
Parallel I/O Interface to the Neuron® Chip

January 1995 LONWORKS® Engineering Bulletin

The Neuron Chip parallel I/O object permits bidirectional data transfer at rates of up
to 3.3Mbps. A Neuron Chip may communicate with another Neuron Chip or with
any other microprocessor or microcontroller. The Microprocessor Interface Program
(MIP), running on the Neuron Chip, provides an easy solution for connecting the
Neuron Chip to a host processor. The MIP is available in several configurations
supporting different interface schemes including interrupt, dual ported RAM, and
polled.

The physical interface to the parallel I/O object is accomplished through the eleven
I/O pins of the Neuron Chip. No other I/O objects of the Neuron Chip may be used
in conjunction with parallel I/O. In addition to the physical interface, a token-
passing, handshaking protocol is implemented by the Neuron Chip firmware as a
way to establish synchronization and prevent bus contention.

The Neuron C programming language provides several built-in functions that
enable the use of the parallel I/O object without the need for detailed, hardware-
level knowledge of the handshaking protocol. These functions are discussed in
detail in the Neuron Chip-to-Neuron Chip interface section of this document.

For increased design flexibility, the Neuron Chip provides several modes of
operation for the parallel I/O object: Master, Slave A, and Slave B. The different
attributes of each mode can be used to tailor the Neuron Chip for a specific
application.

The master mode is the intelligent mode of the parallel I/O object. In this mode, the
Neuron Chip controls the handshaking protocol between itself and the attached
processor, which is in the slave mode. While in the master mode, the Neuron Chip
may be interfaced to another Neuron Chip (in slave A mode), a microprocessor, or a
microcontroller.

In the slave A mode, the Neuron Chip is under control of a master. The Neuron Chip
appears to the host as a parallel I/O device with 8 data bits and 3 control bits.

The slave B mode is logically similar in operation to the slave A mode; however,
the handshaking process and the data bus control are specifically tailored for use in a
microprocessor bus environment. The Neuron Chip appears to the host as a
memory mapped I/O device. This is useful when interfacing a Neuron Chip to a
microprocessor or microcontroller, or when there is a need for multiple slaves on
the same parallel bus (e.g., PC bus interfacing).

Figure 1 illustrates the application of the different parallel I/O modes. Although all
possible interfacing scenarios are shown, not all can be considered for every
application. Certain applications, such as a Neuron Chip-to-Neuron Chip
connection, have only one solution (master to slave A), while interfacing a foreign

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

2

processor to the Neuron Chip can be accomplished in several ways depending on
available hardware and software resources.

Neuron
Chip
Master

Neuron
Chip
Slave B

Neuron
Chip
Slave B

Neuron
Chip
Slave A

MASTER SLAVE

Neuron
Chip
Slave A

µP/µC/
Peripheral
Device

µP/µC

µP/µC

Neuron
Chip
Master

µP/µC

Figure 1 Possible master/slave connections for the NEURON CHIP

In a non-Neuron Chip (foreign processor) interface, it is assumed that the
microprocessor or microcontroller involved has the ability to execute the token
passing algorithm dictated by the attached Neuron Chip. This usually consists of a
hardware interface and a software program that duplicates the actions of a Neuron
Chip .

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

3

Neuron Chip Interface
The Neuron Chip parallel I/O interface consists of eight I/O and three control lines.
Figure 2 shows the assignment of the Neuron Chip pins for each of the parallel I/O
modes.

IO.0
IO.1
IO.2
IO.3
IO.4
IO.5
IO.6
IO.7
IO.8
IO.9
IO.10

~CS
R/~W
HS

D
0 - D

7

MASTER

IO.0
IO.1
IO.2
IO.3
IO.4
IO.5
IO.6
IO.7
IO.8
IO.9
IO.10

~CS
R/~W

HS
D

0 - D
7

SLAVE A

A0

~CS
R/~W

D.0/HS

D
1 - D

7

SLAVE B

IO.0
IO.1
IO.2
IO.3
IO.4
IO.5
IO.6
IO.7
IO.8
IO.9
IO.10

Figure 2 Pin assignments for the three modes of parallel I/O

The ~CS line is always driven by the master and, when active, signifies that a byte
transfer operation is currently in progress. A low pulse on this line strobes the data
into either the master or slave. The ~CS line is asynchronous and should be kept as
noise-free as possible.

The type of data transfer actually taking place, either a read or a write (with respect to
the master), is assessed by the level of the R/~W line at the time the ~CS line is
pulsed low. The R/~W line is driven by the master, and determines the direction of
the bi-directional bus drivers on a Neuron Chip slave.

The HS (handshake) line is always driven by the slave. It informs the master that
the slave is busy. In effect, the HS line can be treated as a slave-busy signal. When
high, it is the slave's turn to perform an action (read or write command and data);

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

4

otherwise, it is the master's turn to access the bus. Note that the state of ~HS could
change before ~CS has become inactive.

The A0 pin, driven by the master and only available on the slave B mode, is the
address pin that selects between the data register or the control register containing
the HS bit. The HS bit is the least significant bit of the control register (D0 line). The
remaining bits of the control register are unused. The explicit HS polling required by
the master is what separates the microprocessor bus-compatible slave B mode from
the slave A mode.

It is possible for the master device to come online and poll the HS line before the
Neuron Chip Slave has had a chance to set the proper level on this line. To prevent
the master from reading invalid data on the HS line, it is recommended that this
line be pulled high through a 10k Ω pull-up resistor for a slave A Neuron Chip. For
a slave B Neuron Chip, the D0 line should be pulled high.

Handshake Protocol
The handshake protocol implemented by the Neuron Chip firmware permits
coexistence of multiple devices on a common bus. At any given time, only one
device is given the option of writing to the bus. A virtual write token is passed
alternately between the master and the slave on the bus in an infinite, ping-pong
fashion (there is one exception to this when the Neuron Chip is interfaced to a host
processor which will be discussed later). The owner of the token has the option of
writing data, or alternatively, passing the token without any data.

Figure 3 illustrates the token passing operation between a master and a slave.

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

5

WRITE
DATA

WRITE
DATA

PASS
TOKEN

PASS
TOKEN

MASTER

SLAVE

 SLAVE
 HAS
 TOKEN

MASTER
 HAS
TOKEN

NEURON
 RESET

RESYNC

ACK
RESYNC

Figure 3 Handshake protocol sequence between master and slave

Multiple slaves (slave B) on a common bus, with multiple write tokens, can also be
supported by the token-passing protocol. In such a case, the master must keep track
of all outstanding write tokens and accordingly direct bus traffic. This is a special
application of the parallel I/O object and will not be addressed in this document.

Once in possession of the write token, a device may perform one of several
operations (as shown in figure 3): write data, pass token, resynchronize (master
only), or acknowledge resynchronization (slave only).

The sequence of events for each of the above operations is the same every time, for
either the master or the slave (A or B). However, the degree to which the user is
exposed to the underlying token-passing operations is varied depending on the
actual device involved. Built-in tools within the Neuron C language allow for
straightforward software coding of the Neuron Chip. This translates to a transparent
token-passing protocol, which in turn results in program simplicity and a lower
probability of communication errors.

On the other hand, if a Neuron Chip is interfaced to a non-Neuron processor (host
processor), the responsibility of token passing falls in the hands of the host
processor. Although the software program on the Neuron Chip side is still simple,

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

6

the user must now explicitly implement the token-passing protocol on the host
processor side. The following section describes the token-passing protocol in detail.

Protocol Commands

The byte format of the command options available to the token holder are further
described in figure 4.

CMD_XFER

CMD_NULL

CMD_
RESYNC

CMD_
ACKSYNC

 length data byte data byte EOM

EOM

EOM

EOM

WRITE DATA

PASS TOKEN

RESYNC

ACK SYNC

EOM = any byte(usually 0x00)
NULL = 0x00
length = # of data bytes (not
																		including EOM)
data = actual data bytes

NOTES:
CMD_XFER = 0x01
CMD_NULL = 0x00
CMD_RESYNC = 0x5A
CMD_ACKSYNC = 0x07

Figure 4 Possible alternatives available to the token holder

These commands are the building blocks on which all communication between a
Neuron Chip parallel I/O and the outside world are based. Only one of the above
commands can be performed by the token holder at any given time. Upon
completion of the command, the token is passed to the other device. The attached
device now has the opportunity to execute a command. The write token is thus
passed back and forth between the master and slave indefinitely.

Each command is made up of a fixed sequence of read and write operations to the
bus by both the master and the slave. These operations define the actual
handshaking process required by each command. The state transition diagram for
each command is shown in figure 5.

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

7

Slave reads
length byte

Master writes
a data byte

Slave reads
data byte

Master writes
next data byte

Slave reads
data byte

Master writes
EOM

Slave owns
write token
(R/W = 1)

HS=0

HS=1

HS=0

HS=1

HS=0

HS=1

Master writes
CMD_XFER

Slave reads
CMD_XFER

Master writes
length byte

Master has
write token
(R/~W = 0)

HS=0

HS=1

HS=0

HS=1

Master reads
length byte

Slave writes
a data byte

Master reads
data byte

Slave writes
next data byte

Master reads
data byte

Slave writes
EOM

Master owns
write token
(R/W = 0)

HS=1

HS=0

HS=1

HS=0

HS=1

HS=0

Slave writes
CMD_XFER

Master reads
CMD_XFER

Slave writes
length byte

Slave has
write token
(R/~W = 1)

HS=1

HS=0

HS=1

HS=0

WRITE DATA

Master writes
CMD_NULL

Slave reads
CMD_NULL

Master writes
EOM

Master has
write token
(R/~W = 0)

HS=0

HS=1

HS=0

HS=1

Slave owns
write token
(R/~W = 1)

Slave writes
CMD_NULL

Master reads
CMD_NULL

Slave writes
EOM

Slave has
write token
(R/~W = 1)

HS=1

HS=0

HS=1

HS=0

PASS TOKEN RESYNC
Master has
write token
(R/~W = 0)

HS=0

Master writes
CMD_RESYNC

Slave reads
CMD_RESYNC

Master writes
EOM

Slave owns
write token
(R/~W = 1)

HS=1

HS=0

HS=1

ACK SYNC

To be followed
immediately by
ACK SYNC
from slave

Master owns
write token
(R/~W = 0)

HS=1

HS=0

HS=1

HS=0

Slave writes
CMD_
ACKSYNC

Master reads
CMD_
ACKSYNC

Slave writes
EOM

Slave has
write token
(R/~W = 1)

Master owns
write token
(R/~W = 0)

• ~CS and R/~W are controlled by the master.

• HS is controlled by the slave.

• Master read and write operations are
performed by a negative pulse on the ~CS line.

• The EOM byte is never actually read by the
receiver. If master is a host processor, the ~CS
line is not strobed for the EOM byte.

•In the slave B mode, the master polls the status
of the HS line by reading the control register of
the slave (A0=1). The only difference between
this type of read and a data register read is that
the state of the HS is unaffected.

Figure 5 Micro-operations of the handshake protocol

Master read and write operations are performed by a negative pulse (high to low to
high) on the ~CS line. For the read operation, this causes the slave to put the data on
the bus so that it may be strobed in by the master. In the case of the write operation,
the data on the bus is strobed into the slave's input buffer. For both read and write,
the actual data is latched (strobed) on the rising edge of ~CS. The low-to-high
transition of the ~CS causes the HS line to go high (the only exception to this is

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

8

when the master reads the control register in the slave B mode. HS is unaffected in
this case).

The EOM byte always terminates a command and is never actually read by the
device to which it is sent. The EOM byte is used by the slave to toggle the state of the
HS line at the end of a command in order to pass the write token.

The writing of the CMD_NULL and EOM is done automatically by the Neuron Chip
when it posseses the write token and the Neuron C application program executes a
when(io_in_ready()) or a when (io_out_ready()). If the Neuron Chip has an
io_out_request() pending, it will not automatically pass the write token back to
the host.

When the Neuron Chip is interfaced to a host processor, the host may hold the
token indefinitely without holding up the Neuron Chip. However, if the Neuron
Chip holds the token, the host must obtain the token within the watchdog timer
period of the Neuron Chip in order to prevent a Neuron Chip reset.

The HS line is the main handshaking control signal used to control actual data
transfers. The action of a master reading from or writing to the bus sets the HS line
high. This is a hardware controlled, not a firmware controlled, action. When the
slave performs a read or a write, the HS line is set low again. When a host processor
is the master, the HS line must be explicitly polled by that processor's software
routine to properly initiate the read and write operations (controlled by the ~CS and
R/~W lines).

Synchronization

Upon a Neuron Chip reset, the write token is, by definition, in the possession of the
master. Synchronization across the parallel bus is required by the Neuron Chip
following any reset condition. The purpose of this step is to prevent a state from
occurring where the Neuron Chip assumes that the device attached to it is in a
given state when it may not be. The results of this misunderstanding could be false
starts of data transfers, or incorrect data transfers. This is automatically accomplished
by the Neuron Chip through the use of a synchronization sequence.

The Neuron Chip's automatic synchronization process occurs just before the reset
clause of the application program is executed, and just after configuration of the
Neuron Chip's I/O pins. Prior to this step the Neuron Chip's I/O pins are
configured as inputs, which is always the case immediately following Neuron Chip
reset.

The automatic synchronization sequence carried out by the Neuron Chip is
dependent on the mode of its parallel I/O object. If the Neuron Chip is a master,
then following a reset, it will initiate a resynchronization command. If the Neuron
Chip is a slave (A or B) then it will await the arrival of a resynchronization
command from the master (any other command will be ignored).

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

9

The parallel I/O object provides a way to explicitly synchronize the devices when a
host processor is the master. This enables the foreign processor to ascertain the
integrity of the communication medium, and re-establish a predetermined state, at
any time. Aside from the initial synchronization necessary after a reset, the host
processor is not required to perform this operation at any other time. The capability,
however, is provided for the system designer in case a need does arise.

The resynchronization operation can be initiated by the token-holding master at any
time by the use of the RESYNC command. The RESYNC command sends a special
message (CMD_RESYNC) to the slave which in turn triggers it to send its own
special message (CMD_ACKSYNC) back to the master. Thus, a two-way
communication has taken place and the token has been passed from the master to
the slave and back to the master again.

It is recommended that any device (master or slave) in a system be aware of the
other device’s reset so that synchronization may be reestablished. For example, a
host processor should monitor the reset output of an attached Neuron Chip with a
status latch or reset. In addition, a reset on the host processor could cause the
Neuron Chip to reset.

Most of the operations described by the above state diagrams, in addition to the
synchronization operations, are transparent to the Neuron Chip application
programmer. They are automatically executed by the Neuron Chip's firmware.
When interfacing a host processor to the Neuron Chip, however, the above-
mentioned operations must be explicitly carried out by the attached processor.

The Neuron C programming language allows access to the parallel I/O object. The
following section describes the available resources within the Neuron C
programming language.

Neuron C Resources

The parallel I/O object is declared in a Neuron C program using the following
syntax (see the Neuron C Programmer’s Guide for details):

IO_0 parallel slave|slave_b|master io_object_name;

In order to use the parallel I/O object of the Neuron Chip, io_in() and
io_out () require a pointer to the parallel_io_interface structure defined below.

struct parallel_io_interface {
unsigned length; //length of data field
unsigned data[maxlength]; //data field

}piofc;

The above structure must be declared, with an appropriate definition of maxlength
signifying the largest expected buffer size for any data transfer.

In the case of io_out(), length is the number of bytes to be transferred out and is
set by the user program. In the case of io_in(), length is the number of bytes to be
transferred in. If the number of bytes received is less than or equal to length , then

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

10

length is replaced with the new number. Otherwise, length is set to zero. The
length field must be set before calling io_in() or io_out(). The maximum value
for the length and maxlength fields is 255.

The parallel I/O object of the Neuron Chip is easily accessed with the use of built-in
Neuron C functions and events. The following functions and events are provided
specifically for use with the parallel I/O object:

io_out_request() This function is used to request an io_out_ready indication
for an I/O object. Calling this function sets a flag in the
Neuron Chip which prevents it from giving up the write
token at the end of an io_in_ready or io_out_ready
evaluation (see below). It is up to the application to buffer the
data until the io_out_ready event is TRUE.

io_in_ready This event becomes TRUE whenever a message arrives on
the parallel bus that must be read. The application must then
call io_in() to retrieve the data. The exact algorithm used
for evaluation of this event is shown in figure 6.

FALSE

Pass Back
Token

io_in_ready
Event

Neuron
Owns
Token

?

FALSE

TRUE

Token Passing
Taking Place

HS
Active ?

(see note)

Read
Parallel

Interface

CMD_XFER

CMD_NULL

io_out_req
Flag Set

?

Neuron
 Owns
Token

* Note: For a master Neuron Chip the
~HS line is internally inverted.
Therefore a low on the ~HS pin
indicates an active state.
For a slave Neuron Chip a high on the
~HS pin indicates an active state.

No Yes

No

Yes

No

Yes

Figure 6 Neuron Chip algorithm for evaluating the io_in_ready() event

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

11

io_out_ready This event becomes TRUE whenever the parallel bus is in a
state where it can be written to and the io_out_request()
function was previously invoked. The application must then
call the io_out() function to write the data to the parallel
port.

io_in() The CMD_XFER byte has already been read. This function
reads the length byte and the rest of the transfer data. Once
the length byte is read, the Neuron Chip executes a block read
instruction.

io_out() The CMD_XFER byte is written to the interface. Following
this the Neuron Chip executes a block write instruction
which writes the length byte followed by the rest of the
transfer data. The Neuron Chip then executes the EOM
procedure, which varies depending on whether it is
configured as a master or a slave. This function also clears
the io_out_request flag.

Neuron C applications may be written that use the parallel bus in a uni-directional
manner (i.e., applications may be written without either an io_in_ready or
io_out_ready when clause). In the case where no io_in() function is called, it is
up to the programmer to assure that no read transfers of real data messages will ever
be required by the application. This is to protect the device on the other side of the
bus from waiting forever on a data transfer.

Refer to the Neuron Chip-to-Neuron Chip Interface section of this document for an
example which uses the above Neuron C functions and events.

Timing

Timing data for the parallel I/O interface can be categorized into three distinct
classes: Firmware timing, clocked timing, and hardware AC characteristics. Below is
a listing of timing numbers for the firmware portion of the interface for a Neuron
Chip running at 10MHz. Refer to the Neuron C Resources section for a detailed
explanation of these parameters.

io_out_request() Function call to return 13.2µs

io_in_ready() Multiple code paths are possible (see figure 6):
1) Node owns token and io_out_request is posted 33.0µs
2) Node does not own token and HS is not active 45.6µs
3) Node does not own token, node reads CMD_NULL,

no io_out_request is posted (node passes token) 1.57ms

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

12

4) Node does not own, node reads CMD_XFER 68.4µs

io_out_ready() In addition to the execution time of the
io_in_ready() function 10.2 to 24.6µs

io_in() -Function call to read length byte 57.0µs
-Read length byte to block read instruction 36.0µs
-End of block read to function return 75.6µs

io_out() -Function call to write CMD_XFER 51.6µs
-Write CMD_XFER to start of block write instruction 21.6µs
-End of block write to write EOM 40.8µs
-Write EOM to function return 24.6µs

For a detailed timing specification of the hardware AC timing portion of the parallel
I/O interface refer to the Neuron Chip Data Book.

The maximum data transfer rate for the parallel I/O object running in the slave A
mode (Neuron Chip-to-Neuron Chip) is one byte per 2.4µs, or 3.3Mbps, for Neuron
Chips operating at 10MHz. Note that this rate applies to the data portion of the
transfer only. The overhead associated with the processing of the command and the
length bytes must also be taken into account when calculating the average data rate.

The overhead associated with reading the handshake status by the attached host
microprocessor will affect the average data rate. This will be a function of both the
speed of the host processor and also the method used to detect handshake
transitions (interrupt or poll).

Neuron Chip-to-Neuron Chip Interface
The parallel connection of one Neuron Chip to another is accomplished by
assigning one as the master device and the other as a slave A device. The hardware
requirements in this case reduce to a direct, one-to-one, connection of all eleven I/O
pins on both sides.

The following program illustrates a typical parallel I/O processing interface routine
which would reside on both the master and the slave A Neuron Chips .

IO_0 parallel slave s_bus;

#define DATA_SIZE 255

struct parallel_io_interface

{

unsigned int length; //length of data field

unsigned int data [DATA_SIZE];

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

13

} piofc;

when (io_in_ready(s_bus)) //ready to input data

{

piofc.length = DATA_SIZE; //number of bytes to read

io_in(s_bus, &piofc); //get 10 bytes of incoming data

}

when (io_out_ready(s_bus)) //ready to output data

{

piofc.length = 10; //number of bytes to write

io_out(s_bus, &piofc); //output 10 bytes from buffer

}

when(...) //user defined event

{

io_out_request(s_bus); //post the write transfer request

}

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

14

Neuron-to-Host Processor Interface (Slave B mode)
This example illustrates the use of the slave B mode of the parallel I/O by
interfacing the Neuron Chip to the Motorola 68HC11 microcontroller. The 68HC11
is the master and the Neuron Chip is the slave residing in the 68HC11’s address
space.

No interface circuitry is needed aside from some address decoding logic that would
allow the 68HC11 to access the Neuron Chip by using specific addresses (one address
for the data register and one for the control register). A typical design for this address
decoding logic is shown in figure 10.

Decoding
LogicA0-A15

R/~W

E

D0-D7

IO_8

IO_10

IO_9

IO_0-IO_7

A0

15

8

Neuron
Chip

MC68HC11A8

~CS

A0

R/~W

DATA

(MASTER)
(SLAVE)

Figure 10 Address decoding logic for interfacing the Neuron Chip to the 68HC11

The following is the assembly listing of a program that runs on the 68HC11. The
corresponding code for the Neuron Chip is identical to that shown in the Neuron
Chip-to-Neuron Chip example. Due to the transparent nature of the
communication protocol at the Neuron C programming level, the Neuron Chip
programmer need not be aware that the interface is to a 68HC11 (or any other host
processor for that matter) instead of to another Neuron Chip .

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

15

** Test program for master/SlaveB mode where

** master is resident on 68HC11 and slave

** is resident on the Neuron Chip.

**

** The code below implements the 68HC11 portion,

** receiving any data and sending pre-defined data

** messages. This code is implemented more as a test

** of the interface rather than a test of the protocol.

NEURON_ADDR equ $df00

DEBUG_ADDR equ $0030

HS_MASK equ $01

MAXMSGLEN equ $20

EOM equ $0

TRUE equ $1

FALSE equ $0

CMD_RESYNC equ $5A

CMD_ACKSYNC equ $07

** The NEURON CHIP is sitting on the HC11's data bus with a chip

** select address decoder set to the following addresses.

data equ $df00

control equ $df01

ORG $0000

XDEF token * boolean representing which side has the

token RMB 1 * token

XDEF counter * general purpose counter

counter RMB 1

XDEF msgi * message in structure

msgi RMB 34

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

16

mi_command equ 0 * location of command in the msg structure

mi_length equ 1 * location of data length in " "

mi_data equ 2 * location of start of data in " "

*

* Program Section

*

ORG $E000

** start of parallel master code

XDEF start_pio

start_pio

JSR master_init * initialize

XDEF main_loop

main_loop

LDAB token * load token

BEQ no_token * if token==0, can't write

*

JSR pio_write * send code message

no_token

*

* This test program receives any messages

JSR pio_read *try to read

BRA main_loop *repeat

** wait_hs

** When the NEURON CPU reads or writes the data port,

** it drives the HS line low. The master must wait for

** HS low before reading from or writing to the port.

XDEF wait_hs

wait_hs:

LDAB control

ANDB #HS_MASK

BNE wait_hs

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

17

RTS

** master_init

** Proceed with the standard synchronization with the

** NEURON. Write the CMD_RESYNC value plus EOM. Wait

** for the CMD_ACKSYNC value. Return owning token.

XDEF master_init

master_init

JSR wait_hs * wait for H.S.

LDAB #CMD_RESYNC *

STAB data * send the resync value

JSR write_eom * and the EOM.

JSR wait_hs * wait for the CMD_ACKSYNC.

LDAB data * read data from the port

CMPB #CMD_ACKSYNC

BEQ read_complete * repeat if not sync'ed

BRA master_init

** pio_read

XDEF pio_read

pio_read

LDAB control *load control

ANDB #HS_MASK

BEQ da

RTS *no data available

*

* We have data available, handshake line is low

da

LDY #msgi * set up Y index

LDAB data * read data from the port

STAB 0,Y * store in message.command

INY

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

18

TST B * check the data

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

19

BNE have_data * go get data, if command!=NULL

*

* This was token passing message (NULL)

CLR 0,Y * msgi.length=0

BRA read_complete

*

* Since the command was non-zero, get the length byte next.

have_data

JSR wait_hs * wait for indication of data

LDAB data * read data from port

STAB 0,y * msgi.length=ACCB

INY

STAB counter * set up the counter

loop_data

LDAB counter *load the counter, Z=1, if counter==0

BEQ read_complete *if counter==0, we are done

*

* There is more data to be read from port.

JSR wait_hs *wait for data available

LDAB data *read byte from data port

STAB 0,Y *store byte at Y[0]

INY *increment Y

DEC counter *decrement counter

BRA loop_data

read_complete

LDAB #TRUE

STAB token

JSR wait_hs *wait for EOM to be sent

RTS

** pio_write

XDEF pio_write

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

20

pio_write

LDY #msgo *load pointer to message

LDAB 0,Y *store Y[0] in ACCB

STAB data *X[0]=Y[0]

BEQ write_eom *if command !=0 , then there is a message

* There is data (non-zero command) so send it

is_data:

INY *increment to length

JSR wait_hs *wait for handshake

LDAB 0,Y *load length byte

STAB counter *store in counter

STAB data *send the length

*

* Send the data

send_next

LDAB counter *load the counter

BEQ write_eom *if counter==0, then done

DEC counter *counter--

INY *increment message pointer

JSR wait_hs *wait for receiver

LDAB 0,Y *load the next byte

STAB data *send the byte

BRA send_next

XDEF write_eom

write_eom

JSR wait_hs * wait before sending EOM

CLR data * send EOM

CLR token * token=FALSE

RTS

* coded outgoing message:

XDEF msgo

msgo

FCB $01,$05,$51,$52,$53,$54,$55

END

LONWORKS Engineering Bulletin Parallel I/O Interface to the Neuron Chip

21

Disclaimer

Echelon Corporation assumes no responsibility for any errors contained herein.
No part of this document may be reproduced, translated, or transmitted in any form without permission from Echelon.

Part Number 005-0021-01 Rev. C

© 1991 - 1995 Echelon Corporation.
Echelon, LON, Neuron, LonManager,
LonBuilder, LonTalk, LONWORKS, 3120
and 3150 are U.S. registered trademarks of
Echelon Corporation. LonSupport,
LONMARK, and LonMaker are trademarks
of Echelon Corporation. Other names may
be trademarks of their respective
companies. Some of the LONWORKS tools
are subject to certain Terms and Conditions.
For a complete explanation of these Terms
and Conditions, please call 1-800-258-
4LON or +1-415-855-7400.

Echelon Corporation
4015 Miranda Avenue
Palo Alto, CA 94304
Telephone (415) 855-7400
Fax (415) 856-6153

Echelon Europe Ltd
Elsinore House
77 Fulham Palace Road
London W6 8JA
England
Telephone +44-81-563-7077
Fax +44-81-563-7055

Echelon Japan K.K.
Kamino Shoji Bldg. 8F
25-13 Higashi-Gotanda 1-chome
Shinagawa-ku, Tokyo 141
Telephone (03) 3440-7781
Fax (03) 3440-7782

