

Product Change Notice (PCN)

Subject: Datasheet change for the Listed ISL80111*, ISL80112* and ISL80113* Intersil

Products

Publication Date: 9/30/2016 Effective Date: 9/30/2016

Revision Description:

Initial Release

Description of Change:

This notice is to inform you that Intersil has updated the electrical specifications on the "Recommended Operating Conditions", DC Input and Bias Line Regulation and DC Output Load Regulation limits for the products listed below:

ISL80111IRAJZ ISL80112IRAJZ ISL80113IRAJZ ISL80111IRAJZ-T ISL80112IRAJZ-T ISL80113IRAJZ-T ISL80111IRAJZ-T7A ISL80112IRAJZ-T7A ISL80113IRAJZ-T7A

Reason for Change:

The change aligns the data sheet with the product characteristics and is necessary to maintain product manufacturability in support of customer delivery requirements. Details regarding the change are contained on the following page. The updated data sheet is available on the Intersil web site at:

http://www.intersil.com/content/dam/Intersil/documents/isl8/isl80111-12-13.pdf

Impact on fit, form, function, quality & reliability:

The change will have no impact on the form, fit, function, quality, reliability and environmental compliance of the devices.

Product Identification:

There have been no changes to the die/silicon or product itself. There will be no change in the external marking of the packaged parts. Product affected by this change is identifiable via Intersil's internal traceability system.

Qualification status: Not applicable **Sample availability:** 9/30/2016

Device material declaration: Available upon request

Questions or requests pertaining to this change notice, including additional data or samples, must be sent to Intersil within 30 days of the publication date.

For additional information regarding this notice, please contact your regional change coordinator (below)					
Americas: PCN-US@INTERSIL.COM	Europe: PCN-EU@INTERSIL.COM	Japan: PCN-JP@INTERSIL.COM	Asia Pac: PCN-APAC@INTERSIL.COM		

From:

Recommended Operating Conditions (Notes 4, 6)

Junction Temperature Range	40°C to +125°C
VIN Relative to GND (ISL80113) (Note 9)	. V _{OUT} + 0.4V to 5V
VIN Relative to GND (ISL80112) (Note 9)	. V _{OUT} + 0.3V to 5V
V _{IN} Relative to GND (ISL80111) (Note 9)	. V _{OUT} + 0.2V to 5V
Nominal V _{OUT} Range	800mV to 3.3V
PG, ENABLE, SENSE/ADJ, SS Relative to GND	0V to 5.5V
V _{BIAS} Relative to GND	
V _{BIAS} Relative to V _{OUT}	+0.8V minimum

To:

Recommended Operating Conditions (Notes 4)

Junction Temperature Range	-40°C to +125°C
VIN Relative to GND (ISL80113) (Note 8) VOL	T + 0.30V to 3.6V
VIN Relative to GND (ISL80112) (Note 8) VOL	T + 0.25V to 3.6V
VIN Relative to GND (ISL80111) (Note 8) VOL	T + 0.20V to 3.6V
Nominal Vout Range	. 800mV to 3.3V
PG, ENABLE, ADJ, SS Relative to GND	0V to 5.5V
VBIAS Relative to GND	0V to 5.5V

From:

Electrical Specifications Unless otherwise specified.

Viv. = Vour + 0.4V. Vigas = 2.9V. Vour = 1.2V. Cigas = 1.0F. Civ. = 1.00 F. Cour = 2.2 F. T. | + 2.5 C. V. | = 0.00 A. Applications must follow thermal guidelines of the package to determine worst-case junction temperature. Please refer to "Power Dissipation" on page 1.3 and Tech Bird 1183/28. Boldface limits apply over junction temperature (Tj.) range. 40 °C to +125 °C. Pulse load techniques used by ATE to ensure Tj. = TA, where datasheet limits are defined.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN (Note 10)	TYP	MAX (Note 10)	UNITS
DC CHARACTERISTICS						
V _{BIAS} UVLO	UVLO_BIAS_r	V _{BIAS} Rising		2.3	2.9	V
	UVLO_BIAS_f	V _{BIAS} Falling	1.55	2.1	2.8	V
V _{BIAS} UVLO Hysteresis	UVLO _{B_HYS}			0.2		V
DC ADJ Pin Voltage Accuracy	V_{ADJ}	1.0V \leq V _{IN} \leq 3.6V, I _{LOAD} = 0A, 2.9V \leq V _{BIAS} \leq 5.5V, V _{OUT} = V _{ADJ}	494	502	510	mV
DC Input Line Regulation	ΔV _{OUT}	V _{OUT} + 0.4V ≤ V _{IN} ≤ 3.6V		0.01	0.9	m۷
DC Bias Line Regulation	ΔV _{OUT}	2.9V <v<sub>BIAS<5.5V with respect to ADJ pin</v<sub>		0.3	1.4	m۷
DC Output Load Regulation	ΔV _{OUT}	OA ≤ I _{LOAD} ≤ 3A	-2	-0.2	2	m۷
Feedback Input Current		V _{ADJ} = 0.5V		10	80	nA
V _{IN} Quiescent Current	I _Q (V _{IN)}	VOUT = 2.5V		8	10	mA
V _{IN} Quiescent Current	I _Q (V _{IN)}	VOUT = 3.3.		10.6		mA

To:

Electrical Specifications Unless otherwise specified Vini = 3V. Volus = 5.5V. Volus = 5.5V. Volus = 0.5V. I) = +25°C. I_L = 0mA applications must follow thermal guidelines of the package to determine worst-case junction temperature. Please refer to "Power Dissipation" on page 13 and Tech Brief 18379. Boldface limits apply across junction temperature (T_I) range, -40°C to +125°C. Pulse load techniques used by ATE to ensure T_I = T_A where datasheet limits are defined.

PARAMETER	SYMBOL	TEST CONDITIONS	MIN (Note 9)	TYP	MAX (Note 9)	UNIT
DC CHARACTERISTICS						
V _{BIAS} UVLO	UVLO_BIAS_r	V _{BIAS} Rising		2.3	2.9	V
	UVLO_BIAS_f	V _{BIAS} Falling	1.55	2.1	2.8	v
V _{BIAS} UVLO Hysteresis	UVLO _{B_HYS}			0.2		v
DC ADJ Pin Voltage Accuracy	V _{ADJ}	$ \begin{aligned} &\textbf{1.0V} \leq \text{V}_{IN} \leq \textbf{3.6V}, \ \text{I}_{LOAD} = \text{OA}, \ \textbf{2.9V} \leq \text{V}_{BIAS} \leq \textbf{5.5V}, \\ &\text{V}_{OUT} = \text{V}_{ADJ} \end{aligned} $	494	502	510	mV
DC Input Line Regulation	(V _{OUT} low line-V _{OUT} high) (line)/V _{OUT} low line	2.9V < V _{IN} < 3.6V, V _{OUT} = 2.5V	-0.18	0.02	0.18	%
DC Bias Line Regulation	(V _{OUT} low line-V _{OUT} high) line)/V _{OUT} low line	4.5V <v<sub>BIAS<5.5V, V_{OUT} = 2.5V</v<sub>	-0.28	0.06	0.28	<u>%</u>
DC Output Load Regulation	(VOUT no load-VOUT high load)/VOUT no load	OA < I _{LOAD} < Full Load, V _{OUT} = 2.5V	-0.40	-0.04	0.40	<u>%</u>
Feedback Input Current		V _{ADJ} = 0.5V		10	80	nA
V _{IN} Quiescent Current	I _Q (V _{IN)}	V _{OUT} = 2.5V		8	10	mA
V _{IN} Quiescent Current	IQ (VIN)	V _{OUT} = 3.3V, V _{IN} = 3.6V, V _{BIAS} = 5V)		10.6		mA