result.

[Description]

- When this instruction is executed in syntax "tst reg1, reg2", the assembler generates one tst machine instruction.

- When this instruction is executed in syntax "tst imm, reg2", the assembler executes instruction expansion to gener-

ate two or more machine instructionsNote.

(a) 0

(b) Absolute expression having a value of other than 0 within the range of -16 to +15

(c) Absolute expression exceeding the range of -16 to +15, but within the range of -32,768 to +32,767

tst

tst 0, reg tst r0, reg

tst imm5, reg mov imm5, r1

tst r1, reg

tst imm16, reg movea imm16, r0, r1

tst r1, reg

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 341 of 751
Sep 01, 2013

(d) Absolute expression having a value exceeding the range of -32,768 to +32,767

If all the lower 16 bits of the value of imm are 0

Else

(e) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(f) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

Note The tst machine instruction take an immediate value as an operand.

[Flag]

tst imm, reg movhi HIGHW(imm), r0, r1

tst r1, reg

tst imm, reg mov imm, r1

tst r1, reg

tst $label, reg movea $label, r0, r1

tst r1, reg

tst #label, reg mov #label, r1

tst r1, reg

tst label, reg mov label, r1

tst r1, reg

tst $label, reg mov $label, r1

tst r1, reg

CY ---

OV 0

S 1 if the word data MSB of the result is 1, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 342 of 751
Sep 01, 2013

Bit (0) search from MSB side (search zero from left).

[Syntax]

- sch0l reg1, reg2

[Function]

Searches the word data of the register specified by the first operand, from the left (MSB side), and stores the position of

the first bit (0) found in the register specified by the second operand in hexadecimal. (For example, if bit 31 of the register

specified by the first operand is 0, 01H is stored in the register specified by the second operand.)

If no bit (0) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously set

(1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The assembler generates one sch0l machine instruction.

[Flag]

sch0l

CY 1 if a bit (0) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (0) is not found, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 343 of 751
Sep 01, 2013

Bit (0) search from LSB side (search zero from right).

[Syntax]

- sch0r reg1, reg2

[Function]

Searches the word data of the register specified by the first operand, from the right (LSB side), and stores the position

of the first bit (0) found in the register specified by the second operand in hexadecimal. (For example, if bit 0 of the regis-

ter specified by the first operand is 0, 01H is stored in the register specified by the second operand.)

If no bit (0) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously set

(1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The assembler generates one sch0r machine instruction.

[Flag]

sch0r

CY 1 if a bit (0) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (0) is not found, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 344 of 751
Sep 01, 2013

Bit (1) search from MSB side (search one from left).

[Syntax]

- sch1l reg1, reg2

[Function]

Searches the word data of the register specified by the first operand, from the left (MSB side), and stores the position of

the first bit (1) found in the register specified by the second operand in hexadecimal. (For example, if bit 31 of the register

specified by the first operand is 1, 01H is stored in the register specified by the second operand.)

If no bit (1) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously set

(1). If a bit (0) is found at the end, the CY flag is set (1).

[Description]

The assembler generates one sch1l machine instruction.

[Flag]

sch1l

CY 1 if a bit (1) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (1) is not found, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 345 of 751
Sep 01, 2013

Bit (1) search from LSB side (search zero from right).

[Syntax]

- sch1r reg1, reg2

[Function]

Searches the word data of the register specified by the first operand, from the right (LSB side), and stores the position

of the first bit (1) found in the register specified by the second operand in hexadecimal. (For example, if bit 0 of the regis-

ter specified by the first operand is 1, 01H is stored in the register specified by the second operand.)

If no bit (1) is found, 0 is written into the register specified by the second operand, and the Z flag is simultaneously set

(1). If a bit (1) is found at the end, the CY flag is set (1).

[Description]

The assembler generates one sch1r machine instruction.

[Flag]

sch1r

CY 1 if a bit (1) is found at the end, 0 if not

OV 0

S 0

Z 1 if a bit (1) is not found, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 346 of 751
Sep 01, 2013

4.8.5 Branch instructions

This section describes the branch instructions. Next table lists the instructions described in this section.

See the RH850 product user's manual and architecture edition for details.

Table 4-35. Branch Instructions

Instruction Meanings

jmp Unconditional branch

jmp32 Unconditional branch

jr Unconditional branch (PC relative)

jr22 Unconditional branch (PC relative)

jr32 Unconditional branch (PC relative)

jcnd Conditional branch

jcnd9 Conditional branch

jcnd17 Conditional branch

jarl Jump and register link

jarl22 Jump and register link

jarl32 Jump and register link

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 347 of 751
Sep 01, 2013

Unconditional branch.

[Syntax]

- jmp [reg]

- jmp addr

- jmp disp32[reg]

The following can be specified for addr:

- Relative expression having the absolute address reference of a label

The following can be specified for disp32:

- Absolute expression having a value of up to 32 bits

- Relative expression with a reference to the absolute address of a label and a reference to the offset within a sec-

tion

[Function]

- Syntax "jmp [reg]"

Transfers control to the address indicated by the value of the register specified by the operand.

- Syntax "jmp disp32[reg]"

Transfers control to the address attained by adding the displacement specified by the operand and the register

content.

- Syntax "jmp addr"

Transfers control to the address indicated by the value of the relative expression specified by the operand.

[Description]

- When this instruction is executed in syntax "jmp [reg]", the assembler generates one jmp machine instruction.

- If the instruction is executed in syntax "jmp addr", when the RH850 operate, the assembler generates one jmp

machine instruction (6-byte long instruction).

- When this instruction is executed in syntax "jmp disp32[reg]", the assembler generates one jmp (6-byte long

instruction) machine instructions.

[Flag]

[Caution]

- If an expression other than a relative expression having the absolute address reference of a label is specified as

addr in syntax "jmp addr", the assembler outputs the following message and stops assembling.

jmp

CY ---

OV ---

S ---

Z ---

SAT ---

E0550224 : Illegal operand (label reference for jmp must be string).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 348 of 751
Sep 01, 2013

Unconditional branch.

[Syntax]

- jmp32 disp32[reg]

- jmp32 addr

The following can be specified for addr:

- Relative expression having the absolute address reference of a label

The following can be specified for disp32:

- Absolute expression having a value of up to 32 bits

- Relative expression with a reference to the absolute address of a label and a reference to the offset within a

section

[Function]

- Syntax "jmp32 disp32[reg]"

Transfers control to the address attained by adding the displacement specified by the operand and the register

content.

- Syntax "jmp32 addr"

Transfers control to the address indicated by the value of the relative expression specified by the operand.

[Description]

The assembler generates one jmp machine instruction (6-byte long instruction).

[Flag]

[Caution]

- If an expression other than a relative expression having the absolute address reference of a label is specified as

addr in syntax "jmp32 addr", the assembler outputs the following message and stops assembling.

jmp32

CY ---

OV ---

S ---

Z ---

SAT ---

E0550224 : Illegal operand (label reference for jmp must be string).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 349 of 751
Sep 01, 2013

Unconditional branch (PC relative).

[Syntax]

- jr disp22

- jr disp32

The following can be specified for disp22:

- Absolute expression having a value of up to 22 bits

- Relative expression having a PC offset reference of label

The following can be specified for disp32:

- Absolute expression having a value of up to 32 bits

- Relative expression having a PC offset reference of label

[Function]

- Syntax "jr disp22"

Transfers control to the address attained by adding the current program counter (PC) value and the relative or

absolute expression value specified by the first operand.

- Syntax "jr disp32"

Transfers control to the address attained by adding the current program counter (PC) value and the relative or

absolute expression value specified by the first operand.

[Description]

- If the instruction is executed in syntax "jr disp22", the assembler generates one jr machine instructionNote if any of

the following expressions are specified for disp22.

(a) Absolute expression having a value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section of

the same file as this instruction, and having a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label with no definition in the same file or section

as this instruction

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xFE00000

to 0x1FFFFF) as the displacement.

- If the instruction is executed in syntax "jr disp32", the assembler generates one jr machine instruction (6-byte long

instruction).

jr

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 350 of 751
Sep 01, 2013

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of -2,097,152 to +2,097,151, or a relative expression

having a PC offset reference of a label with a definition in the same section and the same file as this instruction,

and having a value exceeding the range of -2,097,152 to +2,097,151, is specified as disp22, the assembler out-

puts the following message and stops assembling.

- If an absolute expression having an odd-numbered value or a relative expression having a PC offset reference of a

label with a definition in the same section and the same file as this instruction, and having an odd-numbered value,

is specified as disp22/disp32, the assembler outputs the following message and stops assembling.

- When the -Xfar_jump assembler option is not specified, and an absolute expression outside of the range -

2,097,152 to +2,097,151 or a relative expression outside of the range -2,097,152 to +2,097,151, having a label PC

offset reference with a definition in the same file and same section as this instruction, is specified as disp32, the

following message is output and assembly is stopped.

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230 : illegal operand (range error in displacement)

E0550226 : illegal operand (must be even displacement)

E0550230 : illegal operand (range error in displacement)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 351 of 751
Sep 01, 2013

Unconditional branch (PC relative).

[Syntax]

- jr22 disp22

The following can be specified for disp22:

- Absolute expression having a value of up to 22 bits

- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or absolute

expression value specified by the operand.

[Description]

- If the following is specified for disp22, the assembler generates one jr machine instructionNote.

(a) Absolute value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section and

the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or sec-

tion as this instruction

Note The jr machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xFE00000

to 0x1FFFFF) as the displacement.

[Flag]

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression having a PC

offset reference of label with a definition in the same section and the same file as this instruction and having a

value that falls outside the range of -2,097,152 to +2,097,151 is specified as disp22, the assembler outputs the fol-

lowing message and stops assembling.

jr22

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230 : illegal operand (range error in displacement)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 352 of 751
Sep 01, 2013

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of

a label with a definition in the same section and the same file as this instruction and having an odd-numbered

value, is specified as disp22, the assembler outputs the following message and stops assembling.

E0550226 : illegal operand (must be even displacement)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 353 of 751
Sep 01, 2013

Unconditional branch (PC relative).

[Syntax]

- jr32 disp32

The following can be specified for disp32:

- Absolute expression having a value of up to 32 bits

- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or absolute

expression value specified by the first operand.

[Description]

The assembler generates one jr machine instruction (6-byte long instruction).

[Flag]

[Caution]

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of

a label with a definition in the same section and the same file as this instruction and having an odd-numbered

value, is specified as disp32, the assembler outputs the following message and stops assembling.

jr32

CY ---

OV ---

S ---

Z ---

SAT ---

E0550226: illegal operand (must be even displacement)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 354 of 751
Sep 01, 2013

Conditional branch.

[Syntax]

- jcnd disp22

The following can be specified for disp22:

- Absolute expression having a value of up to 22 bits

- Relative expression having a PC offset reference of label

[Function]

Compares the flag condition indicated by string cnd (see "Table 4-36. jcnd Instruction List") with the current flag condi-

tion. If they are found to be the same, transfers control to the address obtained by adding the value of the absolute

expression or relative expression specified by the operand to the current value of the program counter (PC)Note.

Note For a jcnd instruction other than jbr, the mnemonic "bcnd" can be used, and the "br" machine-language instruc-

tion can be used for the jbr instruction (there is no functional difference).

Table 4-36. jcnd Instruction List

jcnd

Instruction Flag Condition Meaning of Flag Condition

jgt ((S xor OV) or Z) = 0 Greater than (signed)

jge (S xor OV) = 0 Greater than or equal (signed)

jlt (S xor OV) = 1 Less than (signed)

jle ((S xor OV) or Z) = 1 Less than or equal (signed)

jh (CY or Z) = 0 Higher (Greater than)

jnl CY = 0 Not lower (Greater than or equal)

jl CY = 1 Lower (Less than)

jnh (CY or Z) = 1 Not higher (Less than or equal)

je Z = 1 Equal

jne Z = 0 Not equal

jv OV = 1 Overflow

jnv OV = 0 No overflow

jn S = 1 Negative

jp S = 0 Positive

jc CY = 1 Carry

jnc CY = 0 No carry

jz Z = 1 Zero

jnz Z = 0 Not zero

jbr --- Always (Unconditional)

jsa SAT = 1 Saturated

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 355 of 751
Sep 01, 2013

[Description]

- If the following is specified for disp22, the assembler generates one bcond machine instructionNote.

(a) Absolute expression having a value in the range of -256 to +255

(b) Absolute expression having a PC offset reference for a label with a definition in the same section and

the same file as this instruction and having a value in the range of -256 to +255

Note The bcnd machine instruction takes an immediate value in the range of -256 to +255 (0xFFFFFF00 to 0xFF)

as the displacement.

- If the following is specified as disp22, the assembler executes instruction expansion and generates two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -256 to +255 but within the range of -

2,097,150 to +2,097,153Note 1

(b) Relative expression having a PC offset reference of label with a definition in the same section of the

same file as this instruction and having a value exceeding the range of -256 to +255 but within the

range of -2,097,150 to +2,097,153

(c) Relative expression having a PC offset reference of label without a definition in the same file or section

as this instruction

Notes 1. The range of -2,097,150 to +2,097,153 applies to instructions other than jbr and jsa. The range for

the jbr instruction is from -2,097,152 to +2,097,151, and that for the jsa instruction is from -

2,097,148 to +2,097,155.

2. bncnd denotes an instruction that effects control branches under opposite conditions, for example,

bnz for bz or ble for bgt.

jcnd disp9 bcnd disp9

jbr disp22 jr disp22

jsa disp22 bsa Label1

 br Label2

Label1:

 jr disp22 - 4

Label2:

jcnd disp22 bncnd LabelNote 2

 jr disp22 - 2

Label:

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 356 of 751
Sep 01, 2013

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of -2,097,150 to +2,097,153, or a relative expression

having a PC offset reference of a label with a definition in the same section and the same file as this instruction,

and having a value exceeding the range of -2,097,150 to +2,097,153, is specified as disp22, the assembler out-

puts the following message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of

a label with a definition in the same section and the same file as this instruction, and having an odd-numbered

value, is specified as disp22, the assembler outputs the following message and stops assembling.

- If you wish to use a jcnd instruction with 17-bit absolute expression as disp22, use the jcnd17 instruction instead.

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230 : illegal operand (range error in displacement)

E0550226 : illegal operand (must be even displacement)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 357 of 751
Sep 01, 2013

Conditional branch.

[Syntax]

- jcnd9 disp9

The following can be specified for disp9:

- Absolute expression having a value of up to 17 bits

- Relative expression having a PC offset reference of label

[Function]

Compares the flag condition indicated by string cnd (see "Table 4-37. jcnd9 Instruction List") with the current flag con-

dition. If they are found to be the same, transfers control to the address obtained by adding the value of the absolute

expression or relative expression specified by the operand to the current value of the program counter (PC)Note.

Note For a jcnd instruction other than jbr, the mnemonic "bcnd" can be used, and the "br" machine-language instruc-

tion can be used for the jbr instruction (there is no functional difference).

Table 4-37. jcnd9 Instruction List

jcnd9

Instruction Flag Condition Meaning of Flag Condition

jgt ((S xor OV) or Z) = 0 Greater than (signed)

jge (S xor OV) = 0 Greater than or equal (signed)

jlt (S xor OV) = 1 Less than (signed)

jle ((S xor OV) or Z) = 1 Less than or equal (signed)

jh (CY or Z) = 0 Higher (Greater than)

jnl CY = 0 Not lower (Greater than or equal)

jl CY = 1 Lower (Less than)

jnh (CY or Z) = 1 Not higher (Less than or equal)

je Z = 1 Equal

jne Z = 0 Not equal

jv OV = 1 Overflow

jnv OV = 0 No overflow

jn S = 1 Negative

jp S = 0 Positive

jc CY = 1 Carry

jnc CY = 0 No carry

jz Z = 1 Zero

jnz Z = 0 Not zero

jbr --- Always (Unconditional)

jsa SAT = 1 Saturated

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 358 of 751
Sep 01, 2013

[Description]

- If the following is specified for disp9, the assembler generates one bcond machine instruction.

(a) Absolute expression having a value in the range of -256 to +255

(b) Absolute expression having a PC offset reference for a label with a definition in the same section and

the same file as this instruction and having a value in the range of -256 to +255

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of -256 to +255, or a relative expression having a PC

offset reference of a label with a definition in the same section and the same file as this instruction, and having a

value exceeding the range of -256 to +255, is specified as disp9, the assembler outputs the following message and

stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of

a label with a definition in the same section and the same file as this instruction, and having an odd-numbered

value, is specified as disp9, the assembler outputs the following message and stops assembling.

jcnd disp9 bcnd disp9

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230 : illegal operand (range error in displacement)

E0550226 : illegal operand (must be even displacement)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 359 of 751
Sep 01, 2013

Conditional branch.

[Syntax]

- jcnd17 disp17

The following can be specified for disp17:

- Absolute expression having a value of up to 9 bits

- Relative expression having a PC offset reference of label

[Function]

Compares the flag condition indicated by string cnd (see "Table 4-38. jcnd17 Instruction List") with the current flag

condition. If they are found to be the same, transfers control to the address obtained by adding the value of the absolute

expression or relative expression specified by the operand to the current value of the program counter (PC)Note.

Note For a jcnd instruction other than jbr, the mnemonic "bcnd" can be used, and the "br" machine-language instruc-

tion can be used for the jbr instruction (there is no functional difference).

Table 4-38. jcnd17 Instruction List

jcnd17

Instruction Flag Condition Meaning of Flag Condition

jgt ((S xor OV) or Z) = 0 Greater than (signed)

jge (S xor OV) = 0 Greater than or equal (signed)

jlt (S xor OV) = 1 Less than (signed)

jle ((S xor OV) or Z) = 1 Less than or equal (signed)

jh (CY or Z) = 0 Higher (Greater than)

jnl CY = 0 Not lower (Greater than or equal)

jl CY = 1 Lower (Less than)

jnh (CY or Z) = 1 Not higher (Less than or equal)

je Z = 1 Equal

jne Z = 0 Not equal

jv OV = 1 Overflow

jnv OV = 0 No overflow

jn S = 1 Negative

jp S = 0 Positive

jc CY = 1 Carry

jnc CY = 0 No carry

jz Z = 1 Zero

jnz Z = 0 Not zero

jbr --- Always (Unconditional)

jsa SAT = 1 Saturated

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 360 of 751
Sep 01, 2013

[Description]

- If the following is specified for disp17, the assembler generates one bcond machine instruction.

(a) Absolute expression having a value in the range of -65,536 to +65,535

(b) Absolute expression having a PC offset reference for a label with a definition in the same section and

the same file as this instruction and having a value in the range of -65,536 to +65,535

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of -65,536 to +65,536, or a relative expression hav-

ing a PC offset reference of a label with a definition in the same section and the same file as this instruction, and

having a value exceeding the range of -65,536 to +65,535, is specified as disp17, the assembler outputs the fol-

lowing message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of

a label with a definition in the same section and the same file as this instruction, and having an odd-numbered

value, is specified as disp17, the assembler outputs the following message and stops assembling.

jcnd disp17 bcnd disp17

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230 : illegal operand (range error in displacement)

E0550226 : illegal operand (must be even displacement)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 361 of 751
Sep 01, 2013

Jump and register link.

[Syntax]

- jarl disp22, reg2

- jarl disp32, reg2

- jarl [reg1], reg3

The following can be specified for disp22:

- Absolute expression having a value of up to 22 bits

- Relative expression having a PC offset reference of label

The following can be specified for disp32:

- Absolute expression having a value of up to 32 bits

- Relative expression having a PC offset reference of label

[Function]

- Syntax "jarl disp22, reg2"

Transfers control to the address attained by adding the current program counter (PC) value and the relative or

absolute expression value specified by the first operand. The return address is stored in the register specified by

the second operand.

- Syntax "jarl disp32, reg2"

Transfers control to the address attained by adding the current program counter (PC) value and the relative or

absolute expression value specified by the first operand. The return address is stored in the register specified by

the second operand.

- Syntax "jarl [reg1], reg3"

This moves control to the address indicated by the register value specified in the first operand, plus the value of the

current program counter (PC). The return address is stored in the register specified in the second operand.

[Description]

- If the instruction is executed in syntax "jarl disp22, reg2", the assembler generates one jarl machine instructionNote

if any of the following expressions are specified for disp22.

(a) Absolute value in the range of -2,097,152 to +2,097,151

(b) Relative expression that has a PC offset reference of label having a definition in the same section and

the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or sec-

tion as this instruction

Note The jarl machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xFE00000

to 0x1FFFFF) as the operand.

- If the instruction is executed in syntax "jarl disp32, reg2", the assembler generates one jarl machine instruction (6-

byte long instruction).

- If the instruction is executed in syntax "jarl [reg1], reg3", the assembler generates one jarl machine instruction.

jarl

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 362 of 751
Sep 01, 2013

[Flag]

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression having a PC

offset reference of label with a definition in the same section and the same file as this instruction and having a

value that falls outside the range of -2,097,152 to +2,097,151 is specified as disp22, the assembler outputs the fol-

lowing message and stops assembling.

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of

a label with a definition in the same section and the same file as this instruction and having an odd-numbered

value, is specified as disp22/disp32, the assembler outputs the following message and stops assembling.

- When the -Xfar_jump assembler option is not specified, and an absolute expression outside of the range -

2,097,152 to +2,097,151 or a relative expression outside of the range -2,097,152 to +2,097,151, having a label PC

offset reference with a definition in the same file and same section as this instruction, is specified as disp32, the

following message is output and assembly is stopped.

- If r0 is specified as reg3, the assembler outputs the following message and stops assembling.

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230 : illegal operand (range error in displacement)

E0550226 : illegal operand (must be even displacement)

E0550230 : illegal operand (range error in displacement)

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 363 of 751
Sep 01, 2013

Jump and register link.

[Syntax]

- jarl22 disp22, reg1

The following can be specified for disp22:

- Absolute expression having a value of up to 22 bits

- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or absolute

expression value specified by the first operand. The return address is stored in the register specified by the second oper-

and.

[Description]

- If the following is specified for disp22, the assembler generates one jarl machine instructionNote.

(a) Absolute value in the range of -2,097,152 to +2,097,15

(b) Relative expression that has a PC offset reference of label having a definition in the same section and

the same file as this instruction, and which has a value in the range of -2,097,152 to +2,097,151

(c) Relative expression having a PC offset reference of a label having no definition in the same file or sec-

tion as this instruction

Note The jarl machine instruction takes an immediate value in the range of -2,097,152 to +2,097,151 (0xFE00000

to 0x1FFFFF) as the operand.

[Flag]

[Caution]

- If an absolute expression that exceeds the range of -2,097,152 to +2,097,151, or a relative expression having a PC

offset reference of label with a definition in the same section and the same file as this instruction and having a

value that falls outside the range of -2,097,152 to +2,097,151 is specified as disp22, the assembler outputs the fol-

lowing message and stops assembling.

jarl22

CY ---

OV ---

S ---

Z ---

SAT ---

E0550230 : illegal operand (range error in displacement)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 364 of 751
Sep 01, 2013

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of

a label with a definition in the same section and the same file as this instruction and having an odd-numbered

value, is specified as disp22, the assembler outputs the following message and stops assembling.

E0550226 : illegal operand (must be even displacement)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 365 of 751
Sep 01, 2013

Jump and register link.

[Syntax]

- jarl32 disp32, reg2

The following can be specified for disp32:

- Absolute expression having a value of up to 32 bits

- Relative expression having a PC offset reference of label

[Function]

Transfers control to the address attained by adding the current program counter (PC) value and the relative or absolute

expression value specified by the first operand. The return address is stored in the register specified by the second oper-

and.

[Description]

The assembler generates one jarl machine instruction (6-byte long instruction).

[Flag]

[Caution]

- If an absolute expression having an odd-numbered value, or a relative expression having a PC offset reference of

a label with a definition in the same section and the same file as this instruction, and having an odd-numbered

value, is specified as disp32, the assembler outputs the following message and stops assembling.

jarl32

CY ---

OV ---

S ---

Z ---

SAT ---

E0550226 : illegal operand (must be even displacement)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 366 of 751
Sep 01, 2013

4.8.6 Bit manipulation instructions

This section describes the bit manipulation instructions. Next table lists the instructions described in this section.

See the RH850 product user's manual and architecture edition for details.

Table 4-39. Bit Manipulation Instructions

Instruction Meanings

set1 Sets bit

clr1 Clears bit

not1 Inverts bit

tst1 Tests bit

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 367 of 751
Sep 01, 2013

Set s bit.

[Syntax]

- set1 bit#3, disp[reg1]

- set1 reg2, [reg1]

The following can be specified for disp:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

Caution The disp cannot be specified in syntax "set1 reg2, [reg1]".

[Function]

- Syntax "set1 bit#3, disp[reg1]"

Sets the bit specified by the first operand of the data indicated by the address specified by the second operand.

The bits other than the one specified are not affected.

- Syntax "set1 reg2, [reg1]"

Sets the bit specified by the register value specified by the first operand of the data indicated by the address spec-

ified by the register value of the second operand. The bits other than the one specified are not affected.

[Description]

- If the following is specified for disp, the assembler generates one set1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

set1

set1 bit#3, disp16[reg1] set1 bit#3, disp16[reg1]

set1 bit#3, $label[reg1] set1 bit#3, $label[reg1]

set1 bit#3, !label[reg1] set1 bit#3, !label[reg1]

set1 bit#3, %label[reg1] set1 bit#3, %label[reg1]

set1 bit#3, HIGHW(value)[reg1] set1 bit#3, HIGHW(value)[reg1]

set1 bit#3, LOWW(value)[reg1] set1 bit#3, LOWW(value)[reg1]

set1 bit#3, HIGHW1(value)[reg1] set1 bit#3, HIGHW1(value)[reg1]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 368 of 751
Sep 01, 2013

Note The set1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to

0x7FFF) as the displacement.

- If any of the following is specified as disp, the assembler executes instruction expansion to generate two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.

- If a relative expression with #label, or a relative expression with #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.

- If a relative expression with $label, or a relative expression with $label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those after the

execution.

set1 bit#3, disp[reg1] movhi HIGHW1(disp), reg1, r1

set1 bit#3, LOWW(disp)[r1]

set1 bit#3, #label[reg1] movhi HIGHW1(#label), reg1, r1

set1 bit#3, LOWW(#label)[r1]

set1 bit#3, label[reg1] movhi HIGHW1(label), reg1, r1

set1 bit#3, LOWW(label)[r1]

set1 bit#3, $label[reg1] movhi HIGHW1($label), reg1, r1

set1 bit#3, LOWW($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 369 of 751
Sep 01, 2013

Clears bit.

[Syntax]

- clr1 bit#3, disp[reg1]

- clr1 reg2, [reg1]

The following can be specified for disp:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

Caution The disp cannot be specified in syntax "clr1 reg2, [reg1]".

[Function]

- Syntax "clr1 bit#3, disp[reg1]"

Clears the bit specified by the first operand of the data indicated by the address specified by the second operand.

The bits other than the one specified are not affected.

- Syntax "clr1 reg2, [reg1]"

Clears the bit specified by the register value specified by the first operand of the data indicated by the address

specified by the register value of the second operand. The bits other than the one specified are not affected.

[Description]

- If the following is specified as disp, the assembler generates one clr1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

clr1

clr1 bit#3, disp16[reg1] clr1 bit#3, disp16[reg1]

clr1 bit#3, $label[reg1] clr1 bit#3, $label[reg1]

clr1 bit#3, !label[reg1] clr1 bit#3, !label[reg1]

clr1 bit#3, %label[reg1] clr1 bit#3, %label[reg1]

clr1 bit#3, HIGHW(value)[reg1] clr1 bit#3, HIGHW(value)[reg1]

clr1 bit#3, LOWW(value)[reg1] clr1 bit#3, LOWW(value)[reg1]

clr1 bit#3, HIGHW1(value)[reg1] clr1 bit#3, HIGHW1(value)[reg1]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 370 of 751
Sep 01, 2013

Note The clr1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to

0x7FFF) as the displacement.

- If any of the following is specified as disp, the assembler executes instruction expansion to generate two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.

- If a relative expression with #label or a relative expression with #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] that follows the expression can be omitted. If omitted, the assembler assumes

[r0] to be specified.

- If a relative expression with $label, or a relative expression with $label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those after the

execution.

clr1 bit#3, disp[reg1] movhi HIGHW1(disp), reg1, r1

clr1 bit#3, LOWW(disp)[r1]

clr1 bit#3, #label[reg1] movhi HIGHW1(#label), reg1, r1

clr1 bit#3, LOWW(#label)[r1]

clr1 bit#3, label[reg1] movhi HIGHW1(label), reg1, r1

clr1 bit#3, LOWW(label)[r1]

clr1 bit#3, $label[reg1] movhi HIGHW1($label), reg1, r1

clr1 bit#3, LOWW($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 371 of 751
Sep 01, 2013

Inverts bit.

[Syntax]

- not1 bit#3, disp[reg1]

- not1 reg2, [reg1]

The following can be specified for disp:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

Caution The disp cannot be specified in syntax "not1 reg2, [reg1]".

[Function]

- Syntax "not1 bit#3, disp[reg1]"

Inverts the bit specified by the first operand (0 to 1 or 1 to 0) of the data indicated by the address specified by the

second operand. The bits other than the one specified are not affected.

- Syntax "not1 reg2, [reg1]"

Inverts the bit specified by the register value specified by the first operand (0 to 1 or 1 to 0) of the data indicated by

the address specified by the register value of the second operand. The bits other than the one specified are not

affected.

[Description]

- If the following is specified for disp, the assembler generates one not1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

(d) Expression with HIGHW, LOWW, or HIGHW1

not1

not1 bit#3, disp16[reg1] not1 bit#3, disp16[reg1]

not1 bit#3, $label[reg1] not1 bit#3, $label[reg1]

not1 bit#3, !label[reg1] not1 bit#3, !label[reg1]

not1 bit#3, %label[reg1] not1 bit#3, %label[reg1]

not1 bit#3, HIGHW(value)[reg1] not1 bit#3, HIGHW(value)[reg1]

not1 bit#3, LOWW(value)[reg1] not1 bit#3, LOWW(value)[reg1]

not1 bit#3, HIGHW1(value)[reg1] not1 bit#3, HIGHW1(value)[reg1]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 372 of 751
Sep 01, 2013

Note The not1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to

0x7FFF) as the displacement.

- If any of the following is specified as disp, the assembler executes instruction expansion to generate two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.

- If a relative expression with #label, or a relative expression with #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.

- If a relative expression with $label, or a relative expression with $label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.

[Flag]

Note The flag values shown here are those existing prior to the execution of this instruction, not those after the

execution.

not1 bit#3, disp[reg1] movhi HIGHW1(disp), reg1, r1

not1 bit#3, LOWW(disp)[r1]

not1 bit#3, #label[reg1] movhi HIGHW1(#label), reg1, r1

not1 bit#3, LOWW(#label)[r1]

not1 bit#3, label[reg1] movhi HIGHW1(label), reg1, r1

not1 bit#3, LOWW(label)[r1]

not1 bit#3, $label[reg1] movhi HIGHW1($label), reg1, r1

not1 bit#3, LOWW($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if notNote

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 373 of 751
Sep 01, 2013

Tests bit.

[Syntax]

- tst1 bit#3, disp[reg1]

- tst1 reg2, [reg1]

The following can be specified for disp:

- Absolute expression having a value of up to 32 bits

- Relative expression

- Either of the above expressions with HIGHW, LOWW, or HIGHW1 applied

Caution The disp cannot be specified in syntax "tst1 reg2, [reg1]".

[Function]

- Syntax "tst1 bit#3, disp[reg1]"

Sets only a flag according to the value of the bit specified by the first operand of the data indicated by the address

specified by the second operand. The value of the second operand and the specified bit are not changed.

- Syntax "tst1 reg2, [reg1]"

Sets only a flag according to the value of the bit of the register value specified by the first operand of the data indi-

cated by the address specified by the second operand. The value of the second operand and the specified bit are

not changed.

[Description]

- If the following is specified for disp, the assembler generates one tst1 machine instructionNote.

(a) Absolute expression having a value in the range of -32,768 to +32,767

(b) Relative expression having $label for a label having a definition in the sdata/sbss-attribute section

(c) Relative expression having !label or %label

tst1

tst1 bit#3, disp16[reg1] tst1 bit#3, disp16[reg1]

tst1 bit#3, $label[reg1] tst1 bit#3, $label[reg1]

tst1 bit#3, !label[reg1] tst1 bit#3, !label[reg1]

tst1 bit#3, %label[reg1] tst1 bit#3, %label[reg1]

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 374 of 751
Sep 01, 2013

(d) Expression with HIGHW, LOWW, or HIGHW1

Note The tst1 machine instruction takes an immediate value in the range of -32,768 to +32,767 (0xFFFF8000 to

0x7FFF) as the displacement.

- If any of the following is specified as disp, the assembler executes instruction expansion to generate two or more

machine instructions.

(a) Absolute expression having a value exceeding the range of -32,768 to +32,767

(b) Relative expression having #label or label, or that having $label for a label having no definition in the

sdata/sbss-attribute section

- If disp is omitted, the assembler assumes 0.

- If a relative expression with #label, or a relative expression with #label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [r0] is specified.

- If a relative expression with $label, or a relative expression with $label and with HIGHW, LOWW, or HIGHW1

applied is specified as disp, [reg1] can be omitted. If omitted, the assembler assumes that [gp] is specified.

[Flag]

tst1 bit#3, HIGHW(value)[reg1] tst1 bit#3, HIGHW(value)[reg1]

tst1 bit#3, LOWW(value)[reg1] tst1 bit#3, LOWW(value)[reg1]

tst1 bit#3, HIGHW1(value)[reg1] tst1 bit#3, HIGHW1(value)[reg1]

tst1 bit#3, disp[reg1] movhi HIGHW1(disp), reg1, r1

tst1 bit#3, LOWW(disp)[r1]

tst1 bit#3, #label[reg1] movhi HIGHW1(#label), reg1, r1

tst1 bit#3, LOWW(#label)[r1]

tst1 bit#3, label[reg1] movhi HIGHW1(label), reg1, r1

tst1 bit#3, LOWW(label)[r1]

tst1 bit#3, $label[reg1] movhi HIGHW1($label), reg1, r1

tst1 bit#3, LOWW($label)[r1]

CY ---

OV ---

S ---

Z 1 if the specified bit is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 375 of 751
Sep 01, 2013

4.8.7 Stack manipulation instructions

This section describes the stack manipulation instructions. Next table lists the instructions described in this section.

See the RH850 product user's manual and architecture edition for details.

Table 4-40. Stack Manipulation Instructions

Instruction Meanings

push Pushes to stack area (single register)

pushm Pushes to stack area (multiple registers)

pop Pops from stack area (single register)

popm Pops from stack area (multiple registers)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 376 of 751
Sep 01, 2013

Pushes to stack area (single register).

[Syntax]

push reg

[Function]

Pushes the value of the register specified by the operand to the stack area.

[Description]

- When the push instruction is executed, the assembler executes instruction expansion to generate two or more

machine instructions.

[Flag]

Caution Instruction expansion is performed, and set via an add instruction.

push

push reg add -4, sp

st.w reg, [sp]

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 377 of 751
Sep 01, 2013

Pushes to stack area (multiple registers).

[Syntax]

pushm reg1, reg2, ..., regN

[Function]

Pushes the values of the registers specified by the operand to the stack area. Up to 32 registers can be specified by

the operand.

[Description]

- When the pushm instruction is executed, the assembler executes instruction expansion to generate two or more

machine instructions.

- When there are four or fewer registers.

- When there are five or more registers.

[Flag]

Caution Instruction expansion is performed, and set via an add/addi instruction.

pushm

pushm reg1, reg2, ..., regN add -4 * N, sp

st.w regN, 4 * (N - 1)[sp]

 :

st.w reg2, 4 * 1[sp]

st.w reg1, 4 * 0[sp]

pushm reg1, reg2, ..., regN addi -4 * N, sp, sp

st.w regN, 4 * (N - 1)[sp]

 :

st.w reg2, 4 * 1[sp]

st.w reg1, 4 * 0[sp]

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 378 of 751
Sep 01, 2013

Pops from stack area (single register).

[Syntax]

pop reg

[Function]

Pops the value of the register specified by the operand from the stack area.

[Description]

- When the pop instruction is executed, the assembler executes instruction expansion to generate two or more

machine instructions.

[Flag]

Caution Instruction expansion is performed, and set via an add instruction.

pop

pop reg ld.w [sp], reg

add 4, sp

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 379 of 751
Sep 01, 2013

Pops from stack area (multiple registers).

[Syntax]

popm reg1, reg2, ..., regN

[Function]

Pops the values of the registers specified by the operand from the stack area in the sequence in which the registers are

specified. Up to 32 registers can be specified by the operand.

[Description]

- When the popm instruction is executed, the assembler executes instruction expansion to generate two or more

machine instructions.

- When there are three or fewer registers.

- When there are four or more registers.

[Flag]

Caution Instruction expansion is performed, and set via an add/addi instruction.

popm

popm reg1, reg2, ..., regN ld.w 4 * 0[sp], reg1

ld.w 4 * 1[sp], reg2

 :

ld.w 4 * (N - 1)[sp], regN

add 4 * N, sp

popm reg1, reg2, ..., regN ld.w 4 * 0[sp], reg1

ld.w 4 * 1[sp], reg2

 :

ld.w 4 * (N - 1)[sp], regN

addi 4 * N, sp, sp

CY 1 if a carry occurs from MSB (Most Significant Bit), 0 if not

OV 1 if Integer-Overflow occurs, 0 if not

S 1 if the result is negative, 0 if not

Z 1 if the result is 0, 0 if not

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 380 of 751
Sep 01, 2013

4.8.8 Special instructions

This section describes the special instructions.

See the RH850 product user's manual and architecture edition for details.

Table 4-41. Special Instructions

Instruction Meanings

ldsr Loads to system register

stsr Stores contents of system register

ldl.w Load to start atomic word data manipulation

stc.w Conditional storage when atomic word data manipulation is complete

cll Link for atomic manipulation is canceled

di Disables maskable interrupt

ei Enables maskable interrupt

reti Returns from trap or interrupt routine

eiret Returns from EI level exception

feret Returns from FE level exception

halt Stops the processor

trap Software trap

fetrap FE level software exception

nop No operation

switch Table reference branch

callt Table reference call

ctret Returns from callt

caxi Comparison and swap

rie Reserved instruction exception

syncm Memory synchronize instruction

syncp Pipeline synchronize instruction

synce Exception synchronization instruction

synci Instruction pipeline synchronization instruction

prepare Generates stack frame (preprocessing of function)

dispose Deletes stack frame (post processing of function)

syscall System call exception

pushsp Push from the stack

popsp Pop from the stack

snooze Snooze

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 381 of 751
Sep 01, 2013

Loads to system register.

[Syntax]

- ldsr reg, regID

- ldsr reg, regID, selID

The following can be specified as regID and selID:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "ldsr reg, regID"

Stores the value of the register specified by the first operand in the system registerNote indicated by the system

register number specified by the second operand.

- Syntax "ldsr reg, regID, selID"

Stores the register value specified in the first operand into the system registerNote indicated by the system-register

number specified in the second operand, and the group number specified in the third operand.

If selID is omitted, it is assumed that selID=0 was specified.

Note For details of the system registers, see the Relevant Device's Hardware User's Manual provided with the each

device.

[Flag]

Caution If the program status word (PSW) is specified as the system register, the value of the corresponding

bit of reg is set as each flag.

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as regID, the assembler out-

puts the following message, then continues assembling using the lower 5 bitsNote of the specified value.

Note The ldsr machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1F) as the second

operand.

ldsr

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011 : illegal operand (range error in immediate)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 382 of 751
Sep 01, 2013

- If a reserved register number, the number of a register which cannot be accessed (such as ECR) or the number of

a register which can be accessed only in the debug mode is specified as regID, the assembler outputs the follow-

ing message and continues assembling as is.

W0550018 : illegal regID for ldsr

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 383 of 751
Sep 01, 2013

Stores contents of system register.

[Syntax]

- stsr regID, reg

- stsr regID, reg, selID

The following can be specified as regID and selID:

- Absolute expression having a value of up to 5 bits

[Function]

- Syntax "stsr regID, reg"

Stores the value of the system registerNote indicated by the system register number specified by the first operand,

to the register specified by the second operand.

- Syntax "stsr regID, reg, selID"

Stores the value of the system registerNote indicated by the system-register number specified in the first operand

and the group number specified in the third operand into the register specified in the second operand.

If selID is omitted, it is assumed that selID=0 was specified.

Note For details of the system registers, see the Relevant Device's Hardware User's Manual provided with the each

device.

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 31 is specified as regID and selID, the

assembler outputs the following message, then continues assembling using the lower 5 bitsNote of the specified

value.

Note The stsr machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1F) as the first oper-

and.

stsr

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011 : illegal operand (range error in immediate)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 384 of 751
Sep 01, 2013

- If a reserved register number or the number of a register which can be accessed only in the debug mode is speci-

fied as regID, the assembler outputs the following message and continues assembling as is.

W0550018 : illegal regID for ldsr

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 385 of 751
Sep 01, 2013

Load to start atomic word data manipulation (Load Linked)

[Syntax]

- ldl.w [reg1], reg2

[Function]

In order to perform an atomic read-modify-write operation, word data is read from the memory and stored in general-

purpose register reg2. A link is then generated corresponding to the address range that includes the specified address.

Subsequently, if a specific condition is satisfied before an stc.w instruction is executed for this ldl.w instruction, the link

will be deleted. If an stc.w instruction is executed after the link has been deleted, stc.w execution will fail.

If an stc.w instruction is executed while the link is still available, stc.w execution will succeed. The link is also deleted in

this case.

The ldl.w and stc.w instructions can be used to accurately update the memory in a multi-core system.

Remark Use the ldl.w and stc.w instructions instead of the caxi instruction if an atomic guarantee is required when

updating the memory in a multi-core system.

[Description]

- The assembler generates one ldl.w machine instruction.

[Flag]

ldl.w

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 386 of 751
Sep 01, 2013

Conditional storage when atomic word data manipulation is complete (Store Conditional)

[Syntax]

- stc.w reg2, [reg1]

[Function]

This instruction can only be executed successfully if a link exists that corresponds to the specified address. If a corre-

sponding link exists, the word data of general-purpose register reg2 is stored in the memory and an atomic read-modify-

write is executed.

If the corresponding link has been lost, the data is not stored in the memory and execution of this instruction fails.

Whether execution of the stc.w instruction has succeeded or not can be ascertained by checking the contents of gen-

eral-purpose register reg2 after the instruction has been executed.

If execution of the stc.w instruction was successful, general-purpose register reg3 will be set (1). If execution failed,

reg2 will be cleared (0).

This instruction can be used together with the ldl.w instruction to ensure accurate updating of the memory in a multi-

core system.

Remark Use the ldl.w and stc.w instructions instead of the caxi instruction if an atomic guarantee is required when

updating the memory in a multi-core system.

[Description]

- The assembler generates one stc.w machine instruction.

[Flag]

stc.w

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 387 of 751
Sep 01, 2013

Link for atomic manipulation is canceled.

[Syntax]

- cll

[Function]

This instruction explicitly eliminates the link generated by the ldl.w instruction.

[Flag]

cll

CY ---

OV ---

S ---

Z ---

SAT ---

ID ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 388 of 751
Sep 01, 2013

Disables maskable interrupt.

[Syntax]

- di

[Function]

Sets the ID bit of the PSW to 1 and disables acknowledgement of maskable interrupts since this instruction has already

been executed.

[Flag]

di

CY ---

OV ---

S ---

Z ---

SAT ---

ID 1

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 389 of 751
Sep 01, 2013

Enables maskable interrupt.

[Syntax]

- ei

[Function]

Sets the ID bit of the PSW to 0, and enables acknowledgment of maskable interrupt from the next instruction.

[Flag]

ei

CY ---

OV ---

S ---

Z ---

SAT ---

ID 0

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 390 of 751
Sep 01, 2013

Returns from trap or interrupt routine.

[Syntax]

- reti

[Function]

Returns from a trap or interrupt routineNote.

Note For details of the function, see the Relevant Device's Architecture User's Manual of each devic

[Flag]

reti

CY Extracted value

OV Extracted value

S Extracted value

Z Extracted value

SAT Extracted value

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 391 of 751
Sep 01, 2013

Returns from EI level exception (Return from Trap or Interrupt)

[Syntax]

- eiret

[Function]

Returns execution from an EI level exception. The return PC and PSW are loaded from the EIPC and EIPSW registers

and set in the PC and PSW, and control is passed.

If EP = 0, it means that interrupt (EIINTn) processing has finished, so the corresponding bit of the ISPR register is

cleared.

[Description]

- The assembler generates one eiret machine instruction.

[Flag]

eiret

CY Value read from EIPSW is set

OV Value read from EIPSW is set

S Value read from EIPSW is set

Z Value read from EIPSW is set

SAT Value read from EIPSW is set

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 392 of 751
Sep 01, 2013

Returns from FE level exception (Return from Trap or Interrupt)

[Syntax]

- feret

[Function]

Returns execution from an FE level exception. The return PC and PSW are loaded from the FEPC and FEPSW regis-

ters and set in the PC and PSW, and control is passed.

[Description]

- The assembler generates one feret machine instruction.

[Flag]

feret

CY Value read from FEPSW is set

OV Value read from FEPSW is set

S Value read from FEPSW is set

Z Value read from FEPSW is set

SAT Value read from FEPSW is set

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 393 of 751
Sep 01, 2013

Stops the processor.

[Syntax]

- halt

[Function]

Stops the processor and sets it in the HALT status. The HALT status can be released by a maskable interrupt, NMI, or

reset.

[Flag]

halt

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 394 of 751
Sep 01, 2013

Software trap.

[Syntax]

- trap vector

The following can be specified for vector:

- Absolute expression having a value of up to 5 bits

[Function]

Causes a software trapNote.

Note For details of the function, see the Relevant Device's Architecture User's Manual of each device.

[Flag]

[Caution]

- If an absolute expression having a value falling outside the range of 0 to 31 is specified as vector, the assembler

outputs the following message, continuing assembling using the lower 5 bitsNote of the specified value.

Note The trap machine instruction takes an immediate value in the range of 0 to 31 (0x0 to 0x1F) as an operand.

trap

CY ---

OV ---

S ---

Z ---

SAT ---

W0550011 : illegal operand (range error in immediate)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 395 of 751
Sep 01, 2013

FE level software exception (FE-level Trap)

[Syntax]

- fetrap

[Function]

Saves the contents of the return PC (address of the instruction next to the FETRAP instruction) and the current con-

tents of the PSW to FEPC and FEPSW, respectively, stores the exception cause code in the FEIC register, and updates

the PSW according to the exception causes. Execution then branches to the exception handler address and exception

handling is started.

Table 4-42. Correspondence between vector4 and Exception Cause Codes and Exception Handler Address Offset

shows the correspondence between vector4 and exception cause codes and exception handler address offset. Exception

handler addresses are calculated based on the offset addresses listed in Table 4-42. Correspondence between vector4

and Exception Cause Codes and Exception Handler Address Offset.

Table 4-42. Correspondence between vector4 and Exception Cause Codes and Exception Handler Address
Offset

[Description]

- The assembler generates one fetrap machine instruction.

[Flag]

fetrap

vector4 Exception Cause Code Offset Address

0H Not specifiable

1H 00000031H 30H

2H 00000032H

(Omission)

FH 0000003FH

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 396 of 751
Sep 01, 2013

No operation.

[Syntax]

- nop

[Function]

Nothing is executed. This instruction can be used to allocate an area during an instruction sequence or to insert a

delay cycle during instruction execution.

[Flag]

nop

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 397 of 751
Sep 01, 2013

Table reference branch.

[Syntax]

switch reg

[Function]

Performs processing in the following sequence.

(1) Adds the value resulting from logically shifting the value specified by the operand 1 bit to the left to the

first address of the table (address following the switch instruction) to generate a table entry address.

(2) Loads signed halfword data from the generated table entry address.

(3) Logically shifts the loaded value 1 bit to the left and sign-extends it to word length. Then adds the first

address of the table to it to generate an address

(4) Branches to the generated address.

[Flag]

[Caution]

- If r0 is specified by reg, the assembler outputs the following message and stops assembling.

switch

CY ---

OV ---

S ---

Z ---

SAT ---

E0550239 : Illegal operand (cannot use r0 as source in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 398 of 751
Sep 01, 2013

Table reference call.

[Syntax]

- callt imm6

The following can be specified as imm6:

- Absolute expression having a value of up to 6 bits

[Function]

Performs processing in the following sequenceNote

(1) Saves the values of the return PC and PSW to CTPC and CTPSW.

(2) Generates a table entry address by shifting the value specified by the operand 1 bit to the left as an offset

value from CTBP(CALLT Base Pointer) and by adding it to the CTBP value.

(3) Loads unsigned halfword data from the generated table entry address.

(4) Adds the loaded value to the CTBP value to generate an address.

(5) Branches to the generated address.

Note For details of the system registers, see the Relevant Device's Architecture User's Manual of each device.

[Flag]

callt

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 399 of 751
Sep 01, 2013

Returns from callt.

[Syntax]

- ctret

[Function]

Returns from the processing by callt. Performs the processing in the following sequenceNote:

(1) Extracts the return PC and PSW from CTPC and CTPSW.

(2) Sets the extracted values in the PC and PSW and transfers control.

Note For details of the system registers, see the Relevant Device's Architecture User's Manual of each device.

[Flag]

ctret

CY Extracted value

OV Extracted value

S Extracted value

Z Extracted value

SAT Extracted value

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 400 of 751
Sep 01, 2013

Comparison and swap (Compare and Exchange for Interlock)

[Syntax]

- caxi [reg1], reg2, reg3

[Function]

Word data is read from the specified address and compared with the word data in general-purpose register reg2, and

the result is indicated by flags in the PSW. Comparison is performed by subtracting the read word data from the word

data in general-purpose register reg2. If the comparison result is "0", word data in general-purpose register reg3 is stored

in the generated address, otherwise the read word data is stored in the generated address.

 Afterward, the read word data is stored in general-purpose register reg3. General-purpose registers reg1 and reg2 are

not affected.

[Description]

- The assembler generates one caxi machine instruction.

[Flag]

caxi

CY "1" if a borrow occurs in the result operation; otherwise, "0"

OV "1" if overflow occurs in the result operation; otherwise, "0"

S "1" if result is negative; otherwise, "0"

Z "1" if result is 0; otherwise, "0"

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 401 of 751
Sep 01, 2013

Reserved Instruction exception (Reserved Instruction Exception)

[Syntax]

- rie

- rie imm5, imm4

The following can be specified as imm5:

- Absolute expression having a value of up to 5 bits

The following can be specified as imm4:

- Absolute expression having a value of up to 4 bits

[Function]

Saves the contents of the return PC (address of the RIE instruction) and the current contents of the PSW to FEPC and

FEPSW, respectively, stores the exception cause code in the FEIC register, and updates the PSW according to the

exception causes. Execution then branches to the exception handler address and exception handling is started.

Exception handler addresses are calculated based on the offset address 60H.

[Description]

- The assembler generates one rie machine instruction.

[Flag]

rie

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 402 of 751
Sep 01, 2013

Memory synchronize instruction (Synchronize Memory)

[Syntax]

- syncm

[Function]

Synchronizes the CPU execution pipeline and memory accesses.

"Synchronization" refers to the status where the result of preceding memory accesses can be referenced by any mas-

ter device within the system.

In cases such as when buffering is used to delay memory accesses and synchronization of all memory accesses has

not occurred, the SYNCM instruction does not complete and waits for the synchronization.

The subsequent instructions will not be executed until the SYNCM instruction execution is complete.

This instruction can be used to implement "synchronization primitives" in a multi-processing environment when the

function described above is provided by the system.

[Description]

- The assembler generates one syncm machine instruction.

[Flag]

syncm

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 403 of 751
Sep 01, 2013

Pipeline synchronize instruction (Synchronize Pipline)

[Syntax]

- syncp

[Function]

Waits until execution of all previous instructions is completed before being executed.

[Description]

- The assembler generates one syncp machine instruction.

[Flag]

syncp

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 404 of 751
Sep 01, 2013

Exception synchronization instruction (Synchronize Exceptions)

[Syntax]

- synce

[Function]

Waits for the synchronization of all preceding exceptions before starting execution.

It does not perform any operation but is completed when its execution is started.

"Exception synchronization" means that all exceptions that are generated by the preceding instructions are notified to

the CPU and are kept waiting until their priority is judged. If a condition of acknowledging exceptions is satisfied before

this instruction is executed, therefore, all imprecise exceptions (FPI exceptions) that are generated because of the pre-

ceding instructions are always acknowledged before execution of this instruction is completed.

This instruction can be used to guarantee completion of exception handling by the preceding task before a task is

changed or terminated in a multi-processing environment.

[Description]

- The assembler generates one synce machine instruction.

[Flag]

synce

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 405 of 751
Sep 01, 2013

Instruction pipeline synchronization instruction (Synchronize Instruction Pipeline)

[Syntax]

- synci

[Function]

Makes subsequent instructions wait until all the instructions ahead of this instruction have finished executing. The

instructions executed after the synci instruction are guaranteed to adapt to the effects produced by the execution of the

instructions preceding synci. This instruction can be used to realize "self-programming code" to overwrite instructions in

the memory.

Remark The synci instruction clears the CPU instruction fetch pipeline so that subsequently executed instructions

are re-fetched.

If the CPU includes an instruction cache, the instruction cache must be disabled to enable the realization of

this self-programming code.

[Description]

- The assembler generates one synci machine instruction.

[Flag]

synci

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 406 of 751
Sep 01, 2013

Generates stack frame (preprocessing of function).

[Syntax]

- prepare list, imm1

- prepare list, imm1, imm2

- prepare list, imm1, sp

The following can be specified as imm1/imm2:

- Absolute expression having a value of up to 32 bits

list specifies the 12 registers that can be pushed by the prepare instruction.The following can be specified as list.

- Register

Specify the registers (r20 to r31) to be pushed, delimiting each with a comma.

- Absolute expression having a value of up to 12 bits

The 12 bits and 12 registers correspond as follows:

The following two specifications are equivalent.

[Function]

The prepare instruction performs the preprocessing of a function.

- Syntax "prepare list, imm1"

(a) Pushes one of the registers specified by the first operand and subtracts 4 from the stack pointer (sp).

(b) Repeatedly performs (a) until all the registers specified by the first operand have been pushed.

(c) Subtracts the value of the absolute expression specified by the second operand from spNote and sets

sp in the register saving area.

- Syntax "prepare list, imm1, imm2"

(a) Pushes one of the registers specified by the first operand and subtracts 4 from sp.

(b) Repeatedly performs (a) until all the registers specified by the first operand have been pushed.

(c) Subtracts the value of the absolute expression specified by the second operand from spNote and sets

sp to the register saving area.

(d) Sets the value of the absolute expression specified by the third operand in ep.

prepare

prepare r26, r29, r31, 0x10 prepare 0x103, 0x10

bit 11 bit 0

r31r27 r20 r21 r22 r29r28r23r26r25r24r30

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 407 of 751
Sep 01, 2013

- Syntax "prepare list, imm1, sp"

(a) Pushes one of the registers specified by the first operand and subtracts 4 from sp.

(b) Repeatedly performs (a) until all the registers specified by the first operand have been pushed.

(c) Subtracts the value of the absolute expression specified by the second operand from spNote and sets

sp in the register saving area.

(d) Sets the value of sp specified by the third operand in ep.

Note Since the value actually subtracted from sp by the machine instruction is imm1 shifted 2 bits to the left,

the assembler shifts the specified imm1 2 bits to the right in advance and reflects it in the code.

[Description]

- If the following is specified for imm1, the assembler generates one prepare machine instruction.

(a) Absolute expression having a value in the range of 0 to 127

- When the following is specified as imm1, the assembler executes instruction expansion to generate two or more

machine instructions.

(a) Absolute expression exceeding the range of 0 to 127, but within the range of 0 to 32,767

prepare list, imm1 prepare list, imm1

prepare list, imm1, imm2 prepare list, imm1, imm2

prepare list, imm1, sp prepare list, imm1, sp

prepare list, imm1 prepare list, 0

movea -imm1, sp, sp

prepare list, imm1, imm2 prepare list, 0, imm2

movea -imm1, sp, sp

prepare list, imm1, sp prepare list, 0, sp

movea -imm1, sp, sp

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 408 of 751
Sep 01, 2013

(b) Absolute expression having a value exceeding the range of 0 to 32,767

[Flag]

prepare list, imm1 prepare list, 0

mov imm1, r1

sub r1, sp

prepare list, imm1, imm2 prepare list, 0, imm2

mov imm1, r1

sub r1, sp

prepare list, imm1, sp prepare list, 0, sp

mov imm1, r1

sub r1, sp

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 409 of 751
Sep 01, 2013

Deletes stack frame (post processing of function).

[Syntax]

- dispose imm, list

- dispose imm, list, [reg]

The following can be specified for imm:

- Absolute expression having a value of up to 32 bits

The following can be specified as list. list specifies the 12 registers that can be popped by the dispose instruction.

- Register

Specify the registers (r20 to r31) to be popped, delimiting each with a comma.

- Absolute expression having a value of up to 12 bits

The 12 bits and 12 registers correspond as follows:

The following two specifications are equivalent.

[Function]

The dispose instruction performs the postprocessing of a function.

- Syntax "dispose imm, list"

(a) Adds the value of the absolute expression specified by the first operand to the stack pointer (sp)Note

and sets sp in the register saving area.

(b) Pops one of the registers specified by the second operand and adds 4 to sp.

(c) Repeatedly executes (b) until all the registers specified by the second operand have been popped.

- Syntax "dispose imm, list, [reg]"

(a) Adds the value of the absolute expression specified by the first operand to the stack pointer (sp)Note

and sets sp in the register saving area.

(b) Pops one of the registers specified by the second operand and adds 4 to sp.

(c) Repeatedly executes (b) until all the registers specified by the second operand have been popped.

(d) Sets the register value specified by the third operand in the program counter (PC).

dispose

dispose 0x10, r26, r29, r31 dispose 0x10, 0x103

bit 11 bit 0

r31r27 r20 r21 r22 r29r28r23r26r25r24r30

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 410 of 751
Sep 01, 2013

Note Since the value actually added to sp by the machine instruction is imm shifted 2 bits to the left, the assem-

bler shifts the specified imm 2 bits to the right in advance and reflects it in the code.

[Description]

- If the following is specified for imm, the assembler generates one dispose machine instruction.

(a) Absolute expression having a value in the range of 0 to 127

- If the following is specified for imm, the assembler executes instruction expansion to generate two or more

machine instructions.

(a) Absolute expression exceeding the range of 0 to 127, but within the range of 0 to 32,767

(b) Absolute expression having a value exceeding the range of 0 to 32,767

[Flag]

[Caution]

- If r0 is specified by the [reg] in syntax "dispose imm, list, [reg]", the assembler outputs the following message and

stops assembling.

dispose imm, list dispose imm, list

dispose imm, list, [reg] dispose imm, list, [reg]

dispose imm, list movea imm, sp, sp

dispose 0, list

dispose imm, list, [reg] movea imm, sp, sp

dispose 0, list, [reg]

dispose imm, list mov imm, r1

add r1, sp

dispose 0, list, [reg]

dispose imm, list, [reg] mov imm, r1

add r1, sp

dispose 0, list, [reg]

CY ---

OV ---

S ---

Z ---

SAT ---

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 411 of 751
Sep 01, 2013

System call exception (System Call)

[Syntax]

- syscall vector

The following can be specified as vector:

- Absolute expression having a value of up to 8 bits

[Function]

This instruction calls the system service of an OS.

(1) Saves the contents of the return PC (address of the instruction next to the syscall instruction) and PSW to

EIPC and EIPSW.

(2) Stores the exception cause code corresponding to vector in the EIIC register.

The exception cause code is the value of vector plus 8000H.

(3) Updates the PSW according to the exception causes.

(4) Generates a 32-bit table entry address by adding the value of the SCBP register and vector that is logically

shifted 2 bits to the left and zero-extended to a word length.

If vector is greater than the value specified by the SIZE bit of system register SCCFG; however, vector that

is used for the above addition is handled as 0.

(5) Loads the word of the address generated in (4).

(6) Generates a 32-bit target address by adding the value of the SCBP register to the data in (5).

(7) Branches to the target address generated in (6).

[Description]

- The assembler generates one syscall machine instruction.

[Flag]

syscall

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 412 of 751
Sep 01, 2013

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 255 is specified as vector, the assembler out-

puts the following message and continues assembling by using the lower 8 bitsNote of the specified value.

Note The syscall machine instruction takes an immediate value in the range of 0 to 255 (0x0 to 0xFF)as the oper-

and.

- This instruction is dedicated to calling the system service of an OS. For how to use it in the user program, see the

Function Specification of each OS.

- In the syscall instruction memory read operation executed in order to read the table, memory protection is per-

formed with the supervisor privilege.

W0550011 : Illegal operand (range error in immediate).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 413 of 751
Sep 01, 2013

Push from the stack (Push Registers from Stack)

[Syntax]

- pushsp rh, rt

The following can be specified as rt and rh:

- General-purpose registers r0 - r31

[Function]

Stores general-purpose register rh to rt in the stack in ascending order (rh, rh +1, rh + 2, ..., rt). After all the specified

registers have been stored, sp is updated (decremented).

Remark The lower two bits of the address specified by sp are masked by 0.

If an exception is acknowledged before sp is updated, instruction execution is halted and exception han-

dling is executed with the start address of this instruction used as the return address. The pushsp instruc-

tion is then executed again (The sp value from before the exception handling is saved).

[Description]

- The assembler generates one pushsp machine instruction.

[Flag]

[Caution]

- If the relationship between the register numbers specified as rh and rt is rh > rt, the assembler outputs the following

message.

pushsp

CY ---

OV ---

S ---

Z ---

SAT ---

E0550249 : Illegal syntax.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 414 of 751
Sep 01, 2013

Pop from the stack (Pop Registers from Stack)

[Syntax]

- popsp rh, rt

The following can be specified as rt and rh:

- General-purpose registers r0 - r31

[Function]

Loads general-purpose register rt to rh from the stack in descending order (rt, rt - 1, rt - 2, ..., rh). After all the registers

down to the specified register have been loaded, sp is updated (incremented).

Remark The lower two bits of the address specified by sp are masked by 0.

If an exception is acknowledged before sp is updated, instruction execution is halted and exception han-

dling is executed with the start address of this instruction used as the return address. The popsp instruction

is then executed again (The sp value from before the exception handling is saved).

[Description]

- The assembler generates one popsp machine instruction.

[Flag]

[Caution]

- If the relationship between the register numbers specified as rh and rt is rh > rt, the assembler outputs the following

message.

- If a register that includes sp (r3) is specified as the restore register (rh = 3 to 31), the value read from the memory

is not stored in sp (r3). This allows the POPSP instruction to be correctly re-executed after execution has been

halted.

popsp

CY ---

OV ---

S ---

Z ---

SAT ---

E0550249 : Illegal syntax.

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 415 of 751
Sep 01, 2013

Snooze (Snooze)

[Syntax]

- snooze

[Function]

Temporarily halts operation of the CPU for the period defined by the hardware specifications or when the CPU enters a

specific state.

When the specified period has elapsed or the CPU exits the specified state, CPU operation automatically resumes and

instruction execution begins from the next instruction.

The SNOOZE state is released under the following conditions:

- The predefined period of time passes

- A terminating exception occurs

Even if the conditions for acknowledging the above exceptions are not satisfied (due to the ID or NP value), as long as

a SNOOZE mode release request exists, the SNOOZE state is released (for example, even if PSW.ID = 1, the SNOOZE

state is released when INT0 occurs).

Note, however, that the SNOOZE mode will not be released if terminating exceptions are masked by the following

mask settings, which are defined individually for each function:

- Terminating exceptions are masked by an interrupt channel mask setting specified by the interrupt controllerNote.

- Terminating exceptions are masked by a mask setting specified by using the floating-point operation exception

enable bit.

- Terminating exceptions are masked by a mask setting defined by a hardware function other than the above.

Note This does not include masking specified by the ISPR and PMR registers.

[Description]

- The assembler generates one snooze machine instruction.

[Flag]

snooze

CY ---

OV ---

S ---

Z ---

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 416 of 751
Sep 01, 2013

4.8.9 Loop instructions

Next table lists the loop instructions.

See the RH850 product user's manual and architecture edition for details.

Table 4-43. Loop Instructions

Instruction Meanings

loop Loop

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 417 of 751
Sep 01, 2013

Loop (Loop)

[Syntax]

- loop reg1, disp16

The following can be specified as disp16:

- Absolute expression having a value of up to 16 bits

- Relative expression having a PC offset reference of label

- label (PC offset)

[Function]

Updates the general-purpose register reg1 by adding -1 from its contents. If the contents after this update are not 0, the

following processing is performed. If the contents are 0, the system continues to the next instruction.

- The result of logically shifting the 15-bit immediate data 1 bit to the left and zero-extending it to word length is sub-

tracted from the current PC value, and then the control is transferred.

- -1 (0xFFFFFFFF) is added to general-purpose register reg1. The carry flag is updated in the same way as when

the add instruction, not the sub instruction, is executed.

Remark "0" is implicitly used for bit 0 of the 16-bit displacement. Note that, because the current PC value used for

calculation is the address of the first byte of this instruction, if the displacement value is 0, the branch desti-

nation is this instruction.

[Description]

- If any of the following is specified for disp16, the assembler generates one loop machine instruction.

(a) Absolute expression having a value in the range of 0 to 65535

(b) Relative expression that has a PC offset reference of a label having a definition in the same section of

the same file as this instruction, and having a value in the range of 0 to 65535

[Flag]

[Caution]

- If an absolute expression having a value exceeding the range of 0 to 65535 or a relative expression having a PC

offset reference of a label with a definition in the same section of the same file as this instruction and having a

value exceeding the range of 0 to 65535 is specified as disp16, the assembler outputs the following message and

stops assembling.

loop

CY "1" if a carry occurs from MSB in the reg1 operation; otherwise, "0"

OV "1" if an overflow occurs in the reg1 operation; otherwise, "0"

S "1" if reg1 is negative; otherwise, "0"

Z "1" if reg1 is 0; otherwise, "0"

SAT ---

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 418 of 751
Sep 01, 2013

- If an absolute expression having an odd-numbered value or a relative expression having a PC offset reference of a

label with a definition in the same section of the same file as this instruction and having an odd-numbered value is

specified as disp16, the assembler outputs the following message and stops assembling.

- If r0 is specified as reg1 in the loop instruction, the assembler outputs the following message and stops assem-

bling.

- Do not specify r0 for reg1.

E0550230 : Illegal operand (range error in displacement).

E0550226 : Illegal operand (must be even displacement).

E0550240 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 419 of 751
Sep 01, 2013

4.8.10 Floating-point operation instructions

Next table lists the floating-point operation instructions.

See the RH850 product user's manual and architecture edition for details.

Table 4-44. Floating-point Operation Instructions (Basic Operation Instructions)

Table 4-45. Floating-point Operation Instructions (Expansion Basic Operation Instructions)

Instruction Meanings

absf.d Floating-point absolute value (double precision)

absf.s Floating-point absolute value (single precision)

addf.d Floating-point add (double precision)

addf.s Floating-point add (single precision)

divf.d Floating-point division (double precision)

divf.s Floating-point division (single precision)

maxf.d Floating-point maximum value (double precision)

maxf.s Floating-point maximum value (single precision)

minf.d Floating-point minimum value (double precision)

minf.s Floating-point minimum value (single precision)

mulf.d Floating-point multiplication (double precision)

mulf.s Floating-point multiplication (single precision)

negf.d Floating-point sign inversion (double precision)

negf.s Floating-point sign inversion (single precision)

recipf.d Reciprocal (double precision)

recipf.s Reciprocal (single precision)

rsqrtf.d Reciprocal of square root (double precision)

rsqrtf.s Reciprocal of square root (single precision)

sqrtf.d Square root (double precision)

sqrtf.s Square root (single precision)

subf.d Floating-point subtraction (double precision)

subf.s Floating-point subtraction (single precision)

Instruction Meanings

fmaf.s Floating-point fused-multiply-add operation (single precision)

fmsf.s Floating-point fused-multiply-subtract operation (single precision)

fnmaf.s Floating-point fused-multiply-add operation (single precision)

fnmsf.s Floating-point fused-multiply-add operation (single precision)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 420 of 751
Sep 01, 2013

Table 4-46. Floating-point Operation Instructions (Exchange Instructions)

Instruction Meanings

ceilf.dl Conversion to fixed-point format (double precision)

ceilf.dw Conversion to fixed-point format (double precision)

ceilf.dul Conversion to unsigned fixed-point format (double precision)

ceilf.duw Conversion to unsigned fixed-point format (double precision)

ceilf.sl Conversion to fixed-point format (single precision)

ceilf.sw Conversion to fixed-point format (single precision)

ceilf.sul Conversion to unsigned fixed-point format (single precision)

ceilf.suw Conversion to unsigned fixed-point format (single precision)

cvtf.dl Conversion to fixed-point format (double precision)

cvtf.ds Conversion to floating-point format (double precision)

cvtf.dul Conversion to unsigned fixed-point format (double precision)

cvtf.duw Conversion to unsigned fixed-point format (double precision)

cvtf.dw Conversion to fixed-point format (double precision)

cvtf.hs Conversion to floating-point format (single precision)

cvtf.ld Conversion to floating-point format (double precision)

cvtf.ls Conversion to floating-point format (single precision)

cvtf.sd Conversion to floating-point format (double precision)

cvtf.sh Conversion to half-precision floating-point format (single precision)

cvtf.sl Conversion to fixed-point format (single precision)

cvtf.sul Conversion to unsigned fixed-point format (single precision)

cvtf.suw Conversion to unsigned fixed-point format (single precision)

cvtf.sw Conversion to fixed-point format (single precision)

cvtf.uld Conversion to floating-point format (double precision)

cvtf.uls Conversion to floating-point format (single precision)

cvtf.uwd Conversion to floating-point format (double precision)

cvtf.uws Conversion to floating-point format (single precision)

cvtf.wd Conversion to floating-point format (double precision)

cvtf.ws Conversion to floating-point format (single precision)

floorf.dl Conversion to fixed-point format (double precision)

floorf.dw Conversion to fixed-point format (double precision)

floorf.dul Conversion to unsigned fixed-point format (double precision)

floorf.duw Conversion to unsigned fixed-point format (double precision)

floorf.sl Conversion to fixed-point format (single precision)

floorf.sw Conversion to fixed-point format (single precision)

floorf.sul Conversion to unsigned fixed-point format (single precision)

floorf.suw Conversion to unsigned fixed-point format (single precision)

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 421 of 751
Sep 01, 2013

Table 4-47. Floating-point Operation Instructions (Compare Instructions)

Table 4-48. Floating-point Operation Instructions (Conditional Move Instructions)

Table 4-49. Floating-point Operation Instructions (Conditional Bit Move Instructions)

trncf.dl Conversion to fixed-point format (double precision)

trncf.dul Conversion to unsigned fixed-point format (double precision)

trncf.duw Conversion to unsigned fixed-point format (double precision)

trncf.dw Conversion to fixed-point format (double precision)

trncf.sl Conversion to fixed-point format (single precision)

trncf.sul Conversion to unsigned fixed-point format (single precision)

trncf.suw Conversion to unsigned fixed-point format (single precision)

trncf.sw Conversion to fixed-point format (single precision)

Instruction Meanings

cmpf.d Floating-point compare (double)

cmpf.s Floating-point compare (single)

Instruction Meanings

cmovf.d Conditional move (double precision)

cmovf.s Conditional move (single precision)

Instruction Meanings

trfsr Flag transfer

Instruction Meanings

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 422 of 751
Sep 01, 2013

Floating-point absolute value (double precision) (Floating-point Absolute Value (Double))

[Syntax]

- absf.d reg1, reg2

[Function]

This instruction takes the absolute value from the double-precision floating-point format contents of the register pair

specified by general-purpose register reg1, and stores it in the register pair specified by general-purpose register reg2.

[Description]

- The assembler generates one absf.d machine instruction.

absf.d

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 423 of 751
Sep 01, 2013

Floating-point absolute value (single precision) (Floating-point Absolute Value (Single))

[Syntax]

- absf.s reg1, reg2

[Function]

This instruction takes the absolute value from the single-precision floating-point format contents of general-purpose

register reg1, and stores it in general-purpose register reg2.

[Description]

- The assembler generates one absf.s machine instruction.

absf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 424 of 751
Sep 01, 2013

Floating-point add (double precision) (Floating-point Add (Double))

[Syntax]

- addf.d reg1, reg2, reg3

[Function]

This instruction adds the double-precision floating-point format contents of the register pair specified by general-pur-

pose register reg1 with the double-precision floating-point format contents of the register pair specified by general-pur-

pose register reg2, and stores the result in the register pair specified by general-purpose register reg3. The operation is

executed as if it were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Description]

- The assembler generates one addf.d machine instruction.

addf.d

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 425 of 751
Sep 01, 2013

Floating-point add (single precision) (Floating-point Add (Single))

[Syntax]

- addf.s reg1, reg2, reg3

[Function]

This instruction adds the single-precision floating-point format contents of general-purpose register reg1 with the sin-

gle-precision floating-point format contents of general-purpose register reg2, and stores the result in general-purpose

register reg3. The operation is executed as if it were of infinite accuracy, and the result is rounded in accordance with the

current rounding mode.

[Description]

- The assembler generates one addf.s machine instruction.

addf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 426 of 751
Sep 01, 2013

Floating-point division (double precision) (Floating-point Divide (Double))

[Syntax]

- divf.d reg1, reg2, reg3

[Function]

This instruction divides double-precision floating-point format contents of the register pair specified by general-purpose

register reg2 by the double-precision floating-point format contents of the register pair specified by general-purpose regis-

ter reg1, and stores the result in the register pair specified by general-purpose register reg3. The operation is executed

as if it were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Description]

- The assembler generates one divf.d machine instruction.

divf.d

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 427 of 751
Sep 01, 2013

Floating-point division (single precision) (Floating-point Divide (Single))

[Syntax]

- divf.s reg1, reg2, reg3

[Function]

This instruction divides the single-precision floating-point format contents of general-purpose register reg2 by the sin-

gle-precision floating-point format contents of general-purpose register reg1, and stores the result in general-purpose

register reg3. The operation is executed as if it were of infinite accuracy, and the result is rounded in accordance with the

current rounding mode.

[Description]

- The assembler generates one divf.s machine instruction.

divf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 428 of 751
Sep 01, 2013

Floating-point maximum value (double precision) (Floating-point Maximum (Double))

[Syntax]

- maxf.d reg1, reg2, reg3

[Function]

This instruction extracts the maximum value from the double-precision floating-point format data in the register pair

specified by general-purpose registers reg1 and reg2, and stores it in the register pair specified by general-purpose regis-

ter reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, Q-NaN is stored and no exception occurs.

[Description]

- The assembler generates one maxf.d machine instruction.

maxf.d

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 429 of 751
Sep 01, 2013

Floating-point maximum value (single precision) (Floating-point Maximum (Single))

[Syntax]

- maxf.s reg1, reg2, reg3

[Function]

This instruction extracts the maximum value from the single-precision floating-point format data in general-purpose reg-

isters reg1 and reg2, and stores it in general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, Q-NaN is stored and no exception occurs.

[Description]

- The assembler generates one maxf.s machine instruction.

maxf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 430 of 751
Sep 01, 2013

Floating-point minimum value (double precision) (Floating-point Minimum (Double))

[Syntax]

- minf.d reg1, reg2, reg3

[Function]

This instruction extracts the minimum value from the double-precision floating-point format data in the register pair

specified by general-purpose registers reg1 and reg2, and stores it in the register pair specified by general-purpose regis-

ter reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, Q-NaN is stored and no exception occurs.

[Description]

- The assembler generates one minf.d machine instruction.

minf.d

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 431 of 751
Sep 01, 2013

Floating-point minimum value (single precision) (Floating-point Minimum (Single))

[Syntax]

- minf.s reg1, reg2, reg3

[Function]

This instruction extracts the minimum value from the single-precision floating-point format data in general-purpose reg-

isters reg1 and reg2, and stores it in general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, Q-NaN is stored and no exception occurs.

[Description]

- The assembler generates one minf.s machine instruction.

minf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 432 of 751
Sep 01, 2013

Floating-point multiplication (double precision) (Floating-point Multiply (Double))

[Syntax]

- mulf.d reg1, reg2, reg3

[Function]

This instruction multiplies double-precision floating-point format contents of the register pair specified by general-pur-

pose register reg2 by the double-precision floating-point format contents of the register pair specified by general-purpose

register reg1, and stores the result in general-purpose register reg3.

[Description]

- The assembler generates one mulf.d machine instruction.

mulf.d

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 433 of 751
Sep 01, 2013

Floating-point multiplication (single precision) (Floating-point Multiply (Single))

[Syntax]

- mulf.s reg1, reg2, reg3

[Function]

This instruction multiplies the single-precision floating-point format contents of general-purpose register reg2 by the

single-precision floating-point format contents of general-purpose register reg1, and stores the result in general-purpose

register reg3.

[Description]

- The assembler generates one mulf.s machine instruction.

mulf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 434 of 751
Sep 01, 2013

Floating-point sign inversion (double precision) (Floating-point Negate (Double))

[Syntax]

- negf.d reg1, reg2

[Function]

This instruction inverts the sign of double-precision floating-point format contents of the register pair specified by gen-

eral-purpose register reg1, and stores the result in general-purpose register reg2.

[Description]

- The assembler generates one negf.d machine instruction.

negf.d

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 435 of 751
Sep 01, 2013

Floating-point sign inversion (single precision) (Floating-point Negate (Single))

[Syntax]

- negf.s reg1, reg2

[Function]

This instruction inverts the sign of the single-precision floating-point format contents of general-purpose register reg1,

and stores the result in general-purpose register reg2.

[Description]

- The assembler generates one negf.s machine instruction.

negf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 436 of 751
Sep 01, 2013

Reciprocal (double precision) (Reciprocal of a Floating-point Value (Double))

[Syntax]

- recipf.d reg1, reg2

[Function]

This instruction approximates the reciprocal of the double-precision floating-point format contents of the register pair

specified by general-purpose register reg1, and stores the result in the register pair specified by general-purpose register

reg2. The result differs from the result obtained by using the divf instruction.

[Description]

- The assembler generates one recipf.d machine instruction.

recipf.d

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 437 of 751
Sep 01, 2013

Reciprocal (single precision) (Reciprocal of a Floating-point Value (Single))

[Syntax]

- recipf.s reg1, reg2

[Function]

This instruction approximates the reciprocal of the single-precision floating-point format contents of general-purpose

register reg1, and stores the result in general-purpose register reg2. The result differs from the result obtained by using

the divf instruction.

[Description]

- The assembler generates one recipf.s machine instruction.

recipf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 438 of 751
Sep 01, 2013

Reciprocal of square root (double precision) (Reciprocal of the Square Root of a Floating-point Value (Double))

[Syntax]

- rsqrtf.d reg1, reg2

[Function]

This instruction obtains the arithmetic positive square root of the double-precision floating-point format contents of the

register pair specified by general-purpose register reg1, then approximates the reciprocal of this result and stores the

result in the register pair specified by general-purpose register reg2.

The result differs from the result obtained when using a combination of the sqrtf and divf instructions.

[Description]

- The assembler generates one rsqrtf.d machine instruction.

rsqrtf.d

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 439 of 751
Sep 01, 2013

Reciprocal of square root (single precision) (Reciprocal of the Square Root of a Floating-point Value (Single))

[Syntax]

- rsqrtf.s reg1, reg2

[Function]

This instruction obtains the arithmetic positive square root of the single-precision floating-point format contents of gen-

eral-purpose register reg1, then approximates the reciprocal of this result and stores it in general-purpose register reg2.

The result differs from the result obtained when using a combination of the sqrtf and divf instructions.

[Description]

- The assembler generates one rsqrtf.s machine instruction.

rsqrtf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 440 of 751
Sep 01, 2013

Square root (double precision) (Floating-point Square Root (Double))

[Syntax]

- sqrtf.d reg1, reg2

[Function]

This instruction obtains the arithmetic positive square root of the double-precision floating-point format contents of the

register pair specified by general-purpose register reg1, and stores the result in the register pair specified by general-pur-

pose register reg2. The operation is executed as if it were of infinite accuracy, and the result is rounded in accordance

with the current rounding mode. When the source operand value is -0, the result becomes -0.

[Description]

- The assembler generates one sqrtf.d machine instruction.

sqrtf.d

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 441 of 751
Sep 01, 2013

Square root (single precision) (Floating-point Square Root (Single))

[Syntax]

- sqrtf.s reg1, reg2

[Function]

This instruction obtains the arithmetic positive square root of the single-precision floating-point format contents of gen-

eral-purpose register reg1, and stores it in general-purpose register reg2. The operation is executed as if it were of infi-

nite accuracy, and the result is rounded in accordance with the current rounding mode. When the source operand value

is -0, the result becomes -0.

[Description]

- The assembler generates one sqrtf.s machine instruction.

sqrtf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 442 of 751
Sep 01, 2013

Floating-point subtraction (double precision) (Floating-point Subtract (Double))

[Syntax]

- subf.d reg1, reg2, reg3

[Function]

This instruction subtracts the double-precision floating-point format contents of the register pair specified by general-

purpose register reg1 from the double-precision floating-point format contents of the register pair specified by general-

purpose register reg2, and stores the result in the register pair specified by general-purpose register reg3. The operation

is executed as if it were of infinite accuracy, and the result is rounded in accordance with the current rounding mode.

[Description]

- The assembler generates one subf.d machine instruction.

subf.d

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 443 of 751
Sep 01, 2013

Floating-point subtraction (single precision) (Floating-point Subtract (Single))

[Syntax]

- subf.s reg1, reg2, reg3

[Function]

This instruction subtracts the single-precision floating-point format contents of general-purpose register reg1 from the

single-precision floating-point format contents of general-purpose register reg2, and stores the result in general-purpose

register reg3. The operation is executed as if it were of infinite accuracy, and the result is rounded in accordance with the

current rounding mode.

[Description]

- The assembler generates one subf.s machine instruction.

subf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 444 of 751
Sep 01, 2013

Floating-point fused-multiply-add operation (single precision) (Floating-point Fused-Multiply-add (Single))

[Syntax]

- fmaf.s reg1, reg2, reg3

[Function]

This instruction multiplies the single-precision floating-point format contents in general-purpose register reg2 with the

single-precision floating-point format contents in general-purpose register reg1, adds the single-precision floating-point

format contents in general-purpose register reg3, and stores the result in general-purpose register reg3. The operation is

executed as if it were of infinite accuracy. The result of the multiply operation is not rounded, but the result of the add

operation is rounded, in accordance with the current rounding mode.

[Description]

- The assembler generates one fmaf.s machine instruction.

fmaf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 445 of 751
Sep 01, 2013

Floating-point fused-multiply-subtract operation (single precision) (Floating-point Fused-Multiply-subtract (Single))

[Syntax]

- fmsf.s reg1, reg2, reg3

[Function]

This instruction multiplies the single-precision floating-point format contents in general-purpose register reg2 with the

single-precision floating-point format contents in general-purpose register reg1, subtracts the single-precision floating-

point format contents in general-purpose register reg3, and stores the result in general-purpose register reg3. The oper-

ation is executed as if it were of infinite accuracy. The result of the multiply operation is not rounded, but the result of the

subtract operation is rounded, in accordance with the current rounding mode.

[Description]

- The assembler generates one fmsf.s machine instruction.

fmsf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 446 of 751
Sep 01, 2013

Floating-point fused-multiply-add operation (single precision) (Floating-point Fused-Negate-Multiply-add (Single))

[Syntax]

- fnmaf.s reg1, reg2, reg3

[Function]

This instruction multiplies the single-precision floating-point format contents in general-purpose register reg2 with the

single-precision floating-point format contents in general-purpose register reg1, adds the single-precision floating-point

format contents in general-purpose register reg3, inverts the sign, and stores the result in general-purpose register reg3.

The operation is executed as if it were of infinite accuracy. The result of the multiply operation is not rounded, but the

result of the add operation is rounded, in accordance with the current rounding mode.

[Description]

- The assembler generates one fnmaf.s machine instruction.

fnmaf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 447 of 751
Sep 01, 2013

Floating-point fused-multiply-add operation (single precision) (Floating-point Fused-Negate-Multiply-subtrat (Single))

[Syntax]

- fnmsf.s reg1, reg2, reg3

[Function]

This instruction multiplies the single-precision floating-point format contents in general-purpose register reg2 with the

single-precision floating-point format contents in general-purpose register reg1, subtracts the single-precision floating-

point format contents in general-purpose register reg3, inverts the sign, and stores the result in general-purpose register

reg3. The operation is executed as if it were of infinite accuracy. The result of the multiply operation is not rounded, but

the result of the subtract operation is rounded, in accordance with the current rounding mode.

[Description]

- The assembler generates one fnmsf.s machine instruction.

fnmsf.s

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 448 of 751
Sep 01, 2013

Conversion to fixed-point format (double precision) (Floating-point Convert Double to Long, round toward positive

(Double))

[Syntax]

- ceilf.dl reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to 64-bit fixed-point format, and stores the result in the register pair specified by gen-

eral-purpose register reg2.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 263 - 1 to -263,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 263 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -263 is returned.

[Description]

- The assembler generates one ceilf.dl machine instruction.

ceilf.dl

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 449 of 751
Sep 01, 2013

Conversion to fixed-point format (double precision) (Floating-point Convert Double to Word, round toward positive

(Double))

[Syntax]

- ceilf.dw reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to 32-bit fixed-point format, and stores the result in general-purpose register reg2.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 231 - 1 to -231,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 231 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -231 is returned.

[Description]

- The assembler generates one ceilf.dw machine instruction.

ceilf.dw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 450 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (double precision) (Floating-point Convert Double to Unsigned-Long, round

toward positive (Double))

[Syntax]

- ceilf.dul reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to unsigned 64-bit fixed-point format, and stores the result in the register pair specified

by general-purpose register reg2.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 264 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 264 - 1 to 0,

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 264 - 1 to 0, or +∞ : 264 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one ceilf.dul machine instruction.

ceilf.dul

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 451 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (double precision) (Floating-point Convert Double to Unsigned-Word, round

toward positive (Double))

[Syntax]

- ceilf.duw reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to unsigned 32-bit fixed-point format, and stores the result in general-purpose register

reg2.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 232 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 232 - 1 to 0, or +∞ : 232 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one ceilf.duw machine instruction.

ceilf.duw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 452 of 751
Sep 01, 2013

Conversion to fixed-point format (single precision) (Floating-point Convert Single to Long, round toward positive (Sin-

gle))

[Syntax]

- ceilf.sl reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to 64-bit fixed-point format, and stores the result in the register pair specified by general-purpose register reg2.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 263 - 1 to -263,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 263 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -263 is returned.

[Description]

- The assembler generates one ceilf.sl machine instruction.

ceilf.sl

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 453 of 751
Sep 01, 2013

Conversion to fixed-point format (single precision) (Floating-point Convert Single to Word, round toward positive (Sin-

gle))

[Syntax]

- ceilf.sw reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to 32-bit fixed-point format, and stores the result in general-purpose register reg2.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 231 - 1 to -231,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 231 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -231 is returned.

[Description]

- The assembler generates one ceilf.sw machine instruction.

ceilf.sw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 454 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (single precision) (Floating-point Convert Single to Unsigned-Long, round

toward positive (Single))

[Syntax]

- ceilf.sul reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents specified by general-purpose

register reg1 to unsigned 64-bit fixed-point format, and stores the result in the register pair specified by general-purpose

register reg2.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 264 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 264 - 1 to 0, or +∞ : 264 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one ceilf.sul machine instruction.

ceilf.sul

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 455 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (single precision) (Floating-point Convert Single to Unsigned-Word, round

toward positive (Single))

[Syntax]

- ceilf.suw reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to unsigned 32-bit fixed-point format, and stores the result in general-purpose register

reg2.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 232 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 232 - 1 to 0, or +∞ : 232 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one ceilf.suw machine instruction.

ceilf.suw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 456 of 751
Sep 01, 2013

Conversion to fixed-point format (double precision) (Floating-point Convert Double to Long (Double))

[Syntax]

- cvtf.dl reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to 64-bit fixed-point format, in accordance with the current rounding mode, and stores

the result in the register pair specified by general-purpose register reg2.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 263 - 1 to -263,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 263 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -263 is returned.

[Description]

- The assembler generates one cvtf.dl machine instruction.

cvtf.dl

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 457 of 751
Sep 01, 2013

Conversion to floating-point format (double precision) (Floating-point Convert Double to Single (Double))

[Syntax]

- cvtf.ds reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to single-precision floating-point format, and stores the result in general-purpose regis-

ter reg2. The result is rounded in accordance with the current rounding mode.

[Description]

- The assembler generates one cvtf.ds machine instruction.

cvtf.ds

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 458 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (double precision) (Floating-point Convert Double to Unsigned-Long (Dou-

ble))

[Syntax]

- cvtf.dul reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to unsigned 64-bit fixed-point format, in accordance with the current rounding mode,

and stores the result in the register pair specified by general-purpose register reg2.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 264 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 264 - 1 to 0, or +∞ : 264 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one cvtf.dul machine instruction.

cvtf.dul

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 459 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (double precision) (Floating-point Convert Double to Unsigned-Word (Dou-

ble))

[Syntax]

- cvtf.duw reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to unsigned 32-bit fixed-point format, and stores the result in general-purpose register

reg2.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 232 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 232 - 1 to 0, or +∞ : 232 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one cvtf.duw machine instruction.

cvtf.duw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 460 of 751
Sep 01, 2013

Conversion to fixed-point format (double precision) (Floating-point Convert Double to Word (Double))

[Syntax]

- cvtf.dw reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to 32-bit fixed-point format, and stores the result in general-purpose register reg2.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 231 - 1 to -231,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 231 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -231 is returned.

[Description]

- The assembler generates one cvtf.dw machine instruction.

cvtf.dw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 461 of 751
Sep 01, 2013

Conversion to floating-point format (single precision) (Floating-point Convert Single to Half(Single))

[Syntax]

- cvtf.hs reg1, reg2

[Function]

This instruction arithmetically converts the half-precision floating-point format contents in the lower 16 bits of general-

purpose register reg2 to single-precision floating-point format, rounding the result in accordance with the current rounding

mode, and stores the result in general-purpose register reg3.

[Description]

- The assembler generates one cvtf.hs machine instruction.

cvtf.hs

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 462 of 751
Sep 01, 2013

Conversion to floating-point format (double precision) (Floating-point Convert Long to Double (Double))

[Syntax]

- cvtf.ld reg1, reg2

[Function]

This instruction arithmetically converts the 64-bit fixed-point format contents of the register pair specified by general-

purpose register reg1 to double-precision floating-point format in accordance with the current rounding mode, and stores

the result in the register pair specified by general-purpose register reg2.

[Description]

- The assembler generates one cvtf.ld machine instruction.

cvtf.ld

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 463 of 751
Sep 01, 2013

Conversion to floating-point format (single precision) (Floating-point Convert Long to Single (Single))

[Syntax]

- cvtf.ls reg1, reg2

[Function]

This instruction arithmetically converts the 64-bit fixed-point format contents of the register pair specified by general-

purpose register reg1 to single-precision floating-point format, and stores the result in general-purpose register reg2. The

result is rounded in accordance with the current rounding mode.

[Description]

- The assembler generates one cvtf.ls machine instruction.

cvtf.ls

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 464 of 751
Sep 01, 2013

Conversion to floating-point format (double precision) (Floating-point Convert Single to Double (Double))

[Syntax]

- cvtf.sd reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to double-precision floating-point format, in accordance with the current rounding mode, and stores the result in the

register pair specified by general-purpose register reg2.

[Description]

- The assembler generates one cvtf.sd machine instruction.

cvtf.sd

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 465 of 751
Sep 01, 2013

Conversion to half-precision floating-point format (single precision) (Floating-point Convert Single to Half (Single))

[Syntax]

- cvtf.sh reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents in general-purpose register

reg2 to half-precision floating-point format, rounding the result in accordance with the current rounding mode. The result

is zero-extended to word length and stored in general-purpose register reg3.

[Description]

- The assembler generates one cvtf.ss machine instruction.

cvtf.sh

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 466 of 751
Sep 01, 2013

Conversion to fixed-point format (single precision) (Floating-point Convert Single to Long (Single))

[Syntax]

- cvtf.sl reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to 64-bit fixed-point format, in accordance with the current rounding mode, and stores the result in the register pair

specified by general-purpose register reg2.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 263 - 1 to -263,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 263 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -263 is returned.

[Description]

- The assembler generates one cvtf.sl machine instruction.

cvtf.sl

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 467 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (single precision) (Floating-point Convert Single to Unsigned-Long (Single))

[Syntax]

- cvtf.sul reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to unsigned 64-bit fixed-point format, in accordance with the current rounding mode, and stores the result in the reg-

ister pair specified by general-purpose register reg2.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 264 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 264 - 1 to 0, or +∞ : 264 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one cvtf.sul machine instruction.

cvtf.sul

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 468 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (single precision) (Floating-point Convert Single to Unsigned-Word (Single))

[Syntax]

- cvtf.suw reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to unsigned 32-bit fixed-point format, and stores the result in general-purpose register reg2.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 232 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 232 - 1 to 0, or +∞ : 232 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one cvtf.suw machine instruction.

cvtf.suw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 469 of 751
Sep 01, 2013

Conversion to fixed-point format (single precision) (Floating-point Convert Single to Word (Single))

[Syntax]

- cvtf.sw reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to 32-bit fixed-point format, and stores the result in general-purpose register reg2.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 231 - 1 to -231,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 231 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -231 is returned.

[Description]

- The assembler generates one cvtf.sw machine instruction.

cvtf.sw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 470 of 751
Sep 01, 2013

Conversion to floating-point format (double precision) (Floating-point Convert Unsigned-Long to Double (Double))

[Syntax]

- cvtf.uld reg1, reg2

[Function]

This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of the register pair specified by

general-purpose register reg1 to double-precision floating-point format in accordance with the current rounding mode,

and stores the result in the register pair specified by general-purpose register reg2.

[Description]

- The assembler generates one cvtf.uld machine instruction.

cvtf.uld

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 471 of 751
Sep 01, 2013

Conversion to floating-point format (single precision) (Floating-point Convert Unsigned-Long to Single (Single))

[Syntax]

- cvtf.uls reg1, reg2

[Function]

This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of the register pair specified by

general-purpose register reg1 to single-precision floating-point format, and stores the result in general-purpose register

reg2. The result is rounded in accordance with the current rounding mode.

[Description]

- The assembler generates one cvtf.uls machine instruction.

cvtf.uls

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 472 of 751
Sep 01, 2013

Conversion to floating-point format (double precision) (Floating-point Convert Unsigned-Word to Double (Double))

[Syntax]

- cvtf.uwd reg1, reg2

[Function]

This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of general-purpose register reg1

to double-precision floating-point format, in accordance with the current rounding mode, and stores the result in the regis-

ter pair specified by general-purpose register reg2.

This conversion operation is performed accurately, without any loss of precision.

[Description]

- The assembler generates one cvtf.uwd machine instruction.

cvtf.uwd

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 473 of 751
Sep 01, 2013

Conversion to floating-point format (single precision) (Floating-point Convert Unsigned-Word to Single (Single))

[Syntax]

- cvtf.uws reg1, reg2

[Function]

This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of general-purpose register reg1

to single-precision floating-point format, and stores the result in general-purpose register reg2. The result is rounded in

accordance with the current rounding mode.

[Description]

- The assembler generates one cvtf.uws machine instruction.

cvtf.uws

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 474 of 751
Sep 01, 2013

Conversion to floating-point format (double precision) (Floating-point Convert Word to Double (Double))

[Syntax]

- cvtf.wd reg1, reg2

[Function]

This instruction arithmetically converts the 32-bit fixed-point format contents of general-purpose register reg1 to dou-

ble-precision floating-point format, in accordance with the current rounding mode, and stores the result in the register pair

specified by general-purpose register reg2.

This conversion operation is performed accurately, without any loss of precision.

[Description]

- The assembler generates one cvtf.wd machine instruction.

cvtf.wd

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 475 of 751
Sep 01, 2013

Conversion to floating-point format (single precision) (Floating-point Convert Word to Single (single))

[Syntax]

- cvtf.ws reg1, reg2

[Function]

This instruction arithmetically converts the 32-bit fixed-point format contents of general-purpose register reg1 to single-

precision floating-point format, and stores the result in general-purpose register reg2. The result is rounded in accor-

dance with the current rounding mode.

[Description]

- The assembler generates one cvtf.ws machine instruction.

cvtf.ws

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 476 of 751
Sep 01, 2013

Conversion to fixed-point format (double precision) (Floating-point Convert Double to Long, round toward negative

(Double))

[Syntax]

- floorf.dl reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to 64-bit fixed-point format, and stores the result in the register pair specified by gen-

eral-purpose register reg2.

The result is rounded in the -∞ direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 263 - 1 to -263,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 263 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -263 is returned.

[Description]

- The assembler generates one floorf.dl machine instruction.

floorf.dl

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 477 of 751
Sep 01, 2013

Conversion to fixed-point format (double precision) (Floating-point Convert Double to Word, round toward negative

(Double))

[Syntax]

- floorf.dw reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to 32-bit fixed-point format, and stores the result in general-purpose register reg2.

The result is rounded in the -∞ direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 231 - 1 to -231,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 231 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -231 is returned.

[Description]

- The assembler generates one floorf.dw machine instruction.

floorf.dw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 478 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (double precision) (Floating-point Convert Double to Unsigned-Long, round

toward negative (Double))

[Syntax]

- floorf.dul reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to unsigned 64-bit fixed-point format, and stores the result in the register pair specified

by general-purpose register reg2.

The result is rounded in the -∞ direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 264 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 264 - 1 to 0, or +∞ : 264 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one floorf.dul machine instruction.

floorf.dul

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 479 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (double precision) (Floating-point Convert Double to Unsigned-Word, round

toward negative (Double))

[Syntax]

- floorf.duw reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to unsigned 32-bit fixed-point format, and stores the result in general-purpose register

reg2.

The result is rounded in the -∞ direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 232 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 232 - 1 to 0, or +∞ : 232 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one floorf.duw machine instruction.

floorf.duw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 480 of 751
Sep 01, 2013

Conversion to fixed-point format (single precision) (Floating-point Convert Double to Long, round toward negative (Sin-

gle))

[Syntax]

- floorf.sl reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to 64-bit fixed-point format, and stores the result in the register pair specified by general-purpose register reg2.

The result is rounded in the -∞ direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 263 - 1 to -263,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 263 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -263 is returned.

[Description]

- The assembler generates one floorf.sl machine instruction.

floorf.sl

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 481 of 751
Sep 01, 2013

Conversion to fixed-point format (single precision) (Floating-point Convert Single to Word, round toward negative (Sin-

gle))

[Syntax]

- floorf.sw reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to 32-bit fixed-point format, and stores the result in general-purpose register reg2.

The result is rounded in the -∞ direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 231 - 1 to -231,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 231 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -231 is returned.

[Description]

- The assembler generates one floorf.sw machine instruction.

floorf.sw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 482 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (single precision) (Floating-point Convert Single to Unsigned-Long, round

toward negative (Single))

[Syntax]

- floorf.sul reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to unsigned 64-bit fixed-point format, and stores the result in the register pair specified by general-purpose register

reg2.

The result is rounded in the -∞ direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 264 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 264 - 1 to 0, or +∞ : 264 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one floorf.sul machine instruction.

floorf.sul

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 483 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (single precision) (Floating-point Convert Single to Unsigned-Word, round

toward negative (Single))

[Syntax]

- floorf.suw reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to unsigned 32-bit fixed-point format, and stores the result in general-purpose register reg2.

The result is rounded in the -∞ direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 232 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 232 - 1 to 0, or +∞ : 232 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one floorf.suw machine instruction.

floorf.suw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 484 of 751
Sep 01, 2013

Conversion to fixed-point format (double precision) (Floating-point Convert Double to Long, round toward zero (Dou-

ble))

[Syntax]

- trncf.dl reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to 64-bit fixed-point format, and stores the result in the register pair specified by gen-

eral-purpose register reg2.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 263 - 1 to -263,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 263 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -263 is returned.

[Description]

- The assembler generates one trncf.dl machine instruction.

trncf.dl

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 485 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (double precision) (Floating-point Convert Double to Unsigned-Long, round

toward zero (Double))

[Syntax]

- trncf.dul reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to unsigned 64-bit fixed-point format, and stores the result in the register pair specified

by general-purpose register reg2.

The result is rounded in the zero direction, regardless of the current rounding mode.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 264 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 264 - 1 to 0, or +∞ : 264 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one trncf.dul machine instruction.

trncf.dul

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 486 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (double precision) (Floating-point Convert Double to Unsigned-Word, round

toward zero (Double))

[Syntax]

- trncf.duw reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to unsigned 32-bit fixed-point format, and stores the result in general-purpose register

reg2.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 232 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 232 - 1 to 0, or +∞ : 232 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one trncf.duw machine instruction.

trncf.duw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 487 of 751
Sep 01, 2013

Conversion to fixed-point format (double precision) (Floating-point Convert Double to Word, round toward zero (Dou-

ble))

[Syntax]

- trncf.dw reg1, reg2

[Function]

This instruction arithmetically converts the double-precision floating-point format contents of the register pair specified

by general-purpose register reg1 to 32-bit fixed-point format, and stores the result in general-purpose register reg2.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 231 - 1 to -231,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 231 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -231 is returned.

[Description]

- The assembler generates one trncf.dw machine instruction.

trncf.dw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 488 of 751
Sep 01, 2013

Conversion to fixed-point format (single precision) (Floating-point Convert Single to Long, round toward zero (Single))

[Syntax]

- trncf.sl reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to 64-bit fixed-point format, and stores the result in the register pair specified by general-purpose register reg2.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 263 - 1 to -263,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 263 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -263 is returned.

[Description]

- The assembler generates one trncf.sl machine instruction.

trncf.sl

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 489 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (single precision) (Floating-point Convert Single to Unsigned-Long, round

toward zero (Single))

[Syntax]

- trncf.sul reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point format contents of general-purpose register

reg1 to unsigned 64-bit fixed-point format, and stores the result in the register pair specified by general-purpose register

reg2.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 264 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 264 - 1 to 0, or +∞ : 264 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one trncf.sul machine instruction.

trncf.sul

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 490 of 751
Sep 01, 2013

Conversion to unsigned fixed-point format (single precision) (Floating-point Convert Single to Unsigned-Word, round

toward zero (Single))

[Syntax]

- trncf.suw reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point number format contents of general-purpose

register reg1 to unsigned 32-bit fixed-point format, and stores the result in general-purpose register reg2.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded result is outside the

range of 232 - 1 to 0, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number outside the range of 232 - 1 to 0, or +∞ : 232 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : 0 is returned.

[Description]

- The assembler generates one trncf.suw machine instruction.

trncf.suw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 491 of 751
Sep 01, 2013

Conversion to fixed-point format (single precision) (Floating-point Convert Single to Word, round toward zero (Single))

[Syntax]

- trncf.sw reg1, reg2

[Function]

This instruction arithmetically converts the single-precision floating-point number format contents of general-purpose

register reg1 to 32-bit fixed-point format, and stores the result in general-purpose register reg2.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the range of 231 - 1 to -231,

an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR register is set as an invalid oper-

ation and no exception occurs. The return value differs as follows, according to differences among sources.

- Source is a positive number or +∞ : 231 - 1 is returned.

- Source is a negative number, not-a-number, or -∞ : -231 is returned.

[Description]

- The assembler generates one trncf.sw machine instruction.

trncf.sw

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 492 of 751
Sep 01, 2013

Floating-point compare (double)

[Syntax]

- cmpf.d imm4, reg1, reg2, cc#3

- cmpfcnd.d reg1, reg2

The following can be specified for imm4:

- Absolute expression having a value up to 4 bits

[Function]

- Syntax "cmpf.d imm4, reg1, reg2, cc#3"

The content in double-precision floating-point format in the register pair specified by reg2 is compared with the con-

tent in double-precision floating-point format in the register pair specified by reg1, via the imm4 comparison condi-

tion. The result (1 if true; 0 if false) is set in the condition bit (CC(7:0) bits; bits 31-24) in the FPSR register

specified via cc#3. If cc#3 is omitted, it is set in the CC0 bit (bit 24).

- Syntax "cmpfcnd.d reg1, reg2"

Via cmpfcnd.d, a corresponding "cmpf.d" instruction is generated (see "Table 4-50. cmpfcnd.d Instruction List" for

details), and expanded in the format "cmpf.d imm4, reg1, reg2, cc#3". The content in single-precision floating-point

format in the register pair specified by reg2 is compared with the content in single-precision floating-point format in

the register pair specified by reg1, via the comparison condition. The result (1 if true; 0 if false) is set in the condi-

tion bit (CC(7:0) bits; bits 31-24) in the FPSR register specified via cc#3. If cc#3 is omitted, it is set in the CC0 bit

(bit 24).

[Description]

- If the instruction is executed in syntax "cmpf.d imm4, reg1, reg2, cc#3", the assembler generates one cmpf.d

machine instruction.

- If the instruction is executed in syntax "cmpfcnd.d reg1, reg2", the assembler generates the corresponding cmpf.d

instruction (see "Table 4-50. cmpfcnd.d Instruction List") and expands it to syntax "cmpf.d imm4, reg1, reg2,

cc#3".

Table 4-50. cmpfcnd.d Instruction List

cmpf.d

Instruction Condition Meaning of Condition Instruction Expansion

cmpff.d FALSE Always false cmpf.d 0x0

cmpfun.d Unordered At least one of reg1 and reg2 is a non-number cmpf.d 0x1

cmpfeq.d reg2 = reg1 Neither is a non-number, and they are equal cmpf.d 0x2

cmpfueq.d reg2 ?= reg1 At least one is a non-number, or they are equal cmpf.d 0x3

cmpfolt.d reg2 < reg1 Neither is a non-number, and less than cmpf.d 0x4

cmpfult.d reg2 ?< reg1 At least one is a non-number, or less than cmpf.d 0x5

cmpfole.d reg2 <= reg1 Neither is a non-number, and less than or equal cmpf.d 0x6

cmpfule.d reg2 ?<= reg1 At least one is a non-number, or less than or equal cmpf.d 0x7

cmpfsf.d FALSE Always false cmpf.d 0x8

cmpfngle.d Unordered At least one of reg1 and reg2 is a non-number cmpf.d 0x9

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 493 of 751
Sep 01, 2013

Remark ?: Unordered

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the cmpf.d instruction, the follow-

ing message is output, and assembly continues using the lower 4 bits of the specified value.

cmpfseq.d reg2 = reg1 Neither is a non-number, and they are equal cmpf.d 0xA

cmpfngl.d reg2 ?= reg1 At least one is a non-number, or they are equal cmpf.d 0xB

cmpflt.d reg2 < reg1 Neither is a non-number, and less than cmpf.d 0xC

cmpfnge.d reg2 ?< reg1 At least one is a non-number, or less than cmpf.d 0xD

cmpfle.d reg2 <= reg1 Neither is a non-number, and less than or equal cmpf.d 0xE

cmpfngt.d reg2 ?<= reg1 At least one is a non-number, or less than or equal cmpf.d 0xF

W0550011 : illegal operand (range error in immediate).

Instruction Condition Meaning of Condition Instruction Expansion

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 494 of 751
Sep 01, 2013

Floating-point compare (single)

[Syntax]

- cmpf.s imm4, reg1, reg2, cc#3

- cmpfcnd.s reg1, reg2

The following can be specified for imm4:

- Absolute expression having a value up to 4 bits

[Function]

- Syntax "cmpf.s imm4, reg1, reg2, cc#3"

The content in single-precision floating-point format in the register pair specified by reg2 is compared with the con-

tent in single-precision floating-point format in the register pair specified by reg1, via the imm4 comparison condi-

tion. The result (1 if true; 0 if false) is set in the condition bit (CC(7:0) bits; bits 31-24) in the FPSR register

specified via cc#3. If cc#3 is omitted, it is set in the CC0 bit (bit 24).

- Syntax "cmpfcnd.s reg1, reg2"

Via cmpfcnd.s, a corresponding "cmpf.s" instruction is generated (see "Table 4-51. cmpfcnd.s Instruction List" for

details), and expanded in the format "cmpf.s imm4, reg1, reg2, cc#3". The content in single-precision floating-point

format in the register pair specified by reg2 is compared with the content in single-precision floating-point format in

the register pair specified by reg1, via the comparison condition. The result (1 if true; 0 if false) is set in the condi-

tion bit (CC(7:0) bits; bits 31-24) in the FPSR register specified via cc#3. If cc#3 is omitted, it is set in the CC0 bit

(bit 24).

[Description]

- If the instruction is executed in syntax "cmpf.s imm4, reg1, reg2, cc#3", the assembler generates one cmpf.s

machine instruction.

- If the instruction is executed in syntax "cmpfcnd.s reg1, reg2", the assembler generates the corresponding cmpf.s

instruction (see "Table 4-51. cmpfcnd.s Instruction List") and expands it to syntax "cmpf.s imm4, reg1, reg2,

cc#3".

Table 4-51. cmpfcnd.s Instruction List

cmpf.s

Instruction Condition Meaning of Condition Instruction Expansion

cmpff.s FALSE Always false cmpf.s 0x0

cmpfun.s Unordered At least one of reg1 and reg2 is a non-number cmpf.s 0x1

cmpfeq.s reg2 = reg1 Neither is a non-number, and they are equal cmpf.s 0x2

cmpfueq.s reg2 ?= reg1 At least one is a non-number, or they are equal cmpf.s 0x3

cmpfolt.s reg2 < reg1 Neither is a non-number, and less than cmpf.s 0x4

cmpfult.s reg2 ?< reg1 At least one is a non-number, or less than cmpf.s 0x5

cmpfole.s reg2 <= reg1 Neither is a non-number, and less than or equal cmpf.s 0x6

cmpfule.s reg2 ?<= reg1 At least one is a non-number, or less than or equal cmpf.s 0x7

cmpfsf.s FALSE Always false cmpf.s 0x8

cmpfngle.s Unordered At least one of reg1 and reg2 is a non-number cmpf.s 0x9

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 495 of 751
Sep 01, 2013

Remark ?: Unordered

[Caution]

- If an absolute expression having a value exceeding 4 bits is specified as imm4 of the cmpf.s instruction, the follow-

ing message is output, and assembly continues using the lower 4 bits of the specified value.

cmpfseq.s reg2 = reg1 Neither is a non-number, and they are equal cmpf.s 0xA

cmpfngl.s reg2 ?= reg1 At least one is a non-number, or they are equal cmpf.s 0xB

cmpflt.s reg2 < reg1 Neither is a non-number, and less than cmpf.s 0xC

cmpfnge.s reg2 ?< reg1 At least one is a non-number, or less than cmpf.s 0xD

cmpfle.s reg2 <= reg1 Neither is a non-number, and less than or equal cmpf.s 0xE

cmpfngt.s reg2 ?<= reg1 At least one is a non-number, or less than or equal cmpf.s 0xF

W0550011 : illegal operand (range error in immediate).

Instruction Condition Meaning of Condition Instruction Expansion

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 496 of 751
Sep 01, 2013

Conditional move (double precision) (Floating-point Conditional Move (Double))

[Syntax]

- cmovf.d cc#3, reg1, reg2, reg3

[Function]

When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1), data from the register pair

specified by reg1 is stored in the register pair specified by reg3. When these bits are false (0), data from the register pair

specified by reg2 is stored in the register pair specified by reg3.

[Description]

- The assembler generates one cmovf.d machine instruction.

[Caution]

- If r0 is specified as reg3 in the cmovf.d instruction, the assembler outputs the following message and stops assem-

bling.

cmovf.d

E0550262 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 497 of 751
Sep 01, 2013

Conditional move (single precision) (Floating-point Conditional Move (Single))

[Syntax]

- cmovf.s cc#3, reg1, reg2, reg3

[Function]

When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1), data from reg1 is stored in

reg3. When these bits are false (0), the reg2 data is stored in reg3.

[Description]

- The assembler generates one cmovf.s machine instruction.

[Caution]

- If r0 is specified as reg3 in the cmovf.s instruction, the assembler outputs the following message and stops assem-

bling.

cmovf.s

E0550262 : Illegal operand (cannot use r0 as destination in RH850 mode).

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 498 of 751
Sep 01, 2013

Flag transfer (Transfers specified CC bit to Zero flag in PSW (Single))

[Syntax]

- trfsr cc#3

- trfsr

[Function]

This instruction transfers the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR register specified by fcbit to the

Z flag in the PSW. If fcbit is omitted, this instruction transfers the CC0 bit (bit 24).

[Description]

- The assembler generates one trfsr machine instruction.

trfsr

CubeSuite+ V2.01.00 CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 499 of 751
Sep 01, 2013

4.8.11 Other instructions

Other instructions are shown below.

- Virtualization support feature instructions

- Hardware multithreading feature instructions

- Cache instructions

- MMU control instructions

- SIMD instructions

Next table lists the floating-point operation instructions.

See the RH850 product user's manual and architecture edition for details.

CubeSuite+ V2.01.00 CHAPTER 5 SECTION ALLOCATION

R20UT2584EJ0101 Rev.1.01 Page 500 of 751
Sep 01, 2013

CHAPTER 5 SECTION ALLOCATION

In an embedded application such as allocating program code from certain address or allocating by division, it is

necessary to pay attention in the memory allocation.

To implement the memory allocation as expected, program code or data allocation information should be specified in

optimizing linker.

5.1 Sections

A section is the basic unit making up programs (area to which programs or data are allocated). For example, program

code is allocated to a text-attribute section and variables that have initial values are allocated to a data-attribute section.

In other words, different types of information are allocated to different sections.

Section names can be specified within application. In C language, they can be specified using a #pragma section

directive and in assembly language they can be specified using section definition directives.

Even if the #pragma directive is not used to specify a section, however, allocation by the compiler to a particular section

may already be set as the default setting in the program code or data (variables).

5.1.1 Section concatenation

The optimizing linker (hereafter abbreviated "rlink") concatenates identical sections in the input relocatable files, and

allocates them to the address specified by the -start option.

Remark See "CubeSuite+ Integrated Development Environment User's Manual: RH850 Build" for details of -start

option.

(1) Section allocation via the -start option

(a) Sections in different files with the same name are concatenated and allocated in the order of file input.

[file1.obj] [file2.obj] [file3.obj]

Linkage specification option

Section C

Section A

Section B

Section D

Section A

Section C

Section B

input file1.obj file2.obj file3.obj

start A,B/1000, C,D/8000

file2.Section D

file1.Section C

file3.Section C

file3.Section B

file2.Section A

file1.Section B

file1.Section A
0x1000

0x8000

CubeSuite+ V2.01.00 CHAPTER 5 SECTION ALLOCATION

R20UT2584EJ0101 Rev.1.01 Page 501 of 751
Sep 01, 2013

(b) Sections with the same name but different alignments are concatenated after alignment adjustment.

The alignment is adjusted to that of the section with the largest alignment.

(c) If sections with the same name include both absolute-address format and relative-address format,

then the sections with relative-address format are concatenated after the sections with absolute-

address format.

(d) The rules for ordering of concatenation for sections with the same name are indicated below, highest

priority to lowest.

- Order in which input files are specified via the input option or on the command line

- Order in which user libraries are specified via the library option and order of modules input in the library

- Order in which system libraries are specified via the library option and order of modules input in the library

- Order in which environment variable (HLNK_LIBRARY1 to 3) libraries are specified and order of modules

input in the library

[file1.obj] [file2.obj]

Linkage specification option

Section A

(align=2,size=0x6D)

Section A

(align=4,size=0x100)

input file1.obj file2.obj

start A/1000

file2.Section A

file1.Section A
0x1000

0x1070

align=4

Size=0x170

[file1.obj] [file2.obj]

Linkage specification option

Section A

(align=4,size=0x100)

Section A

(size=0x6D .ORG 01000H)

input file1.obj file2.obj

file1.Section A

file2.Section A
0x1000

0x1070

Section with absolute-address format

Size=0x170

CubeSuite+ V2.01.00 CHAPTER 5 SECTION ALLOCATION

R20UT2584EJ0101 Rev.1.01 Page 502 of 751
Sep 01, 2013

5.2 Special Symbol

The optimizing linker generates reserved symbols set to the values of the start addresses of each output section, and

the first address beyond the end of each output section. If the user defines a symbol with the same name as one of these

reserved symbols, then the optimizing linker will use the defined symbol, and will not generate its own.

The name of the reserved symbol with the value of the start address of a section is the name of that output section,

preceded by the string "__s".

The name of the reserved symbol with the value of the first address after the end of a section is the name of that output

section, preceded by the string "__e".

Below are shown the reserved sections and the special symbols corresponding to those sections.

Table 5-1. Special Symbol for Reserved Section

Reserved Section Special Symbol for Reserved Section

.text __s.text, __e.text

[file2.obj] [usr2.libj]

Section A Module 3 (Section A)

0x1000

Module 4 (Section A)

[syslib2.lib]

Module 7 (Section A)

Module 8 (Section A)

[file1.obj] [usr1.lib]

Section A Module 1 (Section A)

Module 2 (Section A)

[syslib1.lib]

Module 5 (Section A)

Module 6 (Section A)

Linkage specification option

input file1.obj file2.obj

library syslib1.lib usr1.lib

start A/1000

Environment variable

HLNK_LIBRARY1=syslib2.lib

HLNK_LIBRARY2=usr2.lib

Module 2.Section A

file2.Section A

Module 1.Section A

file1.Section A

Module 5.Section A

Module 6.Section A

Module 7.Section A

Module 8.Section A

Module 4.Section A

Module 3.Section A

CubeSuite+ V2.01.00 CHAPTER 5 SECTION ALLOCATION

R20UT2584EJ0101 Rev.1.01 Page 503 of 751
Sep 01, 2013

Caution Only the symbols in the table for which there is a section in the post-linking executable file are

generated.

.bss __s.bss, __e.bss

.zbss __s.zbss, __e.zbss

.zbss23 __s.zbss23, __e.zbss23

.ebss __s.ebss, __e.ebss

.ebss23 __s.ebss23, __e.ebss23

.tbss4 __s.tbss4, __e.tbss4

.tbss5 __s.tbss5, __e.tbss5

.tbss7 __s.tbss7, __e.tbss7

.tbss8 __s.tbss8, __e.tbss8

.sbss __s.sbss, __e.sbss

.sbss23 __s.sbss23, __e.sbss23

.data __s.data, __e.data

.zdata __s.zdata, __e.zdata

.zdata23 __s.zdata23, __e.zdata23

.edata __s.edata, __e.edata

.edata23 __s.edata23, __e.edata23

.tdata __s.tdata, __e.tdata

.tdata4 __s.tdata4, __e.tdata4

.tdata5 __s.tdata5, __e.tdata5

.tdata7 __s.tdata7, __e.tdata7

.tdata8 __s.tdata8, __e.tdata8

.sdata __s.sdata, __e.sdata

.sdata23 __s.sdata23, __e.sdata23

.const __s.const, __e.const

.zconst __s.zconst, __e.zconst

.zconst23 __s.zconst23, __e.zconst23

Reserved Section Special Symbol for Reserved Section

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 504 of 751
Sep 01, 2013

CHAPTER 6 FUNCTIONAL SPECIFICATIONS

This chapter describes the library functions provided in the CC-RH.

6.1 Supplied Libraries

The CC-RH provides the following libraries.

Table 6-1. Supplied Libraries

When the standard library or mathematical library is used in an application, include the related header files to use the

library function.

Refer these libraries using the optimizing linker option (-l).

However, it is not necessary to refer the libraries if only "program diagnosis function", "function with a variable

arguments", "character conversion functions" and "character classification functions" are used.

When CubeSuite+ is used, these libraries are referred by default.

The operation runtime function is a routine that is automatically called by the CC-RH when a floating-point operation or

integer operation is performed.

Unlike the other library functions, the "operation runtime function" is not described in the C source or assembler source.

6.2 Header Files

The list of header files required for using the libraries of the CC-RH are listed below.

The macro definitions and function declarations are described in each file.

Table 6-2. Header Files

Supplied Libraries Library Name Outline

Standard library libc.lib Program diagnosis function

Function with variable arguments

Character string functions

Memory management functions

Character conversion functions

Character classification functions

Standard I/O functions

Standard utility functions

Initialization peripheral devices function

RAM section initialization function

Operation runtime functions

libsetjmp.lib Non-local jump functions

Mathematical library (doble-precision) libm.lib Mathematical functions

Mathematical library (sngle-precision) libmf.lib

File Name Outline

assert.h Header file for program diagnostics

ctype.h Header file for character conversion and classification

errno.h Header file for reporting error condition

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 505 of 751
Sep 01, 2013

6.3 Re-entrant

"Re-entrant" means that the function can "re-enter". A re-entrant function can be correctly executed even if an attempt

is made in another process to execute that function while the function is being executed. For example, in an application

using a real-time OS, this function is correctly executed even if dispatching to another task is triggered by an interrupt

while a certain task is executing this function, and even if the function is executed in that task. A function that must use

RAM as a temporary area may not necessarily be re-entrant.

float.h Header file for floating-point representation and floating-point operation

limits.h Header file for quantitative limiting of integers

math.h Header file for mathematical calculation

mathf.h Header file for mathematical calculation (declares single-precision math functions and defines single-

precision macros outside of the ANSI standard)

setjmp.h Header file for non-local jump

stdarg.h Header file for supporting functions having variable arguments

stddef.h Header file for common definitions

stdio.h Header file for standard I/O

stdlib.h Header file for standard utilities

string.h Header file for memory manipulation and character string manipulation

_h_c_lib.h Header file for the initial setting routine

File Name Outline

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 506 of 751
Sep 01, 2013

6.4 Library Function

This section explains Library Function.

6.4.1 Program diagnostic functions

Program diagnostic functions are as follows

Table 6-3. Program Diagnostic Function

Function/Macro Name Outline

assert Adds diagnostic features to the program

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 507 of 751
Sep 01, 2013

Adds diagnostic features to the program.

[Classification]

Standard library

[Syntax]

#include <asssert.h>

assert(int expression);

[Description]

If expression is true, ends processing without returning a value. If expression is false, it outputs diagnostic information

to the standard error file in the format defined by the compiler, and then calls the abort functionNote.

The diagnostic information includes the program text of the parameters, the name of the source file, and the line num-

ber of the source.

If you wish to disable the assert macro, include a #define NDEBUG statement before assert.h is loaded.

Note If you use the assert macro, you must create an abort function in accordance with the user system.

[Example]

assert

#include <assert.h>

int func(void);

int main() {

 int ret;

 ret = func();

 assert(ret == 0); <- abort() is called if ret is not 0

 return 0;

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 508 of 751
Sep 01, 2013

6.4.2 Functions with variable arguments

Functions with a variable arguments are as follows

Table 6-4. Functions with Variable Arguments

Function/Macro Name Outline

va_start Initialization of variable for scanning argument list

va_end End of scanning argument list

va_arg Moving variable for scanning argument list

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 509 of 751
Sep 01, 2013

Initialization of variable for scanning argument list

[Classification]

Standard library

[Syntax]

#include <stdarg.h>

void va_start(va_list ap, last-named-argument);

[Description]

This function initializes variable ap so that it indicates the beginning (argument next to last-named-argument) of the list

of the variable arguments.

To define function func having a variable arguments in a portable form, the following format is used.

Remark arg-declarations is an argument list with the last-named-argument declared at the end. ", ..." that follows

indicates a list of the variable arguments. va_listis the type of the variable (ap in the above example) used

to scan the argument list.

[Example]

va_start

#include <stdarg.h>

void func(arg-declarations, ...) {

 va_list ap;

 type argN;

 va_start(ap, last-named-argument);

 argN = va_arg(ap, type);

 va_end(ap);

}

#include <stdarg.h>

void abc(int first, int second, ...) {

 va_list ap;

 int i;

 char c, *fmt;

 va_start(ap, second);

 i = va_arg(ap, int);

 c = va_arg(ap, int); /*char type is converted into int type.*/

 fmt = va_arg(ap, char *);

 va_end(ap);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 510 of 751
Sep 01, 2013

End of scanning argument list

[Classification]

Standard library

[Syntax]

#include <stdarg.h>

void va_end(va_list ap);

[Description]

This function indicates the end of scanning the list. By enclosing va_arg between va_start and va_end, scanning the

list can be repeated.

va_end

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 511 of 751
Sep 01, 2013

Moving variable for scanning argument list

[Classification]

Standard library

[Syntax]

#include <stdarg.h>

type va_arg(va_list ap, type);

[Description]

This function returns the argument indicated by variable ap, and advances variable ap to indicate the next argument.

For the type of va_arg, specify the type converted when the argument is passed to the function. With the C compiler

specify the int type for an argument of char and short types, and specify the unsigned int type for an argument of

unsigned char and unsigned short types. Although a different type can be specified for each argument, stipulate "which

type of argument is passed" according to the conventions between the called function and calling function.

Also stipulate "how many functions are actually passed" according to the conventions between the called function and

calling function.

va_arg

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 512 of 751
Sep 01, 2013

6.4.3 Character string functions

Character string functions are as follows.

Table 6-5. Character String Functions

Function/Macro Name Outline

strpbrk Character string search (start position)

strrchr Character string search (end position)

strchr Character string search (start position of specified character)

strstr Character string search (start position of specified character string)

strspn Character string search (maximum length including specified character)

strcspn Character string search (maximum length not including specified character)

strcmp Character string comparison

strncmp Character string comparison (with number of characters specified)

strcpy Character string copy

strncpy Character string copy (with number of characters specified)

strcat Character string concatenation

strncat Character string concatenation (with number of characters specified)

strtok Token division

strlen Length of character string

strerror Character string conversion of error number

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 513 of 751
Sep 01, 2013

Character string search (start position)

[Classification]

Standard library

[Syntax]

#include <string.h>

char *strpbrk(const char *s1, const char *s2);

[Return value]

Returns the pointer indicating this character. If any of the characters from s2 does not appear in s1, the null pointer is

returned.

[Description]

This function obtains the position in the character string indicated by s1 at which any of the characters in the character

string indicated by s2 (except the null character (\0)) appears first.

strpbrk

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 514 of 751
Sep 01, 2013

Character string search (end position)

[Classification]

Standard library

[Syntax]

#include <string.h>

char *strrchr(const char *s, int c);

[Return value]

Returns a pointer indicating c that has been found. If c does not appear in this character string, the null pointer is

returned.

[Description]

This function obtains the position at which c converted into char type appears last in the character string indicated by s.

The null character (\0) indicating termination is regarded as part of this character string.

strrchr

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 515 of 751
Sep 01, 2013

Character string search (start position of specified character)

[Classification]

Standard library

[Syntax]

#include <string.h>

char *strchr(const char *s, int c);

[Return value]

Returns a pointer indicating the character that has been found. If c does not appear in this character string, the null

pointer is returned.

[Description]

This function obtains the position at which a character the same as c converted into char type appears in the character

string indicated by s. The null character (\0) indicating termination is regarded as part of this character string.

strchr

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 516 of 751
Sep 01, 2013

Character string search (start position of specified character)

[Classification]

Standard library

[Syntax]

#include <string.h>

char *strstr(const char *s1, const char *s2);

[Return value]

Returns the pointer indicating the character string that has been found. If character string s2 is not found, the null

pointer is returned. If s2 indicates a character string with a length of 0, s1 is returned.

[Description]

This function obtains the position of the portion (except the null character (\0)) that first coincides with the character

string indicated by s2, in the character string indicated by s1.

strstr

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 517 of 751
Sep 01, 2013

Character string search (maximum length including specified character)

[Classification]

Standard library

[Syntax]

#include <string.h>

size_t strspn(const char *s1, const char *s2);

[Return value]

Returns the length of the portion that has been found.

[Description]

This function obtains the maximum and first length of the portion consisting of only the characters (except the null

character (\0)) in the character string indicated by s2, in the character string indicated by s1.

strspn

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 518 of 751
Sep 01, 2013

Character string search (maximum length not including specified character)

[Classification]

Standard library

[Syntax]

#include <string.h>

size_t strcspn(const char *s1, const char *s2);

[Return value]

Returns the length of the portion that has been found.

[Description]

This function obtains the length of the maximum and first portion consisting of characters missing from the character

string indicated by s2 (except the null character (\0) at the end) in the character string indicated by s1.

strcspn

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 519 of 751
Sep 01, 2013

Character string comparison

[Classification]

Standard library

[Syntax]

#include <string.h>

int strcmp(const char *s1, const char *s2);

[Return value]

Returns an integer greater than, equal to, or less than 0, depending on whether the character string indicated by s1 is

greater than, equal to, or less than the character string indicated by s2.

[Description]

This function compares the character string indicated by s1 with the character string indicated by s2.

strcmp

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 520 of 751
Sep 01, 2013

Character string comparison (with number of characters specified)

[Classification]

Standard library

[Syntax]

#include <string.h>

int strncmp(const char *s1, const char *s2, size_t length);

[Return value]

Returns an integer greater than, equal to, or less than 0, depending on whether the character string indicated by s1 is

greater than, equal to, or less than the character string indicated by s2.

[Description]

This function compares up to length characters of the array indicated by s1 with characters of the array indicated by s2.

strncmp

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 521 of 751
Sep 01, 2013

Character string copy

[Classification]

Standard library

[Syntax]

#include <string.h>

char *strcpy(char *dst, const char *src);

[Return value]

Returns the value of dst.

[Description]

This function copies the character string indicated by src to the array indicated by dst.

[Example]

strcpy

#include <string.h>

void func(char *str, const char *src) {

 strcpy(str, src); /*Copies character string indicated by src to array indicated by

 str.*/

 :

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 522 of 751
Sep 01, 2013

Character string copy (with number of characters specified)

[Classification]

Standard library

[Syntax]

#include <string.h>

char *strncpy(char *dst, const char *src, size_t length);

[Return value]

Returns the value of dst.

[Description]

This function copies up to length characters (including the null character (\0)) from the array indicated by src to the

array indicated by dst. If the array indicate by src is shorter than length characters, null characters (\0) are appended to

the duplication in the array indicated by dst, until all length characters are written.

strncpy

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 523 of 751
Sep 01, 2013

Character string concatenation

[Classification]

Standard library

[Syntax]

#include <string.h>

char *strcat(char *dst, const char *src);

[Return value]

Returns the value of dst.

[Description]

This function concatenates the duplication of the character string indicated by src to the end of the character string

indicated by dst, including the null character (\0). The first character of src overwrites the null character (\0) at the end of

dst.

strcat

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 524 of 751
Sep 01, 2013

Character string concatenation (with number of characters specified)

[Classification]

Standard library

[Syntax]

#include <string.h>

char *strncat(char *dst, const char *src, size_t length);

[Return value]

Returns the value of dst.

[Description]

This function concatenates up to length characters (including the null character (\0) of src) to the end of the character

string indicated by dst, starting from the beginning of the character string indicated by src. The null character (\0) at the

end of dst is written over the first character of src. The null character indicating termination (\0) is always added to this

result.

[Caution]

Because the null character (\0) is always appended when strncat is used, if copying is limited by the number of length

arguments, the number of characters appended to dst is length + 1.

strncat

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 525 of 751
Sep 01, 2013

Token division

[Classification]

Standard library

[Syntax]

#include <string.h>

char *strtok(char *s, const char *delimiters);

[Return value]

Returns a pointer to a token. If a token does not exist, the null pointer is returned.

[Description]

This function divides the character string indicated by s into strings of tokens by delimiting the character string with a

character in the character string indicated by delimiters. If this function is called first, s is used as the first argument.

Then, calling with the null pointer as the first argument continues. The delimiting character string indicated by delimiters

can differ on each call. On the first call, the character string indicated by s is searched for the first character not included

in the delimiting character string indicated by delimiters. If such a character is not found, a token does not exist in the

character string indicated by s, and strtok returns the null pointer. If a character is found, that character is the beginning

of the first token. After that, strtok searches from the position of that character for a character included in the delimiting

character string at that time.

If such a character is not found, the token is expanded to the end of the character string indicated by s, and the subse-

quent search returns the null pointer. If a character is found, the subsequent character is overwritten by the null character

(\0) indicating the termination of the token. strtok saves the pointer indicating the subsequent character. If the null

pointer is used as the value of the first argument, a code that is not re-entrant is returned. This can be avoided by pre-

serving the address of the last delimiting character in the application program, and passing s as an argument that is not

vacant, by using this address.

strtok

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 526 of 751
Sep 01, 2013

Length of character string

[Classification]

Standard library

[Syntax]

#include <string.h>

size_t strlen(const char *s);

[Return value]

Returns the number of characters existing before the null character (\0) indicating termination.

[Description]

This function obtains the length of the character string indicated by s.

strlen

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 527 of 751
Sep 01, 2013

Character string conversion of error number

[Classification]

Standard library

[Syntax]

#include <string.h>

char *strerror(int errnum);

[Return value]

Returns a pointer to the converted character string.

[Description]

This function converts error number errnum into a character string according to the correspondence relationship of the

processing system definition. The value of errnum is usually the duplication of global variable errno. Do not change the

specified array of the application program.

strerror

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 528 of 751
Sep 01, 2013

6.4.4 Memory management functions

Memory management functions are as follows.

Table 6-6. Memory Management Functions

Function/Macro Name Outline

memchr Memory search

memcmp Memory comparison

memcpy Memory copy

memmove Memory move

memset Memory set

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 529 of 751
Sep 01, 2013

Memory search

[Classification]

Standard library

[Syntax]

#include <string.h>

void *memchr(const void *s, int c, size_t length);

[Return value]

If c is found, a pointer indicating this character is returned. If c is not found, the null pointer is returned.

[Description]

This function obtains the position at which character c (converted into char type) appears first in the first length number

of characters in an area indicated by s.

memchr

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 530 of 751
Sep 01, 2013

Memory comparison

[Classification]

Standard library

[Syntax]

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

[Return value]

An integer greater than, equal to, or less than 0 is returned, depending on whether the object indicated by s1 is greater

than, equal to, or less than the object indicated by s2.

[Description]

This function compares the first n characters of an object indicated by s1 with the object indicated by s2.

[Example]

memcmp

#include <string.h>

int func(const void *s1, const void *s2) {

 int i;

 i = memcmp(s1, s2, 5); /*Compares the first five characters of the character

 string indicated by s1 with the first five characters of

 the character string indicated by s2.*/

 return(i);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 531 of 751
Sep 01, 2013

Memory copy

[Classification]

Standard library

[Syntax]

#include <string.h>

void *memcpy(void *out, const void *in, size_t n);

[Return value]

Returns the value of out. The operation is undefined if the copy source and copy destination areas overlap.

[Description]

This function copies n bytes from an object indicated by in to an object indicated by out.

memcpy

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 532 of 751
Sep 01, 2013

Memory move

[Classification]

Standard library

[Syntax]

#include <string.h>

void *memmove(void *dst, void *src, size_t length);

[Return value]

Returns the value of dst at the copy destination.

[Description]

This function moves the length number of characters from a memory area indicated by src to a memory area indicated

by dst. Even if the copy source and copy destination areas overlap, the characters are correctly copied to the memory

area indicated by dst.

memmove

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 533 of 751
Sep 01, 2013

Memory set

[Classification]

Standard library

[Syntax]

#include <string.h>

void *memset(const void *s, int c, size_t length);

[Return value]

Returns the value of s.

[Description]

This function copies the value of c (converted into unsigned char type) to the first length character of an object indi-

cated by s.

memset

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 534 of 751
Sep 01, 2013

6.4.5 Character conversion functions

Character conversion functions are as follows.

Table 6-7. Character Conversion Functions

Function/Macro Name Outline

toupper Conversion from lower-case to upper-case (not converted if argument is not in lower-case)

tolower Conversion from upper-case to lower-case (not converted if argument is not in upper-case)

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 535 of 751
Sep 01, 2013

Conversion from lower-case to upper-case (not converted if argument is not in lower-case)

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int toupper(int c);

[Return value]

If islower is true with respect to c, returns a character that makes isupper true in response; otherwise, returns c.

[Description]

This function is a macro that converts lowercase characters into the corresponding uppercase characters and leaves

the other characters unchanged.

This macro is defined only when c is an integer in the range of EOF to 255. A compiled subroutine can be used instead

of the macro definition, which is invalidated by using "#undef toupper".

[Example]

toupper

#include <ctype.h>

int c = 'a';

int func() {

 int i;

 i = toupper(c); /*Converts lowercase character 'a' of c into uppercase

 character 'A'.*/

 return(i);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 536 of 751
Sep 01, 2013

Conversion from upper-case to lower-case (not converted if argument is not in upper-case)

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int tolower(int c);

[Return value]

If isupper is true with respect to c, returns a character that makes islower true in response; otherwise, returns c.

[Description]

This function is a macro that converts uppercase characters into the corresponding lowercase characters and leaves

the other characters unchanged.

This macro is defined only when c is an integer in the range of EOF to 255. A compiled subroutine can be used instead

of the macro definition, which is invalidated by using "#undef tolower".

tolower

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 537 of 751
Sep 01, 2013

6.4.6 Character classification functions

Character classification functions are as follows.

Table 6-8. Character Classification Functions

Function/Macro Name Outline

isalnum Identification of ASCII letter or numeral

isalpha Identification of ASCII letter

isascii Identification of ASCII code

isupper Identification of upper-case character

islower Identification of lower-case character

isdigit Identification of decimal number

isxdigit Identification of hexadecimal number

iscntrl Identification of control character

ispunct Identification of delimiter character

isspace Identification of space/tab/carriage return/line feed/vertical tab/page feed

isprint Identification of display character

isgraph Identification of display character other than space

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 538 of 751
Sep 01, 2013

Identification of ASCII letter or numeral

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int isalnum(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an ASCII alphabetic character or numeral. This

macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the

macro definition, which is invalidated by using "#undef isalnum".

isalnum

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 539 of 751
Sep 01, 2013

Identification of ASCII letter

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int isalpha(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an ASCII alphabetic character. This macro is defined

only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro definition,

which is invalidated by using "#undef isalpha".

isalpha

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 540 of 751
Sep 01, 2013

Identification of ASCII code

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int isascii(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an ASCII code (0x00 to 0x7F). This macro is defined

for all integer values. A compiled subroutine can be used instead of the macro definition, which is invalidated by using

"#undef isascii".

isascii

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 541 of 751
Sep 01, 2013

Identification of upper-case character

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int isupper(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is an uppercase character (A to Z). This macro is

defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro

definition, which is invalidated by using "#undef isupper".

isupper

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 542 of 751
Sep 01, 2013

Identification of lower-case character

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int islower(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a lowercase character (a to z). This macro is defined

only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro definition,

which is invalidated by using "#undef islower".

islower

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 543 of 751
Sep 01, 2013

Identification of decimal number

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int isdigit(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a decimal number. This macro is defined only when

c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro definition, which is

invalidated by using "#undef isdigit".

isdigit

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 544 of 751
Sep 01, 2013

Identification of hexadecimal number

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int isxdigit(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a hexadecimal number (0 to 9, a to f, or A to F). This

macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the

macro definition, which is invalidated by using "#undef isxdigit".

isxdigit

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 545 of 751
Sep 01, 2013

Identification of control character

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int iscntrl(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a control character (0x00 to 0x1F or 0x7F). This

macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the

macro definition, which is invalidated by using "#undef iscntrl".

iscntrl

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 546 of 751
Sep 01, 2013

Identification of delimiter character

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int ispunct(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a printable delimiter (isgraph(c) && !isalnum(c)). This

macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the

macro definition, which is invalidated by using "#undef ispunct".

ispunct

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 547 of 751
Sep 01, 2013

Identification of space/tab/carriage return/line feed/vertical tab/page feed

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int isspace(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a space, tap, line feed, carriage return, vertical tab, or

form feed (0x09 to 0x0D, or 0x20). This macro is defined only when c is made true by isascii or when c is EOF. A

compiled subroutine can be used instead of the macro definition, which is invalidated by using "#undef isspace".

isspace

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 548 of 751
Sep 01, 2013

Identification of display character

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int isprint(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a display character (0x20 to 0x7E). This macro is

defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be used instead of the macro

definition, which is invalidated by using "#undef isprint".

[Example]

isprint

#include <ctype.h>

void func(void) {

 int i, j = 0;

 char s[50];

 for (i =50; i <= 99; i++) {

 if (isprint(i)) { /*Store the printable characters in the code

 range 50 to 99, in the array s.*/

 s[j] = i;

 j++;

 }

 }

 :

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 549 of 751
Sep 01, 2013

Identification of display character other than space

[Classification]

Standard library

[Syntax]

#include <ctype.h>

int isgraph(int c);

[Return value]

These macros return a value other than 0 if the value of argument c matches the respective description (i.e., if the

result is true). If the result is false, 0 is returned.

[Description]

This function is a macro that checks whether a given character is a display characterNote (0x20 to 0x7E) other than

space (0x20). This macro is defined only when c is made true by isascii or when c is EOF. A compiled subroutine can be

used instead of the macro definition, which is invalidated by using "#undef isgraph".

Note printing character

isgraph

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 550 of 751
Sep 01, 2013

6.4.7 Standard I/O functions

Standard I/O functions are as follows.

Table 6-9. Standard I/O Functions

Function/Macro Name Outline

fread Read from stream

getc Read character from stream (same as fgetc)

fgetc Read character from stream (same as getc)

fgets Read one line from stream

fwrite Write to stream

putc Write character to stream (same as fputc)

fputc Write character to stream (same as putc)

fputs Output character string to stream

getchar Read one character from standard input

gets Read character string from standard input

putchar Write character to standard output stream

puts Output character string to standard output stream

sprintf Output with format

fprintf Output text in specified format to stream

vsprintf Write text in specified format to character string

printf Output text in specified format to standard output stream

vfprintf Write text in specified format to stream

vprintf Write text in specified format to standard output stream

sscanf Input with format

fscanf Read and interpret data from stream

scanf Read and interpret text from standard input stream

ungetc Push character back to input stream

rewind Reset file position indicator

perror Error processing

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 551 of 751
Sep 01, 2013

Read from stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

[Return value]

The number of elements that were input (nmemb) is returned.

Error return does not occur.

[Description]

This function inputs nmemb elements of size from the input stream pointed to by stream and stores them in ptr. Only

the standard input/output stdin can be specified for stream.

[Example]

fread

#include <stdio.h>

void func(void) {

 struct {

 int c;

 double d;

 } buf[10];

 fread(buf, sizeof(buf[0]), sizeof(buf) / sizeof(buf [0]), stdin);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 552 of 751
Sep 01, 2013

Read character from stream (same as fgetc)

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int getc(FILE *stream);

[Return value]

The input character is returned.

Error return does not occur.

[Description]

This function inputs one character from the input stream pointed to by stream. Only the standard input/output stdin can

be specified for stream.

getc

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 553 of 751
Sep 01, 2013

Read character from stream (same as getc)

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int fgetc(FILE *stream);

[Return value]

The input character is returned.

Error return does not occur.

[Description]

This function inputs one character from the input stream pointed to by stream. Only the standard input/output stdin can

be specified for stream.

[Example]

fgetc

#include <stdio.h>

int func(void) {

 int c;

 c = fgetc(stdin);

 return(c);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 554 of 751
Sep 01, 2013

Read one line from stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);

[Return value]

s is returned.

Error return does not occur.

[Description]

This function inputs at most n-1 characters from the input stream pointed to by stream and stores them in s. Character

input is also ended by the detection of a new-line character. In this case, the new-line character is also stored in s. The

end-of-string null character is stored at the end in s. Only the standard input/output stdin can be specified for stream.

fgets

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 555 of 751
Sep 01, 2013

Write to stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

[Return value]

The number of elements that were output (nmemb) is returned.

Error return does not occur.

[Description]

This function outputs nmemb elements of size from the array pointed to by ptr to the output stream pointed to by

stream. Only the standard input/output stdout or stderr can be specified for stream.

fwrite

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 556 of 751
Sep 01, 2013

Write character to stream (same as fputc)

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int putc(int c, FILE *stream);

[Return value]

The character c is returned.

Error return does not occur.

[Description]

This function outputs the character c to the output stream pointed to by stream. Only the standard input/output stdout

or stderr can be specified for stream.

putc

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 557 of 751
Sep 01, 2013

Write character to stream (same as putc)

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int fputc(int c, FILE *stream);

[Return value]

The character c is returned.

Error return does not occur.

[Description]

This functionoutputs the character c to the output stream pointed to by stream. Only the standard input/output stdout or

stderr can be specified for stream.

[Example]

fputc

#include <stdio.h>

void func(void) {

 fputc('a', stdout);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 558 of 751
Sep 01, 2013

Output character string to stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int fputs(const char *s, FILE *stream);

[Return value]

0 is returned.

Error return does not occur.

[Description]

This function outputs the string s to the output stream pointed to by stream. The end-of-string null character is not

output. Only the standard input/output stdout or stderr can be specified for stream.

fputs

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 559 of 751
Sep 01, 2013

Read one character from standard input

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int getchar(void);

[Return value]

The input character is returned.

Error return does not occur.

[Description]

This function inputs one character from the standard input/output stdin.

getchar

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 560 of 751
Sep 01, 2013

Read character string from standard input

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

char *gets(char *s);

[Return value]

s is returned.

Error return does not occur.

[Description]

This function inputs characters from the standard input/output stdin until a new-line character is detected and stores

them in s. The new-line character that was input is discarded, and an end-of-string null character is stored at the end in s.

gets

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 561 of 751
Sep 01, 2013

Write character to standard output stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int putchar(int c);

[Return value]

The character c is returned.

Error return does not occur.

[Description]

This function outputs the character c to the standard input/output stdout.

putchar

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 562 of 751
Sep 01, 2013

Output character string to standard output stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int puts(const char *s);

[Return value]

0 is returned.

Error return does not occur.

[Description]

This function outputs the string s to the standard input/output stdout. The end-of-string null character is not output, but

a new-line character is output in its place.

puts

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 563 of 751
Sep 01, 2013

Output with format

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int sprintf(char *s, const char *format[, arg, ...]);

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.

Error return does not occur.

[Description]

This function applies the format specified by the string pointed to by format to the respective arg arguments, and writes

out the formatted data that was output as a result to the array pointed to by s.

If there are not sufficient arguments for the format, the operation is undefined. If the end of the formatted string is

reached, control returns. If there are more arguments that those required by the format, the excess arguments are

ignored. If the area of s overlaps one of the arguments, the operation is undefined.

The argument format specifies "the output to which the subsequent argument is to be converted". The null character

(\0) is appended at the end of written characters (the null character (\0) is not counted in a return value).

The format consists of the following two types of directives:

Each conversion specification begins with character "%" (to insert "%" in the output, specify "%%" in the format string).

The following appear after the "%":

%[flag][field-width][precision][size][type-specification-character]

The meaning of each conversion specification is explained below.

(1) flag

Zero or more flags, which qualify the meaning of the conversion specification, are placed in any order.

The flag characters and their meanings are as follows:

sprintf

Ordinary characters Characters that are copied directly without conversion (other than "%").

Conversion specifications Specifications that fetch zero or more arguments and assign a specification.

- The result of the conversion will be left-justified in the field, with the right side filled with blanks (if this flag

is not specified, the result of the conversion is right-justified).

+ The result of a signed conversion will start with a + or - sign (if this flag is not specified, the result of the

conversion starts with a sign only when a negative value has been converted).

Space If the first character of a signed conversion is not a sign and a signed conversion is not generated a char-

acter, a space (" ") will be appended to the beginning of result of the conversion. If both the space flag

and + flag appear, the space flag is ignored.

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 564 of 751
Sep 01, 2013

Note Normally, a decimal point appears only when a digit follows it.

(2) field width

This is an optional minimum field width. If the converted value is smaller than this field width, the left side is filled

with spaces (if the left justification flag explained above is assigned, the right side will be filled with spaces). This

field width takes the form of "*" or a decimal integer. If "*" is specified, an int type argument is used as the field

width. A negative field width is not supported. If an attempt is made to specify a negative field width, it is inter-

preted as a minus (-) flag appended to the beginning of a positive field width.

(3) precision

For d, i, o, u, x, or X conversion, the value assigned for the precision is the minimum number of digits to appear.

For e, f, or E conversion, it is the number of digits to appear after the decimal point. For g or G conversion, it is the

maximum number of significant digits. The precision takes the form of "*" or "." followed by a decimal integer. If "*"

is specified, an int type argument is used as the precision. If a negative precision is specified, it is treated as if the

precision were omitted. If only "." is specified, the precision is assumed to be 0. If the precision appears together

with a conversion specification other than the above, the operation is undefined.

(4) size

This is an arbitrary optional size character h, l, ll, or L, which changes the default method for interpreting the data

type of the corresponding argument.

When h is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a short or unsigned short

argument.

When l is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long or unsigned long

argument. l is also causes a following n type specification to be forcibly applied to a pointer to long argument. If

another type specification character is used together with h or l, the operation is undefined.

When ll is specified, a following d, i, o, u, x, or X type specification is forcibly applied to a long long and unsigned

long long argument. Furthermore, for ll, a following n type specification is forcibly applied to a long long pointer. If

another type specification character is used together with ll, the operation is undefined.

When L is specified, a following e, E, f, g, or G type specification is forcibly applied to a long double argument. If

another type specification character is used together with L, the operation is undefined.

(5) type specification character

These are characters that specify the type of conversion that is to be applied.

The characters that specify conversion types and their meanings are as follows.

The result is to be converted to an alternate format. For o conversion, the precision is increased so that

the first digit of the conversion result is 0. For x or X conversion, 0x or 0X is appended to the beginning

of a non-zero conversion result. For e, f, g, E, or G conversion, a decimal point "." is added to the con-

version result even if no digits follow the decimal pointNote. For g or G conversion, trailing zeros will not

be removed from the conversion result. The operation is undefined for conversions other than the

above.

0 For d, e, f, g, i, o, u, x, E, G, or X conversion, zeros are added following the specification of the sign or

base to fill the field width.

If both the 0 flag and - flag are specified, the 0 flag is ignored. For d, i, o, u, x, or X conversion, when the

precision is specified, the zero (0) flag is ignored.

Note that 0 is interpreted as a flag and not as the beginning of the field width.

The operation is undefined for conversion other than the above.

% Output the character "%". No argument is converted. The conversion specification is "%%".

c Convert an int type argument to unsigned char type and output the characters of the conversion result.

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 565 of 751
Sep 01, 2013

[Example]

d Convert an int type argument to a signed decimal number.

e, E Convert a double type argument to [-]d.dddde+dd format, which has one digit before the decimal point

(not 0 if the argument is not 0) and the number of digits after the decimal point is equal to the precision.

The E conversion specification generates a number in which the exponent part starts with "E" instead of

"e".

f Convert a double type argument to decimal notation of the form [-]dddd.dddd.

g, G Convert a double type argument to e (E for a G conversion specification) or f format, with the number of

digits in the mantissa specified for the precision. Trailing zeros of the conversion result are excluded

from the fractional part. The decimal point appears only when it is followed by a digit.

i Perform the same conversion as d.

n Store the number of characters that were output in the same object. A pointer to int type is used as the

argument.

p Output a pointer in an implementation-defined format. The CC-RH handles a pointer as unsigned long

(this is the same as the lu specification).

o, u, x, X Convert an unsigned int type argument to octal notation (o), unsigned decimal notation (u), or unsigned

hexadecimal notation (x or X) with dddd format. For x conversion, the letters abcdef are used. For X

conversion, the letters ABCDEF are used.

s The argument must be a pointer pointing to a character type array. Characters from this array are out-

put up until the null character (\0) indicating termination (the null character (\0) itself is not included). If

the precision is specified, no more than the specified number of characters will be output. If the preci-

sion is not specified or if the precision is greater than the size of this array, make sure that this array

includes the null character (\0).

#include <stdio.h>

void func(int val) {

 char s[20];

 sprintf(s, "%-10.51x\n", val); /*Specifies left-justification, field width 10,

 precision 5, size long, and hexadecimal notation

 for the value of val, and outputs the result

 with an appended new-line character to the array

 pointed to by s.*/

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 566 of 751
Sep 01, 2013

Output text in specified format to stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int fprintf(FILE *stream, const char *format[, arg, ...]);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to the respective arg arguments, and

outputs the formatted data that was output as a result to stream. Only the standard input/output stdout or stderr can be

specified for stream. The method of specifying format is the same as described for the sprintf function. However, fprintf

differs from sprintf in that no null character (\0) is output at the end.

[Caution]

Stdin (standard input) and stdout (standard error) are specified for the argument stream. 1 memory addresses such as

an I/O address is allocated for the I/O destination of stream. To use these streams in combination with a debugger, the

initial values of the stream structure defined in stdio.h must be set. Be sure to set the initial values prior to calling the

function.

[Definition of stream structure in stdio.h]

The first structure member, mode, indicates the I/O status and is internally defined as ACCSD_OUT/ADDSD_IN. The

third member, unget_c, indicates the pushed-back character (stdin only) setting and is internally defined as -1.

fprintf

typedef struct {

 int mode; /*with error descriptions*/

 unsigend handle;

 int unget_c;

} FILE;

typedef int fpos_t;

extern FILE* _REL_stdin();

extern FILE* _REL_stdout();

extern FILE* _REL_stderr();

#define stdin (_REL_stdin())

#define stdout (_REL_stdout())

#define stderr (_REL_stderr())

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 567 of 751
Sep 01, 2013

When the definition is -1, it indicates that there is no pushed-back character. The second member, handle, indicates

the I/O address. Set the value according to the debugger to be used.

[I/O address setting]

[Example]

stdout->handle = 0xfffff000;

stderr->handle = 0x00fff000;

stdin->handle = 0xfffff002;

#include <stdio.h>

void func(int val) {

 fprintf(stdout, "%-10.5x\n", val);

}

/*Example using vfprintf in a general error reporting routine.*/

void error(char *function_name, char *format, ...) {

 va_list arg;

 va_start(arg, format);

 fprintf(stderr, "ERROR in %s:", function_name); /*output function name for which

 error occurred*/

 vfprintf(stderr, format, arg); /*output remaining messages*/

 va_end(arg);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 568 of 751
Sep 01, 2013

Write text in specified format to character string

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int vsprintf(char *s, const char *format, va_list arg);

[Return value]

The number of characters that were output (excluding the null character (\0)) is returned.

Error return does not occur.

[Description]

This function applies the format specified by the string pointed to by format to the argument string pointed to by arg,

and outputs the formatted data that was output as a result to the array pointed to be s. The vsprintf function is equivalent

to sprintf with the list of a variable number of real arguments replaced by arg. arg must be initialized by the va_start

macro before the vsprintf function is called.

vsprintf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 569 of 751
Sep 01, 2013

Output text in specified format to standard output stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int printf(const char *format[, arg, ...]);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to the respective arg arguments, and

outputs the formatted data that was output as a result to the standard input/output stdout. The method of specifying

format is the same as described for the sprintf function. However, printf differs from sprintf in that no null character (\0) is

output at the end.

[Caution]

Assigns one memory address (e.g. an I/O address) to stdout. To use stdout in conjunction with a debugger, you must

initialize the stream structure defined in the stdio.h file. Initialize the structure before calling the function.

[Definition of stream structure in stdio.h]

The first structure member, mode, indicates the I/O status and is internally defined as ACCSD_OUT/ADDSD_IN. The

third member, unget_c, indicates the pushed-back character (stdin only) setting and is internally defined as -1.

When the definition is -1, it indicates that there is no pushed-back character. The second member, handle, indicates

the I/O address. Set the value according to the debugger to be used.

printf

typedef struct {

 int mode; /*with error descriptions*/

 unsigend handle;

 int unget_c;

} FILE;

typedef int fpos_t;

extern FILE* _REL_stdin();

extern FILE* _REL_stdout();

extern FILE* _REL_stderr();

#define stdin (_REL_stdin())

#define stdout (_REL_stdout())

#define stderr (_REL_stderr())

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 570 of 751
Sep 01, 2013

[I/O address setting]

stdout->handle = 0xfffff000;

stderr->handle = 0x00fff000;

stdin->handle = 0xfffff002;

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 571 of 751
Sep 01, 2013

Write text in specified format to stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int vfprintf(FILE *stream, const char *format, va_list arg);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to argument string pointed to by arg, and

outputs the formatted data that was output as a result to stream. Only the standard input/output stdout or stderr can be

specified for stream. The method of specifying format is the same as described for the sprintf function. The vfprintf

function is equivalent to fprintf with the list of a variable number of real arguments replaced by arg. arg must be initialized

by the va_start macro before the vfprintf function is called.

[Caution]

Stdout (standard output) and stderr (standard error) are specified for the argument stream. 1 memory addresses such

as an I/O address is allocated for the I/O destination of stream. To use these streams in combination with a debugger,

the initial values of the stream structure defined in stdio.h must be set. Be sure to set the initial values prior to calling the

function.

[Definition of stream structure in stdio.h]

vfprintf

typedef struct {

 int mode; /*with error descriptions*/

 unsigend handle;

 int unget_c;

} FILE;

typedef int fpos_t;

extern FILE* _REL_stdin();

extern FILE* _REL_stdout();

extern FILE* _REL_stderr();

#define stdin (_REL_stdin())

#define stdout (_REL_stdout())

#define stderr (_REL_stderr())

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 572 of 751
Sep 01, 2013

The first structure member, mode, indicates the I/O status and is internally defined as ACCSD_OUT/ADDSD_IN. The

third member, unget_c, indicates the pushed-back character (stdin only) setting and is internally defined as -1.

When the definition is -1, it indicates that there is no pushed-back character. The second member, handle, indicates

the I/O address. Set the value according to the debugger to be used.

[I/O address setting]

[Example]

stdout->handle = 0xfffff000;

stderr->handle = 0x00fff000;

stdin->handle = 0xfffff002;

#include <stdio.h>

void func(int val) {

 fprintf(stdout, "%-10.5x\n", val);

}

/*example using vfprintf in a general error reporting routine*/

void error(char *function_name, char *format, ...) {

 va_list arg;

 va_start(arg, format);

 fprintf(stderr, "ERROR in %s:", function_name); /*output function name for which

 error occurred*/

 vfprintf(stderr, format, arg); /*output remaining messages*/

 va_end(arg);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 573 of 751
Sep 01, 2013

Write text in specified format to standard output stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int vprintf(const char *format, va_list arg);

[Return value]

The number of characters that were output is returned.

[Description]

This function applies the format specified by the string pointed to by format to the argument string pointed to by arg,

and outputs the formatted data that was output as a result to the standard input/output stdout. The method of specifying

format is the same as described for the sprintf function. The vprintf function is equivalent to printf with the list of a variable

number of real arguments replaced by arg. arg must be initialized by the va_start macro before the vprintf function is

called.

[Caution]

Stdout (standard output) and stderr (standard error) are specified for the argument stream. 1 memory addresses such

as an I/O address is allocated for the I/O destination of stream. To use these streams in combination with a debugger,

the initial values of the stream structure defined in stdio.h must be set. Be sure to set the initial values prior to calling the

function.

[Definition of stream structure in stdio.h]

vprintf

typedef struct {

 int mode; /*with error descriptions*/

 unsigend handle;

 int unget_c;

} FILE;

typedef int fpos_t;

extern FILE* _REL_stdin();

extern FILE* _REL_stdout();

extern FILE* _REL_stderr();

#define stdin (_REL_stdin())

#define stdout (_REL_stdout())

#define stderr (_REL_stderr())

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 574 of 751
Sep 01, 2013

The first structure member, mode, indicates the I/O status and is internally defined as ACCSD_OUT/ADDSD_IN. The

third member, unget_c, indicates the pushed-back character (stdin only) setting and is internally defined as -1.

When the definition is -1, it indicates that there is no pushed-back character. The second member, handle, indicates

the I/O address. Set the value according to the debugger to be used.

[I/O address setting]

stdout->handle = 0xfffff000;

stderr->handle = 0x00fff000;

stdin->handle = 0xfffff002;

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 575 of 751
Sep 01, 2013

nput with format

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int sscanf(const char *s, const char *format[, arg, ...]);

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned. The return

value does not include scanned fields that were not stored. If an attempt is made to read to the end of the file, the return

value is EOF. If no field was stored, the return value is 0.

[Description]

This function reads the input to be converted according to the format specified by the character string pointed to by for-

mat from the array pointed to by s and treats the arg arguments that follow format as pointers that point to objects for stor-

ing the converted input.

An input string that can be recognized and "the conversion that is to be performed for assignment" are specified for for-

mat. If sufficient arguments do not exist for format, the operation is undefined. If format is used up even when arguments

remain, the remaining arguments are ignored.

The format consists of the following three types of directives:

Each conversion specification starts with "%". The following appear after the "%":

%[assignment-suppression-character][field-width][size][type-specification-character]

Each conversion specification is explained below.

(1) Assignment suppression character

The assignment suppression character "*" suppresses the interpretation and assignment of the input field.

sscanf

One or more Space characters Space (), tab (\t), or new-line (\n).

If a space character is found in the string when sscanf is executed, all consecutive

space characters are read until the next non-space character appears (the space char-

acters are not stored).

Ordinary characters All ASCII characters other than "%".

If an ordinary character is found in the string when sscanf is executed, that character is

read but not stored. sscanf reads a string from the input field, converts it into a value of

a specific type, and stores it at the position specified by the argument, according to the

conversion specification. If an explicit match does not occur according to the conversion

specification, no subsequent space character is read.

Conversion specification Fetches 0 or more arguments and directs the conversion.

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 576 of 751
Sep 01, 2013

(2) field width

This is a non-zero decimal integer that defines the maximum field width.

It specifies the maximum number of characters that are read before the input field is converted. If the input field is

smaller than this field width, sscanf reads all the characters in the field and then proceeds to the next field and its

conversion specification.

If a space character or a character that cannot be converted is found before the number of characters equivalent to

the field width is read, the characters up to the white space or the character that cannot be converted are read and

stored. Then, sscanf proceeds to the next conversion specification.

(3) size

This is an arbitrary optional size character h, l, ll, or L, which changes the default method for interpreting the data

type of the corresponding argument.

When h is specified, a following d, i, n, o, u, or x type specification is forcibly converted to short int type and stored

as short type. Nothing is done for c, e, f, n, p, s, D, I, O, U, or X.

When l is specified, a following d, i, n, o, u, or x type specification is forcibly converted to long int type and stored as

long type. An e, f, or g type specification is forcibly converted to double type and stored as double type. Nothing is

done for c, n, p, s, D, I, O, U, and X.

When ll is specified, a following d, i, o, u, x, or X type specification is forcibly converted to long long type and stored

as long long type. Nothing is done for other type specifications.

When L is specified, a following e, f, or g type specification is forcibly converted to long double type and stored as

long double type. Nothing is done for other type specifications.

In cases other than the above, the operation is undefined.

(4) type specification character

These are characters that specify the type of conversion that is to be applied.

The characters that specify conversion types and their meanings are as follows.

% Match the character "%". No conversion or assignment is performed. The conversion specification is

"%%".

c Scan one character. The corresponding argument should be "char *arg".

d Read a decimal integer into the corresponding argument. The corresponding argument should be "int

*arg".

e, f, g Read a floating-point number into the corresponding argument. The corresponding argument should be

"float *arg".

i Read a decimal, octal, or hexadecimal integer into the corresponding argument. The corresponding

argument should be "int *arg".

n Store the number of characters that were read in the corresponding argument. The corresponding argu-

ment should be "int *arg".

o Read an octal integer into the corresponding argument. The corresponding argument must be "int *arg".

p Store the pointer that was scanned. This is an implementation definition.

The ca processes %p and %U in exactly the same manner. The corresponding argument should be

"void **arg".

s Read a string into a given array. The corresponding argument should be "char arg[]".

u Read an unsigned decimal integer into the corresponding argument. The corresponding argument

should be "unsigned int *arg".

x, X Read a hexadecimal integer into the corresponding argument. The corresponding argument should be

"int *arg".

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 577 of 751
Sep 01, 2013

Make sure that a floating-point number (type specification characters e, f, g, E, F, and G) corresponds to thefollow-

ing general format.

[+ | -] ddddd [.] ddd [E | e [+ | -] ddd]

However, the portions enclosed by [] in the above format are arbitrarily selected, and ddd indicates a decimal digit.

D Read a decimal integer into the corresponding argument. The corresponding argument should be "long

*arg".

E, F, G Read a floating-point number into the corresponding argument. The corresponding argument should be

"double *arg".

I Read a decimal, octal, or hexadecimal integer into the corresponding argument. The corresponding

argument should be "long *arg".

O Read an octal integer into the corresponding argument. The corresponding argument should be "long

*arg".

U Read an unsigned decimal integer into the corresponding argument. The corresponding argument

should be "unsigned long *arg".

[] Read a non-empty string into the memory area starting with argument arg. This area must be large

enough to accommodate the string and the null character (\0) that is automatically appended to indicate

the end of the string. The corresponding argument should be "char *arg".

The character pattern enclosed by [] can be used in place of the type specification character s. The

character pattern is a character set that defines the search set of the characters constituting the input

field of sscanf. If the first character within [] is "^", the search set is complemented, and all ASCII char-

acters other than the characters within [] are included. In addition, a range specification feature that can

be used as a shortcut is also available. For example, %[0-9] matches all decimal numbers. In this set,

"-" cannot be specified as the first or last character. The character preceding "-" must be less in lexical

sequence than the succeeding character.

- %[abcd]

Matches character strings that include only a, b, c, and d.

- %[^abcd]

Matches character strings that include any characters other than a, b, c, and d.

- %[A-DW-Z]

Matches character strings that include A, B, C, D, W, X, Y, and Z.

- %[z-a]

Matches z, -, and a (this is not considered a range specification).

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 578 of 751
Sep 01, 2013

[Caution]

- sscanf may stop scanning a specific field before the normal end-of-field character is reached or may stop com-

pletely.

- sscanf stops scanning and storing a field and moves to the next field under the following conditions.

- The substitution suppression character (*) appears after "%" in the format specification, and the input field at

that point has been scanned but not stored.

- A field width (positive decimal integer) specification character was read.

- The character to be read next cannot be converted according to the conversion specification (for example, if Z

is read when the specification is a decimal number).

- The next character in the input field does not appear in the search set (or appears in the complement search

set).

If sscanf stops scanning the input field at that point because of any of the above reasons, it is assumed that the

next character has not yet been read, and this character is used as the first character of the next field or the first

character for the read operation to be executed after the input.

- sscanf ends under the following conditions:

- The next character in the input field does not match the corresponding ordinary character in the string to be

converted.

- The next character in the input field is EOF.

- The string to be converted ends.

- If a list of characters that is not part of the conversion specification is included in the string to be converted, make

sure that the same list of characters does not appear in the input. sscanf scans matching characters but does not

store them. If there was a mismatch, the first character that does not match remains in the input as if it were not

read.

[Example]

#include <stdio.h>

void func(void) {

 int i, n;

 float x;

 const char *s;

 char name[10];

 s = "23 11.1e-1 NAME";

 n = sscanf(s,"%d%f%s", &i, &x, name); /*Stores 23 in i, 1.110000 in x, and "NAME"

 in name. The return value n is 3.*/

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 579 of 751
Sep 01, 2013

Read and interpret data from stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int fscanf(FILE *stream, const char *format[, arg, ...]);

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned. The return

value does not include scanned fields that were not stored. If an attempt is made to read to the end of the file, the return

value is EOF. If no field was stored, the return value is 0.

[Description]

Reads the input to be converted according to the format specified by the character string pointed to by format from

stream and treats the arg arguments that follow format as objects for storing the converted input. Only the standard input/

output stdin can be specified for stream. The method of specifying format is the same as described for the sscanf

function.

fscanf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 580 of 751
Sep 01, 2013

Read and interpret text from standard output stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int scanf(const char *format[, arg, ...]);

[Return value]

The number of input fields for which scanning, conversion, and storage were executed normally is returned. The return

value does not include scanned fields that were not stored. If an attempt is made to read to the end of the file, the return

value is EOF. If no field was stored, the return value is 0.

[Description]

Reads the input to be converted according to the format specified by the character string pointed to by format from the

standard input/output stdin and treats the arg arguments that follow format as objects for storing the converted input. The

method of specifying format is the same as described for the sscanf function.

[Example]

scanf

#include <stdio.h>

void func(void) {

 int i, n;

 double x;

 char name[10];

 n = scanf("%d%lf%s", &i, &x, name); /*Perform formatted input of input from stdin

 using the format "23 11.1e-1 NAME".*/

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 581 of 751
Sep 01, 2013

Push character back to input stream

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

int ungetc(int c, FILE *stream);

[Return value]

The character c is returned.

Error return does not occur.

[Description]

This function pushes the character c back into the input stream pointed to by stream. However, if c is EOF, no

pushback is performed. The character c that was pushed back will be input as the first character during the next

character input. Only one character can be pushed back by ungetc. If ungetc is executed continuously, only the last

ungetc will have an effect. Only the standard input/output stdin can be specified for stream.

ungetc

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 582 of 751
Sep 01, 2013

Reset file position indicator

Remark These functions are not supported by the debugging functions which CubeSuite+ provides.

[Classification]

Standard library

[Syntax]

#include <stdio.h>

void rewind(FILE *stream);

[Description]

This function clears the error indicator of the input stream pointed to by stream, and positions the file position indicator

at the beginning of the file.

However, only the standard input/output stdin can be specified for stream. Therefore, rewind only has the effect of dis-

carding the character that was pushed back by ungetc.

rewind

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 583 of 751
Sep 01, 2013

Error processing

[Classification]

Standard library

[Syntax]

#include <stdio.h>

void perror(const char *s);

[Description]

This function outputs to stderr the error message that corresponds to global variable errno.

The message that is output is as follows.

s_fix is as follows.

[Example]

perror

When s is not NULL fprintf(stderr, "%s:%s\n", s, s_fix);

When s is NULL fprintf(stderr, "%s\n", s_fix);

When errno is EDOM "EDOM error"

When errno is ERANGE "ERANGE error"

When errno is 0 "no error"

Otherwise "error xxx" (xxx is abs (errno) % 1000)

#include <stdio.h>

#include <errno.h>

void func(double x) {

 double d;

 errno = 0;

 d = exp(x);

 if(errno)

 perror("func1"); /*If a calculation exception is generated by exp perror

 is called.*/

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 584 of 751
Sep 01, 2013

6.4.8 Standard utility functions

Standard Utility functions are as follows.

Table 6-10. Standard Utility Functions

Function/Macro Name Outline

abs Output absolute value (int type)

labs Output absolute value (long type)

llabs Output absolute value (long long type)

bsearch Binary search

qsort Sort

div Division (int type)

ldiv Division (long type)

lldiv Division (long long type)

atoi Conversion of character string to integer (int type)

atol Conversion of character string to integer (long type)

atoll Conversion of character string to integer (long long type)

strtol Conversion of character string to integer (long type) and storing pointer in last character string

strtoul Conversion of character string to integer (unsigned long type) and storing pointer in last character

string

strtoll Conversion of character string to integer (long long type) and storing pointer in last character

string

strtoull Conversion of character string to integer (unsigned long long type) and storing pointer in last

character string

atoff Conversion of character string to floating-point number (float type)

atof Conversion of character string to floating-point number (double type)

strtodf Conversion of character string to floating-point number (float type) (storing pointer in last charac-

ter string)

strtod Conversion of character string to floating-point number (double type) (storing pointer in last char-

acter string

calloc Memory allocation (initialized to zero)

malloc Memory allocation(not initialized to zero)

realloc Memory re-allocation

free Memory release

rand Pseudorandom number sequence generation

srand Setting of type of pseudorandom number sequence

abort Terminates the program

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 585 of 751
Sep 01, 2013

Output absolute value (int type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

int abs(int j);

[Return value]

Returns the absolute value of j (size of j), | j |.

[Description]

This function obtains the absolute value of j (size of j), | j |. If j is a negative number, the result is the reversal of j. If j is

not negative, the result is j.

[Example]

abs

#include <stdlib.h>

void func(int l) {

 int val;

 val = -15;

 l = abs(val); /*Returns absolute value of val, 15, to 1.*/

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 586 of 751
Sep 01, 2013

Output absolute value (long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

long labs(long j);

[Return value]

Returns the absolute value of j (size of j), | j |.

[Description]

This function obtains the absolute value of j (size of j), | j |. If j is a negative number, the result is the reversal of j. If j is

not negative, the result is j. This function is the same as abs, but uses long type instead of int type, and the return value

is also of long type.

labs

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 587 of 751
Sep 01, 2013

Output absolute value (long long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

long long llabs(long long j);

[Return value]

Returns the absolute value of j (size of j), | j |.

[Description]

This function obtains the absolute value of j (size of j), | j |. If j is a negative number, the result is the reversal of j. If j is

not negative, the result is j. This function is the same as abs, but uses long long type instead of int type, and the return

value is also of long long type.

llabs

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 588 of 751
Sep 01, 2013

Binary search

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

void* bsearch(const void *key, const void *base, size_t nmemb, size_t size, int (*compar)(const void *,

const void*));

[Return value]

A pointer to the element in the array that coincides with key is returned. If there are two or more elements that coincide

with key, the one that has been found first is indicated. If there are not elements that coincide with key, a null pointer is

returned.

[Description]

This function searches an element that coincides with key from an array starting with base by means of binary search.

nmemb is the number of elements of the array. size is the size of each element. The array must be arranged in the

ascending order in respect to the compare function indicated by compar (last argument). Define the compare function

indicated by compar to have two arguments. If the first argument is less than the second, a negative integer must be

returned as the result. If the two arguments coincide, zero must be returned. If the first is greater than the second, a

positive integer must be returned.

[Example]

bsearch

#include <stdlib.h>

#include <string.h>

int compar(const void *x, const void *y);

void func(void) {

 static char *base[] = {"a", "b", "c", "d", "e", "f"};

 char *key = "c"; /*Search key is "c".*/

 char **ret;

 /*Pointer to "c" is stored in ret.*/

 ret = (char **) bsearch((char *) &key, (char *) base, 6, sizeof(char *), compar);

}

int compar(const void *x, const void *y) {

 return(strcmp(x, y)); /*Returns positive, zero, or negative integer as

 result of comparing arguments.*/

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 589 of 751
Sep 01, 2013

Sort

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size, int (*compar)(const void*, const void *));

[Description]

This function sorts the array pointed to by base into ascending order in relation to the comparison function pointed to by

compar. nmemb is the number of array elements, and size is the size of each element. The comparison function pointed

to by compar is the same as the one described for bsearch.

qsort

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 590 of 751
Sep 01, 2013

Division (int type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

div_t div(int n, int d);

[Return value]

The structure storing the result of the division is returned.

[Description]

This function is used to divide a value of int type

This function calculates the quotient and remainder resulting from dividing numerator n by denominator d, and stores

these two integers as the members of the following structure div_t.

quot the quotient, and rem is the remainder. If d is not zero, and if "r = div(n, d);", n is a value equal to

"r.rem + d * r.quot".

If d is zero, the resultant quot member has a sign the same as n and has the maximum size that can be expressed.

The rem member is 0.

[Example]

div

typedef struct {

 int quot;

 int rem;

} div_t;

#include <stdlib.h>

void func(void) {

 div_t r;

 r = div(110, 3); /*36 is stored in r.quot, and 2 is stored in r.rem.*/

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 591 of 751
Sep 01, 2013

Division (long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

ldiv_t ldiv(long n, long d);

[Return value]

The structure storing the result of the division is returned.

[Description]

This function is used to divide a value of long type.

This function calculates the quotient and remainder resulting from dividing numerator n by denominator d, and stores

these two integers as the members of the following structure div_t.

quot the quotient, and rem is the remainder. If d is not zero, and if "r = div(n, d);", n is a value equal to

"r.rem + d * r.quot".

If d is zero, the resultant quot member has a sign the same as n and has the maximum size that can be expressed.

The rem member is 0.

ldiv

typedef struct {

 long quot;

 long rem;

} ldiv_t;

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 592 of 751
Sep 01, 2013

Division (long long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

lldiv_t lldiv(long long n, long long d);

[Return value]

The structure storing the result of the division is returned.

[Description]

This function is used to divide a value of long long type.

This function calculates the quotient and remainder resulting from dividing numerator n by denominator d, and stores

these two integers as the members of the following structure div_t.

quot the quotient, and rem is the remainder. If d is not zero, and if "r = div(n, d);", n is a value equal to

"r.rem + d * r.quot".

If d is zero, the resultant quot member has a sign the same as n and has the maximum size that can be expressed.

The rem member is 0.

lldiv

typedef struct {

 long long quot;

 long long rem;

} lldiv_t;

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 593 of 751
Sep 01, 2013

Conversion of character string to integer (int type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

int atoi(const char *str);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

[Description]

This function converts the first part of the character string indicated by str into an int type representation. atoi is the

same as "(int) strtol (str, NULL, 10)".

atoi

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 594 of 751
Sep 01, 2013

Conversion of character string to integer (long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

long atol(const char *str);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

[Description]

This function converts the first part of the character string indicated by str into a long int type representation. atol is the

same as "strtol (str, NULL, 10)".

atol

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 595 of 751
Sep 01, 2013

Conversion of character string to integer (long long type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

long long atoll(const char *str);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

[Description]

This function converts the first part of the character string indicated by str into a long long int type representation. atol

is the same as "strtol (str, NULL, 10)".

atoll

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 596 of 751
Sep 01, 2013

Conversion of character string to integer (long type) and storing pointer in last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

long strtol(const char *str, char **ptr, int base);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

If an overflow occurs (because the converted value is too great), LONG_MAX or LONG_MIN is returned, and macro

ERANGE is set to global variable errno.

[Description]

This function converts the first part of the character string indicated by str into a long type representation. strol first

divides the input characters into the following three parts: the "first blank", "a string represented by the base number

determined by the value of base and is subject to conversion into an integer", and "the last one or more character string

that is not recognized (including the null character (\0))". Then strtol converts the string into an integer, and returns the

result.

(1) Specify 0 or 2 to 36 as argument base.

(a) If base is 0

The expected format of the character string subject to conversion is of integer format having an optional + or -

sign and "0x", indicating a hexadecimal number, prefixed.

(b) If the value of base is 2 to 36

The expected format of the character string is of character string or numeric string type having an optional + or

- sign prefixed and expressing an integer whose base is specified by base. Characters "a" (or "A") through "z"

(or "Z") are assumed to have a value of 10 to 35. Only characters whose value is less than that of base can be

used.

(c) If the value of base is 16

"0x" is prefixed (suffixed to the sign if a sign exists) to the string of characters and numerals (this can be omit-

ted).

(2) The string subject to conversion is defined as the longest partial string at the beginning of the input char-

acter string that starts with the first character other than blank and has an expected format.

(a) If the input character string is vacant, if it consists of blank only, or if the first character that is not

blank is not a sign or a character or numeral that is permitted, the subject string is vacant.

strtol

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 597 of 751
Sep 01, 2013

(b) If the string subject to conversion has an expected format and if the value of base is 0, the base num-

ber is judged from the input character string. The character string led by 0x is regarded as a hexadec-

imal value, and the character string to which 0 is prefixed but x is not is regarded as an octal number.

All the other character strings are regarded as decimal numbers.

(c) If the value of base is 2 to 36, it is used as the base number for conversion as mentioned above.

(d) If the string subject to conversion starts with a - sign, the sign of the value resulting from conversion

is reversed.

(3) The pointer that indicates the first character string

(a) This is stored in the object indicated by ptr, if ptr is not a null pointer.

(b) If the string subject conversion is vacant, or if it does not have an expected format, conversion is not

executed. The value of str is stored in the object indicated by ptr if ptr is not a null pointer.

Remark This function is not re-entrant

[Example]

#include <stdlib.h>

void func(long ret) {

 char *p;

 ret = strtol("10", &p, 0); /*10 is returned to ret.*/

 ret = strtol("0x10", &p, 0); /*16 is returned to ret.*/

 ret = strtol("10x", &p, 2); /*2 is returned to ret, and pointer to "x" is

 returned to area of p.*/

 ret = strtol("2ax3", &p, 16); /*42 is returned to ret, and pointer to "x" is

 returned to area of p.*/

 :

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 598 of 751
Sep 01, 2013

Conversion of character string to integer (unsigned long type) and storing pointer in last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

unsigned long strtoul(const char *str, char **ptr, int base);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

If an overflow occurs, ULONG_MAX is returned, and macro ERANGE is set to global variable errno.

[Description]

This function is the same as strtol except that the type of the return value is of unsigned long type.

strtoul

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 599 of 751
Sep 01, 2013

Conversion of character string to integer (long long type) and storing pointer in last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

long long strtoll(const char *str, char **ptr, int base);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

If an overflow occurs (the converted value is too larger), LLONG_MAX or LLONG_MIN is returned, and macro

ERANGE is set to global variable errno.

[Description]

This function is the same as strtol except that the type of the return value is of long long type.

strtoll

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 600 of 751
Sep 01, 2013

Conversion of character string to integer (unsigned long long type) and storing pointer in last character string

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

unsigned long long strtoull(const char *str, char **ptr, int base);

[Return value]

Returns the converted value if the partial character string could be converted. If it could not, 0 is returned.

If an overflow occurs, ULLONG_MAX is returned, and macro ERANGE is set to global variable errno.

[Description]

This function is the same as strtol except that the type of the return value is of unsigned long long type.

strtoull

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 601 of 751
Sep 01, 2013

Conversion of character string to floating-point number (float type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

float atoff(const char *str);

[Return value]

If the partial character string has been converted, the resultant value is returned. If the character string could not be

converted, 0 is returned.

If an overflow occurs (the value is not in the range in which it can be expressed), HUGE_VAL or -HUGE_VAL is

returned, and ERANGE is set to global variable errno. If an underflow occurs, 0 is returned, and macro ERANGE is set to

global variable errno.

[Description]

This function converts the first portion of the character string indicated by str into a float type representation. atoff is the

same as "strtodf (str, NULL)".

atoff

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 602 of 751
Sep 01, 2013

Conversion of character string to floating-point number (double type)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

double atof(const char *str);

[Return value]

If the partial character string has been converted, the resultant value is returned. If the character string could not be

converted, 0 is returned.

If an overflow occurs (the value is not in the range in which it can be expressed), HUGE_VAL or -HUGE_VAL is

returned, and ERANGE is set to global variable errno. If an underflow occurs, 0 is returned, and macro ERANGE is set to

global variable errno.

[Description]

This function converts the first portion of the character string indicated by str into a float type representation. atoff is the

same as "strtod (str, NULL)".

atof

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 603 of 751
Sep 01, 2013

Conversion of character string to floating-point number (float type) (storing pointer in last character string)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

float strtodf(const char *str, char **ptr);

[Return value]

If the partial character string has been converted, the resultant value is returned. If the character string could not be

converted, 0 is returned. If an overflow occurs (the value is not in the range in which it can be expressed), HUGE_VAL or

-HUGE_VAL is returned, and ERANGE is set to global variable errno. If an underflow occurs, 0 is returned, and macro

ERANGE is set to global variable errno.

[Description]

This function converts the first part of the character string indicated by str into a float type representation. The part of

the character string to be converted is in the following format and is at the beginning of str with the maximum length,

starting with a normal character that is not a space.

[+ | -] digits [.] [digits] [(e | E) [+ | -] digits]

If str is vacant or consists of space characters only, if the first normal character is other than "+", "-", ".", or a numeral,

the partial character string does not include a character. If the partial character string is vacant, conversion is not exe-

cuted, and the value of str is stored in the area indicated by ptr. If the partial character string is not vacant, it is converted,

and a pointer to the last character string (including the null character (\0) indicating at least the end of str) is stored in the

area indicated by ptr.

Remark This function is not re-entrant.

[Example]

strtodf

#include <stdlib.h>

#include <stdio.h>

void func(float ret) {

 char *p, *str, s[30];

 str = "+5.32a4e";

 ret = strtodf(str, &p); /*5.320000 is returned to ret, and pointer to "a"

 is stored in area of p.*/

 sprintf(s, "%lf\t%c", ret, *p); /*"5.320000 a" is stored in array indicated by s.*/

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 604 of 751
Sep 01, 2013

Conversion of character string to floating-point number (double type) (storing pointer in last character string)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

double strtod(const char *str, char **ptr);

[Return value]

If the partial character string has been converted, the resultant value is returned. If the character string could not be

converted, 0 is returned.

If an overflow occurs (the value is not in the range in which it can be expressed), HUGE_VAL or -HUGE_VAL is

returned, and ERANGE is set to global variable errno. If an underflow occurs, 0 is returned, and macro ERANGE is set to

global variable errno.

[Description]

This function converts the first part of the character string indicated by str into a float type representation. The part of

the character string to be converted is in the following format and is at the beginning of str with the maximum length,

starting with a normal character that is not a space.

[+ | -] digits [.] [digits] [(e | E) [+ | -] digits]

If str is vacant or consists of space characters only, if the first normal character is other than "+", "-", ".", or a numeral,

the partial character string does not include a character. If the partial character string is vacant, conversion is not exe-

cuted, and the value of str is stored in the area indicated by ptr. If the partial character string is not vacant, it is converted,

and a pointer to the last character string (including the null character (\0) indicating at least the end of str) is stored in the

area indicated by ptr.

Remark This function is not re-entrant.

strtod

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 605 of 751
Sep 01, 2013

Memory allocation (initialized to zero)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);

[Return value]

When area allocation succeeds, a pointer to that area is returned. When the area could not be allocated, a null pointer

is returned.

[Description]

This function allocates an area for an array of nmemb elements. The allocated area is initialized to zeros.

[Caution]

The memory area management functions automatically allocate memory area as necessary from the heap memory

area.

Also, the size of the default is 0x1000 bytes, so when it's changed, the heap memory area must be allocated. The area

allocation should be performed first by an application.

[Heap memory setup example]

Remarks 1. The variable "_REL_sysheap" points to the starting address of heap memory. This value must be a

multiple of 4.

2. The required heap memory size (bytes) should be set for the variable "_REL_sizeof_sysheap".

calloc

#include <stddef.h>

#define SIZEOF_HEAP 0x1000

int _REL_sysheap[SIZEOF_HEAP >> 2];

size_t _REL_sizeof_sysheap = SIZEOF_HEAP;

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 606 of 751
Sep 01, 2013

[Example]

#include <stdlib.h>

typedef struct {

 double d[3];

 int i[2];

} s_data;

int func(void) {

 sdata *buf;

 if((buf = calloc(40, sizeof(s_data))) == NULL) /*allocate an area for 40 s_data*/

 return(1);

 :

 free(buf); /*release the area*/

 return(0);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 607 of 751
Sep 01, 2013

Memory allocation(not initialized to zero)

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

void *malloc(size_t size);

[Return value]

When area allocation succeeds, a pointer to that area is returned. When the area could not be allocated, a null pointer

is returned.

[Description]

This function allocates an area having a size indicated by size. The area is not initialized.

[Caution]

The memory area management functions automatically allocate memory area as necessary from the heap memory

area.

Also, the size of the default is 0x1000 bytes, so when it's changed, the heap memory area must be allocated. The area

allocation should be performed first by an application.

[Heap memory setup example]

Remarks 1. The variable "_REL_sysheap" points to the starting address of heap memory. This value must be a

multiple of 4.

2. The required heap memory size (bytes) should be set for the variable "_REL_sizeof_sysheap".

malloc

#include <stddef.h>

#define SIZEOF_HEAP 0x1000

int _REL_sysheap[SIZEOF_HEAP >> 2];

size_t _REL_sizeof_sysheap = SIZEOF_HEAP;

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 608 of 751
Sep 01, 2013

Memory re-allocation

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

[Return value]

When area allocation succeeds, a pointer to that area is returned. When the area could not be allocated, a null pointer

is returned.

[Description]

This function changes the size of the area pointed to by ptr to the size indicated by size. The contents of the area are

unchanged up to the smaller of the previous size and the specified size. If the area is expanded, the contents of the area

greater than the previous size are not initialized. When ptr is a null pointer, the operation is the same as that of malloc

(size). Otherwise, the area that was acquired by calloc, malloc, or realloc must be specified for ptr.

[Caution]

The memory area management functions automatically allocate memory area as necessary from the heap memory

area.

Also, the size of the default is 0x1000 bytes, so when it's changed, the heap memory area must be allocated. The area

allocation should be performed first by an application.

[Heap memory setup example]

Remarks 1. The variable "_REL_sysheap" points to the starting address of heap memory. This value must be a

multiple of 4.

2. The required heap memory size (bytes) should be set for the variable "_REL_sizeof_sysheap".

realloc

#include <stddef.h>

#define SIZEOF_HEAP 0x1000

int _REL_sysheap[SIZEOF_HEAP >> 2];

size_t _REL_sizeof_sysheap = SIZEOF_HEAP;

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 609 of 751
Sep 01, 2013

Memory release

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

void free(void *ptr);

[Description]

This function releases the area pointed to by ptr so that this area is subsequently available for allocation. The area that

was acquired by calloc, malloc, or realloc must be specified for ptr.

[Example]

free

#include <stdlib.h>

typedef struct {

 double d[3];

 int i[2];

} s_data;

int func(void) {

 sdata *buf;

 if((buf = calloc(40, sizeof(s_data))) == NULL) /*allocate an area for 40 s_data*/

 return(1);

 :

 free(buf); /*release the area*/

 return(0);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 610 of 751
Sep 01, 2013

Pseudorandom number sequence generation

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

int rand(void);

[Return value]

Random numbers are returned.

[Description]

This function returns a random number that is greater than or equal to zero and less than or equal to RAND_MAX.

[Example]

rand

#include <stdlib.h>

void func(void) {

 if((rand() & 0xF) < 4)

 func1(); /*execute func1 with a probability of 25%*/

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 611 of 751
Sep 01, 2013

Setting of type of pseudorandom number sequence

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

void srand(unsigned int seed);

[Description]

This function assigns seed as the new pseudo random number sequence seed to be used by the rand call that follows.

If srand is called using the same seed value, the same numbers in the same order will appear for the random numbers

that are obtained by rand. If rand is executed without executing srand, the results will be the same as when srand(1) was

first executed.

srand

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 612 of 751
Sep 01, 2013

Terminates the program

[Classification]

Standard library

[Syntax]

#include <stdlib.h>

void abort(void);

[Description]

Calling abort(void) terminates the program. An abort function that suits the user system must be created in advance.

[Example]

abort

#include <assert.h>

int func(void);

int main() {

 int ret;

 ret = func();

 if (ret == 0) {

 abort(); <- abort() is called if ret is not 0

 }

 return 0;

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 613 of 751
Sep 01, 2013

6.4.9 Non-local jump functions

Non-local jump functions are as follows.

Table 6-11. Non-Local Jump Functions

Function/Macro Name Outline

longjmp Non-local jump

setjmp Set destination of non-local jump

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 614 of 751
Sep 01, 2013

Non-local jump

[Classification]

Standard library

[Syntax]

#include <setjmp.h>

void longjmp(jmp_buf env, int val);

[Description]

This function performs a non-local jump to the place immediately after setjmp using env saved by setjmp. val as a

return value for setjmp.

[Definition of jmp_buf type in setjmp.h]

[Caution]

When this function is called, only data in the registers reserved by the compiler are saved and restored.

If setjmp is called from within a function in the 22-register mode or common-register mode, data in r20 to r24 are

destroyed from within a function in the 32-register mode, and longjmp is then called, the values of r20 to r24 will not be

recoverable. In such cases, the values of r20 to r24 must be restored before longjmp is called if they are required.

When -Xep=fix is specified, ep/fix/libsetjmp.lib must be used.

longjmp

typedef int jmp_buf[14];

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 615 of 751
Sep 01, 2013

[Example]

#include <setjmp.h>

#define ERR_XXX1 1

#define ERR_XXX2 2

jmp_buf jmp_env;

void main(void) {

 for(;;) {

 switch(setjmp(jmp_env)) {

 case ERR_XXX1:

 /*termination of error XXX1*/

 break;

 case ERR_XXX2:

 /*termination of error XXX2*/

 break;

 case 0: /*no non-local jumps*/

 default:

 break;

 }

 }

}

void funcXXX(void) {

 longjmp(jmp_env, ERR_XXX1); /*Non-local jumps are performed upon generation of

 error XXX1.*/

 longjmp(jmp_env, ERR_XXX2); /*Non-local jumps are performed upon generation of

 error XXX2.*/

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 616 of 751
Sep 01, 2013

Set destination of non-local jump

[Classification]

Standard library

[Syntax]

#include <setjmp.h>

int setjmp(jmp_buf env);

[Return value]

Calling setjmp returns 0. When longjmp is used for a non-local jump, the return value is in the second parameter, val.

However, 1 is returned if val is 0.

[Description]

This function sets env as the destination for a non-local jump. In addition, the environment in which setjmp was run is

saved to env.

[Definition of jmp_buf type in setjmp.h]

[Caution]

When this function is called, only data in the registers reserved by the compiler are saved and restored.

If setjmp is called from within a function in the 22-register mode or common-register mode, data in r20 to r24 are

destroyed from within a function in the 32-register mode, and longjmp is then called, the values of r20 to r24 will not be

recoverable. In such cases, the values of r20 to r24 must be restored before longjmp is called if they are required.

When -Xep=fix is specified, ep/fix/libsetjmp.lib must be used.

setjmp

typedef int jmp_buf[14];

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 617 of 751
Sep 01, 2013

6.4.10 Mathematical functions

Mathematical functions are as follows.

Table 6-12. Mathematical Functions

Function/Macro Name Outline

expf Exponent function

exp Exponent function

logf Logarithmic function (natural logarithm)

log Logarithmic function (natural logarithm)

log10f Logarithmic function (base = 10)

log10 Logarithmic function (base = 10)

powf Power function

pow Power function

sqrtf Square root function

sqrt Square root function

ceilf ceiling function

ceil ceiling function

fabsf Absolute value function

fabs Absolute value function

floorf floor function

floor floor function

fmodf Remainder function

fmod Remainder function

frexpf Divide floating-point number into mantissa and power

frexp Divide floating-point number into mantissa and power

ldexpf Convert floating-point number to power

ldexp Convert floating-point number to power

modff Divide floating-point number into integer and decimal

modf Divide floating-point number into integer and decimal

cosf Cosine

cos Cosine

sinf Sine

sin Sine

tanf Tangent

tan Tangent

acosf Arc cosine

acos Arc cosine

asinf Arc sine

asin Arc sine

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 618 of 751
Sep 01, 2013

atanf Arc tangent

atan Arc tangent

atan2f Arc tangent (y / x)

atan2 Arc tangent (y / x)

coshf Hyperbolic cosine

cosh Hyperbolic cosine

sinhf Hyperbolic sine

sinh Hyperbolic sine

tanhf Hyperbolic tangent

tanh Hyperbolic tangent

Function/Macro Name Outline

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 619 of 751
Sep 01, 2013

Exponent function

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float expf(float x);

[Return value]

Returns the xth power of e.

expf returns an denormal number if an underflow occurs (if x is a negative number that cannot express the result), and

sets macro ERANGE to global variable errno. If an overflow occurs (if x is too great a number), HUGE_VAL (maximum

double type numerics that can be expressed) is returned, and macro ERANGE is set to global variable errno.

[Description]

This function calculates the xth power of e (e is the base of a natural logarithm and is about 2.71828).

expf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 620 of 751
Sep 01, 2013

Exponent function

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double exp(double x);

[Return value]

Returns the xth power of e.

expf returns an denormal number if an underflow occurs (if x is a negative number that cannot express the result), and

sets macro ERANGE to global variable errno. If an overflow occurs (if x is too great a number), HUGE_VAL (maximum

double type numerics that can be expressed) is returned, and macro ERANGE is set to global variable errno.

[Description]

This function calculates the xth power of e (e is the base of a natural logarithm and is about 2.71828).

exp

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 621 of 751
Sep 01, 2013

Logarithmic function (natural logarithm)

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float logf(float x);

[Return value]

Returns the natural logarithm of x.

logf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it returns -

∞ and sets macro ERANGE to global variable errno.

[Description]

This function calculates the natural logarithm of x, i.e., logarithm with base e.

logf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 622 of 751
Sep 01, 2013

Logarithmic function (natural logarithm)

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double log(double x);

[Return value]

Returns the natural logarithm of x.

logf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it returns -

∞ and sets macro ERANGE to global variable errno.

[Description]

This function calculates the natural logarithm of x, i.e., logarithm with base e.

log

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 623 of 751
Sep 01, 2013

Logarithmic function (base = 10)

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float log10f(float x);

[Return value]

Returns the logarithm of x with base 10.

log10f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it returns

-∞ and sets macro ERANGE to global variable errno.

[Description]

This function calculates the logarithm of x with base 10. This is realized by "log (x) / log (10)".

log10f

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 624 of 751
Sep 01, 2013

Logarithmic function (base = 10)

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double log10(double x);

[Return value]

Returns the logarithm of x with base 10.

log10f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is negative. If x is zero, it returns

-∞ and sets macro ERANGE to global variable errno.

[Description]

This function calculates the logarithm of x with base 10. This is realized by "log (x) / log (10)".

log10

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 625 of 751
Sep 01, 2013

Power function

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float powf(float x, float y);

[Return value]

Returns the yth power of x.

powf returns a negative solution only if x < 0 and y is an odd integer. If x < 0 and y is a non-integer or if x = y = 0, powf

returns a Not a Nuber(NaN) and sets the macro EDOM for the global variable errno. If x = 0 and y < 0 or if an overflow

occurs, powf returns +HUGE_VAL and sets the macro ERANGE for errno. If the solution vanished approaching zero,

powf returns 0 and sets the macro ERANGE for errno. If the solution is a denormal number, powf sets the macro

ERANGE for errno.

[Description]

This function calculates the yth power of x.

[Example]

powf

#include <mathf.h>

float func(void) {

 float ret, x, y;

 ret = powf(x, y); /*Returns yth power of x to ret.*/

 :

 return(ret);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 626 of 751
Sep 01, 2013

Power function

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double pow(double x, double y);

[Return value]

Returns the yth power of x.

powf returns a negative solution only if x < 0 and y is an odd integer. If x < 0 and y is a non-integer or if x = y = 0, powf

returns a Not a Nuber(NaN) and sets the macro EDOM for the global variable errno. If x = 0 and y < 0 or if an overflow

occurs, powf returns +HUGE_VAL and sets the macro ERANGE for errno. If the solution vanished approaching zero,

powf returns 0 and sets the macro ERANGE for errno. If the solution is a denormal number, powf sets the macro

ERANGE for errno.

[Description]

This function calculates the yth power of x.

pow

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 627 of 751
Sep 01, 2013

Square root function

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float sqrtf(float x);

[Return value]

Returns the positive square root of x.

sqrtf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is a negative real number.

[Description]

This function calculates the square root of x.

sqrtf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 628 of 751
Sep 01, 2013

Square root function

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double sqrt(double x);

[Return value]

Returns the positive square root of x.

sqrtf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if x is a negative real number.

[Description]

This function calculates the square root of x.

sqrt

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 629 of 751
Sep 01, 2013

ceiling function

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float ceilf(float x);

[Return value]

Returns the minimum integer greater than x and x.

[Description]

This function calculates the minimum integer value greater than x and x.

ceilf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 630 of 751
Sep 01, 2013

ceiling function

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double ceil(double x);

[Return value]

Returns the minimum integer greater than x and x.

[Description]

This function calculates the minimum integer value greater than x and x.

ceil

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 631 of 751
Sep 01, 2013

Absolute value function

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float fabsf(float x);

[Return value]

Returns the absolute value (size) of x.

[Description]

This function calculates the absolute value (size) of x by directly manipulating the bit representation of x.

fabsf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 632 of 751
Sep 01, 2013

Absolute value function

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double fabs(double x);

[Return value]

Returns the absolute value (size) of x.

[Description]

This function calculates the absolute value (size) of x by directly manipulating the bit representation of x.

fabs

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 633 of 751
Sep 01, 2013

floor function

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float floorf(float x);

[Return value]

Returns the maximum integer value less than x and x.

[Description]

This function calculates the maximum integer value less than x and x.

floorf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 634 of 751
Sep 01, 2013

floor function

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double floor(double x);

[Return value]

Returns the maximum integer value less than x and x.

[Description]

This function calculates the maximum integer value less than x and x.

floor

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 635 of 751
Sep 01, 2013

Remainder function

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float fmodf(float x, float y);

[Return value]

Returns a floating-point value that is the remainder resulting from dividing x by y.

If y is +∞, fmodf returns x.

If x is +∞ or y is zero, fmodf returns a Not a Nuber(NaN) and sets macro ERANGE to global variable errno.

[Description]

This function calculates a floating-point value that is the remainder resulting from dividing x by y. In other words, it

calculates the value "x - i * y" for the maximum integer i that has a sign the same as x and is less than y, if y is not zero.

[Example]

fmodf

#include <mathf.h>

void func(void) {

 float ret, x, y;

 ret = fmodf(x, y); /*Returns remainder resulting from dividing x by y to ret.*/

 :

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 636 of 751
Sep 01, 2013

Remainder function

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double fmod(double x, double y);

[Return value]

Returns a floating-point value that is the remainder resulting from dividing x by y.

If y is +∞, fmod returns x.

If x is +∞ or y is zero, fmod returns a Not a Nuber(NaN) and sets macro ERANGE to global variable errno.

[Description]

This function calculates a floating-point value that is the remainder resulting from dividing x by y. In other words, it

calculates the value "x - i * y" for the maximum integer i that has a sign the same as x and is less than y, if y is not zero.

fmod

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 637 of 751
Sep 01, 2013

Divide floating-point number into mantissa and power

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float frexpf(float val, int *exp);

[Return value]

Returns mantissa m.

frexpf sets 0 to *exp and returns 0 if val is 0.

If val is +∞, frexpf returns zero and sets macro EDOM to global variable errno.

[Description]

This function expresses val of float type as mantissa m and the pth power of 2. The resulting mantissa m is 0.5 <= | x |

< 1.0, unless val is zero. p is stored in *exp. m and p are calculated so that val = m * 2 p.

[Example]

frexpf

#include <mathf.h>

void func(void) {

 float ret, x;

 int exp;

 x = 5.28;

 ret = frexpf(x, &exp); /*Resultant mantissa 0.66 is returned to ret, and 3 is

 stored in exp.*/

 :

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 638 of 751
Sep 01, 2013

Divide floating-point number into mantissa and power

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double frexp(double val, int *exp);

[Return value]

Returns mantissa m.

frexpf sets 0 to *exp and returns 0 if val is 0.

If val is +∞, frexpf returns zero and sets macro EDOM to global variable errno.

[Description]

This function expresses val of double type as mantissa m and the pth power of 2. The resulting mantissa m is 0.5 <= |

x | < 1.0, unless val is zero. p is stored in *exp. m and p are calculated so that val = m * 2 p.

frexp

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 639 of 751
Sep 01, 2013

Convert floating-point number to power

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float ldexpf(float val, int exp);

[Return value]

Returns the value calculated byval x 2 exp.

If an underflow or overflow occurs as a result of executing ldexpf, macro ERANGE is set to global variable errno. If an

underflow occurs, ldexpf returns an denormal number. If an overflow occurs, it returns HUGE_VAL.

[Description]

This function calculates val x 2 exp.

ldexpf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 640 of 751
Sep 01, 2013

Convert floating-point number to power

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double ldexp(double val, int exp);

[Return value]

Returns the value calculated byval x 2 exp.

If an underflow or overflow occurs as a result of executing ldexpf, macro ERANGE is set to global variable errno. If an

underflow occurs, ldexpf returns an denormal number. If an overflow occurs, it returns HUGE_VAL.

[Description]

This function calculates val x 2 exp.

ldexp

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 641 of 751
Sep 01, 2013

Divide floating-point number into integer and decimal

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float modff(float val, float *ipart);

[Return value]

Returns a decimal part. The sign of the result is the same as the sign of val.

[Description]

This function divides val of float type into integer and decimal parts, and stores the integer part in *ipart. Rounding is

not performed. It is guaranteed that the sum of the integer part and decimal part accurately coincides with val. For exam-

ple, where realpart = modff (val, &intpart), "realpart + intpartt" coincides with val.

modff

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 642 of 751
Sep 01, 2013

Divide floating-point number into integer and decimal

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double modf(double val, double *ipart);

[Return value]

Returns a decimal part. The sign of the result is the same as the sign of val.

[Description]

This function divides val of double type into integer and decimal parts, and stores the integer part in *ipart. Rounding is

not performed. It is guaranteed that the sum of the integer part and decimal part accurately coincides with val. For exam-

ple, where realpart = modff (val, &intpart), "realpart + intpartt" coincides with val.

modf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 643 of 751
Sep 01, 2013

Cosine

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float cosf(float x);

[Return value]

Returns the cosine of x.

If inputting +∞, cosf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the cosine of x. Specify the angle in radian.

cosf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 644 of 751
Sep 01, 2013

Cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double cos(double x);

[Return value]

Returns the cosine of x.

If inputting +∞, cos returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.

[Description]

This function calculates the cosine of x. Specify the angle in radian.

cos

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 645 of 751
Sep 01, 2013

Sine

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float sinf(float x);

[Return value]

Returns the sine of x.

If inputting +∞, sinf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.

If the solution is a denormal number, sinf sets macro ERANGE to global variable errno.

[Description]

This function calculates the sine of x. Specify the angle in radian.

sinf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 646 of 751
Sep 01, 2013

Sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double sin(double x);

[Return value]

Returns the sine of x.

If inputting +∞, sin returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.

If the solution is a denormal number, sin sets macro ERANGE to global variable errno.

[Description]

This function calculates the sine of x. Specify the angle in radian.

sin

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 647 of 751
Sep 01, 2013

Tangent

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float tanf(float x);

[Return value]

Returns the tangent of x.

If inputting +∞, tanf returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.

If the solution is a denormal number, tanf sets macro ERANGE to global variable errno.

[Description]

This function calculates the cosine of x. Specify the angle in radian.

tanf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 648 of 751
Sep 01, 2013

Tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double tan(double x);

[Return value]

Returns the tangent of x.

If inputting +∞, tan returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno.

If the solution is a denormal number, tan sets macro ERANGE to global variable errno.

[Description]

This function calculates the cosine of x. Specify the angle in radian.

tan

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 649 of 751
Sep 01, 2013

Arc cosine

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float acosf(float x);

[Return value]

Returns the arc cosine of x. The returned value is in radian and in a range of 0 to π.

If x is not between -1 and 1, a Not a Nuber(NaN) is returned, and macro EDOM is set to global variable errno.

[Description]

This function calculates the arc cosine of x. Specify x as, -1<= x <= 1.

acosf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 650 of 751
Sep 01, 2013

Arc cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double acos(double x);

[Return value]

Returns the arc cosine of x. The returned value is in radian and in a range of 0 to π.

If x is not between -1 and 1, a Not a Nuber(NaN) is returned, and macro EDOM is set to global variable errno.

[Description]

This function calculates the arc cosine of x. Specify x as, -1<= x <= 1.

acos

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 651 of 751
Sep 01, 2013

Arc sine

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float asinf(float x);

[Return value]

Returns the arc sine (arcsine) of x. The returned value is in radian and in a range of -π / 2 to π / 2.

If x is not between -1 and 1, a Not a Nuber(NaN) is returned, and macro EDOM is set to global variable errno.

[Description]

This function calculates the arc sine (arcsine) of x. Specify x as, -1 <= x <= 1.

asinf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 652 of 751
Sep 01, 2013

Arc sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double asin(double x);

[Return value]

Returns the arc sine (arcsine) of x. The returned value is in radian and in a range of -π / 2 to π / 2.

If x is not between -1 and 1, a Not a Nuber(NaN) is returned, and macro EDOM is set to global variable errno.

[Description]

This function calculates the arc sine (arcsine) of x. Specify x as, -1 <= x <= 1.

asin

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 653 of 751
Sep 01, 2013

Arc tangent

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float atanf(float x);

[Return value]

Returns the arc tangent (arctangent) of x. The returned value is in radian and in a range of -π / 2 to π / 2.

If the solution is a denormal number, atanf sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc tangent (arctangent) of x. Specify x as, -1 <= x <= 1.

[Example]

atanf

#include <mathf.h>

float func(float x) {

 float ret;

 ret = atanf(x); /*Returns value of arctangent of x to ret.*/

 :

 return(ret);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 654 of 751
Sep 01, 2013

Arc tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double atan(double x);

[Return value]

Returns the arc tangent (arctangent) of x. The returned value is in radian and in a range of -π / 2 to π / 2.

If the solution is a denormal number, atan sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc tangent (arctangent) of x. Specify x as, -1 <= x <= 1.

atan

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 655 of 751
Sep 01, 2013

Arc tangent (y / x)

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float atan2f(float y, float x);

[Return value]

Returns the arc tangent (arctangent) of y / x. The returned value is in radian and in a range of -π to π.

atan2f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if both x and y are 0.0. If the solution

vanished approaching zero, atan2f returns +0 and sets macro ERANGE to global variable errno. If the solution is a

denormal number, atan2f sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc tangent of y / x. atan2f calculates the correct result even if the angle is in the vicinity of

π / 2 or - π / 2 (if x is close to 0).

atan2f

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 656 of 751
Sep 01, 2013

Arc tangent (y / x)

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double atan2(double y, double x);

[Return value]

Returns the arc tangent (arctangent) of y / x. The returned value is in radian and in a range of -π to π.

atan2f returns a Not a Nuber(NaN) and sets macro EDOM to global variable errno if both x and y are 0.0. If the solution

vanished approaching zero, atan2f returns +0 and sets macro ERANGE to global variable errno. If the solution is a

denormal number, atan2f sets macro ERANGE to global variable errno.

[Description]

This function calculates the arc tangent of y / x. atan2f calculates the correct result even if the angle is in the vicinity of

π / 2 or - π / 2 (if x is close to 0).

atan2

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 657 of 751
Sep 01, 2013

Hyperbolic cosine

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float coshf(float x);

[Return value]

Returns the hyperbolic cosine of x.

coshf returns HUGE_VAL and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic cosine of x. Specify the angle in radian. The definition expression is as follows.

(e x + e -x) / 2

[Example]

coshf

#include <mathf.h>

float func(float x) {

 float ret;

 ret = coshf(x); /*Returns value of hyperbolic cosine of x to ret.*/

 :

 return(ret);

}

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 658 of 751
Sep 01, 2013

Hyperbolic cosine

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double cosh(double x);

[Return value]

Returns the hyperbolic cosine of x.

coshf returns HUGE_VAL and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic cosine of x. Specify the angle in radian. The definition expression is as follows.

(e x + e -x) / 2

cosh

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 659 of 751
Sep 01, 2013

Hyperbolic sine

[Classification]

Mathematical library

[Syntax]

#include <mathf.h>

float sinhf(float x);

[Return value]

Returns the hyperbolic sine of x.

sinhf returns HUGE_VAL and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic sine of x. Specify the angle in radian. The definition expression is as follows.

(e x - e -x) / 2

sinhf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 660 of 751
Sep 01, 2013

Hyperbolic sine

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double sinh(double x);

[Return value]

Returns the hyperbolic sine of x.

sinhf returns HUGE_VAL and sets macro ERANGE to global variable errno if an overflow occurs.

[Description]

This function calculates the hyperbolic sine of x. Specify the angle in radian. The definition expression is as follows.

(e x - e -x) / 2

sinh

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 661 of 751
Sep 01, 2013

Hyperbolic tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>

float tanhf(float x);

[Return value]

Returns the hyperbolic tangent of x.

If the solution is a denormal number, tanhf sets macro ERANGE to global variable errno.

[Description]

This function calculates the hyperbolic tangent of x. Specify the angle in radian. The definition expression is as

follows.

sinh (x) / cosh (x)

tanhf

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 662 of 751
Sep 01, 2013

Hyperbolic tangent

[Classification]

Mathematical library

[Syntax]

#include <math.h>

double tanh(double x);

[Return value]

Returns the hyperbolic tangent of x.

If the solution is a denormal number, tanh sets macro ERANGE to global variable errno.

[Description]

This function calculates the hyperbolic tangent of x. Specify the angle in radian. The definition expression is as

follows.

sinh (x) / cosh (x)

tanh

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 663 of 751
Sep 01, 2013

6.4.11 RAM section initialization function

RAM section initialization function are as follows.

Table 6-13. RAM Section Initialization Function

Function/Macro Name Outline

_INITSCT_RH Copies initial values to or clears sections in RAM

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 664 of 751
Sep 01, 2013

Copies initial values to or clears sections in RAM

[Classification]

Standard library

[Syntax]

#include <_h_c_lib.h>

void _INITSCT_RH(void * datatbl_start, void * datatbl_end, void * bsstbl_start, void * bsstbl_end)

[Argument(s)/Return value]

[Description]

For sections in RAM, this function copies initial values for a section with the data attribute from the ROM area and

clears a section with the bss attribute to 0.

The first and second parameters are used to pass the first and last addresses of the initialization table for a section with

the data attribute.

The third and fourth parameters are used to pass the first and last addresses of the initialization table for a section with

the bss attribute.

If the value of the first parameter is greater than or equal to that of the second parameter, the section with the data

attribute is not initialized.

If the value of the third parameter is greater than or equal to that of the fourth parameter, the section with the bss

attribute is not cleared to zero.

_INITSCT_RH

Argument Return Value

datatbl_start :

First address of the initialization table for a section with the

data attribute

datatbl_end:

Last address of the initialization table for a section with the

data attribute

bsstbl_start :

First address of the initialization table for a section with the

bss attribute

bsstbl_end:

Last address of the initialization table for a section with the

bss attribute

None

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 665 of 751
Sep 01, 2013

[Example]

Remark When the start address of the .bss section is 0x100 and the size of the section is 0x50 bytes, the memory

addresses that are actually cleared to 0 are 0x100, 0x101, ..., 0x14e, and 0x14f but specify addresses

0x100 and 0x150 in the initialization table.

struct {

 void *rom_s; //The first address of the section with the data attribute in the ROM

 void *rom_e; //The last address of the section with the data attribute in the ROM

 void *ram_s; //The first address of the section with the data attribute in the RAM

} _C_DSEC[M];

struct {

 void *bss_s; //The first address of the section with the bss attribute in the RAM

 void *bss_e; //The last address of the section with the bss attribute in the RAM

} _C_BSEC[N];

_INITSCT_RH(_C_DSEC, _C_DSEC + M, _C_BSEC, _C_BSEC + N);

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 666 of 751
Sep 01, 2013

6.4.12 Initialization peripheral devices function

Initialization peripheral devices function are as follows.

Table 6-14. Initialization Peripheral Devices Function

Function/Macro Name Outline

hdwinit Initialization of peripheral devices immediately after the CPU reset

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 667 of 751
Sep 01, 2013

Initialization of peripheral devices immediately after the CPU reset.

[Classification]

Standard library

[Syntax]

void hdwinit(void);

[Description]

The initialization peripheral devices function performs initialization of peripheral devices immediately after the CPU

reset.

This is called from inside the startup routine.

The function included in the library is a dummy routine that performs no actions; code a function in accordance with

your system.

hdwinit

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 668 of 751
Sep 01, 2013

6.4.13 Operation runtime functions

Operation runtime functions are as follows.

Table 6-15. Operation Runtime Functions

Classification Function Name Outline

float type opera-

tion function

_COM_fadd Addition of single-precision floating-point

_COM_fsub Subtraction of single-precision floating-point

_COM_fmul Multiplication of single-precision floating-point

_COM_fdiv Division of single-precision floating-point

double type oper-

ation function

_COM_dadd Addition of double-precision floating-point

_COM_dsub Subtraction of double-precision floating-point

_COM_dmul Multiplication of double-precision floating-point

_COM_ddiv Division of double-precision floating-point

long long type

operation func-

tion

_COM_mul64 Multiplication of 64-bit integer

_COM_div64 Division of signed 64-bit integer

_COM_udiv64 Division of unsigned 64-bit integer

_COM_rem64 Remainder of signed 64-bit integer

_COM_urem64 Remainder of unsigned 64-bit integer

_COM_shll_64_32 Logical left shift of 64-bit integer

_COM_shrl_64_32 Logical right shift of 64-bit integer

_COM_shra_64_32 Arithmetic right shift 64-bit integer

_COM_neg64 Sign inversion

CubeSuite+ V2.01.00 CHAPTER 6 FUNCTIONAL SPECIFICATIONS

R20UT2584EJ0101 Rev.1.01 Page 669 of 751
Sep 01, 2013

Type conversion

function

_COM_itof Conversion from 32-bit integer to single-precision floating-point number

_COM_itod Conversion from 32-bit integer to double-precision floating-point number

_COM_utof Conversion from unsigned 32-bit integer to single-precision floating-point number

_COM_utod Conversion from unsigned 32-bit integer to double-precision floating-point number

_COM_i64tof Conversion from 64-bit integer to single-precision floating-point number

_COM_i64tod Conversion from 64-bit integer to double-precision floating-point number

_COM_u64tof Conversion from unsigned 64-bit integer to single-precision floating-point number

_COM_u64tod Conversion from unsigned 64-bit integer to double-precision floating-point number

_COM_ftoi Conversion from single-precision floating-point number to 32-bit integer

_COM_dtoi Conversion from double-precision floating-point number to 32-bit integer

_COM_ftou Conversion from single-precision floating-point number to unsigned 32-bit integer

_COM_dtou Conversion from double-precision floating-point number to unsigned 32-bit integer

_COM_ftoi64 Conversion from single-precision floating-point number to 64-bit integer

_COM_dtoi64 Conversion from double-precision floating-point number to 64-bit integer

_COM_ftou64 Conversion from single-precision floating-point number to unsigned 64-bit integer

_COM_dtou64 Conversion from double-precision floating-point number to unsigned 64-bit integer

_COM_ftod Conversion from single-precision floating-point number to double-precision floating-

point number

_COM_dtof Conversion from double-precision floating-point number to single-precision floating-

point number

Floating-point

comparison func-

tions

_COM_fgt Comparison

_COM_fge Comparison

_COM_feq Comparison

_COM_fne Comparison

_COM_flt Comparison

_COM_fle Comparison

_COM_funord Incomparable

_COM_dgt Comparison

_COM_dge Comparison

_COM_deq Comparison

_COM_dne Comparison

_COM_dlt Comparison

_COM_dle Comparison

_COM_dunord Incomparable

Classification Function Name Outline

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 670 of 751
Sep 01, 2013

CHAPTER 7 STARTUP

This chapter explains the startup.

7.1 Outline

The startup processing is used to initialize a section for embedding the user application described with the C language

to the system or start the main function.

This section assumes two types of programs: a program for a single core device which uses only the single core, and a

program for a multi-core device which uses multiple cores.

The program for a single core device uses one application project only.

The program for a multi-core device provides one boot loader project and the required number of application projects.

The following shows the configuration of the basic startup routine to operate those programs, using examples of

R7F701Z07 and R7F701352AFP.

7.2 Startup Routine

Startup routine is the routine that is to be executed after microcontroller is reset and before the execution of main func-

tion. Basically, it carries out the initialization after system is reset.

Here describes the following:

- Exception vector table

- Startup routine for the boot loader project

- Startup routine for the application project

- Passing information from the application project to the boot loader project

When a new project is created on CubeSuite+, the following sample files are automatically registered in the file nodes

of the project tree according to the type of the project.

- boot.asm/vecttbl.asm (boot loader for a multi-core device (CC-RH))

- cstartm.asm (application for a multi-core device (CC-RH))

- cstart.asm (application (CC-RH))

Those sample files are explained below.

7.2.1 Exception vector table

A branch destination for the case of reset of the microcontroller or generation of other exceptions is specified for the

exception vector table.

The exception vector table is described in vecttbl.asm in the sample program and referenced from the following

projects.

For a program for a single core device: application project

For a program for a multi-core device: boot loader project

vecttbl.asm is configured by the following elements.

- RESET vector

- Interrupt handler table

- Exception handler routine

(1) RESET vector

A branch instruction to the entry point routine, which is common to the processor element (PE), is allocated to the

address where a branch of the program counter occurs when the microcontroller is started and reset.

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 671 of 751
Sep 01, 2013

In the sample program, the branch instruction is allocated to the RESET section. The section name is optionally

changeable but needed be changed in conjunction with the -start option of the optimizing linker.

Caution For the address of the RESET vectors, see the user's manual of the device.

The EBASE register is handled that holds the same value as the RBASE register and shares the exception vector

table including the RESET vector. A branch instruction to exception handler addresses of the standard specifica-

tion (direct vector method) is allocated in the RESET section.

When the RBASE register is operated similarly with the EBASE register regardless of the state of the PSW.EBV

register, the following description is required in the startup routine.

Remark The initial state of the device is PSW.EBV = 0; it is not necessary because EBASE is not used.

The RBASE and EBASE registers, which hold addresses, hold an address in the unit of 512 bytes; the top of the

RESET section is aligned at the 512-byte boundary.

Caution For the alignment address or the number of vectors of the RESET section, see the user's man-

ual of the device.

(2) Interrupt handler table

When an exception handler address of the extended specification (table lookup method) is used, the address of

the exception handler routine is allocated to the corresponding element position on this table.

In the sample program, the address is allocated to the EIINTTBL section. The section name is optionally change-

able but needed be changed in conjunction with the processing of the INTBP register setting in the startup.

The INTBP register, which holds table addresses, holds an address in the unit of 512 bytes; the top of the

EIINTTBL section is aligned at the 512-byte boundary.

Caution For the maximum number of elements in the table, see the user's manual of the device.

(3) Exception handler routine

The sample program for the exception handler routine of FE and EI levels repeats branches to itself without any

operation. Usually, it uses #pragma interrupt with the C source description.

7.2.2 Startup routine for the boot loader project

The startup routine for the boot loader project is used in a program for a multi-core device and configured with two files:

boot.asm and vecttbl.asm (Exception vector table).

boot.asm is configured by the following elements.

- Processing required for a program for a multi-core device

-start=RESET/01000000

stsr 2, r10, 1 ; get RBASE

ldsr r10, 3, 1 ; set EBASE

mov #__sEIINTTBL, r10

ldsr r10, 4, 1 ; set INTBP

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 672 of 751
Sep 01, 2013

- Entry routine common to PE

- __exit routine

- Entry routine for PE1

- Entry routine for PE3

- Processing prepared as required

- hdwinit_PE1 routine

- hdwinit_PE3 routine

- zeroclr4 routine

- init_eiint routine

(1) Entry routine common to PE

Each PE commonly executes processing. The PE reads its processor element number (PEID) and branches to

entry routines prepared for each PEID. If the PE has no application, the branches converge to the __exit routine

just below the entry routine.

(2) __exit routine

The __exit routine repeats branches to itself to put PEs that is not used to sleep.

(3) Entry routine for PE1

Branches to the application project for PE1 are performed with the following procedure.

(a) Call the hardware initialization routine for PE1, hdwinit_PE1().

(b) Call the EI-level exception setting routine, init_eiint(). It is disabled in the sample program; enable the

USE_TABLE_REFERENCE_METHOD macro at the top of the file.

Remark Refer to the description of hdwinit_PE1 routine and init_eiint routine explained later. If processing

is not required, the routine needs not be called.

(c) Set PC via the FEPC register.

Read the address of the entry routine for the application project from the application information table created

in the application project.

(d) Branch to the entry routine of the application. Execute the feret instruction to reflect the above FEPC

register value to PC and branch to the entry routine in the application.

(4) Entry routine for PE3

The PE3 entry routine has basically same configuration as the PE1 entry routine, however, in the sample program,

it ends processing at the branch to __exit routine, not to the application.

(5) hdwinit_PE1 routine

The following procedure is used for one initialization in the hardware and initialization specific to PE1.

(a) Initialize Global RAM and Local RMA (PE1) for the ECC function. In the sample program, the address

range for R7F701Z07 is specified and initialized via Local RAM (self).

Caution For the RAM addresses to be initialized, see the user's manual of the device.

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 673 of 751
Sep 01, 2013

(b) Wait for the end of initialization of PE3. The following shows the procedure.

The mutual exclusion variable (MEV) is used as the flag for waiting processing. In boot.asm, MEV is operated

by a macro "MEV_ADDR" which has the MEV address as a value.

- The mutual exclusion variable (MEV) is prepared and initialized by 0.

- Set 1 to bit 0 in MEV which indicates the end of processing of PE1 itself.

- Check the value of bit 1 in MEV which indicates the end of processing of PE3.

- If bit 1 in MEV is 1, the initialization processing of PE1 and PE3 has ended and the program exits the wait

processing. If bit 1 is 0, PE3 is in the initialization processing and the program returns to the second pro-

cessing to continue the wait processing.

Remarks 1. If synchronization is not needed in PE1 and PE3, this processing is not required.

2. The countermeasure for ECC error is taken by continuing the processing for setting 1 to bit 0

after MEV is initialized to 0. The Global RAM for allocating MEV needs not be initialized

because it is initialized by PE1 itself, however, initialization is performed to keep the symmetry

with PE3.

(6) hdwinit_PE3 routine

The following procedure is used for initialization specific to PE3.

(a) Initialize Local RMA (PE3) for the ECC function. In the sample program, the address range for

R7F701Z07 is specified and initialized via Local RAM (self).

Caution For the RAM addresses to be initialized, see the user's manual of the device.

(b) Wait for the end of initialization of PE1. The following shows the procedure.

- Similarly to PE1, the mutual exclusion variable (MEV) is initialized to 0.

- Set 1 to bit 1 in MEV which indicates the end of processing of PE3 itself.

- Check the value of bit 0 in MEV which indicates the end of processing of PE1.

- If bit 0 in MEV is 1, the initialization processing of PE1 and PE3 has ended and the program exits the wait

processing. If bit 0 is 0, PE1 is in the initialization processing and the program returns to the second pro-

cessing to continue the wait processing.

(7) zeroclr4 routine

The zerocir4 routine has the ECC function to initialize each RAM. The address ranges passed from the r6 and r7

registers are cleared to 0.

Caution For the memory to be initialized and the initialization method, see the user's manual of the

device.

(8) init_eiint routine

The init_eiint routine is a subroutine that initializes the EI-level exception. The following processing is performed.

- Set the start address of the EIINTTBL section to the INTBP register.

- In the sample program, use the interrupt control register to set the branch methods for some EI-level excep-

tions to the extended specification (table lookup method). If the exception handler for the extended specifica-

tion is not used, the setting is not required.

It is disabled in the sample program; enable the USE_TABLE_REFERENCE_METHOD macro at the top of the file.

Caution For the interrupt control register, see the user's manual of the device

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 674 of 751
Sep 01, 2013

7.2.3 Startup routine for the application project

The startup routine for the application project sets initialization in the unit of application required for executing the user

application (after the main function).

- In the program for a single core device, two files (vecttbl.asm and cstart.asm) are prepared.

- In the program for a multi-core device, cstart.asm is prepared for each application project.

vecttbl.asm is only prepared for the boot loader project.

vecttbl.asm (Exception vector table) is configured by the following elements.

- RESET vector

- Interrupt handler table

- Exception handler routine

Remark For setting information other than that passed from the application project to the boot loader project, both of

label names and section names can be overlapped between application projects. To avoid confusion due to

overlapping, when a section name specific to each project is used, specify the -Xmulti_level=1 option of the

compiler and use #pragma pmodule on the C source program.

cstart.asm is configured by the following elements.

- Stack area

- RAM section initialization table

- Entry routine

- Processing routine branching to the user application

- abort routine

- hdwinit routine

- zeroclr4 routine

- init_eiint routine

- Application information table

(1) Stack area

The stack area is used for the compiler generation code.

In the sample program, the stack area is reserved for the .stack.bss section of the bss attribute.

Remark When the stack area is reserved for other than the .bss section, there are two purposes: one is that the

user variable area and the allocated position are distinguished, and the other is that the program star-

tup time is reduced because initialization can be omitted in the C language specification.

When the memory is referenced by stack pointer (sp) relative in CC-RH, a code is output assuming that sp is allo-

cated in the 4-byte boundary and the stack area is made to be grown to the direction of the 0x0 address. There-

fore, the edge of the 0xffffffff address side of the .stack.bss section must be aligned at the 4-byte boundary.

(2) RAM section initialization table

When an external variable is used in the C source program, the area must be initialized before executing the pro-

gram.

Initialization is performed in the unit of section where external variables are allocated, and the start and end labels

of the section generated by a optimizing linker

When the section has the initial value, a line is configured as "#__s section name, #__e section name, #__s initial-

ization-destination section name", as shown below, and the lines are allocated for the required number of sections.

There are following rules in the initialization table for the section with the initial value.

- The initialization table must be allocated to the .INIT_DSEC.const section, and the section name is fixed.

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 675 of 751
Sep 01, 2013

- Only the initialization table can be allocated.

- The start of the initialization table must be aligned at the 4-byte boundary.

To generate the initialization-destination section, the -rom option of the optimizing linker is used.

When the section without initial value, a line is configured as "#__s section name, #__e section name", as shown

below, and the lines are allocated for the required number of sections.

There are following rules in the initialization table for the section without initial value.

- The initialization table must be allocated to the .INIT_BSEC.const section, and the section name is fixed.

- Only the initialization table can be allocated.

- The start of the initialization table must be aligned at the 4-byte boundary.

When the sections described in those tables do not exist in the user application, an error occurs at linking. To

avoid this, the empty dummy section as shown below is prepared for the section name described in the table.

When #pragma pmodule is used in the program for a multi-core device, the section name is automatically modified

and all the section names that can be appeared are described.

.section ".INIT_DSEC.const", const

.align 4

.dw #__s.data, #__e.data, #__s.data.R

.dw #__s.sdata, #__e.sdata, #__s.sdata.R

-rom=.data=.data.R

-rom=.sdata=.sdata.R

.section ".INIT_BSEC.const", const

.align 4

.dw #__s.bss, #__e.bss

.dw #__s.sbss, #__e.sbss

 .section ".data", data

.L.dummy.data:

 .section ".sdata", sdata

.L.dummy.sdata:

 .section ".bss", bss

.L.dummy.bss:

 .section ".sbss", sbss

.L.dummy.sbss:

 .section ".INIT_DSEC.const", const

 .align 4

 .dw #__s.data.pm1, #__e.data.pm1, #__s.data.pm1.R

 .dw #__s.data.cmn, #__e.data.cmn, #__s.data.cmn.R

 .dw #__s.data, #__e.data, #__s.data.R

 .dw #__s.sdata.pm1, #__e.sdata.pm1, #__s.sdata.pm1.R

 .dw #__s.sdata.cmn, #__e.sdata.cmn, #__s.sdata.cmn.R

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 676 of 751
Sep 01, 2013

Remark When the contents of the .INIT_DSEC.const and .INIT_BSEC.const sections are sufficient, no dummy

sections are required.

(3) Entry routine

The execution environment (PE) is initialized with the following procedure.

(a) Set the most significant address of the stack area to the sp (r3) register. The set value must be a mul-

tiple of 4.

 .dw #__s.sdata, #__e.sdata, #__s.sdata.R

 .section ".INIT_BSEC.const", const

 .align 4

 .dw #__s.bss.pm1, #__e.bss.pm1

 .dw #__s.bss.cmn, #__e.bss.cmn

 .dw #__s.bss, #__e.bss

 .dw #__s.sbss.pm1, #__e.sbss.pm1

 .dw #__s.sbss.cmn, #__e.sbss.cmn

 .dw #__s.sbss, #__e.sbss

 .section ".data.pm1", data

.L.dummy.data.pm1:

 .section ".data.cmn", data

.L.dummy.data.cmn:

 .section ".data", data

.L.dummy.data:

 .section ".sdata.pm1", sdata

.L.dummy.data.pm1:

 .section ".sdata.cmn", sdata

.L.dummy.data.cmn:

 .section ".sdata", sdata

.L.dummy.data:

 .section ".bss.pm1", bss

.L.dummy.bss.pm1:

 .section ".bss.cmn", bss

.L.dummy.bss.cmn:

 .section ".bss", bss

.L.dummy.bss:

 .section ".sbss.pm1", sbss

.L.dummy.bss.pm1:

 .section ".sbss.cmn", sbss

.L.dummy.bss.cmn:

 .section ".sbss", sbss

.L.dummy.sbss:

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 677 of 751
Sep 01, 2013

(b) Set the address of the __gp_data label to the gp (r4) register. The __gp_data label is automatically

generated by a optimizing linker when the gp relative section is in use.

(c) Set the address of the __ep_data label to the ep (r30) register. The __ep_data label is automatically

generated by a optimizing linker when the ep relative section is in use.

Remark When the gp relative and ep relative sections are not in use in the program, even if there are setting

codes for gp and ep, it is only redundant and no problem occurs.

(d) Call hdwinit() and make specific initialization to PE.

The same initialization is allowed in the boot loader project; initialization based on the data defined in

the application side is performed in the application project side, and initialization by the data shared

between PEs is performed in the boot loader project side.

(e) Call __INITSCT_RH to initialize the RAM section.

- When both sections with or without initial values are initialized:

- When only the section with initial values is initialized:

- When only the section without initial values is initialized:

(f) Branch to the processing that branches to the user application.

(4) Processing routine branching to the user application

Branches to the user application are performed with the following procedure.

(a) Set PSW and the branch destination to branch to the user application via the FEPSW register.

In the sample program, the following settings are made.

mov #__s.INIT_DSEC.const, r6

mov #__e.INIT_DSEC.const, r7

mov #__s.INIT_BSEC.const, r8

mov #__e.INIT_BSEC.const, r9

jarl __INITSCT_RH, lp

mov #__s.INIT_DSEC.const, r6

mov #__e.INIT_DSEC.const, r7

mov r0, r8

mov r0, r9

jarl __INITSCT_RH, lp

mov r0, r6

mov r0, r7

mov #__s.INIT_BSEC.const, r8

mov #__e.INIT_BSEC.const, r9

jarl __INITSCT_RH, lp

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 678 of 751
Sep 01, 2013

(b) Set the start address (#_main) of the user application to the FEPC register.

(c) Execute the feret instruction to reflect the PSW setting and branch to the user application.

Remark When the operating mode of the CPU is not changed, a branch instruction, not the feret instruction,

is available.

(5) abort routine

The abort routine is required when the assert macro or abort itself is used in the user application. In the sample

program, branching to the abort routine itself is only repeated.

(6) hdwinit routine

In the sample program for a single core device, a Local RAM is initialized for the ECC function.

Caution The sample program specifies the address range for R7F701354AFP.

See the user's manual of the device and specify the appropriate address.

(7) zeroclr4 routine

The zerocir4 routine has the ECC function to initialize each RAM. The address ranges passed from the r6 and r7

registers are cleared to 0.

Caution For the memory to be initialized and the initialization method, see the user's manual of the

device.

(8) init_eiint routine

The init_eiint routine is a subroutine that initializes the EI-level exception. The following processing is performed.

- Set the start address of the EIINTTBL section to the INTBP register.

- In the sample program, use the interrupt control register to set the branch methods for some EI-level excep-

tions to the extended specification (table lookup method). If the exception handler for the extended specifica-

tion is not used, the setting is not required.

It is disabled in the sample program; enable the USE_TABLE_REFERENCE_METHOD macro at the top of the file.

Caution For the interrupt control register, see the user's manual of the device.

(9) Application information table

The application information table stores context information that is passed to the boot loader project in the program

for a multi-core device.

In the sample program, the following information is stored in the table.

Target Program FPU EI-level Exception User Mode

Program for a single core device (for R7F701352AFP) OFF OFF OFF

Program for a multi-core device (for R7F701Z07) ON OFF ON

jarl32 #_main, lp

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 679 of 751
Sep 01, 2013

The section name for allocating a table is .const.cmn. The label in this section is referenced from the boot loader

project.

Caution When the startup routine is copied between application projects, the label names in .const.cmn

must be changed so that they are not overlapped.

Remark The application information table can be changed as required. To change this table, the table in the

boot loader project side must also be read.

7.2.4 Passing information from the application project to the boot loader project

A program for a multi-core device is configured of the boot loader project and multiple application projects.

The -fsymbol option of the optimizing linker is used in the boot loader project to initialize hardware or use the informa-

tion set in each application project. Accordingly, the public label name in the specified section and information of the

address value after linking can be output to the file (symbol address file) using an option and passed to the boot loader

project.

The following shows an example for passing the entry routine address from the application project to the boot loader

project.

To reference the address of __start_pm1 from the boot loader project, specify __start_pm1 with public.

When the application project is linked, the -fsymbol option specifies the .text.cmn section where the __start_pm1 label

exists. In this case, the pm1.fsy file is generated.

The boot loader project references __start_pm1.

Offset Value Remark

0 Entry routine address of the application Specifies the absolute address of the label corre-

sponding to __start

;; cstart.asm

 .section ".text.cmn", text

 .public __start_pm1

__start_pm1:

 jarl _main, lp

>rlink cstart.obj .opm1.abs -fsymbol=.text.cmn

;; boot.asm

 .section ".text", text

__start:

 cmp 1, r6

 bnz .L1

 jr32 #__start_pm1

.L1:

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 680 of 751
Sep 01, 2013

When the fsy file generated from each application project is compiled with the boot loader project, the address value in

the .fsy file resolves references in boot.asm.

Caution All the public labels in the section specified with the -fsymbol option are considered to have been

defined in the boot loader project. Therefore, if there are labels with the same name in the specified

sections of different application projects, a multiple definition error will occur at linking in the boot

loader side (even if the section names are the same between applications, they will not collide).

Note that many labels must not be defined in the section specified for the fsymbol option in the

application project; if defined, the label name must be the one that will not collide with other appli-

cation projects.

7.3 Coding Example

The following is an example of exception vector table.

Table 7-1. Examples of exception vector table

>ccrh boot.asm pm1.fsy pm2.fsy -oboot.abs

 .section "RESET", text

 .align 512

 jr32 __start ; RESET

 .align 16

 jr32 _Dummy ; SYSERR

 .align 16

 jr32 _Dummy ; HVTRAP

 .align 16

 jr32 _Dummy ; FETRAP

 .align 16

 jr32 _Dummy_EI ; TRAP0

 .align 16

 jr32 _Dummy_EI ; TRAP1

 .align 16

 jr32 _Dummy ; RIE

 .align 16

 jr32 _Dummy_EI ; FPP/FPI

 .align 16

 jr32 _Dummy ; UCPOP

 .align 16

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 681 of 751
Sep 01, 2013

 jr32 _Dummy ; MIP/MDP/ITLBE/DTLBE

 .align 16

 jr32 _Dummy ; PIE

 .align 16

 jr32 _Dummy ; Debug

 .align 16

 jr32 _Dummy ; MAE

 .align 16

 jr32 _Dummy ; (R.F.U)

 .align 16

 jr32 _Dummy ; FENMI

 .align 16

 jr32 _Dummy ; FEINT

 .align 16

 jr32 _Dummy_EI ; INTn(priority0)

 .align 16

 jr32 _Dummy_EI ; INTn(priority1)

 .align 16

 jr32 _Dummy_EI ; INTn(priority2)

 .align 16

 jr32 _Dummy_EI ; INTn(priority3)

 .align 16

 jr32 _Dummy_EI ; INTn(priority4)

 .align 16

 jr32 _Dummy_EI ; INTn(priority5)

 .align 16

 jr32 _Dummy_EI ; INTn(priority6)

 .align 16

 jr32 _Dummy_EI ; INTn(priority7)

 .section "EIINTTBL", const

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 682 of 751
Sep 01, 2013

The following is an example of startup routine of a project for a single core device.

Table 7-2. Examples of startup routine of a project for a single core device

 .align 512

 .dw #_Dummy_EI ; INT0

 .dw #_Dummy_EI ; INT1

 .dw #_Dummy_EI ; INT2

 .rept 288 - 3

 .dw #_Dummy_EI ; INTn

 .endm

 .section ".text", text

 .align 2

_Dummy:

 br _Dummy

_Dummy_EI:

 br _Dummy_EI

; NOTE : THIS IS A TYPICAL EXAMPLE. (R7F701352AFP)

 ; example of using eiint as table refrence method

 ;USE_TABLE_REFERENCE_METHOD .set 1

;--

; system stack

;--

STACKSIZE .set 0x200

 .section "stack.bss", bss

 .align 4

 .ds (STACKSIZE)

 .align 4

.stacktop:

;--

; section initialize table

;--

 .section ".INIT_DSEC.const", const

 .align 4

 .dw #__s.data, #__e.data, #__s.data.R

 .section ".INIT_BSEC.const", const

 .align 4

 .dw #__s.bss, #__e.bss

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 683 of 751
Sep 01, 2013

;--

; startup

;--

 .section ".text", text

 .public __start

 .align 2

__start:

 mov #_stacktop, sp ; set sp register

 mov #__gp_data, gp ; set gp register

 mov #__ep_data, ep ; set ep register

 jarl _hdwinit, lp ; initialize hardware

 mov #__s.INIT_DSEC.const, r6

 mov #__e.INIT_DSEC.const, r7

 mov #__s.INIT_BSEC.const, r8

 mov #__e.INIT_BSEC.const, r9

 jarl32 __INITSCT_RH, lp ; initialize RAM area

$ifdef USE_TABLE_REFERENCE_METHOD

 jarl _init_eiint, lp ; initialize exception

$endif

 ; set various flags to PSW via FEPSW

 stsr 5, r10, 0 ; r10 <- PSW

 ;xori 0x0020, r10, r10 ; enable interrupt

 ;movhi 0x4000, r0, r11

 ;or r11, r10 ; supervisor mode -> user mode

 ldsr r10, 3, 0 ; FEPSW <- r10

 mov #_exit, lp ; lp <- #_exit

 mov #_main, r10

 ldsr r10, 2, 0 ; FEPC <- #_main

 ; apply PSW and call main

 feret

_exit:

 br _exit ; end of program

;--

; abort

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 684 of 751
Sep 01, 2013

;--

 .public _abort

 .align 2

_abort:

 br _abort

;--

; target dependence informations (specify values suitable to your system)

;--

 ; RAM address

 PRIMARY_LOCAL_RAM_ADDR .set 0xfede0000

 PRIMARY_LOCAL_RAM_END .set 0xfedfffff

 SECONDARY_LOCAL_RAM_ADDR .set 0xfedd8000

 SECONDARY_LOCAL_RAM_END .set 0xfeddffff

 RETENTION_RAM_ADDR .set 0xfee00000

 RETENTION_RAM_END .set 0xfee07fff

;--

; hdwinit

;--

 .section ".text", text

 .align 2

_hdwinit:

 mov lp, r14 ; save return address

 mov PRIMARY_LOCAL_RAM_ADDR, r6

 mov PRIMARY_LOCAL_RAM_END, r7

 jarl _zeroclr4, lp ; clear Primary local RAM

 mov SECONDARY_LOCAL_RAM_ADDR, r6

 mov SECONDARY_LOCAL_RAM_END, r7

 jarl _zeroclr4, lp ; clear Secondary local RAM

 mov RETENTION_RAM_ADDR, r6

 mov RETENTION_RAM_END, r7

 jarl _zeroclr4, lp ; clear Retention RAM

 mov r14, lp

 jmp [lp]

;--

; zeroclr4

;--

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 685 of 751
Sep 01, 2013

 .align 2

_zeroclr4:

 br .L.zeroclr4.2

.L.zeroclr4.1:

 st.w r0, [r6]

 add 4, r6

.L.zeroclr4.2:

 cmp r6, r7

 bh .L.zeroclr4.1

 jmp [lp]

$ifdef USE_TABLE_REFERENCE_METHOD

;--

; init_eiint

;--

 ; interrupt control register address

 ICBASE .set 0xffff9000

 .align 2

_init_eiint:

 mov #__sEIINTTBL, r10

 ldsr r10, 4, 1 ; set INTBP

 ; some inetrrupt channels use the table reference method.

 mov ICBASE, r10 ; get interrupt control register address

 set1 6, 0[r10] ; set INT0 as table reference

 set1 6, 2[r10] ; set INT1 as table reference

 set1 6, 4[r10] ; set INT2 as table reference

 jmp [lp]

$endif

;--

; dummy section

;--

 .section ".data", data

.L.dummy.data:

 .section ".bss", bss

.L.dummy.bss:

 .section ".const", const

.L.dummy.const:

 .section ".text", text

.L.dummy.text:

;-------------------- end of start up module -------------------;

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 686 of 751
Sep 01, 2013

The following is an example of startup routine of a boot loader project for a multi-core device.

Table 7-3. Examples of startup routine of a boot loader project for a multi-core device

; NOTE : THIS IS A TYPICAL EXAMPLE. (R7F701Z07)

 ; example of using eiint as table reference method

 ;USE_TABLE_REFERENCE_METHOD .set 1

 ; offset of processing module setting table element

 .OFFSET_ENTRY .set 0

;--

; startup

;--

 .section ".text", text

 .public __start

 .align 2

__start:

 ; jump to entry point of each PE

 stsr 0, r10, 2 ; get HTCFG0

 shr 16, r10 ; get PEID

 cmp 1, r10

 bz __start_PE1

 cmp 3, r10

 bz __start_PE3

__exit:

 br __exit

__start_PE1:

 jarl _hdwinit_PE1, lp ; initialize hardware

$ifdef USE_TABLE_REFERENCE_METHOD

 jarl _init_eiint, lp ; initialize exception

$endif

 mov #_pm1_setting_table, r13

 ld.w .OFFSET_ENTRY[r13], r10 ; r10 <- #__start

 ldsr r10, 2, 0 ; set FEPC

 ; apply PSW and jump to the application entry point

 feret

__start_PE3:

 jarl _hdwinit_PE3, lp ; initialize hardware

$ifdef USE_TABLE_REFERENCE_METHOD

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 687 of 751
Sep 01, 2013

 jarl _init_eiint, lp ; initialize exception

$endif

 ;mov #_pm2_setting_table, r13

 ;ld.w .OFFSET_ENTRY[r13], r10 ; r10 <- #__start

 ;ldsr r10, 2, 0 ; set FEPC

 ; apply PSW and jump to the application entry point

 ;feret

 br __exit

;--

; target dependence informations (specify values suitable to your system)

;--

$if 1

 ; RAM address

 GLOBAL_RAM_ADDR .set 0xfeef0000

 GLOBAL_RAM_END .set 0xfef1ffff

 LOCAL_RAM_PE1_ADDR .set 0xfedf0000

 LOCAL_RAM_PE1_END .set 0xfedfffff

 LOCAL_RAM_PE3_ADDR .set 0xfedf8000

 LOCAL_RAM_PE3_END .set 0xfedfffff

 ; mutual exclusion variable

 MEV_ADDR .set 0xfeef0000

;--

; hdwinit_PE1

;--

 .section ".text", text

 .align 2

_hdwinit_PE1:

 mov lp, r14 ; save return address

 ; clear Global RAM

 mov GLOBAL_RAM_ADDR, r6

 mov GLOBAL_RAM_END, r7

 jarl _zeroclr4, lp

 ; clear Local RAM PE1

 mov LOCAL_RAM_PE1_ADDR, r6

 mov LOCAL_RAM_PE1_END, r7

 jarl _zeroclr4, lp

 ; wait for PE3

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 688 of 751
Sep 01, 2013

 mov MEV_ADDR, r10

 st.w r0, [r10]

.L.hdwinit_PE1.1:

 snooze

 set1 0, [r10]

 tst1 1, [r10]

 bz .L.hdwinit_PE1.1

 mov r14, lp

 jmp [lp]

;--

; hdwinit_PE3

;--

 .section ".text", text

 .align 2

_hdwinit_PE3:

 mov lp, r14 ; save return address

 ; clear Local RAM PE3

 mov LOCAL_RAM_PE3_ADDR, r6

 mov LOCAL_RAM_PE3_END, r7

 jarl _zeroclr4, lp

 ; wait for PE1

 mov MEV_ADDR, r10

 st.w r0, [r10]

.L.hdwinit_PE3.1:

 snooze

 set1 1, [r10]

 tst1 0, [r10]

 bz .L.hdwinit_PE3.1

 mov r14, lp

 jmp [lp]

;--

; zeroclr4

;--

 .align 2

_zeroclr4:

 br .L.zeroclr4.2

.L.zeroclr4.1:

 st.w r0, [r6]

 add 4, r6

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 689 of 751
Sep 01, 2013

The following is an example of startup routine of an application project for a multi-core device.

Table 7-4. Examples of startup routine of an application project for a multi-core device

.L.zeroclr4.2:

 cmp r6, r7

 bh .L.zeroclr4.1

 jmp [lp]

$endif

$ifdef USE_TABLE_REFERENCE_METHOD

;--

; init_eiint

;--

 ; interrupt control register address

 ICBASE .set 0xfffeea00

 .align 2

_init_eiint:

 mov #__sEIINTTBL, r10

 ldsr r10, 4, 1 ; set INTBP

 ; some inetrrupt channels use the table reference method.

 mov ICBASE, r10 ; get interrupt control register address

 set1 6, 0[r10] ; set INT0 as table reference

 set1 6, 2[r10] ; set INT1 as table reference

 set1 6, 4[r10] ; set INT2 as table reference

 jmp [lp]

$endif

;-------------------- end of start up module -------------------;

; NOTE : THIS IS A TYPICAL EXAMPLE. (R7F701Z07)

;--

; processing module setting table

;--

 .section ".const.cmn", const

 .public _pm1_setting_table

 .align 4

_pm1_setting_table:

 .dw #__start ; ENTRY ADDRESS

;--

; system stack

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 690 of 751
Sep 01, 2013

;--

 STACKSIZE .set 0x200

 .section ".stack.bss", bss

 .align 4

 .ds (STACKSIZE)

 .align 4

_stacktop:

;--

; section initialize table

;--

 .section ".INIT_DSEC.const", const

 .align 4

 .dw #__s.data, #__e.data, #__s.data.R

 .section ".INIT_BSEC.const", const

 .align 4

 .dw #__s.bss, #__e.bss

;--

; startup

;--

 .section ".text", text

 .public __start

 .align 2

__start:

 mov #_stacktop, sp ; set sp register

 mov #__gp_data, gp ; set gp register

 mov #__ep_data, ep ; set ep register

 jarl _hdwinit, lp ; initialize hardware

 mov #__s.INIT_DSEC.const, r6

 mov #__e.INIT_DSEC.const, r7

 mov #__s.INIT_BSEC.const, r8

 mov #__e.INIT_BSEC.const, r9

 jarl32 __INITSCT_RH, lp ; initialize RAM area

 ; set various flags to PSW via FEPSW

 stsr 5, r10, 0 ; r10 <- PSW

 movhi 0x0001, r0, r11

 or r11, r10 ; enable FPU

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 691 of 751
Sep 01, 2013

7.4 Symbols

The CC-RH uses the following pointers for operation of applications.

- Global pointer (gp)

- Element pointer (ep)

This section describes the role of each pointer and how pointer values are determined.

 ;xori 0x0020, r10, r10 ; enable interrupt

 movhi 0x4000, r0, r11

 or r11, r10 ; supervisor mode -> user mode

 ldsr r10, 3, 0 ; FEPSW <- r10

 mov #_exit, lp ; lp <- #_exit

 mov #_main, r10

 ldsr r10, 2, 0 ; FEPC <- #_main

 ; apply PSW and PC to start user mode

 feret

_exit:

 br _exit ; end of program

;--

; abort

;--

 .public _abort

 .align 2

_abort:

 br _abort

;--

; dummy section

;--

 .section ".data", data

.L.dummy.data:

 .section ".bss", bss

.L.dummy.bss:

 .section ".const", const

.L.dummy.const:

 .section ".text", text

.L.dummy.text:

;-------------------- end of start up module -------------------;

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 692 of 751
Sep 01, 2013

7.4.1 Global pointer (gp)

Data that is globally declared in an application is allocated to memory. When referencing (loading or storing) this data

that has been allocated to memory, the global pointer (gp) is provided to enable access independent of the allocation

position (PID: Position Independent Data).

(1) Setting the global pointer (gp)

Set the value of the global pointer symbol (gp symbol) as the address set in the global pointer (gp).

- The gp symbol is handled as the constant symbol name "__gp_data".

- Declare the gp symbol as a reference symbol (.extern) in the startup routine.

- rlink creates an externally defined symbol (.public) and determines the address of the gp symbol.

- The operations for defining and referencing the gp symbol are as follows.

(a) If there is only an ".extern" declaration of the gp symbol

rlink creates the definition information and sets the address automatically.

(b) If the gp symbol is defined

The defined address is used.

(c) If there is no gp symbol (it is not used)

The following error message is output for code that makes references relative to the gp.

(2) Rules for determining the gp symbol value

The value of the gp symbol is determined from sections with relocation attributes of sdata, sbss, sdata23, and

sbss23, in the following order of precedence.

Figure 7-1. Rules for Determining the Global Pointer Value

Undefined external symbol "GP-symbol (__gp_data)" referenced in "FILE"

Is the gp symbol

defined?

Dose a sdata/sbss section

exist?

Dose a sdata23/sbss23

section exist?

gp symbol value = defined address

gp symbol value = 0x0

No

No

No

Yes

Yes

gp symbol value = (a)

Yes gp symbol value = (b)

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 693 of 751
Sep 01, 2013

Below is an example of how the value of the gp symbol is determined.

(a) If there is a section with a relocation attribute of sdata or sbss

Sets the halfway point between the start address of the sdata or sbss section with the smallest address, and

the end address of the sdata or sbss section with the greatest address (multiple of 2; if the midway point is an

odd number, takes the first multiple of two) as the address value of the gp symbol.

<1> If an sdata and sbss section are located in this order, from smallest to highest address

<2> If an sbss and sdata section are located in this order, from smallest to highest address

<3> If sdata and sbss sections are placed in this order, from lowest to highest address, and there is a

non-eligible section in between the sdata and sbss sections

(b) If there is a section with a relocation attribute of sdata23 or sbss23

Sets the halfway point between the start address of the sdata23 or sbss23 section with the smallest address, and

the end address of the sdata or sbss section with the greatest address (multiple of 2; if the midway point is an odd

number, takes the first multiple of two) as the address value of the gp symbol.

sbss23

sbss

sdata

sdata23

High Address

Low Address

Set the value of the gp

symbol to the address

at the midway point

Layout image of sdata and sdata23 after ROMization

sdata23

sdata

sbss

sbss23

High Address

Low Address

Set the value of the gp

symbol to the address

at the midway point

Layout image of sdata and sdata23 after ROMization

sbss23

sbss

sdata

sdata23

High Address

Low Address

Sets value of gp symbol

to address midway

between start address of

sdata section and end

address of sbss section

Layout image of sdata and sdata23 after ROMization

non-eligible section

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 694 of 751
Sep 01, 2013

<1> If an sdata23 and sbss23 section are located in this order, from smallest to highest address

<2> If an sbss23 and sdata23 section are located in this order, from smallest to highest address

<3> If sdata23 and sbss23 sections are placed in this order, from lowest to highest address, and there

is a non-eligible section in between the sdata23 and sbss23 sections

(c) If there are no sections with sdata, sbss, sdata23, or sbss23 relocation attributes

If there are no sdata, sbss, sdata23, or sbss23 sections, then the address value of the gp symbol is set to zero

(0).

7.4.2 Element pointer (ep)

The element pointer is a pointer that is provided to realize faster access (loading and storing) by allocating data (vari-

ables) that are globally declared within an application to RAM area in RH850 device.

Data (variables) that is globally declared and allocated to internal RAM area is referenced with ep-relative.

(1) Setting the element pointer (ep)

Set the value of the element pointer symbol (ep symbol) as the address set in the global pointer (ep).

- The ep symbol is handled as the constant symbol name "__ep_data".

- Declare the ep symbol as a reference symbol (.extern) in the startup routine.

- rlink creates an externally defined symbol (.public) and determines the address of the ep symbol.

sbss23

sdata23

High Address

Low Address

Set the value of the gp

symbol to the address

at the midway point

Layout image of sdata23 after ROMization

sdata23

sbss23

High Address

Low Address

Set the value of the gp

symbol to the address

at the midway point

Layout image of sdata23 after ROMization

sbss23

sdata23

High Address

Low Address

Sets value of gp symbol to

address midway between

start address of sdata23

section and end address of

sbss23 section

Layout image of sdata23 after ROMization

non-eligible section

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 695 of 751
Sep 01, 2013

- The operations for defining and referencing the ep symbol are as follows.

(a) If there is only an ".extern" declaration of the ep symbol

rlink creates the definition information and sets the address automatically.

(b) If the ep symbol is defined

The defined address is used.

(c) If there is no ep symbol (it is not used)

The following error message is output for code that makes references relative to the ep.

(2) Rules for determining the ep symbol value

The value of the ep symbol is determined from sections with relocation attributes of tdata, tdata4/5/7/8, tbss4/5/7/8,

edata, ebss, edata23 and ebss23, in the following order of precedence.

Figure 7-2. Rules for Determining the Element Pointer Value

Below is an example of how the value of the ep symbol is determined.

Undefined external symbol "EP-symbol (__ep_data)" referenced in "FILE"

Is the ep symbol

defined?

Dose a tdata, tdata4/5/7/8

or tbss4/5/7/8 section

exist?

Dose a edata/ebss sec-

tion exist?

ep symbol value = defined address

No

No

No

Yes

Yes

ep symbol value = (a)

Yes ep symbol value = (b)

Dose a edata23/ebss23

section exist?

ep symbol value = 0x0

No

Yes
ep symbol value = (c)

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 696 of 751
Sep 01, 2013

(a) If there are sections with relocation attributes of tdata, tdata4/5/7/8, and tbss4/5/7/8

The ep symbol is set to the start address of the first section in this order: tdata -> tdata4, or tbss4 -> ... ->

tdata8, or tbss8.

(b) If there is a section with a relocation attribute of edata or ebss

Sets the halfway point between the start address of the edata or ebss section with the smallest address, and

the end address of the edata or ebss section with the greatest address (multiple of 2; if the midway point is an

odd number, takes the first multiple of two) as the address value of the ep symbol.

<1> If an edata and ebss section are located in this order, from smallest to highest address

<2> If an ebss and edata section are located in this order, from smallest to highest address

High Address

Low Address

Priority Level 1

Layout image of tdata, tdata4/5/7/8, edata and edata32 after ROMization

ebss23

ebss

tdata8/tbss8

tdata

edata

edata23

Priority Level 5

tdata7/tbss7

tdata5/tbss5

tdata4/tbss4

ebss23

ebss

edata

edata23

High Address

Low Address

Set the value of the ep

symbol to the address

at the midway point

Layout image of edata and edata23 after ROMization

edata23

edata

ebss

ebss23

High Address

Low Address

Set the value of the ep

symbol to the address

at the midway point

Layout image of edata and edata23 after ROMization

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 697 of 751
Sep 01, 2013

<3> If edata and ebss sections are placed in this order, from lowest to highest address, and there is a

non-eligible section in between the edata and ebss sections

(c) If there is a section with a relocation attribute of edata23 or ebss23

Sets the halfway point between the start address of the edata23 or ebss23 section with the smallest address,

and the end address of the edata23 or ebss23 section with the greatest address (multiple of 2; if the midway

point is an odd number, takes the first multiple of two) as the address value of the ep symbol.

<1> If an edata23 and ebss23 section are located in this order, from smallest to highest address

<2> If an ebss23 and edata23 section are located in this order, from smallest to highest address

ebss23

ebss

edata

edata23

High Address

Low Address

Set the value of the ep

symbol to the address

halfway between the last

address of ebss and the

first address of edata

Layout image of edata and edata23 after ROMization

non-eligible section

ebss23

edata23

High Address

Low Address

Set the value of the ep

symbol to the address

at the midway point

Layout image of edata after ROMization

edata23

ebss23

High Address

Low Address

Set the value of the ep

symbol to the address

at the midway point

Layout image of edata23 after ROMization

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 698 of 751
Sep 01, 2013

<3> If edata23 and ebss23 sections are placed in this order, from lowest to highest address, and there

is a non-eligible section in between the edata23 and ebss23 sections

(d) If there are no sections with tdata, tdata4/5/7/8, tbss4/5/7/8, edata, ebss, edata23, or ebss23 relocation

attributes

If there are no data, tdata4/5/7/8, tbss4/5/7/8, edata, ebss, edata23, or ebss23 sections, then the address

value of the ep symbol is set to zero (0).

7.5 ROMization

This section describes an outline of the ROMization procedure, operation method, etc.

7.5.1 Outline

When a variable is declared globally or static within a program, the variable is allocated to the data-attribute section in

RAM if the variable has a initial value, or to the bss-attribute section if it does not have a initial value. When the variable

has a initial value, that initial value is also stored in RAM. In addition, program code may be stored in the internal RAM

area to speed up applications.

In the case of an embedded system, if a debug tool such as an in-circuit emulator is used, executable modules can be

downloaded and executed just as they are in the allocation image. However, if the program is actually written to the tar-

get system's ROM area before being executed, the initial value information that has been allocated to the data-attribute

section and the program code that has been allocated to a RAM area must be deployed in RAM prior to execution. In

other words, data that is residing in RAM must be deployed in ROM, and this means that data must be copied from ROM

to RAM before the corresponding application is executed.

"ROMization" refers to the packing of the initial values of variables in data-attribute sections and program code to be

allocated to the RAM into a single section of ROM. Allocating this section to the ROM and calling the copy function pro-

vided by the CC-RH make it easy to deploy the initial values and program code to the RAM.

The following figure shows an outline of the operation flow in creating objects for ROMization.

ebss23

edata23

High Address

Low Address

Sets value of ep symbol to

address midway between

start address of edata23

section and end address of

ebss23 section

Layout image of edata23 after ROMization

non-eligible section

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 699 of 751
Sep 01, 2013

Figure 7-3. Creation of Object for ROMization

When ROMization objects are created as shown in the "Figure 7-3. Creation of Object for ROMization", execution of

the _INITSCT_RH copies the data to be allocated to RAM from the packed ROM section.

The function used to copy from the ROM area to the RAM area is as follows.

- _INITSCT_RH

This function is stored in the library "libc.lib".

If the object files resolved for relocation include symbol information and debug information, the CC-RH creates a

ROMization object module file without deleting them. Therefore, the debugger can debug the source even with a

ROMization object module file.

7.5.2 Creating ROMized load module file

This section explains how to create the ROMized load module.

The -rom option is used for ROMization. The code is as follows.

The -start option must also be used to specify the addresses of the initial-value section and destination section.

Assume that the program contains seven sections: .text, .data, .zdata, .zbss, .bss, .sdata, and .sbss. If .text, r0 relative

sections, and r4 relative sections are to be allocated to addresses 0x0, 0xFE000000, and 0xFE001000 respectively

before execution of the user program, the code will be as follows.

-rom=name of the initial-value section=name of the destination section[,name of the initial-
value section=name of the destination section]...

-start=[(]section-name[{:|,}section-name]...[)][{:|,}section-name]...[/destination-
address][,[(]section-name[{:|,}section-name]...[)][{:|,}section-name]...[/destination-
address]]...

-start=.text,.data,.zdata,.sdata/0

-start=.data.R,.zdata.R,.zbss,.bss/fe000000

-start=.sdata.R,.sbss/fe001000

-rom=.data=.data.R,.zdata=.zdata.R,.sdata=.sdata.R

Source program

RAM section initialization function

libc.lib (Library where the initializa-

tion function for the RAM section has

been stored)

Executable object ROMization object
Link

Startup file including initial-

ization-related information

cstart.obj

CubeSuite+ V2.01.00 CHAPTER 7 STARTUP

R20UT2584EJ0101 Rev.1.01 Page 700 of 751
Sep 01, 2013

.data and .zdata are allocated to the range following the .text section at address 0x0.

When the user program is executed, .data.R, .zdata.R, .zbss, and .bss at address 0xFE000000 and .sdata.R and .bss

at address 0xFE001000 are initialized before they are used.

An image of this operation is shown below.

Figure 7-4. Image of Processing Before and After Copy Function Call

.zdata

.data

.text
0x0

.sdata

.zdata

.data

.text

.sdata

.zbss

.zdata.R

.data.R

.bss

.sdata.R

.sbss

0x0

0xFE000000

0xFE001000

.Before the call After the call

CubeSuite+ V2.01.00 CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

R20UT2584EJ0101 Rev.1.01 Page 701 of 751
Sep 01, 2013

CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

This chapter explains how to handle arguments when a program is called by the CC-RH.

8.1 Function Call Interface

This section describes how to handle arguments when a program is called by the CC-RH.

8.1.1 General-purpose registers guaranteed before and after function calls

Some general-purpose registers are guaranteed to be the same before and after a function call, and others are not.

The rules for guaranteeing general-purpose registers are as follows.

(1) Registers guaranteed to be same before and after function call (Callee-Save registers)

These general-purpose registers must be saved and restored by the called function. It is thus guaranteed to the

caller that the register contents will be the same before and after the function call.

r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30Note, r31

Note r30 (EP) may be locked throughout the entire program. If it is locked, then the contents of the general-pur-

pose registers are never changed anywhere in the program, and consequently it is not necessary for the

callee to save and restore the registers.

(2) Registers not guaranteed to be same before and after function call (Caller-Save registers)

General-purpose registers other than the Callee-Save registers above could be overwritten by the called function.

It is thus not guaranteed to the caller that the register contents will be the same before and after the function call.

Remarks 1. The user must take responsibility for overwriting register r1, because it may be used by the assembler.

2. r2 may be reserved by the OS. The rules described here do not apply to reserved registers, because

the compiler does not use them as general-purpose registers. The user is responsible for overwriting

them.

3. r3 is a stack pointer. The rules described here do not apply to it, because it is not used as a general-

purpose register. The user is responsible for overwriting it.

4. r4 (GP) and r5 (TP) may be locked throughout the entire program. If so, then the rules described here

do not apply to them, because the contents of the general-purpose registers are never changed

anywhere in the program. The user is responsible for overwriting them.

5. It is possible to specify usage of r2 and r30 using options.

8.1.2 Setting and referencing arguments and return values

(1) Passing arguments

Arguments can be passed via registers or the stack. The manner in which each argument is passed is determined

by the procedure below.

(a) A memory image to which each argument is assigned is created on the stack

<1> Scalar values that are 2 bytes or smaller are promoted to 4-byte integers before being stored.

<2> Each argument is essentially aligned on a 4-byte boundary.

CubeSuite+ V2.01.00 CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

R20UT2584EJ0101 Rev.1.01 Page 702 of 751
Sep 01, 2013

<3> If a return value is a structure or union, then the start of the memory image is set to the address

at which to write the return-value data.

<4> If the function prototype is unknown, then each scalar-type argument is stored as follows.

- 1-byte scalar integer ->Promoted to 4-byte integer, then stored

- 2-byte scalar integer ->Promoted to 4-byte integer, then stored

- 4-byte scalar integer ->Stored as-is

- 8-byte scalar integer ->Stored as-is

- 4-byte scalar floating-point number ->Promoted to 8-byte floating-point number, then stored

- 8-byte scalar floating-point number ->Stored as-is

Examples 1. Function prototype : f(ST1, ST2, ST16)

Example where STx represents a structure with a size of x[byte]

In the case of a structure or union whose size is not a multiple of 4, it is possible to add padding

between the parameters. The contents of the padded area are undefined.

2. Function prototype : f(char, long, ...)

Example of accepting variable number of actual arguments

The "area of variable number of arguments from here" consumes memory for the number of actual

arguments that are set.

3. Function prototype : ST4 f(char, char, char, char)

An address of the location to which to write the ST4 return value is passed through rtn.

(b) The first 4 words (16 bytes) of the created memory image are passed via registers r6 to r9, and the por-

tion that does not fit is passed on the stack

<1> If the arguments passed via the registers, it's loaded by the word units to each register (r6-r9).

The byte units and the half-word units aren't loaded.

<2> The arguments passed on the stack are set in the stack frame of the calling function.

24201612840

ST1 ST2 ST16

24201612840

char long area of variable number of arguments from here

201612840

charcharcharcharrtn

CubeSuite+ V2.01.00 CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

R20UT2584EJ0101 Rev.1.01 Page 703 of 751
Sep 01, 2013

<3> Arguments passed on the stack are stored on the stack in order from right to left in the memory

image. Thus the word data at the 16-byte offset location of the memory image is placed in the

location closest to 0.

Remark See "8.1.4 Stack frame" about how data is placed on the stack.

Examples 1. Function prototype : f(ST1, ST2, ST16)

Example where STx represents a structure with a size of x[byte]

Even if only part of a structure (in this case, ST16) can fit in the registers, that part is still passed via

the registers.

2. Function prototype : f(char, long, ...)

Example of accepting variable number of actual arguments

Even if the number of arguments is variable, the arguments are passed via registers where this is

possible.

3. Function prototype : ST4 f(char, char, char, char)

Even if only passing four arguments of type char, the fourth argument may be passed on the stack,

depending on the return value.

(2) How return values are passed

There are three ways to pass return values, as follows.

(a) If value is scalar type 4 bytes or smaller

The return value is returned to the caller via r10.

If the value is a scalar type less than 4 bytes in size, data promoted to 4 bytes is set in r10.

Zero promotion is performed on unsigned return values, and signed promotion on signed return values.

24201612840

ST1 ST2 ST16

Remainder passed via stackr9r8 r6 r7

24201612840

char long area of variable number of arguments from here

Remainder passed via stackr9r8 r6 r7

201612840

charcharcharcharrtn

Remainder passed via stackr9r8 r6 r7

CubeSuite+ V2.01.00 CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

R20UT2584EJ0101 Rev.1.01 Page 704 of 751
Sep 01, 2013

(b) If value is scalar type 8 bytes

The return value is returned to the caller via r10 and r11.

The lower 32 bits are set in r10, and the upper 32 bits in r11.

(c) If the value is a structure or union

If the return value is a structure or union, then when the caller calls the function, it sets the address to which to

write the return value in the argument register r6. The caller sets the return value in the address location indi-

cated by parameter register r6, and returns to the calling function.

Upon return, r6 and r10 are undefined (same as Caller-Save registers) to the calling function.

All structures and unions are turned by the same method, regardless of size. The actual data of the structure

or union is not returned in the register.

8.1.3 Address indicating stack pointer

An address that is a multiple of 4 is set in the stack pointer.

Although the addresses indicated by the stack pointer must all be either multiples of 4, it is not necessary for all the

data stored on the stack to be aligned on either a 4-byte boundary. Each data item is stored on the stack at the location

in accordance with its alignment. For example, if data is of type char, it can be stored on a 1-byte boundary even on the

stack, because its data alignment is 1.

8.1.4 Stack frame

(1) Structure of the stack frame

Below is shown the stack frame of functions f and g from the perspective of function f, when function f is called by func-

tion g.

Figure 8-1. Contents of Stack Frame

nth parameter word

:

(n-1)th parameter word

6th parameter word

5th parameter word

Parameter register area

Stack frame of function f

(callee) called from function g

Stack frame of function g

(caller)

High Address

(Toward address

0xFFFFFFFF)

Low Address

(Toward address 0)

Save area of Callee-Save register

Local variable area

nth argument word

(n-1)th argument word

6th argument word

5th argument word

:

:

:

(a)

(c)

(d)

(e)

(b)

CubeSuite+ V2.01.00 CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

R20UT2584EJ0101 Rev.1.01 Page 705 of 751
Sep 01, 2013

Below is the range of the area that function f can reference and set.

(a) Parameter words 5 to n

This is the area where parameters beyond 4 words (16 bytes) are stored, when function f has parameters

larger than 4 words in size. The size of this area is 0 when the parameter size is 4 words or less.

(b) Parameter register area

This area is for storing parameters passed in the registers (r6 to r9). The size is not locked at 16 bytes; the

size is 0 if not needed.

For details about the parameter register area, see "(2) Parameter register area".

(c) Save area of Callee-Save register

This area is for saving the Callee-Save registers used in function f. If it is necessary to save registers, then this

area must be large enough for the number of registers.

Registers are essentially saved and restored using prepare/dispose instructions, so registered are stored in

this save area in order of ascending register number.

For example, r28 to r31 would be saved in the following order.

(d) Local variable area

This stack area is used for local variables.

(e) 5th to nth argument words

Parameters beyond 4 words in size are stored in this area when function f is called by another function. The

area for arguments needed when calling another function is allocated on function f's stack frame, and set

there.

If fewer than 4 words are needed for the call's arguments, then the size of this area is 0.

(2) Parameter register area

If the size of the parameters is greater than 4 words (16 bytes), then the required area for the size of the parameter reg-

ister area is allocated. The size of this area will be either 0, 4, 8, 12, or 16 bytes, because it stores parameter registers r6

to r9, as necessary.

This area is for storing parameter registers when it is necessary to reference the contiguous placement relationship

between the parameter register contents and parameters on the stack.

For example, when passing the value of a 20-byte structure argument, 16 bytes are passed in r6 to r9, and the remain-

ing 4 bytes (the 5th parameter word) are passed on the stack.

r28

r29

r30

r31

High Address

Low Address

CubeSuite+ V2.01.00 CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

R20UT2584EJ0101 Rev.1.01 Page 706 of 751
Sep 01, 2013

Examples 1. Function prototype : f(ST20)

When referencing the value of the passed structure as a whole, it is necessary to align the entire structure contiguously

in memory, but the structure is split unto the register portion and memory portion immediately after the function call.

In this case, the called function can reference the passed ST20 structure in memory be storing the parameter register

on the stack.

Below is a concrete case of parameters where this area is needed.

If none of these apply, then the parameter register area is not needed (size 0) because it is not necessary to store the

parameter registers in the parameter register area.

(a) When a structure or union spans the parameter registers and stack

Example Function prototype : f(char, ST20)

In this case, r7 to r9 are stored in the parameter register area.

r6 is not stored because it is not needed to align ST20 contiguously in memory.

Therefore the size of the parameter register area is 12 bytes.

201612840

ST20

Remainder passed via stackr9r8 r6 r7

201612840

ST20

Remainder passed via stack

Store in parameter register area

5th parameter word

r9

r8

r7

r6

Stack frame of callee

Stack frame of caller

:

:

:

(Parameter register area)

Entire passed ST20

r9r8 r6 r7

24201612840

char ST20

Remainder passed via stack

Store in parameter register area

r9r8 r6 r7

CubeSuite+ V2.01.00 CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

R20UT2584EJ0101 Rev.1.01 Page 707 of 751
Sep 01, 2013

If a structure or union does not span the parameter register and stack, then it is not necessary to store it in the

parameter register area, and the size of the parameter register area is therefore 0.

Example Function prototype : f(char, ST12, ST8)

In this case, all of ST12 fits in the parameter registers, ST8 is not passed in the parameter registers.

Since no arguments span the parameter registers and stack, the size of the parameter register area

is 0 bytes.

If a structure or union is passed in its entirety via the parameter registers, the local variable area is

used to expand it in memory.

(b) Accepting variable number of actual arguments

To receive a variable number of arguments, the arguments (including the last parameter) need to be stored in

the parameter register area.

Example Function prototype : f(char, long, ...)

In this case, the parameter registers corresponding to the variable number of actual arguments (r8

and r9) are stored in the parameter register area.

Therefore the size of the parameter register area is 8 bytes.

8.2 Calling of Assembly Language Routine from C Language

This section explains the points to be noted when calling an assembler function from a C function.

(1) Identifier

If external names, such as functions and external variables, are described in the C source by the CC-RH, they are

prefixed with "_" (underscore) when they are output to the assembler.

Table 8-1. Identifier

C Assembler

func1 () _func1

24201612840

char ST12

Remainder passed via stack

No store in parameter register area

ST8

r9r8 r6 r7

24201612840

char long The arguments (variable in number) are stored here

Remainder passed via stack

Store in parameter register area

r9r8 r6 r7

CubeSuite+ V2.01.00 CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

R20UT2584EJ0101 Rev.1.01 Page 708 of 751
Sep 01, 2013

Prefix "_" to the identifier when defining functions and external variables with the assembler and remove "_" when

referencing them from a C function.

(2) Stack frame

The CC-RH generates codes on the assumption that the stack pointer (SP) always indicates the lowest address of

the stack frame. Therefore, the address area lower than the address indicated by SP can be freely used in the

assembler function after branching from a C source to an assembler function. Conversely, if the contents of the

higher address area are changed, the area used by a C function may be lost and the subsequent operation cannot

be guaranteed. To avoid this, change SP at the beginning of the assembler function before using the stack.

At this time, however, make sure that the value of SP is retained before and after calling.

When using a register variable register in an assembler function, make sure that the register value is retained

before and after the assembler function is called. In other words, save the value of the register variable register

before calling the assembler function, and restore the value after calling.

The register for register variable that can be used differ depending on the register mode.

Table 8-2. Registers for Register Variables

(3) Return address passed to C function

The CC-RH generates codes on the assumption that the return address of a function is stored in link pointer lp

(r31). When execution branches to an assembler function, the return address of the function is stored in lp. Exe-

cute the jmp [lp] instruction to return to a C function.

8.3 Calling of C Language Routine from Assembly Language

This section explains the points to be noted when calling a C function from an assembler function.

(1) Stack frame

The CC-RH generates codes on the assumption that the stack pointer (SP) always indicates the lowest address of

the stack frame. Therefore, set SP so that it indicates the higher address of an unused area of the stack area

before branching from an assembler function to a C function. This is because the stack frame is allocated towards

the lower addresses.

(2) Work register

The CC-RH retains the values of the register for register variable before and after a C function is called but does

not retain the values of the work registers. Therefore, do not leave a value that must be retained assigned to a

work register.

The register for register variable and work registers that can be used differ depending on the register mode.

Table 8-3. Registers for Register Variables

Register Modes Register for Register Variable

22-register mode r25, r26, r27, r28, r29

32-register mode r20, r21, r22, r23, r24, r25, r26, r27, r28, r29

Register Modes Register for Register Variable

22-register mode r25, r26, r27, r28, r29

32-register mode r20, r21, r22, r23, r24, r25, r26, r27, r28, r29

CubeSuite+ V2.01.00 CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

R20UT2584EJ0101 Rev.1.01 Page 709 of 751
Sep 01, 2013

Table 8-4. Work Register

(3) Return address returned to assembler function

The CC-RH generates codes on the assumption that the return address of a function is stored in link pointer lp

(r31). When execution branches to a C function, the return address of the function must be stored in lp.

Execution is generally branched to a C function using the jarl instruction.

8.4 Reference of Argument Defined by Other Language

The method of referring to the variable defined by the assembly language on the C language is shown below.

Example Programming of C Language

The CC-RH assembler performs as follows.

8.5 General-purpose Registers

How the CC-RH uses the general-purpose registers are as follows.

Table 8-5. Using General-purpose Registers

Register Modes Work Register

22-register mode r10, r11, r12, r13, r14

32-register mode r10, r11, r12, r13, r14, r15, r16, r17, r18, r19

extern char c;

extern int i;

void subf() {

 c = 'A';

 i = 4;

}

 .public _i

 .public _c

 .dseg SDATA

_i:
 .db4 0x0

_c:

 .db 0x0

Register Usage

r0 Used for operation as value of 0.

Base register of .data/.bss section reference

r1 caller save register

r2 caller save register

Reserved for system (OS) (Switched via option)

r3 (sp) Stack pointer

CubeSuite+ V2.01.00 CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER

R20UT2584EJ0101 Rev.1.01 Page 710 of 751
Sep 01, 2013

r4 (gp) Global pointer for PID

Fixed

r5 (tp) Global pointer for constant data

caller save register

r6 to r19 caller save register

r20 to r29 callee save register

r30 (ep) Element pointer

Fixed or callee save register (Switched via option)

r31 (lp) Link pointer

callee save register

Register Usage

CubeSuite+ V2.01.00 CHAPTER 9 CAUTIONS

R20UT2584EJ0101 Rev.1.01 Page 711 of 751
Sep 01, 2013

CHAPTER 9 CAUTIONS

This chapter explains the points to be noted when using the CC-RH.

9.1 Volatile Qualifier

When a variable is declared with the volatile qualifier, the variable is not optimized and optimization for assigning the

variable to a register is no longer performed. When a variable with volatile specified is manipulated, a code that always

reads the value of the variable from memory and writes the value to memory after the variable is manipulated is output.

The access width of the variable with volatile specified is not changed.

A variable for which volatile is not specified is assigned to a register as a result of optimization and the code that loads

the variable from the memory may be deleted. When the same value is assigned to variables for which volatile is not

specified, the instruction may be deleted as a result of optimization because it is interpreted as a redundant instruction.

The volatile qualifier must be specified especially for variables that access a peripheral I/O register, variables whose

value is changed by interrupt servicing, or variables whose value is changed by an external source.

The following problem may occur if volatile is not specified where it should.

- The correct calculation result cannot be obtained.

- Execution cannot exit from a loop if the variable is used in a for loop.

- The order in which instructions are executed differs from the intended order.

- The number times memory is accessed and the width of access are not as intended.

If it is clear that the value of a variable with volatile specified is not changed from outside in a specific section, the code

can be optimized by assigning the unchanged value to a variable for which volatile not specified and referencing it, which

may increase the execution speed.

Example Source and output code if volatile is not specified

If volatile is not specified for "variable a", "variable b", and "variable c", these variables are assigned to registers and

optimized. For example, even if an interrupt occurs in the meantime and the variable value is changed by the interrupt,

the changed value is not reflected.

int a;

int b;

void func(void){

 if(a <= 0){

 b++;

 } else {

 b+=2;

 }

 b++;

}

_func:

 MOVHI HIGHW1(#_a), R0, R6

 LD.W LOWW(#_a)[R6], R6

 CMP 0x00000000, R6

 MOVHI HIGHW1(#_b), R0, R6

 LD.W LOWW(#_b)[R6], R6

 BGT .BB1_2 ; bb3

.BB1_1: ; bb1

 ADD 0x00000001, R6

 BR .BB1_3 ; bb9

.BB1_2: ; bb3

 ADD 0x00000002, R6

.BB1_3: ; bb9

 ADD 0x00000001, R6

 MOVHI HIGHW1(#_b), R0, R7

 ST.W R6, LOWW(#_b)[R7]

 JMP [R31]

CubeSuite+ V2.01.00 CHAPTER 9 CAUTIONS

R20UT2584EJ0101 Rev.1.01 Page 712 of 751
Sep 01, 2013

Example Source and output code if volatile is specified

If volatile is specified for "variable a", "variable b", and "variable c", a code that always reads the values of these vari-

ables from memory and writes them to memory after the variables are manipulated is output. For example, even if, an

interrupt occurs in the meantime and the values of the variables are changed by the interrupt, the result in which the

change is reflected can be obtained. (In this case, interrupts may have to be disabled while the variables are manipu-

lated, depending on the timing of the interrupt.)

When volatile is specified, the code size increases compared with when volatile is not specified because the memory

has to be read and written.

9.2 V850E3v5 G3K Core Specification for Assembler (-Xcpu=g3k Option)

The following instruction sets cannot be specified.

- Hardware multithreading feature instructions

- Virtualization support feature instructions

- MMU control instructions

- SIMD instructions

- Floating-point operation instructions

The above instruction sets cause assemble errors when the V850E3v5 G3K core is specified. If any of them is speci-

fied, the assembler outputs the following message.

volatile int a;

volatile int b;

void func(void){

 if(a <= 0){

 b++;

 } else {

 b+=2;

 }

 b++;

}

_func:

 MOVHI HIGHW1(#_a), R0, R6

 LD.W LOWW(#_a)[R6], R6

 CMP 0x00000000, R6

 BGT .BB1_2 ; bb3

.BB1_1: ; bb1

 MOVHI HIGHW1(#_b), R0, R6

 LD.W LOWW(#_b)[R6], R6

 ADD 0x00000001, R6

 BR .BB1_3 ; bb9

.BB1_2: ; bb3

 MOVHI HIGHW1(#_b), R0, R6

 LD.W LOWW(#_b)[R6], R6

 ADD 0x00000002, R6

.BB1_3: ; bb9

 MOVHI HIGHW1(#_b), R0, R7

 ST.W R6, LOWW(#_b)[R7]

 LD.W LOWW(#_b)[R7], R6

 ADD 0x00000001, R6

 ST.W R6, LOWW(#_b)[R7]

 JMP [R31]

E0550269 : Illegal mnemonic(cannot use this mnemonic ins RH850 "G3K" core).

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 713 of 751
Sep 01, 2013

APPENDIX A WINDOW REFERENCE

This section describes the window, panel, and dialog boxes related to coding.

A.1 Description

Below is a list of the window, panel, and dialog boxes related to coding.

Table A-1. List of Window/Panel/Dialog Boxes

Window/Panel/Dialog Box Name Function Description

Editor panel This panel is used to display and edit files.

Encoding dialog box This dialog box is used to select a file-encoding.

Bookmarks dialog box This dialog box is used to display and delete bookmarks.

Go to Line dialog box This dialog box is used to move the caret to a specified source line.

Jump to Function dialog box This dialog box is used to select a function to be jumped if there are some

functions with the same names when a program jumps to the function

specified on the Editor panel.

Print Preview window This window is used to preview the source file before printing.

Open File dialog box This dialog box is used to open a file.

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 714 of 751
Sep 01, 2013

This panel is used to display and edit files.

When opened the file encoding and newline code is automatically detected and retained when it is saved. You can

open a file with a specific encoding selected in the Encoding dialog box. If the encoding and newline code is specified in

the Save Settings dialog box then the file is saved with those settings.

This panel can be opened multiple times (max. 100 panels).

Cautions 1. When a project is closed, all of the Editor panels displaying a file being registered in the project

are closed.

2. When a file is excluded from a project, the Editor panel displaying the file is closed.

Remark This panel can be zoomed in and out by in the tool bar, or by moving the mouse

wheel forward or backward while holding down the [Ctrl] key.

Figure A-1. Editor Panel

Editor panel

(1)

(4) (7)

(3)

[Toolbar]

(3)

(2)

(6)

(5)

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 715 of 751
Sep 01, 2013

The following items are explained here.

- [How to open]

- [Description of each area]

- [Toolbar]

- [[File] menu (Editor panel-dedicated items)]

- [[Edit] menu (Editor panel-dedicated items)]

- [[Window] menu (Editor panel-dedicated items)]

- [Context menu]

[How to open]

- On the Project Tree panel, double click a file.

- On the Project Tree panel, select a source file, and then select [Open] from the context menu.

- On the Project Tree panel, select a source file, and then select [Open with Internal Editor...] from the context menu.

- On the Project Tree panel, select [Add] >> [Add New File...] from the context menu, and then create a text file or

source file.

[Description of each area]

(1) Title bar

The name of the open text file or source file is displayed.

Marks displayed at the end of the file name indicate the following:

(2) Column header

The title of each column on the Editor panel is displayed (hovering the mouse cursor over this area displays the

title name).

Remark Show/hide of the column header can be switched by the setting of the toolbar.

(3) Splitter bars

You can split the Editor panel by using the horizontal and vertical splitter bars within the view. This panel can be

split up to two times vertically, and two times horizontally.

- To split this panel, drag the splitter bar down or to the right to the desired position, or double-click any part of

the splitter bar.

- To remove the split, double-click any part of the splitter bar.

Mark Description

* The text file has been modified since being opened.

(Read only) The opened text file is read only.

Display Title Name Description

Line Line Displays line numbers (see "(4) Line number area").

(No display) Selection The display is colored to reflect the state in terms of saving of the state of editing

(see "(5) Selection area").

Main Dislays bookmarks (see "(6) Main area").

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 716 of 751
Sep 01, 2013

Figure A-2. Editor Panel (Vertical/Horizontal Two-way Split View)

(4) Line number area

This area displays the line number of the opened text file or source file.

(5) Selection area

On each line there is an indicator that shows the line modification status.

(1) This means new or modified line but unsaved.

(2) This means new or modified line and saved.

To erase this mark, close the panel, and then open this source file again.

(1)

(2)

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 717 of 751
Sep 01, 2013

(6) Main area

Bookmarks () that have been registered are displayed.

(7) Characters area

This area displays character strings of text files and source files and you can edit it.

This area has the following functions.

(a) Character editing

Characters can be entered from the keyboard.

Various shortcut keys can be used to enhance the edit function.

Remark The following items can be customized by setting the Option dialog box.

- Display fonts

- Tab interval

- Show or hide white space marks (blank symbols)

- Colors of reserved words and comments

(b) Code outlining

This allows you to expand and collapse source code blocks so that you can concentrate on the areas of code

which you are currently modifying or debugging. This is only available for only C source file and .h file types.

This is achieved by clicking the plus and minus symbols to the left of the Characters area.

Types of source code blocks that can be expanded or collapsed are:

(c) Highlighting the current line

By selecting the [Enable line highlight for current] check box in the [General - Text Editor] category of the

Option dialog box, the line at the current caret position can be displayed within a rectangle (the rectangle color

depends on the highlight color in the [General - Font and Color] category of the same dialog box above).

Figure A-3. Highlighting Current Line

Open and close braces ('{' and '}')

Multi-line comments ('/*' and '*/')

Pre-processor statements ('if', 'elif', 'else', 'endif')

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 718 of 751
Sep 01, 2013

(d) Emphasizing brackets

The bracket that corresponds to a bracket at the caret position is shown emphasized.

Supported types of brackets vary with the file type.

Remark When CubeSuite+ emphasizes the corresponding bracket, it does not consider those within

comments, character constants, character strings, or string constants. For this reason, if the

bracket at the position of the caret is within a comment, character constant, character string, or

string constant, CubeSuite+ may emphasize a bracket that is not actually the corresponding

bracket.

(e) Multiple lines selection and block selection

You can select multiple lines or a block that consists of multiple lines by any one of the following methods.

- Multiple lines selection:

- Drag the left-mouse button

- Press the [Right], [Left], [Up] or [Down] key while holding down the [Shift] key

- Block selection:

- Drag the left-mouse button while holding down the [Alt] key

- Press the [Right], [Left], [Up] or [Down] key while holding down the [Alt] + [Shift] key

Figure A-4. Multiple Lines Selection and Block Selection

Caution The information on bookmarks is not included in the selected contents.

Remark Editing of the selected contents can be done by using [Cut], [Copy], [Paste], or [Delete] from the

[Edit] menu.

(f) Jump to functions

It automatically recognizes the currently selected characters or the word at the caret position as the function

name and jumps to the line of the target function.

Select [Jump to Function] from the context menu after moving the caret to the target function on the source

text.

If there are many functions with the same name, the Jump to Function dialog box is opened to select the jump

destination function.

However, this function is only enabled when the setting is made to output cross reference information in the

property panel of the build tool in use ([Yes(-Xcref)] is selected in [Common Options] tab >> [Output File Type

and Path] category >> [Output cross reference information] property).

File Type Types of Brackedts

C or Python (and), { and }, [and]

HTML or XML < and >

[Multiple lines selection] [Block selection]

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 719 of 751
Sep 01, 2013

Note that this function is available only when the following conditions are satisfied.

Conditions differ according to the selection of the [Output cross reference information] property of the build

tool.

- When [Yes(-Xcref)] is selected:

- Build is executed and cross reference information is output.

- When [No] is selected:

- The type of the project specified as the active project is "Application".

- The target function is a global function.

(g) Tag jump

If the information of a file name, a line number and a column number exists in the line at the caret position,

selecting [Tag Jump] from the context menu opens the file in the Editor panel and jumps to the corresponding

line and the corresponding column (if the target file is already opened in the Editor panel, you can jump to the

panel).

(h) Registration of bookmarks

By clicking the button on the bookmark toolbar or selecting [Bookmark] >> [Toggle Bookmark] from the

context menu on this area, a bookmark can be registered to the line at the carret position.

(i) File monitor

If the contents of the currently displayed file is changed (including renaming or deleting) without using

CubeSuite+, a message will appear asking you whether you wish to update the file or not.

(j) Smart edit function

The smart edit function is used to complement the names of functions, variables and the arguments of

functions during input and offer them as candidates.

The smart edit function complements the information listed below.

- Global functions in the C language

- Global variables in the C language

Figure A-5. Display Example of Smart Edit Function (Candidates of Function and Variables)

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 720 of 751
Sep 01, 2013

Follow the procedure below to enable the smart edit function.

- Select the [Emable smart editing] check box in the [General - Text Editor] category of the Option dialog

box (default).

- Candidates are displayed by using the cross reference information that is generated by the build tool.

Therefore, set the build tool's Property panelNote so that the cross reference information is output, and

then run and complete a build.

If an error in building occurs, the cross reference information before the error occured is used if any exists.

Note [Common Options] tab] >> [Output File Type and Path] category >> [Output cross reference

information] property >> [Yes(-Xcref)]

If this setting is invalid, the smart edit function cannot be used since the output will be empty of the

cross reference information.

<1> Display of candidates for functions and variables

- How to display

Candidates for functions and variables can be displayed by any one of the following methods:

- In the C language, when "." or "->" is input if there is a relevant member for the left side

- When the [Ctrl] + [Space] key on the keyboard is pressed (all candidates are displayed)

However, if there is only one candidate, the relevant character string is inserted at this time without

displaying the candidate.

- How to insert character strings

Select a character string from the candidates list by using the [Up]/[Down] key or the mouse, then press

the [Enter] key or the [TAB] key.

- Description of each area

Figure A-6. Display of Candidates for Functions and Variables

- Candidates list

Displays candidates for functions and variables in alphabetical order.

If there are character strings that match to the character strings at the caret position, they are

highlighted (case insensitive).

The following icons are displayed as labels for the list of candidates.

Candidates list

Toolbar

Tab

Detailed display

(1) (2) (3)

(2) (4)

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 721 of 751
Sep 01, 2013

- Toolbar

Switches whether candidates for functions and variables are displayed or not.

- Tab

Switches the members to be displayed.

- Detailed display

Displays details of candidates for functions or variables currently being selected.

<2> Display of candidates for arguments

- How to display

Candidates for arguments are displayed when:

- In a function name, when "(" is input if there is a relevant function on the left side of "("

- When the [Ctrl] + [Shift] + [Space] key on the keyboard is pressed while the text cursor is at the

location of an argument for a function

Icon Description

Shows that the candidate is for a typedef.

Shows that the candidate is for a function.

Shows that the candidate is for a variable.

Shows that the candidate is for a structure.

Shows that the candidate is for an union.

Shows that the candidate is for an enumeration type.

Button Description

Displays candidates for functions.

Displays candidates for variables.

Tab Name Description

All members Displays all candidates.

Public members Displays only the candidates with the public attribute.

Item Description

(1) Kind Shows whether the selected item is a function or a variable.

(function) : Shows the selected item is a function.

(variable) : Shows the selected item is a variable.

(2) Type Shows the type of the function or the variable.

(3) Name Shows the name of the function or the variable.

(4) Name and

argument

Shows the name of the function or the variable.

When the item is a function, its arguments are also shown.

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 722 of 751
Sep 01, 2013

- Description of each area

Figure A-7. Display of Candidates for Arguments

<3> Termination of the candidates display

The candidates display disappears by any one of the following methods:

- Press the [ESC] key

- Enter a key other than an alphanumeric character

When nothing is selected from the candidates list: This operation has no effect.

When an item is selected in the candidates list: The selected character strings are inserted.

<4> Notes for displaying of candidates list

- The following items are not the subject of the candidates display.

- Macro definitions

- Local variables

- Typedef statements

- When a structure or union is declared within a function, candidates are not displayed within the function

after its own declaration.

- In some cases the type of variables to be displayed differs from that actually declared when a compiler

option which affects the size of variables is set.

Remark When the mouse cursor is hovered over a function name or a variable name on the source text, the

information about that function or variable appears in a pop-up.

Note the following, however, when using this function.

- const, static, and volatile attributes cannot be displayed in a pop-up.

- If the target is a variable of class, structure, union, or enumeration type, its members are

displayed as follows:

- If the target is a class-, structure-, or union-type variable, the types and names of its members

are displayed.

If the target is a class-type variable that includes methods (functions) among its members, the

types of the return values and names of the methods (functions) are displayed. Also, '(' ')' is

appended to the end of each method name.

- If the target is an enumeration-type variable, only the names of the members are displayed.

Item Description

(1) Type Shows the type of the function or the variable.

(2) Name and argument Shows the name of the function and its arguments.

The argument at the current caret position is highlighted.

(3) Name and argument Shows the name of the function and its arguments.

(1) (2)

(1) (3)

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 723 of 751
Sep 01, 2013

- Members are displayed in the same order as they are defined in the source file, and each is

placed on a single line (up to 20 members can be displayed).

The meaning of each icon displayed in a pop-up is described below.

Figure A-8. Pop-up Display of Smart Edit Function

[Toolbar]

Icon Description

Shows that the candidate is for a typedef.

Shows that the candidate is for a function.

Shows that the candidate is for a variable.

Shows that the candidate is for a structure.

Shows that the candidate is for an union.

Shows that the candidate is for an enumeration type.

Toggles between normal (default) and mixed display mode, as the display mode of this panel.

Note that this item is enabled only when connected to the debug tool and the downloaded source file is

opened in this panel.

Toggles between source (default) and instruction level, as the unit in which the program is step-

executed.

Note that this item is enabled only when connected to the debug tool and the mixed display mode is

selected.

Displays the current PC position.

Note that this item is enabled only when connected to the debug tool.

Forwards to the position before operating [Context menu] >> [Back To Last Cursor Position].

Note that this item is disabled when connected to the debug tool and the mixed display mode is selected.

Goes back to the position before operating [Context menu] >> [Jump to Function].

Note that this item is disabled when connected to the debug tool and the mixed display mode is selected.

Columns The following items are displayed to show or hide the columns or marks on this panel. Remove the

check to hide the items (all the items are checked by default).

This setting is reflected in all the Editor panels.

Line Number Shows or hides line number area.

Selection Shows or hides selection area.

Main Shows or hides main area.

Column Header Shows or hides column header.

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 724 of 751
Sep 01, 2013

[[File] menu (Editor panel-dedicated items)]

The following items are exclusive for the [File] menu in the Editor panel (other items are common to all the panels).

[[Edit] menu (Editor panel-dedicated items)]

The following items are exclusive for the [Edit] menu in the Editor panel (all other items are disabled).

Close file name Closes the currently editing the Editor panel.

When the contents of the panel have not been saved, a confirmation message is shown.

Save file name Overwrites the contents of the currently editing the Editor panel.

Note that when the file has never been saved or the file is read only, the same operation is

applied as the selection in [Save file name As...].

Save file name As... Opens the Save As dialog box to newly save the contents of the currently editing the Editor

panel.

file name Save Settings... Opens the Save Settings dialog box to change the encoding and newline code of the

current focused source file in the currently editing Editor panel.

Print... Opens the Print dialog box of Windows for printing the contents of the currently editing the

Editor panel.

Print Preview Opens the Print Preview window to preview the file contents to be printed.

Undo Cancels the previous operation on the Editor panel and restores the characters and the

caret position (max 100 times).

Redo Cancels the previous [Undo] operation on the Editor panel and restores the characters and

the caret position.

Cut Cuts the selected characters and copies them to the clip board.

If there is no selection, the entire line is cut.

Copy Copies the contents of the selected range to the clipboard as character string(s).

If there is no selection, the entire line is copied.

Paste Inserts (insert mode) or overwrites (overwrite mode) the characters that are copied on the

clip board into the caret position.

When the contents of the clipboard are not recognized as characters, the operation is

invalid.

The mode selected for the current source file is displayed on the status bar.

Delete Deletes one character at the caret position.

When there is a selection area, all the characters in the area are deleted.

Select All Selects all the characters from the beginning to the end in the currently editing text file.

Find... Opens the Find and Replace dialog box with selecting [Quick Find] tab.

Replace... Opens the Find and Replace dialog box with selecting [Quick Replace] tab.

Go To... Opens the Go to Line dialog box to move the caret to the specified line.

Bookmark Displays a cascading menu for bookmarks.

Toggle Bookmark Registers a bookmark to the line at the current caret position.

If a bookmark is already being registered to the line, then the bookmark will be deleted.

Next Bookmark Moves the caret to the bookmark position that registered next, in the active Editor panel.

After moving to the last bookmark, the caret moves to the line specified in the first

bookmark.

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 725 of 751
Sep 01, 2013

Previous Bookmark Moves the caret to the bookmark position that registered previously, in the active Editor

panel.

After moving to the first bookmark, the caret moves to the line specified in the last

bookmark.

Clear All Bookmarks Deletes all bookmarks currently being registered, in the active Editor panel.

List Bookmarks... Opens the Bookmarks dialog box to list bookmarks currently being registered.

Outlining Displays a cascading menu for controlling expand and collapse states of source file

outlining (see "(b) Code outlining").

Collapse to Definitions Collapses all nodes that are marked as implementation blocks (e.g. function definitions).

Toggle Outlining Expansion Toggles the current state of the innermost outlining section in which the cursor lies when

you are in a nested collapsed section.

Toggle All Outlining Toggles the collapsed state of all outlining nodes, setting them all to the same expanded or

collapsed state. If there is a mixture of collapsed and expanded nodes, all nodes will be

expanded.

Stop Outlining Stops code outlining and remove all outlining information from source files.

Start Automatic Outlining Starts automatic code outlining and automatically displayed in supported source files.

Advanced Displays a cascading menu for performing an advanced operation for the Editor panel.

Increase Line Indent Increases the indentation of the current cursor line by one tab.

Decrease Line Indent Decreases the indentation of the current cursor line by one tab.

Uncomment Lines Removes the first set of line-comment delimiters from the start of the current cursor line,

appropriate to the current language (e.g. C++). This operation will only be available when

the language of the current source file has line-comment delimiters specified (e.g. C++).

Comment Lines Places line-comment delimiters at the start of the current cursor line, appropriate to the

current language (e.g. C++). This operation will only be available when the language of the

current source file has line-comment delimiters specified (e.g. C++).

Convert Tabs to Spaces Converts all tabs on the current cursor line into spaces.

Convert Spaces to Tabs Converts each set of consecutive space characters on the current line to tab characters, but

only for those sets of spaces that are at least equal to one tab size.

Tabify Selected Lines Tabifies the current line, causing all spaces at the start of the line (prior to any text) to be

converted to tabs where possible.

Untabify Selected Lines Untabifies the current line, causing all tabs at the start of the line (prior to any text) to be

converted to spaces.

Make Uppercase Converts all letters within the selection to uppercase.

Make Lowercase Converts all letters within the selection to lowercase.

Toggle Character Casing Toggles the character cases (uppercase / lowercase) of all letters within the selection.

Capitalize Capitalizes the first character of every word within the selection.

Delete Horizontal Whitespace Deletes any excess white space either side of the cursor position, leaving only one

whitespace character remaining. If there the cursor is within a word or not surrounded by

whitespace, this operation will have no effect.

Trim Trailing Whitespace Deletes any trailing whitespace that appears after the last non-whitespace character on the

cursor line.

Delete Line Completely delete the current cursor line.

Duplicate Line Duplicates the cursor line, inserting a copy of the line immediately after the cursor line.

Delete Blank Lines Deletes the line at the cursor if it is empty or contains only whitespace.

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 726 of 751
Sep 01, 2013

[[Window] menu (Editor panel-dedicated items)]

The following items are exclusive for the [Window] menu in the Editor panel (other items are common to all the panels).

[Context menu]

[Title bar area]

[Characters area]

Split Splits the active Editor panel horizontally.

Only the active Editor panel can be split. Other panels will not be split. A panel can be split

up to two times.

Remove Split Removes the split view of the Editor panel.

Close Panel Close the currently selected panel.

Close All but This Except for the currently selected panel, close all other panels being displayed in the same

panel display area as the selected panel.

Save file name Saves the contents of the file.

Copy Full Path Copies the absolute path of the file to the clipboard.

Open Containing Folder Opens the folder where the text file is saved in Explorer.

New Horizontal Tab Group The area for the display of active panels is evenly divided into two areas in the horizontal

direction, and the panels are displayed as a new group of tabbed pages. Only one panel is

active in the new group. The area may be divided into up to four panels.

This item is not displayed in the following cases.

- Only one panel is open.

- The group has already been divided in the vertical direction.

- The group has already been divided into four panels.

New Vertical Tab Group The area for the display of active panels is evenly divided into two areas in the vertical

direction, and the panels are displayed as a new group of tabbed pages. Only one panel is

active in the new group. The area may be divided into up to four panels.

This item is not displayed in the following cases.

- Only one panel is open.

- The group has already been divided in the horizontal direction.

- The group has already been divided into four panels.

Go to Next Tab Group When the display area is divided in the horizontal direction, this moves the displayed panel

to the group under that displaying the selected panel.

When the display area is divided in the vertical direction, this moves the displayed panel to

the group to the right of that displaying the selected panel.

This item is not displayed if there is no group in the given direction.

Go to Previous Tab Group When the display area is divided in the horizontal direction, this moves the displayed panel

to the group over that displaying the selected panel.

When the display area is divided in the vertical direction, this moves the displayed panel to

the group to the left of that displaying the selected panel.

This item is not displayed if there is no group in the given direction.

Cut Cuts the selected character string and copies it to the clipboard.

If there is no selection, the entire line is cut.

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 727 of 751
Sep 01, 2013

Copy Copies the contents of the selected range to the clipboard as character string(s).

If there is no selection, the entire line is copied.

Paste Inserts (insert mode) or overwrites (overwrite mode) the characters that are copied on the

clip board into the caret position.

When the contents of the clipboard are not recognized as characters, the operation is

invalid.

The mode selected for the current source file is displayed on the status bar.

Find... Opens the Find and Replace dialog box with selecting [Quick Find] tab.

Go To... Opens the Go to Line dialog box to move the caret to the specified line.

Jump to Function Jumps to the function that is selected or at the caret position regarding the selected

characters and the words at the caret position as functions (see "(f) Jump to functions").

Tag Jump Jumps to the corresponding line and column in the corresponding file if the information of a

file name, a line number and a column number exists in the line at the caret position (see

"(g) Tag jump").

Bookmark Displays a cascading menu for bookmarks.

Toggle Bookmark Registers a bookmark to the line at the current caret position.

If a bookmark is already being registered to the line, then the bookmark will be deleted.

Next Bookmark Moves the caret to the bookmark position that registered next, in the active Editor panel.

After moving to the last bookmark, the caret moves to the line specified in the first

bookmark.

Previous Bookmark Moves the caret to the bookmark position that registered previously, in the active Editor

panel.

After moving to the first bookmark, the caret moves to the line specified in the last

bookmark.

Clear All Bookmarks Deletes all bookmarks currently being registered, in the active Editor panel.

List Bookmarks... Opens the Bookmarks dialog box to list bookmarks currently being registered.

Advanced Displays a cascading menu for performing an advanced operation for the Editor panel.

Increase Line Indent Increases the indentation of the current cursor line by one tab.

Decrease Line Indent Decreases the indentation of the current cursor line by one tab.

Uncomment Lines Removes the first set of line-comment delimiters from the start of the current cursor line,

appropriate to the current language (e.g. C++). This operation will only be available when

the language of the current source file has line-comment delimiters specified (e.g. C++).

Comment Lines Places line-comment delimiters at the start of the current cursor line, appropriate to the

current language (e.g. C++). This operation will only be available when the language of the

current source file has line-comment delimiters specified (e.g. C++).

Convert Tabs to Spaces Converts all tabs on the current cursor line into spaces.

Convert Spaces to Tabs Converts each set of consecutive space characters on the current line to tab characters, but

only for those sets of spaces that are at least equal to one tab size.

Tabify Selected Lines Tabifies the current line, causing all spaces at the start of the line (prior to any text) to be

converted to tabs where possible.

Untabify Selected Lines Untabifies the current line, causing all tabs at the start of the line (prior to any text) to be

converted to spaces.

Make Uppercase Converts all letters within the selection to uppercase.

Make Lowercase Converts all letters within the selection to lowercase.

Toggle Character Casing Toggles the character cases (uppercase / lowercase) of all letters within the selection.

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 728 of 751
Sep 01, 2013

Capitalize Capitalizes the first character of every word within the selection.

Delete Horizontal Whitespace Deletes any excess white space either side of the cursor position, leaving only one

whitespace character remaining. If there the cursor is within a word or not surrounded by

whitespace, this operation will have no effect.

Trim Trailing Whitespace Deletes any trailing whitespace that appears after the last non-whitespace character on the

cursor line.

Delete Line Completely delete the current cursor line.

Duplicate Line Duplicates the cursor line, inserting a copy of the line immediately after the cursor line.

Delete Blank Lines Deletes the line at the cursor if it is empty or contains only whitespace.

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 729 of 751
Sep 01, 2013

This dialog box is used to select a file-encoding.

Remark The target file name is displayed on the title bar.

Figure A-9. Encoding Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [File] menu, open the Open File dialog box by selecting [Open with Encoding...], and then click the

[Open] button in the dialog box.

[Description of each area]

(1) [Available encodings] area

Select the encoding to be set from this area.

The encoding of the selected file is selected by default.

[Function buttons]

Encoding dialog box

Button Function

OK Opens the selected file in the Open File dialog box using a selected file encoding.

Cancel Not open the selected file in the Open File dialog box and closes this dialog box.

Help Displays the help for this dialog box.

(1)

[Function buttons]

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 730 of 751
Sep 01, 2013

This dialog box is used to display the position where a bookmark is to be set or to delete a bookmark.

Figure A-10. Bookmarks Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the toolbar, click the .

- From the [Edit] menu, select [Bookmark] >> [List Bookmarks...].

- On the Editor panel, select [Bookmark] >> [List Bookmarks...] from the context menu.

[Description of each area]

(1) Bookmark list area

Display a list of bookmarks that have been registered.

The bookmarks are listed alphabetically by [File]. Bookmarks in the same file are listed in line number order.

When a bookmark is added to the Editor panel, a bookmark function is added.

In the bookmark list area, double-clicking on a line moves a caret to the corresponding position for the bookmark.

(a) [File]

Display a file name (without any path) registered as a bookmark.

(b) [Line Number]

Display a line number registered as a bookmark.

(c) [Path]

Display a file path registered as a bookmark.

Bookmarks dialog box

(1)

[Function buttons]

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 731 of 751
Sep 01, 2013

(d) Buttons

Caution The registered bookmarks are not removed even if the Editor panel is closed. However, when

the Editor panel is closed without saving after a file is newly created, the registered bookmarks

are removed.

[Function buttons]

View Moves a caret to the selected position for the bookmark.

However, this button is disabled when no bookmark is selected, two or more

bookmarks are selected, or no bookmark is registered.

Remove Removes a selected bookmark. When two or more bookmarks are selected, all of

those selected are removed.

However, this button is disabled when no bookmark is selected or no bookmark is

registered.

Remove All Removes all the registered bookmarks.

This button is disabled when no bookmark is registered.

Button Function

Previous Moves a caret to the position of the bookmark previous to the selected bookmark.

This button is disabled in the following cases.

- A bookmark shown in the first line has been selected.

- No bookmark is selected.

- Two or more bookmarks are selected.

- No bookmark is registered.

- Only one bookmark is registered.

Next Moves a caret to the position of the bookmark next to the selected bookmark.

This button is disabled in the following cases.

- A bookmark shown in the last line has been selected.

- No bookmark is selected.

- Two or more bookmarks are selected.

- No bookmark is registered.

- Only one bookmark is registered.

Close Closes this dialog box.

Help Displays the help for this dialog box.

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 732 of 751
Sep 01, 2013

This dialog box is used to move the caret to a specified line number, symbol, or address.

Figure A-11. Go to Line Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [Edit] menu, select [Go To...].

- On the Editor panel, select [Go To...] from the context menu.

[Description of each area]

(1) [Line number (valid line range) or symbol] area

"(valid line range)" shows the range of valid lines in the current file.

Specify the line number, symbol, or address that you want to move the caret to.

By default, the number of the line where the caret is currently located in the Editor panel is displayed.

Remarks 1. When a symbol (function name and variable name) is specified, building must have been

completed.

The cross reference information must also be output. In the property panel of the build tool in use,

after selecting the setting to output cross reference information ([Common Options] tab >> [Output

File Type and Path] category >> [Output cross reference information] property >> [Yes (-Xcref)]),

execute a build.

2. When an address is specified, building must have been completed.

An address can be specified with a hexadecimal starting with "0x" or "0X". A decimal is interpreted

as a line number.

[Function buttons]

Go to Line dialog box

Button Function

OK Places the caret at the start of the specified source line.

Cancel Cancels the jump and closes this dialog box.

Help Displays the help for this dialog box.

(1)

[Function buttons]

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 733 of 751
Sep 01, 2013

This dialog box is used to select a function to be jumped if there are some functions with the same names when a

program jumps to the function specified on the Editor panel.

Remarks 1. This dialog box is displayed only when there are some functions with the same names and [Yes (-

Xcref)] is selected in the [Common Options] tab >> [Output File Type and Path] category >> [Output

cross reference information] property of the build tool to be used.

2. This dialog box targets only files that have been registered in the project.

Figure A-12. Jump to Function Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- On the Editor panel, select [Jump to Function] from the context menu.

[Description of each area]

(1) Candidates in the jump destination display area

List candidates in the jump destination.

Candidates are displayed in the alphabetical order of the names of [File]. If candidates are included in the same

file, they are displayed in the order of line numbers.

(a) [File]

Display a file name (without any path) that a function is defined.

(b) [Line Number]

Display a line number that a function is defined.

(c) [Path]

Display a file path that a function is defined.

Jump to Function dialog box

(1)

[Function buttons]

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 734 of 751
Sep 01, 2013

[Function buttons]

Button Function

OK Jumps to the line that defines the target function after selecting the line in "Candidates in the jump

destination display area" and clicking this button.

Cancel Cancels the jump and closes this dialog box.

Help Displays the help for this dialog box.

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 735 of 751
Sep 01, 2013

This window is used to preview the file currently being displayed in the Editor panel before printing.

Remark This window can be zoomed in and out by moving the mouse wheel forward or backward while holding

down the [Ctrl] key.

Figure A-13. Print Preview Window

The following items are explained here.

- [How to open]

- [Description of each area]

- [Toolbar]

- [Context menu]

[How to open]

- Focus the Editor panel, and then select [Print Preview] from the [File] menu.

[Description of each area]

(1) Preview area

This window displays a form showing a preview of how and what is printed.

The file name (fully qualified path) and the page number are displayed at the page header and page footer.

The display differs according to whether the debug tool is or is not connected, and when it is connected, to whether

the display is in normal display mode or mixed display mode. Note, however, that columns that are hidden on the

Editor panel are not displayed (these columns are not printed).

When the outline setting is in used and the collapsed section mark of an outline (see "(b) Code outlining") is dis-

played in a print preview, the lines in the collapsed section are also displayed.

Print Preview window

(1)

[Toolbar]

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 736 of 751
Sep 01, 2013

[Toolbar]

[Context menu]

Opens the Print dialog box provided by Windows to print the current Editor panel as shown by the print preview form.

Copies the selection into the clipboard.

Increases the size of the content.

Decreases the size of the content.

Displays the preview at 100-percent zoom (default).

Fits the preview to the width of this window.

Displays the whole page.

Displays facing pages.

Increase Zoom Increases the size of the content.

Decrease Zoom Decreases the size of the content.

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 737 of 751
Sep 01, 2013

This dialog box is used to open a file.

Figure A-14. Open File Dialog Box

The following items are explained here.

- [How to open]

- [Description of each area]

- [Function buttons]

[How to open]

- From the [File] menu, select [Open File...] or [Open with Encoding...].

[Description of each area]

(1) [Look in] area

Select the folder that the file you want to open exists.

When you first open this dialog box, the folder is set to "C:\Documents and Settings \user-name\My Documents".

The second and subsequent times, this defaults to the last folder that was selected.

(2) List of files area

File list that matches to the selections in [Look in] and [Files of type] is shown.

(3) [File name] area

Specify the file name that you want to open.

Open File dialog box

(1)

[Function buttons]

(2)

(3)

(4)

CubeSuite+ V2.01.00 APPENDIX A WINDOW REFERENCE

R20UT2584EJ0101 Rev.1.01 Page 738 of 751
Sep 01, 2013

(4) [Files of type] area

Select the type of the file you want to open.

[Function buttons]

All files (*.*) All formats

Project File (*.mtpj) Project file

Project File for e2 studio (*.rcpc) Project file for e2 studio

Project File for CubeSuite (*.cspj) Project file for CubeSuite

Workspace File for HEW (*.hws) Workspace file for HEW

Project File for HEW (*.hwp) Project file for HEW

Workspace File for PM+ (*.prw) Workspace file for PM+

Project File for PM+ (*.prj) Project file for PM+

C source file (*.c) C language source file

Header file (*.h; *.inc) Header file

Assembly source file (*.asm; *.s; *.fsy) Assembler source file

Link Map file (*.map; *.lbp) Link Map file

Stack information file (*.sni) Stack information file

Intel HEX file (*.hex) Intel HEX file

Motorola S-record file (*.mot) Motorola S-record file

Text file (*.txt) Text format

Button Function

Open - When this dialog box is opened by [Open File...] from the [File] menu

Opens the specified file.

- When this dialog box is opened by [Open File with Encoding...] from the [File] menu

Opens the Encoding dialog box.

Cancel Closes this dialog box.

CubeSuite+ V2.01.00 APPENDIX B INDEX

R20UT2584EJ0101 Rev.1.01 Page 739 of 751
Sep 01, 2013

APPENDIX B INDEX

Symbols

< operator ... 124

<= operator ... 125

<< operator ... 130

! operator ... 115

!= operator ... 121

#pragma directive ... 52

% operator ... 111

& operator ... 116

&& operator ... 126

== operator ... 120

> operator ... 122

>= operator ... 123

>> operator ... 129

^ operator ... 118

| operator ... 117

|| operator ... 127

Numerics

2-byte separation operator ... 134

A

abort ... 612

abs ... 585

absf.d ... 422

absf.s ... 423

absolute expression ... 145

acos ... 650

acosf ... 649

add ... 248

addf.d ... 424

addf.s ... 425

addi ... 250

adf ... 253

.align directive ... 180

alignment condition ... 45

and ... 322

andi ... 324

arithmetic operation instructions ... 247

arithmetic operator ... 106

array type ... 42

asin ... 652

asinf ... 651

assembler control instruction ... 198

assembler generated symbols ... 221

assembly language specifications ... 95

assembler generated symbols ... 221

control instructions ... 197

description of source ... 95

directives ... 147

macro ... 218

reserved words ... 220

assert ... 507

assert.h ... 504

atan ... 654

atan2 ... 656

atan2f ... 655

atanf ... 653

atof ... 602

atoff ... 601

atoi ... 593

atol ... 594

atoll ... 595

B

basic language specifications ... 24

C99 language function ... 37

internal representation and value area of data ... 40

Option to process in strict accordance with ANSI

standard ... 39

processing system dependent items ... 27

register mode ... 49

section name ... 48

undefined behavior ... 25

unspecified behavior ... 24

binary ... 101

CubeSuite+ V2.01.00 APPENDIX B INDEX

R20UT2584EJ0101 Rev.1.01 Page 740 of 751
Sep 01, 2013

BINCLUDE control instruction ... 208

bins ... 299

BIT ... 99

bit field ... 44

bit manipulation instructions ... 366

Bookmarks dialog box ... 730

branch instructions ... 346

bsearch ... 588

bsh ... 336

.bss ... 99

bsw ... 337

byte separation operator ... 131

C

C99 language functionr ... 37

calloc ... 605

callt ... 398

caxi ... 400

CC-RH ... 9

ceil ... 630

ceilf ... 629

ceilf.dl ... 448

ceilf.dul ... 450

ceilf.duw ... 451

ceilf.dw ... 449

ceilf.sl ... 452

ceilf.sul ... 454

ceilf.suw ... 455

ceilf.sw ... 453

character classification functions ... 537

character constants ... 101

character conversion functions ... 534

character string constant ... 102

character string functions ... 512

cll ... 387

clr1 ... 369

cmov ... 291

cmovf.d ... 496

cmovf.s ... 497

cmp ... 283

cmpf.d ... 492

cmpf.s ... 494

comment ... 103

compiler generated symbols ... 52

compiler language specifications ... 24

basic language specifications ... 24

extended language specifications ... 51

compiler output directives ... 161

concatenation ... 219

conditional assembly control instruction ... 209

.const ... 98

constant ... 100

control instructions ... 197

asembler control instruction ... 198

conditional assembly control instruction ... 209

file input control instruction ... 206

cos ... 644

cosf ... 643

cosh ... 658

coshf ... 657

.cseg directive ... 149

ctret ... 399

ctype.h ... 504

cvtf.dl ... 456

cvtf.ds ... 457

cvtf.dul ... 458

cvtf.duw ... 459

cvtf.dw ... 460

cvtf.hs ... 461

cvtf.ld ... 462

cvtf.ls ... 463

cvtf.sd ... 464

cvtf.sh ... 465

cvtf.sl ... 466

cvtf.sul ... 467

cvtf.suw ... 468

cvtf.sw ... 469

cvtf.uld ... 470

cvtf.uls ... 471

cvtf.uwd ... 472

cvtf.uws ... 473

cvtf.wd ... 474

CubeSuite+ V2.01.00 APPENDIX B INDEX

R20UT2584EJ0101 Rev.1.01 Page 741 of 751
Sep 01, 2013

cvtf.ws ... 475

D

.data ... 99

DATA control instruction ... 202

data definition, area reservation directives ... 167

.db directive ... 168

.db2 directive ... 170

.db4 directive ... 173

.db8 directive ... 175

.ddw directive ... 175

decimal ... 101

.dhw directive ... 170

di ... 388

directives ... 147

compiler output directives ... 161

data definition, area reservation directives ... 167

external definition, external reference directives ...

181

macro directives ... 185

section definition directive ... 148

symbol definition directives ... 158

dispose ... 409

div ... 275, 590

divf.d ... 426

divf.s ... 427

divh ... 271

divhu ... 277

divq ... 281

divqu ... 282

divu ... 279

dollar symbol ... 220

.double directive ... 178

.ds directive ... 179

.dseg directive ... 151

.dshw directive ... 172

.dw directive ... 173

E

.ebss ... 99

.ebss23 ... 99

.edata ... 99

.edata23 ... 99

Editor panel ... 714

ei ... 389

eiret ... 391

element pointer ... 694

ELSEIF control instruction ... 214

ELSEIFN control instruction ... 215

Encoding dialog box ... 729

ENDIF control instruction ... 217

.endm directive ... 195

enumerate type ... 42

ep ... 694

.equ directive ... 160

errno.h ... 504

.exitm directive ... 193

.exitma directive ... 194

exp ... 620

expf ... 619

expression ... 104

absolute expression ... 145

relative expressions ... 146

extended language specifications ... 51

#pragma directive ... 52

compiler generated symbols ... 52

macro name ... 51

reserved words ... 52

.extern directive ... 184

external definition, external reference directives ... 181

F

fabs ... 632

fabsf ... 631

feret ... 392

fetrap ... 395

fgetc ... 553

fgets ... 554

.file directive ... 162

file input control instruction ... 206

.float directive ... 177

float.h ... 505

CubeSuite+ V2.01.00 APPENDIX B INDEX

R20UT2584EJ0101 Rev.1.01 Page 742 of 751
Sep 01, 2013

floating-point operation instructions ... 419

floating-point type ... 41

floor ... 634

floorf ... 633

floorf.dl ... 476

floorf.dul ... 478

floorf.duw ... 479

floorf.dw ... 477

floorf.sl ... 480

floorf.sul ... 482

floorf.suw ... 483

floorf.sw ... 481

fmaf.s ... 444

fmod ... 636

fmodf ... 635

fmsf.s ... 445

fnmaf.s ... 446

fnmsf.s ... 447

fprintf ... 566

fputc ... 557

fputs ... 558

fread ... 551

free ... 609

frexp ... 638

frexpf ... 637

fscanf ... 579

function call interface ... 701

functions with variable arguments ... 508

fwrite ... 555

G

general-purpose registers ... 709

getc ... 552

getchar ... 559

gets ... 560

global pointer ... 692

Go to Line dialog box ... 732

gp ... 692

H

halt ... 393

_h_c_lib.h ... 505

hdwinit ... 667

header files ... 504

hexadecimal ... 101

HIGH operator ... 132

HIGHW operator ... 135

HIGHW1 operator ... 137

hsh ... 338

hsw ... 339

I

IF control instruction ... 212

IFDEF control instruction ... 210

IFN control instruction ... 213

IFNDEF control instruction ... 211

INCLUDE control instruction ... 207

initialization peripheral devices function ... 666

_INITSCT_RH ... 664

instruction set ... 222

arithmetic operation instructions ... 247

bit manipulation instructions ... 366

branch instructions ... 346

floating-point operation instructions ... 419

load/store instructions ... 235

logical instructions ... 311

loop instructions ... 416

other instructions ... 499

saturated operation instructions ... 301

special instructions ... 380

stack manipulation instructions ... 375

integer type ... 40

internal representation and value area of data ... 40

alignment condition ... 45

array type ... 42

bit field ... 44

enumerate type ... 42

floating-point type ... 41

integer type ... 40

pointer type ... 42

structure type ... 43

union type ... 43

CubeSuite+ V2.01.00 APPENDIX B INDEX

R20UT2584EJ0101 Rev.1.01 Page 743 of 751
Sep 01, 2013

.irp directive ... 191

IRP-ENDM block ... 191

isalnum ... 538

isalpha ... 539

isascii ... 540

iscntrl ... 545

isdigit ... 543

isgraph ... 549

islower ... 542

isprint ... 548

ispunct ... 546

isspace ... 547

isupper ... 541

isxdigit ... 544

J

jarl ... 361

jarl22 ... 363

jarl32 ... 365

jcnd ... 354

jcnd17 ... 359

jcnd9 ... 357

jmp ... 347

jmp32 ... 348

jr22 ... 351

jr32 ... 353

Jump to Function dialog box ... 733

L

label ... 97

labs ... 586

ld ... 236

ld23 ... 240

ldexp ... 640

ldexpf ... 639

ldiv ... 591

ldl.w ... 385

ldsr ... 381

library function ... 506

character classification functions ... 537

character conversion functions ... 534

character string functions ... 512

functions with variable arguments ... 508

initialization peripheral devices function ... 666

mathematical functions ... 617

memory management functions ... 528

non-local jump functions ... 613

program diagnostic function ... 506

RAM section initialization function ... 663

standard I/O functions ... 550

standard utility functions ... 584

limits.h ... 505

.line directive ... 163

._line_end directive ... 166

._line_top directive ... 165

llabs ... 587

lldiv ... 592

load/store instructions ... 235

.local directive ... 188

log ... 622

log10 ... 624

log10f ... 623

logf ... 621

logic operator ... 114

logical instructions ... 311

longjmp ... 614

loop ... 417

loop instructions ... 416

LOW operator ... 133

LOWW operator ... 136

M

mac ... 269

macro ... 218

macro operator ... 219

MACRO control instruction ... 201

.macro directive ... 186

macro directives ... 185

macro name ... 51, 97

macro operator ... 219

macu ... 270

malloc ... 607

CubeSuite+ V2.01.00 APPENDIX B INDEX

R20UT2584EJ0101 Rev.1.01 Page 744 of 751
Sep 01, 2013

mathematical functions ... 617

mathf.h ... 505

math.h ... 505

maxf.d ... 428

maxf.s ... 429

memchr ... 529

memcmp ... 530

memcpy ... 531

memmove ... 532

memory management functions ... 528

memset ... 533

minf.d ... 430

minf.s ... 431

mnemonic field ... 100

modf ... 642

modff ... 641

mov ... 285

mov32 ... 290

movea ... 287

movhi ... 289

mul ... 265

mulf.d ... 432

mulf.s ... 433

mulh ... 261

mulhi ... 263

mulu ... 267

N

name ... 97

negf.d ... 434

negf.s ... 435

NOMACRO control instruction ... 200

non-local jump functions ... 613

nop ... 396

not ... 327

not1 ... 371

NOWARNING control instruction ... 204

numeric constant ... 100

O

octal ... 101

.offset directive ... 157

Open File dialog box ... 737

operand field ... 100

operator ... 104

Option to process in strict accordance with ANSI standard

... 39

or ... 312

.org directive ... 156

ori ... 314

other instructions ... 499

other operator ... 143

P

perror ... 583

pointer type ... 42

pop ... 378

popm ... 379

popsp ... 414

pow ... 626

powf ... 625

prepare ... 406

Print Preview window ... 735

printf ... 569

processing system dependent items ... 27

program diagnostic function ... 506

.public directive ... 182

push ... 376

pushm ... 377

pushsp ... 413

putc ... 556

putchar ... 561

puts ... 562

Q

qsort ... 589

R

RAM section initialization function ... 663

rand ... 610

realloc ... 608

recipf.d ... 436

recipf.s ... 437

CubeSuite+ V2.01.00 APPENDIX B INDEX

R20UT2584EJ0101 Rev.1.01 Page 745 of 751
Sep 01, 2013

re-entrant ... 505

register mode ... 49

REG_MODE control instruction ... 199

relative expressions ... 146

relocation attribute ... 149, 151

.rept directive ... 190

REPT-ENDM block ... 190

reserved words ... 52, 220

reti ... 390

rewind ... 582

rie ... 401

rotl ... 300

rsqrtf.d ... 438

rsqrtf.s ... 439

S

sar ... 330

sasf ... 297

satadd ... 302

satsub ... 305

satsubi ... 307

satsubr ... 309

saturated operation instructions ... 301

sbf ... 259

.sbss ... 99

.sbss23 ... 99

scanf ... 580

sch0l ... 342

sch0r ... 343

sch1l ... 344

sch1r ... 345

.sdata ... 99

SDATA control instruction ... 203

.sdata23 ... 99

section ... 500

section allocation ... 500

section definition directive ... 148

.section directive ... 155

section name ... 48

section aggregation operator ... 138

set1 ... 367

.set directive ... 159

setf ... 295

setjmp ... 616

setjmp.h ... 505

shift operator ... 128

shl ... 331

shr ... 329

sin ... 646

sinf ... 645

sinh ... 660

sinhf ... 659

sld ... 238

smart edit function ... 719

snooze ... 415

special instructions ... 380

sprintf ... 563

sqrt ... 628

sqrtf ... 627

sqrtf.d ... 440

sqrtf.s ... 441

srand ... 611

sscanf ... 575

sst ... 244

st ... 242

st23 ... 245

.stack directive ... 164

stack manipulation instructions ... 375

standard I/O functions ... 550

standard utility functions ... 584

startup ... 670

startup routine ... 670

stc.w ... 386

stdarg.h ... 505

stddef.h ... 505

stdio.h ... 505

stdlib.h ... 505

strcat ... 523

strchr ... 515

strcmp ... 519

strcpy ... 521

strcspn ... 518

CubeSuite+ V2.01.00 APPENDIX B INDEX

R20UT2584EJ0101 Rev.1.01 Page 746 of 751
Sep 01, 2013

strerror ... 527

string.h ... 505

strlen ... 526

strncat ... 524

strncmp ... 520

strncpy ... 522

strpbrk ... 513

strrchr ... 514

strspn ... 517

strstr ... 516

strtod ... 604

strtodf ... 603

strtok ... 525

strtol ... 596

strtoll ... 599

strtoul ... 598

strtoull ... 600

structure type ... 43

stsr ... 383

sub ... 255

subf.d ... 442

subf.s ... 443

subr ... 257

supplied libraries ... 504

switch ... 397

sxb ... 332

sxh ... 333

symbol attribute ... 99

symbol definition directives ... 158

synce ... 404

synci ... 405

syncm ... 402

syncp ... 403

syscall ... 411

T

tag jump ... 719

tan ... 648

tanf ... 647

tanh ... 662

tanhf ... 661

.tbss4 ... 99

.tbss5 ... 99

.tbss7 ... 99

.tbss8 ... 99

.tdata ... 99

.tdata4 ... 99

.tdata5 ... 99

.tdata7 ... 99

.tdata8 ... 99

.text ... 98

tolower ... 536

toupper ... 535

trap ... 394

trfsr ... 498

trncf.dl ... 484

trncf.dul ... 485

trncf.duw ... 486

trncf.dw ... 487

trncf.sl ... 488

trncf.sul ... 489

trncf.suw ... 490

trncf.sw ... 491

tst ... 340

tst1 ... 373

U

undefined behavior ... 25

ungetc ... 581

union type ... 43

unspecified behavior ... 24

V

va_arg ... 511

va_end ... 510

va_start ... 509

vfprintf ... 571

vprintf ... 573

vsprintf ... 568

W

WARNING control instruction ... 205

CubeSuite+ V2.01.00 APPENDIX B INDEX

R20UT2584EJ0101 Rev.1.01 Page 747 of 751
Sep 01, 2013

X

xor ... 317

xori ... 319

Z

.zbss ... 99

.zbss23 ... 99

.zconst ... 98

.zconst23 ... 98

.zdata ... 99

.zdata23 ... 99

zxb ... 334

zxh ... 335

Revision Record

Rev. Date
Description

Page Summary

1.00 Apr 01, 2013 - First Edition issued

1.01 Sep 01, 2013
357 - 358

[4.8.5 Branch instructions]
"jcnd9" added.

504

[6.1 Supplied Libraries]
Modified to "However, it is not necessary to refer the libraries if
only "function with a variable arguments", "character conver-
sion functions" and "character classification functions" are
used."
 -> "However, it is not necessary to refer the libraries if only
"program diagnosis function", "function with a variable argu-
ments", "character conversion functions" and "character clas-
sification functions" are used."

605, 607,
608

[calloc], [malloc], [realloc]
[Heap memory setup example] in [Caution] modified.

670 - 691
[7.1 Outline] - [7.3 Coding Example]
All sections revised.

713 - 728,
730 - 734,
737 -738

[APPENDIX A WINDOW REFERENCE]
A part of descriptions modified of "Editor panel", "Bookmarks
dialog box", "Go to Line dialog box", "Open File dialog box".
"Jump to Function dialog box" added.

CubeSuite+ V2.01.00 User's Manual:
RH850 Coding

Publication Date: Rev.1.00 Apr 01, 2013
Rev.1.01 Sep 01, 2013

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2012 Renesas Electronics Corporation. All rights reserved.
Colophon 1.3

© 2013 Renesas Electronics Corporation and Renesas Solutions Corp.

Colophon 1.3

CubeSuite+ V2.01.00

R20UT2584EJ0101

	COVER
	How to Use This Manual
	CHAPTER 1 GENERAL
	1.1 Outline
	1.2 Special Features
	1.3 Limits

	CHAPTER 2 FUNCTIONS
	2.1 Variables (C Language)
	2.1.1 Allocating to sections accessible with short instructions
	(1) GP relative access
	(2) EP relative access

	2.1.2 Changing allocated section
	2.1.3 Change the allocated area using the -Xpreinclude option
	2.1.4 Defining variables for use during standard and interrupt processing
	2.1.5 Defining const constant pointer

	2.2 Functions
	2.2.1 Changing area to be allocated to
	2.2.2 Calling away function
	2.2.3 Embedding assembler instructions
	2.2.4 Executing in RAM

	2.3 Variables (Assembler)
	2.3.1 Defining variables with no initial values
	2.3.2 Defining variable with initial values
	2.3.3 Defining const constants

	CHAPTER 3 COMPILER LANGUAGE SPECIFICATIONS
	3.1 Basic Language Specifications
	3.1.1 Unspecified behavior
	3.1.2 Undefined behavior
	3.1.3 Processing system dependent items
	3.1.4 C99 language function
	3.1.5 Option to process in strict accordance with ANSI standard
	3.1.6 Internal representation and value area of data
	3.1.7 Section name
	3.1.8 Register mode

	3.2 Extended Language Specifications
	3.2.1 Macro name
	3.2.2 Reserved words
	3.2.3 Compiler generated symbols
	3.2.4 #pragma directive
	3.2.5 Using extended language specifications
	(1) Allocation of data and program to section
	(2) Describing assembler instruction
	(3) Inline expansion
	(4) Controlling interrupt level
	(5) Interrupt/Exception processing handler
	(6) Disabling or enabling maskable interrupts
	(7) Embedded functions
	(8) Structure type packing
	(9) Bit field assignment
	(10) Core number specification (for a multi-core device)

	3.2.6 Modification of C source

	CHAPTER 4 ASSEMBLY LANGUAGE SPECIFICATIONS
	4.1 Description of Source
	4.1.1 Description
	4.1.2 Expressions and operators
	4.1.3 Arithmetic operators
	+
	-
	*
	/
	%
	+sign
	-sign

	4.1.4 Logic operators
	!
	&
	|
	^

	4.1.5 Relational operators
	==
	!=
	>
	>=
	<
	<=
	&&
	||

	4.1.6 Shift operators
	>>
	<<

	4.1.7 Byte separation operators
	HIGH
	LOW

	4.1.8 2-byte separation operators
	HIGHW
	LOWW
	HIGHW1

	4.1.9 Section aggregation operators
	STARTOF
	SIZEOF

	4.1.10 Other operator
	()

	4.1.11 Restrictions on operations
	4.1.12 Identifiers

	4.2 Directives
	4.2.1 Outline
	4.2.2 Section definition directives
	.cseg
	.dseg
	.section
	.org
	.offset

	4.2.3 Symbol definition directives
	.set
	.equ

	4.2.4 Compiler output directives
	.file
	.line
	.stack
	._line_top
	._line_end

	4.2.5 Data definition/Area reservation directives
	.db
	.db2/.dhw
	.dshw
	.db4/.dw
	.db8/.ddw
	.float
	.double
	.ds
	.align

	4.2.6 External definition/External reference directives
	.public
	.extern

	4.2.7 Macro directives
	.macro
	.local
	.rept
	.irp
	.exitm
	.exitma
	.endm

	4.3 Control Instructions
	4.3.1 Outline
	4.3.2 Assembler control instructions
	REG_MODE
	NOMACRO
	MACRO
	DATA
	SDATA
	NOWARNING
	WARNING

	4.3.3 File input control instructions
	INCLUDE
	BINCLUDE

	4.3.4 Conditional assembly control instructions
	IFDEF
	IFNDEF
	IF
	IFN
	ELSEIF
	ELSEIFN
	ELSE
	ENDIF

	4.4 Macro
	4.4.1 Outline
	4.4.2 Usage of macro
	4.4.3 Macro operator

	4.5 Reserved Words
	4.6 Assembler Generated Symbols
	4.7 Instruction Set
	4.8 Description of Instructions
	4.8.1 Load/Store instructions
	ld
	sld
	ld23
	st
	sst
	st23

	4.8.2 Arithmetic operation instructions
	add
	addi
	adf
	sub
	subr
	sbf
	mulh
	mulhi
	mul
	mulu
	mac
	macu
	divh
	div
	divhu
	divu
	divq
	divqu
	cmp
	mov
	movea
	movhi
	mov32
	cmov
	setf
	sasf
	bins
	rotl

	4.8.3 Saturated operation instructions
	satadd
	satsub
	satsubi
	satsubr

	4.8.4 Logical instructions
	or
	ori
	xor
	xori
	and
	andi
	not
	shr
	sar
	shl
	sxb
	sxh
	zxb
	zxh
	bsh
	bsw
	hsh
	hsw
	tst
	sch0l
	sch0r
	sch1l
	sch1r

	4.8.5 Branch instructions
	jmp
	jmp32
	jr
	jr22
	jr32
	jcnd
	jcnd9
	jcnd17
	jarl
	jarl22
	jarl32

	4.8.6 Bit manipulation instructions
	set1
	clr1
	not1
	tst1

	4.8.7 Stack manipulation instructions
	push
	pushm
	pop
	popm

	4.8.8 Special instructions
	ldsr
	stsr
	ldl.w
	stc.w
	cll
	di
	ei
	reti
	eiret
	feret
	halt
	trap
	fetrap
	nop
	switch
	callt
	ctret
	caxi
	rie
	syncm
	syncp
	synce
	synci
	prepare
	dispose
	syscall
	pushsp
	popsp
	snooze

	4.8.9 Loop instructions
	loop

	4.8.10 Floating-point operation instructions
	absf.d
	absf.s
	addf.d
	addf.s
	divf.d
	divf.s
	maxf.d
	maxf.s
	minf.d
	minf.s
	mulf.d
	mulf.s
	negf.d
	negf.s
	recipf.d
	recipf.s
	rsqrtf.d
	rsqrtf.s
	sqrtf.d
	sqrtf.s
	subf.d
	subf.s
	fmaf.s
	fmsf.s
	fnmaf.s
	fnmsf.s
	ceilf.dl
	ceilf.dw
	ceilf.dul
	ceilf.duw
	ceilf.sl
	ceilf.sw
	ceilf.sul
	ceilf.suw
	cvtf.dl
	cvtf.ds
	cvtf.dul
	cvtf.duw
	cvtf.dw
	cvtf.hs
	cvtf.ld
	cvtf.ls
	cvtf.sd
	cvtf.sh
	cvtf.sl
	cvtf.sul
	cvtf.suw
	cvtf.sw
	cvtf.uld
	cvtf.uls
	cvtf.uwd
	cvtf.uws
	cvtf.wd
	cvtf.ws
	floorf.dl
	floorf.dw
	floorf.dul
	floorf.duw
	floorf.sl
	floorf.sw
	floorf.sul
	floorf.suw
	trncf.dl
	trncf.dul
	trncf.duw
	trncf.dw
	trncf.sl
	trncf.sul
	trncf.suw
	trncf.sw
	cmpf.d
	cmpf.s
	cmovf.d
	cmovf.s
	trfsr

	4.8.11 Other instructions

	CHAPTER 5 SECTION ALLOCATION
	5.1 Sections
	5.1.1 Section concatenation

	5.2 Special Symbol

	CHAPTER 6 FUNCTIONAL SPECIFICATIONS
	6.1 Supplied Libraries
	6.2 Header Files
	6.3 Re-entrant
	6.4 Library Function
	6.4.1 Program diagnostic functions
	assert

	6.4.2 Functions with variable arguments
	va_start
	va_end
	va_arg

	6.4.3 Character string functions
	strpbrk
	strrchr
	strchr
	strstr
	strspn
	strcspn
	strcmp
	strncmp
	strcpy
	strncpy
	strcat
	strncat
	strtok
	strlen
	strerror

	6.4.4 Memory management functions
	memchr
	memcmp
	memcpy
	memmove
	memset

	6.4.5 Character conversion functions
	toupper
	tolower

	6.4.6 Character classification functions
	isalnum
	isalpha
	isascii
	isupper
	islower
	isdigit
	isxdigit
	iscntrl
	ispunct
	isspace
	isprint
	isgraph

	6.4.7 Standard I/O functions
	fread
	getc
	fgetc
	fgets
	fwrite
	putc
	fputc
	fputs
	getchar
	gets
	putchar
	puts
	sprintf
	fprintf
	vsprintf
	printf
	vfprintf
	vprintf
	sscanf
	fscanf
	scanf
	ungetc
	rewind
	perror

	6.4.8 Standard utility functions
	abs
	labs
	llabs
	bsearch
	qsort
	div
	ldiv
	lldiv
	atoi
	atol
	atoll
	strtol
	strtoul
	strtoll
	strtoull
	atoff
	atof
	strtodf
	strtod
	calloc
	malloc
	realloc
	free
	rand
	srand
	abort

	6.4.9 Non-local jump functions
	longjmp
	setjmp

	6.4.10 Mathematical functions
	expf
	exp
	logf
	log
	log10f
	log10
	powf
	pow
	sqrtf
	sqrt
	ceilf
	ceil
	fabsf
	fabs
	floorf
	floor
	fmodf
	fmod
	frexpf
	frexp
	ldexpf
	ldexp
	modff
	modf
	cosf
	cos
	sinf
	sin
	tanf
	tan
	acosf
	acos
	asinf
	asin
	atanf
	atan
	atan2f
	atan2
	coshf
	cosh
	sinhf
	sinh
	tanhf
	tanh

	6.4.11 RAM section initialization function
	_INITSCT_RH

	6.4.12 Initialization peripheral devices function
	hdwinit

	6.4.13 Operation runtime functions

	CHAPTER 7 STARTUP
	7.1 Outline
	7.2 Startup Routine
	7.2.1 Exception vector table
	7.2.2 Startup routine for the boot loader project
	7.2.3 Startup routine for the application project
	7.2.4 Passing information from the application project to the boot loader project

	7.3 Coding Example
	7.4 Symbols
	7.4.1 Global pointer (gp)
	7.4.2 Element pointer (ep)

	7.5 ROMization
	7.5.1 Outline
	7.5.2 Creating ROMized load module file

	CHAPTER 8 REFERENCING COMPILER AND ASSEMBLER
	8.1 Function Call Interface
	8.1.1 General-purpose registers guaranteed before and after function calls
	8.1.2 Setting and referencing arguments and return values
	8.1.3 Address indicating stack pointer
	8.1.4 Stack frame

	8.2 Calling of Assembly Language Routine from C Language
	8.3 Calling of C Language Routine from Assembly Language
	8.4 Reference of Argument Defined by Other Language
	8.5 General-purpose Registers

	CHAPTER 9 CAUTIONS
	9.1 Volatile Qualifier
	9.2 V850E3v5 G3K Core Specification for Assembler (-Xcpu=g3k Option)

	APPENDIX A WINDOW REFERENCE
	A.1 Description
	Editor panel
	Encoding dialog box
	Bookmarks dialog box
	Go to Line dialog box
	Jump to Function dialog box
	Print Preview window
	Open File dialog box

	APPENDIX B INDEX
	Revision Record

