To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

ENESAS
_USER'S MANUAL

-

Vr4101™

64-BIT MICROPROCESSOR
(PRELIMINARY)

- * uPD30101

-
- Document No. U12149EJ1VOUMOO (1t edition)

Date Published February 1997 NS
Printed in Japan

VR4000, VR4100, VR4101, VR4200, VR4400, and Vr-Serles are trademarks of NEC Corporation.

R4000 is a trademark of MIPS Computer Systems, Inc.

MIPS |s a trademark of MIPS Technologies, Inc.

LAPX ls a trademark of Intel Corp.

DEC VAX |s a trademark of Digital Equipment Corp.

UNIX Is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd.

Exporting this product or equipment that includes this product may require a governmental license from
the U.S.A. for some countries because thls product utilizes technologles limited by the export control
regulations of the U.S.A.

The information in this document Is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any llability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, impliad or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
propenrty arising from a defect in an NEC semiconductor device, customars must incorporate sufficient safety
measures in its dasign, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

“Standard®, "Special®, and "Specilic. The Specific quality grade applies only to devices daveloped based on
a customer designated "quality assurance program"® for a specific application. The recommended applicalions
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal slectronic
equipment and industrial robots

Special: Transporiation equipment (automobiles, trains, ships, etc.), tratfic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed

) for lite support)

Specific: Aircrafts, aerospace equipment, submersible repeatars, nuclear reactor control systems, life
support systams or medical equipment for life suppon, etc.

The quality grade of NEC devices is "Standard” unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemeanted in this product.

M7 86.5

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken 1o stop generation of static
electricity as much as possible, and quickly dissipate it once, when it has -occurred.
Environmental control must be adequate. When it i8 dry, humidifier should be uged. It is
recommended to avoid using insulators that easily build static eiectricity. Semiconductor
devices must be stored and transported in an anti-static container, static shielding bag or
conductive material. All test and measurement tools including work bench and floor should be
grounded. The operator should be grounded using wrist strap. Semiconducior devices must
not be touched with bare hands. Similar precautions need to be taken for PW boards with
semiconductor devices on il.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is
provided to the input pins, it is possible that an internal input level may be generated due to
noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or
NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or
pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is
considered to have a possibility of being an output pin. Al handling related to the unused pins
must be judged device by device and related specifications governing the devices.

@ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. |Immediately after the power source Is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until
the reset signal is received. Reset operation must be executed immediately after power-on for
devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

« Device availability

+ Ordering information

Product release schedule

+ Availability of related technical literature

» Development environment specifications {for example, specifications for third-pary tools and
components, host computers, power plugs, AC supply voltages, and so forth)

* Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California

Tel: 800-366-9782

Fax: 800-729-9288

NEC Electronics (Germany) GmbH
Duesssldor, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynas, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics laliana s.r.1.
Milano, haly

Tal: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronlcs {(Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Valizy-Villacoublay, France

Tel: 01-30-67 58 00

Fax: 01-30-67 58 99

NEC Electronlcs (France) S.A.
Spain Office

Madrid, Spain

Tel: 01-504-2787

Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-0022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax; 02-528-4411

NEC Electronics Singapore Pie. Ltd.
United Square, Singapore 1130
Tel; 253-8311

Fax: 250-3583

NEC Electronics Taiwan Lid.
Taipei, Taiwan

Tel: 02-719-2377

Fax: 02-719-5951

NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax; 011-889-1689

J9e. 9

Purpose

Organization

How to read this manual

Legend

PREFACE

This manual targets users who intends to understand the functions of the VR4101
and to design application systems using this microprocessor.

This manual introduces the architecture and hardware functions of the Vr4101 to
users, following the organization described below.

This manual consists of the following contents:

+ Introduction

« Pipeline operation

» Cache organization and memory management system
* Exception processing

» Iniialization interface

« Interrupts

» Peripheral units

« Instruction set details

Itis assumed that the reader of this manual has general knowledge in the fieids of
slectric engineering, logic circuits, and microcomputers.

The VR4000™ in this manual includes the VR4400™.

To learn about detailed function of a specific instruction,
-> Read Chapter 2 CPU Instruction Set Summary and Chapter 24 CPU
instruction Set Detalls.

To learn about the overall functions of the VR4101,
-> Read this manual in sequential order.

To leam about electrical specifications,
->» Refer to Data Sheet which is separately available.

Data significance: Higher on left and lower on right
Active low: XXX* {trailing asterisk after pin and signal names)
Numeric representation: binary ... X000 or X000

decimal ... X0

hexadscimal ... 0xXXXX
Prefixes representing an exponent of 2 (for address space or memory capacity):

Kkilo) 2'°=1024

M (mega) 2°° = 10247
G (giga) 2% =1024°
T(tera) 2%°=1024"
P(peta) 2%°=1024°
E(exa) 2% =1024°

Related Documents

The related documents indicated here may include preliminary varsion.

preliminary versions are not marked as such.,

« User's manual
VR4101 User's ManualThis manual
VR4100™ User's Manual U10050E

+ Data sheet
VR4101 Data Sheet U11846E
VR4100 Data Shest U10428E

« Application note
VR4101 Application Note To be issued

Howaver,

CHAPTER 1

CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6
CHAPTER 7
CHAPTER 8
CHAPTER 9
CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 18
CHAPTER 17
CHAPTER 18
CHAPTER 19
CHAPTER 20
CHAPTER 21
CHAPTER 22
CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26
APPENDIX

SUMMARY OF CONTENTS

INTRODUCTION .ot asme e e 1
CPU INSTRUCTION SET SUMMARY ... e 23
VRAT10T PIPELINE. ... e 35
MEMORY MANAGEMENT SYSTEM ..., 53
EXCEPTION PROCESSING.........ccc ittt B85
PINFUNCTIONSo e e 123
INITIALIZATION INTERFACE ..o e 135
CACHE ORGANIZATION AND OPERATION......cocciiiiiii i 147
CPU CORE INTERRUPTS ..ottt e e 165
BCU (BUS CONTROL UNIT) c.eoriiiiiieeiceineee et e e 169
DMAAL (DMA ADDRESS UNIT).....ooiiieiiiiiiiiiiciii e 203
DCU (DMA CONTROL UNIT) oo snees i 211
CMU (CLOCK MASK UNIT) ..ot 217
ICU (INTERRUPT CONTROL UNIT)....oooiiiiiiiieie e 221
PMU (POWER MANAGEMENT UNIT).......ccoooimie 243
RTC (REALTIME CLOCK UNIT) .o 255
DSU (DEADMAN'S SW UNIT) c.cooriiiiiiiii e sssiee e 267
GIU (GENERAL PURPOSE VO UNIT) ... eaenness s 273
PIU (TOUCH PANEL INTERFACE UNIT}.......ocoiiiii i, 283
SIU (SERIAL INTERFACE UNIT) i 307
AlU (AUDIO INTERFACE UNIT} c.ooiiiiiiiiii et eesnniin s nnn s es e 327
KIU (KEYBOARD INTERFACE UNIT) ... 349
DEBUGSIU (DEBUG SERIAL INTERFACE UNIT) ..o 373
CPU INSTRUCTION SET DETAILS ..o cccvesni i 385
VR4101 COPROCESSOR O HAZARDS ..., 537
PLL PASSIVE COMPONENTS ..ot nnreisser s e s 543
IND X e e e 545

[MEMO]

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTIONcooevirmirnenerensararsissienmnensisssasnsenen bermtiassssnninasasana 1
1.1 CHARACTERISTICS ..ottt nisseenissssssssset s sssmsssssn s snsans e vatesanasnsanmnsasssneos 1
1.2 ORDERING INFORMATION......ccccvrvnnimmmiisneimsmmmmsemmes s snnsnnsssssasasnsres ssasssssesansssns 2
1.3 S4-BIT ARCHITECTUREccovcvnriremrmsnsmmsrissssmssssmsssssssissnssasanssssssnsssssnssssanssssassssns 2
1.4 VRA101 PROCESSORcciimmnenienimisssssesisesassinsissassmssssnsssssssssssassssesssnes 2

141 Internal SPUCKUIE ... e e 3
1.4.2 1O FOGISTOIS.....oivv ettt e e e oo e ch e 4
1.5 VR4100 CPU CORE ..ccccevininiiinisinnsnnsnrmmees s inseessessnsemsstssssasssnsransrsansasssssasssssssssnas 10
151 Internal StrUCIUME ... e e et e e e e e 10
152 CPU RBGISIEIS ... oo e e e e e 11
1.5.3 CPU Instruction Set OVerview ... 12
1.5.4 Data Formats and Addressing...........oo.ovimiiiiiic e 13
1.5.5 Coprocessors (CPO-CP3}. ... e 15
1.5.8 Floating-Point Unit (FPU) ..o 18
o T A o 1o 1T YU PPRPS 18
1.6 MEMORY MANAGEMENT SYSTEM (MMU).......coi st 18
1.6.1 Translation Lookaside Buffer (TLB)..........ccccoori e 18
1.8.2 Operating MOOeSc..oooviiiniriic e it e 19
1.7 INSTRUCTION PIPELINE...........cccrnrrrsimnaccisnniseninesssenesnnssssmsssssssasssssssssssasssassrnnnas 19
1.8 CLOCK INTERFACEcoovverreirrrisissasmeniissens s e sassnmem st s s s sssaant e asaans e vamsssnsasans 19
CHAPTER 2 CPU INSTRUCTION SET SUMMARY.cccoroermmrmtrssianiennesemsnanns 23
2.1 CPUINSTRUCTION FORMATS..........cccccuscssnnissentrismamimssnssssnmssssasssssansssanssssassssnnnes 23
2.1.1 Support of the MIPS ISA ... e 24
2.2 INSTRUCTION CLASSES..........cciimrirmnsssinnssssinssnssssssssasssasasssssesssissmses snnsssas sessne 24
2.21 Load and Store InStructions ... 24
2.2.2 Computational INStrUCHONSccocoiiiiiiii 28
2.2.3 Jump and Branch Instructions..............cooce e 27
224 Special Instructions.............co 27
2.25 System Control Coprocessor (CPO) Instructions.................n 28
2.3 VR4101 CPU INSTRUCTION SET.....ccccommiiimrmmnimnenine e nssstissssssssssssssansrassnssses 28

CHAPTER 3 VRA4101 PIPELINEocoecreieneninssscssss st s ssnssssssresns 35

3.1 PIPELINE STAGES..........ccotroeerrreeceremrsmesesemssssnesesemensssnr e s sssmsesesansesssmsmssssaresassannsn 35
311 Pipeline ActiVItIes ... 38

3.2 BRANCH DELAYcciviccnsmmmimmmiminisisi i isssssensssssssssassmssssssssssmssssnsssssseans 38
3.3 LOAD DELAY ... s ssessmnsnssssssssssssssssssssesssessesssssnrsssrassasssasssssassnans 38
3.4 PIPELINE OPERATIONcccciiniincncnccninncsninnsssssnsssssssssssnsssensssssssssnnsssnssnansans 38
3.4.1 Add Instruction (Add rd, rs, M) ... 39

3.4.2 Jump and Link Register Instruction (JALR rd, rs)...............on e, 40

3.4.3 Branch on Equal Instruction (BEQ rs, rt, offset). ... 41

3.4.4 Trapif Less Than Instruction {TLT rs,) ... 472

3.4.5 tLoad Word Instruction (LW rt, offset (base)) ... 43

3.4.6 Store Word Instruction (SW rt, offset (base))................coo i 44

3.5 INTERLOCK AND EXCEPTION HANDLINGcooicrrrmreceeceeee e cememe e e 45
351 Exception Conditions ... 48

352 Blall ConditionS. ... e 49

.83 Slip CoNAIIONS ..ot e e 50

354 BYPASSING. ..o 51

3.6 CODE COMPATIBILITYooooreceeeeeeeeecrrnressrrssaninnmnnesssssessesssssssssnsssrmerensnssnsasessssens 51
CHAPTER 4 MEMORY MANAGEMENT SYSTEM..........cccceeeecerecrecrecerrsnrenserens 53
4.1 TRANSLATION LOOKASIDE BUFFER (TLB).....cccococccecrecsanmmensnssnssensannessessnesnens 53
411 Hitsand MisSes ... e 53

4.1.2 Multiple Hit........ooo e 53

4.2 ADDRESS SPACES...........oo it crceer st e ste s st e s ses e s mse s e e s e s s ravesmnsenessnsanns 54
4.2.1 Virtual Address Space.................... E e et e 54

4.2.2 Physical Address Space...........c....coooii e 55

4.2.3 Virtual-to-Physical Address Translation................c.cooooooo 56

424 32-bit Mode Address Translation......................... i, 57

4.2.5 64-bit Mode Address Translation ... 58

4,268 Operating MOGES ... 58

4.3 SYSTEM CONTROL COPROCESSORcccimimiirimrmreeernennrnecessminsssssssenssnssnssess 69
431 Format of @8 TLB ENNYoovoiiiiei et 70

4.3.2 CPO REGISIOIS ... e FA

4.3.3 Virtual-to-Physical Address Translation...........................coi a1
CHAPTER 5 EXCEPTION PROCESSINGcocorerimirrieercmcerscerrsesessm e snsnesees 85
5.1 HOW EXCEPTION PROCESSING WORKS..........ccccnemncceccninnmmsensssssnsssnsesnssssonsese 85
5.2 PRECISION OF EXCEPTIONS.............ccoorrrrrcrnnssvsnssnssss s ssssssssssssassssossoses 86

-V -

5.3 EXCEPTION PROCESSING REGISTERS... T 86

531 Context Register () s 87

5.3.2 BadVAddr Register {B) ..o 88

5.3.3 Count Register (9], .ottt i e e e e 83

534 Compare Register (11).......ooo i 89

5.3.5 Oratus RegisTer (12 e 89

5.3.8 Cause Register (13) .. e 92

5.3.7 Exception Program Counter {EPC) Register (14).............ocooi i 94

53.8 WatchlLo (18) and WatchHi {19) Registers ... e 85

5.3.9 XContext Register (20)t e 96
5.3.10 Parity Error Register (26) ..o a7

5.3.11 Cache Error Register (27) ... 87
5.3.12 ErmorEPC Register (B0} ... o 98

5.4 DETAILS OF EXCEPTIONScccoinicmmmsmmmmsmmnnmnisnnismsesmssasssaissssassesssssssssassssssasssas 99
.41 EXCOPLION TYWPBS ..o ettt 99

542 Exception Vector Locations ... 99

5.4.3 Priority of EXCOPONS ... e 101

544 Cold Reset Exceplion.............c.ccociiiiil et 102

545 Soft Reset EXCOPtiON. ... e 103

5.4.6 NMIEXCEPONo e e e 104

S5.4.7 Address Efror EXCeption 105

548 TLB EXCePHONS. ... 106

549 Cache Error EXceplion ... 109
5.4.10 Bus EfTor EXCePUON ... 110

5.4.11 System Call Exception 111
5.4.12 Breakpoint EXCeplion ... 111
5.4.13 Coprocessor Unusable Exceplion... ... 112
5.4.14 Reserved fnstruction EXCePONc..oooiiiii i 113
5415 Trap EXCePliON.ttt sttt 113

5416 Integer Overflow EXCeplion. ... 114
5417 Watch EXCepliON. ... 114
5418 Interrupt EXCeplion ... e 115

5.5 EXCEPTION HANDLING AND SERVICING FLOWCHARTS.......cccoismseeveerasninenses 115
CHAPTER 6 PIN FUNCTIONS.........cccecimreenee SRR, .
6.1 VR4A101 SIGNALS........oorercrrnnnninncnmmmsssssssssinesnssmsssssesssssssssssses reseennann s 124
6.1.1 System Bus Interface Signals................ocioi i 124

6.1.2 Clock Interface Signals ... e 125

6.1.3 Battery Monitor Interface Signals.................. 126

6.1.4 |Initialization Interface Signals................cooo i 126

6.1.5 RS-232-C Interface Signals................ccoc i 127

6.1.6 IrDAINterface Signalscooiiii e et 127

6.1.7 Debug Serial Interface Signals ... 128

6.1.8 Keyboard Interface Signalsc.ocoooiiiii e 128

6.1.9 Audio Interface SigRal..............cooi i e 129
6.1.10 Touch Panel Intarface Signals.............coooo 129

6.1.11 General-purpose /O Signals ... 130

6.2 STATUS OF PINS UPON A SPECIFIC STATEcccooiininmrnemccssssnsssnnissnnsssns 131
6.3 PIN CONFIGURATIONouorcrsrmmrnisnsstnsnnssnisstsssnsssosarssssssstsssssssssasasassnsasassssssasssssnaes 133
CHAPTER 7 INITIALIZATION INTERFAGCE..........tirccrmiimrniciscsannensennsansessenees 135
7.1 RESET FUNCTION ... ccicecimnmnnmnisnnissnnssmssssasessssssssssnssssnmssmnssansesssasnsnsssssssnssninasns 135
TAT RTC ReESE. ... et st 135

T.1.2 RETOW e e e e e e et e 136

T.1.3 Deadman'sSW .. . e e 137

7.1.4 Software Shutdown ... e 138

7.1.5 HALTIMEr ShUutdown ... e 139

7.2 POWER-ON SEQUENCE.cccvstvimnsnnsnnssnisnrsssessnessenssnisnsssssssssssassssnsensmsssssnsassrsans 140
7.3 RESET OF THE CPU COREc..ovivnvinrnninnsnrsseesssessssssnmsanssassssesssssassmnensssssssnsassssns 142
T3 Cold ReSE......oo e e e 142

T2 SOt RSOt ... s S 142

7.4 VR4101 PROCESSOR MODES..........c..ociinnes S stassssssssasnsssessstnsassnensnns 144
T A POWEr MOUBS ..o e e e et e n e 144

7.42 Privilege Modes ... 145

743 Reverse ENdianess ... s 145

7.4.4 Bootstrap Exception Vector (BEV). ... 145

745 Cache Error CReCK ettt b e e 146

7.4.6 Disable Parity EITOTS.........c.ocoi ittt et e et e e 146

747 Interrupt Enable (IE)...........coociiiiiiiiiii ittt e 1485
CHAPTER 8 CACHE ORGANIZATION AND OPERATIONcocoerrervevrennnenans 147
8.1 MEMORY ORGANIZATION......cccervurnrrersnsserssanssarssesssnsssssssnssssssanssnnssessssssrasnssansansss 147
8.2 CACHE ORGANIZATIONccconmmimsisnessanssssassnsssanssssssssssssssnenssssssesssnsssssssassssasssssassans 148
8.2.1 Organization of the Instruction Cache {I-Cache)................ccccoeiiiiiiicii i, 149

8.2.2 Organization of the Data Cache (D-Cache).................ccomri e 149

B.23 Accessingthe Caches.................ccooiiiiiiii e 150

8.3 CACHE OPERATIONScccnmimmnmnmsinmscmssnsennsissessnsessmssnsanssssssssssossnsasssssssassnsssssanns 151

-Vi -

B.31 Cache WIE POIICY ... e e et et - 151

8.4 CACHE STATESccccinnmminnmmmmmmmmmmmmsimisiimimsisssssrmsssmssssssetins s s 152

8.5 CACHE STATE TRANSITION DIAGRAMS..cccoiiminirinnenesnsiiensssnsenaes 153

B8.5.1 Data Cache State Transitionoooiciierimries oo 153

B.5.2 Instruction Cache State Transition...............ooociiei oo e 153

8.6 CACHE DATA INTEGRITYcoccrninrininisssessinsssssssnisnissmsssessensssanssssssssissssssnsensanes 154

8.7 MANIPULATION OF THE CACHES BY AN EXTERNAL AGENTccocovcceeennene 164

CHAPTER 9 CPU CORE INTERRUPTSc.ciiiiviimmninniieerrnisessnsmnesconsssenionans 165

9.1 NONMASKABLE INTERRUPT (NMJ) .c..covvcnrieersunnnnns rtrressssssanseessssnnanas 165

9.2 ORDINARY INTERRUPTS ...iiiicicimmniresssecseavenssssapenas resasssessnensasareserananes 166

9.3 SOFTWARE INTERRUPTS GENERATED IN CPU COREcccccciniciniiccissinnnnns 166

9.4 TIMERINTERRUPT........ccccvveterecceirectesrrsrsssssssmsrrsrsssr s s sssssssssssmnssssessssessasssnnmmsmnsasses 166

9.5 ASSERTING INTERRUPTS......cco e emtrnirismiininmssinissnisssnisssssssssnessannssssnss nnmsns 167

9.5.1 Detecting Hardware Interrupts..............ooooor o 167

9.5.2 Masking Interrupt SIgnals.. ... e 168

CHAPTER 10 BCU (BUS CONTROL UNIT)..cocciccirereinsernareersassamarmereisassnsnserneaens 169

0 O €1 4 | - 1 169

10.2 REGISTER SEToeoeeeectrssitisisesissssinssmssssscssssansasasnsssasssssans snsssnsssssassasanssnsnnns 169

10.2.1 BCUCNTREG ...ttt ne s 170

10.22 BCUBRRE G e e 171

10.23 BCUBRCNTREGot 172

10.24 BCUBCLREG. ... e e e e e e 173

10.25 BCOUBCLCONTREG.........ooiiiiiiiioit ettt et ettt e e s eaeaea e 174

10.2.6 BCUSPEEDREG. ..ottt e e e 175

10,27 BCUERRSTREG. ...t e e e e e e e 177

10.2.8 BCURFCNTREG. ... oo e 178

10.2.9 PREVIDREGoooooooooooooeoeeeoee oo oo oo . 179

10.3 MEMORY ACCESS BY BCU..........ccccinininiinnnniiane CrersnssssssennnsrrrrnE 180

10,31 ADAresS MaP ... o 180

10.3.2 Address Spacefor ROM 180

10.3.3 Address Space for Expansion BUS............... 181

10.3.4 Address Space for Registers ... e 182

10.3.5 Address Space for LUD e 162

10.3.6 Address Space for DRAM. e 183

10.4 CONNECTION OF ADDRESS TERMINALScoovimiimmimiinnscccsssasenssnmmnsnsssane 183
10.5

NOTES FOR USING BCU..........coircerrenrcsnencnimmsnssssssss s sssssssssesssssssssssssmses 185

-vil -

1051 CPU Core Bus MOOES e e 185

1052 ACCess Data SiZe. ... e e 185
T10.5.3 ROM I O A ..o et et et e e e e e et ie e e e e s e var e 186
10.5.4 Flash Memory Interface. ..o e, 187
10.5.5 Expansion Bus INterface..................cooiiin i e 188
10.5.6 LCD Controller Interface.............ccoiiii e 188
10.5.7 Notice of an ll18gal ACCESSce.oiiiiiiiiei e e 180
10.6 BUS OPERATION.....cccomiimiintnininretrsnesosseeesnsssmssnssenssessssassasssssssessnnsesassssssenss 190
06,1 ROM ACCEBSSttt ettt e 190
10.6.2 Expansion Bus interface.................cccooi i 194
LI I e N 1 - T N 198
10.6.4 DRAM Access (EDO tYPe).......ooiii e 199
1068 RefTESh ... e 202
CHAPTER 11 DMAAU (DMA ADDRESS UNIT)...ccceiiiiecmiiccccccecnienvecrrenssanersenes 203
11,1 GENERAL.......ccoimmimimiiiniinninen e seeene s e sssmnessesssessasssesassssmsesassessssssnsssamensrnneas 203
11.2 REGISTER SET...cccosmsmmiminnimnisiiniiiesessamsnsonssssssesssssessssssssssnsssmsessanse sassnssssssssssassans 203
11.2.1 PADDMAADRLREG, PADDMAADRHREG.........c.ooiiei e 203
11.2.2 SRXDMAADRLREG, SRXDMAADRHREGoooiiiii e 205
11.2.3 STXDMAADRLREG, STADMAADRHREGoo i 206
11.2.4 AUDDMAADRLREG, AUDDMAADRHREG....................oiviiiiiiii e e 208
11.25 KEYDMAADRLREG, KEYDMAADRHREGo.c.ooo e 209
CHAPTER 12 DCU (DMA CONTROL UNIT) ..ceicrirummranimniresienresesssnessnssseresnsensens 211
121 GENERAL ... v et b s b b b bbb mesmnannane 211
12.2 REGISTER SET .. errrerreerveervssn s essas s e et s sassesanssssan snas sassnnssssnsson 211
1221 DMARSTREG ... et 212
1222 DMAIDLEREG . . e e 213
1223 DMASENREG. ... e e e 214
1224 DMAMSKREGo et e 215
1225 DMAREGRE G ... e 216
CHAPTER 13 CMU (CLOCK MASK UNIT).....ccoecrersimeecmrernrrevsersenserersvsrsasesssess 217
13.1 GENERALcoerrrrrereee " CressmsensRerieee RS R b e e e ndm e e snne s ans 217
13.2 REGISTER SET ... rcrinniisssssssscssessnsssssssiesisennssnssssrssnsassssesssassss ssnenais 218
1321 CMUCLKMSKREG. ..ottt e ee e 219

- viii -

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT) .ccccoveririinanerermsansimsnniisssesssens 221
141 GENERAL ...t stn s smssssssss s ase s s s as s n s s sasaassasasssanssse s snnsnanans 221

14.2 REGISTER SET ...t iiimsssrssssssssasssssasanas s ssns e snsnsnsnssssssassssssssensnnnssss 223

1421 Level-1 System Register ... 224

14.2.2 Level2 PIU ReGISTOr.... ..o e 226

14.2.3 Level-Z AU Register ... e 227

14.2.4 Level-2Z KIU RegiSter ... e e 228

14.2.5 Level-2 GlU ReGISIEI. ... e e e e e 229

1426 Level-2 SIUReGISBr ... 230

14.2.7 Level-1 Mask System Register...........ccoocoiiiiiiici e 232

14.2.8 Level-2 Mask PIU Register............oooiiii e 234

14.2.9 Level-2 Mask AlU RegIStEr.......c.ocoiiiic e et 235

- 14.2.10 Level-2 Mask KIU Register..................ccoooiiiii e 236
14.211 Level-2 Mask GIU ReGIStEr. ..ot e 237

14.212 Level-2 Mask SIURegISter.................oocoii e 238

T4.213 NMI REgiS O . e e 240

14.2.14 Software Interrupt Register.....................ciii e 241

14.3 NOTES FOR REGISTER SETTING ...t trrersenn e sssmssssnnesesnnas 242

- CHAPTER 15 PMU (POWER MANAGEMENT UNIT)...ccoioiimimiircieerrescmerenes 243
15,1 GENERALooviirrvrnrnininessescssssse s sssssssssas s s sassssssanassssesssssssssmmenes 243

1511 Reset Control ... 243

16.1.2 Shutdown Control ... 244

15.1.3 Power-on Control ... 245

1814 POWEr MO, 248

18.2 REGISTER SEToooresnnininieimiininisinsssass s sansnisssssssssssssssss s sassenssnsssssnas 251

- 1521 PMUINTREG . e ettt e e e 252
15.22 PMUCNTREGt 254
CHAPTER 16 RTC (REALTIME CLOCK UNIT)....ccccnierrcmrcnnrsssercssersensisasssnenesses 255
16.1 GENERALcoovvrntrrniinssssiissinannissereses s s e sssesssesssssas st sess senmssssssssssassssssass sans 255

16.2 REGISTER SET ...t sss s s nsssssssnssssssnsssnssanssns 256

16.2.1 ETIMELREG, ETIMEMREG, ETIMEHREG........................ e 257

16.2.2 ECMPHREG, ECMPLREG, ECMPMREG............oooiiiiii e, 258

16.23 RTCLLREG, RTCLHREG. ... oo e, 260

16.24 RTCLCNTLREG, RTCLCNTHREG................. e 262

16.2.5 TCLKCNTLREG, TCLKCNTHREGcoociiii ittt SO 264

16.28 RTCINTREG. ... et 266

CHAPTER 17 DSU (DEADMAN’S SW UNIT)cccciumrcvmnimmnnsemnsnnnimsainsssenssnrsnsens 267

17.1 GENERAL et e e IR SN R RS S SRS RSO R TS S SA R IR R RS RN AR R R RS 267
17.2 REGISTER SETcoiiiiiiinnsiiinmmssisssinisssissssssstssssssisssssssssmsssnssssssssans 267
17.2.1 DSU Control RegIStero e e 268

17.2.2 DSU Dead Time Setting Register ... e 268
17.2.3 DSU Clear Register.........c...ivruiioi ittt e 270

17.2.4 DSUElapsed Time ReGISIBI ... e, 271

17.3 REGISTER SETTING FLOW........co e snsmmmrccmnss e s s snsasmss e e s e n s s 272
CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)....c..u0uss . 273
181 GENERAL ... eccrrsnnnce s r s mtn e s s e b bed b bi oA bbb s sak s s A s s s R SR e s 273
18.2 REGISTER SET ...ttt st s snsas i ssnssasasssassassssansanansns 274
18.2.1 GPIO Output Enable Register ... e 274

1822 GPIOPort Data Register. ... e 275

18.2.3 GPIO Interrupt Status Register...........ccocco i 276

18.2.4 GPIO Interrupt Enable Register. ... 277

18.2.5 GPIQ Change Peint Interrupt Register................ 278

18.2.6 interrupt Level Identifying Registerco i 279

18.3 REGISTER SETTING FLOW........ocritiirsnsstinetisnnniisssssssssnssmsmsosessnsssas i 280
18.4 INTERRUPT FROM GPIO PINS.................... P 281
18.5 FUNCTIONS TO ACHIEVE LOW POWER CONSUMPTION........cccoctnrniriinnrnns 282
CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT) ...c.ccccrrcmiismmeninineensnnens 283
19.1 GENERALscvrrrriniirnerinanns R ERREEEYEAeee SR LLEI RS E NN R s e rrere 283
1911 BlOCK DIBGIAMI ..ot et et 284

19.1.2 Scan Sequencer State Transition ... 286

19.2 REGISTER SETcccvvcvvuanne Crissssssmesssssmssssssssseeetrettraananannansennannnn 288
19.21 PIUDATAREG. ...t e 288

19.2.2 PIUCNTREG. oottt ettt ettt e e et e e et en e e 289

19.2.3 PIUINTREG ..ottt ettt eb e 291

18.2.4 PIUSIVLREGo e e 292

1925 PIUSTBLREG ..ottt 293

18.2.8 PIUCMDREGoiiiiii it et e e 294

18.2.7 PIUCIVLREG ...ttt 295

19.3 REGISTER SETTING FLOW..... eessrssessassessesarsRssREsaRr e e E R nRnan b b e bt 296
19.4 OUTPUT TO PENCONT PINS.............. CeismemsssssssssserssrssEIsRSRSSRR SRR SRRSRRSRRRSRan 298

19.4.9 Order of Coordinate Data ..ot e e 299

19.5 PIUOPERATION TIMINGSccocnnimmmmmmimnmimenniassissiesesssssssssanessene 300
19.5.1 Explanation of signals inthe timing chart ... 300

19.5.2 Battery Voltage Detection..............cooo e s 301

19.5.3 Coordinate DeteCtion e 301

19.5.4 Page Boundary INterrupt ..o 303

1955 DAt LOSE.....oiiiiiicies e et 304
19,56 OINEI CAULIDNSoiviiiiiri i cier e e oo et ie e e e et e e e e e e e e e bbb e 305
CHAPTER 20 SIU (SERIAL INTERFACE UNIT)...ccoiimmmmmmmmiiinenneansansansansansenesnes 307
201 GENERALooeeerrecrrrrmmmmmmrcer e ase e reremsasssn sasaransnns T 307
20.1.1 TRANSMIT/RECEIVE DATAFORMAT 309

20.2 REGISTER SET ... ceicereccceceecessssnerrrsssnssrrssssnsceretrbsiats s in s sas aaaa s sasasasassmnnnsssanan 311
2021 SIURXDATRE G ...ttt ittt ittt ettt et e e e 312
20.2.2 SIUTXDATREGoooiiiiiiiii e s e e e e e e 313
2023 SIUCNTREG. ... i r e ettt e e 314
20.2.4 SIUDLENGTHREGottt e rr e e e s e e 317
20.25 SIINTREGcooiiiiii it i et 318
2026 SIURSZ23ZCREG it e 321
20.2.7 SIUBAUDSELREG..........c.ooiiiioi et 322

20.3 REGISTER SETTING FLOW. ...t cnrnessnscs s rrssssanessesssas s s nsssnsnsns 323
20.4 OPERATION OF THE SIU ... s issstnssssssessssssnsssnsssssensasassnnsnses 325
CHAPTER 21 AIU (AUDIO INTERFACE UNIT) ..c.cuiccccrmerecmmmissensmssssenssssnncnssasens 327
211 GENERALocooeeeeecerreceecnani i isns s s sssssssas s snssssnsssnsssassassssassbnsseensn rssnnsensnns 327
21.2 REGISTER SET ...ciiiitimcnnsnmiiiisnimesessinsessiessssssmmmmssssnisssasssss s ssssnsssssssnssnne 328
21,201 AT D AT RE G oo e 329
2122 AIURESETREGciici ittt 330
21.2.3 AIUMODEREGocooiiiiiii ettt et e e e n b e e et an e s ren e e 331
21.2.4 AIUSEQENREG.ooiiiiiiiiie ittt sttt ettt et ne et e e e 332
21,25 AIUMUTERE G .. ittt ettt et e e et 333
21.2.8 AlUSTATREG. ... e oo e a e e ae e s e e e e 334
2127 AIUSTPPAGERESG ... o e e e e 335
21.2.8 AIUVALIDREG.ottt et e en e e 336
2129 AIUINTREG ..ottt r e e 337
21.2.10 AIUCOUNTOREG. ..ottt e e ettt a e e sn e n e 339
21211 AIUCOUNT I RE . ..o ettt e et e e e e e ee e et e e s st ee e e eeaes 340
21212 AIUREPNUMREGo oottt et e e eneees 342

- X -

21.213 AIUBUSENREGttt e 343

21.3 REGISTER SETTING FLOW..... EbssssasaseiasesEissRaL et are i sanerasbetnrsraneranas 344
21.3.1 DMAtransferinthe PWMmode, 344
21.3.2 In the Buzz Mode <or the Case Where DMA Is Not Used in the PWM Mode> 346
CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT) ...ccococcicmrcimmreseimenesessnnenss 349
b R O €1 o 349
22.1.1 Outlined Cperation of the KIU e 350

22.2 KIU REGISTER SETccccccnimiimiiiiinictiennnnnssinsssesessssssssssssssssssessssesemssnsssssssssessess 351
2221 KIUDATREG ... e e e 352

2222 KIUASCANREG.........oooii e et e, 353
22.23 KIUASTOPREG. ... e e, 354
2224 KIUSCANREG ... e 355
2225 KIUSTOPREG ..ot 356
2226 KIUSAPREG ... e ... 357
2227 KIUSCANSREG ... e 358
2228 KIUWKSREG.o 359
2249 KIUWKIREG ..o e e e e e e 360
22210 KIUSRNREG. ..o e e e e e 362
22211 KIUINTREG ... e e, 363
22212 KIURSTREG ... e et 365
22213 KIUENREG ... e e 366
22214 DOZEKEYINTREG. ... e e 367
22295 EVVOLREGooiiioieeee e e e 368

22.3 REGISTER SETTING FLOW.cccciiiiieirecicicceecnrenssesssssssesssssssasssesases sssrassssmsnns 369
22.3.1 Setting Flow on the KIU (To the End of DMA Transfer)ccooviviieiien, 369
2232 Setting Flow for Shifting to Suspend Mode (or Standby Mode with TClock Masked).. 372

CHAPTER 23 DEBUGSIU (DEBUG SERIAL INTERFACE UNIT)ccocvannen.. 373
23,1 GENERAL ...t tintntsssesss bt ss s s b sassas s s s sass s aas 373
23.2 REGISTER SET ...t ssssssassssss sssnsnsnsasasasssasessonsns 373

23.21 ASIMOOREGcoooooooiioeieeces e 374
2322 ASIMOTREGooiooiooiitii et st 375
2323 RXBORREGccoooooiiiieiiiiciciciei e ettt st 376
2324 RXBOLREG.............c.cooiiiiiitiit i ceess oot 377
2325 TXSORREGccoooiiiimiiiiieias ittt 378
2328 TXSOLREG ..ottt 379
2327 ASISOREG.........oiivieairiieienies ettt s 380

- Xii -

2328 INTROREG ..o oottt 381

2329 BPRMOREG.. ..ot e et e 382

23210 DSIURESETREG.... ...ttt et ettt e e 383
CHAPTER 24 CPU INSTRUCTION SET DETAILS.......coeriiiicmirerecrcenearssieneans 385
241 INSTRUCTION CLASSES........cccociirirreeen eibranarsesrans we 385

24.2 INSTRUCTION FORMATScccovrenicriinninns Cesemnnaaasanaaan, .. 386

24.3 INSTRUCTION NOTATION CONVENTIONS.. cesseassaninne . 387

24.3.1 Instruction Notation Examples. ... 388

244 LOAD AND STORE INSTRUCTIONS............ crssmmmesaanannnn ... 389

245 JUMP AND BRANCH INSTRUCTIONS......... .- ... 390

246 SYSTEM CONTROL COPROCESSOR {CP0} INSTRUCTIONS. ... 390

24,7 CPUINSTRUCTION OPCODE BIT ENCODING........ccocerieiiriiersnnsensersnmsnnsnnnnas 535
CHAPTER 25 VR4101 COPROCESSOR 0 HAZARDS..........cccocnmcmminnmmrsnensanines 537
CHAPTER 26 PLL PASSIVE COMPONENTScccrerennneiensissneissiscsnesnnes 543
APPENDIX INDEX ..ot nms s msennenssssssessssscensssens snssmssnesassnes 545

[MEMO]

-xlv -

LIST OF FIGURES (1/8)

Fig. No. Title Page
1-1. Vr4101 Internal Block Diagram and Example of Connection to External Blocks................... 2
1-2. VR4100 CPU Core internal Block Diagramoo oo 10
1-3. VRA101 CPU ReGISIOIS ..o et e 12
1-4. CPU Instruction FOrmMats....... ... e e e 12
1-5. Little-Endian Byte OTQeriNgoo et een e 14
1-6. Little-Endian Data in a Doublewordc.iiiiii e 14
1-7. Misaligned Word Accessing (Little-Endian)..................cooiini i .. 18
1-8. CPO REGISIEISo i e e r e ar e e e st e e ens e metbeeae e 16
1-9. External Circuit of Clock Oscillator....................coiiii e 20
1-10. Examples of Osciltator with Bad Connection e, 21
2-1. CPU Instruction FOrmats..............cocii i e e 23
3-1. Pipeline StageS . .. e 35
3-2. Instruction Execution in the Pipeline ... 36
3-3. Pipeling ACtiVItI®s ... e 35
34 Branch DeIAY ..o e e 38
3-5. Add Instruction Pipeline Activities.............c..cccccr i 39
3-6. JALR Instruction Pipeline Activities ... 40
3-7. BEQ Instruction Pipeling ACHVItIBSooo oo 41
3-8. TLT Instruction Pipeline Activities................oco 42
3-9. LW Instruction Pipeline Activities ... e 43
3-10. SW Instruction Pipeline Activiies ..o e 44
3-11. Interlocks, Exceptions, and Faults....................oooiiiiiiieen et et 45
3-12. Correspondence of Pipeline Stage to Interlock and Exception Condition............................. 46
F-13. Exeeption Detection ...t e e 48
3-14. Data Cache Miss Stall. ... 43
3-15. CACHE Instruction Stall ... e 49
3-16. Load Data INEEIIOCK. ... e 50
317, MD Busy IMerlock ... et 50
4-1. Virtual-to-Physical Address Translation....................ccooii e e, 54
4-2, VR4101 Physical AdAress SPacte. ...ttt e e 55
4-3, 32-bit Mode Virtual Address Translation............................. e, 57
4-4, 64-bit Mode Virtual Address Transiation................ccooei i, 58
4-5, User Mode Address Space..............c e ieeceveer e, ettt e 59

- XV -

LIST OF FIGURES (2/8)

Fig. No. Title Page
46, Supervisor Mode AdAress SPacEe........ ..o e, 61
4-7. Kernel Mode AdAress SPaCce ...t 64
4-8, CPO Registers and the TLB ... e 69
4-9. Formatof @ TLB Entry .o e 70
410, IndeX RegISIar. ... e 71
4-11. RaAndom Register.. ... e, 72
4-12. EntryLoO and EntryLo1 Registers e 73
4-13. Page Mask ReQIStar........ ..o e e, 74
4-14. Positions Indicated by the Wired Registerc.ocoociiiiin i, 75
4-15. Wired Register. ... e 75
4-16. EntryHIi Register.........ocoiiii s e e 76
417, PRIG REGISIEN ... e e 77
4.18. Config Register Format.............cooiii e 78
4-19. LLADAr Register..ocoiiiii e e e 79
420, Taglo RIS e o e 80
4-21. TagHi Register. e 80
4-22. TLB Address Translation..................... i 82
5-1. Context Register Format ..., 87
5-2. BadVAddr Register FOrmatocoviiiiicin e 88
5-3. Count Register Format...........o e 88
5-4. Compare Register FOImMat..............cooiii e, 89
5-5. Status Register FOrmat.................... 89
5-6. Status Register Diagnostic Status Field...................... g0
5-7. Cause Register FOrmat ... 92
5-8. EPC Register FOrMat............ocoooiiiiii e 94
5-9. WatchLo Register Format.................ooo i e 95
5-10. WatchHi Register Format..................ooi o e 95
5-11. XContext Register Format.................. e 96
5-12. PEr Register FOrMat e 87
5-13. CacheErr Register Format ..., 87
5-14. The ErrorEPC Register Format ... e, 98
5-15. Common Exception Handling ..ot e 116
5-16. TLB/XTLB Mismatch Exception Handling ... e, 118
5-17. Cache Error Exception Handling...................ooo e 120
5-18. Cold Reset, Soft Reset, and NM! Exception Handlingccoooiiiiin e, 121

- Xvi -

LIST OF FIGURES (3/8)

Fig. No. Title Page
6-1. VRAT101 Processor Signals ..o e e e 123
6-2. Pinout of the 180-pin LQFP e e 133
7-1. L RO =TT U 135
7-2. RS T O Y i e 136
7-3. [BT=E T LT T 137
7-4, Software ShUldOWn ... e 138
7-5. HALTIMOr SRULBOWN ... et et et e re e e e e st e e as e meaesanees 139
7-5. VR4101 Activation Sequence (When Activated Normally)..........c.o oo 140
7-7. VR4101 Activation Sequence (When Activation Fails).....................ie . 141
7-8. Ol RSB . e e a e ea e 143
7-9. SOt RSB . e e et e et a ettt 143
8-1, Logical Hierarchy of MemOry...........ocooo e e 147
8-2. 08 Ty TR 1T o7 o Ta 1 S TSP 148
8-3. I-Cache Line FOrmMat ... e 149
8-4. Data Cache Line FOrmMat ...t 150
8-5. Cache Data and Tag Organization ... e 150
§-6. Data Cache State DIiagram ... et e e 153
8-7. Instruction Cache State Diagram.................coociiii it 153
8-8. Data flow on Instruction Feteh. ... 154
8-9 Data Integrity on Load Operations................cc.ccoiiiir e 155
8-10. Data Integrity on Store Operationscccocviiiiiii ettt 156
8-11. Data Integrity on Index_Invalidate Operations ... 187
8-12. Data Integrity on Index_Writeback_Invalidate Operations... .. 157
8-13. Data Integrity on Index_Load_Tag Operations........................coiiiii e, 158
8-14. Data Integrity on Index_Store Tag Operations ..o e 158
8-15. Data Integrity on Create_Dirty Operationscc.ccccoiiiii i 159
8-16. Data Integrity on Hit_Invalidate Operationsooevii e e 158
8-17. Data Integrity en Hit_Writeback_lnvalidate Operations.............................. 160
8-18. Data Integrity on Fill Operations.............oooo i 160
8-18. Data Integrity on Hit_Writeback Operations................. .o oot i e 161
8-20. Data Integrity on WItebBack FIOW ... e e e 162
8-21. Data Integrity on Refill FIOw ... e 162
8-22. Data Integrity on Writeback & Refill FIow ... e 163

- Xvii -

LIST OF FIGURES (4/8)

Fig. No. Title Page
9-1. Nonmaskable tnterrupt Signal ..o ———— 165
9-2. Hardware INterrupt SIQNEIS............c.ocooiiviiiies e, 167
9-3. Masking of the CPU Core INtermupts ... et 168
10-1. BCUCNTREG (0x0BOO0 0000).........ciii e ettt 170
10-2. BCUBRREG (O0xOBO0 0002).......coeiviriiieeeiitiii et et ees e en e 171
10-3. BCUBRCNTREG (OXOBO0 0004)o 172
104, BCUBCLREG {O%0B00 D00B) ..ottt et a e eaeea e eenian e 173
10-5. BCUBCLCNTREG (Ox0BOO D00B)ocot ot 174
10-8. BCUSPEEDREG (0x0BO0 O00A) ..ottt et e et sv et 175
10-7. BCUERRSTREG (0xOBO0 000C)ccoiiiiveiiuiet i eeie et e 177
10-8. BCURFCNTREG (OxOBO0 DO0E).........eiiviveeierit it e e 178
10-8. PREVIDREG (0x0B00 0010)........0otiiieiieiiesiee e ieee e oottt ees et 179
10-10. ROM 4-Byta Read (WROMA[Z:0] = 110) ..ot e 191
10-11. Page-ROM 4-Byte Read {WROMA[2:0] = 110, WPROM[1:0] = 01)......ooooivie 192
10-12. Flash Memory 2-byte ACCESS ..., 193
10-13. Two-Byte Access in the Case Where the LCDRDY High Level Is Sampled 185
10-14. One-byte Access to Odd-numbered Address in the Case Where the LCDRDY High Level is

SaAMIP e e 196
10-15. Two-Byte Access in the Case Where the ZWS* Low Level Is Sampled (WISAA[2:0] = 101). 197
10-16. Four-Byte Access in the Case Where the ZWS* Low Level Is Sampled (WISAA[2:0] = 101) 197
10-17. Two-Byte Access to the LCD Controller (WLCDA[1:0] = 10) oo, 198
10-18. Two-Byte Access to the LCD Controller (WLCD[1:0] = 11) ..o 198
10-19. Four-Byte Read Access to the DRAM et 199
10-20. Four-Byte Write Access to the DRAM...............coo oo 199
10-21. Byte Read from Odd-numbered Address of the DRAMccooeoi i, 200
10-22. Byte Read from Even-numbered Address of the DRAMcoooooeiiiiiiiii e 200
10-23. Byte Write to Odd-numbered Address ofthe DRAMoccooiiiiiii 201
10-24. Byte Write to Even-numbered Address of the DRAMocoooooi oo 201
10-25. CBR Refresh CyCle ...t 202
10-26. Self Refresh Cycle ... e e, 202
11-1. PADDMAADRLREG (OXOB00 0020)eceieieiieses ettt et 204
11-2. PADDMAADRHREG (OX0B00 0022)...........o..0ivoieiie et 204
11-3. SRXDMAADRLREG (0X0BOD 0024) ... 205
11-4. SRXDMAADRHREG (0X0BOO0 0026)........ccoiiiiiiii sttt et 208

- Xvili -

LIST OF FIGURES (5/8)

Fig. No. Title Page
11-5. STXDMAADRLREG (0x0B00 0028)cc.oiiiiiiii i ceee e e 207
11-6. STXDMAADRHREG (OXOBOO0 D02A).. ..o 207
11-7. AUDDMAADRLREG (OXOBOO D02C)o et e 208
11-8. AUDDMAADRHREG (OXOBO0 B02E)ui ot ees et iene e s e s s 209
11-9. KEYDMAADRLREG (OxC0BO0 0030) ... 210
11-10. KEYDMAADRHREG (DxOBO0 0032}oooiiiiiee ettt n e 210
12-1. DMARSTREG (Ox0B00 0040) e e 212
12-2. DMAIDLEREG (OX0BO0 O042) ... o e oo e e e 213
12-3. DMASENREG (OXOBO0 D044}t 214
12-4. DMAMSKREG {0x0B00 DOAB) it 215
12-5. DMAREQREG (0xX0BOD Q048) e et s 216
13-1. Block Diagram of the CMU ... 217
13-2. CMUCLKMSKREG (0X0BO0 0080). ..ot 219
14-1. Outline of Interrupt Control ... e 222
14-2. SYSINTREG (0xX0BO00 Q080) .o et e s 224
14-3, PIUINTRTG (OXOB00 0082) o et e ettt 226
14-4. ADUINTREG (OXOBOO 0084} i e e e 227
14-5. KIUINTREG (OXOBOO BOBB) ... i e e e 228
14-6. GIUINTREG (0X0BO0 00B8).......ciiiiiiiiiei ettt 228
14-7. SIUINTREG {OxOBO0 DOBA) ..o e e s e 230
14-8. MBYSINTREG (OXOBO0 Q0BT) ..ottt ettt e ee e e e e e e e e e e 232
14-9. MPIUINTRTG (0x0BO0 Q0BE)cocoiiiiiiiii ettt 234
14-10. MADUINTREG (0X0BOO0 0090}ooiiiiiiiieeii et et e e 235
14-11. MKIUINTREG (Ox0B00 0092). ... et e 236
14-12, MGIUINTREG (OXOBO00 O084)o et e 237
14-13. MSIUINTREG (OXOB0O 0098)oooiiiiiiiieiiiieirei et e e e 238
14-14. NMIREG (0xOBOO0 0098o oo e s mn e e 240
14-15. SOFTINTREG (OXOBO0 008A). ... e e 241
15-1. Starting by a Power-Switch Interrupt (BATTINH=1) 245
15-2. Starting by a Power-Switch Interrupt (BATTINH=0) ... 245
15-3, Starting by a DCD interrupt (BATTINH=1) ... e 246
15-4. Starting by a DCD Interrupt (BATTINH=0) 246
15-5. Starting by an Alarm Interrupt {BATTINH=1) ..o 247

- Xix -

LIST OF FIGURES (6/8)

Fig. No. Title Page
15-6. Starting by an Alarm Interrupt (BATTINH=0) . e 247
15-7. Power Mode Status Transition..............cocoooi ittt 245
15-8. PMUINTREG (0x0B00 00AD) _....iiiiiiiiiiieeee e e 252
15-9. PMUCNTREG (0x0BO0 00AZ} ..ot et b st b e 254
16-1. Functional Block Diagram of the RTC ... e 255
16-2. ETIMELREG (0x0BO00 00CA)... ..o e 257
16-3. ETIMEMREG (OXOBOO D0CE) . ..o ociiriieies et ot 257
16-4. ETIMEHREG {OXOBOO0 O0CB) ...t ettt st et eea e 258
16-5. ECMPHREG {OX0BOO DOCA). ..ottt ettt et e e 258
16-8. ECMPLREG (0x0B00 GOCT). ..ot ittt e 259
16-7. ECMPMREG (OXOBOO OOCE)coviieii ettt ettt aee e 259
16-8. RTCLLREG (0XO0BO0 O0D0)oiiiiiiiieii et e, 260
16-9. RTCLHREG (0x0BO0 B0D2).. ..o 261
16-10. RTCLCNTLREG (0x0B00 DODA) ...t e e, 262
16-11. RTCLCNTHREG (0x0BO0 00D8)... ..ocoiiit e, 263
16-12. TCLKCNTLREG (0X0BO00 DODB)... ... iiiiii ettt 264
16-13. TCLKCNTHREG (Ox0B00 Q0DA). ...t et 265
16-14. RTCINTREG (0X0BO0 00DC) ..ot ittt et 266
17-1. DSUCNTREG (0x0B00 O0EOD}ooviviii it et 268
17-2. DSUSETREG (0x0800 00E2).. USSR 269
17-3. DSUCLRREG {0X0BOO 00E4)o e e, 270
17-4. DSUTIMREG {OX0BO0 QOEB) ..ottt 271
18-1. GOUTENREG (OXOBOO 0100)c0iit it eer e, 274
18-2. GPOTDATREG (0X0BOO0 0302} ...t 275
18-3. GINTSTREG (OXOB0O0 0104) ... et 276
184, GINTENREG (0x0BO0 0106). ...t 277
18-5. GCINTSREG (0x0BOG 010B). ..ot 278
186. GLINTSREG {OXOBO0 BI0A) ...t e e 279
18-7. Flow Chart of the Occurrence of an Interrupt.............o.cooooo e, 281
19-1. Block Diagram of an Example of the Configuration of an Externat Circuit............................. 284
19-2. Equalized Circuit for Detecting Coordinates. ..o 284
19-3. Block Diagram of the PIU INerior.............coo oo et 285
194, Scan Sequencer State Transition Diagram ..o 288

- XX -

LIST OF FIGURES (7/8)

Fig. No. Title Page
18-5. PIUDATAREG (OXOBO0 D120}, ...ioviiiiiiecii ettt e eea 288
19-8. PIUCNTREG (Ox0B0O0 0122) ...ttt 289
19-7. PIUINTREG (O0x0BO00 0124} ... e 291
19-8. PIUSIVLREG (0xCBO0 0126).ooiiiiii et e sren e 282
18-9. PIUSTELREG (OXOBO0 0128) ..o et 293
18-10. PIJCMDREG (OX0BOO B12AYot et ba e 294
19-11. PIUCIVLREG (Ox0BO0 013) ... ettt et e et e 205
18-12. PIU Battery Voltage Detection Timingocooiriiiii e 301
19-13. PNJ Coordinate Data Detection Timing at 5-data Operation.. 301
18-14. PIU Page Boundary Interrupt TImMing.............coooiiiiiii e 303
19-15. PIU Data Lost TimMiNgG. ... ettt s e 304
20-1. Block Diagram of SIU and Peripheral BIocks................ccccoooiii i) 308
20-2. SIURXDATREG {0x0BO0 0140) ..ot erie s e e 312
20-3. SIUTXDATREG (OXOBOO 0142) ..., 313
20-4. SIUCNTREG (Ox0BOO0 O144) ..o, 314
20-5. SIUDLENGTHREG {0x0BO0 014B)........cciviviii et seeeeeeeen 317
20-6. SIUINTREG (0x0BO0 O0148) ..., 318
20-7. SIURS232CREG (OxOBO0 014A). ... e 321
20-8. SIUBAUDSELREG (0x0BO0 014C). .. .ot e 322
21-1. A Diagram of the AlU and Peripheral Blocks ..., 327
21-2. AIUDATREG (0xOBOO 0162) ... e 329
21-3. AIURESETREG (0X0B00 0164}, ...t 330
214, AIUMODEREG (Ox0BOO O186).........ccoiiiii ittt 331
21-5. AIUSEQENREG {Ox0B00 0168)ooiiiiii i e ettt 332
216, AIUMUTEREG (0x0BO0 016A) ...t e 333
21-7. AIUSTATREG (0X0BO00 018C) ...ttt 334
21-8. AIUSTPPAGEREG (0X0BOO 016E)cooiiii e, 335
21-9. AIUVALIDREG (OXOBO0 D170} ..ot e e 336
21-10. AIUINTREG (0xX0BO0 O172) ..o 337
21-11. AIUCOUNTOREG (OX0BOO0 D174) ... et 339
21-12. AIUCOUNTIREG (OxOBOO0 0178) ... e, 340
21-13. AIUREPNUMREG (Ox0BOD D178) ...ttt 342
21-14. AIUBUSENREG (0x0B00 O17A) ... oo 343

- XXi -

LIST OF FIGURES (8/8)

Fig. No. Title Page
22-1. A Diagram of the KIU and Peripheral BIOCKScccoci i 349
22-2. KIUDATREG (OXOBOO0 0180)cciuviiie ettt ettt ettt 352
22-3. KIUASCANREG (0x0BO00 0184} ..o 353
224, KIUASTOPREG (OXOBOO D188)ooviiieiiiieii sttt ittt ms e 354
22-5. KIUSCANREG (0XOBOO D1BB).......oooioiiiiee e e as55
226, KIUSTOPREG (OX0BOO0 OT8A)ot 356
227, KIUSAPREG (0XOBO0 O1BC ...ttt ettt ettt e et e e s 357
22-8. KIUSCANSREG (Ox0BOO O1BE) ..., 358
22-9. KIUWKSREG (OXOBOO B190) ..iiiiiiieiiin s st s b a e 359
22-10. KIUWKIREG (OX0BOO0 07192) .. eeivoiiiiniie e iraeies ettt ittt bbb e 360
22-11. KIUSRNREG (Ox0BO0 0184) oo 362
22-12. KIUINTREG {OXOBOO0 0186 ...ttt ene e 363
22-13. KIURSTREG (O0X0BOO D108)o e e 365
22-14. KIUENREG (OxOBO0 Q1A ... oo cre st e et e e s s r e e e e ian e e e en e 366
22-15. DOZEKEYINTREG (OXOBOO 019C) ... oot 367
22-16. EVVOLREG (0x0BO00 D19E)..oi ettt ettt e e astae s e e e eaaae s e 368
23-1. ASIMOOREG (OXOBOO OTAG) ...t et e ettt 374
23-2. ASIMOTREG (OXOBO0 OTAB)oii et ees st as sttt a ettt 375
23-3. RXBORREG {Ox0BO0 O1AB) ...t et e et ee e em e e 376
234, RXBOLREG {OXOBOO DTAA) ...ttt ee et ettt s e e s s e ant et e e st e 377
23-5. TXSORREG {0x0BO0 C1AC). ... e 378
236, TXSOLREG (0x0BOO0 O1AE). ... e e 378
23-7. ASISOREG (0X0BOO DT1BO)... ...t asrens s entes st e s et e s s e e s srnt e s ae e nrreesnnres 380
23-8. INTROREG (Ox0BOO0 01B2) ..o e e e 381
23-9. BPRMOREG {0X0B0O0 01BB).........oeiniiiii oo 382
23-10. DSIURESETREG (0x0BO00 O1B8) ... oo 383
24-1. CPU Instruction FOFMats. ... 386
24-2. VRA101 Opeode Bit ERCOdING ...ttt et et e e 535
26-1. Example of Connection of PLL Passive COmMpPonents.....................cooeiiieeiicicee e 543

- XXii -

LIST OF TABLES (1/4)

Table No. Title Page
1-1. BOU REGISTOIS ... oo ittt ettt e e s e e e e e e eae e e e e s 4
1-2. [F T B L T [(T U 5
1-3. DU ReGISIrS e e e 5
14 CMU RBGISLEI ... et e a et e e e e ane b e 5
1-5. ICU REGISTEIS ..o et et ettt e ettt e e the e eme e 1o en 6
1-8. PMUREBGISIEIS ...\ttt e e bbbt s b e et bt s ae e b et b ee s s saenee s 8
1-7. IO & 0T T - - TR 7
1-8. L - T 1T (- U 7
1-9. L TS 11 L SR 7
1100 PIU REGISIEIS L..ovei i e e ettt e et e an e e ee 8
1-99. SIU RBGISIEIS .o .oooiiiiice e e ettt e 8
1-120 AN REGISIEIS ..ottt et 9
113, KIU RIS OIS i e e et r e ettt e e et ee e e e e et eea e 9
1-14. DebugSIU Registers e e e e e e e e 10
1-15. System Control Coprocessor (CPQ) Register Definitions ... 17
2-1. Number of Delay Slot Cycles Necessary for Load and Store Instructions 24
2-2. Byte Specification Related to Load and Store Instructionsccoiiii e, 25
2-3. Number of Stall Cycles in Multiply and Divide Instructions..............................ooi 26
24, Number of Delay Slot Cycles in Jump and Branch Instructions..........................ccoceel. 27
2-5 CPU Instruction Set: Load and Store Instructions..............c..cccocv s 28
2-6. CPU Instruction Set: Computational (Immediate) instructions.................................... 28
27 CPU Instruction Set: Computational {3-Operand) Instructions..........................c.c 29
2-8. CPU Instruction Set: Computational (Multiply and Divide) Instructions 28
28 CPU Instruction Set: Jump and Branch Instructions................ccccccccinivii e, 30
2-10. CPU Instruction Set: Branch Likely Instructionscocoiiiiiii e 30
2-11. CPU Instruction Set: Shift Instructions..............c.coooiii i 31
2-12. CPU Instruction Set: Special Instructions................cco i 3
2-13. CPU (Extended) Instructions: Load and Store Instructionscoooveeviiceeee e 32
2-14. CPU (Extended) Instructions: Computational (Immediate) Instructions................ccccoeev e 32
2-15. CPU {Extended) Instructions: Computational (3-Operand) Instructions...............cc...ocoo.o.. 32
2-16. CPU (Extended) Instructions: Computational (Multiply and Divide) Instructions................. 32
2-17. CPU (Extended) instructions: Shift Instructions.............c.cc. oo, 33
2-18. CPO IRSITUCHIONS ...ttt a s e sars s sat s s aab e srnsrben s 33
2-19. VR4101 Extended INSrUCtiONSt e et 33

- Xxi -

LIST OF TABLES (2/4)

Table No. Title Page
31 Description of Pipeline Activities during Each Stage ... 37
3-2. Description of Pipeling Stall....................ccooiiiiii e 46
3-3. Description of Pipeline Slip..........c.ocoiiiiei e 47
34, Description of Pipeline EXCeption ... e 47
41, Comparison 0f USBg @and XUSEG.............oiiuiii it ee e re e 60
42, 32-bit and 64-bit Supervisor Mode Segments ... 62
4-3, 32-bit Kernel Mode Segments ...t 65
4-4, 64-bit Kernel Mode Segments ..o 66
4-5. Cacheabitity and the xkphys Address Space................. . .. 67
45, Cache AIGOTIENM ... e e e 74
4-7. Mask Values and Page Sizes ... e 75
5-1, CPO Exception Processing Registers.....................cc.oi i e =13
5-2. Cause Register Exception Code Field.....................coocoooiiiiieo e, 93
5-3. 64-Bit Mode Exception Vector Base Addresses ... 100
54. Exception Priority Order.............cooiiiii et 101
6-1. Systern Bus Interface Signals ... 124
6-2. Clock Interface Signals ..ot 125
6-3. Battery Monitor Interface Signals..................ccooiet e 126
64 Initialization Interface Signals................... i e 126
6-5. R8-232-C Interface Signals....................coooioiiiuiiiir i 127
6-6. IrDA Interface SIgRals ... e e 127
B-7. Debug Serial Interface Signals ... 128
6-8. Keyboard Interface Signals ... e, 128
6-9. AUdio Interface Signal............coooiiiiiiiiie e 129
6-10. Touch Panel Interface Signals....................oooooiiiiii oo 129
6-11. General-purpose /O SIGNAIS..............cooooiieiie oo 130
6-12. Status of Pins UPON @ RESEEoooiiiiiiieiiie e 13
10-1. BOU ReGIStarS ... et 169
10-2. Address Map of the VRAT0T. ... e 180
10-3. Detailed Address Map forthe ROM ... e 180
10-4. 16-Bit Device Mode for the Expansion /O ... e, 181
10-5. 8-Bit Device Moade for the EXpansion /O ... v 181
10-6. 16-Bit Device Mode for the EXpansion Memory................o.oo oo 181

- XXiv -

LIST OF TABLES (3/4)

Table No. Title Page
10-7. 8-Bit Device Mode for the Expansion MemOryc.cceiviie i 181
10-8. Register Address Space for Peripheral Units ..., 182
10-9. Detailed LCD AdAress SPaceoccooiiiiiiiiiii e 182
10-10. Detailed DRAM Address SPacE.oooiiiii e 183
10-11. Address Bit Correspondence between ADD Bus and External Devices................cccecveiinnen, 183
10-12. Address Connection Table with External Devices ... 184
10-13. Access Size for Each AdAress Space..........ccoeci it 185
10-14. Summary of ROM MOGES...........oiiii i ettt e e 186
10-15. Restrictions on the Access to an 8-bit Device in the 8-bit Device Mede ... 188
10-16. Restrictions on the Access to a 16-bit Davice in the 8-bit Device Mode..................c. e 188
10-17. Restrictions on the Access to an B-bit Device in the 16-bit Device Mode 189
10-18. Restrictions on the Access to a 16-bit Device in the 16-bit Device Mode.............................. 189
10-19. Example of Reversal in Terms of Bits of the Internal Dataof the VR4101 and the Data on the

DATA[15.0] Terminal ... oo et 189
10-20. Methods for Naticing an lllegal ACCESSoccoiiii e 180
10-21. Access Time in the Ordinary ROM Read Mode...................ooooi e 191
10-22. Access Time in the Page-ROM Read Mode................coeviii f e 192
10-23. Bus Specifications for the 8-Bit Device Mode............................ 194
10-25. Bus Specifications for the 16-Bit Device Mode....................... e 194
10-26. Access TImMe Of IS A ... et 195
10-27. Access Time of the LCD Interface. ...t 198
11-1. DMAAU ReGIStOrs ... e et 203
12-1. Priority Order of DMAS ... 211
12-2. DOU RIS ... 21
13-1. MU REOIS IS . it e e e e e et e et s e e e enaee e 218
T4-1. ICU RBQISTOrS ..ot e e e 223
15-1. Types of Reset and Processor Status...................... i 243
15-2. Types of Shutdown and Processor Statusccco oo e 244
19-3. POWEBIIMOOE. ..o e et ettt 250
19-4. PMU RegiSters ... e e 251
16-T. RTC ReGISIOIS . 256

- XXV -

LIST OF TABLES (4/4)

Table No. Title Page
17-1. DS REGISIBIS ... et e et e ettt e e e e at e s et be e e eae e 267
18-1. Outline of GPIO PiNs @nd DCD PiNcooviveieiietieiriieiesisssssses s ssess s s e nn 273
182, GIU RBGISIBIS ..o it e et et e et et ea e et et et s 274
18-1. PIU RIS IS .o e et e e n 288
19-2. Initial Settings at Scan Sequencer Operation. ... 2986
19-3. Relationship between PENCONT, ADSOUT, and State......................... o, e 298
{0 T LW - 11 - 3an
21-10 Al RBGISIBIS. ..ot ittt e e e e e et e n e s e e et e et a e e et s et an e e e n e e 328
22-1. KIU RBGISIENS. ..ottt e e ettt e e e e 351
23-1. DebugSIU RegisSters.............c..o i e 373
24-1, CPU Instruction Operation Notations _..................c.oiiiiiii e 387
24-2. Load and Store Common FUNCHONS................ocooiiiiii e e e 389
24-3. Access Type Specifications for Loads/Storescccociiiviiiv it 389
25-1. VR4101 Coprocessor O HAazards...............c.ooeiioiii ettt e et e e e s e 538
256-2. Calculation Example of CP0 Hazard and the Number of Instructions Inserted...................... 541

- XXvi -

CHAPTER 1 INTRODUCTION

The VR4101 is one of the RISC (reduced instruction set computer) microprocessor VR-Series products
manufactured by NEC. It is designed around the RISC architecture developed by MIPS. This 64-bit
microprocessor mainly consists of the VR4100 CPU core (containing a cache memory, high-speed sum-of-
products operation unit, and address management unit), DMA, and peripheral circuit interface units (such as a
serial interface, keyboard interface, IFDA interface, touch panel interface, and real-time clock) required by
battery-driven information units.

The VR4101 microprocessor is compatible with the MIPS |, MIPS 11, and MIPS Ilf Instruction Set Architecture (ISA),
However, none of the floating-point, LL, LLD, SC and SCD instructions is supported.

This microprocessor does not provide on-chip support for a secondary cache or multiprocessing, and floating-
point operation.

- 1.1 CHARACTERISTICS
The VR4100 has the following characteristics:

< MIPS Ili instruction set (with the FPU, LL, and SC instructions left out from the VR4000 family instruction set)
< Internal 64-bit processing

< 32-bit physical address space and 40-bit virtual address space

< Internal operating frequency: 33 MHz

< Optimized 5-stage pipeline, 2-Kbyte instruction cache and 1-Kbyte data cache, and 32-double-entry TLB

< Write-back cache for reducing store operations that use the system bus -

% madd16 and dmadd16 instructions for executing a sum-of-products operation of 16-bit data x 16-bit data +
64-bit data within one clock cycle

< Effective power management features, which include the following four operating modes:
s Full Speed mode

Standby mode

Suspend mode

Hibernate mode

< No floating-point functions

< No secondary cache, multiprocessor function (LL, LLD, SC, or SCD instruction)
< All clock pulses for internal operations generated from a 32-kHz crystal
< Built-in clock generator

< Built-in PLL for frequency rmultiplication by 2024

< External bus frequency of 16 MHz

< Built-in 8-Mbyte DRAM and 16-Mbyte masked ROM interfaces

< Built-in LCD, keyboard, and touch panel interfaces

< Built-in 5-channel DMA controlier

< Built-in serial and debug serial interfaces

< Built-in IrDA controller

< ISA bus-subset supported

< 180-pin low-profile plastic QFP (LQFF)

CHAPTER 1 INTRODUCTION

1.2 ORDERING INFORMATION

Part Number Package
H#PD30101GM-33-8ED 160-pin plastic LQFP (fine pitch} (24 x 24 mm)

1.3 64-BIT ARCHITECTURE

The VR4101 microprocessor has a 64-bit architecture. However, it can run 32-bit applications.

1.4 VR4101 PROCESSOR

Figure 1-1 is an internal block diagram of the VR4101 processor. Figure 1-2 is a block diagram showing the
internal structure of the VrR4100 CPU core.

Figure 1-1. VR4101 internal Block Diagram and Example of Connection to External Blocks

i

:' Vad101
. g.c::hrl PLL 2,'.‘;‘.': l RTC ﬁ“' GV | _E
4 psu k‘b AU]
o b - w i ‘
) VR4100 CPU Co icu i |
m" RN P =y
Uighefvoom TS L) M
I I Dcu Siu
BCU o DA > d'li?" 0=s
oo | | g g —]]

CHAPTER 1 INTRODUCTION

1.4.1 Internal Structure

This section introduces each unit in the VR4101.

{1) Bus control unit (BCU)

in the VR4101, the bus control unit (BCU) transfers data between the VR4100 CPU core and SysAD bus. It also
controls external circuits, such as the LCD controller connected to the system bus, DRAM, ROM (flash memory or
masked ROM}, and PCMCIA controller, and transfers data between the VR4101 and these external devices, using
the address and data buses.

(2) Real-time clock (RTC)

The real-time clock {RTC) is provided with an accurate counter that operates on a 32.768-kHz clock pulse
supplied from the clock generator. It is also provided with several counters and Compare registers for controlling
various interrupts.

(3) Deadman’s switch {DSU)

The Deadman’s switch unit (DSU} is used to check whether the processor is running normally. If the register of
this unit is not cleared by software within a specified period, the system is shut down.

{4) Interrupt control unit {ICU)

The interrupt control unit (ICU} controls interrupts that are caused by factors either internal or external to the
Vr4101, and informs the VR4100 CPU core when an interrupt occurs.

{5) Power management unit (PMU)

The power management unit (PMU) outputs signals necessary to control the power of the entire system including
the VR4101. The signals are used to control the PLL of the VR4100 CPU core and the internal clocks (PClock,
TClock, and MasterOut) in low-power modes.

{6) Direct memory access address unit (DMAAU)

The direct memory access address unit {DMAALU) controls the address of five different DMA transfers.

(7) Direct memory access control unit {DCU)

The direct memory access control unit (DCU) controls the arbitration of five different DMA transfers.

{8) Clock mask unit (CMU)

The clock mask unit (CMU} controls the way the clocks TClock and MasterOut are supplied from the VrR4100 CPU
core to internal peripheral units.

(9) General purpose I/O unit (GIU)

Basically, the general purpose 1/O unit (GIU) controls 12 GPIO pins. Among the 12 GPIO pins of the current
VRrR4101 version, some pins are controlled directly by other units.

(10) Audio interface unit (AlU})

The audio interface unit (AlU} generates sound having a specified frequency, using a PWM, and outputs sound
signals. Buzzer output is also available.

CHAPTER 1 INTRODUCTION

(11) Keyboard interface unit (KIU)

The keyboard interface unit (KIU) has 8 scan lines and as many detection lines. It can detect when any of 64
keys are pressed. It supports key rollover for two to three continuous strokes.

(12) Touch panel interface unit (PIU)

The touch panel interface unit (PIU) detects when the touch panel is touched. The current VR4101 version
supports interfaces for two A/D converters, TLC2543C and TLV1543C.

(13) Debug serial interface unit (Debug SIU)

The debug serial interface unit (debug SiU) is a serial interface for debugging. It supports a maximum transfer
rate of 115 kbps.

{14) Serial interface unit (SIU)

The serial interface unit (SIU) complies with the R5-232-C specification. It supports a maximum transfer rate of
115 kbps. Also available is an IrDA serial interface supporting a maximum transfer rate of 115 kbps, but this
interface and the RS-232-C interface are mutually exclusive.

1.4.2 /O registers

The I/O registers are used for peripheral unit control. The)/O registers are listed below.

Table 1-1. BCU Registers

Name Function Address
BCUCNTREG BCU Control register 0x0B0O 0000
BCUBRREG BCU Bus Restrain register 0x0BOC 0002
BCUBRCNTREG BCU Bus Restrain Count register 0x0B00 0004
BCUBCLREG BCU CPU Restrain Disable register Ox0B00 0006
BCUCLCNTREG BCU CPU Restrain Disable Count register 0x0B0O 0008
BCUSPEEDREG BCU Access Cycle Change register 0x0B0O0 000A
BCUERRSTREG BCU Bus Error Status register Ox0B00 000C
BCURFCNTREG BCU Refresh Control register Ox0B0O 000E
PREVIDREG Peripheral Revision ID register 0x0B0O 0010

CHAPTER 1 INTRODUCTION

Table 1-2. DMAALU Registers

Name Function Address
PADDMAADRLREG PAD1 DMA Address register Low 0x0B00 0020
PADDMAADRHREG PAD1 DMA Address register High 0x0B00 0022
SRADMAADRLREG SRX1 DMA Address register Low 0x0B00 0024
SRXDMAADRHREG SRX1 DMA Address register High 0x0B00 0028
STXDMAADRLREG STX1 DMA Address register Low 0x0B00 0028
STXDMAADRHREG STX1 DMA Address register High 0x0B00 0024
AUDDMAADRLREG AUDIO1 DMA Address ragister Low 0x0B00 002C
AUDDMAADRHREG AUDIO1 DMA Address register High 0x0B00 002E
KEYDMAADRLREG KEY1 DMA Address register Low Ox0B00 0030
KEYDMAADRHREG KEY1 DMA Address register High 0x0BO0 0032

Table 1-3. DCU Registers

Name Function Address
DMARSTREG DMA Reset register 0x0B00 0040
DMAIDLEREG DMA Idle register 0x0B00 0042
DMASENREG DMA Sequencer Enable register 0x0B0O0 0044
DMAMSKREG DMA Mask register 0x0B00 0046
DMAREQREG DMA Request register 0x0B0O 0048

Table 1-4. CMU Register

Name Function Address

CMUCLKMSKREG 0x0BOO 0060

CMU Clock Mask register

CHAPTER 1 INTRODUCTION

Table 1-5. ICU Registers

Name Function Address
SYSINTREG Level 1 Systern register 0x0BOO 0080
PIUINTREG Level 2 PIU register Ox0B0O 0082
AUDINTREG Level 2 AUD register 0x0B00 0084
KIUINTREG Level 2 KIU register 0x0B0O 0086
GIUINTREG Level 2 GIU register 0x0BO0 0088
SIUINTREG Level 2 SIU register 0x0B0O 00BA
MSYSINTREG Level 1 Mask System register Ox0B00 Q08C
MPIUINTREG Level 2 Mask PIU register 0x0B00 ODBE
MADUINTREG Level 2 Mask AUD register Ox0B0O 0090
MKIUINTREG Level 2 Mask KIU register O0x0B00 0092
MGIUINTREG Level 2 Mask GIU register Ox0B0C 0094
MSIUINTREG Level 2 Mask SiU register 0x0B0O0 0096
NMIREG NMI register 0x0B0O 0098
SOFTINTREG Software Interrupt register 0x0BO0 008A

Table 1-8. PMU Registers

Name Function Address
PMUINTREG PMU interrupt/Status register 0x0B0O 00AQ
PMUCNTREG PMU Control register Ox0B0O 00A2

CHAPTER 1 INTRODUCTION

Table 1-7. RTC Registers

Name Function Address
ETIMELREG Elapsed Time L register O0x0B0O 00C4
ETIMEMREG Elapsed Time M register Ox0B0OQ 00CH
ETIMEHREG Elapsed Time H register Ox0B00 00C8
ECMPHREG Elapsed Compare H register 0x0B00 GOCA
ECMPLREG Elapsed Compare L register 0x0B00 00CC
ECMPMREG Elapsed Compare M register 0x0B00 00CE
RTCLLREG RTC Long L register 0x0B00 0000
RTCLHREG RTC Long H register 0x0B00 00D2
RTCLCNTLREG RTC Long Count L register 0x0B00 00D4
RTCLCNTHREG RTC Long Count H register 0x0B00 00D6
TCLKCNTLREG TCLK Count L register 0x0B0O 00D8
TCLKCNTHREG TCLK Count H register 0x0BOO 00DA
RTCINTREG RTC Interrupt register Ox0BOC 00DC

Table 1-8. DSU Registers

Name Function Address
DSUCNTREG DSU Control register 0x0BCO O0EQ
DSUSETREG DSU Dead Time Set register 0Ox0BOO 00E2
DSUCLRREG DSU Clear register 0x0B00 OOE4
DSUTIMREG DSU Elapsed Time register 0x0B0O 00ES

Table 1-9. GIU Registers

Name Function Address
GOUTENREG GPt{O Output Enabie register 0x0B00 0100
GPOTDATREG GPIO Port Data register 0x0B00 0102
GINTSTREG GPIO Interrupt Status register 0Ox0B00 0104
GINTENREG GPIO Interrupt Enable register 0x0B00 0106
GCINTSREG GPIO Change Point Interrupt register 0x0BO0 0108
GLINTSREG GPIC Interrupt Level Specified register Ox0B0C 010A

CHAPTER 1 INTRODUCTION

Table 1-10. PIU Registers

Name Function Address
PIUDATAREG PtU Touch Panel Point Data register 0x0B00 0120
PIUCNTREG PIU Cantrol register 0x0B00 0122
PIUINTREG PIU Interrupt Cause register 0x0B00 0124
PIUSIVLREG PIU Data Sampling Interval register 0x0B00 0126
PIUSTBLREG PIU AD Converter Start Delay register Ox0BOO 0128
PIUCMDREG PIU AD Command register Ox0BO0 0124
PIUCIVLREG PIU AD Check interval register Ox0BOO 013C

Table 1-11. SIU Registers

Name Function Address
SIURXDATREG SIU Rx Data register Ox0B00 0140
SIUTXDATREG SIU Tx Data register Ox0B00 0142
SIUCNTREG SIU Control register 0x0BO00 0144
SIUDLENGTHREG SIU RxTx Data Length register Ox0BQ0 0146
SIUINTREG SIU Interrupt register 0x0B00 0148
SIURS232CREG SIU RS-232-C Control register 0x0B00 014A

SIUBAUDSELREG

SIU Baud rate Select register

0x0B00 014C

CHAPTER 1 INTRODUCTION

Table 1-12. AIU Registers

Name Function Address
AIUDATREG AlU Data register 0x0BO00 0162
AIURESETREG AlU Reset 0x0B00 01564
AIUMODEREG AlU Mode Select 0x0B0O 0166
AIUSEQENREG AlU Sequencer Enable 0x0BOO 0168
AIUMUTEREG AlU Mute Contral 0x0BO0O 016A
AIUSTATREG AlU Status 0x0B00 016C
AIUSTPPAGEREG AlU DMA Stop at Page 0x0B00 016E
AIUVALIDREG AlU Counter Valid Bits 0x0B00 0170
AIUINTREG AlU Interrupts 0x0B00 0172
AlUCOUNTOREG AlU Counter 0 0x0B00 0174
AIUCOUNTIREG AlU Counter 1 0x0B00 0178
AIUREPNUMREG AlU PWM Repeat Number Ox0B0OO 0178
AJUBUSENREG AlU Bus IF Enable Ox0BOG 017A

Table 1-13. KIU Registers

Name Function Address
KIUDATREG KIU Key Data register Ox0B0OO 0180
KIUASCANREG KIU Key Auto Scan register 0x0BCO 0184
KIVASTOPREG KIU Key Auto Stop register Ox0B00 0188
KIUSCANREG KIU Key Scan register 0x0B00 0188
KIUSTOPREG KIU Key Stop register 0x0B00 018A
KIUSAPREG KIU Key Stop at Page register 0x0B00 018C
KIUSCANSREG KIU Scan Status register 0x0B0O 018E
KIUWKSREG KiU Wait Key Scan Stable register 0x0B0OO 0190
KIUWKIREG KIU Wait Key Scan Interval register Ox0BO00 0192
KIUSRNREG KIU Stop Repeat Number register Ox0BO0OO 0194
KIUINTREG KIU Interrupt register 0x0B00 0196
KIURSTREG KIU Reset register 0x0B00 0198
KIUENREG KIU Enable register 0x0B00 019A
DOZEKEYINTREG DOZE Key Interrupt register 0x0B0O0 018C
EVVOLREG EVVOL register 0x0B00 019E

CHAPTER 1 INTRODUCTION

Table 1-14. DebugSIU Registers

Name Function Address
ASIMOOREG Asynchronous Mode O register 0x0BOO 01A4
ASIMO1REG Asynchronous Mode 1 register 0x0B00 01A6
RXBORREG Receive Buffer register (Extended) Ox0BOC 01A8
RXBOLREG Receive Buffer register 0x0B00 01AA
TXSORREG Transmit Data register (Extended) 0x0BO00 01AC
TXSOLREG Transmit Data register 0x0B00 01AE
ASISOREG Status register 0x0BO0 01B0
INTROREG Debug SIU Interrupt register O0x0BO0 01B2
BPRMOREG Baud rate Generator Prescaler Mode register Ox0BOC 01B6
DSIURESETREG Debug SIU Reset register 0x0B00 01B8

1.5 VR4100 CPU CORE

Figure 1-2. VR4100 CPU Core Internal Block Diagram

VA bus VR4100 CPU core
« Y 4 ry r - - e
. IDbus r I R
< & 4 I I— - P>
Control(out) Bus Data tnstruction CPO CPU
Control(in) interface cache cache
Address/data(i/o) + LB
Clock
generator
Intemnal clock T

1.5.1 Internal Structure

<+ CPU

CPU has the hardware resources to execute integer instructions. It has a 64-bit register file, 64-bit integer
data path, and sum-of-products operation unit.

10

CHAPTER 1 INTRODUCTION

< Coprocessor 0 (CP0)

Coprocessor 0 (CP0O) has the memory management unit (MMU) and handles exception processing. The
MMU handles address translation and checks memory accesses that occur between different memory
segments (user, supervisor, or kernel). The translation lockaside buffer (TLB) is used to translate virtual to
physical addresses.

< Instruction cache
Instruction cache is direct-mapped, virtually-indexed, and physically-tagged. Iits capacity is 2K bytes.
¢ Data cache

Data cache is a direct-mapped, virtually-indexed, and physically-tagged write-back cache. lts capacity is
1K bytes.

< CPU bus interface

The CPU bus interface controls data transfer between the VR4100 CPU core and the BCU peripheral unit.
The VrR4100 CPU core bus interface consists of 32-bit input and output multiplexed address/data buses used
for transferring clock and interrupt control signals.

¢ Clock generator

The output fraguency of the 32.768-kHz crystal is received at the internal oscillation circuit, where it is
multiplied by 1012 using a phase-lock loop (PLL) to generate the pipeline clock (PClock) pulse. The PClock
pulse is in turn used to generate the internal bus clocks (TClock and MasterOut) pulse.

1.5.2 CPU Registers
The VR4100 CPU core provides registers as below.

< 32 x 64-bit general-purpose registers {(GPRs)
In addition, the processor provides the following special registers:

¢ 64-bit Program Counter (PC)
< 64-bit HI register, containing the integer multiply and divide upper doubleword result
< B4-bit LO register, containing the integer multiply and divide lower doubleword result

Two of the general-purpese registers have assigned functions:

< r0 is hardwired to a value of zero, and can be used as the target register for any instruction whose result is to
be discarded. r0 can aiso be used as a source when a zero value is needed.

< r31 is the link register used by Jump and Link (JAL/JALR) instructions. This register can be used for other
instructions. However, be careful that use of the register by a link instruction will not coincide with use of the
register for other operations.

CPU registers can operate as either 32-bit or 64-bit registers, depending on the VR4101 processcr mode of
operation.

Figure 1-3 shows the VR4101 CPU registers.

11

CHAPTER 1 INTRODUCTION

Figure 1-3. VR4101 CPU Registers

General-purpose register

63 3231 0 Multiply/divide register
=0 63 3231 0
) | Hi I
r2
63 323 0
| LO I
r2g Program Counter
r30 63 3231 0
r31 = LinkAddress | PC I

The VR4101 has no Program Status Word (PSW) register as such; this is covered by the Status and Cause
registers incorporated within the System Control Coprocessor,

The CP0 registers are used for exception processing and address management. The CP0 registers are briefly
explained |ater in this chapter.

1.5.3 CPU Instruction Set Overview
Each CPU instruction is 32 bits long. As shown in Figure 1-4, there are three instruction formats:
¢ immediate {I-type)
< jump (Jtype)
< register (R-type)

The instruction set is divided into several groups as shown below. Fields of the instruction formats are described
in Chapter 2.

Figure 14. CPU Instruction Formats

31 2625 2120 1615 0
I-type {immediate) op rs rt immediate
3 2625 0
J-type (jump) op target
)| 2626 2120 1615 1110 65 0
R-type (register) op rs rt rd sa funct

12

CHAPTER 1 INTRODUCTION

Instruction decoding is greatly simplified by limiting the number of formats to these three. This limitation means
that the more complicated (and less frequently used)} operations and addressing modes can be synthesized by the
compiler, using sequences of these same simple instructions.

The instruction set can be further divided into the following groupings:

¢ Load and store instructions move data between memory and general-purpose registers. They are all
immediate (I-type) instructions, since the enly addressing mode supported is base register plus 16-bit, sighed
immaediate offset.

< Computational instructions perform anthmatic, logical, shift, multiply, and divide operations on values in
registers. They inciude R-type (in which both the operands and the result are stored in registers) and |-type
(in which one operand is a 16-bit signed immediate vatue) formats.

< Jump and branch instructions change the control flow of a program. Jumps are always made to an absolute
address formed by combining a 26-bit target address with the high-order bits of the Program Counter (J-type
format) or register address (R-type format). The format of the branch instructions is | type. Branches have
16-bit offsets relative to the Program Counter. JAL instructions save their return address in register 31.

< Coprocessor 0 (System Control Coprocessor, CP0} instructions perform operations on CPO registers to
control the memary-management and exception-handling facilities of the processor.

< Special instructions perform system calls and breakpoint operations, or cause a branch to the general
exception-handling vector based upen the result of a comparison. These instructions oceur in both R-type
(both the operands and the result are stored in registers) and I-type (one operand is a 16-bit signed immediate
value) formats.)

Chapter 2 provides a more detailed summary (Refer to the Chapter 24 for detailed descriptions of the operation of
each instruction) .

1.5.4 Data Formats and Addressing

The VR4101 uses following four data formats:

< Doubleword {64 bits)
< Word (32 bits)

< Halfword (16 bits)

< Byte (8 bits)

For the VrR4100 CPU core, byte ordering within all of the larger data formats - halfwerd, word, doubleword - can be
configured in either big-endian or little-endian order. However, the VR4101 supports the little-endian order
only.

Endianness refers to the location of byte 0 within the multi-byte data structure. Figure 1-5 shows the ordering of
bytes within words and the ordering of words within doubleword structures for the little-endian conventions.

When configured as a little-endian system, byte 0 is always the least-significant (rightmost) byte, which is
compatible with iAPX™ and DEC VAX™ conventions. Figure 1-5 shows this configuration.

13

CHAPTER 1 INTRODUCTION

Figure 1-5. Little-Endlan Byte Ordering

Higher Word Bit ,ht

address address ‘a4 24 23 16 15 87 0’
2 | s |l 14 || 1 [12]
s | n_Jl_ w0 || s |[&8]
e s

Lower 0 |

s L2 JI 1 J[o

address

In this manual, bit 0 is always the least-significant (rightmost) bit; thus, bit designations are always little-endian.
Figure 1-8 shows little-endian byte ordering in doublewords.

Figure 1-8. Little-Endian Data in a Doubleword

Most-significant byte Least-significant byte

Word \
A
Bit No. 63 48 47 32 31 16 15 \ o
ByteNo. [7 fl 6 | 5 [4] a2 1]o]
Halfword Byte

seve. TR

Bits in a byte

The CPU uses following byte boundaries for halfword, word, and doubleword accesses:

< Halfword: An even byte boundary (0, 2, 4...)
< Word: A byte boundary divisible by four (0, 4, 8...)
< Doubleword: A byte boundary divisible by eight (0, 8, 16...)

The following special instructions to load and store data that are not aligned on 4-byte (word) or 8-byte
(doubleword) boundaries:

LWL LWR SWL SWR
LDL LDR SDL SDR

14

CHAPTER 1 INTRODUCTION

These instructions are used in pairs to provide an access to misaligned data. Accessing misaligned data incurs
one additional instruction cycle over that required for accessing aligned data.

Figure 1-7 shows the access of a misaligned word that has byte address 3 for the little-endian conventions.

Figure 1-7. Misaligned Word Accessing {LIttle-Endian)

Higher Bit No.
address A
1 24 23 16 15 8

s s J[¢ |
| | |

7 o

Lower
address

1.5.5 Coprocessors (CP0-CP3)
The MIPS (SA defines four coprocessors {designated CP0, CP1, CP2, and CP3):

< CPO0 is incorporated on the CPU chip and supports the virtual memory system and exception handling. The
virtual memory system is implemented using an on-chip TLB and the CP{ registers. CPO is also referred to
as the System Control Coprocessor.

< CP1 is reserved for floating-point instructions.
< CP2 is reserved for future definition by MIPS,
< CP3is no longer defined. CP3 instructions are reserved for future extensions.

CPO is described in Chapter 4 and Chapter 5.

{1) System Control Coprocessor (CP0)

CP0 translates virtual addresses into physical addresses and manages exceptions and transitions between kernei,
supervisor, and user states.

CPQ also controls the cache system, as well as providing diagnostic control and error recovery facilities.
The CPO registers shown in Figure 1-8 and described in Table 1-15 manipulate the memory-management and
exception-handling capabilities of the CPO.

15

CHAPTER 1

INTRODUCTION

18

Register No.

© o~ 0 0 & W N = O

N Y
g A WN = O

Figure 1-8. CPO Registers

Register name

Index*

Randoem*

EntryLo0*

EntryLo1*

Context™

PageMask*

Wired*

BadVAddr™

Count™

EntryHi*

Compare**

Status*™*

Cause**

EPC*

PRId*

* for Memory management
** for Exception handling

- Reserved

Register No.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
K

Register name

Config*

LLAddr

WatchLo**

WatchHi**

XContext™

PErr

CacheErr*

Taglo*

TagHi*

ErrorEPC**

CHAPTER 1 INTRODUCTION

Table 1-15. System Control Coprocessor (CP0) Register Definltions

Number Register Description
o Index Programmable pointer to TLB array
1 Random Pseudo-random pointer to TLB array (read only)
2 EntryLo0 Low half of TLB entry for even VPN
3 Entrylo1 Low half of TLD entry for odd VPN
4 Context Pointer to kernel virtual PTE in 32-bit mode
5 PageMask TLB page mask
6 Wired Number of wired TLB entries
7 — Reserved
8 BadVAddr Virtual address where the most recent error occurred
9 Count Timer count
10 EntryHi High half of TLB entry
11 Compare Timer compare
12 Status Status register
13 Cause Cause of |ast exception
14 EPC Exception Program Counter
15 PRId Processor revision identifier
16 Config Configuration register
17 LLAddr Reserved
18 WatchLo Memory reference trap address low bits
19 WatchHi Memory reference trap address high bits
20 XContext Pointer to kerne! virtual PTE in 64-bit mode
21-25 — Reserved
26 PErr Cache parity bits
27 CacheErr index and status of cache error
28 TagLo Cache Tag register (low)
29 TagHi Cache Tag register {(high)
30 ErrorEPC Error Exception Program Counter
31 — Reserved

17

CHAPTER 1 INTRODUCTION

1.5.6 Floating-Point Unit (FPU)

The VR4101 does not support the floating-point unit (FPU). Coprocessor Unusable exception will occur if any
FPU instructions are executed. |f necessary, FPU instructions should be emulated by software in an exception
handler.

1.5.7 Cache

The VR4101 chip incorporates instruction and data caches, which are independent of each other. This
configuration enables high-performence pipeline operations. Both caches have a 64-bit data bus. These buses
can be accessed in parallel. The instruction cache of the VR4101 has a storage capacity of 2 KB, while the data
cache has a capacity of 1 KB.

(1} Instruction cache
The VR4101 incorporates a direct-mapped on-chip instruction cache. This virtually indexed, physically tagged
cache is 2 KB in size and is protected with word parity.

Because the cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache
access. The tag holds a 22-bit physical address and valid bit, and is parity protected.

The instruction cache is 64-bits wide, and can be refilled or accessed in a single pipeline cycle. lnstruction
fetches require only 32 bits per cycle, for a maximum transfer rate of 132 MB/sec. The line size is four words (16
bytes).

(2) Data cache
For single cycle data access, the VR4101 includes a 1 KB on-chip data cache that is directiy-mapped with a fixed
16-byte (four words) line size.

The data cache is protected with byte parity and its tag is protected with a single parity bit. It is virtualty indexed
and physically tagged to allow address translation and data cache access simultaneously.

The write policy is writeback, which means that storing data to a cache does not immediately cause main memory
to be updated. This increases system performance by reducing bus traffic.

1.6 MEMORY MANAGEMENT SYSTEM (MMU)

The VR4101 has a 32-bit physical addressing range of 4 Gbytes. However, since it is rare for systems to
implement a physical memory space as large as that memory space, the CPU provides a logical expansion of
memory space by translating addresses composed in the large virtual address space into available physical
memory addresses. The VR4101 supports the following two addressing modes:

< 32-bit mode, in which the virtual address space is divided into 2 Ghytes per user process and 2 Gbytes for the
kernel.

< B4-bit mode, in which the virtual address is expanded to1 Tbyte (2‘"J bytes) of user virtual address space.

A detailed description of these address spaces is given in Chapter 4,

1.6.1 Translation Lookaside Buffer (TLB)

Virtual memory mapping is performed using the translation lookaside buffer (TLB). The TLB converts virtual
addresses to physical addresses. It is provided on-chip. ft runs by a full-associative method. It has 32 entries,
each mapping a pair of pages having a variable size (1 KB to 256 KB).

18

~

!

CHAPTER 1 INTRODUCTION

(1) Joint TLB

For fast virtual-to-physical address decoding, the VR4101 uses a large, fully associative TLB which translates 64
virtual pages to their corresponding physical addresses. The TLB is organized as 32 pairs of even-odd entries,
and maps a virtual address and address space identifier (ASID) into the 4-Gbyte physical address space.

The page size can be configured, on a per-entry basis, to map a page size of 1 KB to 256 KB. A CPQ register is
toaded with the size of the page to be mapped, and that size is entered into the TLB when a new entry is written.
Thus, operating systems can pravide special purpose maps; for example, a typical frame buffer can be memory-
mapped using only one TLB entry.

Translating a virtual address to a physical address begins by comparing the virtual address from the processor
with the virtual addresses in the TLB; there is a match when the virtuai page number {(VPN) of the address is the
same as the VPN field of the entry, and either the Global (G) bit of the TLB entry is set, or the ASID field of the
virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. [f there is na match, a TLB Miss exception is taken by the processor and
software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

1.6.2 Operating Modes
The VrR4101 has three operating modes:

< User mode
< Supervisor mode
< Kernel mode

The manner in which memory addresses are translated or mapped depends on the operating modes; this is
described in Chapter 4.

1.7 INSTRUCTION PIPELINE

The VR4101 has a 5-stage instruction pipeline. Under normal circumstances, one instruction is issued each
cycle.

The instruction pipeline of the VR4101 operates at 33 MHz. The VR4101 achieves high throughput by shortening
register access times and implementing virtually-indexed caches.

A detailed description of pipeline is provided in Chapter 3.

1.8 CLOCK INTERFACE

The VR4101 is provided with the following seven clocks.

< CLKX1, CLKX2 (input)

Clock inputs. Connect an oscillator having a frequency of 32.768 kHz to the CLKX1 and CLKX2 pins, or
connect an external clock to the CLKX1 pin.

< RTC (internal)

Clock having a frequency of 32.768 kHz. This clock is generated from the clock input to the CLKX1 and
CLKX2 pins. It is used in the PMU and the RTC units. In Hibernate mode, the internal clock of the CPU
core is stopped and the VR4101 operates based on the RTC.

19

CHAPTER1 INTRODUCTION

% PClock {internal}

Clock for the CPU core operation. This clock is generated from the clock input to the CLKX1 and CLKX2 pins
.multiplied at the PLL. It has a frequency of 33 MHz.

< MasterOut (internal)
Clock fer the CPU core bus operation, and used for interrupt control. This clock has a frequency of 1/4 of the

PClock frequency.

< TClock (internal)
Clock for the CPU core bus operation, the VR4101 internal bus operation, and operation of the peripheral units.
This clock has a frequency of 1/2 of the PClock frequency.

< PCMCLK (output)
Clock supplied to the PCMCIA controller. This clock has a frequendy of 8.25 MHz.

< ADCLK (output)
Clock supplied to the A/D converter. The frequency of this clock is set on the PIUSTBLREG register.

Figure 1-9 shows an externai circuit of the clock oscillator.

Figure 1-9. External Circuit of Clock Oscillator

(a) Crystal oscillation {b}) External clock
VR4101 VR41M
| . GND External CLIOA
; CLKX1 clock D

Open | CLKO2
CLKX2 pe

Cautions 1. When using a clock oscillator, run wires in the area of this figure shown by broken lines,
according to the following rules, to avoid effects such as stray capacitance:

e Minimize the wire.

+ Never cause the wires to cross other signal lines or run near a line carrying a large
varying current.

+ Cause the grounding point of the capacitor of the oscillator circuit to have the same
potential as GND. Never connect the capacitor to a ground pattern carrying a large
current.

* Never extract a signal from the oscillator.

2. Take It into consideration that no capacitive load among wiring is applied to the CLKX2
pin when inputting an external clock.

Figure 1-10 shows examples of oscillator having bad connection.

CHAPTER 1

INTRODUCTION

Figure 1-10. Examples of Oscillator with Bad Connection

(a) Connection circuit wiring is too long.

{c) A high varying current flows near a signal line.

(b} There is another signal line crossing.

{d) A current flows over the ground line of the
generator circult
(The potentials of points A, B, and C change).

¥DD

21

[MEMO]

22

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

This chapter is an overview of the central processing unit (CPU) instruction set; refer to the Chapter 24 for detailed

descriptions of individual CPU instructions.

2.1 CPUINSTRUCTION FORMATS

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction

formats - immediate (I-type), jump (J-type}, and register (R-type} - as shown in Figure 2-1.

The use of a small

number of instruction formats simplifies instruction decoding, allowing the compiler to synthesize mare

complicated and less frequently used instruction and addressing modes from these three formats as needed.

Figure 2-1. CPU Instruction Formats
el | 2625 2120 16 15 0
I-type (immediate) op rs rt immediate
el | 2625 0
J-type (jump) I op target I
a 2625 2120 16 15 1110 65 0
R-type (register) op rs rt rd sa func

op: 6-bit operation code

rs; 5-bit source register specifier
5-bit target (source/destination) register or branch
condition

immediate: 16-bit immediate value, branch offset or address
offset

target: 26-bit jump target address

rd: 5-bit destination register specifier

sa: 5-bit shift amount

func: 8-bit function field

In the MIPS architecture, coprocessor instructions are implementation-dependent; refer to the Chapter 24 for

details of individual coprocessor 0 instructions.

23

CHAPTER2 CPU INSTRUCTION SET SUMMARY

21.1 Support of the MIPS ISA

The VR4101 does not support a multiprocessor operating environment. Thus the synchronization support
instructions defined in the MIPS Il and MIPS Il ISA - the load linked and store conditional instructions - cause
reserved instruction exception. The LL bit is eliminated.

Note that the SYNC instruction is handled as a NOP instruction since alt load/store instructions in this processor
are executed in program order.

2.2 INSTRUCTION CLASSES

2.2.1 Load and Store Instructions

Load and store are immediate (|-type) instructions that move data between memory and the general-purpose
registers. The only addressing mode that load and store instructions directly support is base register plus 16-bit
signed immediate offset.

(1) Scheduling a load delay slot

A load instruction that does not allow its result to be used by the instruction immediately following is called a
delayed oad instruction. The instruction slot immediately foHowing this delayed load instruction is referred to as
the load delay slot,

In the VR4101, a load instruction can be followed directly by an instruction that accesses a register that is loaded
by the load instruction. In this case, however, an interfock occurs for a necessary number of cycles. Any
instruction can follow a load instruction, but the load delay slot should be scheduled appropriately for both
performance and compatibility with other VR-Series microprocessors.

{2) Store delay slot
When a store instruction is writing data to a cache, the data cache is kept busy at the DC and WB stages. If an

instruction (such as load) that follows directly the store Instruction accesses the data cache in the DC stage, a
hardware-driven interlock occurs. To overcome this problem, the store delay slot should be scheduled.

Table 2-1. Number of Delay Slot Cycles Necessary for Load and Store Instructions

Instruction Necessary number of PCycles
Load 1
Store 1

{3) Defining access types
Access type indicates the size of a VR4101 processor data item to be loaded or stored, set by the load or store
instruction opcode. Access types are defined in the Chapter 24

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For a little-endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within the
addressed doubleword (shown in Table 2-2}. Only the combinations shown in Table 2-2 are permissible; other
combinations cause address error exceptions.

Refer to the Chapter 24 for individual descriptions of CPU load and store instructions.

24

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

Table 2.2, Byte Specification Related to Load and Store instructions

Access type Low-order Accessed byte
{value) address bit Little endian
2 1 0163 0
Doubleword(7) |0 (0|0 |7 |65 |43 (2]
7-byte (6} 0100 5141321
o017 5|413]2]1
6-byte (5) o|0o0|o 5|4|3]2]|1]|¢0
o|1]0|7|6|5]|4]|3]|2
5-byte (4) o|oj0 41312110
o|l1(1|7]1868[514]3
Word (3) o(o|o0 312110
110|076 15]|4
Triple byte {2) 0|0]|0 211]0
001 3 1
1({0]0 4
1{0(1]7 5
Halfword (1) o(o}o 1(0
0140 3|2
110]|0 5|4
1110176
Byte (0) o(o0|o 0
o(o0|1 1
of(1]0 2
o111 3
110]0 4
1101 5
11110 6
11117

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

2.2.2 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in
immediate {I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

< Arithmetic
< Logical

< Shift

< Multiply
< Divide

These operations it in the following four categories of computational instructions:

< ALU immediate instructions

< Three-operand register-type instructions
< Shift instructions

< Multiply and divide instructions

(1) 64-bit instructions

To maintain data compatibility between 64- and 32-bit modes, it is necessary to sign-extend 32-bit operands
correctly. If the sign extension is not correct, the 32-bit operation result is meaningless.

(2) Cycle timing for multiply and divide instructions

MFHI and MFLO instructions (described in Chapter 24} after a multiply or divide instruction generate interlocks to
delay execution of the next instruction, inhibiting the result from being read until the multiply or divide instruction
completes.

Table 2-3 gives the number of processor cycles (PCycles) required to resolve interlock or stall between various
multiply or divide instructions and a subsaquent MFHI or MFLO instruction.

Table 2-3. Number of Stall Cycles In Multiply and Divide Instructions

Instruction Number of instruction cycles
MULT 1
MULTU 1
DIv 35
DIvU 35
DMULT
DMULTU
DDV 67
DDIVU 67
MADD16 1
DMADD16 1

26

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

For more information about computational instructions, refer to the individual instruction as described in Chapter
24.

2.2.3 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with
a delay of one instruction; that is, the instruction immediately following the jump or branch instruction (this is
known as the instruction in the delay slot) always executes while the target instruction is being fetched from
memoaory.

For instructions involving a link (such as JAL and BLTZAL), the return address is saved in register r31.

Table 2-4. Number of Delay Slot Cycles in Jump and Branch Instructions

Instruction Necessary number of cycles
Branch instruction 1
Jump instruction 1

{1} Overview of jump instructions

Subroutine calls in high-level languages are usually implemented with J or JAL instructions, both of which are J-
type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the high-order 4
bits of the current program counter to form a 32-bit or 64-bit absolute address.

Returns, dispatches, and cross-page jumps are usually implemented with the JR or JALR instructions. Both are
R-type instructions that take the 32-bit or 64-bit byte address contained in one of the general-purpose registers.

For more information, refer to Chapter 24.

{2) Overview of branch instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to
the 16-bit offset (shifted left 2 bits and sign-extended to 64 bits). All branches occur with a delay of one
instruction.

If a branch likely instruction is not taken, the instruction in its delay slot is nullified. For all other branch
instructions, the instruction in its delay slot is unconditionally executed.

For more information, refer to Chapter 24,

Remark The target instruction of the branch is fetched at the EX stage of the branch instruction. Comparison
of the operands of the branch instruction and calculation of the target address is performed at phase 2
of the RF stage and phase 1 of the EX stage of the instruction. Branch instructions require one cycle
of the branch delay slot defined by the architecture. Jump instructions also require one cycle of delay
slot. If the branch condition is not satisfied in a branch likely instruction, the instruction in its delay
slot is nullified.

2.2.4 Special Instructions

Special instructions generate software exceptions. Their formats are R-type. For more information, refer to
Chapter 24. -

27

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

2.2.5 System Control Coprocessor (CP0) Instructions

System control coprocessor {CP0) instructions perform operations spacifically on the CPO registers to manipulate
the memory management and exception handling facilities of the processor. Chapter 24 details CPO
instructions.

2.3 VR4101 CPU INSTRUCTION SET

Tables 2-5 to 2-19 list the instruction set architecture (IAS) and extended instruction set architecture (extended
IAS) common to all VR-Series processors, extended instructions added in the VR4101, and CPO instructions.
These extended instructions help improve the perfarmance of the OS by reducing the instruction code area.
Multiprocessor instructions used in other VR-Series processors have been left out from the VR4101.

Table 2-5. CPU Instruction Set: Load and Store Instructions

Operation code Daescription
LB Load Byte
LBU Load Byte Unsigned
LH Load Halfword
LHU Load Halfword Unsigned
LW Load Waord
LWL Load Word Left
LWR L.oad Word Right
SB Store Byte
SH Store Halfword
SwW Store Word
SWL Store Word Left
SWR Store Word Right

Table 2-8. CPU Instruction Set: Computational (Immediate)} Instructions

Operation code Description
ADDI Add Immediate
ADDIU Add Immediate Unsigned
SLM Set on Less Than Immediate
SLTIU Set on Less Than Immediate Unsigned
ANDI AND immediate
ORI OR Immediate
XORI Exclusive OR Immediate
LU Load Upper Immediate

28

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

Table 2-7. CPU Instruction Set: Computational (3-Operand) Instructions

Operation code Description
ADD Add
ADDU Add Unsigned
SUB Subtract
suBuU Subtract Unsigned
SLT Set on Less Than
SLTU Set on Less Than Unsigned
AND AND
OR CR
XOR Exclusive OR
] NOR NOR

Table 2-8. CPU Instruction Set:

Operation code Description
MULT Multiply
- MULTU Multiply Unsigned
DIV Divide
pivy Divide Unsigned
MTHI Move To HI
MTLO Move To LO
MFHiI Move From HI
MFLO Move From LO

Computational (Multiply and Divide} Instructions

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

30

Table 2-9. CPU Instruction Set: Jump and Branch Instructions

Operation code

Description

J

Jump

JAL Jump And Link

JR Jump Register

JALR Jump And Link Register

BEQ Branch on Equal

BNE Branch on Not Equal

BLEZ Branch on Less Than or Equal to Zero
BGTZ Branch on Greater Than Zero

BLTZ Branch on Less Than Zero

BGEZ Branch on Greater Than or Equal to Zero
BLTZAL Branch on Less Than Zero And Link
BGEZAL Branch on Greater Than or Equal to Zero And Link
BCOT Branch on Coprocessor 0 True

BCOF Branch on Coprocessor (False

Table 2-10. CPU Instruction Set: Branch Likely Instructions

Operation code

Description

BEQL

Branch on Equal Likely

BNEL Branch on Not Equal Likely

BLEZL Branch on Less Than or Equal to Zero Likely

BGTZL Branch on Greater Than Zero Likely

BLTZL Branch on Less Than Zero Likely

BGEZL Branch on Greater Than or Equal to Zero Likely

BLTZALL Branch on Less Than Zero And Link Likely

BGEZALL Branch on Greater Than or Equal to Zero And Link
Likely

BCOTL Branch on Coprocessor 0 True Likely

BCOFL Branch on Coprocessor 0 False Likely

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

Table 2-11. CPU Instruction Set: Shift Instructions

Operation code

Description

SLL

Shift Left Logical

SRL Shift Right Logical

SRA Shift Right Arithmetic

SLLV Shift Left Logical Variable
SRLV Shift Right Logical Variable
SRAV Shift Right Arithmetic Variable

Table 2-12.

CPU Instruction Set: Special Instructions

Operation code

Description

SYNC

Synchronize memory references

SYSCALL System Call

BREAK Breakpoint

TGE Trap if Greater Than or Equat

TGEU Trap if Greater Than or Equal Unsigned
TLT Trap if Less Than

TLTU Trap if Less Than Unsigned

TEQ Trap if Equal

TNE Trap if Not Equal

TGEI Trap if Greater Than or Equal immediate
TGEIU Trap if Greater Than or Equal Immediate Unsigned
TLT! Trap if Less Than Immediate

TLTIV Trap if Less Than Immediate Unsigned
TEI Trap if Equal Immediate

TNEI Trap if Not Equal Immediate

K})

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

32

Table 2-13. CPU (Extended) Instructions:

Operation code Description
LD Load Doubleword
LDL Load Doubleword Left
LDR Load Doubleword Right
Lwu Load Weord Unsigned
sD Store Doubleword
sDL Store Doubleword Left
SDR Store Doubleword Right

Table 2-14. CPU {Extended) Instructions:

Operation code

Description

DADDI

Doubleword Add Immediate

DADDIU

Doubleword Add Immediate Unsigned

Table 2-15, CPU (Extended) Instructions:

Operation code Description
DADD Doubleword Add
DADDU Doubleword Add Unsigned
DSuB Doubleword Subtract
DsuBU Doubleword Subtract Unsigned

Table 2-18. CPU {Extended) Instructions:

Opaeration code Description
DMULT Doubleword Multiply
DMULTU Doubleword Multiply Unsigned
DDV Doubleword Divide
DDIVU Doubleword Divide Unsigned

Load and Store Instructions

Computational {Immediate) Instructions

Computational (3-Operand} Instructions

Computational (Multiply and Divide) Instructions

CHAPTER 2 CPU INSTRUCTION SET SUMMARY

Table 2-17. CPU (Extended) Instructions: Shift Instructions

Qperation code

Description

DSLL

Doubleword Shift Left Logical

DSRL

Doubleword Shift Right Logical

DSRA

Doubleword Shift Right Arithmetic

DSLLV

Doubleword Shift Left Logical Variable

DSRLV

Doubleword Shift Right Logical Variable

DSRAV

Doubleword Shift Right Arithmetic Variable

DSLL32

Doubleword Shift Left Logical + 32

DSRL32

Doubleword Shift Right Logical +32

- DSRA32

Doubleword Shift Right Arithmetic + 32

Table 2-18. CPO Instructions

Operation code Description

DMFCO Doubleword Move From CPQ
DMTCQ Doubleword Move To CPO

- MTCO Move to CPO
MFCO Move from CPO
TLBR Read indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
TLBP Probe TLB faor Matehing Entry
ERET Exception Return

" CACHE Cache Operation
HIBERNATE Hibernate
SUSPEND Suspend
STANDBY Standby

Table 2-18. VR4101 Extended Instructions

Operation code

Description

MADD18

Multiply and Add 18bit

DMADD16

Doubleword Multiply and Add 16bit

a3

[MEMO}

CHAPTER 3 VR4101 PIPELINE

This chapter describes the basic operation of the VR4101 processor pipeline, which includes descriptions of the
delay slots (instructions that follow a branch or load instruction in the pipeline), interrupts to the pipeline flow
caused by interlocks and exceptions, and CP0 hazards.

3.1 PIPELINE STAGES

The VR4101 has a five-stage instruction pipeline; each stage takes one PCycle {one cycle of PClock, which runs at
quadruple of the frequency of MasterClock), and each PCycle has two phases: &1 and ®2, as shown in Figure
3-1. Thus, the execution of each instruction takes at least 5 PCycles. An instruction can take longer - for
example, if the required data is not in the cache, the data must be retrieved from main memory.

Figure 3-1. Pipeline Stages

| PCycle |
e U e U e U e Ul e U
Phase | @1 |02 | o1 |02 | @1 |02 | @1t | 92 | @1 | @2 |
Cycle IF RF EX DC WB I

The five pipeline stages are:

< IF - Instruction cache fetch
¢ RF - Register fetch

<% EX - Execution

< DC - Data cache fetch

< WB - Write back

Once the pipeline has been filled, five instructions are executed simultaneously. Figure 3-2 shows the five stages
of the instruction pipeline; the next section describes the pipeline stages.

CHAPTER 3 VR4101 PIPELINE

Figure 3-2. Instruction Execution in the Pipeline

| PCycle | (Five stages)
1
IF1 | IFZ |RF1| RF2|EX1{EX2|DC1|DbC2|WB1|{wB2

IF1 | IF2 [RF1|RF2[EX1|EX21DC1|DC2|WB1|WB2

[IF1 IF2 |RF1{RF2|EXt |[EX2|DC1|DC2|WB1 WB2I

IF1 | IF2 |RF1|RF2 | EX1|EX2|DC1|DC2 |WB1 WBﬂ

{F1 | IF2 | RF1|RF2 | EX1|EX2|DC1)DC2 |WB1|WB2

Current CPU cycle
3.1.1 Pipeline Activities

Figure 3-3 shows the activities that can ocecur during each pipeline stage; Table 3-1 describes these pipeline
activities.

Figure 3-3. Pipeline Activities

| PCycle |
PClock [__/ \ / \ / \ / \ /
Phase |¢1|¢2|¢>1|¢2|¢1|¢2|¢1|m2|¢1]¢2[
Cycle F1 | k2 | rRF1 | RF2 | EX1 | EX2 | DC1 | DC2 | we1 | we2
| Fetch IDC | ICA
and
Decode ITLB |!TC
ALU iDEc | RF
EX [ws |
Load/Store DVA DCA |pLa
DTLE |pTe WB
Branch [sa | |om DCW

|BAC|

CHAPTER 3 VR4101 PIPELINE

Table 3-1. Description of Pipeline Activities during Eachi Stage

Cycle Phase Mnemonic Description
D1 ICD Instruction cache address decode
ITLB Instruction address translation
* o2 ICA Instruction cache array access
fTC Instruction tag check
Loy IDEC Instruction decode
RF &2 RF Register operand fetch
BAC Branch address calculation
o1 EX Execution stage
DVA Data virtual address calculation
EX SA Store align
2 DCA Data cache address decode/array access
' DTLB Data address translation
o1 DLA Data cache load align
DC DTC Data tag check
DTD Data transfer to data cache
WB D1 DCW Data cache write
WEB Write back to register file

37

CHAPTER 3 Vr4101 PIPELINE

3.2 BRANCH DELAY

The YR4101 pipeline has a branch delay of one cycle, as a result of the branch comparison logic operating during

the RF pipeline stage of the branch, producing an instruction address that is available in the IF stage, two
instructions later.

Figure 3-4 illustrates the branch delay and the location of the branch delay slot.

Figure 3-4. Branch Delay

| PCycle |
Branch IF RF EX DCc WB
(Branch delay slot) IF RF EX DC WB

Target I IF RF EX DC WB

Branch delay

3.3 LOAD DELAY

A load instruction that does not allow its result to be used by the instruction immediately following is called a

delayed load instruction. The instruction immediately following this delayed load instruction is referred to as the
load delay slot.

In the VR4101, the instruction immediately following a load instruction can use the contents of the loaded register,
however in such cases hardware interlocks insert additional delay cycles. Consequently, scheduling load delay
slots can be desirable, both for performance and VR-Series processor compatibility.

3.4 PIPELINE OPERATION

The operation of the pipeline is illustrated by the following examples that describe how typical instructions are
executed. The instructions described are: ADD, JALR, BEQ, TLT, LW, and SW. Each instruction is taken
through the pipeline and the operations that occur in each relevant stage are described.

CHAPTER 3 VR4101 PIPELINE

3.4.1 Add Instruction (Add rd, rs, rt)

IF stage

RF stage

EX stage

DC stage

WB stage

Phase

In @1 of the IF stage, the eleven least-significant bits of the virtual access are used to access
the instruction cache. In ®2 of the IF stage, the cache index is compared with the page frame
number and the cache data is read out. The virtual PC is incremented by 4 so that the next
instruction can be fetched.

During @2, the 2-port register file is addressed with the rs and rt fields and the register data is
valid at the register file output. At the same time, bypass multiplexars select inputs from either
the EX- or DC-stage output in addition to the register file output, depending on the need for an
ocperand bypass.

The ALU controls are set to do an A + B operation. The operands flow into the ALU inputs, and
the ALU operation is started. The result of the ALU operation is latched into the ALU output
latch during ©1.

This stage is @ NOP for this instruction. The data from the output of the EX stage (the ALU) is
moved into the output latch of the DC.

During @1, the WB latch feeds the data to the inputs of the register file, which is addressed by
the rd field. The file write strobe is enabled. By the end of @1, the data is written into the file.

Figure 3-5. Add Instruction Pipeline Activities

|
Poec [\ [\ [\ [[]
| | |

¢1|¢2|¢1|q>2|¢>1|¢:2|¢1 ¢2|cp1|q>2
Cycle IF1 | IF2 [RF1 | RF2 | EX1 | EX2 | DC1 | DC2 | wB1 | WB2

Ioc | IcA

LB [ite|ioec| re | Ex |

39

CHAPTER 3 VR4101 PIPELINE

3.4.2 Jump and Link Register Instruction (JALR rd, rs)

IF stage

RF stage

EX stage

DC stage

WE stage

|
ook [\ L/ / J
|

Phase

Same as the IF stage for the ADD instruction.

A register specified in the rs field is read from the file during ©2 at the RF stage, and the value
read from the rs register is input to the virtual PC latch synchronously. This value is used to
fetch an instruction at the jump destination. The value of the virtual PC incremented during the
IF stage is incremented again to produce the link address PC + 8 where PC is the address of the
JALR instruction. The resulting value is the PC to which the program will eventually return.
This value is placed in the Link output latch of the Instruction Address unit.

The PC + 8 vaiue is moved from the Link cutput latch to the output latch of the EX stage.

The PC + 8 value is moved from the output latch of the EX stage to the output latch of the DC
stage.

Refer to the ADD instruction. Note that if no value is explicitly provided for rd then register 31
is used as the default. If rd is explicitly specified, it cannct be the same register addressed by
rs; if it is, the result of executing such an instruction is undefined.

Figure 3-8. JALR Instruction Pipeline Activities

PCycle |

¢1|¢2|¢>1|¢2|¢1|¢2|¢1|¢>2|¢1|¢2|
Cycle IF1 | IF2 [RF1 [RF2 | Ex1 | Ex2 | D1 [Do2 [wet [wez

oc | ica | -

e pre|ibec] rRF | Ex |

BAC

CHAPTER 3 VR4101 PIPELINE

3.4.3 Branch on Equal Instruction (BEQ rs, rt, offset)

IF stage

RF stage

EX stage

DC stage

WB stage

Same as the IF stage for the ADD instruction.

During @2, the register file is addressed with the rs and rt fields. A check is performed to
determine if each corresponding bit position of these two operands has equal values. If they
are equal, the PC is setto PC + target, where target is the sign-extended offset field. Ifthey are
not equal, the PC is set to PC + 4.

The next PC resutting from the branch comparison is valid at the beginning of $2 for instruction
fetch.

This stage is a NOP for this instruction.

This stage is a NOP for this instruction.

Figure 3-7. BEQ Instruction Pipeline Activities

PCycle]

|
PCiock [_/ \
| |

_/

[\
|

Phase ¢1|¢2|¢1 o2 | o1 | o2 ®1|¢>2|¢1|¢2|
Cycle iF1 | IF2 | RF1 [RF2 [Ext | Ex2 [DC1 | DC2 | wa1 | wa2
IDC | IcA
e el ibec| rF | Ex |
BAC

41

CHAPTER 3 Vr4101 PIPELINE

3.4.4 Trap if Less Than Instruction (TLT rs, rt)

IF stage
RF stage

EX stage

DC stage

WB stage

42

Phase

Cycle

Same as the IF stage for the ADD instruction.
Same as the RF stage for the ADD instruction.

ALU controls are set to do an A - B operation. The operands flow into the ALU inputs, and the
ALU operation is started. The result of the ALU operation is latched into the ALU output latch
during ©1. The sign bits of operands and of the ALU output latch are checked to determine if a
less than condition is true. If this condition is true, a Trap exception occurs. The value in the
PC register is used as an exception vector value, and from now on any instruction will be invalid.

No operation

The EPC register is loaded with the value of the PC if the less than condition was met in the EX
stage. The Cause register ExCode field and BD bit are updated appropriately, as is the EXL bit
of the Status register. If the less than condition was not met in the EX stage, no activity occurs
in the WB stage.

Figure 3-8. TLT Instruction Pipeline Activities

|
oo [\
|
I

¢1|¢>2|¢>1|¢2|¢1|¢2|¢1|¢2|¢1]¢2|
IF1 | IF2 | RF1 RF2|EX1IEX2|DC1|DC2IWB1|WBZI

IDc | IcA
me [irc| ec| R | Ex |

CHAPTER 3 VR4101 PIPELINE

3.4.5 Load Word Instruction (LW rt, offset (base))

IF stage

RF stage

EX stage

DC stage

WB stage

Same as the |F stage for the ADD instruction.

Same as the RF stage for the ADD instruction. Note that the base field is in the same position
as the rs field.

Refer to the EX stage for the ADD instruction. For LW, the inputs to the ALU come from
GPR[base] through the bypass multiplexer and from the sign-extended offset field. The result
of the ALU operation that is latched into the ALU output latch in $1 represents the effective
virtual address of the operand (DVA).

The cache tag field is compared with the Page Frame Number (PFN) field of the TLB entry.
After passing through the load aligner, aligned data is placed in the DC output latch during &2.

During 91, the cache read data is written into the register file addressed by the rt field.

Figure 3-9. LW Instruction Pipeline Activities

PCycle l

|
reoo [\ [\ [/ /
| | |

Phase cp1|®2|¢>1|¢2|d>1|¢2|¢:1 <1>2|<1:1|¢2
Cycle F1 | 12 | RF1 | RF2 | EXx1 | EX2 | De1 | De2 |wa1 |w32|
Ipc | 1cA
T8 el ibec| RF [Ex | pcAa o

DVA | DTLB [ore

CHAPTER 3 VR4101 PIPELINE

3.46 Store Word Instruction (SW rt, offset (base))

IF ;f.tage Same as the IF stage for the ADD instruction.
RF stage Same as the RF stage for the LW instruction.
EX stage Refer to the LW instruction for a calculation of the effective address. From the RF output latch,

the GPR[rt] is sent through the bypass multiplexer and into the main shifter, where the shifter
performs the byte-alignment operation for the operand. The results of the ALU are latched in

the output latches during ¢1. The shift operations are latched in the output latches during ©2.

DC stage Refer to the LW instruction for a description of the cache access.

WB stage If there was a cache hit, the content of the store data output latch is written into the data cache
at the appropriate word location.
Note that all store instructions use the data cache for two consecutive PCycles. |f the following
instruction requires use of the data cache, the pipeline is slipped for one PCycle to complete the
writing of an aligned store data.

Figure 3-10. SW Instruction Pipeline Activities

PCycle |

|
ek [\ O\ S S L/
|

Phase ¢1|¢2|¢>1i¢2|¢1|¢>2|¢1|¢2|¢1|¢2|

Cycle IF1 IF2 | RFt | RF2 | EX1 | EX2 | DC1 | DC2 | WB1 WB2I

IDc | 1cA
e hire]imec| rRF | EX
DVA | DTLB [ore
[sa] [pm [ocw |

CHAPTER 3 Vr4101 PIPELINE

3.5 INTERLOCK AND EXCEPTION HANDLING
Smooth pipeline flow is interrupted when cache misses or exceptions occur, or when data dependencies are

detected. Interruptions handled using hardware, such as cache misses, are referred to as interlocks, while those

that are handled using software are called exceptions. As shown in Figure 3-11, all interlock and exception
conditions are coliectively referred to as faults.

Figure 3-11. Interlocks, Exceptions, and Faults

Faults

Software Hardware

Exceptions Interlocks

| Avort | | s J [_sip |

At each cycle, exception and interlock conditions are checked for all active instructions.

Because each exception or interlock condition corresponds to a particular pipeline stage, a condition can be traced

back to the particular instruction in the exception/interlock stage, as shown in Figure 3-12. For instance, an LDI
Interfock is raised in the Register Fetch (RF) stage.

Tables 3-2 to 3-4 describe the pipeline interlocks and exceptions listed in Figure 3-12.

CHAPTER 3 VR4101 PIPELINE

Figure 3-12, Correspondence of Pipeline Stage to Interlock and Exception Condition

PClock
Phase

Stail

Slip

Exception

[\

[\ L\

[

[ot |92 [0t |02] ot |a2]ot]a2]of]ar]

IF RF EX DC wWB
™ DTM
ICM DCM
DCB
IF RF EX DC WB
LDl
MDI
SLI
CPO
IF RF EX DC WB
IAErT NMI| Trap Reset
ITLB QVF DTLB
IPErr DAErr TMod
INTT DPErr
IBE WAT
SYSC DBE
BP
CUn
RSVD

Table 3-2. Description of Pipeline Stall

Stall

Description

I™

Instruction TLB Miss

ICM

Instruction Cache Miss

DTM

Data TLB Miss

DCM

Data Cache Miss

DCB

Data Cache Busy

CHAPTER 3 VR4101 PIPELINE

Table 3-3. Description of Pipeline Slip

Slip Description
Lo Load Data Interlock
MDI MD Busy Interlock
su Store-Load Interlock
CPO Coprocessor 0 Interlock
Table 3-4. Description of Plpeline Exception

Exception Description
IAErT Instruction Address Error exception
NMi Non-maskable Interrupt exception
ITLB ITLB exception
IPErr Instruction Parity Error exception
INTr Interrupt exception
IBE Instruction Bus Error exception
SYSC System Call exception
BP Breakpoint exception
CUn Coprocessor Unusable exception
RSVD Reserved Instruction exception
Trap Trap exception
OVF Overflow exception
DAErr Data Address Error exception
Reset Reset exception
DTLB DTLB exception
DTMod DTLB Modified exception
DPErr Data Parity Error exception
WAT Watch exception
DBE Data Bus Error exception

47

CHAPTER 3 VRr4101 PIPELINE

3.5.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are
cancelled. Accordingly, any stall conditions and any later exception conditions that may have referenced this
instruction are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exceptional conditions is detected for an instruction, the VR4101 will kilt it and all following instructions.
When this instruction reaches the WB stage, the exception flag and various information items are written to CPQ
registers. The current PC is changed to the appropriate exception vector address and the exception bits of earlier
pipeiine stages are cleared.

This implementation allows all preceding instructions to complete execution and prevents all subsequent
instructions from completing. Thus the value in the EPC is sufficient to restart execution. It also ensures that
exceptions are taken in the order of execution; an instruction taking an exception may itself be killed by an
instruction further down the pipeline that takes an exception in a later cycle.

Figure 3-13. Exception Detection

Ecxeption | IF1 | IF2 |RF1[RF2 éﬁi?éﬁ?bﬁi?bﬁé?\i\iéﬁ\i\iéﬁ]

1
2
Exception vector IF1 | IF2 |RF1|RF2 | EX1| EX2 |DC1|DC2 |WB1|WB2
: Killed stage
‘ : Interpret

CHAPTER 3 VR4101 PIPELINE

3.5.2 Stall Conditions

Stalls are used to stop the pipeline for conditions detected after the RF stage. When a stall occurs, the processor
will resolve the condition and then the pipeline will continue. Figure 3-14 shows a data cache miss stall, and
Figure 3-15 shows a CACHE instruction stall.

Figure 3-14. Data Cache Miss Stall

IF | RF | EX | DC | WB | WB QOO|WB|WB|WBI

P)

|IFIRF|EX|DC]DCI...|DC|DCIDC]WBI

|IF|RF|EX|EXI.0.|EX|EX|EX|DCIWBI
IIFIRFIRFIooolRFlRF|RF|EX]DC|WBI

@ Detect data cache miss

@ Start moving data cache line to write buffer

@ Get last word into cache and restart pipeline

If the cache line to be replaced is dirty —the W bit is set — the data is moved to the internal write buffer in the next
cycle. The write-back data is returned to memory. The last word in the data is returned to the cache at 3, and
pipelining restarts.

Figure 3-15. CACHE Instruction Stall

IF | RF|EX|DC |WB|WB e | WB | WB|WB
"4 I...L——J
|IFIRFIEXlDCIDC'ooolDClDClDClWBI
|JF|RF|.,=_x|Ex_\|..o|5x|Ex|Ex|Dc|wal
|||=|RF|RF|.oo|'RF|RF|RF|Ex]Dc|WB|

@ CACHE instruction start
@ CACHE instruction complete

When the CACHE instruction enters the DC pipe-stage, the pipeline stalls while the CACHE instruction is executed.
The pipeline begins running again when the CACHE instruction is completed, allowing the instruction fetch to
proceed.

49

CHAPTER 3 VR4101 PIPELINE

3.5.3 Slip Conditions

During @2 of the RF stage and ®1 of the EX stage, internal logic will determine whether it is possible to start the
current instruction in this cycle. If all of the source operands are available (either from the register file or via the
internal bypass logic) and all the hardware resources necessary to complete the instruction will ba available
whenever required, then the instruction “run®; otherwise, the instruction will “slip". Slipped instructions are retired
on subsequent cycles until they issue. The backend of the pipeline {(stages DC and WB) will advance normally
during slips in an attempt to resolve the conflict. NOPs will be inserted into the bubble in the pipeline.
Instructions killed by branch likely instructions, ERET or exceptions will not cause slips.

Figure 3-18. Load Data Interlock

Load A | IF |RF|EX|DC|WBI

Load B ||F|RF|EX|DC|WBI
“N\a_ Bypess

add AB IlFIRFlRFlEXlDClWBI

olo

IF | RF | EX | DC [WB

@ Detect load interlock
@ Get the target data

Load Data Interlock is detected in the RF stage shown in as Figure 3-16 and also the pipeiine slips in the stage.
Load Data Interlock occurs when data fetched by a load instruction and data moved from HI, LO or CPO register is
required by the next immediate instruction. The pipeline begins running again when the clock after the target of
the load is read from the data cache, HI, LO and CPO register. The data returned at the end of the DC stage is
input into the end of the RF stage, using the bypass muitiplexers.

Figure 3-17. MD Busy Interlock

mflo/mthi IF | RF | RF | EX | DC | WB

llFlRFIEXIDC|WBI

(1) Detect MD busy interlock

@ Get target data

CHAPTER 3 VR4101 PIPELINE

MD Busy Interlock is detected in the RF stage as shown in Figure 3-17 and also the pipeline slips in the stage.
MD Busy Interlock occurs when HilLo register is required by MFHi/Lo instruction before finishing Mult/Div
execution. The pipeline begins running again the clock after finishing Mult/Div execution. The data returned
from the Hi/Lo register at the end of the DC stage is input into the end of the RF stage, using the bypass
multiplexers.

Store-Load Interlock is detected in the EX stage and the pipeline slips in the RF stage. Store-Load Interlock
occurs when store instruction followed by load instruction is detected. The pipeline begins running again one
clock after.

Coprocessor 0 Interlock is detected in the EX stage and the pipeline slips in the RF stage. A coprocessor
interlock occurs when an MTCO instruction for the Configuration or Status register is detected.

The pipeline begins running again one clock after.

3.5.4 Bypassing
In some cases, data and conditions produced in the EX, DC and WB stages of the pipeline are made available to
the EX stage (only) through the bypass datapath.

Operand bypass allows an instruction in the EX stage to continue without having to wait for data or conditions to
be written to the register file at the end of the WB stage. Instead, the Bypass Control Unit is responsible for
ensuring data and conditions from later pipeline stages are available at the appropriate time for instructions earlier
in the pipeline.

The Bypass Control Unit is also responsible for controlling the source and destination register addresses supplied
to the register file.

3.6 CODE COMPATIBILITY

The VR4101 can execute all programs that can be executed in other VR-Series processors. But the reverse is not
necessarily true. Programs complied using a standard MIPS compiler can be executed in both types of
processors. When using manual assembly, however, write programs carefully so that compatibility with other
VR series processors can be maintained. Matters which should be paid attention to when porting programs
between the VR4101 and other VR-Series processors are listed below.

» The VR4100 CPU core does not support floating-point instructions since it has no Floating-Point Unit (FPU)}.
< Multiply-add instructions {(DMADD16, MADD16) are added in the VR4100 CPU core.

» Instructions for power modes (HIBERNATE, STANDBY, SUSPEND) are added in the VR4100 CPU core to
support power modes.

+ The VR4100 CPU core does not have the LL bit to perform synchronization of multiprocessing. Therefore, the
CPU core does not support instructions which manipulate the LL bit (LL, LLD, SC, SCD).

For more information, refer to Chapter 24, the Vr4000, Vr4400 User's Manual, or the VR4200 User's Manual.

51

[MEMO]

52

CHAPTER4 MEMORY MANAGEMENT SYSTEM

The VR4101 provides a memory management unit (MMU) which uses a translation lookaside buffer (TLB) to
translate virtual addresses into physical addresses. This chapter describes the virtual and physical address
spaces, the virtual-to-physical address translation, the operation of the TLB in making these translations, and the
CPO registers that provide the software interface to the TLB.

4.1 TRANSLATION LOOKASIDE BUFFER (TLB)

Virtual addresses are translated into physical addresses using an on-chip TLB Note The on-chip TLB is a fully-
associative memory that holds 32 entries, which provide mapping to 32 odd/even page pairs for one entry. The
pages can have five different sizes, 1 K, 4 K, 16 K, 64 K, and 256 K. If it is supplied with a virtual address, each
of the 32 TLB entries is checked simultaneously to sea whether they match the virtual addresses that are provided
with the ASID field and saved in the EntryHi register.

Note Virtual addresses may be converted to physical addresses without using a TLB, depending con the address
space that is being subjected to address translation. For example, address translation for the kseg0 or
kseg1 address space does not use mapping. The physical addresses of these address spaces are
determined by subtracting the base address of the address space from the virtual addresses.

4.1.1 Hits and Misses

If there is a virtual address match, or "hit," in the TLB, the physical page number is extracted from the TLB and
concatenated with the offset to form the physical address.

If no match occurs (TLB "miss®), an exception is taken and software refills the TLB from the page table resident in
memeory. The software writes to an entry selected using the Index register or a random entry indicated in the
Random register.

4.1.2 Muitiple Hit

If more than one eniry in the TLB matchas the virtual address being translated, the operation is undefined and the
TLB may be disabled. In this case, the TLB-Shutdown (TS} bit of the Status register is set to 1, and the TLB
becomes unusable (an attempt to access the TLB results in a TLB Mismatch exception regardiess of whether
there is an entry that hits). The TS bit can be cleared only by a reset.

53

CHAPTER4 MEMORY MANAGEMENT SYSTEM

4.2 ADDRESS SPACES

This section describes the virtual and physical address spaces and the manner in which virtual addresses are
converted or “translated” into physical addresses in the TLB.

4.2.1 Virtual Address Space

The VR4101 virtual address can be either 32 or 64 bits wide, depending on whether the processor is operating in
32-bit or 64-bit mode.

% In 32-bit mode, addresses are 32 bits wide. The maximum user process size is 2 Gbytes (2°').
< In B4-bit mode, addresses are B4 bits wide. The maximum user process size is 1 Tbyte (2%).

Figure 4-1 shows the translation of a virtual address into a physical address.

Figure 4-1. Virtual-to-Physical Address Translation
Virtual address

1 The virtual page number (VPN) in the G ASID VPN Offset
virtual address (VA) is compared with |_|_ l_le

the VPN in the TLB.

TLB
entry

2 Hthere is a match, the page frame
number {PFN} rapresenting the high-
order bits of the physical address is
output from the TLB.

3 The offset is then added to the PFN
passing through the TLB.

Offset

Physical address

As shown in Figures 4-2 and 4-3, the virtual address is extended with an address space identifier (ASID}, which
reduces the frequency of TLB flushing when switching contexts. This 8-bit ASID is in the CP0 EntryHi register,
described later in this chapter. The Global {(G) bit is in the EntryLo0 and EntryLo1 registers, described later in
this chapter.

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

4.2.2 Physical Address Space

Using a 32-bit address, the processor physical address space encompasses 4 Gbytes.
4-Gbyte physical address space as shown in Figure 4-2.

The VR4101 uses this

Figure 4-2. VR4101 Physical Address Space

OFFFF FEFE (Mirror image of Ox0000 0000 - Ox1FFF FFFF area)
Ox2000 0000
Ox1FFF FFFF ROM area (include boot ROM)
Ox1F00 0000
Ox1EFF FFFF

RFU
01900 0000
Ox18FF FFFF | (Mirror image of Ox1F00 0000 - Ox1FFF FFFF area)
Ox1800 0000
Ox17FF FFFF ISA 1/O area for 16-bit device (for PCMCIA)
Ox1700 0000
Ox16FF FFFF ISA I/C area for B-bit device (for PCMCIA)
Ox1600 0000
Ox15FF FFFF | 1SA memory area for 16-bit device {for PCMCIA)
Ox1 500 0000
Ox14FF FFFF ISA memory area for B-bit device (for PCMCIA)
Ox1400 0000
Ox13FF FFFF

RFU
OxQC00 0000
Ox0BFF FFFF Hardware register area
Ox0B00 0000
Ox0DAFF FFFF LCD display buffer
Ox0AQQ 0000
O0x09FF FFFF

RFU
0x0400 0000
O0x03FF FFFF

DRAM area

0x0000 0000

The foliowing section describes the translation of a virtual address to a physical address.

CHAPTER4 MEMORY MANAGEMENT SYSTEM

4.2.3 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processaor
with the virtual addresses in the TLB, there is a match when the virtual page number {(VPN) of the address is the
same as the VPN field of the entry, and either:

< the Global (G) bit of the TLB entry is sst to 1, or
< the ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Mismatch exception is taken by the processor
and software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

if there is a virtual address match in the TLB, the physical address is output from the TLB and concatenated with
the offset, which represents an address within the page frame space. The offset does nat pass through the TLB.
Instead, the low-order bits of the virtual address are output without being translated. See descriptions about the
virtual address space for details.

The next two sections describe the 32-bit and 64-bit mode address translations.

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

4.2.4 32-bit Mode Address Transiation

Figure 4-3 shows the virtual-to-physical-address translation of a 32-bit mode address. The pages can have five
different sizes between 1 Kbyte (10 bits) and 256 Kbytes (18 bits), each being 4 times as large as the preceding
one in ascending order, thatis 1 K, 4 K, 16 K, 64 K, and 256 K.

< Shown at the top of Figure 4-3 is the virtual address space in which the page size is 1 Kbyte and the offset is
10 bits. The 22 bits excluding the ASID field represents the virtual page number (VPN), enabling selecting a
page table of 4 M entries.

< Shown at the bottom of Figure 4-3 is the virtual address space in which the page size is 256 Kbytes and the
offset is 18 bits. The 14 bits excluding the ASID field represents the VPN, enabling selecting a page table of

16 K entries.
Figure 4-3. 32-bit Mode Virtual Address Translation
- Virtual address for 4M {2%) 1-Kbyte pages
39 32312928 10 9 0
ASID VPN Offset

2 10
22 bits = 4M pages A
('lrtual-to-physlcal address The offset is passed to
translation with the TLB physical address without
being changed.
' [me]

Bits 31 to 29 of the virtuai

address select the user,
supervisor, or kernel 3 + ¢ 0
address space. PFN Offset
Virtual-to-physical address
translation with the TLB The offset is passed to
physical address without
) TLB being changed.
Y A
39 32 31 29 28 18 17 4]
ASID VPN Offset
8 14 18

14 bits = 16K pages
Virtual address for 16K (2'*) 256-Kbyte pages

57

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

4.2.5 64-bit Mode Address Translation

Figure 4-4 shows the virtual-to-physical-address translation of a 64-bit mode address. This figure illustrates the
two possible page sizes: a 1-Kbyte page (10 bits) and a 256-Kbyte page (18 bits).

< Shown at the top of Figure 4-4 is the virtual address space in which the page size is 1 Kbyte and the offset is
10 bits. The 30 bits excluding the ASID field represents the virtual page number (VPN), enabling selacting a
page table of 1 G entry.

< Shown at the bottom of Figure 4-4 is the virtual address space in which the page size is 256 Kbytes and the
offsetis 18 bits. The 22 bits excluding the ASID field represents the VPN, enabling selecting a page table of

4 M entries,
Figure 4-4. 64-bit Mode Virtual Address Translation
Virtual address for 1G (2*°) 1-Kbyte pages
71 64 63 6261 4038 10 9 0

30

24

30 bits = 1G pages A)
\/\ﬁnud%physical address The offset is passed to
translation with the TLB physical address withoul
being changed.

. . ELE' 32-bit physical address
Bits 62 and 63 of the virtual

address select the user, a4 ¢
supervisor, or kemel o
address space. PFN Offset

Virtual-to-physical address

transiation with the TLB The offset is passed to
physical address without
LB being changed.
S Y h
71 64636261 4039 18 17 0
ASID 0or-1 VPN Offset
8 24 2 18

22 bits = 4M pages
Virtual address for 4M (2%%) 256-Kbyte pages

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

4.2.6 Operating Modes

The processor has three operating modes that function in both 32- and 64-bit operations:

< User mode
< Supervisor mode
4% Kernel mode

User and Kernel modes are common to ali VR-Series processors. Generally, Kernel mode is used to executing
the operating system, while User mode is used to run application programs. The VR4000 series processors have
a third mode, which is called Supervisor mode and categorized in between User and Kemel modes. This mode is
used to configure a high-security system.

When an exception occurs, the CPU enters Kernel mode, and remains in this mode until an exception return
instruction (ERET) is executed. The ERET instruction brings back the processor to the mode in which it was just
before the exception occurs.

These modes are described in the next three sections.

(1) User-mode virtual addressing

In User modae, a single virtual address space labelled User segment is available; its size is:

< 2 Gbytes (2*' bytes) in 32-bit mode (useg)
< 1 Thyte (2*° bytes) in 64-bit mode (xuseg)

Table 4-1 lists the characteristics of each user segment {(useg and xuseg).

Figure 4-5. User Mode Address Space

32-bit mode™** 84-bit mode™™*
OxFFFF FFFF OxFFFF FFFF FFFF FFFF
Address error Address error
0x8000 0000 0x0000 0100 00CO GOOC
Ox7FFF FFFF 0x0D00 OOFF FFFF FFFF
2 Gbytes with 1 Thyte with
TLB mapping usag TLB mapping xuseg
0x0000 0000 0x0000 0000 000D 0000

Note The VR4101 uses 64-bit addresses within it. When the processor is running in Kernel mode, it saves the
contents of each register or restores their previous contents to initialize them before switching the context.
For 32-bit mode addressing, bit 31 is sign-extended to bits 32 to 63, and the resulting 32 bits are used for
addressing. Usually, it is impossible for 32-bit mode programs to generate invalid addresses. If context
switching occurs and the processor enters Kernel mode, however, an attempt may be made to save an
address other than the sign-extended 32-bit address mentioned above to a 64-bit register. In this case,
.user-mode programs are likely to generate an invalid address.

59

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

The User segment starts at address 0 and the current active user process resides in either useg {in 32-bit mode)
or xuseg (in 64-bit mode}. The TLB identically maps all references to useg/xuseg from all modes, and controls
cache accessibility.

The processor operates in User mode when the Status register contains the following bit-values:

< KsU=10
< EXL=0
¢ ERL=0

In conjunction with these bits, the UX bit in the Status register selects 32- or 84-bit User mode addressing as
fallows:

< When UX =0, 32-bit useg space is selected.
< When UX = 1, 64-bit xuseg space is selected.

Table 4-1. Comparison of useg and xuseg

Address bit Status register bit value Segment Address range Size
value KsU | EXL | ERL | ux [™ame
32-bit 10 0 0 0 useg 0x0000 0000 2 Gbytes
A[31]=0 to (2" bytes)
OX7FFF FFFF
64-bit 10 0 0 1 xuseg 0x0000 0000 0000 0000 1 Thyte
A63.40)=0 to (2*° bytes)
0x0000 00OFF FFFF FFFF

(a) useg (32-bit mode)
in User mode, when UX = 0 in the Status register, User mode addressing is compatible with the 32-bit addressing
model shown in Figure 4-5, and a 2-Gbyte user address space is available, labelled useg.

All valid User mode virtual addresses have their rhost-signiﬁcant bit cleared to 0; any attempt to reference an
address with the most-significant bit set while in User mode causes an Address Error exception,

In 32-bit User mode addressing, the TLB Mismatch exception vector is used for TLB misses.

The systamn maps all references to useg through the TLB, and bit settings within the TLB entry for the page
determine the cacheability of a reference.

{b) xuseqg (64-bit mode)

In User mode, when UX =1 in the Status register, User mode addressing is extended ta the 64-bit addressing
model shown in Figure 4-5. in 64-bit User mode, the processor provides a single address space of 2°° bytes,
labelled xuseq.

All valid User mode virtual addresses have bits 63:40 equal to 0; an attempt to reference an address with bits
63:40 equal to 1 causes an Address Error exception.

The XTLB Mismatch exception vector is used for TLB misses.

CHAPTER4 MEMORY MANAGEMENT SYSTEM

(2) Supervisor-mode virtual addressing

Supervisor mode is designed for layered operating systems in which a true kernel runs in Kernel mode, and the

rest of the operating system runs in Supervisor mode.
The processor operates in Supervisor mode when the Status register contains the following bit-values.

<& KsU=01
¢ EXL=0
< ERL=0

In conjunction with these bits, the SX bit in the Status register selects 32- or 64-bit Supervisor mode addressing:

< When SX = 0, 32-bit supervisor space is selected.
< When SX = 1, 64-bit supervisor space is selected.

Figure 4-6 shows Supervisor mode address mapping. Table 4-2 lists the characteristics of the Supervisor mode

segments; descriptions of the address spaces follow.

OXxFFEF FFFF

0xE000 0000
OxDFFF FFFF

0xC000 0000
OxBFFF FFFF

0x8000 0000
OX7FFF FFFF

0x0000 0000

Note The VrR4101 uses 64-bit addresses within it.

Figure 4-6. Supervisor Mode Address Space

32-bit mode™™

Address error

0.5 Gbyte with
TLB mapping

Address error

2 Gbytes with
TLB mapping

$s8eg

OxFFFF FFFF FFFF FFFF

OxFFFF FFFF EODC D000
OxFFFF FFFF DFFF FFFF

0xFFFF FFFF CODO 0000
OxFFFF FFFF BFFF FFFF

0x4000 0100 0000 0D0O
0x4000 0OFF FFFF FFFF

0x4000 0000 0000 0000
0x3FFF FFFF FFFF FFFF

0x0000 0100 000D 0000
0x0000 OOFF FFFF FFFF

0x0000 0000 0000 0000

64-bit mode

Address error

0.5 Gbyte with
TLB mapping

Address error

1 Tbyte with
TLB mapping

Address error

1 Tbyte with
TLB mapping

csseg

usseg

xsuseg

For 32-bit mode addressing, bit 31 is sign-extended to bits

32 to 63, and the resulting 32 bits are used for addressing. Usually, it is impossible for 32-bit mode

programs to generate invalid addresses.

a two's complement overflow may occur, causing an invalid address.
undefined. Two factors that can cause a two's complement follow;

in an operation of base register + offset for addressing, however
Note that the resuit becomes

< When offset bit 15 is 0, base register bit 31 is 0, and bit 31 of the operation “base register + offset” is

1

< When offset bit 15 is 1, base register bit 31 is 1, and bit 31 of the operation "base register + offset’ is

e

81

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

Table 4-2. 32-bit and 84-bit Supervisor Mode Segments

Address bit Status register bit value Segment Address range Size
value Ksu | ExL | ERL | sx | MM
32-bit 01 0 0 0 suseg 0x0000 0000 2 Gbytes
Al31]=0 to {(2* bytes)
OX7FFF FFFF
32-bit 01 0 0 0 sseg 0xC000 0000 512 Mbytes
Aj31.28] = 110 to (2 bytes)
: OxDFFF FFFF
64-bit 01 0 0 1 xsuseg | 0x0000 0000 0000 0000 1 Tbyte
A[63..62] = 00 to (2*° bytes)
0x0000 OOFF FFFF FFFF
64-bit 01 0 0 1 xsseg 0x4000 0000 0000 0000 1 Thyte
~ Al63..62] = 01 to (2*° bytes)
0x4000 00FF FFFF FFFF
64-bit 01 0 0 1 csseg OxFFFF FFFF C000 0000 | 512 Mbytes
A[63..62] = 11 to (2% bytes)
OXFFFF FFFF DFFF
FFFF

{(a) suseg (32-bit Supervisor mode, user space)

When SX = 0 in the Status register and the most-significant bit of the virtual address space is set to 0, the suseg
virtual address space is selected; it covers 2 Gbytes (2°' bytes) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This mapped
space starts at virtual address Ox0000 0000 and runs through Ox7FFF FFFF.

{b) sseg (32-bit Supervisor mode, supervisor space)

When SX = 0 in the Status register and the three most-significant bits of the virtual address space are 110, the
sseg virtual address space is selected; it covers 512 Mbytes (229 bytes) of the current supervisor virtual address
space. The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address.
This mapped space begins at virtual address OxC000 0000 and runs through OxDFFF FFFF.

(c) xsusey (84-bit Supervisor mode, user space)

When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 00, the xsuseg virtual
address space is selected; it covers 1 Thyte (20 bytes) of the current user address space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address. This mapped space starts at
virtual address 0x0000 0000 0000 0000 and runs through 0x0000 O0OFF FFFF FFFF.

82

CHAPTER4 MEMORY MANAGEMENT SYSTEM

(d) xsseg (64-bit Supervisor mode, current supervisor space)

When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 01, the xsseg virtual
address space is selected; it covers 1 Tbyte (2‘° bytes) of the current supervisor virtual address space. The
virtual address is extended with the contents of the 8-bit ASID field to form a unigque virual address. This
mapped space begins at virtual address 0x4000 0000 0000 0000 and runs through 0x4000 OOFF FFFF FFFF.

(e) csseg (64-bit Supervisor mode, separate supervisor space)

When SX = 1 in the Status register and bits 63 and 62 of the virtual address space are set to 11, the csseg virtual
address spacs is selected, it covers 512 Mbytes (2°° bytes) of the separate supervisor virtual address space. The
virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address. This
mapped space begins at virtua! address OxFFFF FFFF C000 0000 and runs through OxFFFF FFFF DFFF FFFF.

{3) Kernelinode virtual addressing

If the Status register satisfies any of the following conditions, the processor runs in Kernel mode.

< KSU =00
< EXL=1
< ERL=1

The addressing width in Kernel mode varies according to the state of the KX bit of the Status register, as follows:

< When KX = 0, 32-bit kernel space is selected.
< When KX = 1, 64-bit kernel space is selected.

The processor enters Kerne! mode whenever an exception is detected and it remains in Kernel mode until an
exception return (ERET) instruction is executed and results in ERL andfor EXL = 0. The ERET instruction
restores the processar to the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the high-arder bits of the virtual address,
as shown in Figure 4-7. Table 4-3 lists the characteristics of the 32-bit Kernel mode segments, and Table 4-4
lists the characteristics of the 64-bit Kernet mode segments.

83

CHAPTER4 MEMORY MANAGEMENT SYSTEM

Figure 4-7. Kernel Mode Address Space

32-bit mode™™** B4-bit mode
OxFFFF FFFF OxFFFF FFFF FFFF FFFF
0.5 Gbytes with
TLB mapping kseg3 O0xFFFF FFFF E0QOQ 0000
0xE000 0000 OxFFFF FFFF DFFF FFFF | g Gbytes with
OXDFFF FFFF TLB mapping | CkSS°0
0.5 Gbytes with OxFFFF FFFF C0Q0 0000
TLB mapping ksseg OXFFFF FFFF BFFF FFFF | 0.5 Gbytes without
0xCO00 0000 TLB mapping chsegl
OXBFFF EFFF OxFFFF FFFF AO0O 0000 uncacheable
0.5 Gbytes without OXFFFF FFFF 9FFF FFFF | 0.5 Gbyles without
TLB H;PP;TQ kseg1 TLB mapping ckseg0
uncai e
OXEFRF FRFR TRFE FPRR [
X
Ox9FFF FFFF 0.5 Ghytes without Address error
TLB mapping ksegD OxC00Q OOFF 8000 0000
cacheable
OxB000 0000 0xCQ00 OOFF 7FFF FFFF _ _
7 FEFE With TLB mapping xkseg
Ox7FFF FFF 0xCOD0 0000 0000 G000
(See Table 4-5 for xkphys
0x8000 0000 0000 0000 details.)
2 Gbytes with TLB Ox7FFF FFFF FFFF FFFF
mapping Address error
0x4000 0100 0000 0000
kuseg 0x4000 OOFF FFFF FFFF | Toyte with TLB
i xksseg
0x4000 0000 0000 0000 mappng
OX3FFF FFFF FFFF FFFF
Address error
0x0000 0100 CQO0 0Q00
0x0000 COFF FFFF FFFF [Thyte with TLB
mapping xkuseg
0x0000 0000 Ox0000 0000 0000 0000

Note The VR4101 uses 64-bit addresses within it. For 32-bit mode addressing, bit 31 is sign-extended to bits
32 to 63, and the resulting 32 bits are used for addressing. Usually, it is impossible for 32-bit mode
programs to generate invalid addresses. In an operation of base register + offset for addressing, however,
a two's complement overflow may occur, causing an invalid address. Note that the result becomes
undefined. Two factors that can cause a two's complement follow:

< When offset bit 15 is 0, base register bit 31 is 0, and bit 31 of the operation “base register + offset’ is
1

< When offset bit 15 is 1, base register bit 31 is 1, and bit 31 of the operation "base register + offset” is
0

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

Table 4-3. 32-bit Kernel Mode Segments

Address bit value | Status register bit value | Segment | Virtual address Physical Size
ksul Ext | ERL | Kx name address
32-bit KSU =00 0 kuseg Ox0000 0000 TLB map 2 Gbytes
A[31]=0 or to {2” bytes)
EXL=1 Ox7FFF FFFF
32-bit or 0 kseg0 0x8000 0000 | Ox0000 0000 { 512 Mbytes
A[31..29] = 100 ERL =1 to to (2% bytes)
Ox9FFF FFFF | Ox1FFF FFFF
32-bit 0 kseg1 0xA000 0000 | 0x0000 0000 | 512 Mbytes
Al31..29] = 101 to to (2% bytes)
OxBFFF FFFF | OX1FFF FFFF
32-bit 0 ksseg OxC000 0000 TLB map 512 Mbytes
A31.29]= 110 to (2 bytes)
OxDFFF FFFF
32-bit 0 kseg3 OxE000 0000 TLB map | 512 Mbytes
A[31..29] =111 to (2*° bytes)
OXFFFF FFFF

(a) kuseg (32-bit Kemel mode, user space)

When KX = 0 in the Status register, and the most-significant bit of the virtual address space is 0, the kuseg virtual
address space is selected, it is the current 2-Gbyte (231-by'te) user address space.

The virtual address is extended with the contents of the B-bit ASID field to form a unique virtual address.

If the ERL bit of the Status register is 1, the user address space is assighed 2 Gbytes (2*' bytes) and becomes
unmapped (with virtual addresses being used as physical addresses) and uncached so that the cache error
handler can use it. This allows the Cache Error exception code to operate uncached using r0 as a base register.

(b) kseg0 (32-bit Kernel mode, kernel space 0)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 100, the
ksegO virtual address space is selected, it is the current 512-Mbyte (2%-byte) physical space.

References to kseg0 are not mapped through the TLB; the physical address selected is defined by subtracting
0x8000 0000 from the virtual address.

The KO field of the Canfig register controls cacheability.

{c) kseg1 (32-bit Kemnel mode, kernel space 1)

When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 101, the
kseg1 virtual address space is selected; it is the current 512-Mbyte (2”-by'te) physical space.

References to kseg1 are not mapped through the TLB; the physical address selected is defined by subtracting
0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and main memory (or memory-mapped /O device
registers) are accessed directly.

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

(d) ksseg {(32-bit Kernel mode, supervisor space)

When KX = 0 in the Status reglster and the most-significant three blts of the virtual address space are 110, the
ksseg virtual address space is selected; it is the current 512-Mbyte (2%-byte) virtual address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address.

{e) kseg3 (32-bit Kemel mode, kernel space 3)
When KX = 0 in the Status register and the most-significant three bits of the virtual address space are 111, the

kseg3 virtual address space is selected; it is the current 512-Mbyte (2 -byte) kernel virtual space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual address.
Table 44. 84-bit Kernel Mode Segments
Address bit | Status register bit value | Segment Virtual address Physical Size
value ksUlExL | ERL] kx | Mame address
64-bit KSU =00 1 | xksuseg | 0xCOOO 0000 Q0OC 0000 TLB map 1 Tbyte
Al63..62] = 00 or to (27 bytes)
EXL=1 0x0000 0OFF FFFF FFFF
64-bit or 1 | xksseg | Ox4000 0000 0000 0000 | TLB map 1 Tbyte
Al63..62] = 01 ERL =1 to (2* bytes)
0x4000 OOFF FFFF FFFF
64-bit 1 | xkphys | Ox8000 0000 0000 0000 | 0x0000 00C0 | 4 Ghytes
A[63..62] = 10 to to (2* bytes)
0xBFFF FFFF FFFF FFFF | OxFFFF FFFF
64-bit 1 | xkseg | OxCOOO 0000 0000 0000 | TLB map 29 _ 2%
A[63. 62} = 11 to bytes
OxC000 00FF 7FFF FFFF
64-bit 1 ckseg0 | OxFFFF FFFF 8000 0000 | Ox0000 0000 | 512 Mbytes
Al63..62] = 11 to to (2 bytes)
A[63..31] = -1 OxFFFF FFFF 9FFF FFFF | OX1FFF FFFF
64-bit 1 | cksegl | OFFFF FFFF A0QD 0000 | 0x0000 0000 | 512 Mbytes
A[63..62] = 11 to to (2 bytes)
A[63..31] = -1 OXFFFF FFFF BFFF FFFF | Ox1FFF FFFF
64-bit 1 cksseg | OxFFFF FFFF CO00 0000 | TLB map |[512 Mbytes
A[63..62] = 11 to (2% bytes)
Al63..31] =1 OxFFFF FFFF DFFF FFFF
64-bit 1 | cksegd | OxFFFF FFFF EOGO 0000 | TLBmap |512 Mbytes
Al63..62] = 11 to (2 bytes)
Al63..31) =1 OxFFFF FFFF FFFF FFFF

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

(f) xkuseg (64-bit Kemel mode, user space)

When KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 00, the xkuseg virtual
address space is selected; it is the current user address space. The virtual address is extended with the contents
of the 8-bit ASID field to form a unique virtual address.

If the ERL bit of the Status register is 1, the user address space is assigned 2 Gbytes (2*' bytes) and becomes
unmapped (with virtual addresses being used as physical addresses) and uncached so that the cache error
handler can use it. This aflows the Cache Error exception code to operate uncached using r0 as a base register.

(g} xksseg (64-bit Kemel mode, current supervisor space)

When KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 01, the xksseg address
space is selected; it is the current supervisor address space. The virtual address is extended with the contents of
the 8-bit ASID field to form a unique virtual address.

{(h) xkphys (64-bit Kernel mode, physical spaces)

When the KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 10, the virtual address
space is called xkphys and selected as either cached or uncached. If any of bits 58 to 32 of the address is 1, an
attempt to access that address results in an address error.

Table 4-5. Cacheability and the xkphys Address Space

Bits 61-59 Cacheability Start address
0 Cached 0x8000 0000 0000 0000
1 Cached 0x8800 0000 0000 0000
2 Uncached 0x9000 0000 0000 0000
3 Cached 0x9800 0000 0000 0000
4 Cached OxA000 0000 0000 0000
5 Cached 0xA800 0000 0000 0000
6 Cached 0xB00O 0000 0000 0000
7 Cached 0xB800 0000 0000 G000

{i) xkseg (64-bit Kernel mode, physical spaces)
When the KX = 1 in the Status register and bits 63 and 62 of the virtual address space are 11, the virtual address
space is called xkseg and selected as either of the following:

® kernel virtual space, xkseg, the current kernel virtual space; the virtual address is extended with the contents
of the 8-bit ASID field to form a unique virtual address

® one of the four 32-bit kernel compatibility spaces, as described in the next section.

a7

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

(i) 64-bit Kernel mode compatible spaces (ckseg0, ckseg1, cksseg, and ckseg3)

If the conditions listed below are satisfied in Kernel mode, ckseg0, ckseg1, cksseg, or ckseg3 (each having 512

Mbytes) is selected as a compatible space according to the state of the bits 30 and 29 {two low-order bits) of the
address.

< The KX bit of the Status register is 1.
4% Bits 63 and 62 of the 64-bit virtual address are 11.
¢ Bits 61 to 31 of the virtual address is -1.

® cksegl

This space is an unmapped region, compatible with the 32-bit mode ksegQ space. The K{ field of the Config
register controls cacheability and coherency.

® cksegl

This space is an unmapped and uncached region, compatible with the 32-bit mode kseg1 space.

® cksseg

This space is the current supervisor virtual space, compatible with the 32-bit mode ksseg space.

® ckseg3

This space is the current supervisor virtual space, compatible with the 32-bit mode kseg3 space.

CHAPTER4 MEMORY MANAGEMENT SYSTEM

4.3 SYSTEM CONTROL COPROCESSOR

The System Control Coprocessor (CP0) is implemented as an integral part of the CPU, and supports memory
management, address translation, exception handling, and other privileged operations.
registers shown in Figure 4-8 plus a 32-entry TLB. The sections that follow describe how the processor uses
each of the memory management-related registers.

Remark Each CP0 register has a unique number that identifies it; this number is referred to as the register

number. Also see Chapter 5 for the CPO functions and the relationships

See Chapter 1 for details.

between exception processing and registers.

A

Caution For some instructions, pay attention to the interval between the Instruction and the
succeeding Instruction when accessing the CP0 registers.
required before the modification to the CPO registers Is refiected in the operation of the CPU.
This is called the CPO hazard. Refer to Chapter 25 for more detalls.

Figure 4-8. CPO Registers and the TLB

TLB

(Safe entries)
{See Random register for the
TLB Wired boundary.}

1271255

Used for memory management

Remark *. Register number

Index Context BadVAddr
o & 8
Random : Count Compare
1 ; 9* 1*
PageMask Status Cause
5 : 124 13*

wied . EPC WatchLo
e : VIR 18
PRId | WatchHi XConlext
15+ ; 19° 20°

conig I PEr CacheEr
16° : 26

Used for exception processing

This Is because some time is

CPO contains the

CHAPTER4 MEMORY MANAGEMENT SYSTEM

4.3.1 Format of a TLB Entry

Figure 4-9 shows the TLB entry formats for both 32- and 64-bit modes. Each field of an entry has a corresponding
field in the EntryHi, EntryLo0, Entryt o1, or PageMask registers.

Figure 4-9. Format of a TLB Entry

(a) 32-bit mode
127 115 114 107 106 96
0 MASK 0
13 8 1
95 75 74 73 72 71 64
VPN2 cl| o ASID
21 1 2 8
&8 60 59 38 37 35 34 33 32
0 PFN c |o|v]o
4 22 3 1 1 1
31 28 27 6§ 5 3 2 1 0
0 PFN c |D|v oI
I
4 22 3 1 1 1
(b) 84-bit mode
255 211 210 203 202 162
0 MASK 0
45 8 11
191 190 189 168 167 130 138 137 136 135 128
| r 0 VPN2 G| o ASID I
2 2 29 1 2 8
127 92 o 70 63 67 66 65 64
0 PFN c |olv ol
38 | 2 3 111
83 28 27 8 5 3 2 1 0
| 0 , | PFN | C. |D|V|0I
36 22 3 1 1 1

The format of the EntryHi, EntryL.o0, EntryLo1, and PageMask registers are neariy the same as the TLB entry.
However, it is unknown what bit of the EntryHi register corresponds to the TLB G bit.

70

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

4.3.2 CPO Registers

The CPO registers explained below are accessed by the memory management system and software. A
parenthesized number that follows each register name is a register number.

{1} Index register (0)

The Index register is a 32-bit, read/write register containing five bits to index an entry in the TLB. The most-
significant bit of the register shows the success or failure of a TLB probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB read {TLBR) or TLB write index (TLBWI)
instructions.

Figure 4-10. Index Register

M 30 5 4 o
P 0 Index
1 26 5
P: indicates whether probing is successful or not. It is set to 1 if the latest TLBP instruction fails. It is

cleared to 0 when the TLBP instruction is successful.
Index: Specifies an index to a TLB entry that is a target of the TLBR or TLBW! instruction.
0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

Al

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

{2) Random register {1}

The Random register is a read-only register. The low-order S bits are used in referencing a TLB entry. This
register is decremented each time an instruction is executed. The values that can be set in the register are as
follows:

< The lower bound is the content of the Wired register.
4% The upper bound is 31.

The Random register specifies the entry in the TLB that is affected by the TLBWR instruction. The register is
readable to verify proper operation of the processor.

The Random register is set to the value of the upper bound upon Coid Reset, This register is also set to the
upper bound when the Wired register is written. Figure 4-11 shows the format of the Random register.

Figure 4-11. Random Register

k)] 5 4 0
4 ! 0 | Random I
27 5

Random: TLB random index
0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

72

CHAPTER4 MEMORY MANAGEMENT SYSTEM

{3) EntryLo0 (2) and EntryLo1 (3) registers

The EntryLo register consists of two registers that have identical formats: EntryLo0, used for even virtual pages
and EntryLo1, used for odd virtual pages. The EntryLo0 and EntryLo1 registers are both read-fwrite-accessible.
They are used to access the built-in TLB. When a TLB read/write operation is carried out, the EntryLo0 and
EntryLo1 registers hold the contents of the low-order 32 bits of TLB entries at even and odd addresses,
respectively.

Figure 4-12. EntrylL.o0 and EntryLo1 Registers

(a) 32-bit mode

A 28 27 6 5 a2 1 0

EntryLo0 0 PFN c DV |G
4 22 3 1 1 1

A 28 27 6 5 3 2 1 0

EntryLof 0 PFN c |o|v]e
4 2 3 1 1 1

(b) 84-bit mode

63 28 27 6 5 3 2 1 0

EntryLo0 | 0 | PFN | c |D v GI
36 2 3 11 1
83 28 27 6 5 3 2 1 0

EntryLot] 0 | PFN | c |D|VIGI
36 2 3 1 1 1

PFN: Page frame number; high-order bits of the physical address.

C: Specifies the TLB page attribute.

D: Dirty. If this bit is set to 1, the page is marked as dirty and, therefore, writable. This bit is actually a
write-protect bit that software can use to prevent alteration of data.

V: Valid. If this bit is set to 1, it indicates that the TLB entry is valid; otherwise, a TLB Invalid exception
{TLBL or TLBS} occurs.

G Global. If this bit is set in both EntryLo0O and EntryLo1, then the processor ignores the ASID during
TLB lookup.

o Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

The coherency attribute (C) bits are used to specify whether to use the cache in referencing a page. When the
cache is used, whether the page attribute is “cache used"” or “cache not used" is selected by algorithm.

Table 4-6 lists the page attributes selected according to the value in the C bits.

73

CHAPTER4 MEMORY MANAGEMENT SYSTEM

Table 4-8. Cache Algorithm

C bit value Cache algorithm

Cache used

Cache used

Cache unusable

Cache used

Cache used

Cache used

Cache used

~Nlojlo|lA|l@IN|I~|O

Cache used

(4) PageMask register (5)

The PageMask register is a read/write register used for reading from or writing to the TLB; it holds a comparison
mask that sets the page size for each TLB entry, as shown in Table 4-7. Page sizes must be from 1 Kbyte to 256
Kbytes.

TLB read and write instructions use this register as either a source or a destination: Bits 18 to 11 that are targets of
comparison are masked during address translation.
Figure 4-13. Page Mask Register

AN 19 18 1 10 0
0 MASK 0

13 8 1

MASK: Page comparison mask, which determines the virtual page size for the corresponding entry.
LA Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

Table 4-7 lists the mask pattern for each page size. If the mask pattern is one not listed below, the TLB behaves
unexpectediy.

74

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

Table 4-7. Mask Values and Page Sizes

Page size Bit

18 17 16 15 14 | 13 | 12 11
1 Kbyte 0 0 0 0 0 0 0 0
4 Kbytes 0 0 0 o 0 0 1 1
16 Kbytes 0 0 0 0 1 1 1 1
64 Kbytes 0 0 1 1 1 1 1 1
256 Kbytes 1 1 1 1 1 1 1 1

{5) Wired register (6)

The Wired register is a read/write register that specifies the lower boundary of the random entry of the TLB as
shown in Figure 4-14. Wired entries cannot be overwritten by a TLBWR instruction. They can, however, be
overwritten by a TLBWI instruction. Random entries can be overwritten by both instructions.

Figure 4-14. Positions Indicated by the Wired Register

T ’

Range specified by
the Random register

Value in the Wired register

T
Range of Wired
entries

N 0

The Wired register is set to 0 upon Cold Reset. Writing this register also sets the Random register to the vatue of
its upper bound {see Random register (1)). Figure 4-15 shows the format of the Wired register.

Figure 4-15. Wired Register

31 5 4 0
| 0 Wired I
27 5

Wired: TLB wired boundary

0 Reserved for future use. Write O in a write operation. When this field is read, 0 is read.

75

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

(6) EntryHi register (10)

The EntryHi register is write-accessible. It is used to access the built-in TLB. The EntryHi register holds the
high-order bits of a TLB entry for TLB read and write operations. If a TLB Mismatch, TLB Invalid, or TLB Modified
exception occurs, the EntryHi register holds the high-order bit of the TLB entry. The EntryHi register is also set
with the virtual page number (VPN2) for a virtual address where an exception occurred and the ASID. See
Chapter 5 for details of the TLB exception.

The ASID is used to read from or write to the ASID field of the TLB entry. it is also checked with the ASID of the
TLB entry as the ASID of the virtual address during address translation.

The EntryHi register is accessed by the TLBP, TLBWR, TLBW!I, and TLER instructions.

Figure 4-18. EntryHi Register

{a) 32-bit mode
3t 11 10 g8 7 0
VPN2 0 ASID

21 3 8

(b) 64-bit mode

63 62 61 40 39 11 10 8 7 0
R Fill VPN2 0 ASID I
AT T—
2 2 29 3 8

VPN2: Virtual page number divided by two (mapping to two pages)

ASID; Address space ID. An 8-bit ASID field that lets multiple processes share the TLB,; each process has a
distinct mapping of otherwise identical virtual page numbers.

R: Space type (00 — user, 01 — supervisor, 11 — kernel). Matches bits 63 and 62 of the virtual address.
Fill: Reserved. Ignored on write. When read, returns zero.
0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

76

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

{7) Processor Revision Ildentifier (PRid) register (15)

The 32-bit, read-only Processor Revision identifier (PRId) register contains information identifying the
implementation and revision level of the CPU and CP0. Figure 4-17 shows the format of the PRId register.

Figure 4-17. PRId Register

N 16 15 8 7 0
0 Imp Rev

16 8 a

Imp: CPU core processor ID number (0x0C for the VR4101)
Rev; CPU core processor revision number
0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision number, and the high-order byte (bits
15:8) is interpreted as an implementation number. The processor revision number is stored as a value in the
form y.x, where y is a major revision number in bits 7 to 4 and x is a minor revision number in bits 3 to 0.

The revision number can distinguish sorme CPU core revisions, however there is no guarantee that changes to the
CPU core will necessarily be reflected in the PRId register, or that changes to the revision number necessarily
reflect real CPU core changes. Therefore, create a program that does not depend on the processor revision
number area.

CHAPTER4 MEMORY MANAGEMENT SYSTEM

{8) Config register {16)

The Config register spacifies various configuration options selected on VR4101 processors.

Some configuration options, as defined by the EC and BE fields, are set by the hardware during Cold Reset and

are included in the Config register as read-only status bits for the software to access.

Other configuration options

are readfwrite (AD, EP, and KO fields) and controlled by software;, on Cold Reset these fields are undefined.
Since only a subset of the VR4000 options are available in the VR4101, some bits are set to constants (e.g., bits
14:13) that were variable in the VR4000. The Config register should be initialized by software before caches are

used. Figure 4-18 shows the format of the Config register.

Figure 4-18. Config Register Format

31 30 2827 2423 22 18 17 16 15 14 13 32 0
0| EC EP |AD 0 110 |BE| 1 0 KO I
1 3 4 1 S 11 11 1 3
EC: System clock ratio
0 = Processor clock frequency divided by 2
Others —» Reserved
EP: Transfer data pattern (cache write-back pattern)
3 — DxDxDxDx
Others - Reserved
AD: Accelerate data mode
0 — VR4000 Series compatible mode
1 — Reserved
BE: BigEndianMem. Endian mode of memory and a kernel.
0 — Little endian
1 —+ Reserved
KO: kseg0 cache coherency algorithm

010 — Cache cannot be used.
Others —» Cached

Note Be sure to set the EP and AD bits with 3 and 0, respectively.
processor may behave unexpectedly.

78

If they are set with any other values, the

CHAPTER 4 MEMORY MANAGEMENT SYSTEM

{9) Load Linked Address (LLAddr) register {17)

The read/write Load Linked Address (LLAddr) register is not used with the VR4101 processor except for diagnostic
purpose, and serves no function during normal operation.

LLAddr register is implemented just for a compatibility between the VR4101 and VR4000/VR4400.

Figure 4-19. LLAddr Register

K] o
| PAddr I
32

PAddr. 32-bit physical address

79

CHAPTER 4 MEMORY MANAQGEMENT SYSTEM

(10) Cache Tag registers (TagLo (28) and TagHi (29))

The TaglLo and TagHi registers are 32-bit readAwrite registers that hold the primary cache tag and parity during
cache initialization, cache diagnostics, or cache error processing. The Tag registers are written by the CACHE
and MTCO instructions.

The P fields of these registers are ignored on Index Store Tag operations by the CACHE instruction. Parity is
computed by the store operation. Figures 4-20 and 4-21 show the format of these registers.

Figure 4-20. TaglLo Register

(a) Whaen used with data cacha

]| 10 9 8 7 6 2 1 0
PTagLo ViDIW 0 W'|P
2 1 1 1 5 1 1

{b) When used with instruction cache

1] i0 9 8 1 0
PTaglLo v 0 P I
2 1 8 1

PTaglo: Specifies physical address bits 31 to 10.
V: Valid bit
D: Dirty bit. However, this bit is defined only for the compatibility with the VR4000 Series processors, and

does not indicate the status of cache memory in spite of its readability and writability. This bit cannot
change the status of cache memory.

W Write-back bit (set if cache line has been updated)

W Odd parity for the write-back bit

P: Odd parity bit for primary cache tag

0 Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

Figure 4-21. TagHi Register

N 0
I'é
32
0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

CHAPTER4 MEMORY MANAGEMENT SYSTEM

4.3.3 Virtual-to-Physical Address Translation

During virtual-to-physical address transiation, the CPU compares the 8-bit ASID {if the Global bit, G, is not set to
1) of the virtual address to the ASID of the TLB entry to see if there is a match. One of the following comparisons
are also made:

< In 32-bit mode, the high-order bits (up to bit 28, the number of bits depending upon the TLB page size) of the
32-bit virtual address are compared to the contents of the VPN2 {virtual page number divided by two) of
each TLB entry.

< In 84-bit mode, the high-order (up to bit 39, the number of bits depending upon the TLB page size) of the
64-bit virtual address are compared to the contents of the R and the VPN2 (virtual page number divided by
two) of each TLB entry.

if a TLB entry matches, the physical address and access control bits {C, D, and V) are retrieved from the matching
TLB entry. Whiie the V bit of the entry must be set to 1 for a valid address translation to take place, it is not
involved in the determination of a matching TLB entry.

Figure 4-22 illustrates the TLB address translation flow.

81

CHAPTER4 MEMORY MANAGEMENT SYSTEM

82

Figure 4-22. TLB Address Translation

Virtual address (input)

V=17
Yeos
! Oirty
No al Yes
Yes Mo
Uncached _ LB
area? Invakd
Exception
Access
main
memory

Physical address (output)

XTLB
Mismatch

Exception

CHAPTER4 MEMORY MANAGEMENT SYSTEM

{1) TLB misses

If there is no TLB entry that matches the virtual address, a TLB Refill (miss) exception occurs™™. If the access
control bits (D and V) indicate that the access is not valid, a TLB Modified or TLB Invalid exception occurs. If the
C bit is 010, the retrieved physical address directly accesses main memory, bypassing the cache.

Note See Chapter 5 for details of the TLB Miss exception.

(2) TLB instructions

The instructions used for TLB control are described below.

(a) Translation lookaside buffer probe (TLBP)

The translation lookaside buffer probe (TLBP}) instruction loads the Index register with a TLB number that matches
the content of the EntryHi register. If there is no TLB number that matches the TLB entry, the highest-order bit of
the Index register is set.

(b) Translation lookaside buffer read (TLBR)

The translation lookaside buffer read (TLBR) instruction loads the EntryHi, EntryLo0, EntryLo1, and PageMask
registers with the content of the TLB entry indicated by the content of the Index register.

{c) Translation lookaside buffer write index (TLBWI)

The translation lookaside buffer write index (TLBWI) instruction writes the contents of the EntryHi, EntryLo0,
EntryLo1, and PagaMask registers to the TLB entry indicated by the content of the Index register.

(d) Translation lookaside buffer write random (TLBWR)

The translation lookaside buffer write random (TLBWR) instruction writes the contents of the EntryHi, EntryLo0,
EntryLo1, and PageMask registers to the TLB entry indicated by the content of the Random register.

[MEMO]

84

CHAPTER 5 EXCEPTION PROCESSING

This chapter describes CPU exception processing, including an explanation of exception processing, followed by
the format and use of each CPU exception register.

The chapter concludes with a description of each exception’s cause, together with the manner in which the CPU
processes and services each exception.

5.1 HOW EXCEPTION PROCESSING WORKS

The processor receives exceptions from a number of sources, including translation leokaside buffer (TLB) misses,
arithmetic overflows, {/O interrupts, and system calls. When the CPU detects an exception, the normal sequence
of instruction execution is suspended and the processor enters Kernel mode (see Chapter 4 for a description of
system operating modes).

The processor then disables interrupts and transfers control for execution to the exception handler (located at a
specific address as an exception handling routine implemented by software). The handler saves the context of
the processor, including the contents of the program counter, the current operating mode {User or Supervisor),
statuses, and interrupt enabling. This context is saved so it can be restored when the exception has been
serviced.

When an exception occurs, the CPU loads the Exception Program Counter (EPC) register with a location where
execution can restart after the exception has been serviced. The restart location in the EPC register is the
address of the instruction that caused the exception or, if the instruction was executing in a branch delay slot, the
address of the branch instruction immediately preceding the delay slot.

The VR4101 processor supports a Supervisor mode and fast TLB refill for all address spaces. The VR4101 also
provides the following functions:

< Interrupt enable (IE) bit

< Operating mode (User, Supervisor, or Kernel)

<> Exception level (normal or exception, as indicated by the EXL bit in the Status register)
< Error level (normal or error indicated by the ERL bit in the Status register).

Interrupts are enabled when the following conditions are satisfied:

< Interrupt enable bit (IE) = 1
4 EXL bit=0, ERLDbit=0
< Corresponding IM field bits in the Status register = 1

< The operating mode is specified by base mode when the exception level is normal (0), and is set to Kernel
mode when either the EXL bit or ERL bit is set to 1.

Returning from an exception resets the exception level to normal.

The registers described later in the chapter assist in this exception processing by retaining address, cause and
status information.

For a description of the exception handling process, see the description of the individual exception contained in
this chapter, or the flowcharts at the end of this chapter.

85

CHAPTER 5 EXCEPTION PROCESSING

5.2 PRECISION OF EXCEPTIONS

VR4101 exceptions are logically precise; the instruction that causes an exception and all those that follow it are
aborted and can be re-executed after servicing the exception. When succeeding instructions are killed,
exceptions associated with those instructions are also killed. Exceptions are not taken in the order detected, but
in instruction fetch order.

There is a special case in which the VR4101 processor may not be able to restart easily after sarvicing an
exception. When a cache data parity error exception accurs on a load with a cache hit, the VR4101 processor
does not prevent the cache data (with erroneous parity) from being written back into the register file during the WB
stage. The exception is still precise, since both the EPC and CacheError registers are updated with the correct
virtual address pointing to the offending load instruction, and the exception handler can still determine the cause
of exception and its origin. The program can be restarted by rewriting the destination register - not automatically,
however, as in the case of all the other precise exceptions where no status change occurs.

5.3 EXCEPTION PROCESSING REGISTERS

This section describas the CPO registers that are used in exception processing. Table 5-1 lists these registers,
along with their number-each register has a unique identification number that is referred to as its register number.
The CPO registers not listed in the table are used in memory management (see Chapter 4 for details).

The exception handler examines the CPO registers during exception processing to determine the cause of the
exception and the state of the CPU at the time the exception occurred.

The registers in Table 5-1 are used in exception processing, and are described in the sections that follow.

Table 5-1. CPO Exception Processing Registers

Register name Register number
Context register 4
BadVAddr register 8
Count register 9
Compare register 11
Status register 12
Cause register 13
EPC register 14
WatchLo register 18
WatchHi register 19
XContext register 20
Parity Error register 26
Cache Error register 27
ErrorEPC register 30

CHAPTER 5 EXCEPTION PROCESSING

5.3.1 Context Register (4)

The Context register is a read/write register containing the peinter to an entry in the page tabie entry (PTE) array,
this array is & table that stores virtual-to-physical address translations. When there is & TLB miss, the operating
system loads the unsuccessfully translated entry from the PTE array to the TLB. The Context register is used by
the TLB Refill exception handler for loading TL8 entries. The Context register duplicates some of the information
provided in the BadVAddr register, but the information is arranged in a form that is more useful for a software TLE
exception handler. Figure 5-1 shows the format of the Context register.

Figure 5-1. Context Register Format

(a} 32-bit mode
K} 25 24 4 3 0
PTEBase BadVPN2 0

7 21 4

{b) 84-bit mode
63 25 24 4 3 o}

PTEBase | BadVPN2 0 I

39 21 4

PTEBase: The PTEBase field is a read/write field. it is used by software as the pointer to the base address of
the PTE table in the current user address space.

BadVPN2: The BadVPN2 field is written by hardware if a TLB miss occurs. This field holds the value (VPNZ2)
obtained by halving the virtual page number of the most recent virtual address for which translation
failed.

0 Reserved for future use. Write O in a write operation. When this field is read, O is read.

The 21-bit BadVPN2 field contains bits 31-11 of the virtual address that caused the TLB miss; bit 10 is excluded
because a single TLB entry maps to an even-odd page pair. For a 1-Kbyte page size, this format can directly
address the pair-table of 8-byte PTEs. When the page size is 4 Kbytes or more, shifting and masking this value
produces the correct PTE reference address.

87

CHAPTER5 EXCEPTION PROCESSING

5.3.2 BadVAddr Register (8)

The Bad Virtual Address (BadVAddr) register is a read-only register that displays the most recent virtual address
that failad to have a valid transtation, or that had an addressing emor. Figure 5-2 shows the format of the

BadVAddr register.

Caution This register does not hold any information when a Bus Error exception occurs because it is not
an Address Error exception.

Figure 5-2. BadVAddr Register Format

(a) 32-bit mode

3 0
| BadVAddr I
32

{b) 64-bit mode

63 0
l : BedVAddr I
64

BadVAddr. Most recent virtual address for which an addressing error occurred, or for which address translation
failed

5.3.3 Count Register (9)

The read/write Count register acts as a timer, It is incremented at the MasterOut clock speed, regardless of
whether instructions are being executed, retired, or any forward progress is actually made through the pipeline.

When the register reaches all ones, it rolls over to zero and continues counting. This register is used for self-
testing, system initialization, or the establishment of inter-process synchronization.

Figure 5-3 shows the format of the Count register.

Figure 5-3, Count Register Format

k)| 0

| Count I

32

Count: 32-bit counter vatue that is incremented in synchronization with the MasterOut clock

CHAPTER 5 EXCEPTION PROCESSING

5.3.4 Compare Register {(11)

The Compare-register causes a timer interrupt; it maintains a stable value that does not change on its own.

When the value of the Count register (see Section 5.3.3) equals the value of the Compare register, the [P{7) bit in
the Cause register is set. This causes an interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer interrupt request.

For diagnostic purposes, the Compare register is a read/write register. Normally, this register is only used for a
write. Figure 5-4 shows the format of the Compare register.

Figure 5-4. Compare Regjister Format

3 0
| Compare I
32

Compare: Vaiue that is compared with the count value of the Count register

5.3.5 Status Register (12)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Figure 5-5 shows the format of the Status register. Figure 5-6 shows the details of the
Diagnostic Status (DS) field. All DS field bits other than the TS bit are writable.

Major Status register fields are detailed below.

Figure 5-5. Status Register Format

3 29 28 27 26 25 24 16 15 8 7 6 5 4 3 2 1 0
0 em| 0 |RE DS M KX|SX{UX| KSU |erL|ex|IE
3 1 2 1 9 8 1 1 1 2 T 11
Ccuo: Enables/disables the use of the coprocessor (1 — Enabled, 0 — Disabled).
CPO can be used by the kernel at all times.
0: Reserved. Tobesetto 0.
RE: Enables/disables reversing of the endian setting in User mode (0 — Disabled, 1 —» Enabled). This
bit must be set to 0 since the VR4101 supports the little-endian order only.
Ds: Diagnostic Status field (see Figure 5-6).
IM: Interrupt Mask field used to enable/disable interrupts (0 — Disabled, 1 — Enabled). This field
?;r:\gs of 8 bits that are used to control eight interrupts. The bits are assigned to interrupts as

CHAPTER 5 EXCEPTION PROCESSING

SX:

Ux:

KSU:
ERL:

EXL:

BEV:

TS:

SR:
CH:

CE:

DE:

M7 : Masks a timer interrupt.

IM(6:2) : Mask ordinary interrupts (Int(4:0)"™ and write requests). However, Int(4:2)"™
never occur in the VR4101.

IM{1:0) : Mask software interrupts.

Note: int(4:0) are the internal signals of the VR4100 CPU core. For details about connection to
the on-chip peripheral units, refer to Chapter 14.

Enables 64-bit addressing in Kernel mode (0 — 32-bit, 1 —» 64-bit). If this bit is set, an XTLB Refill
exception occurs if a TLB miss occurs in the Kernel mode address space.

Enables 64-bit addressing and operation in Supservisor mode (0 — 32-bit, 1 — 64-bit). If this bit is
set, an XTLB Refill exception occurs if a TLB miss occurs in the Supervisor mode address space.

£nables 64-bit addressing and operatian in User mode (0 — 32-bit, 1 —» 84-bit). |Ifthis bit is set, an
XTLB Refill exception oceurs if a TLB miss occurs in the User mode address space.

Sets and indicates the operating mode (10 — User, 01 — Supervisor, 00 — Kernel).
Sets and indicates the error level (0 —» Nermal, 1 — Error).

Sets and indicates the exception level (0 — Normal, 1 — Exception}.

Sets and indicates interrupt enabling/disabling (0 — Disabled, 1 — Enabled).

Figure 5-8. Status Register Diagnostic Status Field

24 23 22 2 20 19 18 17 16
0 BEV TS SR 0 CH CE DE

2 1 1 1 1 1 1 1

Specifies the base address of a TLB Refill exception vector and common exception vector (O —
Normal, 1 — Bootstrap}.

Causes the TLB to be shut down (read-only) (¢ — Not shut down, 1 — Shut down). This bit is used
to avoid any problems that may occur when multiple TLB entries match the same virtual address.
After the TLB has been shut down, reset the processor to enable restart. Note that the TLB is shut
down even if a TLB entry matching a virtual address is marked as being invalid (with the V bit
cleared).

Causes a Soft Reset or NMI exception (0 — Not caused, 1 —» Caused).

CPOQ condition bit (0 — Faise, 1 — True). This bit can be read and written by software only, it cannot
be accessed by hardware.

When CE = 1, the contents of the PErT register are written to the check bits of the cache (See the
description of the PErr register (26)).

Specifies whether a cache parity error causes an exception {0 — Enable parity check, 1 — Disable
parity check).

Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

{1} Status register modes and access states

Fields of the Status register set the modes and access states described in the sections that follow.

CHAPTER 5 EXCEPTION PROCESSING

‘(a} Interrupt enable

Interrupts are enabled when all of the foliowing conditions are true:

< IE is setto 1.

4 EXL is cleared to 0.

<% ERL is cleared to 0.

<» The appropriate hit of the IM is set to 1.
{b) Operating modes

The following Status register bit settings are required for User, Kernel, and Supervisor modes.

< The processor is in User mode when KSU = 10, EXL =0, and ERL = 0.
<> The processor is in Supervisor mode when KSU =1, EXL =0, and ERL = 0.
< The processor is in Kernel mode when KSU =00, EXL =1, or ERL = 1.

(c) 32- and 64-bit modes

The following Status register bit settings select 32- or 64-bit operation for User, Kernel, and Supervisor operating
modes. Enabling 64-bit operation permits the execution of 64-bit apcodes and transiation of 64-bit addresses.
64-bit operation for User, Kernel and Supervisor modes can be set independently.

< B4-bit addressing for Kernel mode is enabled when KX bit = 1. 64-bit operations are always valid in Kernei
mode.

< 64-bit addressing and operations are enabled for Supervisor mode when SX bit = 1.
< B4-bit addressing and operations are enabled for User mode when UX bit = 1.
(d) Kemel address space accesses

Access to the kernel address space is allowed when the processor is in Kernel mode.

(e) Supervisor address space accesses

Access to the supervisor address space is allowed when the processor is in SBuperviser or Kernel mode.

(f} User address space accesses

Access 1o the user address space is allowed in any of the three operating modes.

{2) Status register reset
The contents of the Status register are undefined after a Cold Reset, except for the following bits in the Diagnostic
Status field:

<~ T8=0,8R=0
< ERL and BEV = 1
< The SR bit distinguishes between a Cold Reset and Soft Reset.

Remark Cold Reset and Soft Reset are the sequences to initialize the VR4100 CPU core. For details about
initialization of the whole VR4101 including on-chip peripheral units, refer to Chapter 7.

91

CHAPTER 5 EXCEPTION PROCESSING

5.3.6 Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most recent exception. A 5-bit exception code
indicates one of the causes (see Table 5-2). All bits in the Cause register, with the exception of the IP1 and IP0
bits, are read-only, IP1 and IPQ are used for software interrupts. Figure 5-7 shows the fields of this register;
Table 5-2 describes the Cause register codes.

Figure 5-7. Cause Register Format

3N 30228 28 27 16 15 8 7 6 2 1 0
,_B_D 0| CE 0 IP(IP7..1P0} | O | ExcCode| O
1 1 2 12 8 1 5 2
BD: indicates whether the most recent exception occurred in the branch delay stot (1 — In delay slot, 0 —»
Normal).
CE: Indicates the number of the coprocessor for which a Coprocessor Unusable exception occurred.
This field will remain undefined for as long as no exception ocours.
IP: Indicates whether an interrupt is pending {1 — Interrupt pending, 0 — No interrupt pending).
IP7 © Atimer interrupt.
IP(6:2) : Ordinary interrupts (Int{4:0)"*™ and write requests). However, Int(4:2)"***® never

occur in the VR4101.
IP{(1:0) . Software interrupts.

Note: Int(4:0) are the internal signals of the VR4100 CPU core. For details about connection to
the on-chip peripheral units, refer to Chapter 14.

ExcCode: Exception code field

0: Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

02

CHAPTERS5 EXCEPTION PROCESSING

Table 5-2. Cause Register Exception Code Field

Exception code Mnemonic Description
0 Int Interrupt exception
1 Mod TLB Modified exception
2 TLBL TLB Refill exception {load or fetch)
3 TLBS TLB Refill exception (store)
4 AdEL Address Error exception (load or fetch)
5 AdES Address Error exception (store)
6 IBE Bus Error exception (instruction fetch)
7 DBE Bus Error exception (data load or store)
8 Sys System Call exception
9 Bp Breakpoint exception
10 RI Reserved Instruction exception
11 Cpu Coprocessor Unusable exception
12 Ov Integer Overflow exception
13 Tr Trap exception
14-22 — Reserved for future use
23 WATCH Watch exception
24-A — Reserved for future use

03

CHAPTER S EXCEPTION PROCESSING

5.3.7 Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing
rasumes after an exception has been serviced.

The EPC register contains either:

< Virtual address of the instruction that was the direct cause of the exception

< Virtual address of the immediately preceding branch or jump instruction (when the instruction associated
with the exception is in a branch delay slot, and the BD bit in the Cause register is setto 1).

The EXL bit in the Status register is set to 1 to keep the processor from overwriting the address of the exception-
causing instruction contained in the EPC register in the svent of another exception.

Figure 5-8 shows the format of the EPC register.

Figure 5-8. EPC Register Format

(a) 32-bit mode
kil o]
EPC

2

{(b) 84-bit mode

-] 0
EPC
64
EPC: Restart address after exception processing

84

CHAPTER S EXCEPTION PROCESSING

5.3.8 WatchLo (18) and WatchHi (19) Registers

The VR4101 processor provides a debugging feature to detect references to a selected physical address; load and

store instructions to the location specified by the WatchLo and WatchHi registers cause a Watch exception.

Figures 5-9 and 5-10 show the format of the WatchLo and WatchHi registers.

Figure 5-9. WatchLo Register Format

3t 32 1 0
| PAddr0 |0|R|WI
29 1 1 1

PAddrO; Specifies physical address bits 31 to 3.

R: If this bit is set to 1, an exception will occur when a load instruction is executed.
W: If this bit is set to 1, an exception will occur when a store instruction is executed,
0 Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

Figure 5-10. WatchHI Register Format

3 0
Lé
a2
0 Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

05

CHAPTER 5 EXCEPTION PROCESSING

5.3.9 XContext Register (20)

The readiwrite XContext register contains a pointer to an entry in the kernel page table entry (PTE) array, an
operating system data structure that stores virtuak-to-physical address translations. |f a TLB miss occurs, the
operating system loads the untranslated data from the PTE into the TLB to handle the software error.

The XContext register is used by the XTLB Refill exception handler to load TLB entries in 64-bit addressing mode.

The XContext register duplicates some of the information provided in the BadVAddr register, and puts it in a form
useful for the XTLB exception handler.

This register is included solely for operating system use. The operating system sets the PTEBase field in the
register, as needed. Figure 5-11 shows the format of the XContext register.

Figure 5-11. XContext Register Format

63 B M4 B R 4 3 o
PTEBase R BadVPN2 0

29 2 2 4

PTEBase: The PTEBase field is a readAwrite field, and is used by software as the pointer to the base address of
the PTE table in the current user address space.

BadVPN2: The BadVPN2 field is written by hardware if a TLB miss occurs. This field holds the value (VPN2)
obtained by halving the virtual page number of the most recent virtual address for which translation

failed.

R: Space type (00 — User, 01— Supervisor, 11 — Kernel). The setting of this field matches virtual
address bits 63 and 62.

O Reserved for future use. 'Write 0 in a write operation. When this field is read, 0 is read.

The 28-bit BadVPN2 field has bits 39 to 11 of the virtual address that caused the TLB miss; bit 10 is excluded
because a single TLB entry maps to an even-odd page pair. For a 1-Kbyte page size, this format may be used
directly to address the pair-table of 8-byte PTEs. For 4-Kbyte-or-more page and PTE sizes, shifting and masking
this value produces the appropriate address.

CHAPTER 5 EXCEPTION PROCESSING

5.3.10 Parity Error Register (26)

The read/write Parity Error (PErr) register contains the cache data parity bits for cache initialization, cache
diagnostics, or cache error processing.

The PErT register is loaded by the Index_Load_Tag CACHE instruction. All bit of the parity field are valid on the
data cache operation. But a LSB of the parity field is valid on the instruction cache operation.

The contents of the PErT register. are:
% written into the primary data cache on store instructions {instead of the computed parity) when the CE bit of
the Status register is set to 1
4 substituted for the computed parity for the CACHE Fill instruction

Figure 5-12 shows the format of the PErr register.

Figure 5-12. PErr Register Format

31 8 7 0
l 0 | Parity I
24 8
Parity: Specifies the 8-bit parity data to be read from or written to the primary cache.
0 Reserved for future use. Write 0 in a write operation. When this field is read, O is read.

5.3.11 Cache Error Register (27)

The 32-bit read/write Cache Error {CacheErr) register processes parity errors in the primary cache. Parity errors
cannot be corrected by on-chip hardware.
The CacheErr register holds cache index and status bits that indicate the cause of the error.

Figure 5-13 shows the format of the CacheErr register.

Figure 5-13, CacheErr Register Format

313020282726825 24 11 10 0
0 ep|er| O |ee|es 0 Pldx I
11141111 14 1
ER: Reference type (0 — Instruction, 1 — Data)
ED: Indicates whether an error occurred in the data field (0 — Normal, 1 — Error).
ET: Indicates whether an error occurred in the tag field (0 — Normal, 1 — Error).
EE: This bit is set if an error occurs on the SysAD bus.
EB: This bit is set if a data error occurs subsequent to an instruction errer. (The error status is indicated

by the remaining bit positions.) In this case, the data cache must be flushed upon the completion of
instruction error processing.

Pldx: Cache index
0. Reserved for future use. Write 0 in a write operation. When this field is read, 0 is read.

97

CHAFTER § EXCEPTION PROCESSING

5.3.12 ErrorEPC Register (30)
The Error Exception Program Counter {ErrorEPC} register is similar to the EPC register. It is also used to store
the Cache error, Cold Reset, Soft Reset, and Program Counter on NMI exceptions.

The read/write ErrorEPC register contains the virtual address at which instruction processing can resume after
servicing an efror. This address can be:

< the virtual address of the instruction that caused the exception

< the virtual address of the immediately preceding branch or jump instruction, when the instruction associated
with the error exception is in a branch delay slot.

The contents of the ErrorEPC register do not change when the ERL bit of the Status register is setto 1. This
prevents the processor when other exceptions occur from overwriting the address of the instruction in this register
which causes an error exception.

There is no branch delay slot indication for the ErrorEPC register.
Figure 5-14 shows the format of the ErrorEPC ragister.

Figure 5-14. The ErrorEPC Register Format

(a) 32-bit mode

N 4]
| ErrorEPC I
32

{b} B4-bit mode

63 1}
| ErrorEPC I
64

ErrorEPC: Restart address after parity error exception processing, or the contents of the Program Counter at
Cold Reset, Soft Reset, or NMI exception.

CHAPTER § EXCEPTION PROCESSING

5.4 DETAILS OF EXCEPTIONS

This section gives sample exception handler operations for the following exception types:

5.4.1 Exception Types

This section gives sample exception handler operations for the following exception types:

< Cold Reset

< Soft Reset

< NMI

< Cache error

< Remaining processar exceptions

When the EXL and ERL bits in the Status register are 0, either User, Supervisor, or Kernel operating mode is
specified by the KSU bits in the Status register. When either the EXL or ERL bit is set to 1, the processor is in
Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, meaning the system is in Kernel mode. After
saving the appropriate state, the exception handler typically resets the EXL bit back to 0. The exception handler
sets the EXL bit to 1 so that the saved state is not lost upon the occurrence of another exception while the saved
state is being restored.

Returning from an exception also resets the EXL bitto 0. For details, see Chapter 24.

5.4.2 Exception Vector Locations

The Cold Reset, Soft Reset, and NM| exceptions are always vectored to the following reset exception vector
address. This address is in an uncached, unmapped space.

< OxBFCO 0000 in 32-bit mode
< OxFFFF FFFF BFCO 0000 in 64-bit mode

Addresses for the remaining exceptions are a combination of a vector offset and a base address.

CHAPTER 5 EXCEPTION PROCESSING

{1) TLB Refill vector
When BEV bit = 0, the vector base address for the TLB Refill exception is in kseg0 (unmapped) space.

< 0x8000 0000 in 32-bit mode
& OxFFFF FFFF 8000 0000 in 84-bit mode

When BEYV bit = 1, the vector base address for the TLB Refil! exception is in kseg1 {uncached, unmapped) space.

< OxBFCO 0200 in 32-bit made
< OxFFFF FFFF BFCO 0200 in 64-bit mode

This is an uncached, non-TLB-mapped space, allowing the exception handler to bypass the cache and TLB.

{2) Cache Error exception vector

When BEV bit = 0, the vector base address for the Cache Error exception is in kseg1 {uncached, unmapped)
space.

< 0xAD00 0000 in 32-bit mode
< OxFFFF FFFF A000 0000 in 64-bit mode

When BEV bit = 1, the vector base address for the Cache Error exception is in kseg1 {uncached, unmapped)
space. :

% OxBFCO 0200 in 32-bit mode
% OxFFFF FFFF BFCO 0200 in 64-bit mode

This is an uncached, non-TLB-mapped space, allowing the exception handler to bypass the cache and TLB.
64-bit mode exception vectors and their cffsets are shown below.

Table 5-3. 64-Bit Mode Exception Vector Base Addresses

Vector base address Vector offset
Cold Resat OxFFFF FFFF BFCO 0000 Ox0000
Soft Reset
NMI
Cache Error OxFFFF FFFF AQOO 0000 (BEV=0) Ox0100
OxFFFF FFFF BFC0O 0200 (BEV=1)
TLB Refill (EXL = 0) OxFFFF FFFF 8000 0000 (BEV=0) Ox0000
XTLB Refill (EXL = 1) OxFFFF FFFF BFCO 0200 (BEV=1) 0x0080
Other exceptions 0x0180

100

CHAPTER S EXCEPTION PROCESSING

5.4.3 Priority of Exceptions

The remainder of this chapter describes exceptions in the order of their priority shown in Table 5-4 (certain of the
exceptions, such as the TLB exceptions and Instruction/Data exceptions, grouped together for convenience).
While more than one exception can occur for a single instruction, only the exception with the highest priority is
reported. Table 5-4 lists the priorities.

Table 5-4. Exception Priority Order

High Cold Resst

t Soft Reset
NMI
Address Error {instruction fetch)
TLB/XTLB Refill {instruction fetch)
TLB Invalid {instruction fetch)
Cache Error {instruction fetch)
Bus Error (instruction fetch)
System Call
Breakpoint
Coprocessor Unusable

Trap

Integer Overflow

Address Error (data access)
TLB/XTLB Refill (data access)
TLB Invalid (data access)
TLB Modified (data write)
Cache Error (data access)
Watch

|
|
|
|
|
|
|
|
|
| Reserved Instruction
|
]
|
|
|
|
|
|
| Bus Error (data access)

Low Interrupt (cther than NMI})

Generally speaking, the exceptions described in the following sections are handled (“processed”) by hardware;
these exceptions are serviced by software.

101

CHAPTER 5 EXCEPTION PROCESSING

5.44 Cold Reset Exception

Cause

The Cold Reset exception occurs when the ColdReset* signal (internal) is asserted and then deasserted. This
exception is not maskable. The Reset* signal (internal) must be asserted along with the ColdReset* signal {for
details, see Chapter 7).

Processing
The CPU provides a special interrupt vector for this exception:

< OxBFCO 0000 in 32-bit mode
< OxFFFF FFFF BFCO 0000 in 64-bit mode

The Cold Reset vector resides in unmapped and uncached CPU address space, so the hardware need not
initialize the TLB or the cache to process this exception. It alsoc means the processor can fetch and execute
instructions while the caches and virtual memory are in an undefined state.

The contents of ait registers in the CPU are undefined when this exception occurs, except for the following register
fields:

< T3S and SR of the Status register are cleared to 0.

< ERL and BEV of the Status register are set to 1.

< The Random register is initialized to the value of its upper bound (31).

< The Wired register is initialized to 0.

< Bits 31 to 28 of the Cenfig register are set to 0, and bits 22 to 3 to 0x04800.
< All other bits are undefined.

Servicing
The Cold Reset exception is serviced by:

< Initializing all processor registers, coprocessor registers, TLB, caches, and the memory system
¢ Performing diagnostic tests
< Bootstrapping the operating system

102

CHAPTERS EXCEPTION PROCESSING

5.4.5 Soft Reset Exception

Cause

A Soft Reset {(sometimes called Warm Reset) occurs when the ColdReset* signal remains deasserted while the
Reset* signal goes from assertion for at least 16 MasterClocks to deassertion (for details, see Chapter 7).

A Soft Reset immediately resets all state machines, and sets the SR bit of the Status register. Execution begins
at the reset vector when the reset is deasserted. This exception is not maskable.

Processing
The CPU provides a special interrupt vector for this exception (same location as Cold Reset):

< OxBFCO0 0000 in 32-bit mode
< OxFFFF FFFF BFCO 0000 in 84-bit mode

This vector is located within unmapped and uncached address space, so that the cache and TLB need not be
initialized to process this exception. The SR bit of the Status register is set to 1 to distinguish this exception from
a Cold Reset exception.

When this exception occurs, the contents of all registers are preserved except for the following registers:

< In the ErrorEPC register, the value of the Program Counter when an exception occurred is set.
< TS bit of the Status register are cleared to 0.
< ERL, SR, and BEV bits of the Status register are set to 1.

A Soft Reset can occur when the processor is placed in any state. So, access to the operating cache or system
interface may be aborted. This means that the contents of the cache and memory will be unpredictable if a Soft
Reset occurs.

Servicing
The Soft Reset exception is serviced by:

< Preserving the current processor states for diagnostic tests
< Reinitializing the system in the same way as for a Cold Reset exception

103

CHAPTER 5 EXCEPTION PROCESSING

5.4.6 NMI Exception

Cause

The Nonmaskabls Interrupt {NMI) exception occurs in response to the input of the NMI signal (internal). An NMI
can also be set by an external write through the SysAD bus. This interrupt is not maskable; it occurs regardless
of the settings of the EXL, ERL, and the |E bits in the Status register (for details, see Chapters 9 and 14).

Processing
The CPU provides a special interrupt vector for this exception:

< OxBFCO 0000 in 32-bit mode
< OxFFFF FFFF BFCQ 0000 in 64-bit mode

This vecter is located within unmapped and uncached address space so that the cache and TLB need not be
initialized to process an NMI intarrupt. The SR bit of the Status register is set to 1 to distinguish this exception
from a Cold Reset exception.

Unlike Cold Reset and Soft Reset, but like other exceptions, NMI is taken only at instruction boundarles The
state of the caches and memory system are preserved by this exception.

When this exception occurs, the contents of all registers are preserved except for the following registers:

< In the ErrorEPC register, the value of the Program Counter when an exception occurred is set.
< The TS bit of the Status register is cleared to 0.
< The ERL, SR, and BEV bits of the Status register are set to 1.

Servicing
The NMI exception is serviced by:

< Praserving the current processor states for diagnostic tests
< Reinitializing the system in the same way as for a Cold Reset exception

104

CHAPTER 5 EXCEPTION PROCESEING

5.4.7 Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute one of the following. This exception is
not maskable.

& Execution of the LW, LWU, SW, or CACHE instruction for word data that is not located on a word boundary
4 Execution of the LH, LHU, or SH instruction for half-word data that is not located on a half-word boundary
% Execution the LD or SD instruction for double-word data that is not located oh a double-word boundary

4 Referencing the kernel address space in User or Supervisar mode

4 Referencing the supervisor space in User mode

< Referencing an address that does not exist in the kernel, user, or supervisor address space in 64-bit Kernel,
User, or Supervisor mode

< Branching to an address that is not located on a word boundary

Processing

The common exception vector is used for this exception. The AdEL or AJES code in the Cause register is set,
indicating whether the instruction caused the exception with an instruction reference (AdEL), load operation
(AJEL), or store operation (AdES).

When this exception occurs, the BadVAddr register retains the virtual address that was not properly aligned or
was referenced in protected address space. The contents of the VPN field of the Context and EntryHi registers
are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the exception, unless this instruction is in a
branch delay slot. If it is in a branch delay slot, the EPC register contains the address of the preceding branch
instruction and the BD bit of the Cause register is setto 1.

Servicing

The kerne! reports the UNIXT"“l SIGSEGY (segmentation violation) signal to the current process, but the exception
is usually fatal.

105

CHAPTER 5 EXCEPTION PROCESSING

5.4.8 TLB Exceptions

Three types of TLB exceptions can occur:

< TLB Refill exception occurs when there is na TLB entry that matches a referenced address.

< A TLB Invalid exception occurs when a TLB entry that matches a referenced virtual address is marked as
being invalid {with the V bit set to 0).

< The TLB Modified exception occurs when a TLB entry that matches a virtual address referenced by the store
instruction is marked as being valid (with the V bit set to 1), but is not writable.

The following three sections describe these TLB exceptions.

{1) TLB Refill exception {32-bit space mode}/XTLB Refill exception (64-hit space mode)

Cause

The TLB Refill exception occurs when there is no TLB entry to match a reference to a mapped address space.
This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for references to 32-bit address spaces, and one
for references to 84-bit address spaces. The UX, SX, and KX bits of the Status register determine whether the
user, supervisor or kernel address spaces referenced are 32-bit or 64-bit spaces. When the EXL bit of the Status
is set to 0, these two special vectors are referenced. When the EXL bit is set to 1, the common exception vector
is refarenced.

This exception sets the TLBL or TLBS code in the ExcCode field of the Cause register. [fthis exception has been
caused by an instruction reference or load operation, TLBL is set. If it has been caused by a store operation,
TLBS is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers hold the virtual address that
failed address transiation. The EntryHi register also contains the ASID from which the translation fault cccurred.
The Random register normally contains a valid location in which to place the replacement TLB entry. The
contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception, unless this instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and the
BD bit of the Cause register is set to 1.

Servicing

To service this exception, the contents of the Context or XContext register are used as a virtual address to fetch
memory words containing the physical page frame and access control bits for a pair of TLB entries. The memory
word is written into the TLB entry by using the EntryLo0, EntryLo1, or EntryHi register.

It is possible that the physical page frame and access control bits are placed in a page where the virtual address is
not resident in the TLB. This condition is processed by allowing a TLB Refill exception in the TLB Refill exception
handler. In this case, the common exception vector is used because the EXL bit of the Status register is set to 1.

106

CHAPTER § EXCEPTION PROCESSING

(2) TLB Invalid exception

Cause

The TLB Invalid exception accurs when a virtual address reference matches a TLB entry that is marked invalid
{the V bit is set to 0). This exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or TLBS code in the ExcCode field of the
Cause register is set. If this exception has been caused by an instruction reference or load operation, TLBL is set.
If it has been caused by a store operation, TLBS is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers contain the virtual address
that failed address translation. The EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in which to place the replacement TLB entry.
The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the exception unless this instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and the
BD bit of the Cause register is setto 1.

Servicing
Usually, the V bit of a TLB entry is cleared in the following cases:

< When a virtual address does not exist
< When the virtual address exists, but is not in main memory {a page fault)
< When a trap is desired on any reference to the page (for example, to maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with a TLBP (TLB Probe) instruction,
and replaced by an entry with its Valid bit set to 1.

107

CHAPTER S EXCEPTION PROCESSING

(3) TLB Modified exception

Cause

The TLE Modified exception occurs when a virtual address referenced by the store instruction matches a TLB
entry that is marked valid (the V bit is set to 1) but is not writable (the D bit is set to 0). This exception is not
maskable.

Processing

The common exception vector is used for this exception, and the Mod code in the ExcCode field of the Cause
register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi registers contain the virtual address
that failed address translation. The EntryHi register also contains the ASID from which the transiation fault
occurred. The contents of the EntrylLo register are undefined.

The EPC register contains the address of the instruction that caused the exception unless that instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and the
BD bit of the Cause register is setto 1.

Servicing

The kernel uses the failed virtual address or virtual page number to identify the corresponding access control bits.
The page identified may or may not permit write accesses; if writes are not permitted, a write protection violation
oceurs.

If write accesses are permitted, the page frame is marked dirty (/writable) by the kernel in its own data structures.

The TLBP instruction places the index of the TLB entry that must be altered into the Index register. The EntrylLo
register is loaded with a word containing the physical page frame and access control bits (with the D bit set to 1),
and the EntryHi and EntryLo registers are written into the TLB.

108

CHAPTER 5 EXCEPTION PROCESSING

5.4.9 Cache Error Exception

Cause

The Cache Error exception occurs when either a primary cache parity error or a System bus parity error is
detected. This exception is not maskable, but error detection may be disabled by the DE bit of the Status
register.

If a parity error is detected when the DE bit of Status register is not set, a cache error exception is taken during one
of the following operations:

< An instruction fetch from instruction cache
% A load from the data cache

< Tag parity check on a store

< Main memory read by the processor

<% Most of the CACHE instructions {no exception is taken for the index_Lecad _Tag and Index_Store_Tag
CACHE instructions)

Processing

The processor sets the ERL bit in the Status register, saves the address to recover from the exception in ErrorEPC
register, and then transfers to a special vector in uncached space.

if the BEV bit = 0, the vector is one of the following:

< OxAQ00 0100 in 32-bit mode
4 OxFFFF FFFF AQ0O 0100 in 64-bit mode

If the BEV bit = 1, the vector is one of the following:

4 OxBFCO 0300 in 32-bit mode
< OxFFFF FFFF BFCO 0300 in 64-bit mode

Servicing

All errors should be logged. To correct cache parity errars, the systemn uses the CACHE instruction to invalidate
the cache block, overwrites the old data through a cache miss, and resumes execution with an ERET instruction.
Other errors are not correctable and are likely to be fatal to the current process.

108

CHAPTER 5 EXCEPTION PROCESSING

5.4.10 Bus Error Exception

Cause

A Bus Error exception is raised by board-level circuitry for events such as bus time-out, local bus parity errors, and
invalid physical memory addresses or access types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached reference, or unbuffered write occurs
synchronously.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE code in the ExcCode field of the
Cause register is set, signifying whether the instruction caused the exception by an instruction reference, load
operation, or store operation.

The EPC register contains the address of the instruction that caused the exception, unless it is in a branch delay
slot, in which case the EPC register contains the address of the preceding branch instruction and the BD bit of the
Cause register is set to 1.

Servicing

The physical address at which the fault occurred can be computed from information available in the System
Control Coprocessor (CP0) registers.

< If the IBE code in the Cause register is set (indicating an instruction fetch), the virtual address is contained in
the EPC register (or 4 + the contents of the EPC register if the BD bit of the Cause register is setto 1).

< If the DBE code is set {indicating a load or store), the virtual address of the instruction that caused the
exception (the address of the preceding branch instruction if the BD bit of the Cause register is set to 1) is
contained in the EPC register {or 4 + the contents of the EPC register if the BD bit of the Cause register is set
to 1).

The virtual address of the load and store instruction can then be obtained by interpreting the instruction. The
physical address can be abtained by using the TLBP instruction and reading the EntrylLo register to compute the
physical page number.

At the time of this exception, the kernel reports the UNIX SIGBUS {bus error) signal to the current process, but the
exception is usually fatal.

110

CHAPTER 5 EXCEPTION PROCESSING

5.4.11 System Call Exception

Cause

A System Call exception occurs during an attempt to execute the SYSCALL instruction. This exception is not
maskable.

Procassing

The common exception vector is used for this exception, and the Sys code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the SYSCALL instruction unless it is in @ branch delay slot, in which
case the EPC register contains the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status register is set to 1, otherwise this bit
is cleared.

Servicing
When this exception occurs, centrol is transferred to the applicable system routine.

To resume execution, the EPC register must be altered so that the SYSCALL instruction does not re-execute; this
is accomplished by adding a value of 4 to the EPC register before returning.

If a SYSCALL instruction is in a branch delay slot, interpretation of the branch instruction is required to resume
execution.

5.4.12 Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the BREAK instruction. This exception is not
maskable.

Processing

The common exception vecter is used for this exception, and the BP code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the BREAK instruction unless it is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction.

If the BREAK instruction is in a branch delay siot, the BD bit of the Status register is set to 1.

Servicing

When the Breakpoint exception occurs, control is transferred to the applicable systern routine. Additional
distinctions can be made by analyzing the unused bits of the BREAK instruction {bits 25 to 6), and loading the
contents of the instruction whose address the EPC register contains. A value of 4 must be added to the contents
of the EPC register to locate the instruction if it resides in a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction does not re-execute; this is
accomplished by adding a value of 4 to the EPC register before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the branch instruction is required to resume
execution.

111

CHAPTER S EXCEPTION PROCESSING

5.4.13 Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a coprocessor instruction for
either: , :

< a corresponding coprocessor unit that has not been marked usable (Status register bit, CUO = 0), or

<% CPO instructions, when the unit has not been marked usable (Status register bit, CU[0] = 0} and the process
executes in User or Supservisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU code in the ExcCode field of the Cause
register is set. The CE bit of the Cause register indicates which of the four coprocessors was referenced.

The EPC register contains the address of the unusable coprocessor instruction unless it is in a branch delay slot,
in which case the EPC register contains the address of the preceding branch instruction and the BD bit of the
Cause register is set to 1,

Servicing

The coprocessor unit to which an afternpted reference was made is identified by the CE bit of the Cause register.
One of the following processing is performed by the handler:

< |fthe process is entitled access to the coprocessor, the coprocessor is marked usable and the corresponding
state is restored to the coprocessor.

< If the process is entitled access to the coprocessor, but the coprocessor does not exist or has failed,
interpretation of the coprocessor instruction is possible.

< Ifthe BD bit is set to 1 in the Cause register, the branch instruction must be interpreted; then the coprocessor
instruction can be emulated and execution resumed with the EPC register advanced past the coprocessor
instruction.

< If the process is not entitled access to the coprocessor, the kernel reports UNIX SIGILL/ILL_PRIVIN_FAULT
(illegal instruction/privileged instruction fault) signal to the current process, but the exception is fatal.

112

CHAPTER 5 EXCEPTION PROCESSING

5.4.14 Reserved Instruction Exception

Cause
The Reserved Instruction exception occurs when an attempt is made to execute one of the following instructions:

< Instruction with an undefined major opcode (bits 31 to 26)

$ SPECIAL instruction with an undefined minor opcode (bits 5 to 0)
< REGIMM instruction with an undefined minor opcode (bits 20 to 16)
< 64-bit instructions in 32-bit User or Supervisor mode

B84-bit operations are always valid in Kernel mode regardless of the value of the KX bit in the Status register. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the Rl code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the reserved instruction unless it is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction and the BD bit of the Cause register is
setto 1.

Servicing

All currently defined MIPS ISA instructions can be executed. The process executing at the time of this exception
is handed a UNIX SIGILL/ILL_RESOP_FAULT (illegal instruction/reserved operand fault) signal. This error is
usually fatal.

5.4.15 Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEUI, TLTI, TLTUI, TEQI, or
TNEI instruction results in a TRUE condition. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the trap instruction causing the exception unless the instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and the
BD bit of the Cause register is set to 1.

Servicing

At the time of a Trap exception, the kernel reports the UNIX SIGFPE/FPE_INTOVF_TRAP ({floating-point
exception/integer overflow) signal to the current process, but the exception is usually fatal.

113

CHAPTER 5 EXCEPTION PROCESSING

5.4.16 Integer Overflow Exception

Cause

An integer Overflow exception occurs when an ADD, ADDI, SUB, DADD, DADDI or DSUB instruction results in a
2's complement overflow. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Ov code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the instruction that caused the exception unless the instruction is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and the
BD bit of the Cause register is set to 1.

Servicing

At the time of the exception, the kernet reports the UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point
exception/integer overflow) signal to the current process, but the exception is usually fatal.

5.4.17 Watch Exception

Cause

A Watch exception occurs when a load or store instruction references the physicai address specified in the
WatchlLo/WatchHi register. The WatchLo/WatchHi register specify whether a load or store or hoth could have
initiated this exception.

< When the R bit of the WatchLo register is set to 1: Load instruction
< When the W bit of the WatchLo register is setto 1: Store instruction
< When both the R bit and W bit of the WatchLo register are setto 1: Load instruction or store instruction

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed if the EXL bit is set to 1 in the Status register, and Watch is only maskable by
setting the EXL bit to 1 in the Status register.

Processing

The common exception vector is used for this exception, and the WATCH code in the ExcCode field of the Cause
register is set.

The EPC register contains the address of the load or store instruction that caused the exception unless it is in a
branch delay slot, in which case the EPC register contains the address of the preceding branch instruction and the
BD bit of the Cause register is set to 1.

Servicing

The Watch exception is a debugging aid; typically the exception handler transfers control to a debugger, allowing
the user to examine the situation. To continue, the Watch exception must be disabled to execute the faulting
instruction. The Watch exception must then be reenabled. The faulting instruction can be executed either by
the debugger or by setting breakpoints.

114

CHAPTERS5 EXCEPTION PROCESSING

5.4.18 Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions"™ is asserted. The significance of
these interrupts is dependent upon the specific systemn implementation.

Each of the eight interrupts can be masked by clearing the corresponding bit in the IM field of the Status register,
and all of the eight interrupts can be masked at once by clearing the IE bit of the Status register or setting the
EXL/ERL bit.

Note: They are 1 timer interrupt, 5 ordinary interrupts, and 2 software interrupts.

Processing

The common exception vector is used for this exception, and the int code in the ExcCode field of the Cause
register is set.

The IP field of the Cause register indicates current interrupt requests. It is possible that more than one of the bits
can be simultaneously set (or cieared) if the interrupt is asserted and then deasserted before this register is read.

The EPC register contains the address of the instruction that caused the exception unless it is in a branch delay
slot, in which case the EPC register contains the address of the preceding branch instruction and the BD bit of the
Cause register is setto 1.

Servicing

Hf the interrupt is caused by one of the two software-generated exceptions (SW0 or 8W1), the interrupt condition is
cleared by setting the corresponding Cause register bit to 0.

If the interrupt is caused by hardware, the interrupt condition is cleared by deactivating the corresponding interrupt
request signal.

5.5 EXCEPTION HANDLING AND SERVICING FLOWCHARTS

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

< Common exceptions and a guideline to their exception handler

< TLB/XTLB Refil! exception and a guideline to their exception handler

< Cache Error exception

< Cold Reset, Soft Reset and NMI axceptions, and & guideline to their handler.

Generally speaking, the exceptions are “handled” by hardware (HW), the exceptions are then “serviced” by
software (SW).

115

CHAPTER 5 EXCEPTION PROCESSING

Figure 5-15. Common Exception Handling (1/2)

(a} Handling exceptions other than Cold Reset, Soft Reset, NMI,

TLB/XTLB Mismatch, and Cache Error exceptions

(hardware)

EntryHi . VPN2, ASID
X/Context VPN2
Set Cause register {(ExcCode, CE)

BD bit 1
EPC — PC-4

PC « OxFFFF FFFF 8000 000C + 180
(Unmapped, cacheable space)

L

P

il

BD bk O

EPC PC

« The EntryHi and XContext registers

are set only when a TLB Mismatch,
TLB Invalid, or TLB Maodified
exception oceurs.

Check for multiple exceptions

« BadVAddr is set only when a TLB

Miematch, TLB Invalid, or TLB Modified
exception occurs. (BadVAddr is not set
when a Bus Emor exception occirs,)

Kemel mode is set, and interrupts are
disabled.

PC OxFFFF FFFF 8000 0200 + 180
(Unmapped, uncached space)

[To guideline to general exception handler J

Note The exceptions can be masked by the IE or IM bit.

setting the EXL bit.

118

The Watch exception can be set to pending status by

CHAPTER S5 EXCEPTION PROCESSING

Figure 5-15. Common Exception Handling (2/2)

{b) Servicing common exceptions (software)

Execute MFCO instruction
X/Cortext register
EPC register
Status register
Cause register

I

Execute MFCO instruction
(Status bit setting)
KSU bit . 00
EXL bit 0
IE bit « 1

Check the Cause register, and jump
to each routine

[The procassaor is reset.

: Check the Cause register, and jump-f

At

to each routine

Execute MTCO instruction
EPC register
Status register

ERET

« The occurrence of TLB Mismatch, TLB Invalid, and TLB Modified

exceptions is disabled by using an unmapped space.

« The occurrence of the Watch and Interrupt exceptions is

disabled by setting EXL = 1.

« Other exceptions are avoided in the OS programs.
« However, the Cold Reset, Soft Reset, and NMI exceptions are

enabled.

{In Kemnel mode, interrupts are enabled.)

« After EXL = O |s set, all exceptions are enabled (although the

Interrupt exception can be masked by the IE and IM bits, and the
Cache Ermror exception can be masked by the DE bit.)

The register flles are saved.

« The execution of the ERET instruction is disabled in the branch

delay slots for the other jump instructions.

« The processor does not execute an instruction in the branch

delay slot for the ERET instruction.

e PC <~ EPC EXL 0

117

CHAPTER S EXCEPTION PROCESSING

Figure 5-16. TLB/XTLB Refill Exception Handling (1/2)

(a) Handling TLB/XTLB Mismatch exceptions (hardware)

EntryHi . VPN2, ASID
XContext . VPN2
Set Cause register (ExcCode, CE)

Check for multiple
exceptions
BD bit . 1 BD bit 0
EPC « PC-4 EPC ~ PC
L [
XTLB Mismatch TLB Mismatch TLB Mismatch
Vector offset = Ox0B0 Vector offset = 0x000 Vector offset = Ox180
I e ! 1]
Kernel mode is set,
and interrupts are disabled.
= 1 (bootstrap)

PC OxFFFF FFFF 8000 000C + vecior offsat
{Unmapped, cacheable space)

PC « OxFFFF FFFF BOOO 0200 + vector offset
(Ynmapped, uncached space)

rpy

[To guideine to TLB/XTLB exception handier |

118

CHAPTER 5 EXCEPTION PROCESSING

Figure 5-18. TLB/XTLB Refill Exception Handling (2/2)

(b) Servicing TLB/XTLB Mismatch exceptions (software)

f‘

Execute MFCO instruction
X/Context register

The occurrence of TLB Mismatch, TLB Invalid, and TLB
Modified exceptions is disabled by using an unmapped space.
The occurenca of the Watch and Intermupt exceptions is
disabled by setting EXL= 1.

Other exceptions are avoided in the OS programs.

However, the Cold Reset, Soft Reset, and NMI exceptions are
enabled.

The physical address for a virtual address into the Context
register is loaded into the EntryLo register and written to the
TLB.

As long as a datafinstruction address exists in the mapping
space, another TLB Mismatch exception may occur. In such
acase, EXL = 1 is set, causing a jump to the common
exception vector. (In this case, the common exception handier
handles the TLB miss, the ERET instruction retums cortrol to
the user program, then a TLB Mismatch exception is generated
again.)

The execution of the ERET instruction is disabled in the branch
delay slots for other jump instructions.

The processor does not execute an instruction in the branch
delay slot for the ERET instruction.

PC « EPC,EXL 0

118

CHAPTER S EXCEPTION PROCESSING

(Hardware)

Figure 5-47. Cache Error Exception Handling

Set cache
erTor register

BD bit 1 BD bt « 0
EfrorEPC « PC - 4 EmorEPC PC

= 1 {bootstrap)

PC . OxFFFF FFFF ADOO 0000 + 100 PC « OxFFFF FFFF BFCO 0200 + 100
{Unmapped, uncached space) (Unmapped, uncached space)

(Software)

Note The Cache Error exception can be masked by setting the DE (SR16) bitto 1.

L e |

‘< disabled by satting ERL=1.
: « Other exceptions are avolded in the OS programs.

enabled.

delay slots for other jJump instructions.

delay slot for the ERET instruction.
e PC —EPC ERL (.0

Error exceptions are masked.

120

Check for multiple
exceptions

f_. The occurrence of TLB Mismatch, TLB Invalid, and TLB
Modified exceptions is disabled by using an unmapped space.

The occurrence of the Watch and Interrupt exceptions is

However, the Cold Reset, Soft Reset, and NM| exceptions are

The execution of the ERET instruction is disabled in the branch

The processor does not execute an instruction in the branch

When ERL = 1, Cache

CHAPTER 5 EXCEPTION PROCESSING

Figure 5-18. Cold Reset, Soft Reset, and NM| Exception Handling

Cold Reset
exception

{Hardware)

Soft Reset or NMI
exception

BD bit « 1 BD bit O BD bit 1 BD bit « O
ErrorEPC PC -4 ErrorEPC « PC ErrorEPC PC -4 ErrorEPC PC

l e ¥ I e v
1 T

Set Status register Random register « 31
BEVbit « 1 Wired register 0
TSbit 0 Update Config register bits
SR bit 1 31:28||Undef{27:23))|22:6][Undef(5:0)
ERL bit ¢ 1 Set Status register

BEV bit « 1

TSbit 0

SR bit ©

ERL bit 1

PC ¢ OXFFFF FFFF BFCO 0000

(Software) « The processor provides no means of

distinguishing between an NM|
exception and Soft Reset exception,
such that this must be determined at
the system level.

......... .

Servicing by NMI
exception routine

 Servicing by Soft Reset * ! Servicing by Soft Reset :
exception routine | . exception routine

21

[MEMO]

122

CHAPTER 6 PIN FUNCTIONS

This chapter describes the signals used by and in conjunction with the VR4101 processor.

Low active signals have a trailing asterisk. The signal description also tells if the signal is an input {the processor

receives it} or output {the processor sends it out).
Figure 8-1 illustrates the functional groupings of the processor signals.

Figure 8-1. VR4101 Processor Signals

R — 5 ADD[20.0]
D +«—— he—%—» DATA[15. 0]
RS-282.C RTS" +—
r= CTS —» l—— | CORDY
DCD —H —— LCDCS*
OTR* +—— —— LCDOE* LCDVE
DSR* —* —— LCDWEROMWE®
—%— ROMCS3..0} ROM UF
IrDA IfF { IRDIN® —— —, > ROMOE”
IRDOUT +—— —%— MRAS*[3.0}
[— UCAS* System
Debug DOIN ——» — LCAS" RAMIF } BusiF
Serial IF DDOUT &—— ———> RAMWE®*
POWER ——— PCMCLK
RSTEW VRA101 [
Initialize RTCRST* — IOR"
V¥ MPOWER +—— . m.n- , PCMCIA
POWERON +—— MEMW® VE
Battery BATTINH —— e 7WS*
Maeitor BATTINT* —— e——— RQ
—— RSTOUT] J
KPORTT?..0] —¥—»
Keyboard KSCAN[7..2) +—F— L Ancs* 1
I/F KSCAN[1JEVING +— —— ADCLK
KSGAN[OYEVUD #——-1 e—— ADIN Touch
[ADSOUT ’ Panel IF
Audio UF { AUDHOUTI1..0} +—3— t——— ADEOCC
—%—» PENCONT(4..0]
sk UF { gm . l——— PENCHGINT* |
' el GPIO[11..0) } GPowr

123

CHAPTER & PIN FUNCTIONS

6.1 VR4101 SIGNALS

6.1.1 System Bus Interface Signals

The system bus interface signals are used when the VR4101 processor is connected to the system's DRAM, ROM,

LCD, and PCMCIA. Table 6-1 lists the functions of these signals.

Table 6-1. Systemn Bus Interface Signals (1/2)
Signal name | VO Definition Function

ADD[20..0] O |Address Bus 21-bit address bus. This bus s used to specify DRAM, ROM, LCD, and
PCMCI|A addresses from the Vr4101.

DATA[15..0] 1O | Data Bus 16-bit data bus. This bus is used to transfer data from the Vr4101 to
DRAM, ROM, the LCD, and PCMCIA, or vice versa,

LcDCs* O |LCD Chip Select LCD chip select signal. This signal becomes active when the VR4101
accesses the LCD by using the ADD bus and DATA bus.

LCDOE" O {LCD Output Enable {LCD output enable signal. This signal becomes active when the Vr4101
accesses the LCD to read data.

LCDWE*/ O |LCD Write Enable/ | Signal generated by multiplexing the LCD write enable signal and FROM

ROMWE* ROM Write Enable | write enable signal. This signal functions as the LCD write enable signal
when LCDCS is active; the signal becomes active when the VrR4101
accesses the LCD to write data. This signal functions as the ROM write
enable signal when LCDCS i& inactive; the signal becomes active when the
Vr4101 accesses flash memory to write data.

LCDRDY | |LCD Ready LCD ready signal. Activate this signal when the LCD or PCMCIA
controfler is ready to accept accesses from the VR4101,

ROMCS*[3.0]| © |ROM Chip Select ROM chip select signal. This signal is used to select a ROM to be
accessed from a maximum of four connected ROM chips.

ROMOE* O |ROM Output Enable | ROM output enable signal. This signal becomes active when the VR4101
accesses ROM to read data.

MRAS*[3..0] O |DRAMRAS DRAM RAS signal. This signal becomes active when a valid row address
is output on the ADD bus for a RAM chip to be salected for access, froma
maximum of four connected RAM chips.

UCAS* O |Upper CAS DRAM CAS signal. This signal becomes active when a valid column
address Is output on the ADD bus when accessing the high-order area in
DRAM. ‘

LCAS* O |Lower CAS DRAM CAS signal. This signal becomes active when a valid column
address is output on the ADD bus when accessing the low-order area in
DRAM.

RAMWE* O | DRAM Write Enable | DRAM write enable signal. This signal becomes active when the Vr4101
accesses DRAM o write data.

PCMCLK O |PCM Clock PCMCIA card clock. An 8-MHz clock is supplied to the PCMCIA

controller,

124

CHAPTER 6 PIN FUNCTIONS

Table 8-1. System Bus Interface Signals (2/2)
Signal name | /O Definition Function
SHB* O |System Bus High Byte PCMCIA bus high-order byte enable signal. This signal becomes
Enable active when the high-order byte of the DATA bus is valid for access
to PCMCIA.
IOR* QO |I/O Read PCMCIA card I/O read signal. This signal becomes active when the
VRrR4101 accesses the PCMCIA 1/O port to read data.
Iow* Q | I/O Write PCMCIA card I/Q write signal. This signal becomes active when the
Vr4101 writes data to the PCMCIA (/O pert.
MEMR* O |Memory Read PCMCIA card memory read signal. This signal becomes activa when
the VR4101 accesses PCMCIA memory to read data.
MEMW* O |Memory Write PCMCIA card memory write signal. This signal becomes active
when the VR4101 accesses PCMCIA memory to write data.
ZWs* | [Zero\Wait State PCMCIA zero walt state signal. Activate this signal when the
PCMCIA controller Is ready to accept acceases from the Vr4101.
IRQ { |Interrupt Request PCMCIA card IRQ signal. By asserting this pin, the PCMCIA
controller sends an interrupt request to the VR4101.
RSTOUT O |PCM Reset PCMCIA card reset signal. This signal becomes active when the
Vr4101 resets the PCMCIA controller.

6.1.2 Clock Interface Signals

The clock interface signals are used to supply a 32-kHz clock. Table 6-2 lists the functions of these signals.

Table 8-2. Clock interface Signals

Signal name | /O Definition Function
CLKX1 I |Clock X1 32-kHz clock input pin. This pin is used to connect a 32-kHz crystal.
CLK2 | | Clock X2 32-kHz clock input pin. This pin is used to connect a second 32-kHz
crystal.
VooP - { Voo for PLL Quiet Voo for internal PLL circuit.
GNDP - | GND for PLL Quiet GND for intemnal PLL circuit.

125

CHAPTER 8 PIN FUNCTIONS

6.1.3 Battery Monitor Interface Signals

The battery monitor interface signals are used by the external circuitry to indicate whether the power required to
enable system operation is being supplied. Table 6-3 indicates the functions of the battery monitor interface
signals.

Table 6-3. Battery Maonitor Interface Signals

Signal name | VO Deflnition Function

BATTINH | | Battery Inhibit Interrupt signal for indicating low battery charge at power-on. The
external circuitry checks the battery charge level at power-cn, and
asserts this pin when it is confirmed that the battery voltage is sufficient
to enable operation.

BATTINT" | | Battery Interrupt interrupt signal for indicating an insufficlent battery charge level during
normal operation. The external circuitry monitors the battery charge
level, and asserts this pin when it is confirmed that the battery charge
has fallen to a level where the voltage required for operation is longer
“~ being supplied.

6.1.4 Initialization Interface Signals

The initialization interface signals are used when an external circuit initializes the processor operating parameters.
Table 64 lists the functions of these signals.

Table 6-4. Initialization Interface Signals

Signal name | O Definition Function

MPOWER O |Main Power On Signal for tuming on the main power. By asserting this pin, the
VR4101 tums on the power to the external DC/DC converter.

POWERON | O |Power On State Signal for Indicating that the VrR4101 Is being activated in Hibemnate

mode. This eignal becomes active upon the detection of an activation
factor. It subsequently becomes inactive upon the completion of
battery checking.

POWER I | Power On Switch Signal for indicating that the power-on switch has been pressed.

When the power-on switch is pressed, the external circuitry asserts this

pin.

RSTSW* | | Reset Switch Signal for indicating that the reset switch has been pressed. When
the reset switch is pressed, the external circuitry asserts this pin.

RTCRST* |) Realtime Clock Reset | Signal for resetting RTC. When the power to the device is tumned on
for the first time, the external circuitry asserts this pin for about 230 ms.

126

CHAPTER 6 PIN FUNCTIONS

6.1.5 RS-232-C Interface Signals

The RS-232-C interface signals control data transfer between the VR4101 and the RS-232-C controlier. Table
6-5 lists the functions of these signals. '

Table 8-5. RS-232-C Interface Signals

Signal name | I/O Definition Function

RxD* | |Receive Data Send data signal. This signal Is used when serial data is transferred
from the VR4101 to the RS-232-C driver/receiver.

T=D* O |Transmit Data Receive data signal. This signal is used when serial data is transferred
from the RS-232-C driver/receiver to the Vr4101.

RTS" O |Requestto Send Send request signal. The VR4101 asserts this signal to send serial
data. '

cTs* || Clear to Send Send enable signal. The RS-232-C driver/recelver asserts this signal
while the controlier can accept transferred serial data.

DCD | | Data Carrier Detection | Carrier detection signal. This signal is asserted while valid serial data is
baing recaived.

DTR* O |Data Terminal Ready | Terminal ready signal. The VR4101 asserts this signal while the
VR4101 can both send and receive serial data.

DSR* | jData Set Ready Data set ready signal. Assart this signal when the RS-232-C
driver/receiver can transfer serial data to and from the Vr4101.

6.1.6 IrDA Interface Signals

The IrDA interface signals control the transfer of data between the VR4101 and IrDA controller. Table 6-6 lists
the functions of these signals.

Table 6-8. IrDA Interfaca Signals

Signal name | /O Definltion Function
IRDIN" I |irDA Data In IrDA serial data Input signal. This signal is used to transfer data from
the VrR4101 to the IrDA controller,
IRDOUT O |IrDA Data Out IrDA serial data output signal. This signal is used to transfer data from
the IrDA controlier to the VR4101.

127

CHAPTER & PIN FUNCTIONS

6.1.7 Debug Serial interface Signals

The debug serial interface signals control data transfer between the VR4101 and debug serial controller.
6-7 lists the functions of these signals.

Tabie

Table 8-7. Debug Serial interface Signals
Signal name | /O Definition Function
DDIN | | Debug Serfal Data In | Debug serial data input signal. This signal is used to transfer data from
the VR4101 to the external debug serial controller.
DDoUT O | Debug Serlal Data Out | Debug serlal data output signal. This signal is used to transfer data

from the external debug serial controller to the VR4101.

6.1.8 Keyboard Interface Signals

The keyboard interface signals control the keyboard circuit connected to the VR4101.

functions of these signals.

128

Table 8-8. Keyboard Interface Signals

Table 6-8 lists the

Signal name | 1O Definition Function
KPORT[7..01 | |Key Scan Data In Keyboard scan data input signal. This signal is used to scan the
pressed/released slates of the keyboard.
KSCAN[7..2] O |Key Scan Data Out | Keyboard scan data output signat. This signal is used to activate the
scan lines when the keyboard pressed/released states are being scanned.
KSCAN[1)Y O |Key Scan Data Out/ | Signal generated by multipiexing the keyboard scan data output signal and
EVINC Electric Volumne Input | electronic volume control clock signal. When EVINCG is enabled by the
Clock EVINCEN bit in the EVVOLREG, this signal functions as the clock output
pin for the alactronic voluma controller.
KSCAN[O) O |Key Scan Data Out/ | Signal generated by multiplexing the keyboard scan data output signal and
EVUD Electric Volume electronic volume up/down signal. When EVUD is enabled by the
Up/Down EVUDEN bit in the EVVOLREG, this signal functions as the volume

up/down pin for the electronic volume controlier.

CHAPTER 6 PIN FUNCTIONS

6.1.9 Audio Interface Signal

The audio interface signal is used to output an audio signal, usually when a WAVE file is being regenerated.

Table 8-8 indicates the function of this signat.

Table 6-8. Audio Interface Signal
Signal name | 'O Definition Function
AUDIOUT[1..0] | O |Audio Out Audio output signal. When a WAVE file is regenerated, an audio
signal is output.

6.1.10 Touch Panel Interface Signals

The touch panel interface signals control the A/D converter that is connected to the VR4101 and which is used for

the touch panel.

Table 6-10 lists the functions of these signals.

Table 8-10. Touch Panel Interface Signals

Signal name | YO Definition Function

ADCS" O | A/D Converter Chip Select | A/D converter chip select signal. This signal is activated when
data is transferred to and from the A/D converter.

ADCLK O [A/D Converter Clock A/D converter clock output. A clock is supplied to the A/D
converter.

ADIN | |A/D Converter Data in AJD converter data input signal for receiving A/D converter output
data.

ADSOUT O |A/D Converter Seral Out | A/D converter serial data output signal. This signat is used to
output serial data for setting the A/D converter.

ADEOC | |A/D Converter End Of A/D converter data conversion end signal. Assert this pin to

Change terminate A/D conversion by the A/D converter,

PENCONT O | Touch Panel Control Touch panel control signal. This signal is output, for example, to

[4.0] control the voltage applied to the touch panel.

PENCHGINT" | | Pen Change Interrupt T/P interrupt signal. When a key of the touch panel is pressed, the
external cireuitry asserts this pin.

129

CHAPTER & PIN FUNCTIONS

6.1.11 General-purpose l/O Signals

These are general-purpose 1/O terminals for the VR4101. Among the 12 general-purpose I/O terminals of the
VR4101, GPIO[8] is specified for battery cover lock detection interrupt. Table 6-11 shows the functions of these

signals.
Table 8-11. General-purpose |/O Signals
Signal name | VO Definition Function
GPIO[11.10] | 11O |GPIO[11..10] General-purpese /O terminals.
GPIO[9] YO }Battery Lock Detect | Battery cover lock detection signal.
GPIO[8..0) /0 | GPIO[S..0] General-purpose /O terminals.

130

CHAPTER 6 PIN FUNCTIONS

6.2 STATUS OF PINS UPON A SPECIFIC STATE

Table 6-12 lists the status of the pins upon reset of the VR4101, as well as the status in each power mode.

Table 6-12. Status of Pins upon a Reset (1/2)

Signa] name When reset by When reset by' In Suspend mode In Hibemnate mode or
RTCRST Deadman's SW or upon shutdown by HAL
RSTSW timar
ADDI[20..0] 0 X X 0
DATA[15..0 0 X X 0
LCDCS* Hi-Z 1 1 Hi-Z
LCDOE* Hi-Z 1 1 Hi-Z
LCDWE*/ROMWE" H-Z 1 1 Hi-Z
LCDRDY H-Z Hi-Z Hi-Z Hi-Z
ROMCS*[3..0] Hi-Z 1 1 HI-Z
ROMOE" Hi-2 1 1 Hi-Z
MRAS'[3..0] 1 1 0 0
UCAS" 1 1 0 0
LCAS" 1 1 0 0
RAMWE" 1 1 1 1
PCMCLK 0 X X 0
SHB* 0 X X 0
IOR* Hi-Z 1 1 Hi-Z
IOW* Hi-Z 1 1 Hi-Z
MEMR* Hi-Z2 1 1 . Hi-Z
MEMW* Hi-Z 1 1 Hi-Z
ZWS* Hi-Z Hi-Z Hi-Z Hi-Z
IRQ Hi-Z Hi-Z Hi-Z Hi-Z
RSTOUT Hi-Z 0 Note Hi-Z
CLKX1 Hi-2 Hi-Z Hi-Z Hi-Z
CLKX2 Hi-Z Hi-Z Hi-Z Hi-Z
BATTINH Hi-Z . Hi-iZ Hi-Z2 Hi-Z
BATTINT" Hi-Z2 Hi-Z Hi-Z Hi-Z
MPOWER 0 1 1 0
POWERON 0 0 0 Y]
POWER Hi-Z Hi-Z Hi-Z Hi-Z
RSTSW* Hi-Z Hi-Z Hi-£ HI-Z
RTCRST* Hi-Z Hi-Z Hi-Z Hi-Z
RxD* Hi-Z Hi-Z Hi-Z Hi-Z
TxD* 1 1 Note 1
RTS* 1 1 Note 1
CTs* Hi-2 Hi-2 Hi-Z Hi-Z
DCD Hi-Z Hi-Z Hi-Z Hi-Z
DTR* 1 1 Note 1
DSR* Hi-Z Hi-Z Hi-Z Hi-Z
IRDIN* Hi-Z Hi-Z Hi-Z Hi-Z
IRDOUT Hi-Z Hi-Z Note Hi-Z
DDIN Hi-Z Hi-Z Hi-Z Hi-Z
DDOUT 1 1 Note 1

Note Retains the status existing in the previous Fullspeed mode.

Remark 0. outputs low level, 1. outputs high level, Hi-Z: high-impedance, X: undefined.

131

CHAPTER 6 PIN FUNCTIONS

Note

Table 8-12. Status of Plns upon a Reset (2/2)

Signal name When reset by When reset by in Suspend mode In Hibernate mode or
RTCRST Deadman's SW or upon shutdown by HAL
RSTSW timer
KPORT[?..0} Hi-Z Hi-Z Hi-Z Hi-Z
KSCANIT..2) Hi-Z Hi-Z Note Hi-Z
KSCAN[MJEVINC Hi-Z H-Z Note Hi-Z
KSCAN[OYEVUD Hi-Z Hi-Z Note Hi-Z
AUDIOUTT!..0j 0 0 0 0
ADCS* Hi-Z Hi-Z Note Hi-Z
ADCLK 0 0 Note 0
ADIN Hi-Z Hi-Z Hi-Z Hi-Z
ADSOUT 0 4] Note 0
ADEOC Hi-Z Hi-Z Hi-Z Hi-Z
PENCONT{4..0] Hi-Z Hi-Z Note Hi-Z
PENCHGINT* Hi-Z2 Hi-Z Hi-Z Hi-Z
GPIO[11..0] Hi-Z Hi-Z Noate Hi-Z

Retains the status existing in the previous Fullspeed mode.

Remark 0 outputs low level, Hi-Z: high-impedance.

132

CHAPTER & PIN FUNCTIONS

6.3 PIN CONFIGURATION

This section shows the pinouts and pin assignment for the VR4101.

Figure 8-2. Pinout of the 180-pin LQFP

Voo o 1 120 GND
o e 11QE§ RSTOUT
DATA100¢—# 2 O 118 IRQ
ADDYIO+— 4 17je——0 7w~
DATA110¢—N 5 116}——»0 PCMCLK
ADD120¢——1 6 115——»0 ROMOE
DATA1ZO¢—H 7 114—»O ROMCS?*
GNDO—1 8 113—0 ROMCS2*
ADD13C+——{ 8 112}——»0 ROMSC1*
DATA130+—N 10 111——»0 ROMCS0*
ADD14O0+—]11 110——0 GND
DATA140¢—¥N {2 109——0 GND
ADD 15 0e—]13 108| LCDRDY
DATA150+——N 14 107 LCDWE*ROMWE*
GNDO——18 106 LCDOE"
YopO——]16 106) LcDeS?
GNDO—]17 104) GND
VopO—]1& 109 Voo
ADD160%—]18 102p—C CLKX2
ADD170¢——]20 101p——0C CLMX1
ADD18 0e——|21 100}——C GND
ADD15O+—]22 Voo
ADD20 Os———23 GND
KPORTOO—¥M 24 -] voo
KPORT10—— 925 GND
KFORT20——H26 GNDP
KPORT3O——H27 84—(VooP
KPORT4O——N28 934——O RTCRST*
mn‘rsgznzs 9284 O RSTSW"
KPORTE 30 81——0 POWER
KPORTTO—M31 20 ————0 AUDIOUTD
KSCANIEVUD O¢+—]32 AUDIOUT1
KSCANVEVING Oe——-133 MPOWER
KSCANZO+—34 8 GND
KSCANIO+——a8 BATTINT®
KSCAN4O4+—136 0 BATTINH
KSCANS 0+—137 f—0 RD”
KSCANE O+—138 h——ODCD
KSCANT Ow——-138 le——0 DSR"
GNDO—40 O voo

[MEMO]

134

CHAPTER 7 INITIALIZATION INTERFACE

This chapter describes the Initialization interface and the processor modes. This includes the reset signal
description and types, and initialization sequence, with signals and timing dependencies, and the user-selectable
processor modes.

7.1 RESET FUNCTION

Five methads of resetting the VR4101 processor are supported. Each of these methods is outlined below.

7.1.1 RTC Reset

When turning on the power, activate the RTCRST* pin. After the power supply voltage has stabilized at 2.5 V or
more, wait about 230 ms for the 32-kHz osciilator circuit to start, then deactivate the RTCRST* pin. The RTC unit
will start counting. Next, after the power supply voltage has stabilized to between 3.0 V and 3.6 V, activate the
POWER pin. The VR4101 will assert the POWERON pin then check the battery charge level by means of the
BATTINH signal. If the battery charge level is sufficient and the GPIO[8] (BATTLOCK) pin has been asserted,
the VR4101 will assert the MPOWER pin to start the external DC/BC converter. After the DC/DC converter has
stabilized (after about 350 ms}, the VR4101 starts PLL oscillation, and all clocks are started (Note, however, that
after the start of PLL oscillation, about 8 ms is required for PLL oscillation to stabilize}.

The RTC reset does not save any state information, instead completely initializing the internal states of the
processor. Moreover, the processor does not instigate a DRAM ftransition to self-refresh mode, so that the
contents of DRAM after an RTC reset will be unpredictable.

After a reset, the processor assumes system bus mastership, then begins access to a reset vector in the ROM
space. Upon a reset, the VR4101 initializes only some of the internal states. So, initialize the processor
completely by software.

Figura 7-1. RTC Reset

Fid JL o o s
1f 17 1F 17

RTCRST" y
POWER r’]

,’j{ 'I’f ’l"!
POWERCN rﬂ_!;
of o ryd {L
1L 7 i
L Ll Lt L
MPOWER .
ColdResat* —
(Internal) /L L /L
Ir Led L4
Resel”
(Internal) /- o/ L
PLL 1r M

/‘ - > Stable

s, [-wumwmmmyﬁ |

Stable >32ms) oscillation
Undefined ascllation Undefined
- 7TRTC 8ms
»>230ms —
350ms ‘ 16MasterClock ™™

Note MasterClock is the basic clock used in the CPU core.

135

CHAPTER 7 INITIALIZATION INTERFACE

7.1.2 RSTSW

Activate the RSTSW* pin then, after 100 us, deactivate the RSTSW* pin. The VR4101 immediately starts PLL
oscillation, and all clocks are started (Note, however, that after the start of PLL oscillation, about 8 ms is required
for PLL oscillation to stabilize).

The RSTSW reset initializes all internal states, except for the RTC timer and PMU. Moreover, the processor does
not instigate a DRAM transition to self-refresh mode, so that the contents of DRAM after an RTC reset will be
unpredictable.

After a reset, the processor assumes system bus mastership, then begins access to a reset vector in the ROM
space. Upon a reset, the VR4101 initializes only some of the internal states. So, initialize the processor
completely by software.

Figure 7-2. RSTSW

RSTSW* R + # #
MRAS*[0..3] | RERE I #
UCAS*/LCAS® F--- 77—
POWER L y y

_ b i

77 7

MPOWER H

ColdReset* ¥
(Intemal)) f__ir{
Reset* ‘
{internai) Stable oscillation o/ s/ Stable oscillation

werss AANATAAL 2=} /L
weie TUTLATULA LA,

3) Stable oscillation

Bms
> —»
>3RTC 18MasterClock "™

Note MasterClock is the basic clock used in the CPU core.

136

CHAPTER 7 INITIALIZATION INTERFACE

7.1.3 Deadman’'sSW

If Deadman’sSW is not cleared within a specified time after being enables, the VR4101 shifts to the reset state

immediately. Deadman’sSW is set and cleared by software.

The reset by Deadman'sSW initializes all internal states, except for the RTC timer and PMU. Moreover, the
processor does not instigate a DRAM transition to self-refresh mode, so that the contents of DRAM after a reset by

Deadman'sSW will be unpredictable.

After a reset, the processor assumes system bus mastership, then begins access to a reset vector in the ROM

space. Upon a reset, the VR4101 initializes only some of the internal states.

completely by software.
Figure 7-3. Deadman's SW

1’;’ ‘I,!

RETSW* H
POWER L . .
%L %

MPOWER H
(4
ColdReset* y r

(Intenal) !L__;;_7

Reset*

(internal) Stable oscillation /F

[
,’!J Stable oscillation

oy JULRULATAARINNAARAL- - - - < WAL ARAATURRRARL

a2kHz) Stabie oscliation

RTC
(rtome nnu
8ms

Undefined

Note MasterClock is the basic clock used in the CPU core.

(npipipipiyip

16MasterClock ™**

So, initialize the processor

137

CHAPTER 7 INITIALIZATION INTERFACE

7.1.4 Software Shutdown

When software executes the HIBERNATE instruction, the VR4101 instigates a DRAM transition to self-refresh
mode, deactivates the MPOWER pin, then is reset. The VR4101 returns from the reset state when the POWER
pin is asserted or the WakeUpTimer interrupt is generated.

The SW Shutdown reset inltializes all internal states except for the RTC timer and PMU.

After a reset, the processor assumes system bus mastership, then begins access to a reset vector in the ROM
space. Upon a reset, the VR4101 initializes only some of the internal states. So, initialize the processor
completely by software.

Figure 7-4. Software Shutdown

MRAST0..3Y \
UCAS*LCAS* /L 7L — e fL
= r M ey el
POWER [L

fL fL JL

POWERON -‘rl ‘
IL /L /L
:/t i/ i
5 1F iy
MPOWER \ . 1
ColdReset* \ —
(Internal) ’r’f ’IJI ,i‘ 1
Reset* L
{internal) o o oL /L /
> /- " 7

PLL | 3/ e L
(Internal) mﬂﬂﬂfmﬂﬂl Stopped =
{Intemal,
32kHz) . Stable osclilation Stable

»32ms Undefined oscillation

7RTC

8ms —
16MasterClock ™

A50ms

Note MasterClock is the basic clock used in the CPU core.

138

CHAPTER 7T INITIALIZATION INTERFACE

7.1.5 HALTimer Shutdown

if HALTimer is not cleared by software within about 4 seconds of the RTC reset being cleared (if the

HALTIMERRST bit of the PMUCNTREG is not set to 1), the VR4101 is reset. The VR4101 returns from the reset
. state when the POWER pin is asserted or the WakeUpTimer interrupt is generated.

The HALTimer reset initializes all internal states except for the RTC timer and PMU.

After a reset, the processor assumes system bus mastership, then begins access to a reset vector in the ROM
space. Upon a reset, the VR4101 Iinitializes only some of the internal states. So, initialize the processor
complstely by software.

Figure 7-5. HALTImer Shutdown

MRAS'0.3)/ !
UCAS*LCAS* ‘,ﬂ 4{]! _,',’ ’rlr
POWER P : — f] f
POWERON / 1 ‘ P — /
J—— 1 S et F
MPOWER \ Lk ’
ColdReset" L \ [f
{Internal) . 1F 1F fl—j
Reset* !
{Intemal} \ ’Z _’1: o ;]J
PLL i i
(Interal) Stopped A UMUL
RTC L F’J | |
(Intemat,
32kHz) Stable oscillation >32ms Undefined Stable
- " oscillation
4 7RTC Jo osms | |
350ms 16MasterClock ***

Note MasterClock is the basic clock used in the CPU core.

139

CHAPTER 7 INITIALIZATION INTERFACE

7.2 POWER-ON SEQUENCE

An activation factor causes the VR4101 to transit from Hibernate or Shutdown mede to Fullspeed mode. As
activation factors, the following are supported: asserting the POWERON pin, asserting the DCD pin, and using
the WakeUp timer. Once an activation factor has been detected, the VR4101 asserts the POWERON pin fo
notify the external circuit that power is being supplied to the VR4101. Three RTC clocks after the POWERON pin
has been asserted, the VR4101 checks the states of the BATTINH and GPIO[9] (BATTLOCK]) pins. If the
BATTINH or GPIO[9] (BATTLOCK) pin is low, the POWERON pin is negated one RTC clock after the check, such
that the VR4101 is not activated. If both the BATTINH and GPIO[9] (BATTLOCK) pins are high, the POWERON
pin is negated four RTC clocks after the check. Then, the MPOWER pin is asserted, after which the VR4101 is
activated.

Figure 7-6 shows an example timing chart where the VR4101 is activated normally. Figure 7-7 shows an
example timing chart where the VR4101 is not activated because of the BATTINH pin being low.

See Chapter 15 for more details about power-on sequence for each activation factor.

Figure 7-8. VR4101 Activation Sequence {(When Actlvated Normally)

POWERON [

MPOWER

—

Resst*
(Intermnal) o

arnvk [T\
T

GPIO[9]
(BATTLOCK) __I \
PLL

RTC
(Intemal,

32kHz)
Undefined Stable
oscHlatlon

Activation factor States of BATTINH and CPU activated
detected GPIO[9) (BATTLCOK)

pins are checked

140

CHAPTER 7 INITIALIZATION INTERFACE

Figure 7-7. VR4101 Activation Sequence (When Activation Falls)

POWERON / \

MPOWER L

ColdReset*
{intemal) L

Reset"
(Internal)

BATTINH

=T\

GPIO[9]
(BATTLOCK)

PLL H
(Intemnal})

RTC
{Internal,
A2kHz)

Activation factor
detected

T

States of BATTINH and
GPIO{9] (BATTLCOK}
pins are checked

Juuuuduinuuird U

!

CPU not activated

141

CHAPTER 7 INITIALIZATION INTERFACE

7.3 RESET OF THE CPU CORE

This section describes the reset sequence of the VR4100 CPU core. For details about factors of reset or reset of
the whole VR4101, refer to 7.1 and Chapter 15.

7.3.1 Cold Reset

A Cold Reset completely initializes the CPU core, except for the foliowing register bits.

< The TS and SR bits of the Status register are cleared to 0.

< The ERL and BEYV bits of the Status register are setto 1.

< The upper limit value (31) is set in the Random register.

< The Wired register is initialized to 0.

< Bits 31 to 28 of the Config register are set to 0 and bits 22 to 3 to 0x04800; the other bits are undefined. -
< The values of the other registers are undefined.

Once power to the processor is established, the ColdReset* (internal) and the Reset* (internal) signals are
asserted and a Cold Reset is started. After approximately 2 ms assaertion, the ColdReset* signal is deasserted
synchronously with MasterOut. Then the Reset* signal is deasserted synchronously with MasterOut, and the
Cold Reset is completed.

Upon reset, the CPU core becomes bus master and drives the SysAD bus (internal). After Reset* is deasserted,
the CPU core branches to the Reset exception vector and begins executing the reset exception code.

7.3.2 Soft Reset
Caution Soft Reset is not supported in the present VR4101.

A Soft Reset initializes the CPU core without affecting the clocks; in other words, a Soft Reset is a logic reset. In a
Soft Reset, the CPU core retains as much state information as possible; all state information except for the
following is retained.

< The TS bit of the Status register is cleared to 0.

¢ The SR, ERL and BEV bits of the Status register are set to 1.
¢ The Count register is initialized to 0.

< The IP7 bit of the Cause register is cleared to 0.

< Any Interrupts generated on the SysAD bus are cleared.

< NMIl is cleared.

< The Config register is initialized.

A Soft Reset is started by assertion of the Reset” signal, and is completed at the deassertion of the Reset* signal
synchronized with MasterOut. In general, data in the CPU core is preserved for debugging purpose.

Upon reset, the CPU core becomes bus master and drives the SysAD bus (internal). After Reset* is deasserted,
the CPU core branches to the Reset exception vector and begins executing the reset exception code.

142 h

CHAPTER 7 INITIALIZATION INTERFACE

Figure 7-8. Cold Reset

7L [L

[L

VoD , / 1A

7

MasterClock "“**
(Internal) ; / \ / »
ColdReset* i
(Intemal) ‘i I 3
Reset* "
(Intemal) " y y

MasterOut
(ntemal) _ _ . . . Undefined | _ 1’___1

TClock
(Internal) = = = = = Undefined | _ | affaam-a ,U\J—U—\,}\J—m

Note MasterClock is the basic clock used in the CPU core.
Figure 7-9, Soft Reset
fL
vop H v
MasterClock "** F
e U Y
Reset* [_
(Internal) /L
ff ——

Note

\

/

\

F_J

e\ \ S [

{Internal)

MasterCiock is the basic clock used in the CPU core.

143

CHAPTER 7 INITIALIZATION INTERFACE

7.4 VR4101 PROCESSOR MODES

The VR4101 processor supports several user-selectable modes. The CPU core mode is set by writing to the
Status register and Config register. The built-in peripheral circuit mode is set by writing to the I/O register.

This section describes the operating modes of the CPU core. For a description of the operating modes of the
built-in peripheral circuitry, see the retevant chapters.

7.41 Power Modes
The VR4101 supports four power modes: Fullspeed, Standby, Suspend, and Hibernate modes.

(1) Fullspeed mode

Normally the processor clock (PClock) operates at 33 MHz. The system bus clock operates at the same speed
as the PClock.

By default, the Fullspeed mode is used. The processor returns to the Fullspeed mode after any reset.

{2} Standby mode

When a STANDBY instruction is executed, the processor is placed in Standby mode. |n Standby mode, all
internal clacks in the CPU core, excluding the timer and interrupt clocks, are held high. All peripheral units
operate in the same way as in Fullspeed mode. This means that DMA operation is also enabled in Standby
mode.

When the STANDBY instruction terminates the WE stage, the VR4101 waits for the internal SysAD bus (internal)
to become idle. Then, those clocks internal to the CPU core are shut down, causing pipsline operation to
terminate. The PLL, timer, interrupt clocks, and internal bus clocks {TClock and MasterOut) continue operation.

Any interrupt, including an internelly generated timer interrupt, return the processor placed in Standby mode to
Fullspeed mode.

{3) Suspend mode

When a SUSPEND instruction is executed, the processor is placed in Suspend mode. In Suspend mode, the
processor stalls the pipeline, and causes all internal clocks in the CPU core, excluding the PLL and interrupt
clocks, to be held high. Moreover, the processor stops the supply of TClock to the peripheral units. So, only
some peripheral units, such as an interrupt unit (DCD control, etc.), can operate in Suspend mode. In this state,
the register data and cache data are preserved.

When the SUSPEND instruction terminates the WB stage, the VR4101 instigates a DRAM transition to self-refresh
mode, then waits for the internal SysAD bus (internal) to become idle. Then, those clocks internal to the CPU
core are shut down, causing pipeline operation to terminate. Moreover, the supply of TClock to the peripheral
units is stopped. However, the PLL, timer, interrupt clocks, and MasterOut continue operatian.

The processor remains in Suspend mode until an interrupt is accepted. As soon as an interrupt is accepted, the
processor returns to the Fullspeed mode.

144

CHAPTER 7 INITIALIZATION INTERFACE

(4) Hibernate mode

The users may set the processor to Hibernate mode with HIBERNATE instruction. In the Hibernate mods, the
processor quits supplying clocks to all of the units. At the time, the contents of the registers and caches are kept,
and TClock and MasterOut output is stopped. The processor remains in Hibernate mode until the POWER pin is
asserted, a WakeUpTimer interrupt is generated, or the DCD pin is asserted. When the POWER pin is asserted,
a WakeUpTimer interrupt is generated, or the DCD pin is asserted, the processor returns to Fullspeed mode. In
Hibernate mode, the power consumption is slightly more than 0 W (Because of the 32-kHz oscillator and built-in
peripheral circuits that operate at 32 kHz, the power consumption can never fall completely to 0 W).

7.4.2 Privilege Modes

The VR4101 supports three modes of system privilege: kernel, supervisor, and user extended addressing. This
section describes these three modes.

{1) Kemel extended addressing mode

If the KX bit in the Btatus register is set, it enables MIPS Il opcodes in Kernel mode and causes the TLB mismatch
on kernel addresses to use the Extended TLB Mismatch exception vector.

{2) Supervisor extended addressing mode

If the SX bit in the Status register is set, it enables MIPS IIf opcodes in Supervisor mode and causes the TLB
mismatch on supervisor addresses to use the Extended TLB Mismatch exception vector.

{3) User extended addressing mode

If the UX bit in the Status register is set, it enables MIPS Ill opcodes in User mode and causes the TLE mismatch
on user addresses to use the Extended TLB Mismatch exception vector. If the bit is clear, it enables MIPS | and
Il opcodes and 32-bit virtual address.

7.4.3 Reverse Endianess

When the RE bit in the Status register is set, endianess as seen by user software is reversed. However, the RE
bit in the Status register must be set to 0 since the VR4101 supports the little-endian order only.

7.4.4 Bootstrap Exception Vector (BEV)
This bit is used when diagnostic tests cause exceptions to occur prior to verifying proper operation of the cache
and main memory system. '
This bit is automatically set to 1 at reset and NMI exception.

When set, the BEV bit in the Status register causes the TLB Mismatch exception vector to be relocated to a virtual
address of OxFFFF FFFF BFCO 0200 and the common exception vector relocated to address OxFFFF FFFF BFCO
0380.

When BEV is cleared, these vectors are located at OxFFFF FFFF 8000 0000 (TLB Mismatch) and OxFFFF FFFF
8000 0180 {common).

145

CHAPTER 7 INITIALIZATION INTERFACE

7.4.5 Cache Error Check
When a store instruction is executed with the CE bit of the Status register set, the contents of the Parity Error

register can be written to the parity bit positions of the data cache, instead of the parity generated by the store

instruction. When a CACHE Instruction with Fill specified is executed, the contents of the Parity Error register
can be written to the parity bit positions of the instruction cache, instead of the instruction parity bits.

7.46 Disable Parity Errors

When the DE bit in the Status register is set, the processor does not take an exception on a cache parity error.

7.4.7 Interrupt Enable (IE)

When this bit in the Status register is clear, all interrupts cther than the reset and the non-maskable interrupt are
not allowed.

146

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

This chapter describes in detail the cache memory: its place in the VR4100 CPU core memory organization, and
individual organization of the caches.

This chapter uses the following terminology:

< The data cache may also be referred to as the D-cache.
< The instruction cache may alsc be referred to as the |-cache.

These terms are used interchangeably throughout this book.

8.1 MEMORY ORGANIZATION

Figure 8-1 shows the VR4100 CPU core system memory hierarchy. In the logical memory hierarchy, the caches
lie between the CPU and main memory. They are designed to make the speedup of memory accesses
transparent to the user.

Each functional block in Figure 8-1 has the capacity to hold more data than the block above it. For instance,
physical main memory has a larger capacity than the caches. At the same time, each functional block takes
longer to access than any block above it. For instance, it takes longer to access data in main memeory than in the
CPU on-chip registers.

Figure 8-1. Logical Hierarchy of Memory

VR4101 CPU core
4
IRegisterJ |Eegister] Register
ll-cache | |D-cachel
Cache
Cache
Y
Faster Increasing
access time data capacity

Disc, CD-ROM, Memory
tape, etc. media

147

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

~The VR4100 CPU core has two on-chip caches: one holds instructions {the instruction cache), the other holds data
(the data cache). The instruction and data caches can he read in one PClock cycle.

Data writes are pipelined and can complete at a rate of one per PClock cycle. In the first stage of the cycle, the
store address is translated and the tag is checked, in the second stage, the data is written into the data RAM.

8.2 CACHE ORGANIZATION

This section describes the organization of the on-chip data and instruction caches. Figure 8-2 provides a block
diagram of the VR4100 CPU core cache and memory model.

Figure 8-2. Cache Support

VR4100 CPU core

Cache controller

- Main memory
|-cache
Caches
D-cache l-cache: Instruction cache
D-cache: Data cache
(1) Cache Line Lengths

A cache line is the smallest unit of information that can be fetched from main memory for the cache, and that is
represented by a single tag.
The line size for the instruction/data cache is 4 words (16 bytes).

(2) Cache Sizes

The instruction cache in the VR4100 CPU core is 2 Kbytes; the data cache is 1 Kbytes.

148

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

8.2.1 Organization of the Instruction Cache (I-Cache)

Each line of I-cache data (atthough it is actually an instruction, it is referred to as data to distinguish it from its tag)
has an associated 24-bit tag that contains a 22-bit physical address, a single Valid bit, and a single Parity bit.
Word parity is used on I-cache data (1 bit of parity per word).

The VR4100 CPU core I-cache has the following characteristics:

< direct-mapped

< indexed with a virtual address

4 checked with a physical tag

<% organized with a 4-word (16-byte) cache line.

Figure 8-3 shows the format of a 4-word {16-byte) I-cache line.

Figure 8-3. Instructlon Cache Line Format

23 22 21 0
PV PTag I
1 1 22
32 31 0
PTag Physical tag DataP Data
{bits 31 to 10 of the physical address)
v Valid bit DataP Data
P Even parity for the PTag DataP Data
Data |-cache data DataP Data
DataP Even parity for the data

8.2.2 Organization of the Data Cache (D-Cache)

Each line of D-cache data has an associated 28-bit tag that contains a 22-bit physical address, a Valid bit, a Parity
bit, a Write-back bit, and a parity bit for Write-back,

The VR4100 CPU core D-cache has the following characteristics :

< write-back

< direct-mapped

< indexed with a virtual address

<+ checked with a physical tag

< organized with a 4-word {16-byte} cache line.

Figure 8-4 shows the format of a 4-word (16-byte) D-cache line.

149

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

Figure 8-4. Data Cache Line Format

25 24 23 22 2N 0
[Wliw][Pr]V PTag I
17 1 1 1 22
PTag Physical tag 71 64 B3 0
(bits 31 to 10 of the physical address) DataP Data
v Valid bit P —
P Even parity for the PTag ata ata

w Write-back bit

(set if cache line has been written)
w' Even parity for the write-back bit
Data I-cache data
DataP Even parity for the data

8.2.3 Accessing the Caches
Figure 8-5 shows the virtual address (VA) index into the caches. The number of virtual address bits used to
index the instruction and data caches depends on the cache size.

For example, VA (9:4) accesses the 1-Kbyte page tag in the data cache with its 4-word line; VA (2) addresses 1
Kbytes and VA (4) provides quadword resolution.

Similarly, VA (10:4) accesses an 4-word tag in a 2 Kbyte |-cache: VA {4) provides quadword resclution and VA
(10) addresses 2 Kbytes.

Figure 8-5. Cache Data and Tag Organlization

~g =
Tags Data
Tag line
VA (9:4) for 1 Kbyte D-cache to .
and VA (10:4) Data line
VA (10:4) for 2 Kbyte |-cache -

P VTag W

Data Instruction

150

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

8.3 CACHE OPERATIONS

As described earlier, caches provide fast temporary data storage, and they make the speedup of memory
accesses transparent to the user. In general, the CPU core accesses cache-resident instructions or data through
the following procedure:

1. The CPU core, through the on-chip cache controller, attempts to access the next Instruction or data in the
appropriate cache.

2. The cache controller checks to see if this instruction or data is present in the cache.
< If the instruction/data is present, the CPU core retrieves it. This is called a cache hit.

<+ Ifthe instruction/data is not present in the cache, the cache controller must retrieve it from memory. This is
called a cache miss.

3. The CPU core retrieves the instruction/data from the cache and operation continues.

It is possible for the same data to be in two places simultaneously: main memory and cache. This data is kept
consistent through the use of a write-back methodology, that is, modified data is not written back to memory until
the cache line is to be replaced.

Instruction and data cache line replacement operations are described in the foilowing sections,

8.3.1 Cache Write Policy

The VR4100 CPU core manages its data cache by using a write-back policy; that is, it stores write data into the
cache, instead of writing it directly to memory. Some time later this data is independently written into memory.
In the VR4101 implementation, @ modified cache line is not written back to memory until the cache line is to be
replaced either in the course of satisfying a cache miss, or during the execution of a write-back CACHE
instruction.

When the CPU core writes a cache line back to memory, it does not ordinarily retain a copy of the cache line, and
the state of the cache line is changed to invalid.

151

CHAPTER 8 CACHE ORQGANIZATION AND OPERATION

8.4 CACHE STATES

The three terms below are used to describe the state of a cache line:

< Dirty: a cache line containing data that has changed since it was loaded from memory.
<4 Clean: a cache line that contains data that has not changed since it was loaded from memory.

< Invalid: a cache line that does not contain valid information must be marked invalid, and cannot be used.
For example, after a Soft Reset, software sets all cache lines to invalid. A cache line in any other state than
invalid is assumed to contain valid information.

The data cache supports three cache states:

4% invalid
< valid clean
< valid dirty

The instruction cache supports two cache states;

4 invalid
<4 valid

The state of a valid cache line may be modified when the processor executes a CACHE operation. CACHE
operations are described in Chapter 24,

152

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

8.5 CACHE STATE TRANSITION DIAGRAMS

The following section describes the cache state diagrams for the data and instruction caches. These state
diagrams do not cover the initial state of the system, since the initial state is system-dependent.

8.5.1 Data Cache State Transition

The following diagram illustrates the data cache state transition sequence. A load or store operation may include
one or more of the atomic read and/or write operations shown in the state diagram below, which may cause cache
state transitions.

4 Read (1) indicates a read operation from memory to cache, inducing a cache state transition.

< Write (1) indicates a write operation from CPU core to cache, inducing a cache state transition.

< Read (2) indicates a read operation from cache to the CPU core, which induces no cache state transition.
< Write (2) indicates a write operation from CPU core to cache, which induces no cache state transition.

Figure 8-8. Data Cache State Diagram

CACHE op CACHE op

Write (1)

Write (1)
CACHE op

Read (2}

Read (2) .
Write (2)[| ‘é?"t';

Write-back

8.5.2 Instruction Cache State Transition

The following diagram illustrates the instruction cache state transition sequence.

< Read (1) indicates a read operation from memory to cache, inducing a cache state transition.
< Read (2) indicates a read operation from cache to the CPU core, which induces no cache state transition.

Figure 8-7. Instruction Cache State Dlagram

CACHE op
Read {2) | B Read (1) Invalid

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

8.6 CACHE DATA INTEGRITY

The D- and I-cache data RAM arrays are protected by parity. D- and l-cache tag RAM arrays are also protected
by parity.

These parity bits are checked for errors on every cache read access. Cache error exception occurs if the CPU

core encounters a parity error during an instruction cache access, a data cache access, or memory read access.
The CacheErr register indicates the source of the error.

Figuré 8-8 to Figure 8-22 shows the parity generation and checking operations for various cache accesses.

Figure 8-8. Data flow on Instruction Fetch

Error

OK, DE = 1 Cache Error
or ERL =1 Exception
Hit
TagCheck
Miss or
Invalid
(See Figure 8-21) Refill

OK, DE =1 Cache Error
or ERL =1 Exception

Data Fetch

154

CHAPTER B8 ' CACHE ORQANIZATION AND OPERATION

Figure 8-8. Data Integrity on Load Operations

)

Error
OK DE=1 Cache Emor
orERL=1 Exception
Hit
Miss or
Invalid
Errvor
OK DE=1 Cache Error
orERL=1 V=0 (lm"d) or Exceptlon
W =0 {clean}
V = 1 (valid) and
W =1 (dirty) Refii | (See Figure 8-21)
(See Figure 8-22) | Writeback
& Refill
r
Deaigk Error |
OK,DE=1o0r
ERL =1 e Rorar]
Data Load
to register

END

155

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

Figure 8-10. Data Integrity on Store Operations

Ermror
OK,DE=1 Cache Error
orERL =1 Exception
Hit
Miss
Error
OK, DE Cache Error
or ERL =1 V = 0 (invalid) or Exception
W =0 (clean)
Valid bit &
Whit
V =1 (valid) and
W =1 (dirty) Refil | (Ses Figure8-21)
{See Figure 8-22) | Writeback
& Refill

Data Parity Data Parity
Generate from PEm reg.
]

Data Write to
D-Cache

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

Figure 8-11. Data Integrity on Index_invalidate Operations

Cache Error
Exception

Valid bit clear

Figure 8-12. Data Integrity on Index_Writeback_Invalidate Operations

Cache Error
Exception

O

=1 (dirty}

(See Figure 8-20) | Wiiteback

l

Validbitand | orERL= 1
Whit clear

Cache Error
Exception

157

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

158

Figure 8.13. Data Integrity on Index_Load_Tag Operations

Tag and Tag Parity
Read to Taglo
Whit and Wbt Parity D-Cache
Read to Tagle only
............... G e
END

Figure 8-14, Data Integrity on Index_Store_Tag Operations

Tag Parity Tag Parity from

Generate Lo

Whit Parity Whit Partty : D-Cache
Generate from Taglo s only

Tag Write from
TaglLo

END

CHAPTER 8 CACHE ORGANLZATION AND OPERATION

Figure 8-15. Data Integrity on Create_Dirty Operations

Error
OK, DE =1 Cache Error
orERL =1 Exception

Hit or Invalid

TagChack 1

Miss Ve

(invalid) or
We{i

Valid bit & clean

VWhit
V =1 (valid) and
W =1 (dirty)
(See Figure 8-20)
Cache Error
Exception
Valld bit and
Whlt get,
Tag write.
Whit parity and
Tag parity
gensrate,

Figure 8-18. Data Integrity on Hit_Invalidate Operations

Error

|

orERL=1 Gache Emor]
1on
TagCheck
Hit
Valid bit clear.
Tag parity generate.

159

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

Figure 8-17. Data Integrity on Hit_Writeback_Invalidate Operations

Error

OK, DE = 1
or ERL = 1 CE”,,:M,,,,EIO",‘,"]

Miss or tnvalid

Error

=1 (dirty)
{See Figure 8-20) DOrKéF?E_‘: Cache Error]
Exception
Valid bt clear.
Tag parity generate.

Cache Error
[Exception J

H or ERL=1

Figure B-18. Data Integrity on Flll Operations

(See Figure 8-21) Refill

160

CHAPTER 8 CACHE ORGANIZATION AND OPERATION

Figure 8-19. Data Integrity on Hit_Writeback Oparations

Whit Parity check Is
D-Cache only Cache Error
Exception

OK, DE =1
orERL=1

)

Miss or Invalid

¢ = 0 (dlean)
L= 1 (dirty)

)

sreeea CacheEncr
5 orERL= 1 ' Exception
: Whit :

: . D-Cache only

END

161

CHAPTER & CACHE ORGANIZATION AND OPERATION

Figure 8-20. Data Integrity on Writeback Flow

No

OK, DE=1 Cache Error
orERL=1 Exception

Figure 8-21. Data Integrity on Refill Flow

Q

|

Write data
to cache

Errvor existed in
refill data

Cache line
Invalidate

Bus Error
Exception

162

CHAPTER 8 CACHE ORGANLZATION AND OPERATION

Figure 8-22. Data Integrity on Writeback & Refill Flow

Refill start

Enror existed in
writeback data

OK,DE=1or
ERL=1
Write data
1o cache

OK,DE=1or
ERL=1

Cache Error

Ermor existed in Exception
refdl data

Cache line
Invalidate

Exception
Remark Write-back Procedure:

On a store miss write-back, data and tag parity is checked and data parity is transferred to the write
buffer. Byte parity is generated for the physical address and transferred to write buffer. If an error is
discovered on the data field, the write back is not terminated; the erroneous data is still written out. If
an error is discovered in the tag field, the write-back bus cycle is not issued. In both cases a cache

efror exception is taken.

i a tag parity error occurs during a CACHE operation, the Cache Error exception is taken and the
operation is not permitted to complete.

183

CHAPTER 8§ CACHE ORGANIZATION AND OPERATION

8.7 MANIPULATION OF THE CACHES BY AN EXTERNAL AGENT

The VR4100 does not provide any mechanisms for an external agent to examine and manipulate the state and
contents of the caches.

164

CHAPTER9 CPU CORE INTERRUPTS

Four types of interrupt are available on the CPU core. These are:

<4 one non-maskable interrupt, NMI
< five ordinary interrupts

<% two software interrupts

<+ one timer interrupt

These are described in this chapter.

9.1 NONMASKABLE INTERRUPT (NMI)

The nonmaskable interrupt is signaled by asserting the NMi signal (internal), forcing the processor to branch to
the Reset Exception vector. This signal is latctied into an internal register by the rising edge of MasterOut, as
shown in Figure §-1. ‘

NMI only takes effect when the processor pipeline is running.
This interrupt cannot be masked.

Figure 9-1 shows the internal derivation of the NMI signal. The NMI signal is latched into an internal register by
the rising edge of MasterOut.

Figure 9-1. Nonmaskable Interrupt Signal
(Internal register)

NMI signal NMI request

MasterOut

165

CHAPTER 9 CPU CORE INTERRUPTS

9.2 ORDINARY INTERRUPTS
Ordinary interrupts are set by asserting the Int(4:0} signals {internal). However, Int{4:2) never occur on the
VR4101.
These interrupts can be masked with the IM, IE, and EXL fields of the Status register.

9.3 SOFTWARE INTERRUPTS GENERATED IN CPU CORE
Software interrupts generated in the CPU core use bits 1 and 0 of the IP (interrupt pending) field in the Cause
register. These may be written by software, but there is no hardware mechanism to set or clear these bits.

After the processing of a software interrupt exception, corresponding bit of the IP field in the Cause register must
be cleared before returning to ordinary routine or enabling multiple interrupts.

These interrupts are maskable through the IM, |E, and EXL fields of the Status register.

9.4 TIMER INTERRUPT

The timer interrupt uses bit 15 of the Cause register, which is bit 7 of the IP (interrupt pending) field. This bit is
set whenever the value of the Count register equals the value of the Compare register.

This interrupt is maskable through the IM field of the Status register.

186

CHAPTER 9 CPU CORE INTERRUPTS

9.5 ASSERTING INTERRUPTS
9.5.1 Detecting Hardware Interrupts
Figure -2 shows how the hardware interrupts are readable through the Cause register.
< The timer interrupt signal, IP7, is directly readable as bit 15 of the Cause register.
< Bits 4:0 of the Interrupt register are bit-wise ORed with the current value of the Int(4.0) signals and the result

is directly readable as bits 14:10 of the Cause register.

IP{1.0) of the Cause register, which are described in Chapter 5, are scftware interrupts. There is no hardware
mechanism for seiting or clearing the software interrupts.

Figure 9-2. Hardware Interrupt Signals

4 3 2 1 0

| | | | | Ilnterruptregister(4:0)

12

—- See Figure 9-3
13
14

15

Timer interrupt

Cause register
(15:10)

MasterOut (Internal register)

Int3 Int1
Intd4 In2 Into

Remark Int(4:2) never occur in the VR4101.

167

CHAPTER® CPU CORE INTERRUPTS

9.5.2 Masking Interrupt Signals

Figure 9-3 shows the masking of the CPU core interrupt signals.

4 Cause register bits 15 to 8 (IP7 to IP0) are AND-ORed with Status register interrupt mask bits 15 to 8 (IM7? to
IMO) to mask individual interrupts.

4 Status register bit 0 is a global Interrupt Enable {JE). It is ANDed with the output of the AND-OR logic to
produce the CPU core interrupt signal. The EXL bit in the Status register also enables these interrupts.

Figure 9-3. Masking of the CPU Core Interrupts

Status register
(0}

Status register
(15:8)

CPU core
interrupt

Software interrupts

generated in CPU core AND logic

0

Ordinary
interrupts

Timer interrupt ——

168

CHAPTER 10 BCU (BUS CONTROL UNIT)

This chapter explains the operation of the BCU and how to set the registers of the BCU.

10.1 GENERAL

The BCU performs internal data transfer to and from the YR4100 CPU core over the SysAD bus (internal).
Externally, it performs data transfer to and from an LCD controlier, DRAM, ROM (flash memory or masked ROM),
or PCMCIA controller connacted to the system bus, via the ADD and DATA buses.

The BCU operates based on TClock, one of internal bus clock.

10.2 REGISTER SET
The following table lists the registers of the BCU.

Table 10-1, BCU Registers

Address RW Register symbaols Function
0x0B00 0000 | RIW BCUCNTREG BCU Control register
0x0B0OO0 0002 | RAW BCUBRREG BCU Bus Restrain register
0x0B00 0004 | R/W BCUBRCNTREG BCU Bus Restrain Count register
O0x0B00 0006 | VW BCUBCLREG BCU CPU Restrain Disable register
0x0B00 0008 | R/W BCUBCLCNTREG |BCU CPU Restrain Disable Count register
O0x0B00 O00A | RAW BCUSPEEDREG BCU Access Cycle Change register
0x0B00 000C | RWIC | BCUERRSTREG BCU Bus Error Status register
Ox0BO0 OOCE | R/W BCURFCNTREG BCU Refresh Control register
0x0B0O 0010 | R PREVIDREG Peripheral Revision 1D register

The function of each of these registers is explained in detail below.

169

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.2.1 BCUCNTREG
Figure 10-1. BCUCNTREG (0x0B00 0000)
Paosition D15 D14 - D13 D12 D11 D10 D% D8
Name | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial
value 0 0 0] 0 0 0 o
Position D7 D6 D5 D4 D3 D2 ™M Do
Name REF1K PAGE ROMW |SRFSTA | BCPUR | Reserved | Reserved | RSTOUT
ROM EN T EN
R/W RMW R/W R/W R RW R R RMW
Initial
value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..8] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[7) REF1K Sets DRAM refresh interval.
1: 1024 cycles/128 ms
0: 4096 cycles/128 ms
D[6] PAGEROM Enables page ROM access.
1. Page ROM bus access
0. Normal ROM bus access
D[5) ROMWEN Enables writing of flash memory.
1. Enabled
0: Disabled
Di4] SRFSTAT BCU mode (DRAM refresh mode)
1. Self-refresh mode
0. CBR refresh mode
D[3] BCPUREN CPU bus cycle control enable bit
1. Enables CPU bus control
0: Disables CPU bus control
D[2..1] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[0] RSTOUT RSTOUT control bit
1: Sets the RSTOUT pin to High level
0: Clears the RSTOUT pin to Low level

This register sets parameters such as the bus cycle of the bus interface.
The settings of the BCUBRREG is effective when the BCPUREN bit is 1 (see 10.2.2).

170

CHPAPTER 10 BCU {BUS CONTROL UNIT)

10.2.2 BCUBRREG

Figure 10-2. BCUBRREG (0x0BO0 0002)

Position | D15 D14 D13 D12 D11 D10 D9 D8
Name | BCPUT | BCPUT | BCPUT | BCcPUT | BCPUT | BCPUT | BCPUT | BCPUT
[15) [14] [13] [12] (1] [10] [9] {8]
RIW RIW RAW RIW RIW RIW RIW RIW RIW
Initial 0 0 0 0 0 0 0 0
value
Position | D7 D& D5 D4 D3 D2 D1 DO

Name | BCPUT | BCPUT | BCPUT | BCPUT | BCPUT | BCPUT | BCPUT | BCPUT
[7) 6] (5] [4] [3] [2] [1] (0]

RW RMW RMW R/W RIW RW RW RW RW
Initial 0 0 0 0 0 0 0 0
value
Bit position Bit name Function
D[15..0] BCPUT[15..0] | Sets BCU transaction interval.
BCU transaction interval = BCPUT[15..0] * TClock period

This register is used to set the interval applied to transactions performed between the BCU and CPU core.

When the BCPUREN bit of the BCUCNTREG is set to 1, the value set by this register is used as the BCU
transaction interval {see 10.2.1).

171

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.2.3 BCUBRCNTREG

Figure 10-3. BCUBRCNTREG (0x0B00 0004)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name BTCNT BTCNT BTCNT BTCNT BTCNT BTCNT BTCNT BTCNT
[13] [14] [13] [12] [11) (10} (9] (8]
R/W RW RW RW RW RW R R/W R
Initial
value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do

Name | BTCNT | BTCNT | BTCNT | BTCNT | BTCNT | BTCNT | BTCNT [BTCNT
[71 té1 5] (4] (3] [2] (11 (0]

R/W R/W R/W R/W RW RW RMW RMW R/W
Initial
value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..0] BTCNT[15..0] | Counts BCU transactions.
Counts current BCU transactions.

This register is used to read or write the BCU transaction count.

The vaiue of BTCNT is incremented in synchronization with TClock. When the BCPUREN bit of BCUCNTREG is

set to 1, and provided the count of this register is the same as the value set with BCUBRREG, the contents of this
register are cleared to 0.

172

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.2.4 BCUBCLREG

Figure 10-4. BCUBCLREG (0x0B00 0008)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR
(15] [14) [13] [12] (11 (10} (9] (8]
RW RW RW RW RW RW RW RW RW
Initial
value 0 0 0 0 0 0 0 0
Paosition D7 D& D5 D4 D3 D2 D1 Do
Name BCLR BCLR BCLR BCLR BCLR BCLR BCLR BCLR
[7]. [6] (3] (4] (3] (2] (1] [0]
RW RW R/W RW RW RW RW RW RW
Initial
value 0 0 0 4] 0 0 0 0
Bit position Bit name Function
D{15..0] BCLR[15..0] | Number of repetitions required to enable BCU transaction interval.

This register is used to set the number of repetitions required to enable the BCU transaction interval set with

BCUBRREG.

When the BCU transaction has been performed the number of times set with this register, the BCPUREN bit of
BCUCNTREG is cleared to 0.

173

CHPAPTER 10 BCU {(BUS CONTROL UNIT)

10.2.5 BCUBCLCNTREG

Figure 10-5. BCUBCLCNTREG (0x0B00 0008)

Position D15 D14 D13 D12 D11t D10 D8 D8
Name BCPUC | BCPUC | BCPUC | BCPUC | BCPUC | BCPUC | BCPUC | BCPUC
[15] [14] [13] [12] [11] [10] (9] [8)
RAW RW RW RW RW R/W R/W RW RAW
Initial
value 0 0 0 o 0 0 0 0
Position D7 D8 D5 D4 D3 D2 D1 Do
Name BCPUC [BCPUC | BCPUC | BCPUC | BCPUC | BCPUC | BCPUC | BCPUC
(7] (6] [5] (4] (3] (2] 1 [0]
rRW RW RW R/W R/W RW R/W RW RAW
Initial
value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..0] BCPUC[15..0] | Counts the number of times the BCU transaction is performed.
Number of times BCU transaction has been performed.

This register is used to count the number of times the BCU fransaction, set with BCUBRREG, has been
performed.

The number of times the current BCU transaction has been performed can be both read and written. The value
of BCPUC is incremented each time the BCU transaction is performed. While the BCPUREN bit of
BCUCNTREG is set to 1, and provided the value of this register is the same as the value set with BCUBCLREG,
the contents of this register are cleared to 0.

174

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.2.6 BCUSPEEDREG

Figure 10-8. BCUSPEEDREG (0x0B00 000A) (1/2)

Position D15 D14 D13 D12 D11 D10 Da D8
Name | Reserved | Reserved | WPROM | WPROM | Reserved | Reserved [WLCD WLCD
1] (9] Al1] Al0]
R/W R R R/W RMW R R R/W RAW
Initial 0 0 0 0 0 0 0 0
value
Position D7 D6 D5 D4 D3 D2 D+ DO
Name | Reserved | WISA WISA WISA | Reserved | WROM | WROM | WROM
Al2] Al1] Al0] Al2] Al1] Al0}
R/W R R/W RW RMW R RW R/W RW
Initial
value 0 0 0 1 o 0 0 0
Bit position Bit name Function
D[15..14] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[13..12] WPROM([1..0] | Page ROM access speed (Tprom)
11: Reserved for future use.
10: 1 TClock
01: 2 TClocks
00: 3 TClocks (initial vatue)
D[11..10) Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[9..8] WLCDA[1..0] | LCD access speed (Tlcd)
11: 2 TClocks
10; 4 TClocks
01: & TClocks
00: 8 TClocks {initial value)
D[7] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.

175

CHPAPTER 10 BCU (BUS CONTROL UNIT)

Figure 10-8. BCUSPEEDREG (0x0B0O 000A) {2/2)

Bit position Bit name Function

D[6..4] WISAA[2..0] ISA access speed (Tisa)

111: Reserved for future use. Operation is not guaranteed if
this value is set.

110: Reserved for future use. Operation is not guaranteed if
this value is set.

101: 3 TClocks

100;: 4 TClocks

011: 5 TClocks

010; 6 TClocks

001: 7 TClocks {initial value)

000: 8 TClocks

D[3j Reserved Resarved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[2..0] WROMAJ2..0] | ROM access speed (Trom)

111: 2 TClocks
110: 3 TClocks
101: 4 TClocks
100: 5 TClocks
011: 6 TClocks
010: 7 TClocks
001: 8 TClocks
000: 9 TClocks (initial value)

This register sets the access speeds of LCD, ISA, page ROM, and ROM.

When the WLCDA[1..0], WPROM[1..0], WISAA[2..0], and WROMA[2. 0] bits are set to 0, the lowest speed is set.
When these bits are set to 1, the highest speed is set.

The value of WPROM[1..0] is effective only when the PAGEROM bit of BCUCNTREG is set to 1.

176

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.2.7 BCUERRSTREG

Figure 10.7. BCUERRSTREG {0x0B00 000C)

Position D15 D14 D13 D12 D11 D1¢ D9 D8
Name | Reserved | Resarved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial
value 0 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Do
Name | Reserved | Reserved | Reserved | Ressrved | Reserved | Reserved | Reserved | BERRST
RW R R R R R R R RWA1C
Initial
value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D{15..1} Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[0] BERRST Bus error status
1. Bus error
0: Normal

This ragister indicates the occurrence of a bus error interrupt.

By setting the BERRST bit to 1, the bus error interrupt is cleared.

177

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.2.8 BCURFCNTREG

Figure 10-8. BCURFCNTREG (0x0B0C 000E)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name | Reserved | Reserved | Reserved | BRF [12] | BRF [11) ¢ BRF [10] | BRF [9] | BRF [8]
R/W R R R R R R/W RW R/W
Initial
value 0 0 0 0 0 0 0 0
Position o7 D6 D5 D4 D3 D2 D1 Do
Name BRF[7] | BRF[6] | BRF[5] | BRF[4] | BRF[3]) | BRF[2] | BRF[1] | BRF[0]
R/W RW R/W RW R/W RW R/W RW RV
Initial
value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..13] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[12..0] BRF[12..0] Refresh cycle counter

This register indicates the current count of the refresh cycle.

178

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.2.9 PREVIDREG

Figure 10-9. PREVIDREG (0x0B00 0010)

Position D15 D14 D13 D12 D1 D10 D9 D8
Name | Reserved | Reserved | Reserved | Reserved | MUREV | MJREY | MJREV | MJREV
©) (2] (1] (0]
RAN R R R R R R R R
Initial
value 0 0 0 0 x X X X
Pasition D7 D6 D5 D4 D3 D2 D1 Do
Name | Reserved | Reserved | Reserved | Reserved | MNREV | MNREV | MNREV | MNREV
(3] (2] (1] (0]
RW R R R R R R R R
Initial 0 0 0 0 X X X X
value
Bit position Bit name Function
0{15..12] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[11..8] MJREV[3..0] [Major revision number
D[7..4] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[3..0) MNREV[3..0] | Minor revision number

Remark x: undefined

This register indicates the revision of the peripheral units of the VR4101.

The revision number is stored as a value in the form y.x, where y is @ major revision number and x is a minor
revision number.

Major revision number and minor revision number can distinguish the revision of the peripheral units, however
there is no guarantee that changes to the peripheral units will necessarily be reflected In this register, or that
changes to the revision number necessarily reflect real units’ changes. For this reason, these values are not
listed and software shouid not rely on the revision number in PREVIDREG to characterize the units.

179

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.3 MEMORY ACCESS BY BCU

The Bus Control Unit (BCU) is the unit to perform the initiation of bus cycles and bus arbitration for the CPU core
or DMAC to access an external device or a built-in I/0s.

10.3.1 Address Map

The address map accessible through the BCU is shown below.

Table 10-2. Address Map of the VR4101

Physical address Space
Ox1FFF FFFF - Ox1F00 0000 ROM
Ox18FF FFFF - Ox1800 0000
Ox17FF FFFF - Ox1600 0000 Expansion /O
Ox15FF FFFF - 0x1400 0000 Expansion Memory
Ox0OBFF FFFF - 0x0B00 0000 Register
Ox0AFF FFFF - 0x0A00 0000 VRAM (LCD)
Ox03FF FFFF - 0x0000 0000 DRAM
Ox1EFF FFFF - 0x1900 0000 Address space reserved for the future
Ox13FF FFFF - Ox0C00 0000
Ox09FF FFFF - 0x0400 0000

10.3.2 Address Space for ROM
Address space for the ROM is selected by the ROM chip select terminals as betow.

Table 10-3. Detailed Address Map for the ROM

Physical address ROM chip select terminal
Ox1FFF FFFF - Ox1FCO 0000, 0x18FF FFFF - 0x18C0 0000 ROMCS*[3]
Ox1FBF FFFF - Ox1F80 0000, Ox18BF FFFF - 0x1880 0000 ROMCS*[2]
Ox1F7F FFFF - Ox1F40 0000, 0x187F FFFF - Ox1840 0000 ROMCS*'1]
Ox1F3F FFFF - Ox1F00 0000, 0x183F FFFF - Ox1800 0000 ROMCS*[0]

180

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.3.3 Address Space for Expansion Bus

Expansion bus has two access types, I/O access and memory access, and each has two modes, 16-bit device
mode and 8-bit device mode, which are automatically selected by physical address output by CPU core.
Address space for each mode is selected by the read/write terminals for I/C access or memory access as below,

(1) Expansion /O access

Table 10-4. 18-Bit Device Mode for the Expansion I/O

Physical address

Read/write terminai for 1/O access

Ox17FF FFFF - 0x1720 0000

RFU

0x171F FFFF - 0x1700 0000

IOR* / IOW*

Table 10-5. B8-Bit Device Mode for the Expansion 1/O

Physical address

ReadMwrite terminal for I/O access

Ox16FF FFFF - 0x1620 0000

RFU

Ox161F FFFF - Ox1600 0000

IOR* / IOW*

(2) Expansion memory access

Table 10-8. 18-Bit Device Mode for the Expansion Memory

Physical address

Read/write terminal for memory access

0x15FF FFFF - 0x1520 0000

RFU

Ox151F FFFF - 0x1500 0000

MEMR* / MEMW*

Table 10-7, 8-Bit Device Mode for the Expansion Memory

Physical address

ReadAwrite terminal for memory access

0x14FF FFFF - 0x1420 0000

RFU

Ox141F FFFF - Ox1400 0000

MEMR* / MEMW*

181

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.3.4 Address Space for Registers

Address space for the registers which belong to on-chip peripheral units is mapped at every unit as below. Refer
to chapters of each unit for detailed address of each register.

Table 10-8. Register Address Space for Peripheral Units

Physical address Unit
Ox0BFF FFFF - 0x0B0O0 01CO RFU
Ox0B0O0 01BF - Ox0B0OO 01A0 Dsiu
Ox0B0O 019F - OxOBOO 0180 KIU
0x0B00 017F - OxOBOO 0150 ADU
O0x0B00 015F - 0x0B0OO0 0140 SV
0x0B00 013F - 0x0BOC 0120 PIU
0x0BOO0 011F - 0x0OBOC 0100 GIU
0x0B0O0 00FF - Ox0B0O O0EC osu
0x0B00 00DF - 0x0B0O QOCO RTC
Ox0B00 00BF - 0x0B0O 00AQ PMU
Ox0BOO 009F - 0x0B0O0 0080 Icu
0x0BOO 007F - Ox0BO0 0060 CMU
0x0B00 005F - 0x0B0OO0 0040 DCU
0x0B0O CO3F - 0x0BOCG 0020 DMAA
0x0BOO 0O1F - Ox0BOO 0000 BCU

10.3.5 Address Space for LCD

Address space at LCD access is selected by LCD controller chip select terminal as below.

Table 10-9. Detailed LCD Address Space

Physical address LCD controller chip select terminal
OxDAFF FFFF - Ox0A20 0000 RFU
0x0A1F FFFF - OxQA00 0000 LCDCs*

182

CHPAPTER 10 BCU (BUS CONTROL UNIT}

10.3.6 Address Space for DRAM
Address space at DRAM access is selected by RAS terminals for DRAM as below.

Table 10-10. Detailed DRAM Address Space

Physical address RAS terminals for DRAM
Ox03FF FFFF - 0x0080 0000 RFU
0x007F FFFF - 0x0060 0000 MRAS*[3]
0x005F FFFF - 0x0040 0000 MRAS*[2]
Ox003F FFFF - 0x0020 0000 * MRAS*[1]
0x001F FFFF - 0x0000 0000 MRAS*[0]

10.4 CONNECTION OF ADDRESS TERMINALS

Physical address output from CPU core is provided to external devices through ADD bus. The correspondence
between the address output to ADD bus and the address bits of external devices is different from the external
devices as shown in Table 10-11. Therefore, connect ADD bus and address bits of the external device as shown
in Table 10-12.

Table 10-11. Address Bit Correspondence between ADD Bus and External Devices

Devices connected ADD bus
ol1]2]3]|a]|5|6|7]ea]10]11|12[13[14[15[16(17]18]18]20

ROM 21| 1|213|a|5{6|7]8]|9]10[11]{12]13]14]15]16[17|18[10]20

Eé%a"s"’“bus ol1]|2]3la|s5|e|7|a|o]|10|11|12]13[14|15]16]17]18]19]20

CRAM (row}

DRAM (column) |0 |1|z|3[als]|e|7|a|1[2]|3]a{5|6|7]|8[19]20]19]20

183

CHPAPTER 10 BCU (BUS CONTROL UNIT)

184

Table 10-12. Address Connection Table with External Devices

VR4101 terminal Address terminals of external devices
Rom | Eomsonne | omaw
ADD[0] 20 0 -
ADD[1] o 1 —
ADD[2] 1 2 —
ADD[3] 2 3 —_
ADD[4] 3 4 —
ADDI[5] 4 5 —
ADDI8] 5 6 —
ADD[7] 6 7 —_
ADDI[8] 7 8 -
ADDI[9] 8 9 0
ADD[10] 9 10 1
ADD[11] 10 11 2
ADD[12] 11 12 3
ADD[13] 12 13 4
ADD[14] 13 14 5
ADD[15] 14 15 6
ADD[16] 15 16 7
ADD[17] 16 17 8
ADD[18] 17 18 9
ADD[19] 18 19 10
ADD[20] 19 20 11

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.5 NOTES FOR USING BCU

10.5.1 CPU Core Bus Modes

The VR4101 is designed on the proposition that the CPU core is set the mode for bus interface as below:

+ Writeback data rate:

+ Accelerate data mode;

DxDx

R4x00 compatible mode

Therefors, set the Canfig Register as below:

- EP field: 0011
«ADDbit 0

10.5.2 Access Data

Size

The VR4101 has a restricted access size for each address space.

The access size for each address space is show below.

Table 10-13. Access Size for Each Address Space

Address space R/W Access size {byte) Remarks
6 8 4 3 2 1
ROM R A A A A A A
Flash memary w N/A N/A N/A NIA A NIA
Expansion bus 8-bit device mode RW A A A NAA *
Expansion bus 16-bit device mode RW A A A NA A ™
Built-in 1/O resource (register) RMW N/AN/A A NA A N/A
LCD controller R N/A A A NA A A
DRAM RW A A A A A A Use this with non-cache

* When performing 1-byte access in the expansion bus 8-bit device mode, access is made using only
DATA(7..0} of DATA{15..0].

1-byte access in the expansion bus 16-bit device mode, DATA[7..0] is used for the
access to even-numbered addresses, and DATA[15..8] for the access to odd-numbered addresses.

** When performing

186

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.5.3 ROM Interface

(1) ROM/Page-ROM/Flash Memory switching

The VR4101 performs Ordinary ROM/Page-ROM/Fiash Memory mode switching by sefting of the ROMWEN bit
and PAGEROM bit of the BCUCNTREG. In Ordinary ROM meode or Flash Memory mode, the VR4101 can
access to memories regardless cf its mode name. Table 10-14 shows accessible memory types and methods of
access in each mode.

Table 10-14. Summary of ROM Modes

Mode Setting Accessible device
ROMWEN PAGEROM Memory read | Flash memory | Flash memory
register read write
Ordinary ROM 0 0 Ordinary ROM N/A N/A
Page-ROM
Flash memory
Page-ROM 0 1 Page-ROM N/A N/A
Flash Memory 1 X Ordinary ROM | Flash memory | Fiash memory
Page-ROM
Flash memory

Note The default setting is the Ordinary ROM mode.
x: don't care

(2) Setting of access speed

The VR4101 can change the access speed during operation in the Ordinary ROM mode or Page-ROM mode.
Refer to 10.6.1 for details.

186

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.5.4 Flash Memory Interface

{1} Restrictions on each mode

Flash memory interface has two mode as follows:

- Ordinary ROM mode {exclusively for memory read)
+ Flash Memory mode (far write and register read)

Restrictions in each mode are as described below.

(a) Restrictions in the Ordinary ROM mode

- Write is prohibited.
Even if write is performed, the LCDCS* (ROMWE®*) terminal is not asserted.
« Flash memory register read is prohibited.

The Ordinary ROM mode is the mode to issue the bus cycle suitable for memory read. Because the Flash
memory uses different AC characteristics for register mode and memory mode, correct data cannot be
obtained if read of Flash memory register is performed in this mode.

{b) Restrictions in the Flash memory mode

* When performing write to the Flash memory, be sure to access with two bytes.

{2) Example of write sequence to Flash memory

Example of write sequence to Flash memory is shown below.

Caution Confirmation of the operation of this example on the actual system is not yet performed,

1. Using GPIO as the cutput port, apply write voltage (Vpp) to Flash memary.

If the built-in GPIQ of the VR4101 is not available, install an output port on the outside and control the
write voltage.

Set the VrR4101 to the Flash memory mode {Set the ROMWEN bit of BCUCNTREG to 1).
Wait until the write voltage to Flash memory becomes stable.

Issue the write command to Flash memory from the VR4101.

Write data to Flash memory from the VR4101.

Wait until the write completion signal of Flash memory (ry/by) becomes stable.

N o oswN

Wait until the write completion signal of Flash memory notice the completion of write.

Completion of the write to Flash memary can be known by the interruption with the Flash memory write
completion signal {ry/by) or palling the Flash memory register.

8. Read the Flash memory register.
- If the write has succeeded, perform processing from "9."
+ If the write has failed, perform processing from "12."
9. When writing new data to Flash memory, perform processing from "4."
When finishing the read to Flash memory, perform processing from "10."

187

CHPAPTER 10 BCU (BUS CONTROL UNIT}

10. Compare the data written to Flash memory with the original data.
- If these data accord, perform processing of "11."
« If these data do not accord,
When performing write again, perform processing from "4."
When ending the process, perform processing from "11."
11. Drop the write voltage of Flash memory (Vee), release the Flash memory mode, and end the processing.
12. Clear the error information from the Flash memory ragister.'
« When performing write again
if the write voltage was too low, perform processing from "1."
In other cases, perform processing from "4."
- When ending the process, perform processing of "11."

10.5.5 Expansion Bus Interface

Because the VR4101 does not support dynamic bus sizing, it is specified that only an 8-bit access is allowed as an
access to an B-bit device.

Dynamic bus sizing is the function to change the DATA bus width dynamically in response to the sizing request
from the target device (e.g. the bus sizing using the MEMCS16 and ~-IOCS16 signals of the ISA bus).

(1) Access size in each mode

Restrictions on the access to each of an 8-bit device and 16-bit device ars as described below.

(a) 8-bit device mode
Table 10-15. Table 10-18.
Restrictions on the Access to an 8-bit Restrictions on the Access to a 16-bit

Device in the 8-bit Device Mode Device in the 8-bit Device Mode

Access size Read Write Access size Read Write

Odd-numbered bytes A A Odd-numbered bytes N/A N/A
Even-numbered bytes A A Even-numbered bytes A A
2 bytes N/A N/A 2 bytes A A
4 bytes N/A N/A 4 bytes A A
8 bytes N/A N/A 8 bytes A A
16 bytes N/A N/A 16 bytes A A

188

CHPAPTER 10 BCU (BUS CONTROL UNIT)

{b} 18-bit device mode

Table 10-17.

Restrictions on the Access to an 8-bit

Device in the 18-bit Device Mode

Access size Read Write
Odd-numbered bytes N/A N/A
Even-numbered bytes A A
2 bytes N/A N/A
4 bytes N/A N/A
8 bytes N/A N/A
16 bytes N/A N/A

(2) Mode switching

Table 10-18.

Restrictions on the Access to a 16-bit

Device in the 16-bit Device Mode

Access size

Read

Write

Odd-numbered bytes

A

A

Even-numbered bytes

2 bytes

4 bytes

8 bytes

16 bytes

(2|2 >

i e I

Switching between the 8-bit device mode and 16-bit device mode is effected by the physical address output from

the CPU core. Refer to 10.3.3 for details.

10.5.6 LCD Controller Interface

(1) Access size

Be sure to perform the access on the LCD controller interface with 1 byte, 2 bytes, 4 bytes, or 8 bytes.

{2) Reversal of data

The VR4101 reverses the data read and written from and to the LCD contreller interface in terms of bits.

Table 10-19. Example of Reversal in Terms of Bits of the Internal Data
of the VR4101 and the Data on the DATA[15.0] Terminal

Internal Data of the VrR4101

Data on the DATA[15.0] Terminal

0x0000 OxFFFF
OxASAS Ox5A5A
0x1234 OxEDCB

189

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.5.7 Notice of an lllegal Access

(1) Typas of illegal access

The VR4101 notices the occurrence of an illegal access to the CPU core.

* Dead rock of the bus
Because no ready signal is returned from the expansion bus or LCD controller interface when two or more CBR

refreshes are disabled, it is judged as of a dead lock of the bus and the occurrence of an iltegal access is
noticed.

+ Address space reserved for the future

When the processor has accessed to the following address, the occurrence of an illegal access is noticed.

Accass to Ox1EFF FFFF - Ox1800 0000
Access to Ox13FF FFFF - 0x0C00 0000
Access to 0x09FF FFFF - 0x0400 0000

{2) Methods for noticing an illegal access

Methods for noticing to the CPU core are as follows:

Table 10-20. Methods for Noticing an lllegal Access

Type of access Method for noticing an illegal access
Processor read request Noticed by a bus error indication on the SysCmd bus
Processor write request Noticed as an interrupt exception (Int0)

Note The clearance of the interrupt factor by a processor write request is effected by writing 1 to bit 1 of the
BCUERRSTREG.

10.6 BUS OPERATION

The BCU operates based on TClock, one of internal bus clock.

10.6.1 ROM Access

The VrR4101 supports the following three modes for ROM access.
Mode setting is effected by the PAGEROM bit and ROMWEN bit of BCUCNTREG.

® Ordinary ROM read mode (ROMWEN, PAGEROM = 00)
@ Page-ROM read mode (ROMWEN, PAGEROM = 01)
® Flash Memory mode (ROMWEN = 1)

180

CHPAPTER 10 BCU (BUS CONTROL UNIT)

(1) Ordinary ROM read mode
Set to ROMWEN = 0, PAGEROM =0,

The access time can be set by WROMA([2:0] {(BCUSPEEDREG([2:0]).

Table 10-21. Access Time In the Ordinary ROM Read Mode

WROMA([2:0] Trom(TClock)
000 9
00 1 8
010 7
0 1 1 6
. 100 5
10 1 4
110 3
P11 2

Figure 10-10. ROM 4-Byte Read {(WROMA[2:0] = 110)

—>|<— Trom

, <
TClock(internal) | |—I_|—|_|_|_|—I_I_

Trom

]

ADDI[20:0)(0) Y

1

Add

ROMCS*[3:0](o) \

ROMOE*(0) \

DATA[15:0](ifo) }

Remark Broken lines indicate high impedance.

DATA is sampled at the rising edge of TClock following the last TClock of the Trom state.
Types of bus operation of the ordinary ROM are as described below.
1-byte read, 2-byte read, 3-byte read, 1-word read {4-byte), 2-word read, 4-word read

191

CHPAPTER 10 BCU {(BUS CONTROL UNIT)

{2) Page-ROM read mode

Set to ROMWEN = (, PAGEROM = 1.
The access time can be set by WROMA[2:0] {BCUSPEEDREG[2:0]), WPROM[1:0] (BCUSPEEDREG[13:12]).

Table 10-22. Access Time in the Page-ROM Read Mode

WROMA[2:0] Trom(TClock} WPROM[1:0] Tprom(TClock)
0 0O 9 00 3
0 0 1 8 01 2
010 7 1 0 1
0 1 1 6 1 1 RFU
100 5
1.0 1 4
110 3
1 1 1 2
Figure 10-11. Page-ROM 4-Byte Read {WROMA[2:0] = 110, WPROM[1:0] = C1)
Trom Tprom Tprom Tprom Tprom Tprom Tprom Tprom
TClack{internal)
ADD[20:0]{0) x Add Add Y Add x Add XAdd x Add x Add x Add
ROMCS*[3:0](0) \ ’
ROMOE*(0) \ ’
DATA[15:0](ifo) } ------ Umx Data kj}ata x Data x Data Y Data l Data x Data } ----- ‘

Remark Broken lines indicate high impedance.

192

CHPAPTER 10 BCU (BUS CONTROL UNIT)

(3) Flash Memory mode

Set to ROMWEN =1,

This is the mode to satisfy the sequence of the write to the Flash memory and access to the Flash memory
register. Read from the Flash memory is also available in this mode.

The access time is constant in this mode.

Figure 10-12. Flash Memory 2-byte Access

i.——— Flash Memory mode access cycle ——>|
ADD[20:0](0) X
ROMCS*[3:0](0) \ I—
ROMOE*/LC DWE*(c} \ /_

193

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.6.2 Expansion Bus Interface

Bus specification for the 16-bit device mode and 8-bit device mode are as describe below.

Table 10-23. Bus Specifications for the 8-Bit Device Mode

SHB ADD[0] | Access size Write Read Remarks
DATA[15:8] | DATA[7:0] | DATA[15:8] | DATA[T:0]
o 2 byte A A * '
1 1 byte N/A N/A — - Note 1
1 0 1 byte N/A A —_ v Byte access to
even-numbered
address
1 1 1 byte A DATA[15:8] — * Byte access to
Copy odd-numbered
address
Table 10-25. Bus Specifications for the 16-Bit Device Mode
SHB ADD[0] | Access size Write Read Remarks
DATA[15:8] | DATA[7:0] | DATA[15:8] | DATA[7:0]
0 2 byte A A * *
1 1 byte A N/A > -— Byte access to
odd-numbered
address
1 0 1 byte N/A A — * Byte access to
even-numbered
address
1 1 1 byte N/A N/A — — Note 2

Note 1. SHB*=0 and ADD[0]=1 are nct output in the 8-bit device mode.
2. SHB*=1 and ADD[0]=1 are not output in the 16-bit device mode.

Remarks

"A" indicates that the expansion bus outputs valid data.

“N/A" indicates that the expansion bus outputs invalid data.

" indicates the data that the expansion bus samples.
—" indicates the data that the expansion bus does not samples.

194

CHPAPTER 10 BCU (BUS CONTROL UNIT)

(1) Operation of the expansion bus

The access time can be set from WISAA[2:0] (BCUSPEEDREG[E:4]).

Table 10-26. Access Time of ISA

WISAA[2:0] Tisa{TClock)
00O 8
001 7
010 6
01 1 5
100 4
101 3
110 RFU
11 1 RFU

If the access time is set to 3 TClock (WISAA[2:0] = 101}, the system bus brings bus cycle to an end at east 3
TClock (Tisa period) later the sampling of LCDRDY signal.

LCDRDY signal is sampled at the rising edge of TClock following the second and later Tisa period.

Figure 10-13. Two-Byte Access in the Case Where the LCDRDY High Level Is Sampled

(WISAA[2:0] = 101)

Tisa Tisa Tisa
TClock(internal)
ADD[20:0)(0) l
SHB*(0) _\ /_
IOR*MOW*(c) I_

MEMR*/MEMW*(0)

LCDRDY(i)

ZWS*(i)

DATA[15:0](i/o) x
(Write)

DATA]15:0]i/0)
(Read)

Remark Broken lines indicate high impedance.

195

CHPAPTER 10 BCU {BUS CONTROL UNIT)

Figure 10-14 indicates the timing at 1-byte access.

In the 16-bit device mode, low level is output from SHB* because the data access is performed using DATA[15:8].
In the B-bit device mode, high level is output from SHB* because the data access is performed using DATA[7:0].

Figure 10-14. One-byte Access to Odd-numbered Address
in the Case Where the LCDRDY High Level Is Sampled

(a} 18-bit device mode (WISAA[2:0] = 101)

| | Tisa | Tisa | Tisa | |
TCIock(internaI)l | I | I | I I l I | | | I I | I l I l I | I |
ADD[20:0}(0) L
SHB*(0) L

IOR*10W*(0) \ /_
MEMR*/MEMW*{0)

LCDRDY(i) [
X
2ZWS(i) [~ ‘X
DATA[15:0](i/0) x
(Write)

DATA[15:0](i/0)
(37 7) T (_?_)) (_

{b) 8-bit device mode (WISAA[2:0] = 101)

Tisa Tisa Tisa
TClock(internal)

ADD[20:0)(0) x

SHB*(0) [
IOR*AOW*
MEMR'IMEMW'ES; \ /

LCDRDY{i)

2WS*(i) I
DATA]15:0](i/o) x
{(Write)

DATA[15:0)(ifo)
(Read) —_f "~ """ °° """ -Tmmmmmmmemmenmes { }- -‘

Remark Broken lines indicate high impedance.

196

CHPAPTER 10 BCU {BUS CONTROL UNIT)

Figure 10-15 indicates the timing at 2-byte access when low level is sampled on ZWS*.

The bus cycle is brought to an end at least 1 TClock (Tisa periad) later the sampling of ZWS* signal.
ZWS* is sampled at all of the rising edge of TClock following the second and later Tisa period.

The system bus brings bus cycle to an end at least 1 TClock, or at most Tisa pericd (TClock number set in
WISAA[2..0BCUSPEEDREGI6E. 4])) later the sampling of LCDRDY signal.

Figure 10-15. Two-Byte Access in the Case Where the ZWS* Low Level Is Sampled (WISAA[2:0] = 101)

TCIock(internaI)I | | | I __I—I_I_-l_l_u—L

Tisa

Tisa

L

ADD{20:0](0) x

SHB%0) |

IOR*/IOW*(0)

MEMR*MEMW*(0)

-

—

LCDRDY(i)

ZWS*(i)

S

—

DATA[15:0)(i/0) x

DATA[15:0)(i/o)

Figure 10-16.

TClock(intemal
ADD{20:0](c)

SHE"(0)

IOR*IGW*(o0)
MEMR*/MEMW*(0)
LCDRDY()

ZWS'()

DATA{15:G}{Vo)
{Write)
DATA[15:0]{Vc)
(Read)

Remark Broken lines indicate high impedance.

{(Write)

{Read)

Remark Broken lines indicate high impedance.

Four-Byte Access in the Case Where the ZWS* Low Level Is Sampled (WISAA[2:0] = 101)

Tisa Tisa

; [

Tisa |

Tisa |

A

197

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.6.3 LCD Interface
The access time can be set from WLCD[1:0] {(BCUSPEEDREG{9:8)).

Table 10-27. Access Time of the LCD interface

WLCD[1:0] Tled(TClock)
00 8
01 6
10 4
11 2

Figure 10-17. Two-Byte Access to the LCD Controller (WLCDA[1:0] = 10)

R N VR

ADD[20:0]{0) I Add
LCDCS*(0) \ ,
LCDWE*/LCDOE*(0) \ [

LCDRDY(i) T}

Figure 10-18. Two-Byte Access to the LCD Controller (WLCD[1:0] = 11}

tnsertion of wait cycles by LCORDY signal

I | I | | I Tisa | |

TClock(internal)

ADD[20:0](c) X
SHB'(0) L

LCDCS*(o) \ /
MEMR*/MEMW*(0) \ /

LCDRDY(j) \ (%_\ (‘% /

DATA[15:0)(/0)
(Write) X

DATA[15:0)(/0) @ M o c v c s e s -veamneenssaassnnrremmanmmenn=a= .-
F — o= e

Remark Broken lines indicate high impedance.

198

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.6.4 DRAM Access (EDO type)

The access time to the DRAM is constant. Figures 10-19 and 10-20 indicate the timings of four-byte access to
the DRAM.

Figure 10-18. Four-Byte Read Access to the DRAM

telekinternal) [[L[L[L LI
\
I
A

MRAS*[3:0](0) \ /
UCAS*/LCAS*(0) \ , \ [

ADD{[20:19](0) :x Row
ADD[18:9](0) x Row X cm.x Col. x

RAMOE* "™ \ l

DATA[15:0](i/0) INVALID }- -------- { patao) Datat} -{ INvALID

Note The VrR4101 has no output enable terminal for DRAM (RAMOE®). Generate RAMOE*
signal by reversing the output of RSTSW* terminal.

Remark Broken lines indicate high impedance.

Figure 10-20. Four-Byte Write Access to the DRAM

TClock({internal) _I_U_l_'_l_l_l_ |
MRAS'30[0) \ [v

UCAS*/LCAS*(0) _/__I
ADD[20:18](0) :x Row x
ADD}18:8](0) Y Rw Yoa Y co) r
RAMOE* M \ N

DATA[15:0(if0) INVALID Y Data0) Datat

Note The VR4101 has no output enable terminal for DRAM (RAMOE*). Generate RAMOE*
signal by reversing the output of RSTSW* terminal.

Figures 10-21 to 10-24 indicate the timings of byte accesses to the DRAM.

199

CHPAPTER 10 BCU (BUS CONTROL UNIT)

Figure 10-21. Byte Read from Odd-numbered Address of the DRAM

TCIock(internal)l | | | I _‘_'—_|_,—-I__|_|_ |
MRAS*[3.0])(0) \ I _

UCAS*(0) H
LCAS*(0) _f
ADD[20:19](0) x Row
ADD[18:9)(0) L Row x Col. x x
RAMOE* "™ \ /

DATA[15.0(i/0) INVALID ’- -------- { Data } -{ NvaAuD

Note The VR4101 has no output enable terminal for DRAM (RAMOE®). Generate RAMOE*
signal by reversing the output of RSTSW™* terminal.

Remark Broken lines indicate high impedance.

Figure 10-22. Byte Read from Even-numbered Address of the DRAM

TCIock(intemaI)l_] ' | _I_l—[_l_‘_l_ _l__
MRAS*[3:0](0) \ / _

UCAS*(0) \J

LCAS*(0) —

ADD[20:19](0) x Row]
ADD[18:9}(0) Y Row x ca.) x
RAMOE* "** \ /

DATA[15:0}{i/0) W}- -------- (Daa} -{ nvaup

Note The VR4101 has no output enable terminal for DRAM (RAMOE®). Generate RAMOE*
signal by reversing the output of RSTSW* terminal.

Remark Broken lines indicate high impedance.

CHPAPTER 10 BCU {BUS CONTROL UNIT)

Figure 10-23. Byte Write to Odd-numbered Address of the DRAM

TCIock(internal)m | | | —|_
MRAS*[3:0)0) \ r _

_UCAS*(0) H

LCAS*(0) _/

ADD[20:18](0) x Row T
ADD[18:9](0) x Row x Col. J x
RAMWE*(0) | \ [

DATA[15:0(ifo) INVALID X Data

Figure 10-24. Byte Write to Even-numbered Address of the DRAM

MRAS*[3:0](0) \ / \
UCAS*(0) \/

LCAS*(o) ™R

ADD[20:18](0) x Row
ADD[18:9](0) x Row x Col. x]
RAMWE?*(0) \ ,

DATA[15:0]i/0) INVALID } Data

201

CHPAPTER 10 BCU (BUS CONTROL UNIT)

10.6.5 Refresh
The VR4101 supports CBR refresh and self-refresh.

{1) CBR refresh
For CBR refresh, the refresh interval can be set by the REF1K bit of BCUCNTREG.

REF1K=1: CBR refresh is issued at intervals of 2059 TClock.
REF1K=0: CBR refresh is issued at intervals of 514 TClock.

Figure 10-25. CBR Refresh Cycle

TClock{internal) mm

MRAS*[3:0}(0) \ [\
UCAS*/LCAS*{0} \ " /

RAMWE*(0) H v

(2) Self refresh

Figure 10-268. Self Refresh Cycle

TCIock(internal)m l I | I I _I I I | I

MRAS*[3:0)(0) \ y / \

UCAS*/LCAS*(0) \ . f

RAMWE*(o) H ”

202

CHAPTER 11 DMAAU (DMA ADDRESS UNIT)

This chapter explains the operation of the DMAAU and how to set the registers of the DMAAU.

11.1 GENERAL

The DMAAU controls the DMA addresses of PIU, SIU (transmission/reception), AlU, and KIU.
Any half-word address can be set as the DMA start address in a range of 0x0000 0000 to 0x001F FFFE. The

DMA space is a 2-Kbyte space, aligned with a 2-Kbyte boundary, and which includes the DMA start address.

Caution If the DMA space for a peripheral unit is overlapped by that for another unit, the DMA operation
is not guaranteed.

11.2 REGISTER SET
The following table lists the registers of the DMAAU.

Table 11-1. DMAAU Registers

Address RIW Register symbols Function
O0x0BOO 0020 |R/W PADDMAADRLREG PAD1 DMA Address register Low
0x0BOO 0022 | R/W PADDMAADRHREG PAD1 DMA Address register High
0x0B00 0024 |R/W SRXDMAADRLREG SRX1 DMA Address register Low
0x0B00 0026 | R/W SRXDMAADRHREG SRX1 DMA Address register High
0x0B0OO 0028 | R/W STXDMAADRLREG STX1 DMA Address register Low
OxCBOO 002A | RAW STXDMAADRHREG STX1 DMA Address register High
0x0B0O 002C | RAW AUDDMAADRLREG AUDIO1 DMA Address register Low
0x0B00 002E | R/W AUDDMAADRHREG AUDIO1 DMA Address register High
0x0BOO 0030 | RW KEYDMAADRLREG KEY1 DMA Address register Low
0x0B0O 0032 | R/W KEYDMAADRHREG KEY1 DMA Address register High

The function of each of these registers is explained in detail below.

11.2.1 PADDMAADRLREG, PADDMAADRHREG

These registers set the base addresses of the DMA channel for the touch panel.

set these registers.

Use a physical address value to

203

CHAPTER 11

DMAAU (DMA ADDRESS UNIT)

Figure 11-1. PADDMAADRLREG (0x0B00 0020)
Position D18 D14 D13 D12 011 D10 D9 D8
Name PATDMA | PATDMA | PATDMA | PATDMA | PATDMA | PATOMA | PATDMA | PATDMA
A[15] Al14] Al13] Al12] A1) Al10] Al9] A8}
RW R/W RW RW RW RW RW RW R/W
Initial value 1 1 1 1 1 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name PATDMA | PATDMA | PATDMA | PATDMA | PATDMA | PATDMA | PATDMA | PATDMA
Al7] Al6] Al5) Al4] Al3] Al2] Al1] Al0]
RV R/W RW RW RW RW R/W RAW R
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..11] PATDMA | DMA channel base address bits 15 through 11 for touch panel
Af15..11] .
D[10..1] PATDMA | DMA channel offset address bits 10 through 1 for touch panel
A[10..1]
D[0] PATDMA DMA channel offset address bit 0 for touch panel.
Al0] Write 0 to this bit. 0 is returned when this bit is read.
Figure 11-2. PADDMAADRHREG {0x0B0D 0022)
Position D15 D14 D13 D12 D11 D10 D9 D8
Name PATDMA | PATDMA | PATDMA | PATDMA | PATDMA | PATDMA | PATDMA | PATDMA
A[31] A[30] Al29] A[28] Al27] A[26] A[25] A[24]
RW R R R R R R R R
Initial value 0 0 0 0 0 0] 0 0
Position D7 Dé D5 D4 D3 D2 D1t Do
Name PATDMA | PATDMA | PATDMA, | PATDMA | PATDMA | PATDMA | PATDMA | PATDMA
A[23] A[22] A[21] AJ20] Al19] A{18] Al17] Al186]
RW R R R RW RW RW R/W RW
Initial value 0 0 0 1 1 1 1 1
Bit position Bit name Function
D[15..5] PATDMA | DMA channel base address bits 31 through 21 for touch panel.
A[31..21] | Write 0 to this bit. 0 is returned when this bit is read.
D[4..0] PATDMA DMA channel base address bits 20 through 16 for touch panel
A[20..16]

CHAPTER 11 DMAAU (DMA ADDRESS UNIT)

11.2.2 SRXDMAADRLREG, SRXDMAADRHREG

These registers set the base addresses of the DMA channel for serial reception. Use a physical address value to
set these registers.

Figure 11-3. SRXDMAADRLREG (0x0B00 0024)

Position D15 D14 D13 D12 D11 010 D8 D8

Name | SRXDMA [SRXDMA | SRXDMA [SRXDMA | SRXDMA | SRXDMA | SRXDMA | SRXDMA
ANS] | A4l | AMS] | A1) | AN | AlO] Al9] Al8]

RW RW RW RW R/W R/W R R/W RW
Initial value 1 1 1 1 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do

Name |SRXDMA | SRXDMA | SRXDMA | SRXDMA | SRXDMA | SRXDMA [SRXDMA | SRXDMA
A7) Al€] Al5) Al4] Al3] Al2] Al Al0]

RW R/W R/W RAN R/W R/MW R/W RIW R
Initial value 0 0 o 0 0 0 0 0
Bit positicn Bit name Function
D[15..11] SRXDMA DMA channel base address bits 15 through 11 for serial reception
A[15..11]
D[10..1] SRXDMA, DMA channel offset address bits 10 through 1 for serial reception
A[10..1]
D[?M SRXDMA DMA channel offset address bit 0 for serial reception.
Al0] Write O to this bit. 0 is returned when this bit is read.

205

CHAPTER 11 DMAAU (DMA ADDRESS UNIT)

Figure 11-4. SRXDMAADRHREG (0x0B00 00286)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name SRXDMA | SRXDMA | SRXDMA | SRXDMA | SRXDMA | SRXDMA | SRXDMA | SRXDMA
A[31] A[30] A[29] Al28] A[27] A[26] A[25] Al24]
R/W R R R R R R R R
Initial value 0 0 0 0 0 0 ¢ ¢
Pasition D7 D6 D5 D4 D3 D2 D1t Do
Name SRXDMA | SRXDMA | SRXDMA | SRXDMA | SRXDMA | SRXDMA | SRXDMA | SRXDMA
A[23] A{22] A[21] AJ20] A[19] A[18] A[17] A[16]
RW R R R R RW RW R/W R/W
Initial value 0 0 0 1 1 1 1 1
Bit positien Bit name Function
D[15..5] SRXDMA DMA channel base address bits 31 through 21 for serial reception.
A[31.21] [write O to this bit. 0 is returned when this bit is read.
D[4..0] i[Rz)éDMA]\ DMA channel base address bits 20 through 16 for serial reception
.16

11.2.3 STXDMAADRLREG, STXDMAADRHREG

These registers set the base address of the DMA channael for serial transmission.

to set these registers,

206

Use a physical address value

CHAPTER 11 DMAAU (DMA ADDRESS UNIT)

Figure 11-5. STXDMAADRLREG (0x0B00 0028)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA
Al13] Al14] Al13] Al12] Al11] Al10] Al8] Al8]
RW RW RW R/W RAW RW RAW RAW RW
Initial value 1 1 1 0 1 0 0 0]
Position D7 D8 D5 D4 D3 D2 D1 Do
Name STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA
Al7] Al8] Al9] Al4] Al3] Al2] Al1] Al0]
RW R/W RW RW R RW R RAN R
Initial value 0 0 0 o 0 0 0 0
Bit position Bit name Function
D[15..11] STXDMA DMA channel base address bits 15 through 11 for serial transmission
A[15..11]
D[10..1] STXDMA DMA channel offset address bits 10 through 1 for seria! transmission
Al10..1]
D[0] STXDMA DMA. channel offset address bit O for serial transmission.
Al0] Write O to this bit. 0 is returned when this bit is read.
Figure 11-6. STXOMAADRHREG (0x0B00 002A)
Position D15 D14 D13 D12 D11 D10 D9 D8
Name STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA
Al31] A[30] Al29] Al28] Al27) A[26] Al25] Al24])
R/W R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Do
Name STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA | STXDMA
Al23] Al22] A[21] A[20] Af19] A[18] Al17] A[16]
RW R R R RAW RW R/W R/W R/W
Initial value 0 0 o 1 1 1 1 1
Bit position Bit name Function
D[15..5] STXDMA DMA channel base address bits 31 through 21 for serial transmission,
A[31.21] | Write O to this bit. 0 is returned when this bit is read.
D[4..0] STXDMA DMA channel base address bits 20 through 16 for serial transmission
A[20..18)

207

CHAPTER 11 DMAAU (DMA ADDRESS UNIT)

11.2.4 AUDDMAADRLREG, AUDDMAADRHREG

These registers set the base addresses of the DMA channel for audio output.

these registers.

Figure 11-7. AUDDMAADRLREG (0x0B00 002C)

Use a physical address value to set

Position D15 D14 D13 D12 D11 D10 D8 D8
Name AUDDMA | AUDDMA | AUDDMA | AUDDMA | AUDDMA | AUDDMA | AUDDMA | AUDDMA
A15] Al14] Al13] A12] A[11] A[10] Al9] A8
RW R/W RW R/W RAW RAW RAN RAW R/W
Initial value 1 1 1 0 0 0 o 0
Position D7 D6 D5 D4 D3 D2 D1 bo
Name AUDDMA | AUDDMA | AUDDMA | AUDDMA | AUDDMA | AUCDMA | AUDDMA | AUDDMA
Al7] Al6) Al5) Al4) Al3) Al2] A1) Al0]
R/W R/W RAW RW RW RW R/W RV R
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..11] AUDDMA | DMA channel base address bits 15 through 11 for audio output
Al15..11]
D[10..1] AUDDMA | DMA channel offset address bits 10 through 1 for audio output
AJ10..1)
D[0] AUDDMA | DMA channel offset address bit 0 for audio output.
Al0] Write O to this bit. 0 is returned when this bit is read.

208

CHAPTER 11 DMAAU (DMA ADDRESS UNIT)

Figure 11-8. AUDDMAADRHREG (0x0B0G 002E)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name AUDDMA | AUDDMA | AUDDMA { AUDDMA | AUDDMA | AUDDMA | AUDDMA | AUDDMA
A[31] A[30] A[29] A[28] A[27] A[26] AJ25] Af24)
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 (BK] D2 D1 B4
Name AUDDMA | AUDDMA | AUDDMA | AUDDMA | AUDDMA | AUDDMA. | AUDDMA | AUDDMA
A[23] A[22] A[21] Al20] Al19] A[18] A[17] A[16]
RW R R R R/W RIW R/W R RAW
Initial value 0 0 0 1 9 1 1 1
Bit position Bit name Function
D[15..5] AUDDMA DMA channel base address bits 31 through 21 for audio output.
A[31.21] | Write 0 to this bit. 0 is returned when this bit is read.
D[4..0] %%D:ﬂsl;\ DMA channel base address bits 20 through 16 for audio output

11.2.5 KEYDMAADRLREG, KEYDMAADRHREG

These registers set the base addresses of the DMA channel for keyboard input.

Use a physical address value to
set these registers.

209

CHAPTER 11 DMAAU (DMA ADDRESS UNIT)

Figure 119, KEYDMAADRLREG (0x0B00 0030)

Pasition D15 D14 D13 D12 D11 D10 D9 D8
Name KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA
A15) | A4l | A8l [apzr | A [Anop | Ag) Al8)
RAW RW R/W R/W RAN RMW R/W R/AW RAW
Initial value 1 1 0 1 1 0 0 0
Position D7 D& D5 D4 D3 D2 D1 DO
Name KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA
Al7] Al6] A[5] Al4] Al3] Al2] Alt] Al0]
RW R/W RW RW R/W R/W R/W R/W R
Initial value 0 0o [® 0 0 0 0 0 0
Bit position Bit name Function
D[15..11] KEYDMA DMA channel base address bits 15 through 11 for keyboard input
A[15..11]
D[10..1} KEYDMA DMA channel offset address bits 10 through 1 for keyboard input
A[10..1]
D[0] KEYDMA DMA channel offset address bit O for keyboard input.
A[0] Write O to this bit. 0 is returned when this bit is read.
Figure 11-10. KEYDMAADRHREG (0x0B00 0032)
Position D15 D14 D13 D12 D11 D10 D9 Da
Name KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA
A[31] A[30] A[29] A[28] Al27] A[26] A[25] A[24]
RMW R R R R R R R R
Initial value 0 o 0] o 1] 0 0 0
Position D7 Cs D5 D4 D3 D2 D1 DO
Name KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA | KEYDMA
AJ23] A[22] A[21) A[20] A[19] A[18] Al17] A[16]
RW R R R R/W R/W RMW R/W R/W
initial value 0 0 0 1 1 1 1 1
Bit position Bit name Function
D[15..5] KEYDMA DMA channel base address bits 31 through 21 for keyboard input.
A[31.21] Write 0 to this bit. 0 is returned when this bit is read.
D[4..0) KEYDMA DMA channel base address bits 20 through 16 for keyboard input
A[20..16]

210

CHAPTER 12 DCU (DMA CONTROL UNIT)

This chapter explains the operation of the DCU and how to set the registers of the DCU.

12.1 GENERAL

The DCU performs DMA control. It controls DMA requests received from each internal peripheral /O unit (such
as SIU, KiU, PIU, and AlU) and acknowledge signals received from the BCU that arbitrates the bus, and enables
or disables DMA.

When DMA requests of built-in peripheral /O units are received concurrently, the DCU processes such DMA
requests according to the following priority order. This pricrity order cannot be changed.

Table 12-1. Pricrity Order of DMAs

Priority order Type of DMA

High Audio output

Touch-panel input

Serial receiving

Serial transmission

Low Keybecard input

12.2 REGISTER SET
The following table lists the registers of the DCU.

Table 12-2. DCU Registers

Address R/W Register symbols Function
Ox0BOC 0040 | RAW DMARSTREG DMA Reset register
0x0B0O0 0042 | R/W DMAIDLEREG DMA Idle register
0x0B00 0044 | R/W DMASENREG DMA Sequencer Enable register
0x0B00 00456 | RW DMAMSKREG DMA Mask register
Ox0BO0 0048 | RW DMAREQREG DMA Request register

The function of each of these registers is explained in detail below.

211

CHAPTER 12 DCU (DMA CONTROL UNIT)

12.21 DMARSTREG

Figure 12-1. DMARSTREG (0xCB00 0040)
Position D15 D14 D13 D12 D11 D10 D8 D38
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 o
Position D7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | DMARST
R/W R R R R R R R RW
Initial value 0 0 0 o 0 0 0 0
B
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[0] DMARST Resets DMA controller.
1. Reset
0: Normal

This register is used to initialize the DMA controller.

212

CHAPTER 12 DCU (DMA CONTROL UNIT)

12.2.2 DMAIDLEREG

Figure 12-2. DMAIDLEREG (0x0B00 0042)

1: D_IDLE status
0. DMA used

Position D15 D14 D13 D12 D11 D10 B2 D]
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 0 0 4] 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Co
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | DMAI
STAT
RW R R R
Initial value 0 0 0 0 0 0 0 1]
Bit position Bit name Function
C[15..1] Reserved Reserved for future use. Write O to this bit. D is returned when
this bit is read.
D[0] DMAISTAT Indicates DMA sequencer status.

This register indicates the status of the DMA sequencer.

213

CHAPTER 12 DCU (DMA CONTROL UNIT)

12.2.3 DMASENREG

Figure 12-3. DMASENREG (0x0B0O 0044}

Position D15 D14 D13 D12 D11 D10 Do D8
Name | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 b3 D2 D1 Do
Nams Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | DMASEN
R/W R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[0] DMASEN Enables DMA sequencer.

1: Enabled
0. Disabled

This register enables or disables the DMA sequencer.

214

CHAPTER 12 DCU (DMA CONTROL UNIT)

12.2.4 DMAMSKREG

Figure 12-4, DMAMSKREG (0x0B00 0046)

Position D15 D14 D13 D12 D11 D10 D9 Da
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | DMAMSK | DMAMSK | DMAMSK | DMAMSK | DMAMSK
KU ADU STX SRX PIU
RW R R R R/W R/W RW RW R/W
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..5) Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[4] DMAMSKKIU | Enables KIU DMA transfer.
1. Enabled
0: Disabied
D[3] DMAMSKADU | Enables AlU DMA transfer,
1: Enabled
0: Disabled
D[2] DMAMSKSTX | Enables SIU transmission DMA transfer.
1. Enabled
0: Disabled
D[1] DMAMSKSRX | Enables SIU reception DMA transfer.
1: Enabled
0: Disabled
D[O] DMAMSKPIU | Enables PIU DMA transfer.
1. Enabled
0: Disabled

This register enables or disables each DMA, transfer.

Set each DMA transfer enable bit when the DMA sequencer is in the D_IDLE status. Otherwise, the operation of
the VR4101 will be undefined.

215

CHAPTER 12 DCU (DMA CONTROL UNIT)

12.2.5 DMAREQREG

Figure 12-5. DMAREQREQG (0x0B00 0048)

Position D15 D14 D13 D12 D11 D10 (B2 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RAW R R R R R R R R
Initial value 0 0 o 0 0 0] 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name | Reserved | Reserved | Reserved | DRQKIU | DRQADU | DRQSTX | DRQSRX | DRQPIU
R/W R R R R R R R R
Initial value V] 0 0 0 0)] 0 0
Bit position Bit name Function
D[15..5] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[4) DRQKIU KIU DMA transfer request
1. Requested
0: Not requested
D{3} DRQADU AlU DMA transfer request
1. Requested
0: Not requested
Df2] DRQSTX SIU transmission DMA transfer request
1. Requested
0: Not requested
D[1] DRQSRX 8IU racaption DMA transfer request
1: Requested
0: Not requested
DI[0] DRGQPIU PIU DMA transfer request
1. Reguested
0. Not requested

This register indicates the presence or absence of DMA transfer request.

216

CHAPTER 13 CMU (CLOCK MASK UNIT)

This chapter explains the operation of the CMU and how to set the registers of the CMU.

13.1 GENERAL

This unit enables to reduce the power consumption of unused units by praviding a masking measure when the
input clock from of the CPU (I_tclk) is supplied to each unit. Object units include KIU, PIV, GiU, SIU, AIU,
DebugSIU and RTC.

The functions of the internal blocks in the CMU are summarized as follows:

* ADDECCMU The address decoder for read/write access from the CPU to the register.
*REGCMU................... Has the register for clock masking.
initial=0=mask. Clock is not supplied unless the CPU performs write (1) to the register.
* MSKTCLK. ... Mask unit for TClock. Has FF and AND that operate in synchronization with the falling
edge of TClock.

A block diagram of the CMU is shown below.

Figure 13-1, Block Diagram of the CMU

csemub —_—
piastbty — ——

P ————p
piad[3.0] ——m ADDECCMU - = CMUOUT[15.0]

- cmuout_msk

REGCMU 1
telk_piu
piwrdata[15..0] —————— teli_siu
b e felk_adu
——— = tclk_kiu

MSKTCLK —————— tclk_giu

I_telk _ f— g ol term
rst_gab - F————— fclk_ric
— LY

217

CHAPTER 13 CMU (CLOCK MASK UNIT)

13.2 REGISTER SET
The following table lists the registers of the CMU.

Table 13-f. CMU Register

Address RW Register symbols Function

0x0B00 0060 | RAW CMUCLKMSKREG | CMU Clock Mask register

The function of this register is explained in detail below.

218

CHAPTER 13 CMU (CLOCK MASK UNIT)

13.21 CMUCLKMSKREG

Figure 13-2, CMUCLKMSKREG {0x0B00 0060)

Position D15 D14 D13 D12 D11 D10 DS D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
initial value 0 o 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved | MSKRTC |MSKDSIU| MSKGIU | MSKKIU | MSKADU | MSKSIU | MSKPIU
R/W R RANV RAW R/W R/W RAW R/W RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..7} Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[6] MSKRTC RTC clock supply
1: Suppiied
0: Masked
D[5) MSKDSIU Debug SIU clock supply
1. Supplied
0. Masked
D[4] MSKGIUV GIU clock supply
1: Supplied
0: Masked
DI[3] MSKKIU KIU clock supply
1: Supplied
0: Masked
D[2] MSKADU AlU clock supply
1. Supplied
0: Masked
D[1] MSKSIU SIU clock supply
1: Supplied
0. Masked
D[0] MSKPIU PIU clock supply
1: Supplied
0: Masked

This register masks the supply of the clock to RTC, DebugSIU, GIU, KIU, AIU, SIU, and PIU.

219

[MEMO]

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)
This chapter explains the operation of the ICU and how to set the registers of the ICU.

14.1 GENERAL

The ICU summarizes interrupt signals from each built-in peripheral unit and transfers interrupt signals (Int0, Int1,
NMI) to the CPU CORE.

The functions of the ICU are outlined below.

- ADDECICU............ Performs address decode of the read/write access from the CPU to the registers in the
Icu.
*REGICU Has the register for clock masking.
initial=0=mask. Clock is not supplied unless the CPU performs write {1) to the register.
~QUTICU Performs summarization after masking each interrupt (all outputs are synchronized with

the rising edge of |_mcikin). Further, controls the masking of interrupts during the
setting in the Suspend mode (doze_mmskint), assert of the int_all signa, interrupting factor
summarizing signal, and the memdrv assert timing signal at the restoration from the
Suspend mode.

Interrupt requests to the CPU core are noticed by using following three signals:

NMI: battint_intr alone.

However, switching between NMI and Int0 can be enabled by the setting on the register. Switch to Int0
if a user intends to mask battint_intr, since NMI cannot be controiied with the masking of intarrupt by
means of software.

Int1: rtc_long_intr alone.

This is exclusively used because interrupt factors such as Interval Timer require a quicker response than
that of other interrupt factors.

Int0; Al other interrupts.
Refer to 14.2 for the details of interrupt factors.

221

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

How an interrupt request is notified to the CPU core is shown below.

If an interrupt request occurs in the peripherai units, the corresponding bit in the interrupt indication register of
Level 2 (xxINTREG) is set to 1. The interrupt indication register is ANDed bit-wise with the corresponding
interrupt mask register of Level 2 (MXXINTREG). If the occurred interrupt request is enabled {set to 1) in the
mask register, the interrupt request is notified to the interrupt indication register of Level 1 (SYSINTREG} and the
corresponding bit is set to 1. At this time, the interrupt requests from the same register of Level 2 are notified to
the SYSINTREG as a single interrupt request.

Interrupt requests from some units directly set their corresponding bits in the SYSINTREG.

The SYSINTREG is ANDed bit-wise with the interrupt mask register of Level 1 (MSYSINTREG). If the interrupt
request is enabled (set to 1) in MSYSINTREG, a corresponding interrupt request signal is output from the ICU to
the CPU core. battint is connected to the NMI or IntO signal of the CPU core (selected by setting of NMIREG).
ric_long is connected to the Int1 signal of the CPU core. The other interrupt requests are connected to the Int0
signai of the CPU core as a one interrupt request.

The following figure shows an outline of interrupt controf in the ICU.

Figure 14-1. Outline of Interrupt Control

Level 2 registers Level 1 registers
I SOFTINTREG i— ot
14 GEREEEEED
SIVINTREG S
......... =14 AND-OR 7

Bt
8 T
Vi N :

rror e =13 : AND-OR } —
i MGIUINTREG _ 7 14 NM
"""""" ¥ :::::::::: -
KIUINTREG : 7 (battint ")
......... =5 . AND-OR — . :
MKIUINTREG - : : :
— 4 ;::::::::.‘_ : AND-OR :
ADUINTREG : : e Intt
--------- AN OR'_" -t mm v e omm - . .
MADU!NTREG P/-P D-oR . : i : p (e eng)
"""""" 5 [: :
PIUINTREG ! D14 :
--------- =5 AND-OR - ! i+.£ g IO
[MPLINTREG i O l i : L (allinterrupts
I i s . except for
| MSYSINTREG i batbn?™™, and
penchgint ! ' ric_long)
1
keyscanint i |
. |
buseyrint ! | : Interrupt indication registers
pocmeiaint ! 4 e —
atimerint ——e—— = , | Interrupt mask registers
tc_tong L i AND-OR logic
powerint (Checking masks bit by bit
battint and summarizing irtermupt
requasts from the registers)

Note Which of NMI and Int0 is used for battint is selectable by setting of NMIREG.

222

CHAPTER 14

ICU {INTERRUPT CONTROL UNIT)

14.2 REGISTER SET

The following table lists the registers of the ICU.

Table 14-1. ICU Registers

Address RMW Register symbols Function
0x0BCO 0080 |R SYSINTREG Level 1 System register
0x0B00 0082 |R PIUINTRTG Level 2 PIU register
Ox0B0O 0084 | R ADUINTREG Level 2 AlU register
0x0B00 0086 |R KIUINTREG Level 2 KIU register
Ox0B0OO 0088 | R GIUINTREG Level 2 GIU register
O0x0BO0 008A | R SIUINTREG Level 2 SIU register
0x0B00 008C | R/W MSYSINTREG Level 1 Mask System register
0x0B00 008E | R/W MPIUINTRTG Level 2 Mask PIU register
Ox0BO0 0090 | R/W MADUINTREG Level 2 Mask AlU register
O0x0B0O 0092 | RAW MKIUINTREG Level 2 Mask KiU register
0x0B0O0 0094 | R/W MGIUINTREG Level 2 Mask GIU register
0x0B00 0086 | RW MSIUINTREG Level 2 Mask SIU register
Ox0BOO0 0098 | RW NMIREG NMI selection register
Ox0BOO 009A | RW SOFTINTREG Software Interrupt register

The function of each of these registers is explained in detail below,

223

CHAPTER 14

ICU {INTERRUPT CONTROL UNIT)

14.2.1 Level-1 System Register

Figure 14-2, SYSINTREG (0x0B00 0080) (1/2)

Position D1s D14 D13 D12 D11 D10 Da D8
Name Reserved | Reserved | DOZE DOZE SOFT |WRBERR/| SIUINTR | GIUINTR
PIUINTR | KIUINTR INTR INTR
RW R R R R R
Initial value 0 0 0 0 0 0 0]
Position b6 D5 D4 D3 Dz D1 Do
Name KIUINTR ADUINTR | PIUINTR | PCMCIA | ETIMER RTCL POWER | BATINTR
INTR INTR INTR INTR
R/W R R R R R R
Initial value 0 0 0 0 0 0 0
Bit position Bit name # Function
D[15..14] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[13] DOZEPIUINTR | PIU interrupt in Suspend mode
1. Occurred
0: Normal
D[12] DOZEKIUVINTR | KIU interrupt in Suspend mode
1. Occurred
0. Normal
D[11] SOFTINTR Software interrupt (generated by setting SOFTINTREG)
1. Occurred
0: Normal
D[10] WRBERRINTR | Bus efror interrupt
1. Oeccurred
0: Normal
D[9) SIUINTR SIU interrupt
1: Qccurred
0. Normal
D{8] GIUINTR GIU interrupt
1: Qccurred
0: Normal
D[7] KIUINTR KIU interrupt
1. Occurred
0. Normal

CHAPTER 14

ICU {(INTERRUPT CONTROL UNIT)

Figure 14-2. SYSINTREG (0x0B00 0080} (2/2)

Bit position

Bit name

Function

D[B)

ADUINTR

AlU interrupt

1; Occurred
0: Normal

D[5]

PIUINTR

PIU interrupt

1. Occurred
0: Normal

Dl4]

PCMCIAINTR

PCMCIA interrupt

1. Occurred
0. Normal

D{3]

ETIMERINTR

ETIMER interrupt

1. Qccurred
0. Normal

Di2]

RTCLINTR

RTCLong interrupt

1. Qccurred
0. Normal

D]

POWERINTR

Power SW interrupt

1: Occurred
0. Normal

D[O]

BATINTR

Battery interrupt
1. Occurred
0: Normal

This register indicates the occurrence of each interrupt of the VR4101 system.

225

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.2 Level-2 PIU Register

Figure 14-3. PIUINTREG (0x0B00 0082)

Position D15 D14 D13 D12 D11 D10 D9 D&
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 4] 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | PADEND | PADINTR { PADDLO | PADDRD | PADCHG
INTR STINTR | YINTR INTR
R/W R R R R R R R
Initial value 0] 0 0 0 0 o 0
Bit position Bit name Function
D[15..5] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[4] PADENDINTR PIU DMA transfer 2-page boundary interrupt
1. Occurred
0: Normal
D[3] PADINTR PIU DMA transfer 1-page boundary interrupt
1: Oeccurred
0: Normal
D[2] PADDLOSTINTR | PIU data lost interrupt
1: Occurred
0: Normal
D[1] PADDRDYINTR | PIU DMA transfer end interrupt
1: Occurred
0. Normal
D[o] PADCHGINTR | Touch panel contact status change interrupt
1. Occurred
0: Normal

This register indicates the occurrence of each interrupt of the PIU,

226

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.3 Level-2 AlU Register

Figure 144, ADUINTREG (0x0B00 0084)

Position P15 D14 D13 D12 D11 D10 Ds D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 1] 0 0 0 0 0 1] 0
Paosition D7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | AIUEND | AIUINTR | AIUIDLE | AIUST
INTR INTR INTR
RW R R R R R R R R
Initial value 0 0 0 0 1] 0 1] 0
Bit position Bit name Function
D[15..4} Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[3] AIUENDINTR AIU DMA transfer 2-page boundary interrupt
1. Occurred
0. Normal
D[2] AIUINTR AlU DMA transfer 1-page boundary interrupt
1. Occurred
0. Normal
D[1] AIUIDLEINTR AlU sequencer ldle interrupt
1. Occurred
0. Normal
D[0] AIUSTINTR AlU sequencer operation start interrupt
1: Occurred
0: Normal

This register indicates the occurrence of each interrupt of the AlU.

227

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.4 Level-2 KIU Register

Figure 14-5, KIUINTREG (0x0B00 0086)

Position D15 D14 D13 D12 D11 D10 DS D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Posiion | D7 D6 DS D4 D3 D2 D1 DO
Name Reserved | Reserved | Reserved | KEYEND | KEYINTR | KEYDATL | KEYDAT |KEYSCAN
INTR OSTINTRIRDYINTR| INTR
R/W R R R R R R R
Initiat value 0 0 0 0 0 0 0 0
Bit position Bit narne Function
D[15..5] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[4) KEYENDINTR | KIU DMA transfer 2-page boundary interrupt
1: Occurred
0. Normal
D[3] KEYINTR KIU DMA transfer 1-page boundary interrupt
1. Occurred
0. Normal
D[2] KEYDATLOST | Key data scan lost interrupt
INTR 1: Occurred
0: Normal
D[1] KEYDATRDY Key data scan end interrupt
INTR 1: Occurred
0. Normal
D{o] KEYSCANINTR | Key input detection interrupt
1: Occurred
0: Normal

This register indicates the occurrence of each interrupt of the KIU.

228

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.5 Level-2 GlU Register

Figure 14-8. GIUINTREG (0x0BOG Q088)

Position D15 D14 D13 D12 D11 D10 D8 D8
Name Reserved | Reserved | IQINTR | Reserved | IQINTR | IOINTR [IOQINTR | IOINTR
{13]) (111 [10] (9] {8}
RW R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Do
Name IOINTR IOINTR IOINTR IOINTR IOINTR IOINTR IOINTR IOINTR
7] (6] [5] (41 [3] (2] {1} (0]
R/W R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..14] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[13] IOINTR[13] DCD pin interrupt
1. Occurred
0. Normal
D[12] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[11..0} IOINTR[11..0] | GPIO[11..0] pins interrupt
1. Occurred
0: Normal

This register indicates the occurrence of each interrupt of the GIU.

CHAPTER 14 ICU {INTERRUPT CONTROL UNIT}

14.2.6 Level-2 SIU Register

Figure 14-7. SIUINTREG (0x0B00 00BA) (1/2)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved [INTSERO | INTSRO | INTSTO BR FE OCcD
RAW R R R R R R R R
Initial value 0 0 0 0 0 1] 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name DSR CcTs RXL RXG RXE RX1 TXE TXI
R/ R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..14] Reservad Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
Df13] INTSERO Debug serial reception error interrupt
1. OCceurred
0: Normal
B[12] INTSRO Debug serial reception end interrupt
1. Occurred
0: Normal
D[11] INTSTO Debug serial transmission end interrupt
1. Occurred
0: Normal
o{10] BR Break signal detection interrupt
1. Occurred
0. Normal
D[9] FE Framing error detection interrupt
1. Occurred
0: Normal
D8] DCD DCD signal detection interrupt
1. Occurred
0: Normal
D[7] DSR DSR* signal detection interrupt
1. Qccurred
0: Normal
D[6] CcTs CTS* signal detection interrupt
1. Ocecurred
0. Normal

230

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

Figure 14-7. SIUINTREG (0x0B00 008A) {2/2)

Bit position Bit name Function

D[5] RXL 1-character reception lost detection interrupt
1: Occufred
0: Normal

Di4] RXG 1-character reception end detection interrupt
1: Occurred
0: Normal

D[3] RXE Reception data DMA transfer 2-page boundary interrupt
1. Occurred
0: Normal

D[2] RXI Reception data DMA transfer 1-page boundary interrupt
1: Occurred
0. Normal

D[1} TXE Transmission data DMA transfer 2-page boundary interrupt
1. Occurred
0: Normal

D[0] TXI Transmission data DMA transfer 1-page boundary interrupt
1: Occurred
0: Normal

This register indicates the occurrence of each interrupt of SIU and Debug SIU.

231

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.7 Level-1 Mask System Register

Figure 14.8. MSYSINTREG (0x0B00 008C) (1/2)

Position D15 D14 D13 D12 D11 D10 Dg D§
Name Reserved | Reserved | DOZE DOZE SOFT |WRBERR/| SIUINTR | GIUINTR
PIUINTR | KIUINTR INTR INTR
R/W RAW R/W RW RW R R/W
Initial value 0 0 6 0 0 0 0 0
Paosition D7 D& D5 D4 D3 D2 D1 oo
Name KIUINTR | ADUINTR | PIUINTR | PCMCIA { ETIMER RTCL POWER | BATINTR
INTR INTR INTR INTR
R R/W RW R/W R/W R/W R/W R/W RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..14] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[13] DOZEPIUINTR | Enables PIU interrupt in Suspend mode,
1. Enabled
0: Disabled
D{12] DOZEKIUINTR | Enables KIU interrupt in Suspend mode,
1. Enabled
0. Disabled
D[11] SOFTINTR Enables software interrupt.
1. Enabled
0. Disabled
D[10] WRBERRINTR | Enables bus error interrupt.
: 1. Enabled
0. Disabled
D[9] SIUINTR Enables SIU interrupt.
1. Enabled
0: Disabled
D(8] GIUINTR Enables GIU interrupt.
1: Enabled
0: Disabled
D[7] KIUINTR Enables KIU interrupt.
1. Enabled
0. Disabled
D[6] ADUINTR Enables AlU interrupt.
1. Enabled
0: Disabled

232

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

Figure 14-8. MSYSINTREG (0x0BO0O 008C) {2/2)

Bit position Bit name Function

D[&] PIUINTR Enables PIU interrupt.

1: Enabled
0. Disabled

D[4] PCMCIAINTR | Enables PCMCIA interrupt

1: Enabled
0. Disabled

D[3] ETIMERINTR Enables ETIMER interrupt

1. Enabled
0. Disabled

D[2] RTCLINTR Enables RTCLong interrupt

t. Enabled
0. Disabled

D] POWERINTR Enables Power SW interrupt

1. Enabled
0. Disabled

D[0] BATINTR Enables Battery interrupt

1: Enabled
0;. Disabled

This register is used to mask each interrupt of the VR4101 system.

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.8 Level-2 Mask PIU Register

Figure 14-9. MPIUINTREG (0x0B00 QOBE)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 o
Position D7 D& DS D4 D3 D2 D1 DO
Name Reserved | Reserved | Reserved | PADEND | PADINTR | PADDLC | PADDRD | PADCHG
INTR STINTR | YINTR INTR
RAV R R R R/W RMW R/W R/W
Initial value 4] 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..5] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[4] PADENDINTR Enables PIU DMA transfer 2-page boundary interrupt.
1. Enabled
0: Disabled
D[3] PADINTR Enables PIU DMA transfer 1-page boundary interrupt.
1; Enabled
0. Disabled
D[2] PADDLOSTINTR | Enables PIUDATAREG data overwrite interrupt.
1. Enabled
0. Disabled
D[1] PADDRDYINTR | Enables PIU DMA transfer end interrupt.
1. Enabled
0: Disabled
D[0j] PADCHGINTR Enables touch panel contact status change interrupt.
1. Enabled
0. Disabled

This register is used to mask each interrupt of the PIU.

234

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.9 Level-2 Mask AlU Register

Figure 14-10. MADUINTREG (0x0B00 0090)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 0 0 0 0 0] 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | AIUEND | AIUINTR | AIUIDLE | AIUST
INTR INTR INTR
R/W R R R R RW R/W RAW RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..4] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
Di3] AIUENDINTR Enables AlU DMA transfer 2-page boundary interrupt.
1. Enabled
0: Disabled
D{2] AlUINTR Enables AlU DMA transfer 1-page boundary interrupt.
1. Enabled
0: Disabled
D[1] AIUIDLEINTR Enables AlU sequencer Idle interrupt.
1. Enabled
0. Disabled
D[o] AlUSTINTR Enables AlU sequencer operation start interrupt.
1. Enabled
0. Disabled

This register is used to mask each interrupt of the AlU.

CHAPTER 14

ICU (INTERRUPT CONTROL UNIT)

14.2.10 Level-2 Mask KiU Register

Figure 14-11. MKIUINTREG (0x0B00 0092)

Paosition D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved | Reserved | Reserved | KEYEND | KEYINTR | KEYDATL | KEYDAT | KEYSCA
INTR OSTINTR |RDYINTR| NINTR
RW R R RW RW R/W RIW RwW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..5] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[4] KEYENDINTR | Enables KIU DMA transfer 2-page boundary interrupt.
1. Enabled
0: Disabled
D[3] KEYINTR Enables KiU DMA transfer 1-page boundary interrupt.
1. Enabled
0: Disabled
D[2] KEYDATLOST | Enables key scan data lost interrupt.
INTR 1: Enabled
0: Disabled
D[1} KEYDATRDY Enables key data scan end interrupt.
INTR 1: Enabled
0: Disabled
D[0} KEYSCANINTR | Enables key input detection interrupt.
1. Enabied
0: Disabled

This register is used to mask each interrupt of the KIU.

CHAPTER 14 ICU {INTERRUPT CONTROL UNIT)

14.2.11 Leve

I-2 Mask GIU Register

Figure 14-12. MGIUINTREG {0x0B00 0094)

Positicn D15 D14 D13 D12 D11 D10 D9 D8
Name | Reserved | Reserved | IOINTR | Reserved | IOINTR | IOINTR | IOINTR | IQINTR
[13] (1] [19] [9] [8]
RW R R R R RAV RW RW RAW
Initial value 0 o 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Do
Name IOINTR | IOINTR | IOINTR | IOINTR | IOINTR | ICINTR | [OINTR | IOQINTR
[7] [6] (5] (4] (3] (2] (1 (0]
RAW RW R R/W R/W RW RW R/W RW
Initiai value o 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..14] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D{13] IOINTR[13] Enables DCD pin interrupt.
1. Enabled
0: Disabled
D[12] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[11..0] IOINTR[11..0] Enables GPIO[11..0] pins interrupt.
1: Enabled
0: Disabled

This register is used to mask each interrupt of the GiU.

237

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.12 Level-2 Mask SIU Register

Figure 14-13, MSIUINTREG (0x0B00 0098) (1/2)

Position D15 D14 D13 D12 D11 D10 D& D]
Name Reserved | Reserved | INTSERO | INTSRO | INTSTO BR FE DCD
RW R R RAW RW RMW RW R/W R/W
Initial value o 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 DO
Name DSR CTs RXL RXG RXE RXI TXE TXI
RW R RAW RMW R/W R/W RAN RW RV
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..14] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[13] INTSERO Enables debug serial reception error interrupt.
1: Enabled
0: Disabled
D[12] INTSRO Enables debug serial reception end interrupt.
1: Enabled
0: Disabled
D[11] INTSTO Enables debug serial transfer end interrupt.
1. Enabled
0. Disabled
D[10] BR Enebles break signal detection interrupt.
1: Enabled
0: Disabled
D[9] FE Enables framing error detection interrupt.
1. Enabled
0. Disabled
D[8] aleln] Enables DCD signal detection interrupt.
1. Enabled
0. Disabled
D[7] DSR Enables DSR" signal detection interrupt.
1. Enabled
0. Disabled
D[6] CTs Enables CTS* signal detection interrupt.
1. Enabled
0. Disabled

238

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

Figure 14-13. MSIUINTREG (0x0B00 00986) (2/2)

Bit position

Bit name

Function

D[s]

RXL

Enables 1-character reception lost detection interrupt.

1. Enabled
0. Disabled

D[4]

RXG

Enables 1-character reception end detection interrupt.

1. Enabled
0. Disabled

D[3]

RXE

Enables receive data DMA transfer 2-page boundary interrupt.

1. Enabled
0. Disabled

D[2]

RXI

Enables recsive data DMA transfer 1-page boundary interrupt.

1. Enabled
0: Disabled

Of1]

TXE

Enables transfer data DMA transfer 2-page boundary interrupt.

1. Enabled
0. Disabled

D[A]

TXI

Enables transfer data DMA transfer 1-page boundary interrupt.

1: Enabled
0 Disabled

This register is used to mask each interrupt of the SIU and Debug SIU.

239

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.13 NMI Register

Figure 14-14. NMIREG (0x0BO0C 0098}

Paosition D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0] 0 v, 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved erj?R
RAW R R R R R R R R/W
Initial value 0 0 0] 0 0 0 0 o
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[0] NMIORINT Sets type of low battery voltage detection interrupt.
1. IntO
0: NMI

This register is used to set the type of the interrupt reported to the VR4100 CPU core if a low battery voltage
detection interrupt accurs.

240

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.2.14 Software Interrupt Register

Figure 14-15. SOFTINTREG (0x0B0O 009A)

Positicn D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RMW R R R R R R R R
Initial value 1] 0 0 0 0 0 0 0
Position D7 Dé D5 D4 03 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | SOFT
INTR
RMW R R R R R R R R/W
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D{15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[0] SOFTINTR Sets software interrupt.
1. Set
0. Clear

This register is used to generate the software interrupt.

241

CHAPTER 14 ICU (INTERRUPT CONTROL UNIT)

14.3 NOTES FOR REGISTER SETTING

For the ICU, there is no special register setting flow.

The interrupt mask register is set to initial=0=Mask immediately when it has been started up. Therefore, the CPU
must release the masks on those interrupts that are required for the startup process without fail (Release of the
mask on battint_intr = NMI is required to be effected at all times).

battint_intr is set to initial = 0 = NMI. To switch it to Int0, it is required to write 1 to the NMIREG.

soft_intr is a software interrupt. Interrupt int0 is asserted only with the write to the SCFTINTREG. Interrupt is
cleared by writing 0.

242

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)
This chapter explains the operation of the PMU and how to set the registers of the PMU.

156.1 GENERAL

The PMU controls the internal power consumption of the VR4101 as well as the power cansumption of a system
configured around the VR4101.

< Reset control

< Shutdown contrel

< Power-ON sequence control

< Low power consumption mode contro!

15.1.1 Reset Control
A list of the RTC, peripheral unit, CPU core, and the bit of PMUINTREG to be set during a reset is shown below.

Table 15-1. Types of Reset and Processor Status

. Type of reset RTC Peripheral unit CPU core PMUINTREG
RTC reset Reset Reset Cold reset RTCRST=1
RSTSW reset Active Reset Cold reset RSTSW=1

{1) RTC Reset

When the RTCRST" signal is asserted, the PMU resets all peripheral units including the RTC unit by asserting the

rtersib and rstgab signals (internal) and resets the CPU core by asserting the cooldresatb and creset signals
(internal).

Further, it sets the RTCRST bit of PMUINTREG to 1. After the CPU has been restarted, the RTCRST bit must be
checked and cleared by software.

{2) RSTSW Reset

When the RSTSW" signal is asserted, the PML resets all peripheral units excluding the RTC and PMU by

asserting the rst_gab signal {internal) and resets the CPU core by asserting the cooldresetb and creset signals
(internal}.

Further, it sets the RSTSW bit of PMUINTREG to 1. After the CPU has been restarted, the RSTSW bit must be
checked and cleared by software.

243

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

15.1.2 Shutdown Control

Alist of the states of the RTC, peripheral unit, CPU core, and the bit of PMUINTREG to be set during a shutdown
is shown below.

Table 15-2. Types of Shutdown and Processor Status

Type of shutdown RTC Peripheral unit CPU core PMUINTREG
HAL timer shutdown Active Reset Cold reset HALTIMERRST=1
Deadman's SW shutdown Active Reset Cold reset TIMOUTRST=1
Hibernate shutdown Active Reset Cold reset -
Battery runout shutdown Active Reset Cold reset TIMOUTRST=1
Battery lock release shutdown | Active Reset Cold reset -

{1) HAL Timer Shutdown

Software is required to write 1 to the HALTMERRST bit of PMUINTREG within approx. 4 seconds after the CPU
has been restarted (the state where the shutdown state or Hibernate mode state have shifted to the Fullspeed
mode) and reset the HALTimer.

If the HAL timer is not reset within approx. 4 seconds after the CPU has been restarted, the PMU resets all
peripheral units excluding the RTC and PMU by asserting the rst_gab signal (internal) and resets the CPU core by
asserting the cooldresetb and creset signals {internal).

Further, it sets the TIMOUTRST bit of PMUINTREG to 1. After the CPU has been restarted, the TIMOUTRST bit
must be checked and cleared by software.

(2) Deadman’s SW Shutdown
When the Deadman's SW shutdown function has been enabled, software is required to write 1 to the DSWCLR bit
of DSUCLRREG at each set time to clear the Deadman's SW counter (Refer to Chapter 17 for details).

If the Deadman’s SW counter is not cleared within the set time, tha PMU resets all peripheral units excluding the
RTC and PMU by asserting the rst_gab signal (internal) and resets the CPU core by asserting the cooldresetb and
creset signals (internal). ‘

Further, it sets the DMSRST bit of PMUINTREG to 1. After the CPU has been restarted, the TIMOCUTRST bit
must be checked and cleared by software.

{3) Software Shutdown

When the HIBERNATE instruction is executed, the PMU checks for the interrupts that are now on pending.
When there are no interrupts on pending, it stops the CPU clock by asserting the cclockstopen signal. Further, it
rasets all peripheral units excluding the RTC and PMU by asserting the rst_gab signal {internal).

The contents of the PMU register are left unchanged.

244

CHAPTER 1§ PMU (POWER MANAGEMENT UNIT)

15.1.3 Power-on Control

The factors to start the CPU (to set the state where the shutdown state or Hibernate mode state have shifted to the
Fullspeed mode) are calied starting factors and there are three types of starting factors: power-switch interrupt,
DCD interrupt, and alarm interrupt.

On the other hand, there are two types of factors to hinder the starting of the CPU: detection of battery runout and
detection of battery lock interrupt. However, when the starting of the CPU is hindered by the detectian of battery
lock interrupt, the operaticn of the CPU becomes unstable, so be sure to set the GPIQ[9] (BATTLOCK) terminal to
the High state (Lock state) when the CPU is in the Hibernate state or shutdown state (MPOWER=0}.

(1) Starting by a Power-Switch Interrupt

When the POWER signal is asserted, the PMU notices other units that it is going to start the CPU by asserting the
POWERON signal. After asserting the POWERON signal and checking the BATTINH signal, the PMU deasserts
the POWERON signal.

If the BATTINH signal is High ("1"), the PMU releases the reset af peripheral units by deasserting the rst_gab
signal {internal) and starts the CPU core by staring the cold reset sequence.

If the BATTINH signal is Low ("0"), the PMU shuts down again by setting the BATTINH bit of PMUINTREG to 1.
After the CPU has been restarted, the BATTINH bit must be checked and cleared by software.

Figure 15-1. Starting by a Power-Switch Interrupt (BATTINH=1)

< [T
POWER
POWERON Q
MPOWER
=
BATTINH H

Figure 15-2. Starting by a Power-Switch Interrupt {(BATTINH=0)

oo [T

POWER
POWERON
MPOWER L
BATTINH L /
~

245

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

{2) Starting by a DCD interrupt

When the DCD signal is asserted, the PMU notices other units that it is going to start the CPU by asserting the
POWERON signal. After asserting the POWERON signal and checking the BATTINH signal, the PMU deasseris
the POWERON signal.

If the BATTINH signal is High ("1"), the PMU releases the reset of peripheral units by deasserting the rst gab
signal (internal) and starts the CPU core by staring the cold reset sequence.

If the BATTINH signal is Low ("0"), the PMU shuts down again by setting the BATTINH bit of PMUINTREG to 1.
After the CPU has been restarted, the BATTINH bit must be checked and cleared by software.

The DCDST bit of PMUINTREG of the PMU dces not indicate the presence or absence of a DCD interrupt but
reflects the current state of the DCD terminal.

Figure 15-3. Starting by a DCD Interrupt {BATTINH=1)

we [] UL

DCD

POWERON

{ E

MPOWER

H

BATTINH H

Figure 15-4. Starting by a DCD Interrupt (BATTINH=0)

eo [LTI

DCD
POWERON
MPOWER L
BATTINH L /
&

246

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

(3) Starting by an Alarm Interrupt

When the interrupt signal by the alarm timer (alarm_intr) signal is asserted, the PMU notices other units that it is
going to start the CPU by asserting the POWERON signal. After asserting the POWERON signal and checking
the BATTINH signal, the PMU deasserts the POWERON signal.

If the BATTINH signal is High ("1"), the PMU releases the reset of peripheral units by deasserting the rst_gab
signal {internal) and starts the CPU core by staring the cold reset sequence.

If the BATTINH signal is Low ("0"), the PMU shuts down again by setting the BATTINH bit of PMUINTREG to 1.
After the CPU has been restarted, the BATTINH bit must be checked and cleared by software.

Figure 15-5. Starting by an Alarm Interrupt (BATTINH=1)

e [UL

alarm_intr (internal}

POWERON %

MPOWER

BATTINH H

Figure 15-6. Starting by an Alarm Interrupt (BATTINH=0)

e [LT

alarm_intr (internal}

POWERON
MPOWER L
BATTINH L /
Ly

247

CHAPTER 15 PMU (POWER MANAGEMENT UNIT}

15.1.4 Power Mode

The VR4101 supports the following four power modes.

{> Fullspeed mode
< Standby mode

<- Suspend mode
< Hibernate mode

Figure 15-7 illustrates the transition between the different power modes.

To set Standby, Suspend, or Hibernate mode from Fullspeed mode, execute a STANDBY, SUSPEND, or
HIBERNATE instruction. To set Fullspeed mode from Standby, Suspend, or Hibernate mode, generate an
interrupt or perform any reset.

Table 15-3 outlines the power modes.

248

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

Standby
mode

Figure 15-7. Power Mode Status Transition

Fullspeed
mode

Hibernate
mode

Suspend
mode

(1) {2) (3) {4) (3) (6)
STANDBY All interrupts SUSPEND Batterylnt HIBERNATE POWERSW
instruction & instruction & POWERSW instruction & Alarm
pipeline flash pipeiine flash pipeline flash
& SysAD idle & SysAD idle | RTCRST & SysAD idle | DCD
& PClock high & PClock high | Alarm & PClack high

& TClock high | KeyTouch & TClock high

& DRAM self PenTouch & MasterOut

refresh enTouc high
BatterylLock 8 DRAM self
Cardlock refresh

DCD

CHAPTER 15 PMU {POWER MANAGEMENT UNIT)

Table 15-3. Power Mode

Mode internal peripheral unit Power dissipation "***
RTC ICU DCU others (33MHz, 3.3V, typ.)
Fullspeed Cn On On Selectable N°t*? 200 mwW
Standby On On Cn Selectable "2 100 mW
Suspend On On Off Off 13 mwW
Hibernate On Off Off off 165 W
Off Off Off Off Off ow

Notes 1. Target value
2. See Chapter 13 for details.

{1) Fullspeed Mode

In Fullspeed mode, all internal clocks and the system interface clock operate. |n this mode, all the functions of
the VR4101 can be executed.

{2) Standby Mode

In Standby mode, all internal clocks, ather than those provided to the internal peripheral units and the internal
timer/interrupt unit of the CPU core, are fixed to high level,

To switch to Standby mode from Fullspeed mode, first execute the STANDBY instruction. The VR4101 waits
until the SysAD bus {internal} enters idle status after the completion of the WB stage of the STANDBY instruction.
Then, the internal ¢clock is shut down, and the pipeline stops. PLL, timer/interrupt clock, internal bus clocks
(TClock, MasterOut), and RTC continue to operate.

In Standby mode, the processor returns to Fullspeed mode when an interrupt occurs. At this time, the contents
of bits indicating the states of terminals in the /O registers are undefined. The contents of other fields are
retained.

(3) Suspend Mode

In Suspend mode, all internal clocks (including TCiock) other than those supplied to the RTC/ICU/PMU internal
peripheral units and the internal timer/interrupt unit of the CPU core are fixed to high level.

To switch to Suspend mode from Fullspeed mode, first execute the SUSPEND instruction. The VR4101 waits
until the SysAD bus (internal) enters idle status after the completion of the WB stage of the SUSPEND instruction,
DRAM has entered self-refresh mode, and the MPOWER pin has been made inactive. Then, the internai clocks
(including TClock) are shut down, and the pipeline stops. PLL, timer interrupt clock, MasterOut, and RTC
continue to operate.

In Suspend mode, the processor returns to Fullspeed mode when an interrupt request from the peripheral units or
any resets occur. At this time, the contents of bits indicating the states of terminals in the I/O registers are
undefined. The contents of other fields are retained.

250

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

{4) Hibernate Mode

In Hibernate mode, all the clocks supplied to internal peripheral units other than RTC/ICU/PMU and to the CPU
core are fixed to high level,

To switch to Hibernate mode from Fullspeed mode, first execute the HIBERNATE instruction. The VR4101 waits
until the SysAD bus (internal) enters idle status after the completion of the WB stage of the HIBERNATE
instruction, DRAM has entered self-refresh mede, and the MPOWER pin has been made inactive. Then, the
internal clocks {including TClock and MasterOut) are shut down, and the pipeline stops. PLL also stops, but RTC
continue to operate.

In Hibernate mode, the processor returns to Fullspeed mode when it is alarmed from the RTC, the power-on
switch is pressed, or DCD pin is asserted. At this time, the contents of bits indicating the states of terminals in
the I/O registers and caches in the CPU core are undefined. The contents of other fields are retained,

15.2 REGISTER SET
The following table lists the registers of the PML).

Table 15-4. PMU Registers

Address R/W Register symbols Function
OxCBO0 00A0 RW1C PMUINTREG PMU interrupt/Status register
0xOB0O0 00A2 R/W PMUCNTREG PMU Control register

The function of each of these registers is explained in detail below.

251

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

15.2.1 PMUINTREG
Figure 15-8. PMUINTREG {0x0BO00 00AO} (1/2)
Pasition D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | DCDST |RTCINTR | BATTINH
R/W R R R R R R RW1I1C | RMWIC
Initial value ¢ 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 DO
Name BATT CARD | TIMOUT | RTCRST | RSTSW | DMSRST | BATT POWER
LOCK LOCK RST INTR SWINTR
RAW RMW RMW RW1C | RWIC RWI1C | RWIC RMWI1C | RMWIC
Initial value] o 0 0 0 0 4] 0
Bit position Bitnhame Function
D[15..11} Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[10]) DCDST DCD pin status
1. High level
0. Low level
D[] RTCINTR Detects RTC alarm interrupt.
1: Detected
0: Not detected
D[8] BATTINH Detects low battery veltage on power up.
1; Detected
0. Not detected
D[7] BATTLOCK Detects battery lock interrupt.
1. Detected
0. Not detected
D[6] CARDLOCK Detects PCMCIA card lock.
1. Detected
0. Not detected
D(5] TIMOUTRST Detects HAL timer reset.
1. Detected
0: Not detected
D[4] RTCRST Detects RTC reset.
1. Detected
0: Not detected
D[3) RSTSW Detects reset SW interrupt.
1: Detected
0. Not detected

252

CHAPTER 15 PMU (POWER MANAGEMENT UNIT)

Figure 15-8. PMUINTREG (0x0B00 00AD) (2/2)

Bit position Bit name Function
D[2] DMSRST Dstects Deadman's switch interrupt.
1. Detected
0: Not detected
D[1] BATTINTR Detects low battery voltage interrupt during normal operation.
1. Detected
0: Not detected
D{0] POWERSW Detects power switch interrupt.
INTR 1: Detected

0: Not detected

253

CHAPTER 15 PMU (POWER MANAGEMENT UNIT}

16.2.2 PMUCNTREG

Figure 15-8. PMUCNTREG {CxDB00 00A2)

Paosition D15 D14 D13 D12 D11 D10 Ds D8
Name | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 o 0 0
Paosition D7 D8 D5 D4 D3 D2 D1 Do
Name STAND | Reserved | Reserved | Reserved | Reserved | HALTIME | Reserved | Reserved
BY RRST
RW RW R R R/W R R
Initial value 0 0 0 0 0 o 0
Bit position Bit name Function
D[15..8] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
B[7] STANDBY Sets Standby mode. This setting is performed only for
software, and does not affect hardware in any way.
1. Standby mode
0: Normal mode
D[E..3] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[2] HALTIMERRST | Resets HAL timer.
1: Reset
0. Set
D[1] Reserved Reserved for future use. Write 1 to this bit. 1 is returned when
this bit is read.
D[0) Reserved Reserved for future use. Write O to this bit. Ois returned when

this bit is read.

This register performs the setting of CPU shutdown and management of the whole system.
Be sure to reset the HALTIMERRST bit within approx. 4 seconds of applying power.

HALTIMERRST bit, the VrR4101 can recognize that itself has started normally.

By the reset this

If the HALTIMERRST bit is not

reset within approx. 4 seconds of applying power, the VR4101 assurmes that the program cannot be executed
normally (that the program may have hung) and automatically shuts down.

254

CHAPTER 16 RTC (REALTIME CLOCK UNIT)
This chapter explains the operation of the RTC and how to set the registers of the RTC.

16.1 GENERAL
The RTC provides the following three timers:

< RTCLong......... 24-bit programmable counter that counts at 32.768-kHz. Generates a cyclic interrupt at
intervals of up to 512 seconds.

< ElapsedTime.... 48-bit up counter that counts at 32.768-kHz. Counts up to approximately 272 years and
then returns to zero. Can generate an interrupt at a specific time by comparing the
ElapsedTime (ETIMELREG, ETIMRMREG, ETIMEHREG) with 48-bit atarm time register
{ECMPHREG, EMPLREG, ECMPMREG).

¢ TClockCount. ... Free-running counter that counts up at the TClock frequency. Used for performance
evaluation.

Figure 16-1. Functional Block Diagram of the RTC

e} -
i Internal data bus
~nill) -
A [Internal address bus
RTC

Address decode

) Y

TClock Count timer

Y ¥ Y

Elapsed Time timer
48-bit programmable

RTCLong timer
24-bit pragrammable

32-bit free-running

up counter down counter up counter N
(at RTC clock {at RTC clock {at TClock frequency)
frequency) frequency)

el e

Interrupt Bus
interface interface
i
IcuU

Note

The MSB bit is a mask bit.

255

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2 REGISTER SET

The following table lists the details of each register.

Table 16-1. RTC Registers

Address R/W Register symbol Function
0x0B00 00C4 RW ETIMELREG Elapsed Time L register
0x0B0O0 00C8 R/W ETIMEMREG Elapsed Time M register
0x0B00 00C8 R/W ETIMEHREG Elapsed Time H register
0x0B00 00CA R/W ECMPHREG Elapsed Compare H register
0x0B00 00CC R/W ECMPLREG Elapsed Compare L register
Ox0B00 00CE R/W ECMPMREG Elapsed Compare M register
0x0B00 00D0 RAW RTCLLREG RTC Long L register
0x0B00 00D2 R/W RTCLHREG RTC Long H register
0x0B00 00D4 R RTCLCNTLREG RTC Long Count L register
0x0B00 00D6 R RTCLCNTHREG RTC Long Count H register
0x0BO0 00D8 RAW TCLKCNTLREG TCLK Count L register
0x0BOO OCDA R/W TCLKCNTHREG TCLK Count H register
0x0BOC 00DC RW1C RTCINTREG

RTC Interrupt register

The function of each of these registers is explained in detail below.

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2.1 ETIMELREG, ETIMEMREG, ETIMEHREG

These registers are used to set and indicate count value of the ElapsedTime timer.

The ElapsedTime timer is a 48-bit counter that counts out at 30 us cycle (32.768 kHz) and ¢an count up to
approximately 272 years.

Initiatization in terms of hardware is effected only en the RTCRST* terminal.

Figure 16-2. ETIMELREG (0x0B00 00C4)

Position D15 D14 D13 D12 D11 D10 DS D8

Name | ETIMEL | ETIMEL | ETIMEL | ETIMEL | ETIMEL | ETIMEL | ETIMEL | ETIMEL
(15] (14] [13] [12] [11] [10] 8] (el

RV RW R/MW RAW RN RW RW RAWV R
Initial value 0 0 0 0 1] 0 0 0
Position D7 D8 D5 D4 D3 D2 D1 DO

Name | ETIMEL | ETIMEL | ETIMEL | ETIMEL | ETIMEL | ETIMEL { ETIMEL | ETIMEL
[71 [61 (5] 4 (3] [2] [[9]

R/W R/W R/W RW R RAWV RW RW R/W
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
Df15..0] ETIMEL[15..0] Bits 15 through 0 of ElapsedTirne timer

Figure 16-3. ETIMEMREG (0x0B00 00C8)

Position D15 D14 D13 D12 D11 b10 D9 D8
Name ETIMEM | ETIMEM | ETIMEM | ETIMEM | ETIMEM | ETIMEM | ETIMEM | ETIMEM
[31] [30] [29] [28] [27] [26] [25] [24]
RAW RAW RW RW RAW RAW RW R/W RAW
Initial value 0 0 0 0 0 o 0 0
Position D7 D5 D5 D4 D3 D2 D1 DO
Name ETIMEM | ETIMEM | ETIMEM | ETIMEM | ETIMEM | ETIMEM | ETIMEM | ETIMEM
(23] [22] [21] [20} [19] (18] {17] (16]
RAW R/W RW RAW R/W R/W RAWV RAW RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..0] ETIMEM[31..16] | Bits 31 through 16 of ElapsedTime timer

257

CHAPTER 18 RTC {REALTIME CLOCK UNIT)

Figure 16-4. ETIMEHREG (0x0B00 00C8)

Paosition D15 D14 D13 D12 D11 D10 D8 D8
Name ETIMEH | ETIMEH | ETIMEH | ETIMEH | ETIMEH | ETIMEH | ETIMEH | ETIMEH
[47] (48] [45] [44] [43) [42] [41] (40]
R/W R RW RW RW RW R/W R/W RW
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name ETIMEH | ETIMEH | ETIMEH | ETIMEH | ETIMEH | ETIMEH | ETIMEH | ETIMEH
{39] [38) [37] [36) [35]) [34] [33] [32]
RW RW RW RAW R/W RAN RAW RW RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D{15..0) ETIMEH[47..32] | Bits 47 through 32 of ElapsedTime timer

16.2.2 ECMPHREG, ECMPLREG, ECMPMREG

These registers are used to set a value compared with the ElapsedTime timer. Comparison is started at the
rising edge of the second RTC clock after the setting of these registers. An interrupt is generated when the
contents of these registers matches those of the ElapsedTime timer.

Figure 16-5. ECMPHREG (0x0B00 00CA)

Position D15 D14 D13 D12 D11 D10 | D9 D8
Name ECMPH | ECMPH | ECMPH | ECMPH | ECMPH | ECMPH | ECMPH | ECMPH
[47] [46] [45] [44] [43] [42] [41] {40}
RAW RW RW RV RIW RW RAW R/W RAW
Initiat value 0 0 0 0 0 0 0 ¢
Position D7 D& D5 D4 p3 D2 D1 Do
Name ECMPH { ECMPH | ECMPH (ECMPH | ECMPH | ECMPH | ECMPH | ETIMEH
[39] [38] [37] [36] [35] [34] [33] [32]
RW R/W RW R/W RAN RW RW RW RW
Initial value 0 0 0 0 0 0 0 ¢
Bit position Bit name Function
D[15..0] ECMPH[47..32) :{alue to be compared with bits 47 through 32 of ElapsedTime
imer

258

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

Figure 16-6. ECMPLREG {0x0B00 00CC)

Position D15 D14 D13 D12 11 D10 D9 b8
Name ECMPL | ECMPL | ECMPL | ECMPL | ECMPL | ECMPL | ECMPL { ECMPL
[15] [14] [13] [12) [11] [10] [9) [8]
RW R R/W RAW RW R R RW R
Initial value 0 0 o 0 0 0 0 0
Position D7 b6 D5 D4 D3 D2 D1 DO
Name ECMPL | ECMPL | ECMPL | ECMPL | ECMPL | ECMPL | ECMPL { ECMPL
[7] (6] [5] {4] [3] (2] (1] {0]
RW R/W RW RW RW R/W R RAW R/W
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D{15..0] ECMPL[15..0] Value to be compared with bits 15 through 0 of ElapsedTime
timer
Figure 18-7. ECMPMREG (0x0B00 00CE)
Position D15 D14 D13 D12 C11 D10 D9 D8
Name ECMPM | ECMPM | ECMPM | ECMPM | ECMPM | ECMPM | ECMPM | ECMPM
[31] {30] [29] [28] [27] [26] [25] [24]
RW R/W RAN R/W RW RAV R/W R/W RW
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name ECMPM | ECMPM | ECMPM | ECMPM | ECMPM | ECMPM | ECMPM | ECMPM
[23] (22] [21] [20] [19] 18] 171 [16]
RW RW R/W RW R/W RAW RAW RAW RAW
tnitial value 0 0 o 0 0 0 0 0
Bit positicn Bit name Function
D[15..0] ECMPM[31..16] | Value to be compared with bits 31 through 16 of ElapsedTime

timer

259

CHAPTER 186 RTC {REALTIME CLOCK UNIT}

16.2.3 RTCLLREG, RTCLHREG

Initialization in terms of hardware is effected only on the RTCRST* terminal.

RTCLLREG and RTCLHREG are the registers to set the cycle of RTCLong timer. By performing storing
operation on both registers of RTCLLREG and RTCLHREG (at TClock cycle), the set cycle of the RTCLong timer
is changed. Storing to either register does not effect the change in the set cycle. In this case, set cycle
maintains the former value. The write flags for these lower-order and higher-order bits are cleared when both
have become 1 or they are reset.

For example, when the "cycle" is "m," countdown is repeated as "m" = "m-1" — ... = "2" — "1" (an interrupt occurs
here) » "m" —» ... "1."

The RTCLang timer is a 24-bit programmable counter that counts at 30 us cycle (32,768 kHz), and is used for
generating up to 512 sec of periodical interrupts.

in the current implement, the RTCLong timer stops when 0 is set as the "cycle." The minimum value that can be
setis 4. Be sure to set these registers to 4 or greater vatue.

Figure 16-8. RTCLLREG (0x0B00 00DO0)

Position D15 D14 D13 D12 D11 D10 Dg D8
Name RTCLPL | RTCLPL | RTCLPL | RTCLPL | RTCLPL | RTCLPL | RTCLPL | RTCLPL
[19] [14) (13] [12] (1] {10] {91 (8]
RW RW R/W R/W RW R/W R/W R/W RW
Initial value 0 0 0 0 0 o 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do

Name | RTCLPL | RTCLPL | RTCLPL | RTCLPL | RTCLPL [RTCLPL | RTCLPL | RTCLPL
(7 (6] 5] (4] (3] [2] [) [9]

RW R/W RW R/W RAW RW R/W RW RW
Initial value 0 0 0 0 0 0] 0
Bit position Bit name Function
D[15..0] RTCLPL{15..0] | Bits 15 through 0 of RTCLong timer interrupt cycle

CHAPTER 16 RTC {(REALTIME CLOCK UNIT)

Figure 16-9. RTCLHREG {0x0B00 00D2)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Ressrved | Reserved | Reserved | Reserved | Reserved
RMW R R R R R R R R
Initial value 0 0 0 0 o 0 0 0
Position D7 D& D5 D4 D3 D2 D1 bo
Name RTCLPH | RTCLPH | RTCLPH | RTCLPH | RTCLPH | RTCLPH | RTCLPH | RTCLPH
{23] [22] [21] {20] [19] (18] [17] [16]
RW RW RW R/W R/W RW R/W R/W RW
Initial value 0 o ¢ 0 0 0 0 b
Bit position Bit name Function
D[15..8] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[7..0] RTCLPH[23..16] | Bits 23 through 16 of RTCLong timer interrupt cycle

261

CHAPTER 18 RTC (REALTIME CLOCK UNIT)

16.2.4 RTCLCNTLREG, RTCLCNTHREG

Initialization in terms of hardware is effected only on the RTCRST* terminal.

RTCLCNTLREG and RTCLCNTHREG operate as a 24-bit counter that perform countdown based on the cycle set
on the RTCLLREG and RTCLHREG. Read is performed in two sessions because of the internal bus of 16-bit
type. In this case, erroneous data may be returned if there is any carry of a digit.

An interrupt occurs at the cycle that follows the cycle which these registers indicate "1." At the same time, these
registers take the value of RTCLLREG and RTCLHREG, and then continue countdown.

Figure 16-10. RTCLCNTLREG (0x0B00 00D4)

Position D15 D14 D13 D12 D11 D10 D& b8
Name RTCLCL | RTCLCL | RTCLCL | RTCLCL | RTCLCL | RTCLCL | RTCLCL | RTCLCL
[15] [14] [13] (2] [t1] [10] (9] (8]
R/W R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name RTCLCL | RTCLCL | RTCLCL | RTCLCL | RTCLCL | RTCLCL | RTCLCL | RTCLCL
[7] (6] (5] (4] (3] (2] (1] [0]
R/W R R R R R R R R
Initial value 0 0 0 0 o 0 0 0
Bit position Bit name Function
D[15..0] RTCLCL{15..0] | Bits 15 through 0 of RTCLong timer

262

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

Figure 16-11. RTCLCNTHREG (0x0B00 0CD6)
Position D15 D14 D13 D12 D11 P10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 0 0] 0 0 0 0 0 0
Position D7 D6 DS D4 D3 D2 D1 0o
Name RTCLCH | RTCLCH | RTCLCH { RTCLCH | RTCLCH | RTCLCH | RTCLCH | RTCLCH
[23] [22] [21] [20] [19] [18] [17] [16]
RAW R R R R R R R R
Initial value 0 0 0] 0 0 0 0 o
Bit position Bit name Function
D[15..8] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[7..0] RTCLCH[23..16] | Bits 23 through 16 of RTCLang timer

263

CHAPTER 16 RTC (REALTIME CLOCK UNIT)

16.2.5 TCLKCNTLREG, TCLKCNTHREG

These registers are used to set the count value of TClock Count timer.

The TClock Count timer is a 32-bit register that performs count-up based on TClock. A write to this register is
enabled only for the diagnostic purpose.

Bit 31 is not the value to written or read to and from the counter, but disables timer operation with "0" (reset/stop)
or enables with "1."

Counter operatian is disabled by a reset and the counter is initialized.

Figure 18-12. TCLKCNTLREG (0x0B00 00D8)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name TCLKCL |} TCLKCL | TCLKCL | TCLKCL | TCLKCL | TCLKCL | TCLKCL | TCLKCL
(18] [14] [13] 12] (1] (10 (9] (8]
RW R/W RW RW RW RW RAN RW RW
Initial value 0 0 0 0 0 0 0 0
Position D7 b6 D5 D4 D3 D2 D1 DO
Name TCLKCL | TCLKCL | TCLKCL | TCLKCL | TCLKCL | TCLKCL | TCLKCL | TCLKCL
(7] (€] (5] 4] [3] [2] 1 (0]
RW R/W RW RW R/W RW RW RW R/W
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..0] TCLKCL[15..0] | Bits 15 through 0 of TClock counter

CHAPTER 18 RTC (REALTIME CLOCK UNIT)

Figure 16-13. TCLKCNTHREG (0x0B00 00DA)

Paosition D15 D14 D13 D12 b11 D10 Da D8
Name TCLKEN | TCLKCH | TCLKCH | TCLKCH | TCLKCH | TCLKCH | TCLKCH | TCLKCH
[30] [29] [28] f27] [26] [25] [24]
RW RW RW R/W RW R/W RW RAW R/W
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name TCLKCH | TCLKCH | TCLKCH | TCLKCH | TCLKCH | TCLKCH | TCLKCH | TCLKCH
[23] [22] (21] [20] [19] [18] (17] [18]
RAWV R/W RIW RAN AW RW RW RW R/W
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D{15] TCLKEN Enables TClock Counter operation
1. Enabled
0: Disabled

D[14..0] TCLKCH{30..16]

Bits 30 through 16 of TClock Counter

CHAPTER 18 RTC (REALTIME CLOCK UNIT)

16.2.6 RTCINTREG

This register indicates the occurrence of interrupts generated by the ElapsedTime timer and the RTCLong timer.
To write 1 to the corresponding bit of this register can also generate an interrupt.

Figure 16-14. RTCINTREG (0x0B00 00DC)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Resarvad | Resarved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R N R R R R
Initial value 0 0 0 0 0] 0 0
Position D7 D& D5 D4 D3 Dz D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | RTCINTR | RTCINTR
1 0
RW R R R R R R RWI1C | RWIC
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..2) Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[1] RTCINTR1 ElapsedTime interrupt
1: ElapsedTime interrupt occurs
0: Normal
D[0] RTCINTRO RTCLong interrupt
1: RTCLong interrupt occurs
0. Normal

CHAPTER 17 DSU (DEADMAN’S SW UNIT)

This chapter explains the operation of the DSU and how to set the registers of the DSU.

17.1 GENERAL

Should the Vr4101 hang up, this is automatically detected by the DSU, which resets the VR4101 to minimize the
hang-up time. By minimizing the hang-up time, the destruction of data caused by the software hanging up can

be minimized.

17.2 REGISTER SET

The fotiowing table lists the registers of the DSU.

Table 17-1. DSU Registers
Address RAW Register symbols Function
Ox0BOO 00EC | YW DSUCNTREG DSU Control register
0xCBO0 00EZ | R/W DSUSETREG DSU Dead Time Set register
O0x0B0OO0 00E4 | W1C DSUCLRREG DSU Clear register
0x0B00 00E6 | RW DSUTIMREG DSU Elapsed Time register

The function of each of these registers is explained in detail below.

287

CHAPTER 17 DSU (DEADMAN'S SW UNIT)

17.2.1 DSU Control Register

1: Enabled
0: Disabled

Figure 17-1. DSUCNTREG (0x(B00 00EO0)
Position D15 D14 D13 D12 D11 D10 D9 D&
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position o7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | DSWEN
R/W R R R R R R R RMW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
DI[0] DSWEN Enables Deadman's switch function.

This register is used to enable the Deadman's switch function.

CHAPTER 17 DSU (DEADMAN'S SW UNIT)

17.2.2 DSU Dead Time Setting Register

Figure 17-2. DSUSETREG (0x0B00 00E2)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 0 0 0 0) 0 c 0
Position D7 D6 D5 D4 D3 D2 D1 Do

Name Reserved | Reserved | Reserved | Reserved | DEDTIME | DEDTIME | DEDTIME | DEDTIME
(3] {2] {11 (0]

RW R R R R RW R/W RW RAW
Initial value 0 0 0 0 0 0 0 V]
Bit position Bit name Function

D[15..4] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this bit
is read.

D[3..0] |DEDTIME[3..0]] Sets Deadman's switch cycle.

1111 15seconds 1001 8seconds 0011 3 seconds

1110 14 seconds 1000 8 seconds (010 2 seconds

1101 13 seconds 0111 7 seconds 0001 1 second

1100 12 seconds 0110 6 seconds 0000 Reserved for future use.
1011 11 seconds 0101 5 seconds

1010 10 seconds 0100 4 seconds

This register sets the Deadman's switch cycle.

The Deadman's switch cycle can be set to between 1 and 15 sacands in units of 1 second. If, however,
DEDTIME[3..0] are set to 0x0, the operation of the VR4101 will be undefined.

CHAPTER 17 DSU (DEADMAN'S SW UNIT)

17.2.3 DSU Clear Register

Figure 17-3. DSUCLRREG (0x0B00 00E4)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R

Initial value 0 0 0 0 0 0 ¢ 0

Position D7 D& D5 D4 D3 D2 D1 DO
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | DSWCLR
RW R R R R R R R w1C

initial value 0 o 0 0 0 0 0 0
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D0} DSWCLR Clears Deadman’s switch.
1. Clears
0: Does not clear

This register clears the Deadman's switch counter. The software must set the DSWCLR bit of this register within
the cycle set with the DSUSETREG. If this bit is not clearad within the cycle, the VR4101 is considered to be
hanging up and is automatically reset.

270

CHAPTER 17 DSU (DEADMAN’'S SW UNIT)

17.2.4 DSU Elapsed Time Register

Figure 17-4. DSUTIMREG (0x0B00 00E6)

Position D15 D14 D13 D12 D11 D10 Dg D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Resarved
R/W R R R R R R R R

Initial value 0 0 0 0 0 0 0 0
Position b7 D& D5 D4 D3 D2 D1 Do

Name Reserved | Reserved | Reserved | Reserved | CRTTIME | CRTT!IME | CRTTIME | CRTTIME
[3] [2] (1] (0]

R/W R R R R R/W RW RAN R/W
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..4] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this bit is
read.

D[3..0] | CRTTIME[3..0]| Elapsed time of Deadman's switch timer

1111 15seconds 1001 Gseconds 0011 3 seconds

1110 14 seconds 1000 B8 seconds 0010 2 seconds

1101 13 seconds 0111 7 seconds (0001 1 second

1100 12seconds 0110 6 seconds 0000 Reserved for future use.
1011 11 seconds 0101 5 seconds

1010 10seconds 0100 4 seconds

This register indicates the elapsed time of the current Deadman’s switch.

271

CHAPTER 17 DSU (DEADMAN'S SW UNIT)

17.3 REGISTER SETTING FLOW

The register setting flow for the DSU is shown below.

1.

r2

Set the count-up value of the DSU {1 to 15 seconds).
If the timer is not ¢leared by the CPU within this time, the CPU is reset.

DSUDTMREG address : Ox0OBOO 00E2 data : Ox000n (n =1 to F)

Enable the DSU.
DSUCNTREG address : 0x0B0OO O0EQ data : Ox0001

Ciear the timer with the time set in 1.
DSUCLRREG eddress : 0x0B00O 00E4 data : Ox0001

For ordinary use, always 3. is repeated.
To know the time elapsed until now, set as follows:

DSITIMREG eddress : 0x0BOO 00E6 read (4 bit)

Disable the DSU for the Suspend mode or Shutdown.
DSUCNTREG address . Ox0B0O ODE0 data : 0x0000

CHAPTER 18 GIU (GENERAL PURPOSE I/0 UNIT)

This chapter explains the operation of the GIU and how to set the registers of the GIU.

18.1 GENERAL

The GIU controls GPIO[11..0] and DCD terminals. One of GPIQ[11..0] is already assigned to a specific function,

however GPIO terminals are used as a port which supparts output and input.

The other eleven GPI1O and DCD

terminals can be assigned to interrupt requests, and three types of interrupt triggers are selectable: chenges in the
input signal (rising or falling edge), a low level of the input signal, or a high level of the input signal. The following
table lists the types of input buffers and clocks used to detect interrupt requests.

Table 18-1. Outline of GPIO Pins and DCD Pin
Pin name Interrupt detection clock Input buffer type
DCD "' MasterOut —
GPIO[11] TClock Normal
GP10{10] MasterOut Schmitt
GPiO[9] "**? MasterOut Schmitt
GPIO[8] TClock Normal
GPIO[7] TClock Normal
GPIO[6) TClock Normal
GPIO[S] TClock Normal
GPIO[4] TClock Normal
GPIO[3] TClock Normal
GPIQO[2] TClock Normal
GPIO[1] TClock Normal
GPIO[0}] TClock Normal

Note 1. DCD pin (input} is internally connected to bit 13 of the GPIO registers.

the function of DCD pin as an input only.
2. GPIO[9] pin must be assigned to the battery cover lock detection signal (BATTLOCK).

GlU supports

713

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

18.2 REGISTER SET
The following table lists the registers of the GiU.

Table 18-2. GIU Registers

Address RW Register symbols Function
0x0B00 0100 | RAW GOUTENREG GPI1O Output Enable register
0x0BOO 0102 | RW GPOTDATREG GPIO Port Data register
0x0B00 0104 | RAW1C GINTSTREG GPIO Interrupt Status register
0x0B0C 0106 | R/AW GINTENREG GPIO Interrupt Enable register
0x0BCO 0108 | R/W GCINTSREG GPIO Change Point Interrupt register
0x0B00 010A | R/MW GLINTSREG GPIO Interrupt Level Specified register

The function of each of these registers is explained in detail below.

18.2.1 GPIO Qutput Enable Register

Figure 18-1. GOUTENREG {0x0B00 0100)

Position D15 D14 D13 D12 D11 D10 D9 b8
Name Reserved | Reserved | Reserved | Reserved | 1OP[11] | IOP[10] I0P[9] I0P[8]
RMW R R R R RW RW R/W RN
Initial value 0 0 0 o 0 0 0 0
Position D7 Ds D5 D4 D3 D2 D1 Do
Name IOP[7] IOP[6] I0P[5] I0P[4] IOP[3] 10P[2] OP[1] I0P[0]
R/W R/W RW RW RAW R/W RAW RAN R/W
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..12) Reserved Reserved for future use. Write O to this bit. 0 is returned when this bit
is read.
D{11..0] ICP[11..0] | Sets input/output mode for GPIO[11..0] pins.
1. OQOutput
0: Input {Hi-Z)

This register sets input/output mode for the GPIO[11..0] pins.

IOP[11..0] bits correspond to the input/output status of the GPIC[{11..0] pins. When an |OP bit is set to 1, the
corresponding GP!IO pin is set to output mode, and outputs the value written to the corresponding IODATA of
GIUDATAREG. When the IOP bit is cleared to 0, the corresponding GPIC pin enters the high-impedance state
and is set to input mode.

274

CHAPTER 18 GIU (GENERAL PURPOSE /O UNIT)

18.2.2 GPIO Port Data Register

Figure 18-2. GPOTDATREG (0x0B0O0 0102)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | JODATA | Reserved | IODATA | IODATA | IODATA | IODATA
(13 [11] (10] (9 (8]
W R R R RAW RAW RW RW
Initial value 0 0 0]] 0 0 0
Position D7 D& DS D4 D3 D2 D1 DO
Name IODATA | IODATA | IODATA | IODATA | IODATA | IODATA | IODATA | IODATA
(7] (6] (5] [4] 3] (2] i1] (0]
R/W RIW W R/W R/W RMW RAW RW RW
Initial value 0 0 0 0 o 0 0 0
Bit position Bit name Function
D[15..14] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D[13] IODATA[13] DCD pin data
1. High
0. Low
D[12}] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
O[11..0] IODATA[11..0] | GPIO{11..0] pins data
1. High
0 Low

This register is used to read/write the data of the DCD and GPIO[11..0] pins.

The IODATA[11..0] bits correspond to the data of the GPHO[11..0] pins, while the IODATA[13] bit corresponds to
the data of the DCD pin. When the corresponding IOP bit of the GIUOUTENREG is set to 1, the value written to
an |ODATA bit is output to the corresponding GPIO pin. The set data is output to GPIO pins synchronously with
the rising edge of TClock. The GPIO pin is not affected even if a value is written to the corresponding IODATA bit

when the corresponding IOP bit is cleared to 0.

When an IODATA bit is read, the current status of the corresponding GPIO pin can be read.

275

CHAPTER 18 QIU (BENERAL PURPOSE /O UNIT)

18.2.3 GPIO Interrupt Status Register

Figure 18-3. GINTSTREG (0x0B00 0104)

Pasition D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | IOINTR | Reserved | IOINTR | IOINTR | IOINTR | IOINTR
[13] [11] [10] 9] (8]
R R R R/W1C R RWIC | RWIC | RMWI1C | RWIC
Initlal value 0 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Do

Name | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR
(7] (8] (5] (4} 3] 2] 1 [0
RW RMW1IC | RWIC | RWIC | RWIC | RWIC | RWIC | RWIC | RWIC

Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..14] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D[13] ICINTR[13] DCD pin interrupt
1: Occurred
0: Normal
D[12] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this
bit is read.
D[11..0] IOINTR[11..0] | GPIO[11:0] pins interrupt
1. Occurred
0 Normal

This register indicates the status of the interrupt to DCD and GPIO{11..0] pins.

The IOINTR[11..0] bits correspond to the data of the GPIO[11..0] pins, while the IOINT[13] bit corresponds to the
data of the DCD pin. If the corresponding IOP bit of the GIUINTENREG Is set to 1 and If the signal input to the
GPIO pin or DCD pin, whose interrupt is enabled, satisfies the condition specified by either GIUINTSREG or
GIUINTLREG, the comresponding IOINTR bit is set to 1.

276

CHAPTER 18 GIU (QENERAL PURPOSE /O UNIT)

18.2.4 GPIO Interrupt Enable Register

Figure 18-4. GINTENREG (0x0B00 0108)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name |Reserved | Reserved | IOINTR | Reserved | IOINTR | IOINTR | IOINTR | IOINTR
EN[13)] EN[11] | EN[10) | EN[9) | EN[8]
RAW R R RW R RIW RIW RIW RIW
initial value| 0 0 0 0 0 0 0 0
Position D7 D6 DS D4 D3 D2 D1 DO

Name | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR
ENF] | ENB] | EN(S) | ENM] | EN[3) | ENE21 | EN[] | EN[O]

R/W R/W R/W R/W R/W R/W R/W RAW RW
Initial value 0 0 0 0 0 0 0 o
Bit position Bit name Function
D[15..14] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D[13] IOINTREN[13] | Enables DCD pin interrupt.
1. Enabled
0: Disabled
0{12) Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this
bit is read.
D[11..0] IOINTREN[11..0] | Enables GP10[11..0] pins interrupt.
1: Enabled
0. Disabled

This register enables the interrupt to the DCD and GPIO[11..0] pins.

The IOINTREN([11..0] bits correspond to the data of the GPIO{11..0] pins, while the IOINTREN[13] bit correspond
to the data of the DCD pin. When the corresponding IOINTREN bit is set to 1, the interrupt to the corresponding
GPIQ pin or DCD pin is enabled. However, the interrupt occurs even if the GPIO pin is set to output modse by the
GIUOUTENREG provided the output data of the GPIO pin satisfies the condition specified by either GIUINTSREG
or GIUINTLREG. Therefore, clear the IOINTREN bit, corresponding to the pin corresponding to the GPIO pin set
to output mode by the GIUOUTENREG, to O to disable the interrupt.

ar7

CHAPTER 18 GHJ (GENERAL PURPOSE I/0 UNIT)

18.2.5 GPIO Change Point Interrupt Register

Figure 18-5. GCINTSREG {(0x0B0O 0108)

Position D15 D14 D13 D12 D11 D10 DS D8
Name Reserved | Reserved | IOINTR | Reserved | IOINTR | IOINTR | IOINTR | IOINTR
TYP[13] TYP[11] | TYP[{10] | TYP[9] TYP[8)
R/W R RW R R/W RW RW RMW
Initial value o 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name IOINTR | IOINTR | IQINTR | IOINTR | IOINTR | IOINTR [IQINTR | IOINTR
TYP[7] TYP[6] TYP[5] TYP[4) TYP[3] TYP[2) TYP[1] TYP[O]
RW /W RW RW R/W R/W RW R/W RW
Initial value 0 Y 0 0 0 0 0 o
Bit position Bit name Function
Bl15..14) Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
Df13] IOINTRTYP[13] | Sets DCD pin interrupt type.
1. Edge
0. Level
D[12] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D{11..0] | IOINTRTYP[11..0] | Sets GPIC{11..0] pin interrupt type.
1. Edge
0. Level

This register sets the types of the interrupts to the DCD and GPIO[11..0] pins.

The IOINTRTYP[11..0] bits cormrespond to the data of the GPIO[11..0] pins, and the IOINTRTYP[13] bit
If the corresponding IOINTRTYP bit is set to 1, the interrupt to the
corresponding GPIO or DCD pin is latched by a rising or falling edge (i.e., the interrupt occurs when the
corresponding pin goes high or low). When the IOINTRTYP bit is cleared to 0, the correspanding interrupt is

corresponds to the data of the DCD pin.

latched by the signal level.
corresponding IOINTLVL bit of the GLINTSREG.

278

Whether the interrupt is latched by a low or high level is specified by setting the

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

18.2.6 Interrupt Level ldentifying Register

Figure 18-8. GLINTSREG (0x0B00 010A)

Position D15 D14 D13 D12 D11 D10 DS D8
Name Reserved | Reserved | ICINTR | Reserved | IOINTR | IQOINTR .| IOINTR | IOINTR
LVL[13] LVL[11] | LVL[10] | LVL[9] LVL[8]
RW R R RW R RW RW R/W R/W
Initial value 0 0 0 o 0 0] 0
Position D7 D& D5 D4 D3 D2 D1 Do

Name | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR | IOINTR
LvL(7] | LvU6] | LVL[5] | LvL4] | Lvi3] | vzl | w1l | wvio)

RW RW RW R/W RW RW R/W RW R/W
Initial value 0 0 0] 0 0] 0 0 3]
Bit position Bit name Function
D[15..14] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this
bit is read.
Df13j IOINTRLVL | Sets DCD pin level interrupt.
[13] 1. High active
0: Low active
D[12] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this
bit is read.
D[11..0] IOINTRLVL [Sets GPIO[11..0] pins level interrupt.
[11..0] 1: High active
0: Low active

This register sets the types of the level! interrupts to the DCD and GPIO[11..0] pins.

The IOINTRLVL[11..0] bits carrespond to the data of the GPIO[11..0] pins, while the IOINTRLVL{13] bit
corresponds to the data of the DCD pin. If the corresponding IOINTRLVL bit is set to 1, the interrupt to the
corresponding GPIO or DCD pin is latched by a high level {High active). Ifthe IOINTRLVL bit is cleared to 0, the
interrupt is latched by a low level (Low active).

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

18.3 REGISTER SETTING FLOW
The setting flow for the GPIO is as shown below.

{1) Example of setting conditions

*» Qutput: GPIC[11:8]

* Input: GPI0[8:0]
interrupt change: GPIOfa:6]
Low level: GPIO(5:3]
High level: GPIO(2:0]

(2) Setting flow
1. HAL Timer clear (PMU)
ADD Ox0B0O 00AZ2
DAT Ox0005

2. Clock supply ta the GIU
ADD Ox0OBOO 0060
DAT O0x0010

3. Enabling interrupts from the GPIO pins (ICU)
msk_sysreg
ADD O0xOBOO 008C
DAT 0x0300
msk_giureg
ADD Ox0BOO 0094
DAT OxO7FC

4. Setting GIU registers

GOUTENREG (Setting input/output)
ADD 0xOBOO 0100
DAT OxtE00

GPOTDATREG (Setting the output value)
ADD 0x0B00 0100
DAT OxtEQ0

GLINTSREG (Setting the interrupt level)
ADD OxCBOO 010A
DAT 0Ox0007

GCINTSREG (Setting the interrupt change)
ADD Ox0B00 0108
DAT 0x01C0

GINTENREG (Enabling interrupts)

ADD 0xOBOO 0106
DAT Ox01FF

CHAPTER 18 GIU (GENERAL PURPOSE I/O UNIT)

18.4 INTERRUPT FROM GPIO PINS

The following figure shows the flow chart of occurrence of an interrupt from GPIQ pins.

Figure 18-7. Flow Chart of the Occurrence of an Interrupt

(Start)

Is the
GOUTENREG
direction the output

port?

No Interrupt occurs.

Is tha GINTENREG
imarrupt enabled?

No interrupt occurs.

Yes

Is tha GCINTSREG
interrupt edge-triggered?

An interrupt occurs on
change in the input.

Does an interrup
occur on the
GLINTSREG

Yes

An interrupt occurs,

Does an Interrupt
occur on the low
lavel?

An interrupt occurs.

An interrupt occurs
on the high level.

281

CHAPTER 18 G (GENERAL PURPOSE /O UNIT)

18.5 FUNCTIONS TO ACHIEVE LOW POWER CONSUMPTION

This unit has the following functions to achieve low power consumption:

+ Operation clock to the GPIO can be masked (enabled by setting on the register of the CMU).

* Because the following three types of interrupts are detected by the MasterOut (to which clock is always
supplied) if TClock (can be masked) is not supplied to the GPIO or the GPIO is shut down, they can be
generated at any time.

+ DCD interrupt {SIU)
+ GPIO[10:9] interrupts

282

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)
This chapter explains the operation of the PIU and how to set the registers of the PIU.

19.1 GENERAL

The PIU detacts the X and Y coordinates of the paoint where the pen is touched to the panel by using an external
A/D converter. As a secondary function, it also measures the battery voltage. As the external A/D converter,
the Ti TLV1543C (conversion accuracy. 10 bits) and TLC2543C (conversion accuracy: 12 bits) are supported.

The functions of the PIU such as the detection of the X and Y coordinates on the panel and the measurement of
battery voltage are implemented as follows:

Hardware functions: « Control of the external circuit
+ Acceptance of coordinate/battery voltage data and data transfer.
Software functions: « Processing of coordinate/battery voltage data based on the data sampled by hardware

Features of the hardware partion of the PIU are as follows:
« |/F dedicated to touch panel based on 4-terminal-type resistance films
= IfF dedicated to two types of A/D converters {TC2543C and TLV1543C made by TI, Inc.)
* Main/sub battery voltage detection
« Control of the A/D converter and external circuit by arbitrary setting
+ X and Y coordinate data and pen pressure data sampling
* Variable interval of coordinate data sampling
» Variable clock cycte for the A/D converter
* Generation of interrupts by pen touch
» DMA channel dedicated for the PiU
= Auto/manual is selectable for coordinate data sampling start/stop control

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.1.1 Block Diagram

Figure 19-1. Block Dlagram of an Example of the Configuration of an External Circuit

VR4101
PIU
W PENCHGINTR*
Touch 4 2 AD
i . Control signals
., ——n
panel |7 Driver Vi converter|
| 1 ADIN
1 1 PENCONT[4:.0]

R

Main battery Sub battery

4 Touch panel

The touch panel has a total of four terminals at both ends of each of the X-directional and Y-directional

resistance films; the resistance betwean the two film is high when the pen is not contacting, and is low

when the pen is contacting. The resistance across the resistance film is about 1 k-ohms and the Y
coordinate can be obtained by measuring the voltage across the terminals of the X-directional
resistance film while applying voltage access the Y-directional resistance film. The X coordinate can ~
also be obtained in the similar manner. Further, to enhance the accuracy of the detection of
coordinates, measurement should be performed by changing the direction of the voltage to be applied to

the resistance film. X and Y coordinate data can be obtained by performing a total of four voltage
measurements.

Figure 19-2. Equallzed Circuit for Detecting Coordinates
(a) for Y coordinates

Y+ terminal: 3V Y+ terminal: 0V
X+ terminal X+ terminal
Y- terminal: 0 V Y- terminal: 3V
(b} for X coordinates
Y+ terminal Y+ terminal
X-terminal: o * A X+ terminal. X- terminal: A * A X+ terminal:
3V ov oV 3y

204

CHAPTER 18 PI1U {TOUCH PANEL INTERFACE UNIT)

internal bus

Y

A

¢ Driver
This is the driver to apply voltage to the touch panel. This is controlled by PENCONT[4..0}.
¢ A/D converter
The TLV1543C (conversion accuracy. 10 bits) and TLC2543C (conversion accuracy. 12 bits) are
applicable. For details about connection of an A/D converter, refer to VR4101 Application Note which
is separately available.
All controls of the A/D converter are performed by the PiU.
Figure 19-3. Block Dlagram of the PIU Interior
VR4101 interior
: PIU
- External circuit
Scan sequencer —
+—] |Internal bus %
controller
y ! 1
- PIU register
—{ AD interface
- controller ADCLK Lt
- generator
The PIU is composed of the four blocks of internal bus controller, scan sequencer, ADCLK generator, and ADI/F
- controller.
Internal bus controller
The internal bus controller performs the control of internal bus, DMA, PIU register, interrupt, and
serial-parallel conversion of the data from the A/D converter.
& Scan sequencer
Tha scan sequencer performs the management of PIU states.
ADCLK generator
The ADCLK generator generates the clock for the A/D converter.
& AD interface controller
The AD interface controlier performs the control of the external circuit.
-

CHAPTER 18 PIU (TOUCH PANEL INTERFACE UNIT)

19.1.2 Scan Sequencer State Transition

Figure 19-4. Scan Sequencer State Transition Diagram

rat-gab==0 or
PADRST==1
Initial 4
rst-gab==1and (PenStatus=="Touch")
PADRST==(aulo and (PADATSTART==()
PIUPWR==) L {PIUSEQEN==1) or
and (PenStatus=="Releasa”)
Disable {PIUMODE==01)
: PIUPWRww{ WailPenTouch {PenStatus=="Releass”)
d (PADATSTOP==1)
PIUPWR==0 (PIUSEQEN==1) and
¥ (PIUMCDE==00) (PenStalus=="Touch")
PIUSEQEN==0 and (PADATSTART==1) countin
Standby (PIUSEQEN==1) and - 5
! (PadSCANSTART==1) (PADSCANSTART==1)
(PIUSEQEN==1) an r auto ImtervalNextScan
(PIUMODE==10 (PIUSEQEN==1) and auto
(PADSCANSTOPsu1
auto DRQPIU=="Mask"
MainBatCheck SubBattChack (PIUSEQEN==0) or
(PADSCANSTOP==()

[Explanation of each state]

Disable state

The state where power to the external circuit can be turned off. The output pin in the High-z state and
the input pin, in the masked state (the state where no misoperation will not occur if unstable input is
received) so that power to the external circuit can be turned off.

Standby state

This is the state of waiting for scan.

The external circuit is in the jow-power-consumption state (no

voltage is applied to the touch panel, the A/D converter is disabled). Usually, various modes are set in

this state.

Caution Because the state shifts when the PIUSEQEN bit Is made active, the PIUSEQEN bit
must be activated only after the setting of various modes has completed.

288

CHAPTER 12 PIU (TOUCH PANEL INTERFACE UNIT)

MainBattCheck state

This is the state for measuring the voltage of the main battery. After obtaining voltage detection data
by starting the A/D converter, DMA transfer is performed to the memory t generate DataRdylIntr. After
the data transfer, the PIUSEQEN bit is activated automatically to go to the Standby state.

SubBattCheck state

This is the state for measuring the voltage of the sub battery. After obtaining voltage detection data by
starting the A/D converter, DMA transfer is performed to the memory t generate DataRdylntr. After the
data transfer, the PIUSEQEN bit is activated automatically to go to the Standby state.

Command state

This is the state for operating the A/D converter by an arbitrary setting. Operation is the same as that
of the Main/SubBattCheck state except that this state enabtes arbitrary setting of external circuit control
signal PENCNT and command to the A/D converter, ADCMD. Setting of PENCNT and ADCMD is
perfarmed by the PIUCMDREG.

WaltPen Touch state

This is the state for waiting the "Touch” state of the touch panel. When the PIU has detected the
"Touch” state, PenChgintr, an internal interrupt of the PIU, occurs. In this case, if the PadAutoScan bit
is active, the shift to the PenDataScan state occurs. If TClock stops during the WaitPen Touch state,
the shift to the Suspend mode for detecting the state of the panel is enabled.

Note

Conditions for the shift to the PenDataScan state

Because the occurrence of PenChgintr and the datection of the condition for state shift have
different timings, the, even if the "Touch" state is set when PenChgintr occurs, the state shift
does not occur in case where "Release” is set when the condition for state shift is detected.
The timing of the detection of the condition for state shift is approx. 4 ADCLK after the
occurrence of PenChglntr.

PenDataScan state

This is the state for detecting coordinates on the touch panel. Four or five data for a one coordinate
(when PADSCANTYPE = 1) are sampled by operating the A/D converter. DMA transfer to the memory
occurs for each data and, after the data for one coordinate has been sampled, DataRdy!ntr is generated.

Note 1.

Because the scan sequencer does not stop even if the DMA request by
Penlintr+PadStopAtPage or PenEndintr is masked, overwrite of sampling data may occur on
the PUDDATAREG. When an overwrite has occurred, PadDatalosintr is generated.

When PadDatalosIntr has been generated, DataRdylntr is generated even if the number of
DMA transfers is less than the specified number and state shift occurs. However, if the DMA
mask is set, DataRdylIntr is not generated and state shift cannot occur.

IntervalNextScan state

This is the state of waiting for the sampling time for the next coordinate and the "Release" state of the
touch panel. When the detection of the state of the touch panel is performed and after the time set on
the PIUSIVLREG has elapsed, the shift to the PenDataScan state occurs. 'When the PIU has detected
the "Release” state within the preset time, PenChglntr, an internal interrupt of the PIU, occurs. In this
case, if the PADATSTOP bit is active, the shift to the PenDataScan state occurs and if it is inactive, the
shift to the PenDataScan state occurs after the preset time has slapsed.

287

CHAPTER 18 PIU (TOUCH PANEL INTERFACE UNIT)

19.2 REGISTER SET
The following table lists the PIU registers.

Table 19-1. PIU Registers

Address RW Register symbols Function
0x0B00 0120 | R/W PIUDATAREG PIU Touch Panel Point Data register
0x0B0OO 0122 [RAW PIUCNTREG PIU Control register
0x0BOO 0124 [RAWAIC PIUINTREG PIU Interrupt Cause register
0x0B00 0126 | RW PIUSIVLREG PIU Data Sampling Interval register
0x0B00 0128 | R/W PIUSTBLREG PIU AD Canverter Start Delay register
0x0B00 012A | RAW PIUCMDREG PIU AD Command register
0x0B00 013C | RW PIUCIVLREG PIU AD Check Interval register

The function of each of these registers is explained in detail below.

19.2.1 PIUDATAREG

Figure 19-5. PIUDATAREG (0x0B00 0120)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved PAD PAD PAD PAD
DATA[11]| DATA[10] | DATA[9] | DATA[8]
R/W RW R/W RMW R/W R/W RAW R/AW RW
Initial value 0 0 0 0 o 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 DO
Name PAD PAD PAD PAD PAD PAD FAD PAD
DATA[7] | DATA{S] | DATAIS] | DATAI4] | DATA[3) | DATA[2] | DATA[1] | DATA[0]
RV RW R/W RW RW R/W RW R/W RW
Initial value 0 0 o 0 0 0 0 0
Bit position Bit name Function
D[15..12] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D{11..0] PADDATA{11..0] | Sampling data of A/D converter

This register indicates the sampling data received from the A/D converter.

CHAPTER 18 PIU (TOUCH PANEL INTERFACE UNIT)

19.2.2 PIUCNTREG

Figure 19-6. PIUCNTREG {0x0B0O 0122) (1/2)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name PAD PENSTP | PENSTC PAD PAD PAD PADAT | PADAT
STOP STATE[2]| STATE[1] | STATE[0]| STOP START
RMW RW R/ R R R R RMW RW
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 DO
Name PADSCA | FADSCA | PADSCA PIU PIU PIUSEQ | PIUPWR | PADRST
NSTOP | NSTART | NTYPE | MODE[1] | MODE[O] EN
RAW RW RW RAW RW RW RAW RW W1
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15] PADSTCOP Disables DMA request by PADINTR
1: Enabled
0: Disabled
D[14] PENSTP Previous touch panel pressing status
1: Pressed
0: Released
D[13] PENSTC Current touch panel pressing status
1: Pressed
0. Released

D[12.10] | PADSTATE[2..0] | Status of scan sequencer {See Figure 19-4)
111; Command

110; IntervalNextScan

101. PenDataScan

100: WaitPenTouch

011. SubBatteryCheck

010: MainBatteryCheck

001: Standby

000: Disable

D[9] PADATSTOF i Sets automatic stop of sequencer when touch panel is released.

1. Samples one set of coordinate data and automatically stops
sequencer when touch panel is released.

0: Does not automatically stop sequencer when touch panel is
released.

D(8) PADATSTART [Sets automatic start of sequencer when touch panef is pressed.

1: Automatically starts sequencer when touch panel is touched.

0: Does not automatically start sequencer when touch panel is
touched.

CHAPTER 18 PIU {TOUCH PANEL INTERFACE UNIT)

Figure 19-8. PIUCNTREG (0x0B00 0122) (2/2)

Bit position

Bit name

Function

D{7]

PADSCANSTCP

Sets forced stop of sequencer.

1: Forcibly stops sequencer after one set of coordinate data has
been sampled,

0: Does not stop sequencer.

ofe]

PADSCANSTART

Sets start of sequencer.

1: Forcibly starts sequencer.
0: Does not start sequencer.

D[5)

PADSCANTYPE

Enables sampling of pen pressure data.

1. Enabled
0. Disabled

D[4..3]

PIUMODEI1..0]

Sets PIU mode.

11: Detects voltage of subbattery.

10: Detects voltage of main battery.

01:. Operates A/D converter by any command.
00: Samples panel coordinate data.

D[2]

PIUSEQEN

Enables operation of scan sequencer.

1. Enabled
0. Disabled

D[]

PIUPWR

Sets PIU power mode.
1: Makes the output of PiU active and sets standby status.

0. Makes the output of PIU Hi-Z and allows external circuit to turn
off power.

D[0]

PADRST

PIU reset

1. Reset
0: Normal

This register is used to make PIU settings.
The PADRST bit is automatically cleared to 0 4TClock after being set to 1.

CHAPTER 18 PIU {TOUCH PANEL INTERFACE UNIT)

19.2.3 PIUINTREG

Figure 19-7. PIUINTREG (0x0B0O0 0124)

Pasition D15 D14 D13 D12 D11 D10 DS D8
Name | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RAW R/W RW R/W R/W R/W R/W RW R/W
Initial value 0 0 0 0 0 0 0 0
Paosition D7 D6 b5 D4 D3 p2 D1 Do
Name Reserved | Reserved | Reserved | PADEND | PADINTR | PADDLO | PADDRD | PADCHG
INTR STINTR | YINTR INTR
R/W R/W RW RW RW1C | RWIC | RWIC | RWIC | RWIC
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
Df15..5] Raserved Resarvad for future use. Write O to this bit. 0 is returned when
this bit is read.
D[4] PADENDINTR PiU DMA transfer 2-page boundary interrupt
1: Occurred
0: Normal
D[3] PADINTR PiU DMA transfer 1-page boundary interrupt
1. Occurred
0: Normal
D[2] PADDLOSTINTR | PIUDATAREG data overwrite
1: Valid data overwritten
0. Normal
D[1] PADDRDYINTR | PIU DMA transfer end interrupt
1. DMA transfer completed
0. Not completed
D[0] PADCHGINTR | Change of touch pane! contact status
1: Changed
0. Not changed

This register indicates the occurrence of various interrupts in the PIU.

291

CHAPTER 1¢ PIU {TOUCH PANEL INTERFACE UNIT)

19.2.4 PIUSIVLREG

Figure 19-8, PIUSIVLREG {0x0B00 0126)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | SCANINT | SCANINT | SCANINT
VAL[10] | VAL[S] | VAL[8]
RW R R R RIW RW R/W
Initiat vailue 0 0 0 0 0 0 0 0
Pasition D7 D6 D5 D4 D3 D2 D1 DO
Name SCANINT | SCANINT | SCANINT | SCANINT | SCANINT | SCANINT | SCANINT | SCANINT
VAL[7] VAL[B] VAL[S] | VAL[4] | VAL[3] VAL{2] VAL[1] VAL[0]
RAW W RAW RW RAW RAW RW RW RW
Inittal value 1 0 1 0 0 1 1 1
Bit position Bit name Function
D[15..11] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D{10..0] SCANINTVAL Sets coordinate data of touch panel sampling interval.
(10..0] | Interval = SCANINTVAL{10..0) * 30 us

This register sets the sampling interval for coordinate data of touch panel.

The vailue set by SCANINTVAL[10..0], muitiplied by 30 us is the sampling interval for one set of coordinate data.
Logicaily, therefore, the sampling interval can be set in units of 30 «s within a range of 0 us to 60810 ys (about 60
ms). Actually, however, the sampling interval will be equal to the time required to transfer one set of coordinate
data if a sampling interval shorter than the time required to transfer the coordinete data is set.

202

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.2.5 PIUSTBLREG

Flgure 18-8. PIUSTBLREG (0x0BO0D 0128)

Position D15 D14 D13 D12 D11 D10 D9 Ds
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | MODEL
RW R R R R R R R | RAW
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name SELAD | SELAD | SELAD | SELAD | STABLE | STABLE | STABLE | STABLE
CLK[3] [CLK[2] | CLK[1] | CLK[(] (3] (2] (1 {0}
RW RW RAW RW RW RW RW RW R/W
Initial value 0 1 1 1 0 1 1 1
Bit position Bit name Function
D{15..9] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[8) MODEL Selects conversion accuracy of A/D converter
1: 10 bits (TI1 TLV1543C)
0: 12 bits (Tl TLC2543C)
D[7..4] SELADCLK[3..0] | Sets ADCLK frequency
1111: 16.58 MHz / (4*SELADCLK[3..0] + 2) = 0.267 MHz
00.10: 16.58 MHz / (4*"SELADCLK[3..0] + 2) = 1.658 MHz
0001: RFU
0000: RFU
D[3..0] STABLE[3..0] Panel application voltage stabilization wait time
Wait time = STABLE[3..0] * 30 us

This register sets the stabilization wait time for the voltage applied to the touch panel, the conversion accuracy of
the A/D converter, and the type of the A/D converter externally connected.

The Tl TLV1543C or TLC2543C can be connected to the VR4101. The A/D converter to be used is specified with

the MODEL bit.

The clock supplied to the A/D converter is specified by the ADCLK{3..0] bits. The wait time for the voltage
applied to the touch panel is set with STABLE[3..0], in a range of 0 us to 450 s in units of 30 us.

203

CHAPTER 18 PIU {TOUCH PANEL INTERFACE UNIT)

19.2.6 PIUCMDREG

Figure 19-10. PIUCMDREG (0x0B00 012A)

Position D15 D14~ D13 D12 D11 D10 D9 Dg
Name Reserved | Reserved | Reserved | Reserved | Reservad | Reserved | STABLE | PENCNT

ON [4]

R/W R R R R R R R/W RMW

Initial value 0 0 0 0 0 0 0 1

Position D7 D& D5 D4 D3 D2 D1 Do

Name | PENCNT | PENCNT | PENCNT | PENCNT | ADCMD | ADCMD | ADCMD | ADCMD
[3] (2] (11 [°] 3] 2] (] [0}

RW R/W W R/W RAW R/W R/ RAV RW
Initial value 1 o 1 t 1 1 1 0
Bit position Bit name Function

D[15..10] Reserved) Reserved for future use. Write 0 to this bit. 0 is returned when this bit is
read.

D[9] STABLEON | Enables the setting of touch panel application voltage stabilization wait

time (set on STABLE[3:0] of PIUSTBLREG).
1: Waits for panel voltage stabilization time.
0: Ignores panel voltage stabilization time (voltage stabilization time = 0).

D[8..4] |PENCNT([4..0]| Output data during command scan

11110: Pen touch detected

11011: Panel voltage not applied

11010: X+ pin = High, X- pin = Low, Y- pin = measures voltage

11001: Y+ pin = High, Y- pin = Low, X- pin = measures voltage

10011 X+ pin = Low, X- pin = High, Y- pin = measures voltage

01011: Y+ pin = Low, Y- pin = High, X~ pin = measures voltage

Others: Reserved for future use. Operation is not guaranteed if any
setting other than those above is made,

D[3..0} | ADCMDI3..0] | Sets A/D converter command.
1111 Reserved for future use. Operation is not guaranteed if this

value is set.
1110; Power-down mode
1101: Vraf+
1100:; Vref-

1011: (Vref+ - Vref-)/2
1010: Selects input port (AIN10)

0000: Selects input port (AINQ)

This register controls the PENCONT pin in command scan mode (when the PIUMODE bits of PIUCNTREG are
01) and sets the command of the A/D converter.

The value set for this register is effective only in command scan mode. [t has no effect in other modes.

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

Because the TLV1543C A/D converter is not pravided with a power-down mode, the setting of power-down mode
by ADCMD{3..0] is ignored when the MODEL bit of PIUSTBLREG is set to 1.

19.2.7 PIUCIVLREG

Figure 19-11. PIUCIVLREG (0x0B00 013C)
Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | CHECKIN |CHECKIN [CHECKIN
TVAL[10] | TVAL[9] | TVAL[8]
RW R R R R R R
Initial value o 0 0 0 0 0 0 0
Position D7 D6 D5 D4 b3 D2 D1 Do
Name |CHECKIN|CHECKIN|CHECKIN | CHECKIN | CHECKIN [CHECKIN [CHECKIN | CHECKIN
TVAL[7] | TVAL6] | TVAL[5] | TVAL[4] | TVAL[3] | TVAL[2] | TVAL[1] | TVAL[O]
R R R R R R R R R
Initial value 1 0 1 0 0 1 1 1
Bit position Bit name Function
D[15..11] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this
bit is read.
D[10..0] CHE[(?Ilgll'g]I'VAL Interval count value

This register reads the real-time value of the internal register that sets the value of PIUSIVLREG and counts down.

295

CHAPTER 18 PIU {TOUCH PANEL INTERFACE UNIT)

19.3 REGISTER SETTING FLOW

The PIU requires initial settings before operating the scan sequence. In the case of initialization by a reset, the
sequence intervals, etc. are set to the minimum speed, so they must be set again.

The registers that require initial setting and the setting procedures are as described below.

Register name Bit name Set value
PIUDATAREG SCANINTVAL [10:0] An arbitrary value

PIUSTBLREG STABLE [3:0] An arbitrary value
Further, settings for clearing DMA mask and interrupt mask are required outside the PIU register.

Table 18-2. Initial Settings at Scan Sequencer Operation

Initial setting Unit Register name Bit name Set
name value
Clearing DMA mask DCU DMASENREG DMASEN 1
DCU DMAMASKREG DMAMASKPIU | 1
Clearing interrupt mask ICU SYSINTREG PIUINTR 1
IcU MPIUINTREG bit[4:0] Ox1F
Ciearing clock mask CMU CMUCLKMSK MSKPIU 1

(1) Register setting flow for main battery voltage detection

Disable state

1) PIUCNTREG PIUPOWER = 1
¥
Standby state
2) PIUCNTREG PIUMODE [1:0] = 10
3 PIUCNTREG FILSEQEN = 1
4
MainBattCheck stats

{2) Register setting flow for sub battery voltage detection

Disahle state

1) PIUCNTREG PIUPOWER = 1
e
Standby state
2) PIUCNTREG PIUMODE [1:0] = 11
3) PIUCNTREG PIUSEQEN = 1
s
SubBattCheck state

CHAPTER 18 PIU (TOUCH PANEL INTERFACE UNIT)

(3) Register setting flow for automatic coordinate detection

Disable state

1) PIUCNTREG
{

Standby state

2} PIUCNTREG

3) PIUCNTREG
4
WaitPenTouch state

PIUPOWER = 1

PIUMODE [1:0] = 11
PADSCANTYPE =0 or 1
PADAUTOSCAN = 1
PADAUTOSTOP = 1
PIUSEQEN = 1

(4) Register setting flow for manual coordinate detection

Disable state

1) PIUCNTREG
l

Standby state

2) PIUCNTREG

3) PIUCNTREG
\

PenDataScan state

PIUPOWER=1

PIUMODE [1:0} = 00
PADSCANTYPE =0 or 1
PADSCANSTART = 1
PIUSEQEN = 1

(5) Register setting flow for shifting to the Suspend mode

Disable state

1) PIUCNTREG
4
Standby state

2} PIUCNTREG

3) DMAMASKREG
4) MPIUVINTREG
5) PIUCNTREG

{
WaitPenTouch state

PIUPOWER =1

PIUMODE [1:0] = 00
PADSCANTYPE = 0 or 1

PADSCANSTART =0 . Shift to the PadDataScan state when

"Touch" is detected is prohibited.
; Setting DMA mask
; Clearing PENCHGINTR interrupt mask

DMAMASKPIU = 0
PADCHGINTR =1
PIUSEQEN =1

297

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

{6) Register setting flow for restoring the Suspend mode
WaitPenTouch state

1) DMAMASKREG DMAMASKPIU = 1 ; Clearing DMA mask
2) PIUCNTREG PADAUTOSCAN = 1
d

PenDataScan state

(7) Register setting flow for A/D converter control in the case of arbitrary setting

Disable state

1) PIUCNTREG PIUPOWER = 1
{
Standby state
2) PIUCNTREG PIUMODE [1:0] = 01
3) Setting CNTREG, PENCNT and ADCMD
4) PIUCNTREG PIUSEQEN = 1
{

Command state

19.4 OUTPUT TO PENCONT PINS

PENCONT[4..0] pins output the current state of the scan sequencer. The output data can be set on bit[8..4] of
the PIUCMDREG.

Table 19-3. Relationship between PENCONT, ADSOUT, and State

State PadState PENCONT[4..0] ADSOUT
Power off Disable - -
Standby with low power consumption Standby 11011 (Ox1B} 1110 (OxE)
Pen state detection WaitPenTouch/Interval | 11110 {Ox1E) 0011 (0x3)
Main battery voltage detection MainBattCheck 11011 {0x1B) 0000 (0x0)
Sub battery voltage detection SubBattCheck 11011 (Ox1B) 0010 {(0x2)
Y+=H,Y-=L X=samp PadDataScan 11001 (0x19) 0001 (0x1)
Y+=L,Y-=H X=samp PadDataScan 01014 (Ox0B) 0001 (0x1)
X+=H X-=L Y=samp PadDataScan 11010 (Ox1A) 0011 (0x3)
X+=L X-=H,Y=samp PadDataScan 10011 (0x13) 0011 (0x3)

CHAPTER 19 PIU {TOUCH PANEL INTERFACE UNIT)

19.4.1 Order of Coordinate Data

The PIU makes the A/D converter as the object operate by cycles consisting of the number of sampling data + 1.
The first A/D conversion operation cycle effects the analog/ digital conversion of the first data, the next cycle
effects the first data transfer and the analog/digital conversion of the second data, and the last A/D converter cycle
effects data transfer alone. Further, when switching the port to which the signal to control the voltage applied to
the panel, PENCONT[4:0] is applied, a no apply state, where no voltage is applied to the panel, is provided to
prevent any electrical short-circuiting in the panel.

{1) In the case of 4 data

Order DMA transfer data PENCONT([4:0] ADSOUT
11001 (0x19) 0001 (Ox1}
11011 {Ox1B) 1110 (OxE)
1 Y+=H, Y-=L, X=samp 01011 {Ox0B) 0001 (Ox1)
11011 {Ox1B) 1140 (OxE)
2 Y+=L, Y-=H, X=samp 11010 (Ox1A) 0001 (0x3)
11011 (Ox1B) 1110 (OXxE)
3 X+=H, X-=L, Y=samp 10011 (0x13) 0011 {0x3)
11011 (0x1B) 1110 (OxE)
4 X+=L, X-=H, Y=samp 11011 (0x18) 1110 (OxE)

{2) In the case of 5 data

Order DMA transfer data PENCONT[4.0] ADSOUT
11011 (Ox1B) 1110 (OxE)
11110 {Ox1E) 0011 (0x3)
11011 {0x1B) 1110 (OxE)
1 Detection of pen state 11001 (0x19) 0001 (Ox1)
11011 (0x1B) 1110 (OxE)
2 Y+=H, Y-=L, X=samp 01011 (Ox0B) 0001 (0x1)
11011 (Ox1B) 1110 (OxE)
3 Y+=L, Y-=H, X=samp 11010 {(Ox1A} 0001 (Ox3)
11011 {Ox1B} 1110 (OxE)
4 X+=H, X-=L, Y=samp 10011 (0x13) 0011 (0x3)
11011 (Ox1B} 1110 (OxE)
5 X+=L, X-=H, Y=samp 11011 {Ox1B) 1110 (OxE)
11011 (0x1B} 1110 {OxE)

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.5 PIU OPERATION TIMINGS

19.5.1 Explanation of signals in the timing chart

{1) Intemnal signals

telk_touch Internal reference clock, TClock
tclk_maskr Clock mask signal synchronized with the clock for the A/D converter
cspiub PIU chip select signal

pird_piwrb Internal bus read/write strobe signal
piad[3:0] Internal address bus
piwrdata[15..0] Internal write data bus

piuoutf15..0} Internal read data bus

drgpad DMA request

drakpad DMA acknowledge

page Page boundary signal

padstat[2..0] Sequencer state

penchgintr penchgintr interrupt factor
piudatardyintr piudatardyintr interrupt factor
datalostintr datalostintr interrupt factor

penintr penintr interrupt factor

panendintr penendintr interrupt factor

{2) External pins

ADCLK Reference clock for the A/D converter

ADCS* Chips select signal for the A/D converter

ADEOC Signal to indicate the completion of A/D conversion by the A/D converter
ADIN Serial bus to transfer the converted data of the A/D converter

ADSOUT Serial bus to transfer the channel select and other data of the A/D converter
PENCONT[4..0] Signal to control the voltage to be applied to the touch panel
PENCHGINTR* Interrupt signal to be input when the panel in the touch state

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.5.2 Battery Voltage Detection

In battery voltage detection, the input channei of the A/D converter is switched to the port to which the battery is
connected to obtain 1 data {10/12 bits} of digital datz and it is DMA transferred.

The attached drawing shows the timing chart for main battery voltage detection.

Figure 19-12. PIU Battery Voltage Detection Timing

Converted data transfer (ADC —PiU) cycle

o >
>

AD input port selection/canversion cycle

[

Voltage stabilzation Voitage stabilization
walt tme wait ime
i [+] 2| I 10| jat—n v 1 2 | i 10 |

ADCIK(D) 4 B U W . P e W RN vy
ADCS'(0) _—_—”‘_\ r/ Jf /_{ I_—ﬂ__\ /] _I_I

{4 ‘\ {L. 't
ADECCH) 4F \ # \ ; !_l—!.] 1) \ o

fL JL IF _!f A’\ L IL
ADIN(i) y/ N INVALID o /! i INVALID . ; i/
ot —— R — I] !
© — f 4 RALD %
PENCONTIA0](o} 2 18 A 1 v/ 0B / 1
IL !' {l { L
PENCHGINTR*(j) v INYALID i i = A f—

19.5.3 Coordinate Detection

In coordinate detection, 1 set of coordinate data consisting of 4 or 5 data is obtained. As the timing, a cycle that
is similar to that for battery voltage detection is performed successively.

Figure 19-3 shows the timing chart for 5-data cocordinate detection.

Figure 19-13. PIU Coordinate Data Detection Timing at 5-data Operation (1/2)

{a) Interrupt detection cycle, A/D input port selection/conversion cycle

. Converted dala trarsfer
Ll_muchacnmcyclq_ AD input port selection/conversian cyde ___ng—-HU)cyde1
1 7l
oltece sttt Vokvon statilzat
wai time] wait tirme
ft—n Il 1} 2| | 10| fe—
ADCLK() f— ' A W
ADCS'(0) T .
fL Fid
ADEOC() ” L_ﬂ_ﬂ
iF 4F HF
ADING # INVALD # i
it — It AL
ADSOUT(0) ;,;, oUr3jour2 e o
IL L
PENCONT[4.0o) _ OIE OdE OB 7 B
't It fL
PENCHGINTR'() _\; I A i
L) r 2l Fis

301

CHAPTER 18 PIU (TOUCH PANEL INTERFACE UNIT)

Figure 18-13. PIU Coordinate Data Detection Timing at 5-data Operation {2/2)

(b} A/D input port selection/conversion cycle, converted data transfer cycle 1

”'“"“m"“‘”“_l" Corverted data tranafer cyde 1 'l"mmz
Voltage stabilization Voltage stabifzation

wait time wait ime
| 0] je——— | 1] 2 | | 0] j¢—m

Lo CT I R W S— UM o R

pocse . GA———

p—i— i —
aoeocy) L f 1 __”_/_’
1 1F —ff—
Poro " —i—
mn-(o) /] 1A —ﬂ_ﬂ_
l {L l il /L lJt I7i
4. B Ll 1 B i
P — _— ——
PENCHGINTR'() i u i e i
/4 el 1 1f /4

(c) Converted data transfer cycled, 5

P Corwerted data trarsfer cyde 4 L Converted data trarsfer cycle 5 -
Voltege stabilization Voltage stabilization
vl tirre wait rme
fe—n] 1] 2| } 0] |a——n | 1] 21 P el
ADCLK() P = Ly y [\ L
ADCS*(0) \ a / \ 4t /
[Fid I JL
ADECCT) . | L
JL I {iL
L 1 1
ADING) INVALID A—
i]] it L. i | 1 |
ADSCUT(ch i INVALID o INALID 1 INVALID o INMID
A —
PENCONT[4:0Ko) n ox1p i odB I S x1B i
Ir 1 [F 1L
IL Ji IL Ffd I
PENCHGINTR'() i i
b i P Iid

302

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.5.4 Page Boundary Interrupt
During DMA operation, a 1-page boundary interrupt (PENINTR) or a 2-page boundary interrupt (PENENDINTR}
occurs when transferred data exceeds page boundaries of the DMA buffer.

Figure 19-14 shows the timing chart where, during the detection of a 4 data coordinate, the generation of a DMA
request is suppressed because the second DMA transfer was on the page boundary of the first page
(PIUCNTREG STOPATPAGE = 1 condition is also required) and data has been lost.

Figure 19-14. PIU Page Boundary Interrupt Timing

DMA transfer cycle
Internal signals |< r —|
TClock |]|||||[IIII‘FI[||||||||||||||[|||||||||
f
cspiub | W
Fdd
drqpad 4‘ i ,('\
dakpad }"{ IV \
page iF /
penintr 4 /
External pins
g | 10 |
ADCLK(®) ™\ .
ADCS*(0) £ s
ADEOC(j) \ i
ryd
ADIN(i) _IND_X_LNMALLD_}} INVALID
fL
ADSOUT(o) INVALID ;{f INVALID
PENCONT[4:0](0)) ST e x1B

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.5.5 Data Lost

In the battery voltage detection and coordinate detection cycles, there may such a case where the data received
from the AD converter cannot be DMA transfer but overwrite and lost (data lost) for the reasons such as that the
DMA request cannot be issued or the time waiting for the DMA acknowledge is too long.

Caution The PIU counts the number of the data that were DMA transferred and, upon completion of the
specified times of data transfer, ends the DataScan state (PADSTATE[2:0]=5) by generating
PlUDataRdylntr. However, because valid data is not exist in the case of data lost, the
specified number of data is not reached and the DataScan state does notend. To prevent this,
in the case where DMA transfer is made after the completion of the data transfer from the A/D
converter, the DataScan state must be forcibly ended by generating PIUDataRdylntr regardleas
with the number of data transferred.

Figure 19-15. PIU Data Lost Timing

Converted data transfer (ADC—PIU} cycle

i igigigipipipplipipipipipipipigipipipiyl

l‘ DMA transfer cycle

Internal signals

cspiub H
IL Ve
dl'qpﬁd ’ el \\
dakpad L 4 o
datalostintr 4 V\@
External pins J
9 | 10 | I 1+ | 2 1 3 |
ADCLKl) —f \ 1+ /2 U A U A N
PN it \(/
Apcste) [o vt
L
ADEOC()) \ ;’
JL
ADIN(i) | it Ne X N8 X IN7 X
L P,
ADSOUT(0) 7a X OuT3 Y ouT2 X OUT1 X
] L
PENCONT([4:0}(c) VALID X Ox1B /3 VALID

304

CHAPTER 19 PIU (TOUCH PANEL INTERFACE UNIT)

19.5.6 Other cautions

(1) Difference between the sequencer stop request and stop timing during coordinate detection

(2)

During coordinate detection, the sequencer does not stop immediately if it is attempted to stop the sequencer
with PADSCANSTOP of CNTREG or disable of PIUSEQEN. Because coordinate data represents one
coordinate with 4 or 5 data, the boundary between coordinate data in the DMA buffer deviates unless the
specified number of data is DMA transferred. Therefore, the sequencer does not stop unless the specified
number of data is accepted if a stop request is given in the middle of operation. Judgment as to whether the
sequencer has stopped or not is made by the timing when PlUDataRdyintr is generated.

DMA mask setting timing

Do not perform DMA mask setting in the state that allows DMA transfer. Otherwise, DMA acknowledge will
not be returned and thus the sequence operation will be disabled. Perform DMA mask setting in the Standby
state.

308

[MEMO]

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

This chapter explains the operation of the SIt and how to set the registers of the SIU.

20.1

GENERAL

The SIU is a serial interface unit that supports communication conforming to the R§-232-C standard and also

IrDA communication.

communication and [rDA communication are mutually exclusive.

Like the UART, this SIU supports framing error detection and break detectionftransmission.
processed automatically, instead being handled as data during transmission/reception.

The functions of the SIU are briefly explained below.

Communication : RS-232-C communication (full duplex comrmunication)
: IrDA communication
Transmission speed: 1200 to 115200 bps
Has a built-in baud rate generator
Character length; 7, 8
Parity. Presencefabsence
Stop bit length: 1, 2
Break sending
Automatic break detection
Automatic framing error detection
No error detection (parity}
Interrupt sources. 11 types
« Breakintr; Break signal detection interrupt {during receiving)
» FrameErrorintr: Framing error detection interrupt (during receiving)
« DCDchglntr; RS-232-C control section input port DCD state change interrupt
» DSRchgintr: RS-232-C control section input pert DSR* state change interrupt
» CTSchglntr: RS-232-C control section input port CTS" state change interrupt
+ RXLostchgintr: One character receive lost interrupt
» RXGetchglntr: One character receive completion interrupt
* RxEndintr: Receive data DMA transfer 2-page boundary interrupt
» RxIntr. Receive data DMA transfer 1-page boundary interrupt
« TxEndIntr; Transmit data DMA transfer 2-page boundary interrupt
« TxIntr: Transmit data DMA transfer 1-page boundary interrupt

® Clock to the SIU can be masked by the CMU (Clock Mask Unit).

It is provided with one transmission channel and one reception channel.

RS&-232-C serial

The parity bit is not

307

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

The $IU and relations with other units are shown below in a simplified form.

Figure 20-1, Block Diagram of SIU and Peripheral Blocks

CPUcore |[a—w BCU
[}
siuout
piad
piwrdata
l » drgstx (to DCU)
Interrupt request o | — dakstx (from DCU)

signal (to ICU)

drgsrx {to DCU)
i daksrx (from DCU)

‘_—\7 page {from DCU)

| r_ ,]\ l Interior

Y

SiU

N ./ @, @,

IRDIN* IRD¢OUT RaD* TxD* Exterior
Infrared-ray RS-232-C
module connector

CHAPTER 20 SIU {SERIAL INTERFACE UNIT)

20.1.1 TRANSMIT/RECEIVE DATA FORMAT

{1) Receive data

Receive data includes the start bit, data bit, and parity bit but does not include the stop bit. The check of the
parity bit of receive data is not performed, the difference in meaning between each bit is not recognized (The
number of bits specified by the SIUDLENGTHREG are received).

The raw data received from the SIUDLENGTHREG is transferred to the memory by DMA transfer.
Configuration of receive data is shown below.

Because R$-232-C communication and IrDA communication are transmitted with bit 0 of data (LSB) at the
top, the receiving shift register (maximum of 10 bits) receives bits in the order of the mast significant bit
(MSB), start bit, data, and (parity, if any). Upon completion of the loading by the shift register, all the raw
data received {the stop bit is not loaded) is transferred to the SIURXDATREG.

The contents of the SIURXDATREG received are as shown below.
Software is expected to convert character data to transmit code in the page buffer.

Example Parity bit = 1bit, Start bit = 1bit, Stop bit = Zbits,
Character length = 7hits width "C06 C05 C04 C03 C02 C01 C00”

MSB LSB
D15 D14 D13 D12 D11 D10 D09 D08 DO7 D06 DO5 DO4 DO3 D02 DO1 DOO
[st Jcos[cos|cos]coa]coz[cot]coo[pa] * T * [0 | o0o]o]o]o]

Remark SP : Stop bit '1’, PA; Parity bit, St : Start bit ‘1", * : invalid data

The data corresponding to the number of receive bits specified by SIUDLENGTHREG is deemed as valid
data.

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

{2} Transmit data

Transmit data includes the start bit, data bit, parity bit, and stop bit. Further, the generation of the parity bit
of transmit data is not performed in this unit (The number of bits specified by the SIUDLENGTHREG are
transmitted).

Prepare all raw data to be transmitted in this SIUDLENGTHREG by DMA transfer.
Configuration of transmit data is shown below.

Because RS-232-C communication and IrDA communication are transmitted with bit 0 of data (LSB) at the
top, the SIUTXDATREG is required to store bits in the order of the least significant bit (LSB), start bit, data
bits arranged with the bit O side pointed to the LSB side, (parity, if any), and stop bit.

The contents to be prepared in the SIUTXDATREG are as shown below.
Software is expected to convert character data to transmit code in the page buffer.

Example Parity bit = 1bit, Start bit = 1bit, Stop bit = 2bits,
Character length = 7bits width "C06 C05 C04 C03 C02 Cot C00”

MSB LsB
D15 D14 D13 D12 D11 D10 D09 D08 DO7 DO6 D05 D04 D03 DO2 DO1 DOO
loJo|ofo]| ~]|sp|[sp]|Prajfcos|cos|cos|cos|coz]|cor|coo| st |

Remark SP : Stop bit ‘1', PA : Parity bit, St: Start bit ‘', * . invalid data

The data corresponding to 12 bits counted from the LSB is transferred to the shift register at any time. Ifthe
number of bits of the transit data is less than 12 (*; invalid data in the above figure), write "0" on the MSB
side.

310

-

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

20.2 REGISTER SET

The following table lists the registers of the SIU.

Table 20-1. SIU Registers

Address RMW Register symbols Function
0x0BO0 0140 | R/W SIURXDATREG SIU Rx Data register
0x0B0O0 0142 | R/W SIUTXDATREG SIU Tx Data register
0x0B0O0 0144 | RAW SIUCNTREG SIU Control register
0x0B00 0146 | R/W SIUDLENGTHREG SIU RxTx Data Length register
0x0BOC 0148 | RAWIC SIUINTREG SIU interrupt register
Ox0BOO 014A | R/W SIURS232CREG SIU RS-232-C Control register
0x0B0OO 014C | R'W SIUBAUDSELREG SIU Baud rate Select register

The functicn of each of these registers is explained in detail below.

311

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

20.21 SIURXDATREG

Figure 20-2, SIURXDATREG (0x0B00 0140)

Position D15 D14 D13 D12 D11 D1¢ Inle] D8
Name RXDATA | RXDATA | RXDATA | RXDATA | RXDATA | RXDATA | RXDATA | RXDATA
[9] (8] [7] [6] [5] [4] (3} [2]
R/W RMW R/W RAW R/W RW R/W R/W RAW
Initial value 0 o 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name RXDATA | RXDATA | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
{1] (0]
R/W RW RMW R R R R R
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
‘D[15..6] RXDATA[9..0] | Serial receive data
D[5..0) Reserved Reserved for futura use. Write O to this bit. 0 is returned when this
bit is read. :

This register stores receive data for serial communication.

The number of bits specified by the SIUDLENGTHREG register is read from RXDATA[9] and written into the
RXDATA bit.

Caution During receiving, do not attempt any CPU access to this register except for the read of receive
data.

312

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

20.2.2 SIUTXDATREG

Figure 20-3. SIUTXDATREG (0x0B00Q 0142)

Position D15 D14 D13 D12 D1 D10 D8 D8

Name Reserved | Reserved | Resarved | Reserved | TXDATA | TXDATA | TXDATA | TXDATA
1] {10] [9] (8]

RW R R R R RW R R/W RW
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do

Name | TXDATA | TXDATA | TXDATA | TXDATA | TXDATA | TXDATA | TXDATA | TXDATA
{7} (8] (5] (4} (3] (2] (1] [0

RW RW RMW RW RW RW RW RW RMAW
Initial value 0 0 0 0 0 o 0 0
Bit position Bit name Function
D[15..12] " Reserved Reserved for future use. Write O ta this bit. O is returned when this
bit is read.
D[11..0] TXDATA[11..0] | Serial transmit data

This register stores transmit data for serial communication.

The number of bits specified by the SIUDLENGTHREG register is read from TXDATA[0] and written into the
TXDATA bit. Write Os into the remaining bits in MSB side when the number of transmit data bits.is less than 12,

Caution During transmission, do not attempt any CPU access to this register except for the read of
transmit data.

313

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

20.2.3 SIUCNTREG

Figure 20-4. SIUCNTREG (0x0B00 0144) {1/2)

Position D15 D14 D13 D12 D11 D10 D3 D8
Name Reserved | Reserved | BSET RSP TSP RST RVD TST
R/W R R R/W R/W R/W R R R

Initiat value o 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Do
Name TVD RSE IME SUC[1] | suC|0} RXE TXE SRST
RW R/W RAMW R/W RW R/W RW RW w
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..14] Reserved Reserved for future use. 'Write 0 to this bit. 0 is returned when
this bit is read.
D{13] BSET Transfers serial transmission BREAK data.
1. Fixes the transmission output to Low regardless of whether
valid data is being transmitted.
0. Normal
P{12] RSP Serial reception 1-page boundary stop
1: Stops DMA request when DMA transfer reaches first page
boundary during reception.
0. Stops DMA request when DMA transfer reaches second page
boundary during reception.
D[11] TSP Serial transmission 1-page boundary stop
1. Stops DMA request when DMA transfer reaches first page
boundary during transmission.
0: Stops DMA request when DMA transfer reaches second page
boundary during transmission.
D[10] RST During-receiving-operation indicator
1. Valid data is being received.
0. There is no valid receive data.
D[9] RVD Valid data receiving completion indicator
1: There is valid receive data in SIURXDATREG.
0: There is no valid receive data.
D[8] TST During-transmitting-operation indicator
1. Valid data is being transmitted.
0: There is no valid transmit data.

314

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

Figure 20-4, SIUCNTREQG (0x0B00 0144) (2/2)

Bit position Bit name Function
D[7] T™VD Valid data to be transmitted next indicator
1. There is valid receive data in SIUTXDATREG.
0. There is no valid transmit data.
D[8] RSE Control of the RS-232-C controller
1: Enables the detection of interrupts of CTS*, DCD, and DSR*
terminals.
0: Disables the detection of interrupts of CTS*, DCD, and DSR*
terminals.
D[5] IME Control of the IrDA modulation-demodulation section
1: Enables the IrDA modulation-demodulation section and
drives the IRDOUT terminal.
0: Disables the IrDA modulation-demodulation section and set
the IRDOUT terminal to Hi-Z.
D[4.3] SUC[1..0] Selection of the transmission/receiving shift register connection
11: RFU. Operation is not assured when this value is set.
10: RFU. Operation is not assured when this value is set.
01: Connects to IrDA interface.
00: Connects to RS-232-C interface.
D[2] RXE Control of the receiving section
1. Enables receiving sequencer opsration.
0. Disables receiving sequencer operation.
Df1] TXE Control of the transmitting section
1. Enables transmitting sequencer operation.
. 0:. Disables transmitting sequencer operation.
O[0} SRST SIU reset
1: Forcibly resets the SiU.
0: Ordinary operation.

This register is used to control the SIU. This register is used for setting the control of the whole SIU. Detailed
explanation of each bit of this register is shown below. The default values of this register are 0 for all bits.

[13] BSET bit

{12] RSP bit

[11] TSP bit

: When this bit is set to 1, the transmit output is fixed to 0 (Spacing Level) regardless of whether

the valid data is being transmitted. This function implements the transmission of a “break
signal” conforming to the communication protocol of the UART. For IrDA communication, 0
(Spacing Level) correspends to the lighting level.

. When this bit is set to 1, the DMA request is stopped if the DMA transfer reaches the first page

boundary (rxintr becomes active) during reception. 'When this bit is set to 0, the DMA request
is stopped if the DMA transfer reaches the second page boundary {nxendintr becomes active).
However, if the reception is continued (the object of the communication is transmitting data)
even after the DMA request is stopped, there is a risk of losing data by overrunning.

. When this bit is set to 1, the DMA request is stopped if the DMA transfer reaches the first page

boundary (txintr becomes active) during transmission. When this bit is set to 0, the DMA
request is stopped if the DMA transfer reaches the second page boundary (txendintr becomes
active).

315

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

[10] RST bit

{9] RVD bit
(8] TST bit

[7} TVD bit

[6] RSE bit

[5] IME bit

{4..3] SUC[1..0] ;

[2] RXE bit

[1] TXE bit

[0] SRST bit

316

* This bit is set to 1 when the receiving shift register is receiving valid data.

In case where the IR demodulator is used, this bit cannot be set to "1" unless the receiving shift
register is receiving valid data.

: This bit is set to 1 when there is valid data in SIURXDATREG.
© This bit is set to 1 when the transmitting shift register is transmitting valid data. In case where

the IR demodulator is used, display becomes shorter by “the width of 1 data bit" (The last bit of
transmit data is always "the stop bit" and it does not emit light in IrDA communication).

- This bit is set to 1 whan there is valid data to be transmitted next in SIUTXDATREG.

Valid data can be made invalid by writing "1" to this bit (This bit alsc becomes "0"). Data can
be made invalid {"1" can be written) when the following condition is established:

Condition: (TXE bit = 0) & {TST bit = 0}

: Setting this bit to 1, the interrupts of the input pins of the CTS*, DCD, and DSR* signals can be

detected. With the VR4101, TXD*, RTS* and DTR* are driven regardless of the setting of the
RSE bit.

. Setting this bit to 1, the Ir modulation/demodutator is enabled, and the IRDOUT pin is driven.

By ciearing this bit to 0, the IRDOUT pin enters the high-impedance state.

Selection of whetherRS-232-C communication or IrDA communication is performed. RS-
232-C communication and IrDA communication are mutually exclusive.

SUC[1]: Reserved (Write 0 at the time of setting).
SUCIO0]: 0 = Selection of RS-232-C.
1 = Selection of IrDA.

. This is the enable control bit for the receiving section. By setting this bit to 1, the baud rate

block starts operating, and the receiver block starts monitoring the start bit. If the start bit has
been detected when this bit is cleared to 0, 8-/16-count is completed and, if recognition has not
yet been completed, the receive sequencer and baud rate generator stop immediately. If there
is any data being received, the receive sequencer and baud rate generator stop after the entire
data series {start, data, and parity} has been received. A DMA request is issued for this data.
No response is returned for the next start bit.

Before RXE is set to 1 to start the operation, the setup of DMA transfer related to receive data
must be completed.

. This is the enable control bit for the transmitting section. By setting this bit to 1, the baud rate

generator starts operation and issues a DMA request. The transmit block starts operation if
data is written by this DMA. Note that the operation is not started by merely writing data to the
CPU. If data is being transmitted, or If there is any valid date prepared by DMA in
SIUTXDATREG, when the TXE bit is cleared to 0, the receive sequencer and baud rate
generator start operation after an entire series of data (start, data, parity} has been transmitted.
No DMA request is made for the next transmit data.

Before setting TXE to 1 to start operation, the setup of DMA transfer reiated to receive data
must be completed.

The baud rate generator is stopped under the following condition.
(RXE = 0) & (transmit UART stops) & (TXE = 0) & (receive UART stops)

. By setting this bit to 1, the SIU is forcibly reset in the same manner as a hardware reset. Note

that, during communication, the transmitter/receiver is also reset as a result.

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

20.2.4 SIUDLENGTHREG

Figure 20-5. SIUDLENGTHREG (0x0BO0O 0148)

Position D15 D14 ' D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | STOPBIT
LEN
RW R R R R R R R RAV
Initial value 0 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Do
Name RXLEN | RXLEN | RXLEN | RXLEN | TXLEN TXLEN TXLEN TXLEN
(3] (2] (1) [0) [3) [2) (1] [0)
RW R/W RW RAW RMW RW RW RMW rRW
Initial velue 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..9} Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
0[8) STOPBITLEN Sets stop bit length.
1: 2 bits
0. 1bit
D[7..4] RXLENI3..0] Sets receive data length.
1111 t0 1011: Reserved for future use.
1010: 10 bits
1001: 9 bits
1000: 8 bits
0111 to 0000: Reserved for future use.
D[3..0] TXLEN[3..0] Sets transmit data length.
1111 to 1101. Reserved for future use.
1100: 12 bits
1011: 11 bits
1010 10 bits
1001: 9 bits
1000 to 0000: Reserved for future use.

This register sets the data length for the transmission/reception of serial communication.

The TXLEN bit sets the length of all the transmit data (start, data, parity, and stop bits).
length of all the receive data (start, data, and parity bits, but not the stop bit).

length of the stop bit.

The RXLEN bit sets the
The STOPBITLEN bit sets the

37

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

20.2.5 SIUINTREG

Figure 208. SIUINTREG (0x0B0O 0148) (1/2)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved BR FE DCD
R/W R R R R R RW1C | RRWIC | R/WIC
Initial value 0 0 0 0 0 0 t] 0
Position D7 D& D5 D4 D3 D2 D1 Do
Name DSR CcTS RXL RXG RXE RXI TXE TXi
RW RWI1C | RIWIC | RWI1C | RWIC | RWIC | RWI1C | RIWI1C | RW1IC
Initial value 0 o o 0 0 ¢ o 0
Bit position Bit name Function
D[15..11] Reserved Reserved for future use. Writa 0 to this bit. 0 is returned when
this bit is read.
D[10] BR Break signal detection interrupt
1. OQccurred
0: Normal
D[9] FE Frarning error detection intefrupt
1. Occurred
0: Normal
D[8] DCD DCD signal detection interrupt
1: Qecurred
0: Normal
O[7n DSR DSR* signal detection interrupt
1. Occurred
0: Normal
D(6] cTs CTS* signal detection interrupt
1. Occurred
0. Normal
D[5] RXL 1-character reception lost detsction interrupt
1. Occurred
0. Nommal
D[4] RXG 1-character reception completion detection interrupt
1: Occurred
0: Normal

318

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

Figure 20-6. SIUINTREG {0x0B00 0148) (2/2)

Bit position Bit name Function

D[3] RXE Receive data DMA transfer 2-page boundary interrupt
1. Occurred
0: Normal

D[2] RXI Receive data DMA transfer 1-page boundary interrupt
1. Occurred
0: Normal

DO[1] TXE Transmit data DMA transfer 2-page boundary interrupt
1. Oeccurred
0: Normal

Djo] ™I Transmit data DMA transfer 1-page boundary interrupt
1. Oceurred
0: Normal

This register indicates the interrupts related to the SIU. The interrupt can be cleared by writing 1 to each bit.
Details of each interrupt are described below.

[10] Breakintr

[9] FrameErrorintr

{8} DCDchglntr

[7) DSRchgintr

. Break signal detection {during receiving}

When a break signal is detected in receive data, "1" is written to BR bit and an interrupt
occurs. As long as the RSE bit of the SIUCNTREG register is "1" and the receiving section
is enabled, receive data is always monitored whether during receiving valid data or in the
mere state of waiting for the start bit and, if "0" {Spacing Level) continues exceeding the
preset character length (the total length of the start bit, data bit, parity bit, and stop bit}, a
break signal is detected.

: Framing error (during receiving)

if a framing error is detected when RSE (bit 2} of the SIUCNTREG is "1" and the receiving
section is enabled, "1" is written to FE bit and an interrupt occurs. A framing error cceurs
when the stop bit, which should be "1," is "0." The state where a framing error will occur
and the cperation of the receiving section in that case are explained below.

When "0" (judgment of whether it is a noise or a start bit is not performed) instead of the stop
bit ("1" level) has been detected in the receive data, a framing error occurs. Receiving
operation starts when that "0" can be recognized as the start bit. The framing error
detection point is in the middle of the bit data that should be the stop bit (once when the stop
bit consists of 1 bit and twice when it consists of 2 bits).

: RS-232-C control section input port DCD state change interrupt.

If a ¢change in the rising edge or falling edge of the DCD signal has occurred, "1" is written to
DCD bit and an interrupt occurs. No interrupt will occurs when the RSE bit of SIUCNTREG
is "0" and the control section is disabled.

. RS-232-C control section input port DSR* state change interrupt.

If 2 change in the rising edge or falling edge of the DSR* signal has occurred, "1" is written to
DSR bit and an interrupt occurs. No interrupt will oceurs when the RSE bit of SIUCNTREG
is "0" and the control section is disabled.

318

CHAPTER 20 SIU {SERIAL INTERFACE UNIT)

[6] CTSchgintr

[5] RXLostcharintr

[4] RXGetcharintr

[3] RxEndlIntr

[2] RxIntr

[1] TxEndintr

[0] TxIntr

: RS-232-C control section input port CTS* state change interrupt.

If a change in the rising edge or falling edge of the CTS* signal has occurred, "1" is written to
CTS bit and an interrupt occurs. No interrupt will occurs when the RSE bit of SIUCNTREG
is "0" and the control section is disabled.

. One character receive lost interrupt.

"Receive lost" is the case where the DMA transfer of the previous receive data is not
completed (data read is not performed) when data receiving has completed and it is
attempted to transfer the receive data to the SIURXDATREG register. In this case, "1" is
written to RXL bit and an interrupt occurs. In that case, the new receive data is abandoned
and the previous data on the SIURXDATREG register is given the higher priority and stored.
Further, if there are multiple "receive lost,”" the number of times is unknown.

: One character receive complete interrupt.

"Receive complete” is the timing when the DMA transfer of the receive data is recognized
(DMA acknowledge). In this case, "1" is written to RXG bit and an interrupt occurs. This
interrupt occurs each time when DMA transfer is performed.

: Receive data DMA transfer 2-page boundary interrupt

"" js written to RXE bit and an interrupt occurs when the DMA transfer of receive data has
reached the 2-page boundary. The factor for this bit to be written is that a "page” signal to
notice the boundary of pages is received from the DCU when RXI is "1" and a 1-page
boundary has already occurred. In this case, the next DMA request is stopped
unconditionally.

. Receive data DMA transfer 1-page boundary interrupt

"1" is written to RXI bit and an interrupt occurs when the DMA transfer of receive data has
reached the 1-page boundary. The factor for this bit to be written is that a "page” signal to
notice the boundary of pages is received from the DCU. If the RSP bit of the SIUCNTREG
is "1" when this interrupt has occurred, the next DMA request is stopped.

: Transmit data DMA transfer 2-page boundary interrupt

™" is written to TXE bit and an interrupt occurs when the DMA transfer of transmit data has
reached the 2-page boundary. The factor for this bit to be written is that a "page” signal to
notice the boundary of pages is received from the DCU when TX| is "1" and a 1-page
boundary has already occurred. When this interrupt has occurred, the next DMA request is
stopped unconditionally,

. Transmit data DMA transfer 1-page boundary interrupt

"1" is written to TXI bit and an interrupt occurs when the DMA transfer of transmit data has
reached the 1-page boundary. The factor for this bit to be written is that a "page” sighal to
notice the boundary of pages Is received from the DCU. |f the TSP bit of the SIUCNTREG
is "1" when this interrupt has occurred, the next DMA request is stopped.

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

20.26 SIURS232CREG

Figure 20-7. SIURS232CREG (0x0B00 014A)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved | Reserved | Reserved | DCD DSR CTs DTR RTS
R/W R R R R R R R/W RAV
Initial value 0 0 0 0 0 0 1 1
Bit position Bit name Function
D[15..5) Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[4] DCD Status of DCD pin
1: High level
0: Low level
D[3] DSR Status of DSR* pin
1. High level
0. Low level
D[2j CTS Status of CTS* pin
1: High level
0: Low level
D[1] DTR Sets status of DTR* pin.
1: High level
0: Lowlavel
D[0] RTS Sets status of RTS* pin.
1: High level
0: Low level

This register sets the status of

The DCD, DSR, and CTS bits sample the status of the input port only when the RSE bit of SIUCNTREG is 1, so

the RS-232-C control signals.

that the current signal status can be determined.

If a change in the input signal is caused by the generation of an interrupt signal, two clocks must elapse before the
value of the input signal is reflected on this register, and then ancther two ¢locks must elapse before the interrupt

signal is output.

If a value is set for the DTR and RTS bits, the value set for the DTR* and RTS* pins is driven.
The initial value of the DTR and RTS bit {i.e., the DTR* and RTS* pins) is 1 immediately after a reset.

CHAPTER 20 SIU {SERIAL INTERFACE UNIT)

20.2.7 SIUBAUDSELREG

Figure 20-8, SIUBAUDSELREG (0x0B00 014C)

Position D15 D14 D13 D12 D11 D10 Ds D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial valus 0 0 0 0 0 0 0 0
Paosition D7 D5 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | BPRO[2] | BPRO[1] | BPRO[0Q]
R/W R R R R R R R/W RV
Initial value 0 o 0 0 0 0 0 0
Bit position Bit name Function
D[15..3] Reserved Reserved for future use. Write D to this bit. 0 is returned when
this bit is read.
D[2..0] BPRO[2..0] Sets serial baud rate.
111: 115200 bps
110: 57600 bps
101: 38400 bps
100: 19200 bps
011: 9600 bps
010: 4800 bps
001; 2400 bps
000: 1200 bps

This register sets the transfer rate for serial communication.

H the contents of this register are changed while RXEN and TXEN of the SIUCNTREG register are set to 1 and
when the baud rate generator is enabled, the operation is not guaranteed.

322

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

20.3 REGISTER SETTING FLOW

Register setting flow for RS-232-C communication using the SIU is as shown below.

IrDA communication can be performed only by changing the settings of the IrModEn bit and source bit of the
SIUCNTREG register.

The setting flow is shown based on the following communicating conditions as an example.

(1) Example of communicating conditions

+ Baud rate . 9600 bps

* Transmit character length . 8

« Transmit parity . Present (has no meaning as a bit but processed as data)
= Transmit stop bit length D2

* Receive character length . B

+ Recewve panty . Present (has no meaning as a bit but processed as data)
* Receive stop bit length 12

+ Number of transmit cycles (DMA) : 2

» Number of receive cycles (DMA) : 2

+ Transmit data : First cycle 0x0D56
Second cycle OxOEAA

» Full duplex communications {transmissian/receiving)

(2) Setting flow

1. Clearing HAL Timer (PMU)
li r1,0xAB00 DDA2 # The address of the PMUCNTREG
li r2,0x5 # Stored data. HAL Timer clear
sh r2,0x0(r1) # Register setting.

2. Clearing the clock mask of the CMU unit and supplying TClock to the SIU and GIU (CMU)
i r1,00ABOD 0012 # The address of the CMUCLKMSKREG
li r2,0x8 # Stored data. SIU, GIU clock mask clear
sh r2,0xo(r1) # Register setting.

3. Clearing the interrupt mask of the SIU and GIU to enable interrupts (ICU)
li r1,0xAB0OO 008C # The address of the MSYSINTREG

li r2,0x300 # Stored data. Interrupts of the SIU and GIU enabled.

sh r2,0x0(r1) # Register setting.

li 12,0x200 # Stored data. The mask of DCD terminal interrupts released
sh r2,0x8(r1) # Setting on the MGIUINTREG .

li r2,0x7FF # Stored data. The mask of ali SIU interrupts released

sh r2,0xA(r1) # Sefting on the MSIUINTREG .

323

CHAPTER 20 SIU {SERIAL INTERFACE UNIT)

4. Enabling DMA transfer of the SIU (DCU)
b r1,0xAB00 0044 # The address of the DMASENREG

li 2,066 # Stored data. DMA request of the SIU (transmission/ receiving)
enabled .

sh r2,002(r1) # Setting on the DMAMSKREG .

li re,0x1 # Stored data. The DCD sequencer enabled.

sh r2,0x0(r1) # Setting on the DMASENREG .

5. Setting the DMA transfer start address (DMAAL)
li r1,0xAB00 0024 # The address of the SRXDMAADRHREG

li r2,0x001F F3FE # DMA start address (Take care so that this does not overlap any
start address for other units}.

sw r2,0x0(r1) # Register setting.

li r1,0xABO0 0028 # The address of the STXDMAADRHREG

li r2,0x001F FBFE # DMA start address (Take care so that this does not overlap any
start address for other units).

sW r2,0x0({r1} # Register setting.

6. DRAM write of transfer data
li r1,0x001F EBFE # Transmission start address. This is the address set in 5.
li r2,0x0EAA OD56 # Transmit data.
sw r2,0x0{r1) # DRAM wirite.

7. Setting on the SIU register
1) Setting the baud rate (SIUBAUDSELREG)

li r1,0xAB0OO 0140 # SIU base address
li rz2,0x3 # Stored data. Baud rate = 9600 bps
sh r2,0xC(r1) # Register setting.
2) Setting the transmit/receive data length (SIUDLENGTHREG)
| r2,0x01AC # Stored data. Transmit data length = 12 bits,
receive data length = 10 bits, stop bit length = 2 bits.
sh r2,008(r1) # Register setting.
3) Starting transmission/receiving (SIUCNTREG)
li r2,0x646 # Stored data. The transmissicn/receiving section enabled. Stopis
set on the 1-page boundary both for transmission and receiving.
sh r2,0x4(r1) # Register setting.

Thereatter, the SIU performs transmission/receiving.

324

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

20.4 OPERATION OF THE SIU

(1) Basic transmission/receiving method

« Supply clock, enable interrupts, and enable DMA.
« Turn on the RS-232-C receiver/driver by the GPIO control.

After theRS-232-C receiver/driver have been turned on, assure a sufficient length of time until
communications are started by setting on SIUCNTREG (the time until the operation of the RS-232-C
receiver/driver becomaes stable).

» Set the baud rate on SIUBAUDSELREG.

» Set the data length, etc. on SIUDLENGTHREG.

» Set on SIUCNTREG to start communications.

+ Set on SIUCNTREG to end communications.

» Set on SIVINTREG to clear the interrupt.

+ Turn off the RS-232-C receiver/driver by the GPIO control.

(2) Transmission/receiving ending methods

+ Ending transmission
There are two methods for ending transmission.

The first method is effected by setting TXE to "0." When transmit data is currently in SIUTXDATREG or
the transmission shift register (in operation), transmission ends after such data has transmitted
completely.

Further, when DMA transfer is currently in process, it is performed to the end {transmission) and no DMA
request is made on the next transmit data.

Mere entering of "0" to TXE will not cause other registers in the SIU (interrupt, etc.) to be cleared.

The second method is effected by stopping the DMA requests on transmit data crossing the page
boundary.

Because the sending side knows the total volume of transmit data, it assumes the address where the
crossing of the page boundary occurs as the reference (last transmit data) and prepare data from the
address that is younger than the reference by the total volume of transmit data.

Upon completion of all transmission (DMA requests are stopping), write "0" to TXE.

Also in this case, mere entering of "0" to TXE will not cause other registers in the SiU (interrupt, etc.) to
be cleared.

= Ending receiving
After detecting the end of receive data (by a break interrupt or code), set RXE to "0."

If valid receive data is held in SIURXDATREG when RXE is set to "0," complete stoppage occurs after
the DMA transfer.

Mere entering of "0" to RXE will not cause other registers in the S1U (interrupt, etc.} to be cleared.

325

CHAPTER 20 SIU (SERIAL INTERFACE UNIT)

(3) Cautions for the stoppage of transmission/receiving due to the crossing of a page boundary
and subsequent generation of DMA requests ‘

* Transmission

When DMA requests have stopped due to the crossing of a page boundary during transmission, internal
interrupt signals indicating such states (txintr, txendintr) are setto "1.”

After these interrupt signals have been cleared, the next DMA request is generated and transmission
continues.

When clearing interrupt signals, clear (bdintr) when crossing 1-page boundary and both (bdntr and
txendintr) to cross 2-page boundary.

= Receiving

When DMA requests have stopped due to the crossing of a page boundary during receiving, internal
interrupt signals indicating such states {rxintr, exendintr) are set to "1." ‘

In that case, DMA is merely stopping, where the receiving section operates at any time while the partner
is sending out receive data. Therefore, some receive data may have been list, s0 care should be taken.

In this case, it is also possible that the next DMA transfer data is not originally the data next to the
previous DMA transfer data, so care shouid be taken.

When clearing interrupt signals, clear (rxintr) when crossing 1-page boundary and both (rxintr and
rxendintr) to cross 2-page boundary.

(4) Others

326

« Complete setting on SIUBAUDSELREG before the baud rate section starts operation by setting RXE or

TXE bit of SIUCNTREG to ™." When changing the setting, perform it after completing
transmission/receiving and stopping the baud rate section.

+ Set the same values of data bit length, presence or absence of parity, stop bit length, etc. for both

transmission and receiving.

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)
This chapter explains the operation of the AlU and how to set the registers of the AlU.

21.1 GENERAL

The AlU has two presettable down counters and supports Buzz and PWM modes.

< Buzz mede....... ... Mode in which a signal with a frequency of M and a duty factor of 50% is output for peribd
N.
< PWM mode.......... Mode in which PWM of any oversampling is reproduced by outputting a HIGH level to an

output pin for period M and a LOW level to the pin for period N, and by supplying data with
both M and N at high speed.

A diagram of the relations between the AlU and the peripheral blocks related to it is show below in a simplified
form.

Figure 21-1. A Dilagram of the AlU and Peripheral Blocks

CPU cecre

DRAM
BCU y '

‘ l piwrdata

" .

AlU aiuout[15:0]

drgadu L DCU

dakadup——

page
Notice of]
: F—aiustintr Interior
interrupts .
D Exterior External
IcU ta—aiuendintr audiout{0] —>1AUDIOUT[0} — circuit
-+—Jaiuidleintr audiout[1] F*0AUDIOUT[1] —™] Audio outputs

Remark The AUDIOUT([0] terminal and AUDIQUT[1] terminal have the same output and each
output can be masked by setting on the AIUMUTEREG register. Actual output is
effected by the external circuit.

327

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)

21.2 REGISTER SET

The following table lists the registers of the AlU.

Table 21-1. AlU Registers

Address RW Register symbols Function
0x0B00 0162 | RW AlUDATREG AlU Data register
0x0B00 0164 |W AIURESETREG AlU Reset
O0x0B00 0166 | R/W AIUMODEREG AlU Mode Select
0x0BO0 0168 | R/W AIUSEQENREG AlU Sequencer Enable
0x0B0O0 016A | RW AIUMUTEREG AlU Mute Control
0x0B00 D16C | R AIUSTATREG AlU Status
0x0BOO 016E | RIW AIUSTPPAGEREG AlU DMA Stop at Page
0x0B00 0170 | RAW AIUVALIDREG AlU Counter Valid Bits
0x0B00 0172 | RW1C AIUINTREG AlU Interrupts
Ox0BOO 0174 | R/W AIUCOUNTOREG Al Counter 0
0x0B00 0176 | R/W AIUCOUNT1REG AlU Counter 1
0x0B00 0178 | RIW AIUREPNUMREG AlU PWM Repeat Number
0x0B00 17A | RIW AIUBUSENREG AlU Bus IF Enable

As for those registers of which actual/defined length is less than 32/16 bits, when a non-defined upper-order bit is
accessed with a 32/16 load/store command, 0 is read when reading and the written value is ignored.

Do not access a register of which actual/defined length is more than 16 bits (e.g. 24, 32, and 32 bits) with a

8/16-bit load/store command. !f the setting from the CPU and that by the AU are given concurrently to the

control bit, the setting from the AlU will be given the first priority.

For example, as for the interrupt request signal (XXXXIntr), if the clear by writing "1" from the CPU and the
generation of an interrupt by the AlU happened to occur concurrently, the interrupt request by the AlU will be
given the first priority.

The function of each of these registers is explained in detail below.

328

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)

21.21 AIUDATREG

Figure 21-2. AIUDATREG (0x0B00 0162)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name AlUCOU | Alucou | Alucou | AIUCOU | AIUCOU | AIUCOU | AIUCOU | AlUCOU
NT[15] NT[14] NT[13] NT[12) NT[11] NT[10] NT[9] NT[8]
RW R/W RW R/W R/W R/wW R/W RAW RW
Initial value o 0 o V] 0 0 0 0
Position D7 D6 D5 D4 D3 D2 &1 B0
Name AIUCOU | AIUCOU | AIUCOU | AIUCOU | AIUCOU | AIUCOU | AIUCOU | AILUCOU
NT[7] NT[E] NT[5] NT[4] NT{3] NT[2] NT[1] NTIO)
RW R/W RW RW R/W R/W R/W R/W RAW
Initial value 0 0 0 o 0 0 0 0
Bit position Bit name Function
D[{15..01 AJUCOUNT[15..0] | AlU DMA transfer data

This register is used to set the DMA transfer data for the AlU.

When data is written to this register as a result of DMA transfer, the data of this register is written to the
AIUCOUNTOREG or AIUCOUNT1REG register in accordance with the setting of the AIUVALID[1..0] of the

AJUVALIDREG register to set valid bits.

329

CHAPTER 21 AIUJ (AUDIO INTERFACE UNIT)

21.2.2 AIURESETREG

Figure 21-3. AIURESETREQG (0x0B00 0164}

Position D15 D14 D13 D12 D11 D10 D9 D8
Name | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 P2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | AIURST
RW R R R R R R R RW
Initial value 0 0 0 0 o 0 0 0
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[0] AIURST AlU reset
1. Reset
0: Normal

This register is used to reset the AlU register. If the AIURST bit is set to 1, initialization same as hardware reset
is effected.

Because the operation of the AlU sequencer is slower than that of the CPU, use the software reset by this register
if there is no time to wait for the restoration to the disable state by ordinary procedures.

Caution Abnormal sound may be heard if an emergency reset by setting this register is executed.

330

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)

21.2.3 AIUMODEREG

Figure 21-4. AIUMODEREG (0x0B00 0188)

0. Buzz mode

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 0 o 0 0 0 0 0 1]
Paosition D7 D6 DS D4 03 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved AlU
MODE
R/W R R R R RW
Initial value 0 0 0 0 0 0 0 1
Bit position Bit name Function
Df15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[0] AIUMODE Sets mode of AlU.
1. PWM mode

This register is used to set the mode of the AlU.

Set the AIUMODE bit before enabling the AIUSEN bit of the AIUSEQENREG register.

AlU sequencer is disabled.

Change this bit while the

N

CHAPTER 21 AIU {AUDIO INTERFACE UNIT)

21.2.4 AIUSEQENREG

Figure 21-5. AIUSEQENREG (0x0B00 0168)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 DO
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | AIUSEN
RAN R R R R R R R RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
Df15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
Do} AIUSEN Enables AlU sequencer.
1. Enabled
0: Disabled

This register is used to enable or disable the AlU sequencer.

When the AIUSEN bit is set to 1 while the AlU sequencer is in the disable state, the internal sequencer starts
operation and starts output in the mode set on the AIUMODE register. Further, when the AIUSEN bit is cleared
while the sequencer is outputting data, AlU operates as follows.

® |In PWM mode: Operation is disabled after AIU outputs the M and N data for the number of times set on
AIUREPNUMREG.
® In Buzz mode: Operation is disabled after the AlU outputs data for the period set on AIVCOUNT1REG.

332

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)

21.2.5 AIUMUTEREG

Figure 21-8. AIUMUTEREG (0x0B00 016A)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 0 0 0 0 v, 0 0 0
Position D7 D6 D& D4 D3 D2 D1 DO
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved AlU AlU
MUTE[1] | MUTE[O]
R/W R R R R R R RW RW
Initial value 0 0 0 0 0 0] 0
Bit position Bit name ' Function
D[15..2] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[1..0] AIUMUTE[1..0] | Volume control by enabling AUDIOUT[1..0] pin output.
11: Loud
10: Medium
01: Small
00: No sound

This register is used to control the output to the AUDIOUT(1..0] terminal and thus control the sound volume.

Even while the AIU sequencer is outputting data, the output can be masked by clearing the AIUMUTE bit to 0.
The sound volume of AUDIOUT can be controlled through the control of the AIUMUTE bit and by the use of the
external circuit. ' :

CHAPTER 21 AIU {AUDIO INTERFACE UNIT)

21.2.6 AIUSTATREG

Figure 21-7. AIUSTATREG (0x0B00 018C)

Paosition B15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RAW R R R R R R R R
Initial valua 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | AIUST[1] | AIUST[0]
R/W R R R R R R R R
Initial value 0 o 0 0 o o 0 0]
Bit position Bit name Function
D{15..2] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[t..01 AIUST[1..0] Status of AlU sequencer
11 tdle
10: AlU output data counter 0 is in counting
0t: AIU output data counter 1 is in counting
00: Disabled

This register indicates the current status of the AlU sequencer.

When the AIUST bits are set to disable, the AlU sequencer is disabled. Only in this state, AIUMODE can be
changed. Idle means the state where the AlU sequencer, which is enabled, is not outputting audible signal but
waiting for data.

When the AIUST bits are set to "in counting,” the data counted is different from AlU modes as follows.

® AIU output data counter ¢
In PWM mode: M data (High level width of output)
® AlU cutput data counter 1
In PWM mode: N data (Low level width of output)
In Buzz mode; M,N period {Data output period)

For details about AlU output data counter 0 and 1, refer to 21.2.10 and 21.2.11.

334

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)

21.2.7 AIUSTPPAGEREG

Figure 21-8. AIUSTPPAGEREG (0x0BOO 016E)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Resarved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 .D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved AU
STOPEN
_ RAW R R R R R R R RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[0] AJUSTOPEN | AlU DMA transfer 1-page boundary intarrupt stop enable
1: Enabled
0. Disabled

This register specifies whether DMA transfer is to be stopped when DMA transfer of the AU reaches the first page
boundary.

If the AIUSTOP bit is set to 1, DMA request is stopped when DMA transfer reaches the first page boundary. The
AlU sequencer continues operating regardiess of this bit.

CHAPTER 21 AIU {AUDIO INTERFACE UNIT)

21.2.8 AIUVALIDREG

Figure 21-9. AIUVALIDREG (0x0BOO 0170)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Resaerved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved AlU AlU
VALID[1] | VALID([O]
RAW R R R R R R RW RMW
Initial value 0 0 0 e 0 0 0 0
Bit position Bit name Function
D[15..2] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[1..0] AIUVALID[1..0] | Counter1, CounterD write status
11; Counter 0 and 1 written
10: Reserved for future use.
01: Counter 0 written and Counter 1 not written
00: Not written

This register indicates whether valid data is written to the AIUCOUNTOREG and AIUCOUNT1REG.

When DMA transfer is performed in the PWM mode, the data transferred first is written to the AIUCOUNTOREG
as M data and AIUVALID[0] is setto 1. The data transferred next is written to the AIUCOUNT1REG as N data
and AIUVALID[1] is set to 1.

In the Buzz mode, write data to the AIUCOUNTOREG and AIUCOUNT1REG by software. the AIUVALID bits are
automatically set to 1 when data is written.

If both AIUVALID bits are set to 1 when the AlU sequencer has completed the output of current data, the AlU
sequencer |oads the data of the AIUCOUNTOREG and AIUCOUNT1REG simultaneously and starts the output of
this data. At the time, the AIUVALID bits are cleared to 0. Note that the AlU sequencer loads data only when
both AIUVALID bits are setto 1. Write to this register is enabled for debugging.

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)

21.2.9 AIUINTREG

Figure 21-10. AIUVINTREG {0x0B00 0172)

Paosition D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0] 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | AIUEND | AIUINTR | AIUIDLE | AIUST
INTR INTR INTR
RW R R R R RW1C | RWIC RW1C | RAWIC
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..4] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D{3] AIUENDINTR | AlU DMA transfer 2-page boundary interrupt
1. Occurred
0. Normal
D[2] AIUINTR AlU DMA transfer 1-page boundary interrupt
1. Occurred
0. Normal
D[] AIUIDLEINTR | AlU sequencer Idle interrupt
1. Occurred
0. Normal
D[0] AIUSTINTR AlU sequencer operatian start interrupt
1. Occurred
0. Nromal

This register indicates the interrupts related to the AIU. Writing 1 to any bit of this register clears that bit.
Details of each interrupt is described below.

@ AIUENDINTR

This interrupt is generated when the second page boundary detection signal is received while DMA
transfer is performed cantinuous after crossing the first page boundary. In other words, this interrupt
is genarated when a page boundary detection signal is received from the DCU while the AIUINTR
interrupt is set.

When this interrupt is generated subsequent DMA transfer requests are stopped. DMA transfer
requests can be restarted by clearing this interrupt.

337

CHAPTER 21 AIU {AUDIO INTERFACE UNIT)

® AIUINTR

This interrupt is generated when the first page boundary detection signal is received from the DCU
during DMA transfer.

In case where the AIUSTOPEN bit of the AIUSTPPAGEREG is set to 1, when the first page boundary
is reached, the subsequent DMA transfer requests are stopped.

DMA transfer requests can be restarted sither by clearing this interrupt or clearing the AIUSTOPEN bit
to 0.

@ A|UIDLEINTR

This interrupt is generated when the sequencer has completed the processing of a pair of data M and
data N and the sequencer has become idle because no valid data is prepared when loading new data.
When this interrupt is generated, data cannot be supplied continuously causing a pause of audio
output.

® AIUSTINTR

This interrupt is generated when the sequencer has loaded a new pair of data M and data N and started
processing in either the PWM or Buzz mode.

338

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)

21.210 AIUCOUNTOREG

Figure 21-#1. AIUCOUNTOREG (0x0BO00 0174)
Position D15 D14 D13 D12 D11 D10 D9 D8
Name AIUCOU | AIUCOU | AIUCOU | AIUCOU | AIUCOU | AIUCOU | AIUCQU | AIUCOU
NTO[15] | NTO[14] | NTO[13] | NTO[12]}- } NTO{11] | NTO[10] | NTOQ[9] NTO[8]
RW RAW RW R/W RW RW RW RAW RW
Initial value 0 0 0 0] 0 0 0 0
Position D7 D& DS D4 D3 D2 o1 DO
Name AIUCOU | AIUCOU | AIUCOU | AIUCOU | AIUCOU | AIUCOU | AIUCOU | AIUCOU
NTO[7] NTO{6] NTO[5] NTO[4}] NTO[3] NTO[2] NTO[1] NTO[O]
RW RW RAW R/W RW RW RW RAV RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..0] AIUCOUNTO AlU output data counter 0
[15..0}

This register sets AlU output data counter 0.
The meaning of the count value set by the AIUCOLUNTQ bits differs between PWM mode and Buzz mode.

® Inthe PWM

This value sets the High level width of the output from AUDIOUT[1..0].

mode:

as follows:
(High level width) = {TClock cycle} * (counter value)

However the minimum counter value that can be set is 4. Hardware operation is not assured if a value

less than 4 is set.

® Inthe Buzz mode:

This value sets the output frequency of AUDIOUT[1..0].

(Output frequency) = 1/{counter vaiue * 30 us)

When 0 is set to this register in the Buzz made, the output is fixed to Low leve! and thus a silent period can

be set.

This High level width is expressed

This output frequency is expressed as follows:

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)

21.2.11 AIUCOUNTIREG

Figure 21-12. AIUCOUNTREG (0x0B00 0176)

Position D15 D14 D13 D12 D11 D10 DS D8

Name | AlUCOU | AluCoU | Alucou | AluCou | AIUCOU | AIUCOU | AlUCOU | AlUCOU
NT1[15] | NTA[14] | NT1[13) | NT1[12} | NT1[11] | NT1[10) | NT1[8] | NT1[8]

R/W RW RW R/MW RW RW RW RW RW
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 DO

Name | AIUCOU | Alucou | Alucou | alucou | Alucou | AlUCOU | AluCOU | Alucou
NTH[7] | NT1[6] | NT1[5] | NT1[4] { NT1[3] | NT1{2] | NTI[1] | NT1[0]

RANV RAW RW R/W RW R/W RW RW RW
Initial value 1] 0 0 0 a 0 0 0
Bit position Bit name Function
D[15..0] AIUCOUNT1 AJU output data counter 1
[15..0]

This register sets counter 1 for the output data of the AlU.
The meaning of the count value set by the AIUCOUNT1 bits differs between PWM mode and Buzz mode.

® |n the PWM mode:

This value sets the Low level width of the output from AUDHOUT[1..0]. This Low level width is expressed
as follows:

(Low level width) = (TClock cycle) * {counter value)

However the minimum counter value that can be set is 4 Hardware operation is not assured if a value
less than 4 is set.

® In the Buzz mode:
The period during which data is output to AUDIOUT[1..0]. This output period is expressed as follows:
(Output period) = count value of AWCOUNTOREG * (count value of AIUCOUNTIREG + 1)~ 30 us

The output waveform in each of the PWM mode and Buzz mode is shown helow.

CHAPTER 21 AlU (AUDIO INTERFACE UNIT)

<PWM mode>

AUDIOUT[1:0]

<Buzz mode>

AUDIOUT[1:0]

t

M period

- Hq >

N period M period N period

M period: Set on AIUCOUNTOREG
N period: Set on AIUCOUNT1REG

[

p———

M period (duty 50%): Set on AIUCOUNTOREG

-

N period: Set on AIUCOUNT1REG

341

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)

21.2.12 AIUREPNUMREG

Figure 21-13. AIUREPNUMREG (0x0B00 0178)

Position D15 D14 D13 D12 D11 D10 D9 D&
Name Reserved | Reserved { Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R

Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 po

Name Reserved | Reserved | Reserved | Reserved | AIUPWM | AIUPWM | AIUPWM | AIUPWM
REP[3] REP[2] REP[1) REP[O]

RW R R R R RW RW R/W R/W
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..4] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D{3..0] AlUPWMREP Number of repetitions of PWM data
[3.0] Number of repetitions = AIUPWMREP[3..0] + 1

This register sets the number of repetitions for the PWM data.

When the sequencer has loaded a new pair of M and N data in the PWM mode, the output of the same data is
repeated by the number set on this register. Do not update this register unless the sequencer is disabled.

342

CHAPTER 21 AIV (AUDIO INTERFACE UNIT)

21.2.13 AIUBUSENREG

Figure 21-14. AIUBUSENREG (0x0B00 017A)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 0 0 0 0 0 0 0 4]
Position D7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | AIUBEN
R/W R R R R R R R R/W
Initial value o 0 0 0 0 0] o 0
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when
this bit is read.
D[0] AIUBEN Enables AU DMA transfer.
1. Enabled
0. Disabled

This register enables or disables DMA transfer for the AlU.

DMA transfer is actually started when the AIUBEN bit of this register is set to 1, not when the AIUSEN bit of the
AIUSEQENREG register is set to 1. When performing DMA transfer in the PWM mode, first set the AIUSEN bit
of the AIUSEQENREG register to 1 and then set the AIUBEN bit of this register to 1. Unless the AIUBEN bit is
set, the sequencer is in the idle state, where DMA transfer is disabled.

When the AIUSEN bit is set to 0 while this register is operated by the sequencer (while data is output), the disable
state is set after the current DMA transfer has completed and subsequent DMA transfers are stopped. The
disable state is not set during transfer.

Further, when DMA transfer is not performed such as in the Buzz mode, be sure to clear the AIUSEN bit to 0.

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)

21.3 REGISTER SETTING FLOW

21.3.1 DMA transfer in the PWM mode

DMA transfer is generated in the AlU only when the AIUBEN bit of the AIUBUSENREG and the AIUSEN bit of the
AIUSEQENREG are enabled and the sequencer has requested valid data.

Setting flow for DMA transfer control is as follows:

1. Clearing HAL Timer (PMU)
li r1,00xABCO 00A2 # The address of the PMUCNTREG.

li 2,005 # Stored data. HAL Timer clear
sh r2,0x0{r1) # Register setting.
2. Clearing the clock mask of the CMU unit and supplying TClock to the AlU {CMU) -
li r1,0xAB00 0060 # The address of the CMUCLKMSKREG.
i r2,0x4 # Stored data. AIU clock mask clear
sh r2,0x0(r1) # Register setting.

3. Clearing the interrupt mask of the AlU to enable interrupts (ICU)
li r1,0xABO0 008C # The address of the MSYSINTREG.

li r2,0x40 # Stored data. Interrupts of the AlU enabled.

sh r2,0xQ{r1} # Register setting. -~
h r2,0xF # Stored data. The mask on all interrupts of the AlU released.

sh r2,0x4(r1) # Setting on the MADUINTREG.

4. Enabling DMA transfer of the AIU {DCU)
li rt,OdABOO 0044 # The address of the DMASENREG.

li r2,0x8 # Stored data. DMA request of the AlU enabled.

sh r2,mc2(r1) # Setting on the DMAMSKREG.

li r2,0x1 # Stored data. The DCU sequencer enabled. =
sh r2,0%0(r1) # Setting on the DMASENREG.

5. Setting the DMA transfer start address (DMAAU)
li r1,006ABO0 002C # The address of the AUDDMAADRHREG.

li r2,0x001F C000 # DMA start address (Take care so that this does not overlap any
start addrass for other units).

swW r2,0x0(r1) # Register setting.

CHAPTER 21 AIU {AUDIO INTERFACE UNIT)

6. DRAM write of transfer data
fi r1,0x001F CO00 # DMA start address. This is the address set in 5.
li r2,0x0024 0068 #M, N data. M=0x0068, N=0x0024.
SW r2,0x0(r1) # DRAM write.

Write required audible data to the DRAM from the address setin 5. In this case, pay attention to the page
boundary. Further, avoid writing of M data and N data across the page boundary. Malfunction may occur
if N data cannot be transferred after M data has been loaded.

7. Setting the AlU registers
1) Setting the mode: Set the PWM mode by writing 1 to AIUMODEREG.
li r1,0xAB00O 0180 # AlU base address
ki rZ,0x1 # Stored data. PWM mode.
sh r2,0x6(r1) # Setting on the AIUMODEREG.

2) Setting the number of repetitions: Set the number of repetitions on AIUREPNUMREG.
li r2,0x4 # Stored data. Number of repetitions = 4.
sh r2,0x18(r1) # Setting on the AIUREPNUMREG.

3) Setting the sound volume on AIUMUTEREG.
li r2,0x3 # Stored data. Sound volume = Loud
sh r2,0xA(r1) # Setting on the AIUMUTEREG.

4) Enabling the sequencer: Enable the sequencer by writing 1 to AIUSEQUENREG.
li r2,0xt # Stored data. Sequencer enabled.
sh r2,0x8(r1) # Setting on the AIUSEQENREG.

5) Enabling the DMA transfer: Enable the bus by writing 1 to AIUBUSENREG.
] r2,0x1 # Stored data. Bus enabled.
sh r2,0x1A({r1) # Setting on the AIUBUSENREG.

8. Starting DMA transfer. Thereafter, a DMA request is generated each time valid data becomes absent.
AIUSTINTR is generated each time the sequencer loads new data and starts processing.

9. Ending DMA transfer: There are two methods for ending the sequencer operation to stop DMA transfer as
described below.

1) Disable the sequencer.
li r2,0x0 # Stored data. Sequencer disabled.
sh r2,0x8(r1) # Setting on the AIUSEQUENREG.

In this case, the sequencer stops DMA transfer requests upon completion of the output of the current data
and then is set to the disable state. When the sequencer is set to the enable state, DMA transfer will be
restarted.

CHAPTER 21 AIU (AUDIO INTERFACE UNIT)

2) Sefting to stop DMA transfer requests when crossing a page boundary.
li r2,0x1 # Stored data. Stoppage of DMA transfer at a 1-page boundary.
sh r2,0xE(r1) # Setting on the AIUSTPPAGEREG.

In case where 1 is set on the AIUSTPPAGEREG, when the first page boundary is reached, subsequent DMA
transfer requests are stopped and the transfer ends. In this case, an AIUINTR is generated and the
sequencer is set to an idle state. To restart transfer, clear the AIUSTPPAGEREG register to 0 or clear the
AIUINTR.

Further, when the second page boundary is reached, DMA transfer automatically stops resulting in an
AIUENDINTR. To restart transfer, clear the AIUENDINTR.

21.3.2 In the Buzz Mode <or the Case Where DMA Is Not Used in the PWM Mode>

In the Buzz mode (or the case where DMA is not used in the PWM mode), output data is set directly from software.
Setting flow is as described below.

1. Setting flows for HALTIMER clear, clock mask clear, and interrupt mask clear are the same as those in the
case where DMA is used in the PWM mode (Refer to the case of DMA transfer in the PWM mode for setting
procedures).

2. Setting the AlU registers
1) Selacting the Buzz mode <Select the PWM mode>.

li r1,0x0B00 0166 # AlU base address
li r2,0x0 # Stored data. Buzz mode <0x1 in the PWM mode>.
sh r2,0x8(r1) # Setting on the AIUMODEREG.
2) Enabling the sequencer. In this case, be sure to disable the DMA transfer.
li r2,0x4 # Stored data. Sequencer enabled.
sh r2,0x8(r1) # Setting on the AIUSEQENREG.
li r2,0x0 # Stored data. DMA transfer disabled.
sh r2,0x1A{r1} # Sefting on the AIUBUSENREG.

3) Writing M data and N data by software <In the PWM mode, set on AIUREPNUMREG before this writing>.

(li r2,0x4 # Number of repstitions = 4)
(sh r2,0x18(r1) # Setting on the AIUBUSENREG register in the PWM mode)
li r2,0x24 # M data.
sh r2,0x14(r1) # Setting of M data {(on AIUCOUNTOREG)
th r3,0x10(r1) # Confirmation of valid bits
i r2,0x1 # Expected value on the AIUVALIDREG
bne r2,r3,Fail # Check
li r2,0x36 # N data.
sh r2,0x16(r1) # Sefting of N data {on AIUCOUNT1REG)

The sequencer generates AIUSTINTR at the same time when it loads the M and N data and starts to gengrate
sound.

CHAPTER 21 AIU {AUDIO INTERFACE UNIT)

4) Thereafter, write the next M data and N data in response to AIUSTINTR. When data pauses, the output
pauses in response to an AIUIDLEINTR. Adjust that so that it does not pause.

3. Ending can be effected by disabling the sequencer when the announcement of the last pair of M data and N
data has been started.

li r2,0x0 # Stored data. Sequencer disabled.
sh r2,0x8(r1) # Setting on the AIUSEQENREG.

The sequencer stops after outputting the last pair of M data and N data and then it is disabled.

47

[MEMO]

348

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

This chapter explains the operation of the KIU and how to set the registers of the KiU.

221 GENERAL

The KIU has eight scan lines and eight detection lines, so that the pressing of any key of a 64-key keyboard can be

detected. In addition, a rollover of 2 or 3 keys can also be detocted.

A diagram of the relations between the KIU and the peripheral blocks related to it is shown below in a simplified

form.
Figure 22-1. A Diagram of the KIU and Peripheral Blocks
— CPU core a1 BCU
* 4 piwrdata
Y . +— piad
!
Dcu
i
Kiu kiuout[15..0]
drgkiu
dakkiu Interior
page je——— Exterior
Notice of keyscanintr
interrupts keydatrdyintr kport{7..0)}——O KPORT7.0] ‘_—|

t—1keydatlostintr

ICU Keyboard
<—keylntr f
—keyendintr J LD

intensity
dozekeylntr kscan(7..2) KSCAN[7..2] - adjustment
evinc/kscan[1] EVINC/KSCAN[1} 1
evud/kscan[0] EVUD/KSCAN[D] —*

Note Both the KSCAN[0] and EVUD terminals and the KSCAN[1] and EVINC terminals are multipurpose

terminals. Be sure to perform LCD intensity adjustment only when the KIU sequencer is disables, i.e.,

KSCAN[0] and KSCAN[1] terminals are set to Hi-Z.

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

22.1.1 Outlined Operation of the KIU
The outlined operation of the KIU is briefly described biow.

@® Operation of the KIU:

@ Key scan state;

® DMA transfer:

The KIU scans 64 keys, create a set of key data consisting of 64 bits, and transfers it to
the DRAM by DMA transfer. An 8-bit data is loaded by ope time of key scan, so a set
of key data is loaded by eight times of key scan. Because the KIU has eight key scan
terminals, it performs one of key scan from each key scan terminal when key input is
detected so as to creased a set of key data.

As the output state of scan terminals during key scan, one cut of KSCANI[7..0] is set to
the High levels with other seven in the high impedance state. As described later, eight
inputs of KSCAN[7?..0] are read at the timings set on the KIUWKSREG register.

The KIU performs data transfer each time a 16-bit data corresponding to two scans is
prepared. Each time the data corresponding to two scans are preparad after the scan
has begun, the KIU request the DCU to transfer to the memory by generating a DMA
request. Because a set of key data consists of 64 bits, the transfer of a set of key data
completes with four times of DMA transfer. At the time when a set of data consists of
64 bits has completed, an interrupt (KEYDATARDYINTR) is generated.

@ Cautions for DMA transfer: Even when loading only one set of key data, the CPU must wait until the data is

® Key data lost:

350

transferred to the memory by DMA transfer. In other words, the CPU cannot obtain
key data through the direct access to the KIU.

Further, even after the load of a set of key data has completed or the CPU did not
processed data, transfer to the memory by DMA transfer continues as long as key scan
is continued. However, it is possible to set so that DMA transfer is suspended when
transfer data has reached the page boundary. Also in this case, the sequencer
continues key scan, so be sure to initialize the sequencer before restarting transfer.

In case where the KIU has started new scan while the DMA requests from the KIU are
suspended at a page boundary, scan data may be lost. In this case, the KIU
generates a key data lost interrupt (KEYDATALOSTINTR) to notice it to the CPU.
When a key data lost interrupt Is generated, be sure to initialize the KIU.

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

22.2 KIU REGISTER SET

The following table lists the registers of the K|U.

Table 22-1. KIU Registers

Address RW Register symbois Function
0x0B0OO 0180 | R/W KIUDATREG KIU Key Data register
0x0B0O0 0184 | R/IW KIVASCANREG KIU Key Auto Scan register
0x0B00 0186 | RAW KIUASTOPREG KIU Key Auto Stop register
0x0B0O 0188 | RAW KIUSCANREG KIU Key Scan register
Ox0B00 018A | RAW KIUSTOPREG KIU Key Stop register
0x0BO00 018C | R/W KIUSAPREG KIU Key Stop at Page register
Ox0BOD 018E | R KIUSCANSREG KIU Scan Status register
0x0B00 0190 | RAW KIUWKSREG KIU Wait Key Scan Stable register
0x0B00 0192 | RV KIUWKIREG KIU Wait Key Scan Interval register
0x0B00 0194 | RAW KIUSRNREG KIU Stop Repeat Number register
0x0B00 0196 | RIWIC KIUINTREG KiU Interrupt register
0x0B00 0198 | W1 KIURSTREG KIU Reset register
0x0B00 019A | RAW KIUENREG KIU Enable register
0x0B00 019C | RAWIC DOZEKEYINTREG | DOZE Key Interrupt register
0x0B0OO 019E | R/W EVVOLREG EVVOL register

As for those registers of which actual/defined length is less than 32/16 bits, when a non-defined upper-order bit is

accessed with a 32/16 load/store command, 0 is read when reading and the written value is ignored.

Do not access a register of which actual/defined length is more than 16 bits (e.g.: 24, 32, and 32 bits) with a

8/16-bit load/store command.

control bit, the setting from the KIU will be given the first priority.

If the setting from the CPU and that by the KIU are given concurrently to the

For example, as for the interrupt request signal (X>OKIntr), if the clear by writing "1" from the CPU and the

generation of an interrupt by the KIU happened to occur concurrently,

given the first priority.

The function of each of these registers is explained in detail below.

the interrupt request by the KIU will be

351

CHAPTER 22 KIU {(KEYBOARD INTERFACE UNIT)

22.21 KIUDATREG

Figure 22-2. KIUDATREG (0x0B00 0180)

Position D15 D14 D13 D12 D11 D10 D9 (B
Name KEY KEY KEY KEY KEY KEY KEY KEY
DATAE[7]| DATAE[5] | DATAE[S] | DATAE[4] | DATAE[3] | DATAE[2] | DATAE[1] | DATAE[0]
R/W RMW RW R/W R/W R/W RW R/W RAW
Initial value 0 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Do
Name KEY KEY KEY KEY KEY KEY KEY KEY
DATAO([7)| DATAQ[6]| DATAOQ[5]| DATAC[4]| DATAO[3]| DATAO[2] | DATAOQ[1]{ DATAO[0]
"RMW R/W RW RAW RW R/W RW R/W R/W
Initial value 0 0 0 o 0 0 0 0
Bit position Bit name Function
D[15..8] KEYDATAE[7..0] | Scan data for odd number of repetitions
D[7..0] KEYDATAQ(7..0] | Scan data for even number of repetitions

This register indicates scan data.

352

CHAPTER 22 KIU {KEYBOARD INTERFACE UNIT)

22,2.2 KIUASCANREG

Figure 22-3. KIUASCANREG {0x0B00 0184)

Position D15 D14 D13 D12 D11 D10 Do D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Pasition D7 D6 D5 D4 D3 D2 D Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved KEY
ATSCAN
- RAW R R R R R R R RW
Initial value 0 0 0 0 0 0 0 1
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D[0] KEYATSCAN | Sets key auto scan
1: Auto scan
. 0: Nan-auto scan

This register sets auto scan for key input.

When the KEYATSCAN bit is set to 1, the scanning of key data is started automatically after a key press has been

detected.

353

CHAPTER 22 KIU {KEYBOARD INTERFACE UNIT)

22.2.3 KIUASTOPREG

Figure 224. KIUASTOPREG (0x0800 0188)

Pasition D15 D14 D13 D12 D11 D10 (B]]]}
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
rRW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved KEY
ATSTOP
RMW R R R RW
Initial value 0] 0 0 0 0 0 0
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D[0] KEYATSTOP | Sets key auto stop
1. Auto stop
0. Non-auto stop

This register sets auto stop for key input.

When the KEYATSCAN bit is set to 1, and if all zero data is detected the number of times specified with the

STOPRERP bit of the KIUSRNREG register, the scan sequencer stops automatically.

354

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

22.2.4 KIUSCANREG

Figure 22-5. KIUSCANREG (0x0B0O 0188)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Resarved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 DSs D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | KEYSCA
NSTART
RW R R R R R R R RMW
Initial value 0 0 0 0 0 0 ¢ 0
Bit position Bit name Function
D[15..1] . Reserved Reserved for future use. Write O to this bit. 0 is returnad when this
bit is read.
D{0] KEYSCAN Starts key scan.
START 1: Starts
0. Does not start

This register is used to start key scan.

Whan the KEYSCANSTART bit is set to 1, the scan sequencer starts operation whether a key touch has been
detacted or not.

355

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

2225 KIUSTOPREG

Figure 22-8. KIUSTOPREG (0x0B00 018A)

Position D15 D14 D13 D12 D11 D10 Do D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 ¢] 0 0 0 0 1]
Position D7 D6 DS D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | KEYSCA
NSTOP
RW R R R R R R R RW
Initial value 0 0 ¢] 0 0] 0 0 0
Bit position Bit name Function
D[15..1} Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D[0] KEYSCAN Stops key scan.
STOP 1. Stops
0. Does not stop

This register is used to stop key scan.

When the KEYSCANSTOP bit is set to 1, the scan sequencer stops. Howaever, even if this bit is setto 1, the scan
sequencer doas not stop until an entire set of data being scanned has been loaded.

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

22.2.6 KIUSAPREG

Figure 22.7. KIUSAPREQG (0x0B00 018C)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value | © 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved, KEY
STOP
- RMW R R R R R R R R/W
Initial value 0 0 4] 0 0 0 0 0
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this bit
is read.
D[0] KEYSTOP Enables KIU DMA transfer 1-page boundary interrupt
1: Enabled
- 0: Disabled

This register is used to enable subsequent DMA requests when DMA transfer by the KIU has reached the first
page boundary. In case where the KEYSTOP bit is set to 1, when DMA transfer by the KIU has reached the first
page boundary, subsaquent DMA transfer requests are stopped. However the key scan sequencer continues
operation. In this case, key data lost may occur. Although DMA transfer can be restarted by clearing the
KEYSTOP bit of this resistor to 0 or clearing the KIUINTR interrupt to O, be sure to initialize the KiU when the
KIUDATLOSTINTR has been generated.

s7

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

2227 KIUSCANSREG

Figure 22-8. KIUSCANSREG (0x0B00 018E)

Position

D15 D14 D13 D12 D11 D1c D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 ¢
Pasition D7 D5 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Resaerved | KIUST[1] [KIUST[0]
R/W R R R R R R R R
Initial value 0 0 o 0 0 0 0 0
Bit position Bit name Function
D[15..2] Reserved Reserved for future use. Write O to this bit. 0 is returned when this bit
is read.
D[1..0) KIUST[1..0] | Status of KIU sequencer
11: Seanning
10: Interval next scan
01: Wait key in
00: Stopped

This register indicates the current status of the KIU sequencer.
describad below.

* Scanning:

« Interval next scan:

* Wait Key in:

+ Stopped:

358

Details of the status of the KIU sequencer are

This is the state where the scan sequencer performs kay scan to load Key data.

This is the state where the scan of a set of key data {64 bits) has completed and waiting for
the start of the next key scan. The interval after the completion of the scan of a set of key
data until the start of the next scan is set on the KIUWKREG.

This is the state of waiting for key input in the key auto scan mode. When the scan
sequencer is enabled while the KEYATSCAN bit of the KIUASCANREG is set to 1, this
register waits for key input in this state. In this case, all eight outputs of the KSCAN
terminal are in the HIGH level. When shifting the CPU to Suspend mode {or Standby
mode with TClock masked), be sure to set the KIU to the auto scan mode before the shift
and confirm that the sequencer in the Wait key in state.

This is the state where the sequencer is disabled.

CHAPTER 22 KIiU (KEYBOARD INTERFACE UNIT)

22.2.8 KIUWKSREG

Figure 22-9. KIUWKSREG {0x0B00 0190)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved [T3COUN | T3COUN | T3COUN | T3COUN | T3ICOUN | T2COUN | T2COUN
T14] TI3] T(2] T[1) TI0] Ti4] T(3)
RW R R/ RW R/W R/W RAW RW R/W
Initial value 0 1 1 1 1 1 1 1
Position D7 D6 D5 D4 p3a | D2 D1 Do
Name T2COUN | T2COUN | T2COUN | TICOUN | TICOUN | TICOUN | TICOUN | TICOUN
B T[2) 1] T[O] T[4) T[3] 2] T[1} T[0]
RMW RW R/W R R/W RW R/W RW RW
Initial value 1 1 1 1 1 1 1 1
Bit position Bit name Function
D[15] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D(14..10] T3COUNT[4..0] | Sets idle time ((T3COUNT[4..0] + 1) * 30 us).
-~ 11111 © 960 5
00I001 T B0 s
00000 : Reserved for future use.
D[9..5] T2COUNT]4..0] | Sets off time ((T2COUNT[4..0] + 1) * 30 us).
11111 . 960 us
00001 : 60 s
00000 : Reserved for future use.
- D[4..0] T1COUNT[4..0] | Sets stabilization time ((T1ICOUNTI[4..0] + 1) * 30 us).
11411 ;. 960 us
00.001 : BOus
00000 : Reserved for future use.

This register is used to set the time required by the key scan sequencer to set the KSCAN pin to High status, and
then read the status of the KPORT pin while the sequencer scans the key matrix.

The T1COUNT bits set the stabilization time, during which key data is read after a high level has been output from
a KSCAN pin. The T2COUNT bits set the off time, during which the output from a KSCAN pin is turned to high
impedance after the key data has been read. The T3COUNT bits set the idle time, during which the output from
a KSCAN pin is turned to high impedance and & high level is output from another KSCAN pin.

- 356

CHAPTER 22 KIU {(KEYBOARD INTERFACE UNIT)

The status of output from the KSCAN pins and the timing of KPORT sampling are shown below.

KSCAN[0]

KSCAN[1] _ _ Hi-Z ... A 2,

KPORT sampling

22.4.9 KIUWKIREG

Figure 22-10. KIUWKIREQG (0x0B00 0192}

Position D15 D14 D13 D12 D11 D10 Do D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | WAITINT | WAITINT
ERVAL[9] | ERVAL[8]
R/ R R R R/W R/W
Initial value 0 0 4] 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 o
Name WAITINT | WAITINT | WAITINT | WAITINT | WAITINT | WAITINT | WAITINT | WAITINT
ERVAL[7]| ERVAL{6]| ERVAL{S]| ERVAL[4] | ERVAL[3] | ERVAL[2]| ERVAL[1]| ERVAL[0]
RAW R/W R RAW RMW RW RAW R/W RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..10] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when
this bit is read.
D[9..0] WAITINTERVAL | Sets key scan interval time {(WAITINTERVAL[9..0] * 30 us).
[8.0] 1111111111 ;30690 us
0000000001 : 30 us
0000000000 : No wait

This register is used to set the period that must elapse between the key scan sequencer completing the loading of
one set of data, and the start of loading of the next set of data.

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

In the actual operation, after the KSCAN[7] pin is turned to high impedance, a high level is output from the
KSCANI[O0] pin after the periods set in the TSCOUNT bits and the WAITINTERVAL bit have elapsed.

The status of output from the KSCAN pins and the timing of key scan interval are shown below.

Hi-Z Hi-z f—towar ik
KSCAN[0] - - - [fesedoeasaanans -

Hi-Z Hi-Z
KSCAN[1] -------- L
i Hi-Z
KSCAN[2] == cmoman=na= T

5 Hi-Z Hi-Z
KSCAN[7] == =-=--=----*«»=sa=s°c=& I R AR

Remark twar: idle time set in the TICOUNT bits of the KIUWKSREG
tw: key scan interval time set in the WAITINTERVAL bits

361

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

22.2.10 KIUSRNREG

Figure 22-11. KIUSRNREQ (0x0B00 0184)

Position D15 D14 D13 D12 D11 D10 (B¢} D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RAW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 DO

Name Reserved | Reserved | STOP STOP STOP STOP STOP STOP
REP{5] REP[4] REP[3] REP[2] REP[1] REPI[Q]

RW R R RAN RW RAW RMW RW RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..6] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when

this bit is read.

D[5..0] STOPREP[5..0] | Sets number of times required to stop key scan sequencer.
111111 . 63 times

000001 : 1 time
000000 : 64times

This register sets the nurnber of times the status in which no key is pressed must be repeated to stop the key scan
sequencer.

When the KEYSTOP bit of the KIUASTOPREG register is set to 1, the sequencer stops automatically after it has
loaded the all-zero data by the number of times set on this register.

362

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

22.2.11 KIUINTREG

Figure 22-12. KIUINTREG (0x0B00 0196)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R

Initiat value 0 o] 0 0 0 o 0 0
Position D7 D6 D5 D4 D3 D2 D1 DO
Name Reserved | Reserved | Reserved | KEYEND | KEYINTR |KEYDATL | KEYDAT | KEYSCA
INTR OSTINTR]RDYINTR{ NINTR
RAN R R R RWI1C | RWI1C | RWW1IC | RWIC | RWIC
Initial value 0 0 0 o 0 - 0 0 0
Bit position Bit name Function
D[15..5] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this
bit is read.
D[4} KEYENDINTR | KIU DMA transfer 2-page boundary interrupt
1. Oeccurred
0. Normal
D[3] KEYINTR KIU DMA transfer 1-page boundary interrupt
1. Occurred
0: Normal
D[2] KEYDATLOST | Key scan data lost interrupt
INTR 1: Oceurred
0: Normal
D[} KEYDATRDY | Key data scan completion interrupt
INTR 1. Occurred
0. Normal
Df0] KEYSCANINTR | Key input detection interrupt
1. Occurred
0: Normal

This resister indicates the type of the interrupt that has occurred in the KIU. Any interrupt will be cleared to O by
writing 1. Details of the interrupts that will cccur in the KIU are as follows:

383

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

» KEYSCANINTR:

* KEYDATRDYINTR:

» KEYDATLOSTINTR:

* KEYINTR:

* KEYENDINTR:

Key input detection interrupts. This occurs when the High level of KPORT[7..0] is
detected. When this interrupt occurs in the auto scan mode, scan is started
automatically.

Key data scan completion interrupt. This interrupt occurs when the scan of a set (64
bits) of key data has completed.

Key data lost interrupt. This occurs when the next key scan is performed while
previously scanned key data cannot be DMA transferred and it is overwritten on the
KIUDATREG registers. This interrupt may occur when key data has reached the page
boundary and DMA transfer stopped. Be sure to initialize the KIU when this interrupt
has been detected.

DMA transfer 1-page boundary interrupt: This interrupt occurs when key data has
reached the first page boundary and the PAGE signal from the DCU is detected. When
the KEYSTOP bit of the KIUSAPREG is set to 1, subsequent DMA transfer requests are
stopped. However, the sequencer continues operation. DMA transfer can be
restarted by clearing this interrupt.

DMA transter 2-page boundary interrupt: This interrupt occurs when key data as reached
the second page boundary and the PAGE signal from the DCU is detected. When this
interrupt occurs, subsequent DMA transfer requests are stopped. Also in this case, the
sequencer continues coperation. DMA transfer can be restarted by clearing this
interrupt.

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

22.212 KIURSTREG

Figure 22-13, KIURSTREG (0xOB00 0198)

Position D15 D14 D13 ‘D12 D11 D10 D8 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 -0 0 0 0
Position D7 D8 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | KEYRST
R/W R R R R R R R RAW
- Initial value 0 0 0 o 0 0 0 0
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this bit
is read.
D[0] KEYRST Resets KIU.
1. Reset
0. Normal

This register is used to forcibly reset the KiU. When the KEYRST bit of this register is set to 1, all KIU registers
are initialized.

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

22.2.13 KIUENREG

Figure 2214, KIUENREG (0x0B00 019A)

Position D15 D14 D13 D12 D11 D10 Do D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RAW R R R R R R R R
Initial value 0 0 0 0 0 o 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | KEYEN
RAW R R R R R R R RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when this bit
is read.
D[0} KEYEN Enables key scan.
1. Enabled
0: Disabled

This register is used to enable or disable key scan.
When KEYEN is cleared to 0, the KSCAN pin enters the high-impedance state.

CHAPTER 22 KIU {(KEYBOARD INTERFACE UNIT)

22.2.14 DOZEKEYINTREG

Figure 22-15. DOZEKEYINTREG (0x0B00 019C)

Pasition D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R . R R R
initial value 0 0 0 o 0 o 0 o
Position D7 Ds D5 D4 b3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | DOZE
KEYINTR
RW R R R R R R R RWIC
Initial vatue o 0 0 0 0 0 o 0
Bft position Bit name Function
b[15..1] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this
bit is read.
D[O] DOZEKEYINTR | Detects key input in Suspend mode.
1. Detects key input.
0: No key input

This register is used to detected key input in the Suspend mode {or Standby mode with TClock masked). The
DOZEKEYINTR bit is set to 1 when key input is detected while the scan sequencer is in the wait key in state. The
register is cleared to 0 by writing 1.

Note The DOZEKEYINTR bit is also set to 1 when key input is detected in the ordinary Fullspeed mode. Use
KEYSCANINTR for key input detection in ordinary cases while masking DOZEKEYINTR by the ICU.
Further, be sure to clear DOZEKEYINTR when KEYSCANINTR is cleaned.

367

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

22.215 EVVOLREG

Figure 22-16. EVVOLREG (0x0B0O 018E)

Position D15 D14 D13 D12 D11 D10 (B]] D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RAW R R R R R R R R
Initial value 0] 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved [EVINCEN | EVUDEN | EVINC EVUD
R/W R R R R RW RW R/W RW
Initial value 0 0 0 0 0 0 1 1
Bit position Bit name Function
D{15..4} Reserved Reserved for future use. Write O to this bit. 0 is returned when this bit
is read.
D3] EVINCEN Enables EVINC pin output.
1. Enabled
0: Disabled
D[2] EVUDEN Enables EVUD pin output.
1: Enabled
0. Disabled
Df1] EVINC EVINC pin output
1: High
3 Low
Do) EVUD EVUD pin output
1. High {(Up)
0. Low (Down)

This register controls the electronic variable resistance for adjusting brightness of the LCD.

The EVINC pin is multiplexed with the KSCAN[1] pin, and the EVUD pin is multiplexed with the KSCAN[0] pin.
To use both the EVINC and EVUD pins, therefore, a diode must be connected to the KSCAN[0] and KSCAN[1]
pins.

If a diode cannot be connected, assign either the EVINC or EVUD pin to the GPIO pin. At this time, the output
enable signal of the unused pin must be cleared to 0 (disable).

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

22.3 REGISTER SETTING FLOW

Register setting flow for the KIU is as shown below.

The setting flows for the case where both the auto scan mode and auto stop mode are set to ON and for shifting to
Suspend mode (or Standby mode with TClock masked) are shown here.

22.3.1 Setting Flow on the KIU (To the End of DMA Transfer)

1. Clearing HAL Timer {PMU)
li r1,0xAB00 D0A2 # The address of the PMUCNTREG
it 12,065 # stored data. HAL Timer clear
sh r2,0x0(r1) # Register setting.

2. Clearing the clock mask of the CMU unit and supplying TClock to the KIU (CMU)
li r1,0xABO0 0060 # The address of the CMUCLKMSKREG
li r2,0x8 # stored data. KIU clock mask clear
sh r2,0x0(r1} # Register setting.

3. Clearing the interrupt mask of the KIU to enable interrupts (ICU})

li r1,0xAB00 008C # The address of the MSYSINTREG

li rz2,0x80 # stored data. Interrupts of the KIU enabled.

sh r2,0x0(r1) # Register setting.

li r2,0x1F # stored data. Al interrupts of the KIU released
sh r2,0x6(r1) # setting on the MKIUINTREG.

4. Enabling DMA transfer of the KIU (DCU}

li r1,0xABOO 0044 # The address of the DMASENREG

li r2,0x10 # stored data. DMA request of the KIU enabled
sh r2,02(r1) # setting on the DMAMSKREG.

li r2,0x1 # stored data. The DCU sequencer enabled.

sh r2,0xo(r1) # setting on the DMASENREG.

360

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

5. Setting the DMA transfer start address (DMAAU)
li r1,0xABOO 0032 # The address of the KEYDMAADRHREG

li r2,0x001F CO00 # DMA start address (Take care so that this does not overlap any
start address for ather units).

SW r2,0x0(r1) # Register setting.

6. Setting on the KIU register
<1> Setting parameters on KIUWKSREG
li r1,0xAB00O 0180 # KIU base address.
] r2,0x18A4 # storeddata. T1=150pus T2=180 us, T3 =210 us
sh r2,0x10(r1} # setting on the KIUWKSREG register.

Remark T1 (potentiality stable time), T2 (potentiality off time), T3 {idle time)

Set the waiting time after the KSCAN[7..0] terminal has been set to high level unti! the
KPORT[7..0] terminal is read during the key matrix scan by the key scan sequencer. In other
words, set the time during which the voltage of the KSCAN terminals is stable.

T1: Stable time after high level has been output to a KSCAN terminal until key data is sampled.

T2: Off time after key data has been read until the cutput of a KSCAN terminal is turned to high
impedance.

T3: Idie time until high level is output to the next KSCAN terminal.

<2> Setting the length of key scan interval on KIUWKIREG
li r2,0x16 # Stored data. Length of interval = 16 * 30 us
sh r2,0x12{r1) # Setting on the KIUWKIREG.

The value set here is the time after the key scan sequencer has loaded a set of key data until the next set of
key data is loaded. In other words, setting on this register determines the number of key data sets to be
loaded during 1 second.

<3> Sefting the number of stoppages of the key scan sequencer on KIUSRNREG
li r2,0x2 # Stored data. Number of stoppages =2
sh r2,0x14(r1) # Setting on the KIUSRNREG.

KIUSRNREG is referred to as the "KeyAutoStop” function (see 5.} is specified, where the successive
number of times of all-zero data as key data after which the key scan sequencer will stop is set.

370

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

<4> Setting the auto scan function on KIJASCANREG
address: 0x0BOO 0184
i rz2,0x1 # Stored data. Auto scan ON.
sh r2,0x4(r1) # Setting on the KIVASCANREG.

When the auto scan function is set, key data scan is automatically started when a key touch is detected
(immediately after KEYSCANINTR has occurred). This bit can be changed only when the sequencer is in
the stopped state.

<5> Setting the key auto stop function on KIVASTOPREG
li r2,0x1 # Stored data. Auto stop ON.
sh r2,0x6(r1) # Setting on the KIUASTOPREG.

When the auto stop function is set, the scan sequencer stops automatically after all-zero data has
continued for the number of times as specified on separately described KIUSRNREG. This bit can be
changed only when the sequencer is in the stopped state.

<6> Confirmation of the status of the sequencer on KIUSCANSREG (stopped or not)

li r3,0xE(r1) # read KIUSCANSREG
li r2,000 # Expected value on the KIUSCANSREG (stopped)
bne r2,r3,Fail # check

<7> Setting KIVENREG to 1 and setting the sequencer to disable
li r2,0x1 # Stored data. Sequencer enabled.
sh r2,0x1A(r1) # Setting on the KIUENREG.

Note Even when the sequencer is set to disable during key scan, the sequencer does nat stop unti! the
loading of a set of key data has completed.

When the enable state is set on KIUENREG, key scan starts after a key input has been detected (after
KEYSCANINTR has occurred).

Thereafter, a DMA transfer request is issued each type 2-byte data is scanned and loaded to request the DCU
to transfer it. Four times of DMA transfer are performed for the transfer of a set of key data. Upon
completion of a set of key scan, KEYDATRDYINTR occurs.

Method for ending key scan

i

There are three methods for ending key scan as described below.

<1> Specifying auto stop

When auto stop is specified, the sequencer stops automatically after the all-zero data has been
scanned by the number of times set on KIUSRNREG and the status of the sequencer becomes
"stopped.”

3

CHAPTER 22 KIU (KEYBOARD INTERFACE UNIT)

<2> Clearing KIVENREG to 0 and disabling the sequencer.
In this case, the sequencer actually stops after it has loaded the set (64 bits) of data that is currently
scanned,

<3> Stopping the sequencer forcibly by setting KIUSTOPREG to 1.

Also in this case, the sequencer actually stops after it has Ioaded the set (64 bits) of data that is
currently scanned.

Note When KIUSAPREG is set to 1, although KEYINTR occurs when the first page boundary reaching and

subsequent DMA transfers are stopped, the sequencer continues scan. Stop the sequencer by one of the
above mentioned methods when an interrupt occurs. The same operation shall be performed also when
the second page boundary is reached.

22.3.2 Setting Flow for Shifting to Suspend Mode (or Standby Mode with TClock

312

Masked)

Setting on the KIU register is the same as that for the ordinary case (Refer to the setting flow in 22.3.1)

Release the mask on DOZEKEYINTR.
li r1,0xABOC 008C # The address of the MSYSINTREG

li r2,0x0000 1080 # Stored data. Masks on interrupt of the KIU as well as the key
detection interrupt in the Suspend mode cleared.
sh r2,0x0(r1) # Register setting.

Setting the auto scan mode (Refer to the setting flow in 22.3.1 for the setting methods).

Enabling the sequencer and confirming that the status of the sequencer is "wait key in."

li r1,0xAB00 0180 # KIU base address.
i r2,0x1 # Stored data. Sequencer enabled.
sh r2,0x6(r1) # Register setting.

Executing the Suspend instruction {Mask TClock when executing the STANDBY instruction).

When the CPU has shifted to Suspend mode, supply of TClock to the KiU stops and the KIU stops operation.
The KIU monitors key touches and if any key touch is detected, it notices it to the CPU by generating
DOZEKEYINTR.

The CPU is restored to Fullspeed mode by DOZEKEYINTR and TClock is supplied to the KIU. After the
restoration to Fullspeed mode, the sequencer starts scan simultaneously with the generation of
KEYSCANINTR.

When clearing KEYSCANINTR, also clear DOZEKEYINTR and mask it thereafter.

CHAPTER 23 DEBUGSIU (DEBUG SERIAL INTERFACE UNIT)

This chapter explains the operation of the DebugSIU and how to set the registers of the DebugSIU.

23.1 GENERAL

The Debug$SIU is a serial interface that is used for debugging. It supports a transfer rate of up to 115 kbps.

23.2 REGISTER SET
The following table lists the registers of the Debug3IU.

Table 23-1. DebugSiU Register

Address RW Register symbols Function
O0x0BOO0 D1A4 | RIW ASIMOOREG Asynchronous Mode O register
Ox0BO0 01A6 | RAW ASIMO1REG Asynchronous Mode 1 register
Ox0B0OO 01A8 |R RXBORREG Receive Buffer register (Extended)
Ox0B00 01AA |R RXBOLREG Receive Buffer register
0x0B00 01AC | RW TXSORREG Transmit Data register (Extended)
0x0B00 01AE | R/W TXSOLREG Transmit Data register
0x0B0D 01B0 (R ASISOREG Status register
0x0B00 01B2 [RMW1IC |INTROREG Debug SIU Interrupt register
0x0B00 01B6 | R/W BPRMOREG Baud rate Generator Prescaler Mode register
0x0B00 01B8 | W1 DSIURESETREG Debug SIU Reset register

The function of each of these registers is explained in detail below.

rns

CHAPTER 23 DEBUGSIU {DEBUG SERIAL INTERFACE UNIT)

23.2.1 ASIMOOREG

Figure 23-1. ASIMOOREG (0x0B00 01A4)
Position D15 D14 D13 D12 011 D10 DS D8
Narme Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RAW R/W R/W RW RW R/W R/W RW RW
Inittal value 0 0 0 0 0 0 o 0
Position D7 D& D5 D4 b3 D2 D1 Do
Name Reserved | RXEO PSO[1] PS0[0] CLOD SLOo Reserved | Reserved
RAN RAN RAN RMW R/W RMW RMW RMW RAN
Initial value 1 0 0 0 0 0 0 o
Bit position Bit name Function
D[15..8] Reserved | Reserved for future use. Write O to this bit. 0 is returned when this bit
is read.
D[7] Reserved | Reserved for future use. Write 1 to this bit. 1 is returned when this bit
is read.
DI[6] RXEO Enables debug serial reception.
1: Enabled
0. Disabled
D[5..4] PS0[1..0] Selects debug serial parity.
11: Even parity
10: Odd parity
01: Parity bit O during transmission. Parity ignored during reception.
00: Parity ignored. Extended bit operation
D[3) CLO Sets debug serial character length "
1: 8 bits
0. 7 bits
D[2] SLo Sets debug serial stop bit length.
1. 2 bits
0: 1 bit
D[1..0] Reserved | Reserved for future use. Write 0 to this bit. 0 is returned when this bit
is read.

Note This character length means the data length only which includes neither start bit, parity bit, nor stop bit.
This register sets the parameters used for debug serial.

If the contents of this register are changed during the transmission or reception of debug serial data, the debug
serial operation is not guaranteed.

34

CHAPTER 23 DEBUGSIU (DEBUG SERIAL INTERFACE UNIT)

23.2.2 ASIMO1REG

Figure 23-2. ASIMO1REG (0x0B0O0 01A8)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 0
Position D7 D& D5 D4 D3 D2 D1 0o
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | EBSO
R/W R R R R R R R RW
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D[15..1] Reserved Reserved for future use. Write 0 to this bit. 0 is returned when this
bit is read.
D[0] EBSO Enables extended bit operation.
1. Enabled
0. Disabled

This register sets extended bit operation of debug serial communication.

When the EBSO0 bit is set to 1, 1 bit is appended to the most significant bit position of the 8-bit transmit/receive
data, allowing 9-bit data to be transmitted/received. Extended bit operation can be performed only when the

PS[1..0] bits of the ASIMOOREG register are set to CO.

specification made with the EBSO bit becomes invalid, and extended bit operation is not performed.

If these bits are set to any value other than 00, the

375

CHAPTER 23 DEBUGSIU (DEBUG SERIAL INTERFACE UNIT)

23.2.3 RXBORREG

Figure 23-3. RXBORREG (0x0B0O 01AS8)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | RXBO[8]
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 o
Position D7 D6 D5 D4 D3 D2 D1 Do
Name RXBO0O{7] | RXBO[8] | RXBO[5] | RXBO[4] | RXBO[3] | RXBO{2] | RXBC[1] | RXB0{0]
R/W R R R R R R R R
Initial value o] o 0 0 0 0 o 0
Bit position Bit name Function
D[15..9] Reserved Reserved for future use. Write O o this bit. 0 is returned when this
bit is read.
D[8..0] RXBO[8..0] Receive data

This register stores receive data of debug serial cormmunication.

The RXBO[8] bit stores the extended bit during extended bit operation.
character is received. RXBO([7] stores 0 when a 7-bit character is received.

This register must be used at the extended bit operation.

a7e

This bit stores 0 when a 7- or 8-bit

CHAPTER 23 DEBUGSIU (DEBUG SERIAL INTERFACE UNIT)

23.2.4 RXBOLREG

Figure 23-4. RXBOLREG (0x0B00 01AA)

Position D15 D14 D13 D12 D11 D10 (B¢ D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 0 0 0 0 o 0
Position D7 D8 D5 D4 b3 D2 D1 Do
Name RXBOL[7] | RXBOL[6] | RXBOL[S] | RXBOL[4] | RXBOL[3] | RXBOL[2] | RXBOL[1] | RXBOL[0]
RW R R R R R R R R
Initial value 0 0 0 o 0 0 0 0
Bit position Bit name Function
D[15..8]) Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D{7..0] RXBOL[7..0] Receive data

This register stores the recelve data of debug serial communication.

RXBOL[7] stores O when a 7-bit character is received. This register and RXBORREG differ in whether the
extended bit operation is supponted.

n

CHAPTER 23 DEBUGSIU (DEBUG SERIAL INTERFACE UNIT}

23.2.5 TXSORREG

Figure 23-5. TXSORREG (0x0B00 01AC)

Position D15 D14 D13 D12 D11 D10 Do D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | TXS0{8]
RW R R R R R R R RAW
Initial value 0 0 0 0 ¢ 0 0 1
Position D7 D& b5 D4 D3 D2 D1 DO
Name TXS0[{7] | TXS0[6] | TXS0[{5] | TXSO{4] | TXSO0[3] | TXS0{2] | TXSO[1] | TXSO0[0]
RW RW RW RAW RW RAW R/W RAW RAW
Initial value 1 1 1 1 1 1 1 1
Bit position Bit name Function
D[15..9] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D{8..0} TXS0[8..0) Transmit data

This register stores the transmit data of debug serial communication. The TXS0[8] bit is used to transmit the
extended bit when extended bit operation is performed.

This register must be used at the extended bit operation.

3718

CHAPTER 23 DEBUGSIU {(DEBUG SERIAL INTERFACE UNIT)

23.2.6 TXSOLREG

Figure 23-8. TXSOLREG (0x0B00 01AE)

Position D15 B14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R

Initial value 0 0 0 o 0 0 0 0

Position D7 D& D5 D4 D3 D2 D1 DO
Name TXSOL[7] | TXSOL[6] | TXSOL[S] | TXSOL[4] | TXSOL[3] | TXSOL[2] | TXSOL[1] | TXSOL[O]
RW RW RW R/W RW RAW RIW RW RW

Initial value 1 1 1 1 4 1 1 1

Bit position Bit name Function

D{15..8] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D[7..0] TXSOL[7..0] Transmit data

This register stores the transmit data of debug serial communication.
This register and TXSORREG differ in whether extended bit operation is supported.

CHAPTER 23 DEBUGSIU {(DEBUG SERIAL INTERFAGCE UNIT)

23.2.7 ASISOREG

Figure 23-7. ASISOREG (0x0B00 0180)

Position D15 014 D13 D12 D11 D10 D8 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Raserved | Reserved
RAW R R R R R R R R
Initial value o] 0] 0 0 0 0]
Position D7 D6 D5 D4 D3 D2 D1 DO
Name SOTO | Reserved | Reserved | Reserved | Reserved PEOD FED OVEO
RW R R R R R R R R
Initial value 0 0 0 0 0 0 0 4]
Bit position Bit name Function
D[15..8] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D{7] SOTO Transmit status
1: Transmission starts {writing to TXS register)
0: Transmission ends (INTSTO occurs)
D[6..3] Reserved Reserved for future use. Write G to this bit. 0 is returned when this
bit is read.
D(2) PEO Parity error status
1. Parity error
0. Normal
D[1] FEO Framing error status
1: Framing error
0: Normal
D[o] OVEOD Overrun error status
1: Overrun
0: Normal

This register indicates the transmission/reception status of debug serial communication.

The SOTO bit is set to 1 when data is written to the TXSORREG and TXSOLREG registers. Once transmission
has been completed, the INTSTO bit of the INTROREG register is set to 1, and the SOTO bit is cleared to 0. The
SOTO bit is used to determine whether data can be written to the transmit shift register when data is transmitted
using debug serial.

If a parity error is detected in the received data, the PEO bit is setto 1.
bit is set to 1.

If the sequencer completes the next receive processing before the receive data has been from the receive buffer,
an overrun error occurs, and the OVEOQ bit is set to 1. if an overrun error occurs, the data already in the receive
buffer is overwritten by the new receive data.

If the stop bit cannot be detected, the FEQ

CHAPTER 23 DEBUGSIU (DEBUG SERIAL INTERFACE UNIT)

23.2.8 INTROREG

Figure 23-8. INTROREG (0x0B00 01B2)

Position D15 D14 D13 D12 P11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
R/W R R R R R R R R
Initial value 0 0 o o 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | INTSERO [INTSRO | INTSTO
RW R R R R R RWI1C RAWNIC RMWA1C
|nitial value] 0] 0 0 0 0 o
Bit position Bit name Function
D{15..3] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D[2] INTSERO Debug serial reception efror interrupt
1. Error occurs
0. Normal
Df1] INTSRO Debug serial reception completion interrupt
1: Reception completed
0: Normal :
D[0] INTSTO Debug serial transmission completion interrupt
1: Transmission completed
0. Others

This register indicates an interrupt event during debug serial transmission.

If any of the PEO, FED, or OVED bits of the ASISOREG register is set when data reception by debug serial is
enabled, the INTSERO bit is set to 1.

If receive data is transferred to the receive buffer in debug serial reception enabled status, the INTSRO bit Is set to
1. When one frame of transmit data is transmitted from the transmit register, the INTSTO bit is set to 1.

301

CHAPTER 23 DEBUGSIU (DEBUG SERIAL INTERFACE UNIT)

23.2.9 BPRMOREG

Figure 23.9. BPRMOREG {0x0B00 01B8)

Position D15 D14 D13 D12 D11 D10 Do Da
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 4] 0 0 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 0o
Name BRCEO | Reserved | Raserved | Reserved | Reserved | BPRO{2] | BPRO[1] | BPRO[O]
R/W R/W RW R/W RW RW RAW RAN R/W
Initial value 0 0 0 0 0 0 0 0
Bit position Bit name Function
D{15..8] Reserved Reserved for future use. Write Oto this bit. 0 is returned when this
bit is read.
D[7] BRCEQ Enables baud rate generator count.
1. Enabled
0. Disabled
D[6..3] Reserved Reserved for future use. Write Oto this bit. 0 is returned when this
bit is read.
D[2..0] BPRO[2..0] Sets debug serial baud rate.
111; 115200 bps
110; 57600 bps
101: 38400 bps
100: 19200 bps
011; 9600 bps
010: 4800 bps
001: 2400 bps
000: 1200 bps

This register sets the baud rate of debug serial communication.
The operation of debug serial is not guaranteed if the baud rate is changed during transmission/reception.

382

CHAPTER 23 DEBUGSIU (DEBUG SERIAL INTERFACE UNIT)

23.2.10 DSIURESETREG

Figure 23-10. DSIURESETREG (0x0B00 01B8)

Position D15 D14 D13 D12 D11 D10 D9 D8
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved
RW R R R R R R R R
Initial value 0 0 4] 0 0 0 0 0
Position D7 D6 D5 D4 D3 D2 D1 Do
Name Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | DSIURST
R/W R R R R R R R Wi
Initial value | © 0 0 0 0 0 0 0
Bit position Bit name Function
D{15..1] Reserved Reserved for future use. Write O to this bit. 0 is returned when this
bit is read.
D[0] DSIURST Resets debug serial.
1. Reset
0: Normal

This register resets Debug SIU.

[MEMO]

CHAPTER 24 CPU INSTRUCTION SET DETAILS

This chapter provides a detailed description of the operation of each VR4101 instruction in both 32- and 64-bit
modes. The instructions are listed in alphabetical order.

Exceptions that may occur due to the execution of each instruction are listed after the description of each
instruction. Descriptions of the immediate cause and manner of handling exceptions are omitted from the
instruction descriptions in this chapter.

Figures at the end of this chapter list the bit encoding for the constant fields of each instructicn, and the bit
encoding for each individual instruction is included with that instruction.

24.1 INSTRUCTION CLASSES

CPU instructions are divided into the following classes:

« Load and Store instructions move data between memory and general registers. They are all |-type
instructions, since the only addressing mode supported is base register + 16-bit immediate offset.

» Computational instructions perform arithmetic, logical and shift operations on values in registers. They
occur in both R-type (both operands are registers) and I-type (one operand is a 16-bit immediate) formats.

» Jump and Branch instructions change the control flow of a program. Jumps are always made to absolute
26-bit word addresses (J-type format), or register addresses (R-type), for returns and dispatches. Branches
have 16-bit offsets relative to the program counter (i-type). Jump and Link instructions save their return
address in register r317.

» Coprocessor zero {CP0) instructions manipulate the memory management and exception handiing facilities
of the processor.

+ Speclal instructions perform a variety of tasks, including movement of data between special and general
registers, trap, and breakpoint. They are always R-type.

CHAPTER 24 CPU INSTRUCTION SET DETAILS

24.2 INSTRUCTION FORMATS

Every CPU instruction consists of a single word {32 bits) aligned on a word boundary and the majer instruction
formats are shown in Figure 24-1.

Figure 24-1. CPU Instruction Formats

I-Type (Immediate}
31 2 25 212 16 15 0
op rs rt immediate
J-Type (Jump)
31 26 0
op target
R-Type (Register)
]| 2 25 21 2 16 15 11 10 65 0
op rs 14 rd sa funct
OP v 6-bit operation code
- ST 5-bit source register spedfier
1 ST 5-bit target (source/destination) or branch condition
immediate ... 18-bit immediate, branch displacement or address displacement
target........... 26-bit jump target address
rd...o 5-bit destination register specifier
T S 5-bit shift amount
funct 6-bit function field

CHAPTER 24 CPU INSTRUCTION SET DETAILS

24.3 INSTRUCTION NOTATION CONVENTIONS

In this chapter, all variable subfields in an instruction format (such as rs, rt, immediate, etc.) are shown in
lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in the formats of specific instructions.
For example, we use rs = base in the forrnat for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at the end of this chapter, and the bit
encoding also accompanies each instruction.

In the instruction descriptions that follow, the Operation section describes the operation performed by each
instruction using a high-leval language notation. The VR4101 can operate as either a 32- or 64-bit
microprocassor and the operation for both modes is included with the instruction description.

Special symbols used in the notation are described in Table 24-1.

Table 24-1. CPU instruction Operation Notatlons (1/2)

Symbol Meaning

<- Assignment.

il Bit string concatenation.

x' Replication of bit value x into a y-bit string. x is always a single-bit value,

Yyz Selection of bits v through z of bit string x. Little-endian bit notation is always used. Ifyisless
than z, this expression is an empty (zero length} bit string.

+ 2's complement or floating-point addition.

- 2's complement or floating-point subtraction.

* 2's complement or floating-point multiplication.

div 2's complement integer division.

rmod 2's complement modulo.

f Floating-point division.

< 2's complement less than comparison.

and Bit-wise logical AND.

or Bit-wise logical OR.

xor Bit-wise logical XOR.

nor Bit-wise logical NOR.

GPR [x] General-Register x. The content of GPR [0] is always zero. Attempts to alter the content of
GFR [0] have no effect.

CPR [z, x] Coprocessor unit z, general register x.

CCR [z, x] Coprocessor unit z, control register x.

COC (2] Coprocessor unit z condition signal.

387

CHAPTER 24 CPU INSTRUCTION SET DETAILS

Table 24-1. CPU Instruction Operation Notations (2/2)

Symbol

Meaning

BigEndianMem

Big-endian mode as configured at reset (0 -> Little, 1 -> Big). Specifies the endianness of the
memoty interface (see LoadMemory and StoreMemory), and the endianness of Kernel and
Supervisor mode execution.

However, this value is always 0 since the VR4101 supports the little endian order only.

ReverseEndian

Signal to reverse the endianness of load and store instructions. This feature is available in
User mode only, and is effected by setting the RE bit of the Status register. Thus,
ReverseEndian may be computed as (SR2s and User mode).

However, this value is always 0 since the VR4101 supports the little endian order only.

BigEndianCPU | The endianness for load and store instructions (0 -> Little, 1 -> Big). In User mode, this
endlanness may be reversed by setting SRzs. Thus, BigEndianCPU may be computed as
BigEndianMem XOR ReverseEndian. .
However, this value is always 0 since the VR4101 supports the little endian order only.

T+i Indicates the time steps between operations. Each of the statements within a time step are

defined to be executed in sequential crder (as modified by conditional and loop constructs}.
Operations which are marked T + / are executed at instruction cycle / relative to the start of
execution of the instruction. Thus, an instruction which starts at time j executes operations
marked T +i: attime / +/. The interpretation of the order of execution betwean two instructions
or two operations which execute at the same time should be pessimistic; the order is not defined.

24.3.1 Instruction Notation Examples

The following examples illustrate the application of some of the instruction notation conventions:

Example #1:

GPR]t] < immediate [j 0"

Sixteen zero bits are concatenated with an immediate value (typicaily 16 bits), and the 32-bit string
(with the lower 18 bits set to zero) is assigned to General-purpose register rt.

Example #2:

(immediatess)™® || immediatess. o

Bit 15 (the sign bit) of an immediate value is extended for 16 bit positions, and the result is
concatenated with bits 15 through 0 of the immediate vaiue to form a 32-bit sign extended value.

CHAPTER 24 CPU INSTRUCTION SET DETAILS

24.4 LOAD AND STORE INSTRUCTIONS

In the VR4101 implementation, the instruction immediately following a load may use the loaded contents of the
register. In such cases, the hardware interlocks, requiring additional real cycles, so scheduling load delay siots
is still desirable, although not required for functional code.

In the load and store descriptions, the functions listed in Table 24-2 are used to summarize the handling of virtual
addresses and physical memory.

Table 24-2. Load and Store Common Functions

Function Meaning

Address Translation {Uses the TLB to find the physical address given the virtual address. The function fails
and an exception is taken if the required translation is not present in the TLB.

Load Memory Uses the cache and main memory to find the contents of the word containing the specified
physical address. The low-order three bits of the address and the Access Type field
indicates which of each of the four bytes within the data word need to be returned. If the
cache is enabled for this access, the entire word is returned and loaded into the cache.

Store Memory Uses the cache, write buffer, and main memory to store the word or part of word specified
as data in the word containing the specified physical address. The low-order three bits of
the address and the Access Type field indicates which of each of the four bytes within the
data word should be stored.

As shown in Table 24-3, the Access Type field indicates the size of the data item to be loaded or stored.
Regardless of access type or byte-numbering order (endianness}, the address specifies the byte which has the
smallest byte address in the addressed field. This is the rightmaost byte in the VR4101 since it supports the
little-endian order only.

Table 24-3. Access Type Specifications for Loads/Stores

Access Type Mnemonic Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPYIBYTE & 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byta (B bits)

The bytes within the addressed doubleword which are used can be determined directly from the access type and
the three low-order bits of the address.

CHAPTER 24 CPU INSTRUCTION SET DETAILS

24.5 JUMP AND BRANCH INSTRUCTIONS

All jump and branch instructions have an architectural delay of exactly one instruction. That is, the instruction
immediately following a jump or branch (that is, occupying the delay slot) is always executed while the target
instruction is being fetched from storage. A delay slot may not itself be occupied by a jump or branch instruction;
however, this error is not detected and the results of such an aperation are undefined.

If an exception or interrupt prevents the completion of a legal instruction during a delay slot, the hardware sets the
EPC register to point at the jump or branch instruction that precedes it. When the code is restarted, both the
jump or branch instructions and the instruction in the delay slot are reexecuted.

Because jump and branch instructions may be restarted after exceptions or interrupts, they must be restartable.
Therefore, when a jump or branch instruction stores a return link value, register r37 (the register in which the link
is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and Link Register instruction must use a
register which contains an address whose two low-order bits are zero. If these low-order bits are not zero, an
address exception will occur when the jump targst instruction is subsequently fetched.

24.6 SYSTEM CONTROL COPROCESSOR (CP0) INSTRUCTIONS

There are some special limitations imposed on operations invoiving CP0 that is incorporated within the CPU.
Although lcad and store instructions to transfer data toffrom coprocessors and to move control toffrom
coprocessor instructions are generally permitted by the MIPS architecture, CPO is given a somewhat protected
status since it has responsibility for exception handling and memory management. Therefore, the move to/from
coprocessor instructions are the only valid mechanism for writing to and reading from the CPO0 registers.

Several CPO instructions are defined to directly read, write, and probe TLB entries and to modify the operating
modas in preparation for returning to User modae or interrupt-enabled states.

CHAPTER 24 CPU INSTRUCTION SET DETAILS
ADD Add ADD
31 26 25 21 20 18 15 11 10 65 0
SPECIAL s t d 0 ADD
000000 00000 100000
6 5 5 5 5 6
Format:
ADDrd, rs, 1t
Description:

The contents of general register rs and the contents of general register rt are added to formn the result. The result

is placed into general register rd.

destination register rd is not modified when an integer overflow exception occurs.

Operation:

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.
An overflow exception occurs if the carries out of bits 30 and 31 differ (2's complement overflow).

The

? T GPR[d < GPR[rs] + GPR[M]

64 T temp <- GPR [rs] + GPR [rt}

GPR [rd] < (temps+)’* || temps»..0

Exceptions:

Integer overflow exception

k2

CHAPTER 24 CPU INSTRUCTION SET DETAILS

ADDI Add Immediate ADDI

31 26 25 21 20 16 15 0
ADDI . .
001000 rs rt immediate
6 5 5 16
Format:

ADDI R, rs, immediate

Description:

The 16-bit immediats is sign-extended and added to the contents of general register rs to form the result. The
result is placed into general register /1. In 84-bit mode, the operend must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ {2's complement overflow). The destination
register rt is not modified when an integer overfiow exception occurs.

Operation:

32 T, GPR[n]<- GPR[rs] + (immediates)'® || immediates.o

84 T. temp < GPRirs] + (immediatess)*® || immediatess.o
GPR [rt] <- (tempa1)*? || tempa1..0

Exceptions:

Integer overflow exception

362

CHAPTER 24 CPUINSTRUCTION SET DETAILS

ADDIU Add Immediate Unsigned ADDIU

KY| 26 25 21 20 16 15 0
ADDIU . .
001004 rs rt immediate
5] 5 5 16
Format:

ADDIU rt, rs, immediate

Description:

The 18-bit immediate is sign-axtended and added to the contents of general register rs to form the resuit. The
result is placed into general register r. No integer overflow exception occurs under any circumstances. In 64-
bit mode, the operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is that ADDIU never causes an overflow
exception.

Operation:

32 T GPRIM < GPR [rs] + (immediates)' || immediatess..o

64 T temp < GPR[rs] + (immediates)* || immediates .o
GPR [rt] <- (tempa1)* || tempai..0

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

ADDU Add Unsigned ADDU

3 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 ADDU
000000 rs rt rd 00000 100001

6 5 5 5 5 6
Format:
ADDUId, rs, rt
Description:

The contents of general register rs and the contents of general register rt are added to form the resuft. The result
is placed into general register rd. No overflow exception occurs under any circumstances. In 64-bit mode, the
operands must be valid sign-extended, 32-bit values.

The only difference betwesn this instruction and the ADD instruction is that ADDU never causes an overflow
exception,

Operation:

32 T GPR[rd] < GPR[rs] + GPR [r]

864 T temp <- GPR [rs] + GPR [r]
GPR [rd] <- (temps1)* || tempat .0

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

AND And AND

31 26 25 21 20 16 15 1110 65 0
SPECIAL 0 AND
000000 re t rd 00000 100100

8 5 5 5 5 6
Format:
AND rd, rs, it
Description:

The contents of general register rs are combined with the contents of general register rf in a bit-wise logical AND
operation. The result is placed into general register rd.

Operation:

32 T GPR [rd] =- GPR [rs] and GPR [rt]

64 T GPR [rd] <- GPR [rs] and GPR [rt]

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

ANDI And Immediate ANDI

31 26 25 2% 20 16 15 0
ANDI . .
0014100 rs 14 immediate
6 5 5 16
Format:

ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-wise logical
AND operation. The result is placed into general register .

Operation:

32 T GPR[M] < 0| (immediate and GPR [rs]s .0}

64 T GPR[M < 0| (immediate and GPR [rs}. .c)

Exceptions:

None

CHAPTER 24 CPUINSTRUCTION SET DETAILS

BCOF Branch On Coprocessor 0 False BCOF
3 26 25 21 20 18 15 0
COPO BC BCF
010000 01000 00000 offset
8 5 5 16

Format:

BCOF offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offset, shifted left two bits and sign-extended. If coprocessor 0's condition signal (CpCond; Status register
bit-18 CH field), as sampled during the previous instruction, is false, then the program branches to the target
address with a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at least one instruction
between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition <- not SR1s
T. target <- (offsetss)™ || offset || 0°
T+1: if condition then
PC <- PC + target
endif

64 T-1. condition < not SR1a
T: target <- (offsetis)*® || offset || 0°
T+1: if condition then
PC <- PC + target
endif

Exceptions:

Coprocessor unusable exception

387

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BCOFL Branch On Coprocessor 0 False Likely BCOFL

K3 | 26 25 21 20 16 15 0
COPO BC BCFL offset
010000 01000 ¢0010
6 5 5 16
Format:
BCOFL offset
Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offsef, shifted left two bits and sign-extended. If the contents of coprocessor 0's condition line, as sampled
during the previous instruction, is false, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay siot is nullified.

Because the condition line is sampled during the previous instruction, there must be at least one instruction
between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-1. condition <- not SR1s
T target <- (offsetis)'* || offset || 07
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T-1. condition <- not SRie
T: target < (offsetis)* || offset || 6°
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

Coprocessor unusable exception

398

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BCOT Branch On Coprocessor 0 True BCOT
3 26 25 21 20 16 15 [}
COPO BC BCT
010000 01000 00001 offset
6 5 5 16
Format:
BCOT offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offset, shifted left two bits and sign-extended. If the coprocessor 0's condition signal {(CpCond: Status register
bit-18 CH field) is true, then the program branches to the target eddress, with a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at least one instruction
between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-1: condition <- SRi1s
T: target <- (offsetis)' || offset || 0
T+1: if condition then
PC <- PC + target
endif

2

64 T-1: condition < SR
T: target <- (offsetis)*® || offset || 0°
T+1: if condition then
PC <- PC + farget
endif

Exceptions:

Coprocessor unusable exception

399

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BCOTL Branch On Coprocessor 0 True Likely BCOTL
31 26 25 2120 18 15 0
COPO BC BCTL offset
010000 01000 00011
6 5 5 16

Format:

BCOTL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offset, shifted left two bits and sign-extended. If the contents of coprocessor 0's condition line, as sampled
during the previous instruction, is true, the target address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instructlon in the branch delay slot is nullified.

Because the condition line is sampled during the previous instruction, there must be at least one instruction
between this instruction and a coprocessor instruction that changes the condition line.

Operation:

32 T-1. condition <- SR1s
T target <- {offsetss)" || offset || O
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T-1: condition <- SR
T: target < (offsetis)*® || offset || 0°
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endf

Exceptions:

Coprocessor unusable exception

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BEQ Branch On Equal BEQ

K1 26 25 21 20 16 15 0
BEQ
000100 rs rt offset
6 5 5 16
Format:

BEQ rs, i, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offset; shifted Jeft two bits and sign-extended. The contents of general register rs and the contents of general

register rf are compared. |f the two registers are equal, then the program branches to the target address, with
delay of one instruction.

Operation:

32 T target < (offsetin)" || offset || 0°
condition <- {GPR {rs] = GPR [r]}
T+1: if condition then
PC <- PC + target
endf

64 T target < (offsetss)*’ || offset || 07
condition <- (GPR [rs] = GPR [rt])
T+1; if condition then
PC <- PC + target
endif

Exceptions:
MNone

401

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BEQL Branch On Equal Likely - BEQL

K} 26 25 21 20 16 15 0
BEQL
010100 rs n offset
8 5 5 18
Format:

BEQL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general
register rt are compared. |f the two registers are aqual, the target address is branched to, with a deiay of one
instruction. If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T target < (offsetis)" || offset || 07
condition <- {GPR [rs] = GPR [r])
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T target < (offeetis)*® || offeet || 0°
condition <- (GPR [rs] = GPR [rt])
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

402

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BGEZ Branch On Greater Than Or Equal To Zero BGEZ
31 26 25 21 20 16 15 : 0
REGIMM BGEZ
000001 rs 00001 offset
6 5 5 16
Format:
BGEZ rs, offset
Description:

A branch target address is computed from the sum of the address of the instruction in the delay stot and the 16-
bit offset, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit cleared,
then the program branches to the target addrass, with a delay of one instruction.

Operation:

32 T target < (offsetrs)' || offset I 0*
condition <- (GPR [rs]31 = 0)
T+1: if condition then
PC <- PC + target
endif

64 T. target < (offsetrs)*® || offset || 0
condition <- (GPR [rs]es = 0}
T+1; if condition then
PC <- PC + target
endif

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BGEZAL Branch On Greater Than Or Equal To Zero And Link BGEZAL

3 26 25 21 20 16 15 0
REGIMM BGEZAL
000001 rs 10001 offeet
5 5 5 16
Format:

BGEZAL rs, offset

Description:

A branch targst address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay
slot is placed in the link register, £37. If the contents of general register rs have the sign bit cleared, then the
program branches to the target address, with a delay of one instruction.

General register rs may not be general register r31, because such an instruction is not restartable. An attemptto
execute this instruction is not trapped, however.

Operation:

2 T target < (offsetis) || offset || 07
condition <- (GPR [rs]s1 = 0)
GPR[31]<=PC+8

T+1. if condition then
PC < PC + target
endif

64 T target <- (offsetis)*® || offset || 0°
condition <- (GPR [rs]es = 0)
GPR[31]<PC+8

T+1. if condition then
PC <- PC + target
endif

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BGEZALL Branch On Greatsr Than Or Equal To Zero And Link Likely BG EZALL

31 26 25 21 20 16 15 0
REGIMM BGEZALL
000001 s 10011 offset
5] 5 5 16
Format:

BGEZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offsef, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay
slot is placed in the link register, r31. If the contents of general register rs have the sign bit cleared, then the
program branches to the target address, with a delay of one instruction. General register rs may not be general
register 31, because such an instruction is not restartable. An attempt to execute this instruction is not trapped,
however. |f the conditional branch is not taken, the instruction in the branch delay slat is nullified.

Operation:

32 T target < (offsetis)' || offset || O
condition <- (GPR [rs]»1 = 0)
GPR[31]<PC+8

T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T target < (offsetis)*® || offset || 0°
condition <- (GPR [rs]es = 0)
GPR[31]<-PC+8

T+1. if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BGEZL Branch On Greater Than Or Equal To Zero Likely? BGEZL

31 26 25 21 20 16 15 0
REGIMM BGEZL
000001 rs 00011 offset
6 5 5 16
Format:
BGEZL rs, offset
Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offsel, shifted left two bits and sign-extended. If the contents of general register rs have the sign bit cleared,
then the program branches to the target address, with a delay of one Instruction. If the conditional branch is not
taken, the instruction in the branch delay slot is nullified.

Operation:

32 T target < (offsetis)' || offset || 07
condition <- {GPR [rs]z1 = 0)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T target < (offsetis)*® || offset || 0°
condition <- (GPR [rs]e3 = 0)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BGTZ Branch On Greater Than Zero BGTZ
31 26 25 21 20 16 15 0
BGTZ 0
000111 rs 00000 offset
6 5 5 16
Fomat:

BGTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offsef, shifted left two bits and sign-extended. The contents of general register rs are compared to zero. |f
the contents of general register rs have the sign bit cleared and are not equal to zero, then the program branches

to the target address, with a delay of one instruction.

Operation:

32 T target < (offsetis)’* || offset || 0°
condition <- (GPR [rsh1 = 0} and (GPR [rs] 0%)
T+1. if condition then
PC < PC + target
endif

64 T target < (offsetis)* || offset || 0
condition <- (GPR [rs)ss = 0) and {GPR [rs] 0°)
T+1: if condition then
PC <- PC + target
endif

Exceptions:

None

407

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BGTZL Branch On Greater Than Zero Likely BGTZL
3 26 25 2120 16 15 0
BGTZL 0
010111 rs 00000 offset
6 5 5 16
Format:

BGTZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offset, shifted left two bits and sign-extended. The contents of general register rs are compared to zefo.

If

the contents of general register rs have the sign bit cleared and are not equal to zero, then the program branches
to the target address, with a delay of one instruction. If the conditional branch is not taken, the instruction in the

branch delay slot is nullified.

Operation:

32 T target <- {offsetis}' || offset || 0°
condition <- (GPR [rs]31 = 0) and (GFPR [rs] « 0%)
T+1: if condition then
PC < PC + target
ese
NullifyCurrentinstruction
endf

64 T target <- (offsetis)® || offset || O°
condition <- (GPR [rs)s2 = 0} and (GFR [rs] » 0“)
T+1: If conditon then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BLEZ Branch On Less Than Or Equal To Zero BLEZ
31 26 25 21 20 16 15 0
BLEZ 0
000110 rs 00000 offset
5] 5 5 16

Format:

BLEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay siot and the 16-
bit offset, shifted teft two bits and sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit set, or are equal to zero, then the program branches to the
target address, with a delay of one instruction.

Operation:

32 T target < (offsetss)’* | offset j O
condition <- (GPR [rs}e1 = 1) or (GPR [rs] = 0%)
T+1: if condition then
PC <- PC + target
endif

64 T target < (offsetis)*® || offset || 0°
condition <- (GPR [rs]s2 = 1) or {(GPR [rs] = 0*)
T+1: if condition then
PC <- PC + target
endif

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BLEZL Branch On Less Than Or Equal To Zero Likely | BLEZL

3 26 25 21 20 16 15 0
BLEZL 0
010110 re 00000 offset
[5 5 18
Format:

BLEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay siot and the 16-
bit offset, shifted left two bits and sign-extended. The contents of general register rs is compared to zero. ifthe

contents of general register rs have the sign bit set, or are equal to zero, then the program branches to the target
address, with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target < (offsetss)' || offset || 0°
condition <- (GPR [rs]» = 1) or (GPR [rs] = 0%
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
andif

64 T target < (offsetis)* | offset || 07
condition <- (GPR [rs]sz = 1) or (GPR [rs} = 0%%)
T+1. if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

410

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BLTZ

Branch On Less Than Zero

BLTZ

3 26 25 21 20 16 15 o .
REGIMM rs BLTZ offset
000001 00000
6 5 5 16
Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-

bit offsel, shifted teft two bits and sign-extended.

the program branches to the target address, with a delay of one instruction.

Operation:

If the contents of general register rs have the sign bit set, then

endif

endif

32 T target <- (offsetrs)' || offset || 0
condition <- (GPR [rs]a1 = 1)
T+1; if condition then
PC <- PC + target

64 T target <- (offsetis)*® || offset || 0
condition <- (GPR [rs)es = 1)
T+1: if condition then
PC <- PC + target

2

2

Exceptions:

None

411

CHAPTER 24 CPU INSTRUCTION SET DETALS

BLTZAL Branch On Less Than Zero And Link BLTZAL

31 26 25 21 20 16 15 0
REGIMM BLTZAL
000001 rs 10000 offset
6 5 5 16
Format:

BLTZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay
slot is placed in the link register, r37. If the contents of general register rs have the sign bit set, then the program
branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not restartable. An attemnpt to
execute this instruction with register 31 specified as rs is not trapped, however.

Operation:

32 T target < (offsetis)™ || offset || 0°
condition <- {GPR [rs]31 = 1)
GPR[31]<PC+8

T+1: if condition then
PC <- PC + target
endif

84 T. target < (offsetss)* | offset || 0°
condition <- (GPR [rs]ea = 1)
GPR[31]<-PC+8

T+1: if condition then
PC <- PC + target
endcif

Exceptions:

None

412

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BLTZALL Branch On Less Than Zero And Link Likely BLTZALL

31 26 25 21 20 16 15 0
REGIMM BLTZALL
000001 re 10010 offset
8 5 5 16
Format:

BLTZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offset, shifted left two bits and sign-extended. Unconditionally, the address of the instruction after the delay
slot is placed in the link register, r37. If the contents of general register rs have the sign bit set, then the program
branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not restartable. An attempt to
execute this instruction with register 37 specified as rs is not trapped, however. If the conditional branch is not
taken, the instruction in the branch delay slot is nullified.

Operation:

32 T target <- (offsetis)™ | offset || 0°
condition <- (GPR [rs]a1 = 1)
GPR[31]<-PC+8

T+1: if condition then
PC < PC + target
else
NullifyCurrentinstruction
endif

84 T target < (offsetrs)* || offset || O
condition <- (GPR [rs]ss = 1)
GPR[31]<-PC+8

T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

Exceptions:

None

413

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BLTZL Branch On Less Than Zero Likely BLTZL

Kh| 26 25 21 20 18 15 0
REGIMM BLTZL
000001 rs 00010 offset
6 5 5 16
Format:
BLTZ rs, offset
Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offset, shifted left two bits and sign-extended. if the contents of general register rs have the sign bit set, then
the program branches to the target address, with a delay of one instruction. Ifthe conditional branch is not taken,
the instruction in the branch delay slot is nullified.

Operation:

32 T target < (offsetis)' || offset || 0°

condition <- (GPR [rs]s1 = 1)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

64 T target < (offsetss) || offset |} 07
condition <- (GPR [rs)sa = 1)
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endhif

Exceptions:

None

414

CHAPTER 24 CPU INSTRUCTION SET DETAWL.S

BNE Branch On Not Equal BNE

3 26 25 21 20 16 15 0
BNE
000101 rs rt offset
& 5 5 16
Format:

BNE rs, rit, offset

Description:

A branch target address is cormnputed from the sum of the address of the instruction in the delay slot and the 16-
bit offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general
register rf are compared. If the two registers are not equal, then the program branches to the target address, with
a delay of one instruction.

Operation:

32 T target < (offsetis)'’ || offset || 0°
condition <- (GPR [rs] » GPR [r1])
T+1: if condition then
PC <- PC + target
endif

64 T target <- (offsehs)“ || offset || o
condition <- (GPR [rs] = GPR [1t])
T+1: if condition then
PC <- PC + target
endif

Exceptions:

None

415

CHAPTER 24 CPU INSTRUCTION SET DETAILS

BNEL Branch On Not Equal Likely BNEL
kY| 26 25 21 20 16 15 ¢]
0tons s it offset
B 5 5 16
Format:

BNEL rs, ft, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the delay slot and the 16-
bit offset, shifted left two bits and sign-extended. The contents of general register rs and the contents of general
register rt are compared. If the two registers are not equal, then the program branches to the target address, with
a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T target < (offsetss)' || offset || 0°
condition <- (GPR [rs] » GPR [r])
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endif

684 T target < (offsetrs)* || offset || 0°
condition <- (GPR [rs] . GPR [rt])
T+1: if condition then
PC <- PC + target
else
NullifyCurrentinstruction
endf

Exceptions:

None

416

CHAPTER 24 CPU INSTRUCTION SET DETALLS

BREAK Breakpoint _ BREAK

31 26 25 65 0
SPECIAL BREAK
000000 code 001101

6 20 8

Format:

BREAK
Description:

A breakpoint trap occurs, immediately and unconditionally transferring control to the exception handier.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory ward containing the instruction.

Operation:

32,64 T: BreakpointException

Exceptions:

Breakpoint exception

417

CHAPTER 24 CPU INSTRUCTION SET DETAILS

CACHE Cache CACHE

A 26 25 21 20 16 15 0

CACHE
101111

6 5 5 16

base op offset

Format:
CACHE op, offset{base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The virtual address is translated to a physical address using the TLB, and the 5-bit sub-opcode specifies a cache
operation for that address.

If CPO is not usable (User or Supervisor mode) and the CP0 enable bit in the Status register is clear, a
coprocessor unusable exception is taken. The operation of this instruction on any operation/cache combination
not listed befow, or on a secondary cache, is undefined. The operation of this instruction on uncached addresses
is also undefined.

The Index operation uses part of the virtual address to specify a cache block.
For a primary cache of 2°*“HEBTS pyteg with 2“NESTS pytes per tag, vAddrcacHesms. Lnesrs specifies the block.

Index Load Tag also uses vAddruneerns. 2 to select the doubleword for reading parity. When the CE bit of the
Status register is set, Fill Cache op uses the PErr register to store parity values into the cache.

The Hit operation accesses the specified cache as normal data references, and performs the specified operation if
the cache block contains valid data with the specified physical address {a hit). If the cache block is invalid or
contains a different address (a miss), no operation is performed,

418

CHAPTER 24 CPU INSTRUCTION SET DETAILS

CACHE Cache CACHE
(Continued)

Write back from a primary cache goes to memory. The address to be written is specified by the cache tag and
not the transtated physical address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For Index operations (where the physical
address is used to index the cache but need not match the cache tag) unmapped addresses may be used to avoid
TLB exceptions. This operation never causes a TLB Modified exception.

Bits 17...16 of the instruction specify the cache as follows:

Code Name ' Cache
0 | Primary instruction
1 D Primary data

2-3 NA Undefined

419

CHAPTER 24 CPU INSTRUCTION SET DETAILS

CACHE

Cache CACHE
(Continued)

Bits 20...18 (this value is listed under the Code column) of the instruction specify the operation as follows:

Code | Cache Name Operation
0 I Index Invalidate | Set the cache state of the cache block to Invalid.
0 D Index Write- Examine the cache state and W bit of the primary data cache block at the
Back Invalidate | index specified by the virtual address. If the state is not Invalid and the W
bit is set, then write back the block to memory. The address to write is
taken from the primary cache tag. Set cache state of primary cache block
to invalid.

1 t, D |Index Load Tag | Read the tag for the cache block at the specified index and place it into the
TaglLo CPQ registers, ignoring parity errors. Also load the data parity bits
into the ECC register.

2 I, D |Index Store Tag | Write the tag for the cache block at the specified index from the Taglo and
TagHi CPQ registers.

3 D Create Dirty This operation is used to avoid loading data needlessly from memory when

Exclusive writing new contents into an entire cache block. if the cache block does not
contain the specified address, and the biock is dirty, write it back to the
memory. In all cases, set the cache state to Dirty.

4 I, D | Hit Invalidate If the cache block contains the specified address, mark the cache block
invalid.

5 D Hit WriteBack | If the cache block contains the specified address, write back the data if it is

Invalidate dirty, and mark the cache block invalid.

5 | Fill Fill the primary instruction cache block from memory. If the CE bit of the
Status register is set, the contents of the ECC register is used instead of the
computed parity bits for addressed doubleword when written to the
instruction cache.

6 D Hit WriteBack | If the cache block contains the specified address, and the W bit is set, write
back the data to memory and clear the W bit.

6 I Hit WriteBack | If the cache block contains the specified address, write back the data

unconditionally.

420

CHAPTER 24 CPU INSTRUCTION SET DETAILS

CACHE Cache
(Continued)

Operation:

CACHE

32,64 T vAddr < ((offsetss)*® |j offsetss.c) + GPR [base]
{pAddr, uncached) < AddressTranslation (vAddr, DATA)
CacheOp (op, vAddr, pAddr)}

Exceptions:

Coprocessor unusable exception
TLB Refill exception

TLB Invalid exception

Bus Error exception

Address Error exception

Cache Error exception

421

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DADD Doubleword Add DADD

3 26 25 21 20 16 15 11 10 65 0
SPECIAL s t rd V] DADD
000000 00000 101100

6 5 5 5 5 6
Format:
DADD rd, rs, 1t
Description:

The contents of general register rs and the contents of general register rf are added to form the result. The result
is placed into general register rd.

An overflow exception occurs if the carries out of bits 62 and 63 differ (2's complement overflow). The
destination register rd is not modified when an integer overflow exception occurs.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

84 T GPR[rd] < GPR[rs] + GPR [rf]

Exceptions:

Integer overflow exception
Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DADD' Doubleword Add Immediate DADDI

3 26 25 21 20 16 15 0
DADDI . .
011000 rs rt immediate
6 5 5 16
Format:

DADDI rt, rs, immediate

Description:
The 16-bit /mmediate is sign-extended and added to the contents of general register rs to form the result. The
result is placed into general register ri.

An overflow exception accurs if carries out of bits 62 and 63 differ (2's complement overflow). The destination
register 1t is not modified when an integer overflow exception occurs.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T GPR[t] <- GPR [rs] + (immediatets)*® || immediatess..o

Exceptions:

Integer overflow exception
Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

423

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DADDIU Doubleword Add immediate Unsigned DADDIU

K| 26 25 2120 16 15 0
DADDIU , .
011001 rs it immediate
6 5 5 16
Format:

DADDIU rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and added to the contents of general register rs to form the result. The
result is placed into general register 1. No integer overflow exception occurs under any circumstances.

The only difference between this instruction and the DADD1 instruction is that DADDIU never causes an overflow
exception.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T GPR [rt] <- GPR [rs] + (immediatew)“ || immediatess..o

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

424

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DADDU

Doubleword Add Unsigned

DADDU

K3 | 26 25 2120 16 15 11 10 65 0
SPECIAL rs rd 0 DADDU
000000 00000 101101
6 5 5 5 6
Format:
DADDU rd, rs, rt
Dascription:
- The contents of generai register rs and the contents of general register rt are added to form the result. The result

is placed into general register rd.
No overflow exception occurs under any circumstances.
The only difference between this instruction and the DADD instruction is that DADDU never causes an overflow

exception.

This operation is only defined for the VR4101 operating in 64-bit mode.
or supervisor mode causes a reserved instruction exception.

Operation:

Execution of this instruction in 32-bit user

64 T GPR([rd)<- GPR[rs] + GPR[r)

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DDIV Doubleword Divide DDIV

N 26 25 2120 18 15 63 0
SPECIAL s rt 0 DDIV
000000 00 0000 0000 011110

6 5 5 10 8
Format:
DDIVrs, it

Description:

The contents of general register rs are divided by the contents of general register 1, treating both operands as 2's
complement values. No overflow exception occurs under any circumstances, and the result of this operation is
undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check far a zera divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded into special register LO, and the
remainder word of the double result is loaded into special register H!.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.
Correct operation requires separating reads of Hf or LO from writes by two or more instructions. This is defined
in this manner to take account of the R4000 hazards {for code compatibility) as well as the VR4100's own hazards.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T-22 LO <- undefined
Hi =<- undefined
T-1: LO < undefined
HI <- yndefined
T LO <- GPR[rs] div GPR [r]
HI < GPR{rs] mod GPR[ri]

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DDIVU Doubleword Divide Unsigned DDIVU

31 26 25 2120 16 15 65 0
SPECIAL rs t 0 DDIVU
000000 000000 0O0GO 011111
6 5 5 10 6
Format:
DDIU rs, 1t
Description:
- The contents of generai register rs are divided by the contents of general register rt, treating both operands as

unsigned values. No integer overflow exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

This instruction may be followed by additional instructions to check for a zero divisor, inserted by the programmer.

When the operation completes, the quotient waord of the double result is loaded into spacial register LO, and the
remainder word of the double result is loaded into special register H/.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.
Correct operation requires separating reads of Hf or LO from writes by two or more instructions.

This operation is only defined for the VR4101 aperating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:
B84 T-22 LO <-undefined
HI <- undefined
T-1. LO <- undefined
HI <- undefined
T. LO < (0| GPR [rs]) div (0 || GPR [rt])
- HI < (0| GPR [rs}) mod {0 || GPR [rt])

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

- 427

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DIV Divide DIV

K| 26 25 21 20 16 15 65 0
SPECIAL rs rt 0 DIV
000000 00 0000 0000 011010

6 5 5 10 6
Format:
DIV rs, it

Description:

The contents of general register rs are divided by the contents of general register rt, treating both operands as 2's
complement values. No overflow exception occurs under any circumstances, and the result of this operation is
undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.
This instruction is typically followed by additional instructions to check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is loaded into special register LO, and the
remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the resulis of those instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by two or more instructions.

Operation:

32 T-22 LO <-undefined
H < undefined
T-1. LO < undefined
HI <- undefined
T LO < GPR[rs] div GPR [ri]
H < GPR [rs] mod GPR [rt]

64 T-22 LO < undefined
HI <~ undefined
T-1. LO < undefined
HI <- undefined
T: q <- GPR [rg)21.0 div GPR [rt]a1.0
r < GPR [rs}s1.0 mod GPR [rt}s1.0

LO < (g™ |10
H < (ra) | rsr.o

Exceptions:

None

428

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DIVU Divide Unsigned DIVU
31 26 25 2120 18 15 65 0
SPECIAL s " 0 DIvu
000000 000000 0000 011011
6 5 5 10 6
Format:
DIVU rs, rt
Description:

The contents of genaeral register rs are divided by the contents of general register ri, treating both operands as
unsigned values. No integer overflow exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values;.
This instruction is typically followed by additional instructions to check faor a zero divisor.

When the operation completes, the quotient word of the double result is loaded into special register LO, and the
remainder word of the double result is loaded into special register /.

If either of the two preceding instructions is MFHI or MFLO, the results of those instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by two or more instructions.

Operation:
32 T-Z2 LO < undefined
HI <- yndefined
T-1.. LO < undefined
HI <- undefined
T LO < (0] GPR [rs]) div (0 |] GPR [rt])
H < {0} GPR [rs]) mod (0 }| GPR [rt])
64 T-22 LO < undefined
Hl <- undefined
T-1: LQ < undefined
HI < undefined
T: q < (0 || GPR [rs]s1.0) div (0 || GPR [rt]s1..0)
r < (0)] GPR [rs]s1.¢) mod (0 || GPR [rt]21.0)
LO < (g™ || g0
H < (m)az Il 31,0
Exceptions:
None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DMADD16 poubleword Multiply and Add 16-bit integer DMADD1 6

31 26 25 21 20 16 15 85 0
SPECIAL s i 0 DMADD16
000000 00 0000 0000 101001

8 5 5 10 6
Format:

DMADDA16E rs, 1t

Description:
The contents of general registers rs and rt are multiplied, treating both operands as 16-bit 2's camplement values.
The operand[62:15] must ba valid 15-bit, sigh-extended values. If not, the result is unpredictable.

This multiplied result and the 64-bit data joined of special register LO is added to form the result as a signed
integer. When the operation completes, the doubleword result is loaded into special register LO.

No integer overflow exception occurs under any circumstances.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

The following table shows hazard cycles between DMADD18 and other instructions.

Instruction sequence No. of cycles
MULT/MULTU -> DMADD16 1 Cycle
DMULT/OMULTU -> DMADD16 4 Cycles
DIV/DIVU -> DMADD16 36 Cycles
DDIV/DDIVU -> DMADD16 68 Cycies
MFHI/MFLO -> DMADD16 2 Cycles
MADD16 -> DMADD16 0 Cycle
DMADD16 -> DMADD16 0 Cycle

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DMADD1 6 Doubieword Multiply and Add 16-bit integer DMA DD1 6

(Continued)

Operation:

64 T-22 LO < undefined
H <- undefined
T-1: LO <- undefined
H < undefined
T: temp <- GPR [rs] * GPR [rt]
LO <-temp+LO
HI < undefined

Exceptions:

Reserved Instruction Exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

431

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DMFCO boubleword Move From System Control Coprocessor DMFCO

31 26 25 21 20 18 15 110 0
COPO OMF rt rd 0
010000 00001 000 0000 0000
6 5 5 5 1
Formmat:
DMFCO rt, rd
Description:

The contents of coprocessor register rd of the CPQ are loaded into general register rt.

This operation is defined for the VR4101 operating in 64-bit mode and in 32-bit kernel mode. Execution of this
instruction in 32-bit user or supervisor mode causes a reserved instruction exception. All 64-bits of the general

register destination are written from the coprocessor register source. The operation of DMFCO on a 32-bit
coprocessor 0 register is undefined.

Operation:

64 T data <- CPR [0, rd]
T+1: GPR[n] <- data

Exceptions:

Coprocessor unusable exception (user mode and supervisor mode if CP0 not enabled)
Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

432

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DMTCO Doubleword Move To System Control Coprocessor DMTCO

K] 26 25 21 20 16 15 11 10 0
COPO DMT rt rd 0
010000 00101 000 0000 0000
6 5 5 5 1
Format:
DMTCO rt, rd
Description:

The contents of general register 1t are loaded into coprocessor register rd of the CPO.

This operation is defined for the VR4101 operating in 64-bit mode or in 32-bit kernel mode. Execution of this
instruction in 32-bit user or supervisor mode causes a reserved instruction exception.

All 84-bits of the copracessor 0 register are written from the general register socurce. The operation of DMTCO on
a 32-bit coprocessor O register is undefined.

Because the state of the virtual address translation system may be altered by this instruction, the operation of load
instructions, store instructions, and TLB operations immediately prior to and after this instruction are undefined.

Operation:

64 T data < GPR [rt}
T+1. CPR][O0, rd] <- data

Exceptions:

Coprocessar unusable exception (In user and supervisor mode if CP0 not enabled)
Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DMULT Doubleword Multiply DMULT

K} | 26 25 21 20 1815 65 o
SPECIAL 0 DMULT
000000 s " 00 0000 0000 011100

6 5 5 10 6
Format:
DMULT rs, rt

Description:
The contents of general registers rs and rf are multiplied, treating both operands as 2's complement values. No
integer overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register HY.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by a minimum of two other instructions.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T-22 LO < undefined
HI <- undefined
T-1: LO < undefined
H < undefined
T: t < GPR [rs] - GPR [rt]
LO < taan

Hi < 112764

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DMULTU Doubleword Multiply Unsigned DMULTU

k)| 26 25 2% 20 16 15 65 0
SPECIAL rs t 0 DMULTU
000000 00 0000 0COO0O 011101
6 5 5 10 6
Fommat:
DMULTU rs, 1t
Description:

The contents of general register rs and the contents of general register rt are multiplied, treating both operands as
unsigned values. No overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register Hi.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by a minimum of two instructions.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T-22 LO <- undefined
Hl <- undefined
T-1. LO < undefined
H < undefined
T t < (0]| GPR [rs]} « {0 || GPR [rt]}
LO <-ts10

Hi < t127.64

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DSLL Doubleword Shift Left Logical DSLL
31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 DSLL
000000 00000 n rd sa 111000
B8 5 5 5 5 68
Format:
DStLrd, rt, sa

Description:

The contents of general register 1t are shifted left by sa bits, inserting zeros into the low-order bits. The result is
placed in register rd.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

B4 T 5<0|isa
GPR [rd] <- GPR [rtjies-s.0 || 0°

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DSLLV Doubleword Shift Left Logical Variable DSLLV

31 26 25 21 20 16 15 11 10 65 0
SPECIAL rs t rd 0 DSLLV
000000 00000 010100

6 5 5 5 5 6
Format:

DSLLVrd, i, 1s

Description:

The contents of general register /f are shifted left by the number of bits specified by the low-order six bits
contained in general register rs, inserting zeros into the low-order bits. The result is placed in register rd.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

84 T s< GPR[msko
GPR [rd] <- GPR [rt}es-=.0 || 0O°

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

437

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DSLL32 Doubleword Shift Left Logical + 32 DSLL32

3 26 25 21 20 16 15 11 10 865 0
SPECIAL 0 DSLL32
000000 00000 r rd sa 111100

6 5 5 5 5 8
Format;

DSLL32 rd, t, sa

Description:

The contents of general register 1t are shifted left by 32 + sa bits, inserting zeros into the low-order bits. The
result is placed in register rd.

This operation is only defined for the VrR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T s< 1| sa
GPR [rd] < GPR [rt}ez-a).0 || 0°

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DSRA Doubleword Shift Right Arithmetic DSRA
31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 DSRA
000000 00000 " rd sa 111011
6 5 5 5 5 6

Format:

DSRArd, rt, sa

Description:

The contents of general register 1t are shifted right by se bits, sign-extending the high-order bits. The result is
placed in register rd.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisar mode causes a reserved instruction exception.

Operation:

84 T s <- 0| sa
GPR [rd] <- (GPR [r]s3)" || GPR [rt] ¢3 s

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode}

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DSRAV Doubleword Shift Right Arithmetic Variable DSRAV

| a1 26 25 21 20 16 15 11 10 85 0
SPECIAL . 4 4 0 DSRAV
000000 r 00000 010111

6 5 5 5 5 6

Format:

DSRAV rd, it, rs

Description:

The contents of general register 1t are shifted right by the number of bits specified by the low-order six bits of
general register rs, sign-extending the high-order bits. The result is placed in register rd.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T s <- GPR [rs)s.0
GPR {rd] <- (GPR [rt]s3)’ || GPR [t] e3.s

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DSRA32 Doubleword Shift Right Arithmetic + 32 DSRA32

31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 DSRA32
000000 00000 " rd sa 1111141

8 5 5 5 5 3]

Format:

DSRA32 rd, it, sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, sign-extending the high-order bits. The result
is placed in register rd.

This operation is only defined for the VR4101 opaerating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T s<1l|lsa
GPR [rd] <- {(GPR [rt}s3)* || GPR [rt)s3.s

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

441

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DSRL Doubleword Shift Right Logical DSRL
31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 i rd sa DSRL
000000 00000 111010
6 5 5 5 5 6
Format:
DSRLrd, r, sa

Description:

The contents of general register /t are shifted right by sa bits, inserting zeros into the high-order bits. The resuit
is placed in register rd.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T s<-0|lsa
GPR [rd] <- 0° || GPR [it]e3 s

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

442

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DSRLV Doubleword Shift Right Logical Variable DSRLV

3 26 25 21 20 16 15 11 10 65 0
SPECIAL s rt rd 0 DSRLV
000000 ‘ 006000 010110

6 5 5 5] 5 6
Format:

DSRLV rd, t, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order six bits of
general register rs, inserting zeros into the high-order bits. The result is placed in register rd.

This operation is oniy defined far the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T s<-GPRrs]s50
GPR [rd] <- 0° || GPR [rt)ea.s

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor moda)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DSRL32 Doubleword Shift Right Logical + 32 DSRL32

31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 " rd sa DSRL32
000000 00000 111110

6 5 5 5 5 6
Format:

DSRL32 rd, rt, sa

Description:

The contents of general register it are shifted right by 32 + sa bits, inserting zeros into the high-order bits. The
result is placed in register rd.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception. '

Operation:

64 T s=<1|sa
GPR [rd] <- 0° || GPR [rt}s:.»

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

DSUB Doubleword Subtract DSUB

K] 26 25 21 20 16 15 11 10 65 0
SPECIAL s rt rd 0 DSUB
000000 00000 1011190

6 5 5 5 5 6
Format:
DSUBrd, rs, rt

Description:
The contents of general register st are subtracted from the contents of general register rs to form a result. The
result is placed into general register rd.
The only difference between this instruction and the DSUBU instruction is that DSUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 62 and 63 differ (2's complement overflow).
The destination register rd is not modified when an integer overflow exception occurs.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T GPR[rd] < GPR [rs] - GPR [t}

Exceptions:

integer overflow exception
Reserved instruction exception {VR4101 in 32-bit user made, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAWLS

DSUBU Doubleword Subtract Unsigned DSUBU

31 26 25 21 20 16 15 11 10 65 0
SPECIAL s t rd 0 DsUBU
000000 00000 101111

6 5 5 5 5 6
Format:

psuBUrd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of general register rs to form a result. The
result is placed inta general register rd.

The only difference between this instruction and the DSUB instruction is that DSUBU never traps on overflow.
No integer overflow exception occurs under any circumstances.

This operation is only defined for the VR4101 operating in 84-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

84 T GPR[rd} <- GPR [rs] - GPR[r]

Exceptions:

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode}

CHAPTER 24 CPU INSTRUCTION SET DETAILS

ERET Exception Return ERET

3t 25625 24 65 0
COPO co 0 ERET
010000 1 000 0000 0000 000D 0OOCCO 011000
6 1 19 6

Format:
ERET
Description:

ERET is the VR4101 instruction for returning from an interrupt, exception, or error trap. Unlike a branch or jump
instruction, ERET does not execute the next instruction.

ERET must not itseif be placed in a branch delay slot.

if the processor is servicing an error trap (SR2 = 1), then load the PC from the ErrorEPC register and clear the ERL
bit of the Status register (SR2). Otherwise {SR2 = 0), load the PC from the EPC register, and clear the EXL bit of
the Status register (SR1).

Operation:

3264 T. ifSR2=1then
PC < ErrerEPC
SR <-SRa1.3 || 0] SR1.0
else
PC <-EPC
SR <-SRs1.2 || 0| SRo
endif ’

Exceptions:

Coprocessor unusable exception

447

CHAPTER 24 CPU INSTRUCTION SET DETAILS

HIBERNATE Hibernate HIBERNATE

31 26 25 24 65 0
COPO co 0 HIBERNATE
010000 1 0000000 00CCOO0000000 100011
6 1 19 6
Format:
HIBERNATE
Description:

HIBERNATE instruction starts mode transition from Fullspeed mode to Hibernate mode.

When the HIBERNATE instruction finishes the WB stage, the VR4101 wait by the SysAD bus is idle state, after
then the internal clocks and the system interface clocks will shut down, thus freezing the pipeline.

Once the VR4101 is in Hibernate mode, the ColdRest sequence will cause the Vr4101 to exit Hibernate mode and
to enter Fullspeed mode.

Operation:

264 T
T+1: Hibernate operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Chapter 15 for details about the operation of the peripheral units at mode transition.

CHAPTER 24 CPU INSTRUCTION SET DETAILS

J | Jump J

31 26 25 0
J target
000010 9
6 26
Format:
J target
Description:

The 26-bit target address is shifted left two bits and combined with the high-order four bits of the address of the
delay slot. The program unconditionally jumps to this calculated address with a delay of one instruction.

Operation:

2 T temp <- target
T+1: PC <-PCs1 2 || temp Jj 0°

64 T temp <- target
T+1: PC <-PCes.2a [| temp || 0

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETARLS

JAL Jump And Link JAL

N 26 25 0
JAL
000011 target
6 26
Format:
JAL target
Description:

The 26-bit target address is shifted left two bits and combined with the high-order four bits of the address of the

delay slot. The program uncenditionally jumps to this calculated address with a delay of one instruction. The
address of the instruction after the delay slot is placed in the link register, r31.

Operation:

a2 T temp <- target
GPR[31]<-PC+8
T+1. PC <- PCa1.2s || temp || 0

64 T temp <- target
GPR[31]<PC+8
T+1: PC < PCes.28 || temp || 0°

Exceptions:

None

430

CHAPTER 24 CPU INSTRUCTION SET DETAILS

JALR Jump And Link Register JALR
31 26 25 21 20 16 15 11 10 65 0
SPECIAL s 0 rd 0 JALR
000000 00000 00000 001001
6 5 5 5 5 6
Format:
JALR rs
JALR rd, rs

Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of one instruction.
The address of the instruction after the delay slot is placed in general register rd. The default value of rd, if

omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction does not have the same effect when
re-executed. However, an attempt to execute this instruction is nof trapped, and the result of executing such an

instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register instruction must specify a target register {rs)

which contains an address whose two low-order bits are zero.

error exception will occur when the jump target instruction is subsequently fetched.

Operation:

If these low-order bits are not zero, an address

3284 T: temp<- GPR [rs]
GPRrd] < PC+8
T+1: PC = temp

Exceptions:

Mone

451

CHAPTER 24 CPU INSTRUCTION SET DETAILS

JR Jump Register JR
3 26 25 21 20 65 0
SPECIAL rs 0 JR
000000 000 0000 0000 0000 001000
6 5 15 6

Format:

JRrs

Description:

The program unconditionally jumps to the address contained in general register rs, with a delay of one instruction.

Since instructions must be word-aligned, a Jump Register instruction must specify a target register (rs} which
contains an address whose two low-order bits are zero. If these low-order bits are not zero, an address error
exception will occur when the jump target instruction is subsequently fetched.

Operation:

3264 T: temp<- GPRrs)
T+1. PC < temp

Exceptions:

None

452

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LB Load Byte LB

31 26 25 21 20 16 15 0
LB
100000 base rt offset
6 5 5 16
Format:

LB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the byte at the memory location specified by the effective address are sign-extended and loaded
into general register .

Operation:

32 T vAddr < ((offsetis)" || offsetis.0) + GPR [base]
{pAddr, uncached) <- AddressTranslation (vAddr, DATA)}
pAddr <- pAddresee - 1.3 || (pAddrz.0 xor ReverseEndian’)
mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte <- vAddrz o xor BigEndianCPU®
GPR [rf] = (mem7 .2 m)z‘ || memz . a oye.8 byte

84 T vAddr < ((offsetis)" || offsetis.c) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresce - 1.3 || (pAddrz.o xor ReverseEndian’)
mem <- LoadMemary (uncached, BYTE, pAddr, vAddr, DATA)
byte <- vAddrz ¢ xor BigEndianCPU’
GPR [1] <- (M@M7 + 8 bye) " || MEM? « 8* byte. 8 byte

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LBU l.oad Byte Unsigned LBU

Kh| 26 25 2120 16 15 0
LBU
100100 base rt offset
6 5 5 16
Format:

LBU rt, offset {base)

Description:

The 18-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the byte at the memory location specified by the effective address are zero-extended and loaded
into general register .

Operation:

32 T vAddr < {{offsetis)'® || offsetis o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || {pAddrz o xor RevetseEndian"’)
mem <- LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte <- vAddrz o xor BigEndianCPU’
GPR [r] <- 0** || mem7. &* byte 8 byw

84 T vAddr < {{offset:s)*® || offsetis o) + GPR [base]
{pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddrrsze - 1.3 || (pAddrz.o Xor ReverseEndian’)
mem <- LoadMemary {uncached, BYTE, pAddr, vAddr, DATA)
byte <- vAddrz.o xor BigEndianCPU’
GPR [rt] < 0% || mem7 .+« s bys. 5+ by

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LD Load Doubleword LD
K] | 26 25 21 20 16 15 0
LD
110111 base rt offset
6 5 5 16
Formmat:

LD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the 64-bit doubleword at the memory location specified by the effective address are loaded into

general register rt.

If any of the three least-significant bits of the effective address are non-zero, an address error exception occurs.

This operation is oniy defined for the VR4101 operating in 64-bit mode.

or supervisor mode causes a reserved instruction exception.

Operation:

Execution of this instruction in 32-bit user

64 T vAddr < ((offsetis)’ || offsetss.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

GPR [rt]} <- data

data <- LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LDL Load Doubleword Left LDL
3 26 25 21 20 16 15 0
LDL
011010 base rt offset
6 5 5 16
Format:

LDL rt, offset (base)

Description:

This instruction can be used in combination with the LDR instruction to load a register with eight consecutive bytes
from memory, when the bytes cross a doubleword boundary. LDL loads the left portion of the register with the
appropriate part of the high-order doubleword; LDR loads the right portion of the register with the appropriate part
of the low-order doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the doubleword in memory which contains
the specified starting byte. From one to eight bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-order {left-most) byte of
the register; then it loads bytes from memory into the register until it reaches the low-order byte of the doubleword
in memory. The least-significant (right-most) byte(s) of the register will not be changed.

memory
addrese8 [15[14[13[12]11[10] 9 [8 register
address0 |7 |6 |5}aa|2|1]0 beors | A|B|c|[D|E]F|c|H| s2

LDL %24, 12 ($0)
after | 12 | 11

-

ol o aIFIG]H[su

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LDL Load Doubileword Left LDL
(Continued)

The contents of general register rf are internally bypassed within the processcr so that no NOP is needed between

an immediately preceding load instruction which specifies register rt and a following LDL (or LDR} instruction
which also specifies register rt.

No address efror exceptions due to alignment are possible.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

84 T vAddr < ((offset;s)* || offsetis.o) + GPR [base)
{pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddrpsze - 1.3 || (pAddr2_o xor ReverseEndian’)
if BigEndianMem = 0 then
pAddr <- pAddrpsze. 1.3 | 0°
endif
byte <- vAddrz ¢ xor BigEndianCPU®
mem <- LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR [rt] < memz.+ s uye.0 || GPR [r)ss- & by 0

457

CHAPTER 24 CPU INSTRUCTION SET DETALS

LDL Load Doubleword Left LDL
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LDL is as follows.

LDL
Register A B c D E F G H
Memory | J K L M N Q P .
vAddrz o BigEndianCPU = 0
destination type | offset
{LEM)
0 PBCDEFGH { 0 0
1 OPCDEFGH 1 0
2 NOPDEFGH | 2 o -
3 MNOPEFGH | 3 o
4 LMNOPFGH | 4 o
5 KLMNOPGH | 5 o
6 JKLMNOPH | B 0
7 | JKLMNOP | 7 0

LEM Little-endian memory (BigEndianMem = 1)
Type AccessType (see Table 2-2) sent to memory
Offset pAddrz o sentto memory

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LDR Load Doubleword Right LDR
3 26 25 21 20 16 15 0
LDR
051011 base rt offset
6 5 5 18
Format:

LDR rt, offset (base)

Description:

This instruction can be used in combination with the LDL instruction to load a register with eight consecutive bytes
from memory, when the bytes cross a doubleword boundary. LDR loads the right portion of the register with the
appropriate part of the low-order doubleword; LDL loads the left portion of the register with the appropriate part of
the high-order doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the doubleword in memory which contains
the specified starting byte. From one to eight bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-order (right-most) byte of
the register; then it loads bytes from memory into the register until it reaches the high-order byte of the doublewaord
in memory. The most significant (left-most) byte(s) of the register will not be changed.

memory
address8 [15|14|13|12|11]|10| 9 | & register
address0 |7 |6|5[4f3]2]1]0 before ITA Blc|plE F|G|H| $24

LDR $24, 5 ($0) register
after ABC|DE765$24

459

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LDR Load Doubleword Right LDR
(Continued)

The contents of general register rt are internally bypassed within the processor 50 that no NOP is needed between
an immediately preceding load instruction which specifies register rt and a following LDR {or LOL) instruction
which also specifies register .

No address error exceptions due to alignment are possible.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

684 T vAddr < ((offsetis)* || offsetss.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddtesee - 1.3 || (pAddrz.0 xor ReverseEndian’)
if BigEndianMem = 1 then
pAddr <- pAddrpsze. 1.3 || 0°
endif
byte <- vAddr2.o xor BigEndianCPU?
mem <- LoadMemory {uncached, DOUBLEWORD-byte, pAddr, vAddr, DATA)
GFR [rf] < GPR [rtlea.s4- 2" byts || Memes. s* byte

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LDR Load Doubleword Right LDR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of LDR is as follows:

LDR
Register A B C D E F G H
Memory | J K L M N O P

vAddrz o BigEndianCPU = {0
destination type | offset
(LEM)

0

| JKLMNOP
AlJKLMNG
ABI JKLMN
ABCI| JKLM
ABCDI JKL
ABCDEIJK
ABCDEF I J
ABCDEFG!

~N bk WN 2O
O = N Wh o~
~N o bhWwN -

LEM Little-endian memory (BigEndianMem = 0)
Type AccessType (see Table 2-2) sent to memory
Offsel pAddrz p sent to memory

Exceptions:
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (VR4101 in 32-bit user made, VR4101 in 32-bit supervisor mode)

461

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LH Load Halfword LH
Y| 26 25 21 20 16 15 ¢
LH
10000 4 base rt offset
5] 5 5 16
Format:

LH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.

The contents of the halfword at the memory location specified by the effective address are sign-extended and
loaded into general register rf.

If the least-significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

32 T vAddr < ({offsetss)'® || offsetss. o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr < pAddrpsce - 1..2 || (pAddrz o xor (ReverseEndian’ || 0))
mem <- LoadMemaory {uncached, HALFWORD, pAddr, vAddr, DATA)
byte <- vAddr2..o xor (BigEndianCPU? || 0)
GPR [rt] < (MeM 15+ 8- byw)'® || M&M15+ 2" byte..5* byt

B84 T vAddr < ((offsetis)*® || offsetss. o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresee - 1.3 || (pAddrz o xor (ReverseEndian” || 0))
mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte <- vAddrz.» xor (BigEndianCPU2 0}
GPR [rt] <- {memis+ 2 by‘)‘s Il men1s + 8 by 8* byte

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

462

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LHU Load Halfword Unsigned LHU
K| 26 25 21 20 16 15 0
LHU
100101 base offset
6 5 16
Fommat:

LHU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the halfword at the memory location specified by the effective address are zero-extended and
loaded into general register .

If the least-significant bit of the effective address is non-zero, an address error exception occurs.

Operation:

32

T

vAddr < {(offsetis)'® || offsetis. o) + GPR [base)

(pAddr, uncached) <- AddressTranslation {vAddr, DATA)

pAddr <- pAddresize - 1.3 || (pAddrz. o xor (Rew.-rs'.eEndian2 I On

mem <- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA}
byte <- vAddrz. o xor (BigEndianCPU? || 0)

GPR (rt] <- 0'° [| Mem s « &« bys...&* byte

vAddr <- ((oi‘l'-.sehs)"8 || offsetis.o) + GPR [base]

{pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddresize - 1..3 || (pAddrz_ o xor (Re.-\.rersseEncian2 Y)Y

mem <- LoadMemaory {uncached, HALFWORD, pAddr, vAddr, DATA)
byte <- vAddra o xor (BigEndianCPU? || 0)

GPR [rt] <- 0** || mem s + &° byw. 8+ by

Exceptions:

TLB refill exception

TLB invalid exception

Bus Error exception
Address error exception

CHAFTER 24 CPU INSTRUCTION SET DETAILS

LUI Load Upper Immediate LUI
3 26 25 21 20 16 15 0
LU 0] .
001111 00000 rt immediate
6 5 5 16
Format:

LUI ft, immediate

Description:

The 18-bit immediate is shifted left 16 bits and concatenated to 16 bits of zeros. The result is placed into general
register . In 64-bit mode, the loaded word is sign-extended.

Operation:

32 T. GPRIrt] < immedate|) 0"

64 T GPR{r < {(immediatess)* || immediate || 0"

Exceptions:

None

CHAPTER 24

CPU INSTRUCTION SET DETAILS

LW Load Word LW
K] 26 25 21 20 16 15 0
Lw
10001 9 base rt offset
6 5 5 16
Format:

LW rt, offset {base)

Description:

- The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the word at the memory location specified by the effective address are loaded into general register

.

In 84-bit mode, the loaded word is sign-extended.

If either of the two least-significant bits of the effective address is non-zero, an address error exception occurs.

Operation:

32

T

vAddr <- ({offsetss)' || offsetss_o) + GPR [base]

(pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddresze - 1.3 || (PAddrz_o Xor (ReverseEndian || 0%))
mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)}
byte <- vAddrz .o xor (BigEndianCPU || 0%)

GPR [rt] <- memaz1 « 2 byts..8* byte

vAddr <- ((offsetis)™ |} offsetis. o) + GPR [base]

{pAddr, uncached) <- AddressTranslation (vAddr, DATA)

pAddr <- pAddresize - 1..3 || (pAddrz..o xor (ReverseEndian || 0%))
mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte <- vAddrz..0 Xor (BigEndianCPU || 0%)

GPR [rt] = (mema1 s+ m)n || Mema1 + 8" byte...8° byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception
Address error exception

485

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LWL Load Word Left LWL

K} | 26 25 21 20 16 15 0
LWL
100010 base rt offset
6 5 5 16
Format:

LWL rt, offset (base)

Description:

This instruction can be used in combination with the LWR instruction to load a register with four consecutive bytes
from memory, when the bytes cross a word boundary. LWL loads the left portion of the register with the
appropriate part of the high-order word; LWR loads the right portion of the register with the appropriate part of the
low-order word.

The LWL instruction adds its sign-extended 16-bit offsef to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the word in memory which contains the
specified starting byte. From one to four bytes will be loaded, depending on the starting byte specified. In 64-
bit mode, the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-order {left-most} byte of
the register; then it loads bytes from memory into the register until it reaches the low-order byte of the werd in
memory. The least-significant (right-most) byte(s) of the register will not be changed.

memoary
address 4 7 6 5 4 register
address 0 3 2 1 0 beors | A | B [c | D | s2

aﬁsr|4|B|C|D|$24

486

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LWL Load Word Left LWL
(Continued)

The contents of general register rt are internally bypassed within the processor so that no NOP is needed between
an immediately preceding load instruction which specifies register rt and a following LWL (or LWR) instruction
which also specifies register rt.

No address error exceptions due to alignment are possible.

Operation:

32 T vAddr <- ((offsetss)’® || offsetis_o) + GPR [base]
- {pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (PAddr2..0 xor ReverseEndian’)
if BigEndianMem = 0 then

pAddr <- pAddresize-1..3 || 0’
endif
byte <- vAddr: o xor BigEnt.‘l'anCPU2
word <- vAddrz xor BigEndianCPU
mem <- LoadMemory (uncached, O || byte, pAddr, vAddr, DATA)
temp <- Mema1 +32- word - & byte.. 32= wond || GPR [t]za-&* ym..0
GPR [rt] <- temp

64 T vAddr < ({offsetis)" || offsetis. o) + GPR [base]

{pAddr, uncached) <- AddressTranslation (vAddr, DATA}
pAddr < pAddrpsize -1..3 || (PAddrz_o xor ReverseEndian®)
if BigEndianMem = O then

pAddr <- pAddresize. 1.3 || 0°
endif
byte <- vAddr1 o xor BigEndianCPU?
word <- vAddrz xor BigendianCPU
mem <- LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp <- Mema1 « 32 word- 8* byte.. 32" word || GPR [tz - 8- oyte 0
GPR [r] < (tempa1)*? || temp

487

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LWL

Given a doubleword in a register and a doubleword in memory, the operation of LWL is as follows:

Load Word Left

(Continued)

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LWL
Register A B C D E F
Memory | J K L M N
vAddra o BigEndianCPU =0

destination type | offset
{LEM)

0 SSSSPFGH | O o

1 S8SS8SSOPGH | 1 ¢

2 SSSSNOPH | 2 0

3 SSSSMNOP | 3 o

4 SSSSLFGH|{ O 4

5 SSSSKLGH | 1 4

6 SSSSJKLH | 2 4

7 S§SSSIJKL | 3 4

LEM Little-endian memory (BigEndianMem = 0)
Type AccessType (see Table 2-2) sent to memory

Offset pAddrz o sent to memory
S sign-extend of destinationay

LWL

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LWR Load Word Right LWR

3 26 25 21 20 18 15 0
LWR
100110 hase rt offset
6] 5 16
Format:

LWR rt, offset (base)

Description:

This instruction can be used in combination with the LWL instruction to load a register with four consecutive bytes
from memory, when the bytes cross a word boundary. LWR loads the right portion of the register with the
appropriate part of the low-order word; LWL loads the left portion of the register with the appropriate part of the
high-crder word.

The LWR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which can specify an arbitrary byte. It reads bytes only from the word in memory which contains the
specified starting byte. Fram ane to four bytes will be loaded, depending on the starting byte specified. In 64-
bit mode, the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-order (right-most) byte ot
the register; then it loads bytes from memory into the register until it reaches the high-order byte of the word in
memory. The most significant {left-most} byte(s) of the register will not be changed.

memory
address 4 7 6 5 4 register
address 0 3 2 1 0 befors | A B c D | s2¢

LWR $24, 1 ($0)
after [A] 3 2 1 $24

CHAPTER 24 CPU INSTRUCTION SET DETALLS

LWR Load Word Right LWR
{Continued)

The contents of general register rf are internally bypassed within the processor so that no NOP is needed between
an immediately preceding load instruction which specifies register rt and a following LWR (or LWL) instruction
which also specifies register rt.

No address error exceptions due to alignment are possible,

Operation:

32 T vAddr < ({offsetis)'® || offset:s.o) + GPR [base]
{pAddr, uncached) < AddressTranslation (vAddr, DATA)
pAddr <- pAddrpsee - 1..3 || (pAddr2..o Xor ReverseEndian’)
if BigEndianMem = 1 then
pAddr <- pAddreszz -1..3 }| 0°
endif
byte <- vAddri_ o xor BigEndianCPU?
word <- vAddrz xor BigendianCPU
mem <- LoadMemory (uncached, 0 |} byte, pAddr, vAddr, DATA)
temp <- GPR [rt]a1. 32-8 byw. ¢ || MeMaz + 32° word - 32* word + 8° byte
GPR [r] < temp

84 T: vAddr <- ({offsetis)*® || offsetis o) + GPR [base]
(pAddr, uncached) <- AddressTranslation {vAddr, DATA}
pAddr <- pAddresze -1 3 || (pAddrz o xor ReverseEndian’)
if BigEndianMem = 1 then
pAddr <- pAddresze.1 3 | O°
endif
byte <- vAddrs. o xor BigEndianCPU?
word <- vAddrz xor BigEndianCPU
mem <- LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp <- GPR [rt]z1..32- o= bye..0 || MEM32 + 32 word - 32° word » 87 byte
GPR [rf] <- (tempz1)*” || temp

470

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LWR Load Word Right LWR
(Continued)

Given a word in a register and a word in memory, the aperation of LWR is as follows:

LWR
Register A B c D E F G H
Memory | J K L M N O P

vAddrz o BigEndianCPU =0
destination type | offset
(LEM)
0 SSSSMNOP | O 0
1 SSSSEMNO | 1 1
2 SSSSEFMN | 2 2
3 SSSSEFGM | 3 3
4 S8S8SSIJKL | O 4
5 SSSSEIJK | 1 5
6 SSSSEFIJ | 2 6
7 SSSSEFGI 3 7

LEM Littie-endian memory (BigEndianMem = 0)
Type AccessType (see Table 2-2) sent to memory
Offsef pAddr, o sent to memory

S sign-extend of destinations.

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

471

CHAPTER 24 CPU INSTRUCTION SET DETAILS

LWU Load Word Unsigned 'LWU

N 28 25 2120 18 15 0

Lwu
101111

6 5 S 16

base rt .offset

Format:
LWU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of the word at the memory location specified by the effective address are loaded into general register
. The loaded word is zero-extended.

If either of the two least-significant bits of the effective address is non-zero, an address error exception occurs.

This operation is only defined for the VR41(1 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

32 T vAddr < ((offsetis)'® || offsetis o) + GPR [base)
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresizE - 1..3 || (PAddrz. o Xor (ReverseEndian J| 07)
mem <- LoadMemory (t#ncached, WORD, pAddr, vAddr, DATA)
byte <- vAddrz_o xor (BigEndianCPU || 0%)
GPR [rt} =- 0% H mems + 8- byts...o" byto

64 T vAddr <- ((offsetss)* || offsetss.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation {vAddr, DATA)
pAddr <- pAddresize- 1.3 || (PAddr2..0 xor (ReverseEndian || 0%)
mem <- LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte <- vAddrz_o xor (BigEndianCPU || 0%)
GPR (] < 0° || memat « &+ byts...2* byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

472

CHAPTER 24 CPU INSTRUCTION SET DETAILS

MADD16 Multiply and Add 16-bit integer MADD16

K| 26 25 21 20 16 15 65 0
SPECIAL t 0 DMADD16
000000 rs 00 0000 0000 101000

6 5 5 10 6
Format:
MADD16 rs, it
Description:

The contents of general registers rs and st are multiplied, treating both operands as 16-bit 2's complement values.
The operand[62:15] must be valid 15-bit, sign-extended values. If not, the results is unpredictable.

This multiplied resuit and the 64-bit data joined special register H/ to LO are added to form the result.
No integer overflow exception accurs under any circumstances.

When the operation completas, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register Hi.

The following Table are hazard cycles between MADD16 and other instructions.

Instruction sequence No. of cycles
MULT/MULTU -> MADD16 1 Cycle
DMULT/DMULTU -> MADD16 4 Cycles
DIV/IDIVU -> MADD16 36 Cycles
DDIV/DDIVU -> MADD16 68 Cycles
MFHI/MFLO -> MADD16 2 Cycles
DMADD16 -> MADD16 0 Cycle
MADD16 -> MADD16 0 Cycle

Operation:

3264 T: temp1 < GPR[rs]*GPR|r]
temp2 <-temp1 + (Hla1 0 || LO31..0)
LO < (temp2a1) || temp2s1..0
Hl < (temp2es)™ || temp2es. .22

Exceptions:

None

473

CHAPTER 24 CPU INSTRUCTION SET DETAILS

MFCO

Move From System Control Coprocessor

MFCO

H 26 25 21 20 16 15 110]
COPO MF rd 0
010000 00000 000 0000 0000
6 5 5 11
Format:
MFCO rt, rd
Description:

The contents of coprocessor register rd of the CPO are loaded into general register rt.
When using a register used by the MFCO by means of instructions before and after it, refer to Chapter 25 and

place the instructions in the appropriate location.

Operation:

2”2 T data <- CPR[0, rd]
T+1. GPR [r] <- data

64 T data < CPR{O,rd]
T+1: GPR [r] <- (datas:)™ || datas o

Exceptions:

Coprocessor unusable exception {user and supervisor mode if CPO not enabled)

474

CHAPTER 24 CPU INSTRUCTION SET DETAILS

MFHI Move From HI MFHI

31 26 25 16 15 11 10 65 0
SPECIAL 0 rd 0 MFHI
c00000 00 0000 0OCOO 00000 010000

6 10 5 5 6
Format:
MFHI rd
Description:

The cantents of special register Hf are loaded into general ragister rd.

To ensure proper operation in the event of interruptions, the two instructions which follow a MFHI instruction may

not be any of the instructions which modify the Hf register: MULT, MULTU, DIV, DIVU, MTHI, DMULT, DMULTU,
DDV, DDIVU.

Operation:

3264 T. GPR[d] < HI

Exceptions:

None

475

CHAPTER 24 CPU INSTRUCTION SET DETAILS

MFLO Move From LO MFLO

3 26 25 16 15 11 10 65 0
SPECIAL 0 0 MFLO
000000 00 0000 0000 rd 00000 010010

6 10 5 5 6
Format:
MFLO rd

Description:

The contents of special register LO are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two instructions which follow a MFLO instruction may

not be any of the instructions which modify the LO register MULT, MULTU, DIV, DIVU, MTLO, DMULT, DMULTY,
DDV, DDIVU.

Operation:

3264 T GPR[rd] < LO

Exceptions:

None

476

CHAPTER 24 CPU INSTRUCTION SET DETAILS

MTCO Move To Coprocessor0Q MTCO

AN 26 25 21 20 16 15 11 10 0
COPO MT rt rd 0
010000 00100 000 0000 0OO0O
6 5 5 =] 11
Format:
MTCOrt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of copracessor 0.

Because the state of the virtual address translation system may be aitered by this instruction, the operation of load
instructions, store instructions, and TLB opserations immediately pricr to and after this instruction are undefined.

When using a register used by the MTCO by means of instructions before and after it, refer to Chapter 25 and
place the instructions in the appropriate location.

Operation:

32,64 T. data< GPRIr]
T+1: CPR O, rd] <- data

Exceptions:

Coprocessor unusable exceptian {user and supervisor mode if CP0 not enabled)

4717

CHAPTER 24 CPU INSTRUCTION SET DETAILS

MTHI Move To HI MTHI

31 26 25 21 20 65 0
SPECIAL rs , 0 MTHI
000000 000 000000000000 010001

6 5 15 8
Format:
MTHI rs
Description:

The contents of general register rs are loaded into special register H/.

If a MTHI operation is executed following a MULT, MULTU, DIV, or DIVU instruction, but before any MFLO. MFHI,
MTLO, or MTHI instructions, the contents of special register Hf are undefined.

Operation:

32,64 T-2. Hi <- undefined
T-1; Hl <- undefined
T: HI=-GPR[rs]

Exceptions:

None

478

CHAPTER 24

CPU INSTRUCTION SET DETAILS

MTLO Move To LO MTLO
K] | 26 25 21 20 65 0
SPECIAL rs 0 MTLO
000000 000000000000000 010011
6 5 15 6

Fommat:

MTLO rs

Description:

The contents of general register rs are loaded into special register LO.

If a MTLO operation is executed following a MULT, MULTU, DIV, or DIVU instruction, but before any MFLO, MFH],
MTLO, or MTHI instructions, the contents of special register L O are undefined.

Operation:

32864 T-2. LO <- undefined
T-1: LO <- undefined
T. LO <-GPR[rs]

Exceptions:

None

479

CHAPTER 24 CPU INSTRUCTION SET DETAILS

MULT Multiply MULT

31 26 25 21 20 16 15 65 0
SPECIAL s i 0 MULT
000000 00 0000 0000 011000

6 5 5 10 6
Format:
MULT rs, rt
Description:

The contents of general registers rs and rt are multiplied, treating both operands as 32-bit 2's complement values.
No integer overflow exception occurs under any circumstances. In 64-bit mode, the operands must be valid
32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register H/.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of H/ or LO from writes by a minimum of two other instructions.

Operation:

32 T-22 LO < undefined
H < undefined
T-1. LO < undefined
Hl <- undefined
T t <. GPR [rs] * GPR [rt]
LO <-tie
H < te 32

64 T-22 LO < undefined
HI < undefined
T-1: LO < undefined
HI < undefined
T t <- GPR [rs]e1..0 * GPR [rt]s1. 0
L0 < () [b0
H < (te3)* || te.22

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETALLS

MULTU Multiply Unsigned MULTU
31 26 25 21 20 16 15 65 0
SPECIAL rs rt 0 MULTU
000000 00 0000 0000 011001
6 5 5 10 6

Format:
MULTU rs, rt
Description:

The contents of general register rs and the contents of general register rt are multiplied, treating both operands as

unsigned values.

No overflow exception occurs under any circumstances.

be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is loaded into special register LO, and the
high-order word of the double result is loaded into special register H/.

If either of the two preceding instructions is MFHI or MFLO, the results of these instructions are undefined.
Correct operation requires separating reads of Hf or LO from writes by a minimum of two instructions.

In 64-bit mode, the operands must

Operation:
32 T-22 LO < undefined
H < undefined
T-1: LO < undefined
H <- undefined
T t <~ (0| GPR [rs]) * (0]| GPR [n])
LO <t310
H <ts3.32
64 T-22 LO < undefined
HI < undefined
T-1: LO < undefined
HI < undefined
T t < (0]| GPR [rs]3+..0) * (O || GPR [rt}a1.0)
LO < (tsn*{ltar0
H < (ts3)™ || teo.2

Exceptions:

None

481

CHAPTER 24 CPU INSTRUCTION SET DETAILS

NOR Nor NOR

KE 26 25 21 20 16 15 11 10 65 0
SPECIAL s rt rd 0 NOR
000000 00000 100111

6 5 5 5 5 6
Format:
NOR rd, rs, 1t
Description:

The contents of general register rs are combined with the contents of general register rt in a bit-wise logicai NOR
operation. The result is placed into generaf register rd.

Operation:

3264 T GPR[rd] < GPR [rs] nor GPR [r]

Exceptions:

None

482

CHAPTER 24 CPU INSTRUCTION SET DETAILS

OR Or OR

3H 26 25 21 20 16 15 11 10 65 0
SPECIAL rs t rd 0 OR
000000 00000 100101

6 5 5 ‘ 5 5 6
Format:
ORd, rs, rt
Description:

The contents of general register rs are combined with the contents of general register t in a bit-wise logical OR
operation. The resuft is placed into general register rd.

Operation:

3264 T GPR[rd] < GPR [rs] or GPR [rt]

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

ORI Or Immediate ORI

3 26 25 21 20 16 15 0
ORI . .
001101 rs rt immediate
6 5 5 16
Format:

ORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register rs in a bit-wise logical
OR operation. The result is placed into general register rt.

Operation:

2”2 T GPR [rt] = GPR [rs]s1..1s || {immediate or GPR [rs]ss. .0}

64 T. GPR[r] < GPR [rsks:..16 || (immediate or GPR [rs]:s. .0}

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SB Store Byte SB

31 26 25 21 20 16 15 0
sB
101000 base rt offset
6 5 5 16
Format:

SB it, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The least-significant byte of register i is stored at the effective address.

Operation:

32 T vAddr < {(offsetis)"® || offsetis o) + GPR [base]
(pAddr, uncached) < AddressTranslation (vAddr, DATA)
pAddr <- pAddresze - 1.3 || (PAddr2 o Xor (ReverseEndian’))
byte < vAddrz. o xor BigEndianCPU3
data <- GPR [t)ss- s+ byw..0 J| 0° 7
StoreMemory {uncached, BYTE, data, pAddr, vAddr, DATA)

64 T vAddr < ((offsetis)* || offsetss o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresze -1.3 || (PAddr2. o Xor (ReverseEndian’))
byte <- vAddrz..o Xor BigEndianCPU?
data <- GPR [ft]es. s bye. 0 || 0° "1
StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SD Store Doubleword SD
31 26 25 21 20 16 15 0
sSD
111111 base rt offset
6 5 5 16
Format:

SD rt, offset (base)

Description:
The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of general register rt are stored at the memory location specified by the effective address.
If either of the three ieast-significant bits of the effective address are non-zero, an address efror exception occurs.

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T vAddr < {(offsetis)*’ || offsetss o) + GPR [base]
{pAddr, uncached) <- AddressTranslation (vAddr, DATA)
data <- GPR [rt]
StoreMemary {uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error axception

Address error exception

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SDL Store Doubleword Left SDL
K] | 26 25 21 20 16 15
SDL
101100 base rt offset
6 5 5 16
Format:

SDL rt, offset (base)

Description:

This instruction can be used with the SDR instruction to store the contents of a register into eight consecutive
bytes of memory, when the bytes cross a doubleword boundary. SDL stores the left portion of the register into
the appropriate part of the high-order doubleword of memory; SDR stores the right portion of the register into the

appropriate part of the low-order doubleword.

The SDL instruction adds its sign-extended 16-bit offse! to the contents of general register base to form a virtual
It alters only the ward in memory which contains that byte.

address which may specify an arbitrary byte.
one to four bytes will be stored, depending on the starting byte specified.

From

Conceptually, it starts at the most-significant byte of the register and copies it to the specified byte in memory,
then it copies bytes from register to memory until it reaches the low-order byte of the word in memory.

-No address error exceptions due to alignment are possible.

address 8

address O

address 8

address 0

memory
15141351211 }10 8

before
716|5|1413]2 0
1511413 |12[11 |10
716|5|14]|3]2 0

register

O|E

F

SDL $24, 8 {$0)
A after 4———’/

$24

487

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SDL Store Doubleword Left SDL
(Continued)

This operation is only defined for the VR4101 operating in 64-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T vAddr < ((offsetis)” || offsetss. o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA}
pAddr <- pAddresze -1..3 || (pAddrz_o xor ReverseEndian’)
if BigEndianMem = 0 then
pAddr < pAddrar..a || 0°
endif
byte <- vAddrz_o xor BigEndianCPU®
data < 0% % ™™ || GPR [rt)es..56- 2" byw
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SDL Store Doubleword Left SDL
(Continued)

Given & doubleword in a register and a doubleward in memory, the operation of SDL is as follows:

SDL
Register A B c D E F G H
Memory | J K L M N o] P

vAddra o BigEndianCPU =0
destination type | offset
(LEM)
o | JKLMNOA | O 0
1 | JKLMNAB | 1 0
2 | JKLMABC | 2 o
3 | JKLABCD | 3 0
4 I JKABCDE | 4 0
5 t JABCDEF | § 0
6 } ABCDEFG | 6 0
7 ABCDEFGH | 7 0

LEM Little-endian memory (BigEndianMem = 0)
Type AccessType (see Table 2-2) sent to memory
Offset pAddrz o sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SDR

Store Doubleword Right

SDR

3 26 25

21 20

16 15

SDR
101101

base

offset

6

16

Format:

SDR n, offset (base)

Description:

This instruction can be used with the SDL instruction to store the contents of a register into eight consecutive
bytes of memory, when the bytes cross a boundary between two doublewords. SDR stores the right portion of
the register into the appropriate part of the low-order doubleword; SDL stores the left portion of the register into the
appropriate part of the low-order doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual

address which may specify an arbitrary byte.

It alters only the word in memory which contains that byte.

one to eight bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the least-significant {rightmost) byte of the register and copies it to the specified byte in
memory; then it copies bytes from register to memory until it reaches the high-order byte of the word in memory.
No address error exceptions due to alignment are possible.

From

before

SDR $24, 1 ($0)

memaory
address 8 15114113 |12(11]10 B
address 0 7|6|5]4|3]|2 0
address 8 15|14 1131|1211 |10 8
address 0 B|C|D|E|F|G

register

[

Blc

D|E|F|G|HJ $24

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SDR Store Doubleword Right SDR
(Continued)

This operation is only defined for the VR4101 operating in 84-bit mode. Execution of this instruction in 32-bit user
or supervisor mode causes a reserved instruction exception.

Operation:

64 T vAddr < ((offsetis)"® || offsetis o) + GPR [base]
{pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr < pAddresize - 1..3 || (pAddrz. o xor ReverseEndian’)
if BigEndianMem = 0 then
pAddr <- pAddresze 1.3 || 0°
endif
byte <- vAddrz. o xor BigEndanCPU:'
data < GPR [rt]es -2~ tye [| 0% "
StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr, DATA)

- 491

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SDR Store Doubleword Right SDR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SDR is as follows:

SDR
Register A B c D E F G H
Memory l J K L M N O P

vAddra o BigEndianCPU = 0

destination type| offset

{LEM)
0

ABCDEFGH
BCDEFGHP
CDEFGHOP
DEFGHNOP
EFGHMNOP
FGHLMNOP
GHKLMNOP
HJKLMNOP

N AR WN QO
O =2 N WHEONOW-
~NOO A WN -

LEM Little-endian memory (BigEndianMem = 0)
Type AccessTyps (see Table 2-2) sent to memory
Offsel pAddrz g sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved instruction exception (VR4101 in 32-bit user mode, VR4101 in 32-bit supervisor mode)

492

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SH Store Halfword SH
31 26 25 21 20 16 15 0
SH
101001 base rt offset
6 5 5 16
Format:

SH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form an unsigned effective

address. The least-significant halfword of register rt is stored at the effective address.

of the effective address is non-zero, an address error exception occurs.

Operation:

Ifthe least-significant bit

2 T

vAddr <- {(offsetss)'° || offsetss o) + GPR [base]

(pAddr, uncached) < AddressTranslation (vAddr, DATA)

pAddr <- pAddresize - 1..3 || (pAddrz..o xor (ReverseEndian’ || 0))
byte < vAddrz. o xor (BigEndianCPU’ || 0)

data <- GPR [r]e3- - bys..0 || 0° °

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

vAddr <- ({offset:s)*® || offsetis o) + GPR [base]

{pAddr, uncached) < AddressTranslation (vAddr, DATA)

pAddr <- pAddreszz -1..3 || (pAddrz. o xor (ReverseEndian’ || 0))
byte <- vAddrz. o xor (BigEndianCPU2 Il 0)

data <- GPR [Ms3- & byw..o || 0°

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA})

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception

Bus error exception

Address erro

r exception

493

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SLL Shift Left Logical SLL
31 26 25 21 20 16 15 11 10 65 0
SPECIAL SLL
000000 rs rd sa 000000
8 5 5 5 8

Format:

SLL rd, rt, sa

Dascription:

The contents of general register 1t are shifted left by sa bits, inserting zeros into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register. It is sign extended for
all shift amounts, including zero, SLL with zero shift amount truncates a 64-bit value to 32 bits and then sign
extends this 32-bit value. SLL, unlike nearly all other word operations, does not require an operand to be a

properly sign-extended word value to produce a valid sign-extended word result.

Operation:

32 T GPR[rd} < GPR [Mt1-se.0 | 0"

64 T. s<0fsa
temp <- GPR [rt]s1-s.0) 0°
GPR [rd] < (tempa1)*’ || temp

Exceptions:

None

Remark SLL with a shift amount of zero may be treated as a NOP by some assemblers, at some optimization
levels. if using SLL with a zero shift to truncate 64-bit values, check the assembler you are using.

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SLLV

Shift Left Logical Variable

SLLV

kY| 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 rd 0 SLLV
000000 00000 00000 000100

6 5 5 5 6
Format:
SLLV rd, rt, rs
Description:

The contents of general register rt are shifted left the number of bits specified by the low-order five bits contained

in ganeral register rs, inserting zeros into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign-extended when placed in the destination register.

it is sign extended for

all shift amounts, including zero; SLLV with zero shift amount truncates a 64-bit value to 32 bits and then sign
extends this 32-bit value. SLLV, unlike nearly all other word operations, does not require an operand to be a
properly sign-extended word vaiue to produce a valid sign-extended word result.

Operation:

32 T s <- GPR [rs]s 0
GPR [rd} <- GPR [t]31-s).0 || 0°

64 T s< 0| GPR[rsls o
temp <- GPR [rt]31-5.0 || 0°
GPR [rd] <- (tempa1)™ || temp

Exceptions:

None

Remark SLLV with a shift amount of zero may be treated as a NOP by some assemblers, at some optimization
leveis. [f using SLLV with a zero shift to truncate 64-bit values, check the assembler you are using.

495

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SLT Set On Less Than SLT

31 26 25 2120 16 15 11 10 65 0
SPECIAL rs t rd 0 SLT
000000 00000 101010

6 5 5 S] 6
Format:
SLTrd, rs, it
Description:

The contents of general register rt are subtracted from the contents of general register rs. Considering both
quantities as signed integers, if the contents of general register rs are less than the contents of general register 1,
the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction
used during the comparison overflows.

Operation:

32 T if GPR[re] < GPR [rt] then
GPR [rd] <- 0*' || 1
else
GPR [rd] <- 0%
endif

64 T if GPR[rs) < GPR [rt] then
GPR [rd] <- 0% |t 1
else
GPR [rd] <- 0%
endif

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SLTI Set On Less Than Immediate SLTi
3 26 25 21 20 18 15 0
0 OS1L.(I;I1 0 rs it immediate
6 5 5 16
Format:

SLTI i, rs, immediate

Description:

The 16-bit inmediate is sign-extended and subtracted from the contents of general register rs.

Considering both

quantities as signed integers, if rs is less than the sign-extended immediate, the result is set to one; otherwise the

result is set to Zero.
The result is placed into general register .

No integer overflow exception occurs under any circumstances.

used during the comparison overflows.

Operation:

The comparison is valid even if the subtraction

32 T it GPR[rs] < (immediate:s)'® | immediatess.o then
GPR [rd] <- 0*' || 1
else
GPR [rd] < 0%
endif

B84 T if GPR[rs] < (immediateis)* || immediatess. o then
GPR [rd] < 0% || 1
else
GPR [rd] <- 0
endif

Exceptions:

None

407

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SLTIU Set On Less Than Immediate Unsigned SLTIU
31 26 25 21 20 16 15 0
0 (? I;T[:l: 1 rs rt immediate
8 5 5 16
Format:

SLTIU i, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register rs. Considering both
quantities as unsigned integers, if rs is less than the sign-extended immediate, the result is set to one; otherwise
the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction
used during the comparison overflows. '

Operation:

32 T if(0]|GPR[rs]) <(0]| (immediatess)'® || immediatess o) then
GPR [rd] <- 0°' || 1
else
GPR [rd] <- 0%
endif

64 T it (0] GPR [rs]) < (O] (immedia‘.rtew)“B {| immedkatess o) then
GPR {rd] =- 0% 1
else
GPR [rd] <- 0**
endif

Exceptions:

None

498

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SLTU Set On Less Than Unsigned SLTU
31 26 25 21 20 16 15 1110 65 0
SPECIAL 0 SLTU
000000 rs n rd 00000 101011
6 5 5 5 5 6

Format:

SLTUrd, rs, 1t

Description:

The contents of general register rt are subtracted from the contents of general register rs. Considering both
quantities as unsigned integers, if the contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid even if the subtraction
used during the comparison overflows.

Operation:

32 T if(0]| GPR[rs)) < Q| GPR[r] then
GPR [rd} < 0°* || 1
else
GPR [rd] <- 0%
endif

64 T if(0{| GPR[rs]) <0 || GPR[rt] then
GPR [rd] < 0% || 1
else
GPR [rd] <- 0%
endif

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SRA Shift Right Arithmetic SRA
31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 SRA
000000 00000 it rd sa 000011
6 5 5 5 5 -]

Format:

SRATd, n, sa

Description:

The contents of general register st are shifted right by sa bits, sign-extending the high-order bits.

The result is placed in register rd.
In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T GPRI[rd] < (GPR [rt]s1)™ || GPR [rt]s1..e0

64 T s<0fsa
temp < (GPR [rt]s1)" || GPR [rfat..s
GFR [rd] < (temps1)* || temp

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SRAV Shift Right Arithmetic Variable SRAV
31 26 25 21 20 16 15 1110 65 0
SPECIAL s ft d 0 SRAV
000000 00Qoo0 000111
5] 5 5 5 5 6

Formmat:

SRAV d, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits spacified by the low-order five bits of
general register rs, sign-extending the high-order bits.

The result is placed in register rd.
In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T s< GPR[msh.o
GPR [rd] <- (GPR [rt]a1)° || GPR [rt]a1..s

64 T s < GPR [rsls.0
temp < (GPR [rt]s)" || GPR [t]a1. s
GPR [rd] <- (tempa1)*” || temp

Exceptions:

None

501

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SRL Shift Right Logical SRL

3 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 t rd sa SRi.
000000 00000 000010

6 5 5 5 5 6
Format:
SRLd, i, sa
Description:

The contents of general register rt are shifted right by se bits, inserting zeros into the high-order bits.
The result is placed in register rd.
In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T GPR[rd] <- 0™ GPR [rt}21 sa

64 T s<0|sa
temp < 0° || GPR [rt]a1.a
GPR [rd] < (temps1)** || temp

Exceptions:

None

502

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SRLV

Shift Right Logical Variable

SRLV

3 26 25 21 20 16 15 11 10 65 0
SPECIAL rs rt rd 0 SRLV
000000 00000 000110

8 5 5 5 5 6
Format:
SRLVrd it rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the low-order five bits of

general register rs, inserting zeros into the high-order bits.
The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T s <- GPR [rsh.o
GPR [rd) <- 0" || GPR [f]a1.s

64 T s <- GPR[rsls o
temp <- 0° || GPR [rt]a1..s
GPR [rd] <- {tempa1)** || temp

Exceptions:

None

503

CHAPTER 24 CPU INSTRUCTION SET DETAILS

STANDBY Standby STANDBY

K| 2625 24 65 0
COPO co 0 STANDBY
010000 1 000 0000 0000 0000 0000 100001
6 1 19 6
Format:
STANDBY
Description:

STANDBRY instruction starts mode transition from Fullspeed mode to Standby mode.

When the STANDBY instruction finishes the WB stage, the VR4101 wait by the SysAD bus is idle state, after then
the internal clocks will shut down, thus freezing the pipeline. The PLL, Timer/Interrupt clocks and the internal bus
clocks (TClock and MasterOut) will continue to run.

Once the VR4101 is in Standby mode, any interrupt, including the internally generated timer interrupt, NMI,
SoftReset, and ColdReset will cause the VR4101 to exit Standby mode and to enter Fullspeed mode.

Operation:

3264 T
T+1; Standby operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Chapter 15 for details about the operation of the peripheral units at mode transition.

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SUB Subtract sSuB
3 26 25 2120 16 15 11 10 65 0
SPECIAL rs t rd 0 sSUB
000000 00000 100010
6 5 5 5 5 6

Format:

SUBrd, rs, it

Description:

The contents of general register it are subtracted from the contents of general register rs to form a result. The

result is placed into general register rd.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUBU instruction is that SUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 30 and 31 differ (2's complement overfiow}.
The destination register rd is not modified when an integer overflow exception occurs.

Operation:

32

64

T GPR [rd] < GPR [rs] - GPR [rt]

T: temp <- GPR [rs] - GPR [n]
GPR {rd] <- (temps1)** || tempas..0

Exceptions:

Integer overflow exception

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SuBU Subtract Unsigned SUBU

N 26 25 2120 16 15 11 10 65 0
SPECIAL 0 suBu
000000 s t rd 00000 100011

6 5 5 5 5 6
Format:
SuUBUrd, rs, 1t

Description:

The contents of general register rt are subtracted from the contents of general register rs to form a resuit.
The result is placed into general register rd.
In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUB instruction is that SUBU never traps on overflow. No
integer overflow exception occurs under any circumstances.

Operation:

32 T GPR[rd] < GPR[rs]- GPR [r]

64 T temp <- GPR [rs] - GPR [rt]
GPR [rd] <- (tempa1)* || temps1..0

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SUSPEND Suspend SUSPEND

M 2625 24 65 0
COPO co 0 SUSPEND
010000 1 000 0000 0000 0000 0000 100010
6 1 19 6
Format:
SUSPEND

Description:

SUSPEND instruction starts mode transition from Fullspeed made to Suspend mode.

When the SUSPEND instruction finishes the WB stage, the VR4101 wait by the SysAD bus is idle state, after then
the internal clocks inciuding the TClock will shut down, thus freezing the pipeline. The PLL, Timer/Interrupt
clocks and MasterOut, will continue to run.

Once the VR4101 is in Suspend mode, any interrupt, inciuding the internally generated timer interrupt, NMI,
SoftReset and ColdReset will cause the VR4101 to exit Suspend mode and to enter Fullspeed mode.

Operation:

264 T
T+1: Suspend operation ()

Exceptions:

Coprocessor unusable exception

Remark Refer to Chapter 15 for details about the operation of the peripheral units at mode transition.

507

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SW Store Word SW

k| 26 25 21 20 16 15 0
SW
161011 base rt offsat
6 5 5 16
Format:

SW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form a virtual address.
The contents of general register 1t are stored at the memory location specified by the effective address.

If either of the two least-significant bits of the effective address are non-zero, an address error exception occurs.

Operation:

32 T vAddr < ((offsetis)'® || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresce - 1.3 || (pAddrz. o Xor (ReverseEndian || 0%))
byte <- vAddrz o xor (BigEndianCPU || 0%)
data < GPR [rtss. s oy [| 0 ™™
StoreMemary (uncached, WORD, data, pAddr, vAddr, DATA)

84 T. vAddr < ((offsetis)* || offsetis. o) + GPR [base]
{pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresze. 1.3 || (pAddr2..0 Xof (ReverseEndian j| 07))
byte <- vAddr: .o xor (BigEndianCPU |} 0%
data < GPR [rtles-s by || 0° ™™
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA}

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SWL Store Word Left SWL
Kh | 26 25 2120 16 15 0
’ 081"\3'1 0 base rt offset
6 5 5 16
Format:

SWL rt, offset (base)

Description:

This instruction can be used with the SWR instruction to store the contents of a register into four consecutive
bytes of memory, when the bytes cross a word boundary. SWL stores the left portion of the register into the
appropriate part of the high-order word of memory, SWR stores the right portion of the register into the

appropriate part of the low-order word.
The SWL instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual

address which may specify an arbitrary byte.
one to four bytes will be stored, depending on the starting byte specified.

it alters only the word in memory which contains that byte.

From

Conceptually, it starts at the most-significant byte of the register and copies it to the specified byte in memory;
then it copies bytes from register to memory until it reaches the low-order byte of the word in memory.

No address error exceptions due to alignment are possible.

memory
address 4 7 6 5 4 register
before
address 0 2 1 0 B c
SWL $24, 4 ($0)
address 4 7 6 5 A
gitar
address O 3 2 1 0

$24

CHAPTER 24 CPU INSTRUCTION SET DETALLS

SWL

Operation:

Store Word Left
(Continued)

SWL

32

T

vAddr < ({offsetis)'® || offsetis_o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr < pAddresze - 1.3 || (PAddrz. o xor ReverseEndian®)
if BigEndianMem = 0 then
pAddr <- pAddresize - 1..2 || 0°
andif
byte <- vAddr1_o Xor BigEndianCPU?
if (vAddrz xor BigEndignCPU) = 0 then
data <- 0% || 0** " ™™ || GPR [rt]s1. 248" tye
else
data <- 0°* ¥ ™™ || GPR [Mt]51_24-8°bys || 0%
endif
StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

vAddr < ((offsetis)*® || offsetis..0) + GPR [base)
{pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresize - 1.3 || (pAddr2 o xor ReverseEndian’)
if BigEndianMem = 0 then
pAddr <- pAddresize-1..2 || O°
endif
byte <- vAddri_ o xor BigEndianCPU’
if {(vAddrz xor BigendianCPU) = 0 then
data <- 0*°] p24 -2 bre | GPR [rt]a1..24- 8" oyte
else
data <- 0%*"%" ™™ || GPR [rt]31. 248 bym || 0%
endif
StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

510

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SWL

Given a doubteword in a register and a doubleword in memory, the operation of SWL is as follows:

Store Word Left

(Continued)

SWL

Register

Memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error exception
Address error exception

vAddrz o

BigEndianCPU =0

destination

type

offset
{LEM)

- D bhEWN =D

JKLMNOE
JKLMNEF
JKLMEFG
JKLEFGH
JKEMNOP
JEFMNOP
EFGMNOP

EFGHMNGCP

WN 2L 22O

0

A b b A OOO

LEM Little-endian memory {BigEndianMem = Q)
Type AccessType (see Table 2-2) sent to memory

Cffset pAddr2_o sent to memaory

SWL

511

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SWR Store Word Right SWR

31 26 25 21 20 16 15 0
SWR
101110 base rt offset
6 5 5 16
Format:

SWR 1t, offset (base)

Description:

This instruction can be used with the SWI_ instruction to store the contents of a register into four consecutive bytes
of memory, when the bytes cross a boundary between two words. SWR stores the right portion of the register
into the appropriate part of the low-order word; SWL stores the left portion of the register into the appropriate part
of the low-order word of memory.

The SWR instruction adds its sign-extended 16-bit offset to the contents of general register base to form a virtual
address which may specify an arbitrary byte. [t alters only the word in memory which contains that byte. From
one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the least-significant {rightmost) byte of the register and copies it to the specified byte in
memory, then copies bytes from register to memory until #t reaches the high-order byte of the word In memory.

No address error exceptions due to alignment are possible.

memory
address 4 7 6 5 4 register
before
address 0 3 2 1 0 A B | ¢ | o |s
SWR $24, 1 ($0)
address 4 7 6 5 4
after
address 0 B c D 0

512

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SWR

Operation:

Store Word Right
(Continued)

SWR

3z

T:

vAddr < ((offsetis)'® || offsetis.o) + GPR [base]
(pAddr, uncached) <- AddressTranslation (vAddr, DATA)
pAddr <- pAddresze- 1. 2 || (pAddrz. o xor ReverseEndian’)
if BigEndianMem = 0 then
pAddr < pAddresize -1 .z || 0°
endif
byte <- vAddri o xor BigEndianCPU?
if (vAddr2 xor BigEndianCPU) = Q then
data <- 0% [| GPR [rt]s1-6*bym..o [| 0* ™™
else
data <- GPR [rtlst e~y || 0% ™™ || 0%
endif
StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

vAddr <- ((offsetis)® || offsetis o) + GPR [base]
(pAddr, uncached) <- AddressTranslation {vAddr, DATA)
pAddr < pAddresce - 1.2 || {PAddrz..o xor ReverseEndian’)
if BigEndianMem = 0 then
pAddr <- pAddresze.1..2 || 07
endif
byte <- vAddrs. o xor BigEndianCPU?
if (vAddrz xor BigendianCPU) = 0 then
data <- 0% || GPR [rt]31- byw o || o=
else
data <- GPR [rt]s1-e-oye || 0* ™™ || 0%
endif
StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

513

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SWR Store Word Right SWR
(Continued)

Given a doubleword in a register and a doubleword in memory, the operation of SWR is as follows:

SWR
Register A B c D E F G H
Memory | J K L M N o] P
vAddrz o BigEndianCPU =0
destination type| offset
{LEM)
0 | JKLEFGH | 3 0
1 | JKLFGHP | 2 1
2 Il JKLGHOP | 1 2
3 Il JKLHNOP | O 3
4 EFGHMNOP | 3 4
5 FGHLMNOP | 2 5
6 GHKLMNOP | 1 6
7 HJKLMNOP | 0O 7

LEM Little-endian memory {BigendianMam = 0}
Type AccessType (see Table 2-2} sent to memory
Offsot pAddr; g sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception
Bus error excepticn
Address error exception

514

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SYNC Synchronize : SYNC

K31 28 25 65 0
SPECIAL 0 SYNC
000000 0000 0000 0OO00 Q000 00O0COC 001111

6 20 &
Format:
SYNC
Description:

The SYNC instruction is executed as a NOP on the VR4101. This operation maintains compatibility with code
compiled for the R4000.

Operation:

3264 T. SyncOperation ()

Exceptions:

None

515

CHAPTER 24 CPU INSTRUCTION SET DETAILS

SYSCALL System Call SYSCALL
3 26 25 65 0
SPECIAL SYSCALL
000000 Code 001100
6 20 6

Format:
SYSCALL
Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.
The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction,

Operation:

3264 T: SystemCallException

Exceptions:

System Call exception

516

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TEQ Trap If Equal TEQ

Kh| 26 25 2120 16 15 65 0
SPECIAL s t code TEQ
000000 110100

<] 5 5 10 6
Format:
TEGTs, 1t
Description:

The contents of general register /f are compared to general register rs. If the contents of general register rs are
equal to the contents of general register rt, a trap exception occurs.

The code field is avaitable for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

3264 T. if GPR([rs] = GPR [rt] then
TrapException
endif

Exceptions:

Trap exception

517

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TEQI

Trap If Equal Immediate

TEQI

3 26 25 21 20 16 15 1]
REGIMM rs TEQI immediate
000001 01100
6 5 5 16
Format:

TEQI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.

general register rs are equal to the sign-extended immediate, a trap exception occurs.

Operation:

If the contents of

endif

endif

32 T if GPR[rs] = (immediate:s)'® || immediatess.o then
TrapException

64 T if GPR[rs] = (mmediatews)*® || immediatess.o then
TrapException

Exceptions:

Trap exception

518

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TGE Trap If Greater Than Or Equal TGE
3 26 25 21 20 16 15 65 0
SPECIAL s 4 code TGE
000000 110000
6 5 5 10 6

Format:

TGE rs, 1t

Description:

~ The contents of general register rt are compared to the contents of general register rs. Considering both
quantities as signed integers, if the contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

3264 T: if GPR [rs] > GPR [rt] then
TrapException
endif

Exceptions:

Trap exception

518

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TGEI Trap If Greater Than Or Equal Immediate TGEI
31 26 25 21 20 16 15 0
REGIMM rs TGEl immediate
000001 01000
6 5 5 16
Format:

TGE] rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both
quantities as signed integers, if the contents of general register rs are greater than or equal to the sign-extended
immediate, a trap exception occurs.

Operation:

32 T if GPR[rs] > (immediatess)'® || immediatess. o then
TrapException ‘
endif

64 T if GPR[rs] > (immediatess) || immediatess. o then
TrapException
endif

Exceptions:

Trap exception

520

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TGEIU Trap If Greater Than Or Equal Immediate Unsigned TGEIU

3 26 25 21 20 16 15 0
REGIMM TGEIU —
000001 rs 01001 immediate
& S 5 16
Format:

TGEIU rs, immediate

Description:

The 16-hit immediate is sign-extended and compared to the contents of general register rs. Considering both
quantities as unsigned integers, if the contents of general register rs are greater than or equal to the sign-extended
immediate, a trap exception oceurs.

Operation:

32

T it (0]} GPR[rs]} > (0 || (immediatess)'® || immediatess o) then

TrapException
endif

T if(0]) GPR [rs]) > (0 }] (immediate:s)*® || immediatess..o) then

TrapException
endif

Exceptions:

Trap exception

521

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TGEU Trap If Greater Than Or Equal Unsigned TGEU
31 26 25 2120 16 15 65 0
SPECIAL ' TGEU
000000 rs t code 110001
6 5 5 10 6

Format:

TGEU rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs. Considering both
quantities as unsigned integers, if the contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

3264 T. if (0] GPR[rs]) = (0 || GPR [rt]) then
TrapException
endif

Exceptions:

Trap exception

522

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TLBP Probe TLB For Matching Entry TLBP
31 2625 24 65 0
COPO co 0 TLBP
010000 1 000 0000 O00OO0 0OOOO0 0000 001000
6 1 19 6
Format:
TLBP

Description:

- The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi
register. If no TLB entry matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references associated with the instruction immediately
after a TLBP instruction, nor is the operation specified if more than one TLB entry matches.

Operation:

32 T Index < 1] 0® || Undefined®
foriin O..TLBEntries - 1
- if (TLB [i]es. .77 = EntryHis1.13) and (TLB [i]zs or
(TLS8 [i]71.84 = EntryHiz..0)) then
Index <- 0%° | is .0
endif
endfor

64 T Index < 1] 0% | Undefined

for i in ... TLBEntries - 1
if (TLB [ilse7. 141 and not (0" || TLB [i}zse z08))
= (EntryHiso. 13) and not (0" || TLB [i]z+s. 20¢)) and
(TLB [i]140 of (TLB [i}135..12s = EntryHiz..0)} then

Index < 0%° is. o

endif

endfor

Exceptions:

Coprocessor unusable exception

- 523

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TLBR Read Indexed TLB Entry TLBR

3 26 25 24 65 0
COPO co 0 TLBR
010000 1 000 0000 0000 O0O00 OO0OO 000001
6 1 19 6

Format:
TLBR
Description:

The G bit (which controls ASID matching) read from the TLB is written into both of the EntryLo0 and EntryLo1
registers.

The EntryHi and Entryl o registers are loaded with the contents of the TLB antry pointed at by the contents of the
TLB Index register. The operation is invalld (and the results are unspecified) if the contents of the TLB Index
register are greater than the number of TLB entries in the processor.

Operation:

32 T PageMask <- TLB [Indexs. o]127..96
EntryHi <- TLB [Indexs...oJes..s4 and not TLB [Indexs..o]iz7..e6
EntryLo1 <- TLB [indexs. o]es. 33 || TLB [Indexs. o)7e
EntryLoO < TLB [Indexs. o)s1.. 1 || TLB [Indexs. o]7e

64 T PageMask < TLB [Indexs_o}ss 192
EntryHi < TLB [Indexs..0]191..128 and not TLB [Indexs. o]zss. 192
EntryLo1 <- TLB {Indexs. o]127. es || TLB [Indexs. o]1a0
EntryLo0 <- TLB [Indexs. o)es..1 || TLB [Indexs. cliao

Exceptions:

Coprocessor unusable exception

524

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TLBWI Write Indexed TLB Entry TLBWI
N 2625 24 65 0
COPO co 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010
6 1 19 6

Format:
TLBWI
Description:

The TLB entry pointed at by the contents of the TLB Index register is loaded with the contents of the EntryHi and

EntryLo registers.

The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and EntryLo1 registers.

The operation is invalid (and the results are unspecified) if the contents of the TLB Index register are greater than
the number of TLB entries in the processor.

Operation:

3264 T: TLB[Indexs o] <-

PageMask || (EntryHi and not PageMask) || EntryLo1 [] EntryLoQ

Exceptions:

Coprocessor unusable exception

525

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TLBWR Write Random TLB Entry TLBWR

K} 26 25 24 65 0
COPO co ¢ TLBWR
010000 1 000 0000 oO0OOCC 0000 00O0O 000110
6 1 19 6
Format:
TLBWR
Description:

The TLB entry pointed at by the contents of the TLB Random register is loaded with the contents of the EntryHi
and EntrylLo registers. ’
The G bit of the TLB is written with the logical AND of the G bits in the EntryLo0 and EntryLo1 registers.

Operation:

3264 T: TLB[Randoms o] <-
PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Exceptions:

Coprocessor unusable exception

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TLT Trap If Less Than TLT
31 26 25 21 20 16 15 65 0
SPECIAL TLT
000000 rs " code 110010
6 5 5 10 5]

Format:

TLT rs, it

Description:

The contents of general register /f are compared to general register rs.

Considering both guantities as signed

integers, if the contents of general register rs are less than the contents of general register rt, a trap exception

occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by

loading the contents of the memory word containing the instruction.

Operation:

endif

TrapException

3264 T. if GPR[rs] < GPR [rt] then

Exceptions:

Trap exception

527

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TLTI Trap If Less Than Immediate TLTI
3 26 25 21 20 16 15 0
REGIMM TLTI . .
000001 rs 01010 immediate
6 5 5 16
Format:

TLTI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both
quantities as signed integers, if the contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:

32 T if GPR[rs] < (immediatess)' || immediatess_o then
TrapException
endif

64 T if GPR [r8] < (immediatess)*® || immediates o then
TrapException
endif

Exceptions:

Trap exception

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TLTIU Trap If Less Than Immediate Unsigned TLTIU
Y| 26 25 2120 16 15 0
REGIMM TLTIV .
000001 rs 01011 immediate
6 5 5 16
Format:

TLTIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs. Considering both
quantities as unsigned integers, if the contents of general register rs are less than the sign-extended immediate, a

trap exception occurs.

Operation:

2 T if(0]| GPR[rs)) < (0 || (immediate:s)'® || immediatess. o) then

TrepException
endif

84 T if(0] GPR[rs]) < (0 || (mmediates)* || immediatess. o) then
TrapException
endif

Exceptions:

Trap exception

520

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TLTU Trap If Less Than Unsigned TLTU

3 26 25 21 20 16 15 65 0
SPECIAL rs t code TLTU
000000 1100114

6 5 5 10 8
Format:
TLTUrs, it
Dascription:

The contents of general register rt are compared to general register rs. Considering both quantities as unsigned
integers, if the contents of general register rs are less than the contents of general register /t, a trap exception
oceurs,

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

3264 T if (0| GPR{rs]} < {0 || GPR {rt]) then
TrapException
endif

Exceptions:

Trap exception

530

CHAPTER 24 CPU INSTRUCTION SET DETAILS

TNE Trap If Not Equal TNE

31 26 25 21 20 16 15 65 0
SPECIAL TNE
000000 rs n code 110110

B 5 5 10 3]
Format:
TNE s, rt

Description:

The contents of general register /t are compared to general register rs. If the contents of general register rs are
not equal to the contents of general register 1, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception handler only by
loading the contents of the memory word containing the instruction.

Operation:

3264 T. if GPR[rs] GPR [rt] then
TrapException
endif

Exceptions:

Trap exception

531

CHAPTER 24

CPU INSTRUCTION SET DETAILS

TNEI

Trap If Not Equal Immediate

TNEI

N 26 25 2120 16 15 0
REGIMM rs TNEI immediate
000001 01110
6 5 5 16
Format:

TNEI rs, immediate

Description:

The 16-bit immediale is sign-extended and compared to the contents of general register rs.

general register rs are not equal to the sign-extended immaediats, a trap exception occurs.

Operation:

If the contents of

endif

endf

32 T. if GPRrs] « (immediatess)'® || immediates o then
TrapException

84 T it GPR [rs] « (immediateis)"® || immediatess o then
TrapException

Exceptions:

Trap exception

532

CHAPTER 24 CPU INSTRUCTION SET DETAILS

XOR Exclusive Or XOR

31 26 25 21 20 16 15 11 10 65 0
SPECIAL 0 XOR
000000 rs t rd 00000 100110
6 5 5 5 5 6
Format:
XORd, rs, it
Description:

The contents of general register rs are combined with the contents of general register /1 in a bit-wise logical
exclusive OR operation.

The result is placed into general register rd.

Operation:

3284 T. GPR [rd] < GPR [rs] xor GFR [ri]

Exceptions:

Nane

CHAPTER 24 CPU INSTRUCTYTION SET DETAILS

XORI Exclusive OR Immediate XORI

3 26 25 21 20 16 15 0
XORI ,
001110 rs rt immediate
6 5 5 16
Format:

XORI rt, rs, immediate

Description:

The 16-bit immediate is zero-axtended and combined with the contents of general register rs in a bit-wise logical
exclusive OR operation.

The result is placed into general register 1.

Operation:

32 T. GPR[r]< GPR[rs] xor (0" || immediate)

64 T GPR [rt] <- GPR [rs] xor (0"8 || immediate)

Exceptions:

None

CHAPTER 24 CPU INSTRUCTION SET DETAILS

24.7

CPU INSTRUCTION OPCODE BIT ENCODING

The remainder of this chapter presents the opcode bit encoding for the CPU instruction set (ISA and extensions),

as implemented by the VR4101.

31..29

~N D O h W N - D

~N O O b W N =2 O

20...19

W N =2 O

Figure 24-2 lists the VR4101 Opcode Bit Encoding.

Figure 24-2. VR4101 Opcode Bit Encoding

28..26 Opcode
0 1 2 3 4 5 6 7
SPECIAL | REGIMM J JAL BEGQ BNE BLEZ BGTZ
ADD! ADDIU SLTI SLTHY ANDI ORI XORI LuI
COPO ™ . * BEQL BNEL BLEZL BGTZL
DADDIe | DADDIUE LDLs LDRe ~ . * * *
LB LH LWL Lw LBU LHU LWR Lwie
SB SH SwiL sw SDLe SDRe SWR CACHES
* x s * * L4 n LDe
* .4 T * * r n SDe
2.0 SPECIAL function
0 1 2 3 4 5 6 7
SLL N SRL SRA SLLV * SRLV SRAV
JR JALR * * SYSCALL| BREAK * SYNC
MFHI MTHI MFLO MTLO DSLLVe * DSRLVe | DSRAVe
MULT MULTU IV Divu DMULTe | DMULTUe| DDIVe DDiVUe
ADD ADDU suB SUBU AND OR XOR NOR
MADD18 | DMADD16 SLT SLTU DADDe | DADDUe | DSUBe | DSUBUe
TGE TGEU TLT TLTU TEQ * TNE *
DSLLe * DSRLe DSRA: | DSLL3Ze * DSRL32e | DSRA32e
18...16 REGIMM rt
0 1 2 3 4 5 6 7
BLTZ BGEZ BLTZL BGEZL * * * *
TGEI TGEIU TLTI TLTIU TEQ! * TNE! *
BLTZAL | BGEZAL | BLTZALL | BGEZALL * * * *
- - . . » P . .

535

CHAPTER 24 CPU INSTRUCTION SET DETAILS

Figure 24-2, (cont.) Vr4101 Opcode Bit Encoding

23..21 COPO rs
25, 24 0 1 2 3 4 5 6 7
0 MF ovre | v | vy | wmr | omme | v y
1 BC Y Y Y Y Y Y Y
2
3 co
18...16 COPO rt
20...19 0 1 2 3 4 5 6 7
0 BCF | BCT BeFL | BCTL | o y y ¥
1 Y Y ¥ Y ¥ Y Y Y
2 ¥ Y Y ¥ Y Y Y Y
3 Y ¥ Y Y ¥ ¥ ¥ Y
2.0 CPO Function
5.3 0 1 2 3 4 5 6 7
0 b TLBR | TLBWI | ¢ o ¢ |[TBwr]| 4
1 TLBP ¢ $ b b $) ¢
2 & ¢ ¢ ¢ b ¢ b $
3 ERET 3 ¢ ¢ $ ¢ ¢ $ ¢
4 ¢ |STANDB [susPenD [rsernate | ¢ ¢ ¢ ¢
5 4 ¢ b ¢ ¢ b $ $
6 ¢ ¢ $ ¢ ® L » ¢
7 ¢ $) o ¢ b $ ¢

Key:

Operation codes marked with an asterisk cause reserved instruction exceptions in all current
implementations and are reserved for future versions of the architecture.

Operation codes marked with a gamma cause a reserved instruction exception. They are reserved for
future versions of the architecture.

Operation codes marked with a delta are valid only for VR4101 processors with CP0 enabled, and cause a
reserved instruction exception on ather processors.

Operation codes marked with a phi are invalid but do not cause reserved instruction exceptions in VR4101
implementations.

Operation codes marked with a xi cause a reserved instruction exception on VrR4101 processar.
Operation codes marked with a chi are valid on R4x00 and VR4101 only.

Operation codes marked with epsilon are valid when the processor operating as a 84-bit processor. These
instructions will cause a reserved instruction exception if 64-bit operation is not enabled.

Operation codes marked with a pi are invalid and cause coprocessor unusable exception.

CHAPTER 25 VR4101 COPROCESSOR 0 HAZARDS

The VR4100 CPU core avoids contention of its internal resources by causing & pipeline interlock in such cases as
when the contents of the destination register of an instruction are used as a source in the succeeding instruction.
Therefore, instructions such as NOP must not be inserted between instructions.

However, interlocks do not occur on the operations related to the CPO registers and the TLB. Therefore,
contention of internal resources should be considered when compasing a program which manipulates the CPO
registers or the TLB. The CPO hazards define the number of NOP instructions which is required to avoid
contention of internal resources, or the number of instructions unrelated to contention. This chapter describes
the CPOQ hazards of the VR4100 CPU core.

The CP0 hazards of the VR4100 CPU core are equally or less stringent than those of the R4000; Table 25-1 lists
the Coprocessor 0 hazards of the VR4100 CPU core. Code which complies with these hazards will run without
medification on the R4000.

The contents of the CPO registers or the bits in the *Source™ column of this table can be used as a source after
they are fixed.

The contents of the CPO registers orf the bits in the "Destination® column of this table can be available as a
destination after they are stored.

Based on this table, the number of NOP instructions required between instructions related to the TLB is computed
by the following formula, and so is the number of instructions unrelated to contention:

{Destination Hazard number of A) - [{Source Hazard humber of B) + 1]

As an example, to compute the number of instructions required between an MTCO and a subsequent MFCO
instruction, this is:

(5) - (3 + 1) = 1 instructions

537

CHAPTER 25 VR4101 COPROCESSOR 0 HAZARDS

Table 25-1. Vr4101 Coprocessor 0 Hazards
Instruction or Event Source Destination
CP0 Data Used, No. of CP0 Data Written, No. of
Stage Used cycles Stage Available cycles
MTCO CPR {rd] 5
MFCO CPR [rd]
TLER Index, TLB PageMask, EntryHi, 5
EntryLo0, EntryLo1
TLBWI Index or Random, 2 TLB 5
PageMask, EntryHi,
TLBWR EntryLo0, EntryLo1
TLBP PageMask, EntryHi 2 Index 6
ERET EPC or ErrorEPC, TLB 2 Status [EXL, ERL]
Status 2
CACHE Index Load r TaglLo, TagHi, PErr 5
Tag
CACHE Index Store | TagLo, TagHi, PErr 3
Tag
CACHE Hit ops. cache line cache line 5
Load/Store EntryHi [ASID], Status 3
[KSU, EXL, ERL, RE],
Config [KO], TLB
Config [AD, EP]
WatchHi, WatchLo
Load/Store exception EPC, Status, Cause, 5
BadVAddr, Context, XContext
Instruction fetch EPC, Status 4
exception Cause, BadvVAddr, Context,
XContext
Instruction fetch EntryHi [ASID], Status 2
[KSU, EXL, ERL, RE],
Config [KO]
TLB
Coproc. usable test Status [CU, KSU, EXL, ERL] 2
Interrupt signals Cause [IP), Status {IM, IE, |2
sampled EXL, ERL]
TLE shutdown Status [TS] 2 {Inst.),
4 (Data)

538

CHAPTER 25 VR4101 COPROCESSOR 0 HAZARDS

Cautions 1. If the setting of the KO0 bit in the Config register is changed to uncached mode by MTCO, the
accessed memory area is switched to the uncached cne at the instruction fetch of the third
instruction after MTCO.

2. A stall of several instructions occurs if a jump or branch instruction is executed
immediately after the setting of the ITS bit in the Status register.

Remarks 1. The instruction following MTCO must not be MFCO.

2. The five instructions following MTCO to Status register that changes KSU and sets EXL and ERL
may be executed in the new mode, and not kernel mode. This can be avoided by setting EXL first,
leaving KSU set to kernel, and later changing KSU.

3. There must be two non-load, non-CACHE instructions between a store and a CACHE instruction
directed to the same primary cache line as the store.

The status during execution of the following instruction for which CP0 hazards must be considered is described
below.

{1) MTCO

Destination: The completion of writing to a destination register (CP0) of MTCO.
(2} MFCO

Source: The confirmation of a source register (CP0) of MFCO.
{3) TLBR

Source; The confirmation of the status of TLB and the Index register before the execution of TLBR.
Destination: The completion of writing to a destination register (CPO) of TLBR.

(4) TLBWI, TLBWR

Source; The confirmation of a source register of these instructions and registers used to specify a TLB entry.
Destination: The completion of writing to TLB by these instructions.

(5) TLBP

Source: The confirmation of the PageMask register and the EntryHi register before the execution of TLBP.
Destination: The completion of writing the result of execution of TLBP to the Index register.

(6) ERET

Source: The confirmation of registers containing information necessary for executing ERET.
Destination: The completion of the processor state transition by the execution of ERET.

{7) CACHE Index Load Tag

Destination. The completion of writing the results of execution of this instruction to the related registers.

{8} CACHE Index Store Tag

Source: The confirmation of registers containing information necessary for executing this instruction.

539

CHAPTER 25 Vr4101 COPROCESSOR 0 HAZARDS

(9) Coprocessor Usable Test

Source: The confirmation of modes set by the bits of the CPO registers in the "Source” column.

Examples 1. When accessing the CPO registers in User mode after the content of the CUO bit of the Status
register is modified, or when executing an instruction such as TLB instructions, CACHE
instructions, or branch instructions which use the resource of the CPQ.

2. When accessing the CPO registers in the operating mode set in the Status register after the KSU,
EXL, and ERL bits of the Status register are modified.

{10) Instruction Fetch

Source. The confirmation of the operating mode and TLB necessary for instruction fetch.

Examples 1. When changing the operating mode from User to Kernel and fetching instructions after the KSU,
EXL, and ERL bhits of the Status register are modified.

2. When fetching instructions using the modified TLB entry after TLB modification.

(11) Instruction Fetch Exception

Destination; The completion of writing to registers containing information related to the exception when an
exception occurs on instruction fetch.

{12) Interrupts

Source: The confirmation of registers judging the condition of occurrence of interrupt when an interrupt factor is
detected.

(13) Loads/Sores
Source: The confirmation of the operating mode related to the address generation of Load/Store instructions,

TLB entries, the cache mode set in the KO bit of the Config register, and the registers setting the
condition of occurrence of a Watch exception.

Example When Loads/Stores are executed in the kerne! field after changing the mode from User to Kernel.

{14) Load/Store Exception

Destination: The completion of writing to registers containing information related to the exception when an
exception occurs on load or store operation.

{15) TLB Shutdown
Destination: The completion of writing to the TS bit of the Status register when a TLB shutdown occurs.

CHAPTER 25 VR4101 COPROCESSOR 0 HAZARDS

Table 25-2 indicates examples of calculation.

Table 25-2. Calculation Example of CP0 Hazard and the Number of Instructions Inserted
Destination Source Contending | Number of | Formula

internal instructions

resource inserted
TLBWR/TLBWI TLBP TLB Entry 2 5-(2+1)
TLBWR/TLBWI Load or Store using newly modified TLB TLB Entry 1 5-(3+1)
TLBWR/TLBWI Instruction fetch using newly modified TLB | TLB Entry 2 5-{2+1)
MTCO, Status [CU] Coprocessor instruction which requires the | Status [CU] 2 5-{(2+1)

setting of CU

TLBR MFCO EntryHi EntryHi 1 5-(3+1)
MTCO EntrylLo0 TLBWR/TLBWI EntryLo0 2 5-(2+1)
TLBP MFCO index index 2 6-{(3+1)
MTCO EntryHi TLBP EntryHi 2 5-(2+1)
MTCO EPC ERET EPC 2 5-(2+1)
MTCO Status ERET Status 2 5-(2+1)
MTCO Status [IE] ™™ | Instruction which causes an interrupt Status [IE] 2 5-(2+1)

Note

The number of hazards is undefined if the instruction execution sequence is changed by exceptions. In

such a case, the minimum number of hazards until the IE bit value is confirmed may be the same as the

maximum number of hazards until an interrupt request occurs which is pending and enabled.

541

[MEMO]

CHAPTER 26 PLL PASSIVE COMPONENTS

The Phase Locked Loop circuit requires several passive components for proper operation, which are connected to
VooP and GNDP as illustrated in Figure 26-1.

Figure 26-1. Example of Connection of PLL Passive Components

Voo
R
VooP +
VRrR4101 —o | — C2 — C3
GNDP g
R
GND

Remarks1. C1, C2, C3 capacitors and R resistors are mounted on the printed circuit board.

2. Since the value for the components depends upon the application system, the
optimum values for each system should be decided after repeated experimentation.

It is essential to isolate the analog power and ground for the PLL circuit {VooP/GNDP) from the regular power and
ground (Voo/GND). Initial evaluations have yielded good results with the following values:

R=50Q C1=1tnF C2=2nF C3=10uF

Since the optimum values for the fiter components depend upon the application and the system noise
environment, these values should be considered as starting points for further experimentation within your specific
application. In addition, the chokes {inductors: L) can be considered for use as an alternative to the resistors (R)
for use in filtering the power supply.

543

[MEMO]

Numeric

16-bit device mode ... 189
8-bit device mode ... 188

A

AJ/D converter ... 285
accelerate data mode ... 78, 185
access data size ... 185
access types ... 24
AD bit ... 78, 185
ADCLK ... 20

generator ... 285
Address Error exception ... 105
addressing ... 13
address map ... 180
address terminals ... 183
address translation ... 56, 57, 58, 81
ADUINTREG ... 227
AU .. 327
AIUBUSENREG ... 343
AIUCOUNTCOREG ... 339
AIUCOUNTIREG ... 340
AIUDATREG ... 329
AIUINTREG ... 337
AlUMODEREG ... 331
AIUMUTEREG ... 333
AlU registers ... 9, 328
AIUREPNUMREG ... 342
AIURESETREG ... 330
AIUSEQENREG ... 332
AIUSTATREG ... 334
AIUSTPPAGEREG ... 335
AIUVALIDREG ... 336
ASIMOOREG ... 374
ASIMO1REG ... 375
ASISOREG ... 380
AUDDMAADRHREG ... 209
AUDDMAADRLREG ... 208
Audio Interface Unit (AIU) ... 3, 327

B
BadVAddr register ... 88

basic transmission/receiving method ...

battery voltage detection ... 301
BCU ... 169

BCUBCLCNTREG ... 174
BCUBCLREG ... 173
BCUBRCNTREG ... 172
BCUBRREG ... 11
BCUCNTREG ... 170
BCUERRSTREG ... 177

APPENDIX

325

INDEX

BCU registers ... 4, 168
BCURFCNTREG ... 178
BCUSPEEDREG ... 175

BEV ... 145

bootstrap exception vector ... 145
BPRMOREG ... 382

branch delay ... 38

branch instructions ... 27, 380
Breakpoint exception, 111

Bus Cantrol Unit (BCU) ... 3, 169
Bus Error exception ... 110

bus interface ... 11

Buzz mode ... 327

Cc

cache data integrity ... 154
cache error check ... 146

Cache Error exception ... 109
Cache Error register ... 97
cache line ... 149, 150

cache operations ... 151

cache organization ... 148
cache state transition ... 153
cache states ... 152

Cause register ... 92

clock interface ... 19

Clock Mask Unit (CMU) ... 3, 217
clock oscillator ... 20

CMU ... 217

CMUCLKMSKREG ... 219

CMU register ... 5, 218

code compatibility ... 51

Cold Reset ... 142

Cold Reset exception ... 102
Compare register ... 89
computational instructions ... 26
Config register ... 78

Context register ... 87
coordinate detection ... 301
Coprocessor 0 (CPO) ... 11
Coprocessor Unusable exception ... 112
Count register ... 88

CPO hazards ... 537

CPO registers ... 16, 71

CPU core ... 10

CPU Instruction Set ... 12, 28, 385
CPU registers ... 11

crystal oscillation ... 20

D
data cache ... 11, 18

APPENDIX

INDEX

data formats ... 13

data lost ... 304

DCU ... 211

DCU registers ... 5, 211

Deadman's SW ... 137, 244

Deadman's Switch Unit(DSU) ... 3, 267

Debug Serial Interface Unit (Debug SIU) ... 4, 373

DebugsilU ... 373

DebugSIU registers ... 10, 373

Direct Memory Access Address Unit (DMAAL) ... 3,
203

Direct Memory Access Control Unit (DCU) ... 3, 211

disable parity errors ... 146

DPMAAU ... 203

DMAAU registers ... 5, 203

DMAIDLEREG ... 213

DMAMSKREG ... 215

DMAREQREG ... 218

DMARSTREG ... 212

DMASENREG ... 214

DOZEKEYINTREG ... 367

DRAM access ... 198
DSU ... 267
DSUCLRREG ... 270
DSUCNTREG ... 268
DSU registers ... 7, 267
DSUSETREG ... 269
DSUTIMREG ... 271

E

ECMPHREG ... 258

ECMPLREG ... 258

ECMPMREG ... 259

ElapsedTime timer ... 255, 257
Endianness ... 13

EntryHi register ... 76

EntryLoO register ... 73

EntryLo1 register ... 73

EPC register ... 94

ErrorEPC register ... 98
ETIMEHREG ... 258

ETIMELREG ... 257

ETIMEMREG ... 257

EVVOLREG ... 368

exception ... 45

exception conditions ... 48
exception processing registers ... 86
exception processing ... 85
Exception Program Counter register ... 94
exception vector locations ... 99
expansion bus interface ... 188, 194
expansion bus ... 181

expansion I/O access ... 181
expansion memory access ... 181
external clock ... 20

F

Flash Memory interface ... 187
Flash Memory mode ... 186
Fullspeed mode ... 144, 250

G

GCINTSREG ... 278

General Purpose /O Unit (GIU} ... 3, 273
GINTENREG ... 277

GINTSTREG ... 276

GlU ... 273

GIUINTREG ... 229

GIU registers ... 7, 274

GLINTSREG ... 279

GOUTENREG ... 274

GPOTDATREG ... 275

H

HALTimer Shutdown ... 139, 244
hardware interrupts ... 167
Hibernate mode ... 145, 251
hierarchy of memory ... 147

/O registers ... 4

ICU ... 221

ICU registers ... 6, 223

IE ... 146

illegal access ... 190

Index register ... 71

initialization interface ... 135
instruction cache ... 11, 18
instruction formats ... 12, 23, 386
Integer Overflow exception ... 114
Interlock ... 45

Interrupt Control Unit {ICU) ... 3, 221
interrupt control ... 222

interrupt enable ... 146

Interrupt exception ... 115
interrupt requests ... 221

ISA ... 24

J

Joint TLB ... 19
jump instructions ... 27, 380

K

kerel extended addressing mode ...
kernel mode address space .., 64
key data lost ... 350

key scan state ... 350

Keyboard Interface Unit (KIU) ... 4, 349
KEYDMAADRHREG ... 210
KEYDMAADRLREG ... 210

145

APPENDIX INDEX
KIU ... 349 PClock ... 20
KIUASCANREG ... 353 PCMCLK ... 20

KIUASTOPREG ... 354
KIUDATREG ... 352
KIUENREG ... 366
KIUINTREG ... 228, 363
KIU registers ... 8, 351
KIURSTREG ... 365
KIU sequencer ... 358
KIUSAPREG ... 357
KIUSCANREG ... 355
KIUSCANSREG ... 358
KIUSRNREG ... 362
KIUSTOPREG ... 356
KIUWKIREG ... 360
KIUWKSREG ... 359

L

LCD controller interface ... 189
LCD Interface ... 188
little-endian ... 13

LLAddr register ... 79

load ... 24, 3689

load delay ... 38

load delay slot ... 24

MADUINTREG ... 235
MasterOut ... 20
memory access ... 180

Memory Management System ...

MGIUINTREG ... 237
MKIUINTREG ... 236
MPIUINTREG ... 234
MSIUINTREG ... 238
MSYSINTREG ... 232

N
NMI exception ... 104
NMIREG ... 240

nonmaskable interrupt ... 165

o

opcode bit encoding ... 535
operating modes ... 59
ordinary Interrupts ... 166
Ordinary ROM ... 186

P

PADDMAADRHREG ... 204
PADDMAADRLREG ... 204
page boundary interrupt ... 303
PageMask register ... 74
Page-ROM ... 186

Parity Error register ... 97

18

physical address ... 55
pin configuration ... 133
pin functions ... 123
pipeline ... 35

PIU ... 283
PIUCIVLREG ... 295
PIUCMDREG ... 294
PIUCNTREG ... 289
PIUDATAREG ... 288
PIUINTREG ... 226, 291
PIU registers ... 7, 288
PIUSIVLREG ... 292
PIUSTBLREG ... 293

PLL passive components ... 543

PMU registers ... 6, 251
PMU ... 243
PMUCNTREG ... 254
PMUINTREG ... 252

Power Management Unit (PMU) ... 3, 243

Power Mode ... 144, 248, 250

power mode status transition ... 249

power-cn control ... 245
power-on sequence ... 140
precision of exceptions ... 86
PREVIDREG ... 179

PRId register ... 77

priority of exceptions ... 101
priority order of DMAs ... 211
privilege modes ... 145

Processor Revision |dentifier register ... 77

PWM moede ... 327

R
Random register ... 72

Real-time Clock Unit{RTC}) ... 3, 2565

refresh ... 202

Reserved Instruction exception ... 113

reset control ... 243

reset function ... 135

reset of the CPU core ... 142 .
reverse endianess ... 145
ROM access ... 180

ROM interface ... 186
RSTSW ... 136

RSTSW reset ... 243

RTC ... 255

RTCINTREG ... 268
RTCLCNTHREG ... 263
RTCLCNTLREG ... 262
RTCLHREG ... 281
RTCLLREG ... 260
RTCLong timer ... 255, 260
RTC registers ... 7, 256
RTC reset ... 135, 243

547

APPENDIX INDEX

S

scan sequencer ... 285, 286
Serial Interface Unit (SIU) ... 4, 307
shutdown control ... 244
SiU ... 307
SIUCNTREG ... 314
SIUDLENGTHREG ... 317
SIUINTREG ... 230, 318
SIU registers ... 8, 311
SIURS232CREG ... 321
SIURXDATREG ... 312
SIUTXDATREG ... 313
slip conditions ... 50
SOFTINTREG ... 241
Soft Reset ... 142
Soft Reset exception ... 103
software interrupts ... 166
software shutdown ... 138, 244
special instructions ... 27
SRXDMAADRHREG ... 206
SRXDMAADRLREG ... 205
stall conditions ... 48
Standby mode ... 144, 250
Status register ... 89

reset ... 91
store delay slot ... 24
store instructions ... 24, 389
STXDMAADRHREG ... 207
STXDMAADRLREG ... 207
supervisor mode address space ... 61
Suspend mode ... 250
SYSINTREG ... 224
System Calt exception ... 111
System Control Coprocessor (CP0Q) ... 15

System Control Coprocessor {CPD) instructions ..

390

T

TagHi register ... 80

Tagl.o register ... B0

TCLKCNTHREG ... 265

TCLKCNTLREG ... 264

TClock Count timer ... 255 ... 264

TClock ... 20

timer interrupt ... 166

TLB ... 18, 53

TLBentry ... 70

TLB exceptions ... 106

TLB instructions ... 83

TLB Invalid exception ... 107

TLB Modified exception ... 108

TLB Refill exception ... 106

touch panel ... 284

Touch Panel Interface Unit (PIU) ... 4, 283
Translation Lookaside Buffer (TLB) ... 18, 53
transmission/receiving ending methods ... 325

transmit/receive data format ... 309
Trap exception ... 113

U
user mode address space ... 59

v
virtual address ... 54

W

Watch exception ... 114
WatchHi register ... 95

WatchLo register ... 95
Wired register ... 75

X

XContext register ... 96
XTLB Refill exception ... 106

