

 Company confidential

User manual
DA14580/581 External processor

interface over SPI
UM-B-013

Abstract

This document describes the configuration of the external processor interface over SPI for the
DA14580/581. The SPI is used as transport layer to interface the external processor to the
DA14580/581. A 5-wire protocol is employed and a test bed with two DA14580/581 boards is
described for testing and evaluation purposes.

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 2 of 18 © 2022 Renesas Electronics

Contents

User manual ... 1

DA14580/581 External processor interface over SPI ... 1

UM-B-013 .. 1

Abstract .. 1

Contents ... 2

Figures .. 2

Tables ... 3

1 Terms and definitions ... 4

2 References ... 4

3 Introduction .. 5

4 Software description ... 6

5 External CPU interface message format ... 7

6 The 5-wire protocol ... 8

6.1 SPI configuration ... 8

6.2 Flow control ... 9

6.2.1 Additional signal DREADY .. 9

6.2.2 Flow on/flow off bytes .. 9

6.2.3 DREADY acknowledgement .. 9

6.2.4 Chip Select polling ... 10

6.2.5 Master to slave flow control using DREADY during message transmission
(SDK 3.0.8 and later) ... 10

6.3 Message transmission examples .. 10

6.3.1 Slave to master transmission .. 10

6.3.2 Master-to-slave transmission ... 12

6.3.3 DREADY-based flow control during the transmission of the message 12

7 Practical example of the external processor configuration .. 14

7.1 Hardware configuration ... 14

7.1.1 Jumper setup for LED and button interface ... 14

7.1.2 Connection diagram ... 14

7.2 Running the projects ... 15

7.2.1 Starting the external processor device .. 15

7.2.2 Starting the BLE device ... 15

Appendix A Replacing external CPU interface over UART by SPI ... 16

8 Revision history .. 17

Figures

Figure 1: External processor configuration over SPI ... 5

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 3 of 18 © 2022 Renesas Electronics

Figure 2: Packet format ... 7
Figure 3: Flow control for slave-to-master transmission ... 11
Figure 4: Flow control for master-to-slave transmission ... 12
Figure 5: DREADY-based flow control during the transmission of the message 13
Figure 6: Connections for the external CPU interface over SPI .. 14

Tables

Table 1: Pin assignment for host and BLE application .. 8

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 4 of 18 © 2022 Renesas Electronics

1 Terms and definitions

ACK Acknowledgment

BLE Bluetooth Low Energy

CPU Central Processing Unit

CS Chip Select

DK Development Kit

DREADY Data Ready

GPIO General Purpose Input/Output

LED Light-Emitting Diode

MISO Master Input Slave Output

MOSI Master Output Slave Input

ROM Read-Only Memory

SCK Serial Peripheral Interface Clock

SDK Software Development Kit

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver/Transceiver

2 References

1. UM-B-010, DA14580/581 Proximity application, User manual, Dialog Semiconductor

2. DA14580 Datasheet, Dialog Semiconductor

3. RW-BLE-HOST-IS, RW BLE Host Interface Specification, Riviera Waves

4. UM-B-014, DA14580/581 Development Kit, User manual, Dialog Semiconductor

5. DA14581 Datasheet, Dialog Semiconductor

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 5 of 18 © 2022 Renesas Electronics

3 Introduction

This document describes the configuration of the external processor interface over SPI for the
DA14580/581 (see Ref. [2]). In this configuration the host application runs on the external processor,
the BLE stack is implemented in the DA14580/581 and the SPI is used as transport layer. The SPI in
the external processor is configured as a master and in the DA14580/581 as a slave device. The 5-
wire transport protocol supports the exchange of commands, events and indication messages. The
host application also serves as an external SPI master boot device, which downloads the application
image into the DA14580/581 SRAM.

In this document the Proximity Reporter application as described in Ref. [1] is used as an example.
One DA14580/581 is used as SPI slave device with Bluetooth stack and radio active. Another
DA14580/581 is used as SPI master, where only the ARM M0 microcontroller is active. The
configuration used is depicted in Figure 1.

Figure 1: External processor configuration over SPI

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 6 of 18 © 2022 Renesas Electronics

4 Software description

The DA14580/581 Software Development Kit (SDK) includes examples of two Keil projects that
implement the host application and the BLE software stack of the external processor configuration
via SPI.

The project for the host application running on the external processor is stored in the folder:
host_apps\da1458x\proximity\reporter\host_proxr.uvproj

The projects for the BLE software stack over SPI are stored in the following locations:
dk_apps\keil_projects\proximity\prox_reporter_ext_spi\prox_reporter_ext_spi.uvproj
dk_apps\keil_projects\proximity\prox_reporter_ext_spi\prox_reporter_ext_spi_581.uvproj

The host application can also be used to download the image to the DA14580/581 over SPI. This
image could for instance be stored in the non-volatile memory of the host device.

This document explains the options to build and run both software projects on two DA14580/581
devices or to build and run the host application project only and use it to download the included pre-
built image to the slave device. Section 7.2.1 describes in detail how to select each option before
running the host application project.

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 7 of 18 © 2022 Renesas Electronics

5 External CPU interface message format

Before going into the details of the 5-wire protocol used to implement the external CPU interface over
SPI, one has to be familiar with the basics of the message format of the external CPU interface
commands, events and indications used by the two devices to communicate.

Note: The interface described here is proprietary. Please refer to [3] for further details.

Every valid external CPU interface message consists of a start byte (0x05), an 8-byte header that
holds the message ID, the source ID, the destination ID, the parameter length and the data payload,
which holds the message parameters. The external CPU interface protocol message format is
depicted in Figure 2.

Bytes 1 2 2 2 2 Parameter Length

 0x05 Type DST ID SRC ID
Parameter

Length
Parameters

 HEADER PAYLOAD

Figure 2: Packet format

For any given application based on the external processor concept, two devices are needed: one
CPU that will run the application layer software and a device that will run the Bluetooth stack up to
the profile. As explained in the introduction this concept will be demonstrated using two
DA14580/581 devices, where one is only used as an SPI master microcontroller. The sample
application project for the SPI master can be ported to any other microcontroller with SPI. Since the
SPI master provides the SPI slave with the clock signal and initiates all SPI transfers, the master-to-
slave communication is straightforward.

SPI transactions are synchronous; that means that if the SPI slave device is not “listening” while the
master is transmitting, the message might be lost or partially received. The SPI driver of the slave
device makes sure that all the data sent from the SPI master device are received in-time and
properly by the SPI slave device. This driver enables SPI FIFO mode (see [2]) which however can
only store 5 bytes at most. So, it serves as a small safety net but cannot be used to store a whole
message (just a message’s header is 8 bytes long). The implementation of the external CPU
interface over SPI ensures that the aforementioned requirements are met.

However, for the slave device to transmit data, the master device has to initiate it by reading an
amount of bytes equal to the incoming message length. Upon reception of the message initiator
(0x05), the master has to get to message reception state and to read eight more bytes, which
constitute the message’s header. As soon as the two bytes that state the parameter length (or
payload size in bytes) are received, the master must read as many bytes as the parameter length.
Upon completion it should return to an idle state.

The protocol described in the following sections eliminates issues that arise from the synchronous
nature of the SPI. For further information on the DA14580/581’s SPI module, please refer to [2].

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 8 of 18 © 2022 Renesas Electronics

6 The 5-wire protocol

6.1 SPI configuration

The slave DA14580/581 device running the BLE software stack configures its SPI controller with the
following parameters:

● 8-bit mode

● Slave role

● Mode 0: SPI clock is initially expected to be low and SPI phase is zero.

The master device has to be configured as an SPI master with the same parameters. The SPI
master must provide the clock (SCK) and chip select (CS) inputs for the DA14580/581 configured as
a slave.

The SPI master must provide a clock with a maximum frequency of 500 kHz. This is due to the
driver implementation on the SPI slave: in order to avoid having the processor busy during the entire
reception of a message over SPI, the 5-byte SPI FIFO has been used on the SPI driver of the slave
device to allow the processor to be used for other tasks between consecutive byte receptions over
SPI.

Since external CPU interface is a bidirectional interface, the slave DA14580/581 device must have
the ability to initiate an SPI transfer and transmit data to the SPI master. Thus, an additional, flow
control, signal has to be used from the slave DA14580/581 to the master device to indicate when
data is ready to be transmitted.. This signal, DREADY, introduces a 5th wire in addition to the
standard SPI. The SPI configuration for each end is depicted in Table 1.

Table 1: Pin assignment for host and BLE application

Pin SPI MASTER (Host

Application)
SPI signals SPI SLAVE

(BLE DA14580/581)

P0_0 SPI_CLK as output SCK SPI_CLK as input

P0_1 SPI_EN as output /CS SPI_EN as input

P0_2 SPI_DI as input MISO SPI_DO as output

P0_3 SPI_DO as output MOSI SPI_DI as input

P0_7 GPIO as input DREADY GPIO as output

When implementing this example on two DA14580/581 development kits, the user has to remove the
jumpers from pin header J26, which connect the UART CTS/RTS signals and would otherwise
conflict with the MISO and MOSI functions.

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 9 of 18 © 2022 Renesas Electronics

6.2 Flow control

In the external processor configuration both ends can initiate a message transmission at the same
time. In the case of the external processor interface over UART, dedicated hardware flow control
signals are used, CTS/RTS, which make sure one side will not start a transmission if the other side is
unavailable (either in sleep mode or has its receive buffer full at the time). In the case of SPI, such
hardware signals do not exist and data can be transmitted in both directions at the same time. The 5-
wire SPI protocol to enable bidirectional communication is half-duplex, to make development of
master-side applications simpler. Thus, a software flow control mechanism is needed to make sure
that only one side can transmit a message at any given time.

A basic flow control functionality is achieved using the DREADY signal, but since the slave device
may enter sleep mode, additional flow control mechanisms are needed to notify the external master
device that the slave device can receive a message or not (i.e. is in sleep mode or transmitting a
message) or to prevent a slave’s attempt to start a message transmission while another message is
in progress. The flow control mechanisms that ensure a reliable implementation of the external
processor configuration over SPI are described in the next sections.

6.2.1 Additional signal DREADY

The external processor configuration over SPI allows both ends to initiate a message transmission at
the same time. Basic flow control functionality is achieved using the DREADY signal. The slave
device activates the DREADY line to notify the master device that it needs to transmit a message.
The master device on the other side should check the status of the DREADY signal to enable
reception of the slave device’s messages, or to prevent attempts to send messages to slave while a
slave to master transmission is in progress.

However, since the slave device may enter sleep mode, an additional flow control mechanism is
needed to inform the external host application that the slave device can receive a message or not
(i.e. is in sleep mode or transmitting a message). This flow control mechanism is based on flow on
and flow off bytes.

6.2.2 Flow on/flow off bytes

The slave DA14580/581 device transmits a flow on byte (0x06) when it exits sleep mode to denote
an active period (it sends one also after system initialization). When it enters sleep mode, it sends a
flow off byte (0x07) to denote an inactive period. The master device cannot transmit any data outside
slave’s active period and must not transmit any flow on/flow off bytes (it should always be active). On
start-up, the master device must wait to receive a flow on byte before transmitting any message. The
slave device also transmits a flow off byte prior to sending a message. After the message
transmission has been completed, it sends a flow on byte to indicate that it is available to receive
messages from the master.

6.2.3 DREADY acknowledgement

To prevent the event of simultaneous transmissions from both master and slave (i.e. the master
sends the 0x05 start byte to begin the transmission of a message and the slave at the same time
sends a flow off byte to subsequently transmit another message), the master has to acknowledge the
DREADY request by the slave. To do so, when the master detects DREADY to be active, it sends an
acknowledgement byte (ACK, chosen to be 0x08) to inform the slave that it can go on to send the
flow off byte (or any other data). This functionality is shown in Figure 3. On any DREADY rising edge,
the master has to acknowledge that it detected it and enable the slave device to send data. If the
master does not acknowledge the DREADY rising edge, the slave waits until the Chip Select line is
inactive (which will indicate that the master has finished sending the message), activate DREADY
again, and wait for the acknowledgement to proceed to transmit.

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 10 of 18 © 2022 Renesas Electronics

6.2.4 Chip Select polling

For the master to slave message transmission, the SPI master device must keep the Chip Select
signal active (low) throughout the message transmission to prevent the SPI slave device from trying
to transmit a message while receiving another from the master (the slave polls the Chip Select signal
before activating the DREADY signal). The functionality described is shown in Figure 3 and
explained in detail in Section 6.3.1.

6.2.5 Master to slave flow control using DREADY during message transmission
(SDK 3.0.8 and later)

In the case that the slave receives a message with a large payload size, it may need some additional
time to allocate the buffer to store this message into. Since the master device will continue to
transmit the message over SPI, there is a possibility the SPI FIFO will not be able to temporarily hold
all data sent while the slave device allocates the memory needed.

To fix this, starting from SDK version 3.0.8, a new flow control mechanism has been introduced.
This mechanism re-utilizes DREADY signal when the slave is receiving a message from the master.
The slave will assert DREADY while receiving a message from the master for as long as it is busy
allocating a buffer to store the incoming message. The master should not send any data while
DREADY is asserted and should resume the transmission as soon as DREADY is de-asserted.

For backwards compatibility with already set-up software at the master-side, this mechanism can be
disabled altogether by not defining the pre-processor directive CFG_SPI_RX_FLOW_CONTROL in

dk_apps\keil_projects\proximity\prox_reporter_ext_spi\da14580_config.h

Note that starting from SDK version 3.0.8, directive CFG_SPI_RX_FLOW_CONTROL is defined by
default. Also, note that in the case that DREADY is configured to generate an interrupt in the
software running on the external processor (which is most likely), care should be taken to disable this
interrupt while the master transmits a message to the slave, and also clear any pending interrupt
requests generated during this period – DREADY assertion will cause a dummy interrupt following
the completion of the message transmission from the master to the slave even if this interrupt has
been disabled for this period.

6.3 Message transmission examples

6.3.1 Slave to master transmission

A message transmission from the slave device running the BLE software stack to the master device
requires the use of the additional flow control signal DREADY, which indicates a request from the
slave to transmit a message to the master. This procedure is shown in Figure 3 and explained in
detail in the following paragraphs:

1. Before message transmission, the slave DA14580/581 transmits a flow off byte in the same
manner described in the previous section (using DREADY to request a transmission and waiting
for the ACK byte to send the flow off byte) to prevent the master from sending any messages
while slave will be transmitting the message.

2. The slave device activates DREADY again to request data transmission and the master device
sends the ACK byte (the master device must send the ACK byte in every rising edge of the
DREADY signal).

3. While transmitting the message, the slave device will keep the DREADY signal active. The
master must decode the message header to extract the size of the payload and perform the
necessary amount of SPI transfers to allow for the transmission of the whole message from the
slave. The format of the message and the position of the payload size bytes have been described
in detail in Section 5.

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 11 of 18 © 2022 Renesas Electronics

4. Upon the completion of the message transmission, the slave device will lower the DREADY
signal and will activate it again shortly after to transmit a flow on byte. Again, an ACK byte from
the master to indicate acknowledgement of the DREADY rising edge is needed. Every single
transmission from the slave will be enclosed between a flow off and a flow on byte, which
denotes a slave’s inactive period (i.e. a period during which the master cannot transmit any
messages to the slave).

The SPI master has to be able to decode messages and provide the SPI slave device with as many
SPI accesses as needed to allow for the transmission of the whole message. The master device
should also be capable of detecting the slave’s active and inactive periods to avoid initiating a
master-to-slave transmission after the slave has sent a flow off byte. The software included in the
SDK meets the aforementioned requirements.

0x08

DREADY

acknowledge

Flow off byte before

transmission

Msg last 0x06

Message end Flow on byte after

transmission

0x05 Msg byte 1 Msg byte 2

Message start Message (header and

payload)

MOSI 0x08 0x08

DREADY

acknowledge

DREADY

acknowledge

SCK

/CS

DREADY

MISO 0x07



 


Figure 3: Flow control for slave-to-master transmission

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 12 of 18 © 2022 Renesas Electronics

6.3.2 Master-to-slave transmission

A message transmission from the SPI master to the DA14580/581 SPI slave is much simpler than
slave-to-master transmission. A flow on byte must have been sent from the slave (using the
DREADY signal). During a slave’s active period, the master can initiate a message transmission at
any time, keeping the chip select (/CS) signal active (low) throughout the message. After the last byte
of the message has been transmitted, the master device must deactivate the chip select signal. This
procedure is explained in detail in the following paragraphs and in Figure 4, where flow on and flow
off bytes are included to indicate the slave’s active period.

1. The SPI slave starts up or wakes from sleep and activates the DREADY signal.

2. The external host application transmits the ACK byte (0x08) to acknowledge the slave that it
detected the DREADY high level.

3. The master initiates a transfer to allow the slave device to transmit the flow on byte, which
denotes an active period of the slave DA14580/581.

4. After a flow on byte, the host application can initiate a message transmission at any time. The
host application keeps the chip select signal active (low) throughout the entire message
transmission.

The master device can send additional messages until the slave sends a flow off byte that indicates
the end of the active period and the entrance of sleep mode or the beginning of a message
transmission from slave to master.

0x07

Wakeup flow on

byte
MOSI 0x050x08

DREADY

acknowledge

DREADY

acknowledge

Message start Message (header and payload)

SCK

/CS

DREADY

MISO 0x06

Sleep flow off

byte
0x08Msg byte 1 Msg byte 2 Msg last











Figure 4: Flow control for master-to-slave transmission

6.3.3 DREADY-based flow control during the transmission of the message

As described in section 6.2.5, starting from SDK version 3.0.8, the slave may assert the DREADY
signal to indicate unavailability due to needed time for memory allocation of messages with a large
payload size. This assertion will happen after the reception of the last byte of the message’s header
by the slave, i.e. as soon as the slave extracts the payload size. As soon as the slave successfully
allocates the memory needed, it will de-assert the DREADY signal and the master should resume the
transmission of the message. The rest is the same as in the general case of master to slave
transmission, which is described in the previous paragraph. This procedure is explained in detail in
the following paragraphs and in Figure 5, where the flow on and flow off bytes sent are omitted and
only the transmission of the actual message is depicted.

1. The external host application transmits the last byte of the header.

2. The slave asserts DREADY to indicate partial unavailability due to time needed for memory
allocation of the message’s payload.

3. The master should poll DREADY before transmitting each byte of the message; however,
DREADY is likely to be asserted after its polling and the transmission of the payload’s next byte.
This is not an issue, since the slave’s SPI FIFO can hold this byte until DREADY is de-asserted

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 13 of 18 © 2022 Renesas Electronics

and transmission is resumed. However, the master should stop sending any more bytes as soon
as it polls DREADY to be asserted.

4. The slave de-asserts DREADY upon successful allocation of the memory needed, to indicate full
availability to the master.

5. The master resumes the transmission of the message after polling DREADY to be de-asserted.

The master device can send up to 4 bytes while DREADY is asserted by the slave. If the master
transmits 5 or more bytes while DREADY is asserted by the slave, one or more of these bytes will be
lost.

Header last Payload lastPayload 1st Payload 2nd

SCK

/CS

DREADY

MISO

Header 1stMOSI 0x05
D

R

E

A

Message start Message (header and payload)







 

Figure 5: DREADY-based flow control during the transmission of the message

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 14 of 18 © 2022 Renesas Electronics

7 Practical example of the external processor configuration

7.1 Hardware configuration

This section describes how to set up one DA14580/581 development board to run the proximity
reporter as host application (external processor) in order to control another DA14580/581
development board, which implements the proximity profile BLE software stack.

7.1.1 Jumper setup for LED and button interface

Before testing any proximity monitoring alert events, the LED and push button interface needs to be
set up properly.

On the DA14580/581 development board which will be used to run the proximity reporter host
application device, PIN3 on connector J15 must be connected to PIN4 and PIN5 must be connected
to PIN6. These connections enable the D1 green LED and push button K1 as a user interface.

The proximity reporter will notify the user when an alert indication, link loss and an immediate alert is
triggered. The alert notification will be as follows:

● High level alert: fast (500 ms) green LED blinking.

● Mild alert: slow (1500 ms) green LED blinking.

The user can stop alert notification by pressing the push button K1.

7.1.2 Connection diagram

To enable the SPI communication between the two DA14580/581 devices, the following connections
between the two boards have to be made:

Figure 6: Connections for the external CPU interface over SPI

Note: The wire connections between the two devices need proper termination (especially the clock
signal) and shielding to prevent transmission errors caused by signal reflections and electromagnetic
interference.

The implemented external processor configuration over SPI employs an additional flow control signal
from the DA14580/581 slave to the DA14580/581 master, the DREADY signal, which is activated by
the slave to indicate a transmit request.

The SPI MOSI signal is mapped on pin P0_3, so the jumpers on connector J26 that connect the
UART RTS/CTS signals to pins P0_2 and P0_3, have to be removed.

P0_7 – GPIO

P0_6

P0_5

P0_4

P0_3 – SPI DI

P0_2 – SPI DO

P0_1 – SPI /CS

P0_0 – SPI CLK

GND

GPIO – P0_7

P0_6

P0_5

P0_4

SPI DO – P0_3

SPI DI – P0_2

SPI /CS – P0_1

SPI CLK – P0_0

GND

SPI master device SPI slave device

MOSI

MISO

/CS

SCK

DREADY

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 15 of 18 © 2022 Renesas Electronics

7.2 Running the projects

7.2.1 Starting the external processor device

The proximity reporter host application project is stored in the folder:
host_apps\da1458x\proximity\reporter\host_proxr.uvproj

The project options are defined in file
host_apps\da1458x\proximity\reporter\da14580_config.h

The project should be built (F7) and the steps in the DA14580/581 user guide to load the executable
to the SDK must be followed. Then the executable needs to be started.

7.2.2 Starting the BLE device

There are two ways to enable the slave device for external CPU interface over the SPI:

1. Boot from the external SPI master device:

The proximity reporter host application project includes an SPI booter functionality, which
provides the slave device with an image of an integrated proximity reporter with external CPU
interface over the SPI driver.

If the flag SPI_BOOTER is defined in file
host_apps\da1458x\proximity\reporter\da14580_config.h
the SPI booter will be enabled and the slave device will boot from the external SPI master device.
If the slave device is a DA14581, the flag PROX_REPORTER_SPI_581 should also be defined.

2. Load proximity reporter profile:

If the flag SPI_BOOTER is not defined, then the SPI booter will be disabled and the user will be
able to load the proximity reporter BLE software stack from another interface like UART or SWD.
If this is the case, the host application needs to be started prior to starting the BLE device.

In this case the Keil environment should be started and one of the following projects should be
opened and executed, to download the firmware using the JTAG interface:
dk_apps\keil_projects\proximity\prox_reporter_ext_spi\prox_reporter_ext_spi.uvproj

dk_apps\keil_projects\proximity\prox_reporter_ext_spi\prox_reporter_ext_spi_581.uvproj

More information how to build, open and execute a Keil project is given in Ref. [4].

In either case, when the above steps are followed, the proximity reporter host application device
should end up in advertising mode.

Note: The master device should be started prior to starting the slave device.

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 16 of 18 © 2022 Renesas Electronics

Appendix A Replacing external CPU interface over UART by SPI

The API for the external CPU interface over the SPI driver included in the SDK is the same as the
external CPU interface over the UART API, except for the function names. The equivalence is as
follows:

uart_read  spi_read
uart_write  spi_write
uart_flow_on  spi_flow_on
uart_flow_off  spi_flow_off

The external CPU interface over the SPI driver’s functions are called with the same arguments and
return the same values as the external CPU interface over the UART functions.

To replace the built-in driver for the external CPU interface over the UART that resides in the
DA14580/581 ROM, the following steps were taken:

1. In file rom_symdef_hci_spi.txt (dk_apps/misc/rom_symdef_hci_spi.txt) the symbol definitions

that refer to functions

SPI_Handler

rwip_eif_get_func

were commented out.

2. The file arch_hci_spi.c was added, which contains:

a. The SPI interface structure definition:

// Creation of SPI external interface api

const struct rwip_eif_api spi_api =

{

 spi_read_func,

 spi_write_func,

 spi_flow_on_func,

 spi_flow_off_func,

};

b. The association of the external interface with the SPI API defined previously:

const struct rwip_eif_api* rwip_eif_get_func(uint8_t type)

{

 const struct rwip_eif_api* ret = NULL;

 switch(type)

 {

 case RWIP_EIF_AHI:

 case RWIP_EIF_HCIC:

 {

 ret = &spi_api;

 }

 break;

 default:

 {

 ASSERT_ERR(0);

 }

 break;

 }

 return ret;

}

3. A call to function spi_init_func was added in function periph_init, to enable the SPI module during
system initialisation or upon wake-up.

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 17 of 18 © 2022 Renesas Electronics

8 Revision history

Revision Date Description

1.4 26-Jan-2022 Updated logo, disclaimer, copyright.

1.3 11-Mar-2015 Added sections 6.2.5 and 6.3.3 for master to slave flow control using
DREADY during message transmission (eligible for SDK version 3.0.8
and later) and some minor changes.

1.2 07-Nov-2014 Minor changes for DA14581.

1.1 24-Jun-2014 Corrected DI and DO pins as input and output respectively in Table 1.

1.0 05-Jun-2014 Initial version.

UM-B-013

DA14580/581 External processor interface over
SPI

Company confidential

User manual Revision 1.4 26-Jan-2022

CFR0012-00 Rev 1 18 of 18 © 2022 Renesas Electronics

Status definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or

additions.

APPROVED

or unmarked

The content of this document has been approved for publication.

RoHS Compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU
concerning Restriction of Hazardous Substances (RoHS/RoHS2).
Dialog Semiconductor’s statement on RoHS can be found on the customer portal https://support.diasemi.com/. RoHS certificates from our
suppliers are available on request.

https://support.diasemi.com/

	User manual
	DA14580/581 External processor interface over SPI
	UM-B-013
	Abstract
	Contents
	Figures
	Tables
	1 Terms and definitions
	2 References
	3 Introduction
	4 Software description
	5 External CPU interface message format
	6 The 5-wire protocol
	6.1 SPI configuration
	6.2 Flow control
	6.2.1 Additional signal DREADY
	6.2.2 Flow on/flow off bytes
	6.2.3 DREADY acknowledgement
	6.2.4 Chip Select polling
	6.2.5 Master to slave flow control using DREADY during message transmission (SDK 3.0.8 and later)

	6.3 Message transmission examples
	6.3.1 Slave to master transmission
	6.3.2 Master-to-slave transmission
	6.3.3 DREADY-based flow control during the transmission of the message

	7 Practical example of the external processor configuration
	7.1 Hardware configuration
	7.1.1 Jumper setup for LED and button interface
	7.1.2 Connection diagram

	7.2 Running the projects
	7.2.1 Starting the external processor device
	7.2.2 Starting the BLE device

	Appendix A Replacing external CPU interface over UART by SPI
	8 Revision history

