
ISI Protocol Specification
Version 3

0 7 8 - 0 3 0 0 - 0 1 F

Echelon, LONWORKS, Neuron, LonMaker, LONMARK, 3120,
3150, and the Echelon logo are trademarks of Echelon
Corporation registered in the United States and other
countries. 3170 is a trademark of Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders. Neuron
Chips and other OEM Products were not designed for use
in equipment or systems which involve danger to human
health or safety or a risk of property damage and Echelon
assumes no responsibility or liability for use of the Neuron
Chips in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 2005, 2007 Echelon Corporation.

Echelon Corporation
www.echelon.com

ISI Protocol Specification 1

Introduction

This specification describes the Interoperable Self-Installation
(ISI) protocol, which is a protocol used to create networks of
control devices without requiring the use of an installation tool.

This specification refers to version 3.01 of Echelon’s ISI
libraries.

2 ISI Protocol Specification

The ISI protocol is an application-layer protocol that allows installation of devices
and connection management without the use of a separate network management
tool such as the LonMaker® Integration Tool. The ISI protocol can be used with
small networks with up to 200 devices. The ISI protocol supports transitioning
an ISI installed network to a managed network where a network management
tool assumes responsibility for network configuration of all devices in the
network. A network management tool provides additional flexibility, enables
more complex connections and configuration, and supports larger networks. The
ISI protocol simplifies installation by eliminating the need for a separate tool for
simple networks.

The ISI protocol supports the following:

• Flexibility—by leveraging LONMARK® profiles and types, many types of
devices are supported. For example, the ISI protocol can be used for
appliances, lamps, light switches, thermostats, air conditioners, furnaces,
occupancy sensors, security sensors, pool pump controllers, sun blinds,
jalousies, and water heaters.

• Isolation—different networks can be logically isolated, even if their
devices are within earshot of each other, such as devices in neighboring
apartments or houses.

• Anarchy—devices may come and go without any special precaution. For
example, many devices may be turned off when new devices are added to
a network, and a device can even be moved to a different network—
including one that is within earshot.

• Robustness—installation continues to work, even during periods of
temporary network communication outage.

• Ease-of-Use—managing an ISI network is simple. A few button presses
are all that is needed.

• Growth—networks may grow beyond the limits of the ISI protocol. The
ISI protocol supports easy transitioning of a network from being self-
installed to managed, where a network management tool and server take
over management of the network configuration of all the devices in the
network. The ISI protocol uses network configuration algorithms that
are fully compatible with common network management tools and
servers. This enables the network management tools and servers to fully
recover all network configuration information, including device addresses
and network variable connections.

The ISI protocol performs three key functions—domain acquisition, network
address assignment, and connection management. Domain acquisition ensures
that devices in a network can interoperate with each other, but will not interfere
with devices in a neighboring network. Network address assignment ensures
that every device in a network has a unique logical address, which is important
to support transitioning to a managed network. Connection management allows
devices in a network to exchange data.
The ISI protocol operates on top of the ANSI/CEA-709.1 (also known as ISO/CEN
EN14908-1) Control Network Protocol, which is a protocol designed to support
the needs of control applications spanning a range of industries and
requirements. It is a complete 7-layer communications protocol with each layer
optimized to the needs of control applications. The 7 layers follow the reference
model for open systems interconnections (OSI) developed by the International
Standard Organization (ISO).

ISI Protocol Specification 3

This document describes the ISI protocol. It covers the typical ISI network
architecture, the procedures that take place in an ISI installed network, and the
messages that are defined by the ISI protocol.

The ISI protocol is licensed by Echelon subject to RAND1 terms (or RAND-Z2 for
use with Echelon transceivers for the LONMARK TP/FT-10 and PL-20 channels,
subject to additional terms outlined in the Echelon OEM License Agreement,
Revision J or newer, or an amendment to a prior version of the Echelon OEM
License Agreement that includes rights to the ISI protocol)). The RAND-Z terms
provide a royalty-free license for use of the ISI protocol with an Echelon FT
3120®/FT 3150®/PL 3120/PL 3150/PL 3170™ Smart Transceiver or an Echelon
FTT-10A/LPT-11/PLT-22 Transceiver used in conjunction with a Neuron® Chip.
The OEM License Agreement specifies additional requirements for RAND-Z
terms for use of the ISI protocol in devices sold into the home market. An
implementation of the ISI protocol is available from Echelon. For more details,
see the ISI Programmer’s Guide.
To use the ISI libraries in products designed for use in a home environment, you
must also have a Digital Home Alliance Agreement in effect with Echelon.

1 “RAND terms” mean the commercially reasonable and non-discriminatory terms and conditions upon
which an intellectual property license is granted; these terms may include a reasonable royalty or reasonable fee.
2 “RAND-Z terms” mean the commercially reasonable and non-discriminatory terms and conditions upon
which an intellectual property license is granted; these terms do not include a royalty or other fee.

4 ISI Protocol Specification

Table of Contents
Introduction.. 1

Table of Contents ... 4
ISI Network Architecture .. 7

Network Topology and Limits ... 8
Where ISI Fits .. 9
How the ISI Protocol Works .. 9

Fire-and-Forget.. 9
Periodic Broadcasting of Data .. 10
Domain Configuration... 11

Interoperable Data... 12
Addressing .. 13

Subnet and Node ID .. 14
Groups .. 14
Network Variable Selectors .. 14
Network Variable Tables .. 15
Implicit and Explicit Addressing.. 15

Connection Model... 15
Selector Mapping... 18
Compound Connection Example Walk-Through 19
Multiple Network Variable Mapping ... 22
Accepting Partial Connections.. 23

Connection Management... 24
Manual Enrollment ... 25
Automatic Enrollment... 27
Controlled Enrollment .. 27

Self-Installation Procedures .. 29
Domain Acquisition.. 30
Network Address Assignment... 31
Network Address Verification... 32
Device Discovery .. 32
Connection Enrollment.. 32
Connection Verification ... 35
Connection Discovery... 37
Connection Removal .. 37
Instance Identification... 38
Deinstallation... 38

Message Profiles... 39
Periodic Messages .. 40
Normal and Extended Message Structures.. 42
Timing and Bandwidth Control .. 43
ISI Constants.. 45

ISI Group IDs and Usage Categories ... 45
ISI Message Codes... 46
Controlled Enrollment Request Codes... 46

ISI Message Structures ... 47
ISI Message Header .. 47
Connection Management Messages ... 48

ISI Protocol Specification 5

DRUM 0x00 - Domain Resource Usage ... 49
DRUMEX 0x01 - Extended DRUM .. 49
CSMO 0x02 - Open Enrollment.. 50
CSMOEX 0x03 - Extended CSMO.. 52
CSMA 0x04 - Automatic Enrollment ... 55
CSMAEX 0x05 - Extended CSMA .. 55
CSMR 0x06 - Automatic Enrollment Reminder .. 56
CSMREX 0x07 - Extended CSMR .. 56
DIDRQ 0x08 - Domain ID Request .. 56
DIDRM 0x09 - Domain ID Response.. 56
DIDCF 0x0A - Domain ID Confirmation ... 58
TIMG 0x0B - Timing Guidance .. 58
CSMX 0x0C - Enrollment Cancellation ... 59
CSMC 0x0D - Enrollment Confirmation.. 59
CSME 0x0E - Enrollment Acceptance.. 59
CSMD 0x0F - Connection Deletion Request .. 59
CSMI 0x10 - Connection Status Information .. 59
CTRQ 0x11 - Control Request .. 60
CTRP 0x12 - Control Response... 60
RDCT 0x13 - Connection Table Read Request .. 61
RDCS 0x14 - Connection Table Read Success ... 61
RDCF 0x15 - Connection Table Read Failure ... 61

6 ISI Protocol Specification

ISI Protocol Specification 7

1

ISI Network Architecture

This chapter describes the ISI network architecture, and the
use of ANSI/CEA-709.1 (ISO/CEN EN14908-1) services
within an ISI network.

8 ISI Protocol Specification

Network Topology and Limits
There are two types of ISI networks—ISI-S for simple and standalone ISI
networks, and ISI-DA for self-installed networks that support more devices than
ISI-S, more complex topologies, and unique domain IDs. An ISI-DA network
must include one or more domain address server (DAS) devices, and all the
devices in an ISI-DA network must be ISI-DA compatible. The DAS devices are
present to help manage the ISI-DA network. Multiple domain address servers
can be used with a single network for increased reach or redundancy. Multiple
domain address servers act independently, but the first DAS determines the
domain ID to be used. The protocol implemented by the domain address servers
is called the ISI-DAS protocol. The domain address servers do not take on the
full roll of network management servers. Instead, they are only used to
coordinate assignment of unique domain IDs and to maintain an estimate of
network size to optimize use of available channel bandwidth.

ISI networks support up to 32 devices for ISI-S networks and up to 200 devices
for ISI-DA networks. ISI networks will not immediately stop functioning if these
limits are exceeded. Increasing the number of devices over the supported limits
increases the network bandwidth consumed for administrative ISI messages,
possibly preventing regular network operation due to an increased collision rate.
The supported channel types for the ISI protocol are PL-20 power line and
TP/FT-10 free topology twisted pair. ISI-S networks are limited to a single
channel segmented with physical layer repeaters according to the standard
channel properties (i.e. none for PL-20 channels, or multiple for TP/FT-10
channels) provided there is never more than one physical layer repeater between
any two points of communication. In other words, you can have one N-way
repeater, much in the way of an N-port Ethernet hub. A physical layer repeater
is similar to a hub (signal booster without filtering logic).
ISI-DA networks can have one or two channels. ISI-DA networks with two
channels must include a router configured as a repeater. Each channel must
meet the same requirements as a channel for ISI-S without the DAS described
above. The router must be preconfigured to be compatible with ISI networks, or
otherwise capable of joining an ISI network.
If a domain address server is used in a two-channel network with a PL-20 and
TP/FT-10 channel, it should be located on the PL-20 channel. One of the
functions of the domain address server is to determine the slowest channel of the
network that it is located on. If a domain address server is located on the PL-20
channel, it will start up with knowledge of the slowest channel. If it is located on
the TP/FT-10 channel, it will have to learn of the existence of the PL-20 channel
by discovering one of the PL-20 devices. This may take some time. Conversely, if
the domain address server is located on the TP/FT-10 channel and all PL-20
devices are removed from the network, the domain address server should be reset
to relearn the network topology.

ISI does not support redundant routers, and the user is responsible for avoiding
looping topologies. The network topologies described in this section will not
cause looping topologies.

ISI Protocol Specification 9

Where ISI Fits
The main advantage of using ISI installation over installation with a network
management tool is that eliminates the need for trained installation personal or
specialized tools. In an ISI network, there is no central management device that
if lost will cause the loss of network configuration information. There is no
central database to manage and maintain. And there is no need for someone
with an engineering background or specific tools to install the network.
The ISI protocol is suitable for small networks with simple network topologies.
Example applications in a small building or home network include monitoring
and control for appliances, HVAC systems, lights, remote A/V equipment, and
security devices. New devices can be added at any time to extend an existing
system.
The ISI protocol supports network growth. If a network grows beyond the device
maximum of 32 for simple ISI-S networks, a domain address server may be
added to the network to support up to 200 devices if all the devices are ISI-DA
compatible. If the network grows beyond that limit, or if the complexity of the
network application starts exceeding what can be reasonably managed using the
ISI protocol, the ISI network can be upgraded to a managed network, and
standard network management tools such as the LonMaker Integration Tool may
be used to further improve and expand the system.

To join an ISI network, each participating device must implement parts of the ISI
protocol. Support for the ISI protocol requires at least 3 Kbytes of application
memory. While this is not typically a problem on devices supporting external
memory, single-chip solutions will be more constrained.
ISI installed devices need periodic communication for the maintenance of the
self-installed network. The ISI protocol limits this management traffic to only
one packet every five seconds, on average, for networks that include a power line
channel, reducing the bandwidth available to applications by that small amount.

Self-installed networks have limited knowledge of the actual topology and
network variable connection layout. Generic parameters are used when
determining transport properties. If you use a network management tool to
create a network with the same network variable connections as a self-installed
network, the managed network will typically result in a more economic use of
device and network resources, and in a more optimized device and network
configuration.

How the ISI Protocol Works

Fire-and-Forget
Network address assignment and connection management both require allocation
of network resources. In the case of network address assignment, the network
resources that must be allocated are subnet and node IDs. In the case of
connection management, the network resources that must be allocated are
network variable selectors. In a managed network, a network management
server allocates network resources and ensures there are no conflicts. In an ISI
network, there is no central network management server, so each device must
allocate its own network resources and automatically resolve any conflicts that
may occur due to duplicate resource assignment.

10 ISI Protocol Specification

The ISI protocol uses a patent-pending fire-and-forget algorithm for the
allocation and maintenance of unique network addresses. The fire-and-forget
algorithm eliminates delays when configuring the network, eliminates the need
for a centralized server, and ensures correct ISI operation even at times of partial
network outage or unavailability of many installed devices.

When an ISI device needs a new network address such as a device or connection
address, the ISI code in the device randomly selects an address and periodically
broadcasts its selection to all the other devices in the network. This is the “fire”
part of fire-and-forget. When a device does this, it does not wait for a response.
It assumes that its chosen address is unique and continues to use it. This is the
“forget” part of fire-and-forget. All ISI devices monitor these periodic broadcasts.
If a device receives a message that indicates there is an address conflict, the
receiving device takes defensive action and changes its own configuration to
eliminate the conflict. This eliminates the need for the sending device to wait for
a response—which is important because some of the potential receiving devices
may be switched off for long periods of time, and may not detect the conflict until
they are switched back on some time after the initial address assignment.
ISI devices maintain an estimate of the network size that is used to throttle these
periodic broadcasts, such that the broadcasts do not produce more network traffic
than is shown below.

Networks are assumed to be in a constant state of flux. Devices may be added
and removed from the network, units may be powered on and off, or partial
transient network outages may occur at any time. Thanks to the periodic
notifications, the fire-and-forget algorithm ensures that each device handles a
new situation as it becomes aware of relevant changes.

The ISI protocol uses fire-and-forget address assignment for assigning
ANSI/CEA-709.1 (ISO/CEN EN14908-1) subnet IDs, node IDs, and network
variable selectors.

Periodic Broadcasting of Data
To support fire-and-forget network address assignment, all ISI devices
periodically broadcast the device and connection addresses that they are using so
that other devices that are in conflict can re-allocate the conflicting resources. To
broadcast device addresses, each device periodically broadcasts notifications
about its subnet and node ID. To broadcast connection addresses, one of the
devices enrolled in a connection periodically broadcasts notifications about the
selector value or values currently in use by the connection.
Because the network is assumed to be permanently in flux, this notification is
repeated on an infrequent, but periodic, schedule. These periodic broadcasts take
place during a slot.
A slot is a point in time at which any device on the network may broadcast
information. Which device utilizes that slot is determined randomly. Each
device assumes that there are n slots on the network, with n being 32 for an ISI-S
network, and the estimated number of devices on the network for an ISI-DA

Channel Network Traffic for All Devices

Power Line
or Power Line plus Free Topology

One packet per 5 seconds

Free Topology One packet per 2.5 seconds

ISI Protocol Specification 11

network with a domain address server (DAS). The DAS provides the estimated
count of devices in the network, or the number 8, whichever is highest.

The time Tslot between two adjacent slots is a property of the topology of the ISI
network. Tslot is 5 seconds for networks that exclusively use a free topology
channel, and 10 seconds for those containing a power line channel. The slot
width ensures that periodic broadcast messages needed for the maintenance of
the ISI network consume no more than 1.5% of the available bandwidth on
average, and under typical conditions. The period (Tperiod) until the slot returns to
the first device is determined by the number n; Tperiod = n * Tslot. For example,
with a Tslot of 10 seconds and each periodic broadcast being sent with 2 packets
(one initial packet, followed by one repeat), the schedule meets the requirement
of 1 packet in 5 seconds on average.
ISI-S networks, which assume 32 devices, normally operate at Tperiod = 32 * Tslot =
320s = 5 minutes 20 seconds on networks containing a power line channel, and at
twice that rate in exclusive free topology networks.
Whenever a slot is due for a particular device, the device broadcasts the next
message from its broadcast queue. The broadcast queue contains at least one of
the following: a message informing of the device’s subnet and node ID (DRUM), a
message for each connection where the device is host of the connection (CSMI), a
reminder message for each automatic connection where the device is host of the
connection (CSMR), and optional network variable heartbeat messages. Several
other ISI messages may also enter the periodic broadcast queue, and devices may
include application-specific messages in the queue. Even though normal slot use
cycles through all candidate messages in a round-robin fashion, the domain
resource usage message DRUM must be sent at least every eighth slot; Tdrum ≥ 8 *
Tslot.
Spreading is applied to all outgoing messages that are sent in a slot: each device
monitors all messages that are sent its chosen broadcast slot. If a device that is
ready to send an ISI message determines an interval of less than Tspread has
passed since the previous message, the sending device broadcasts the scheduled
message regardless, and relies on the ANSI/CEA-709.1 layer 1 and 2 processing
to handle transient traffic demand or possible collisions. The sending device then
chooses a different slot for the next broadcast of a similar nature. The detection
interval Tspread is a function of the network topology; 1.5 seconds is allocated on
ISI networks containing a power line channel, and approximately 1 second on
those making exclusive use of a free topology channel.
This method aims at statistically even distribution of these periodic messages. In
addition to those messages that are required for ISI operation (DRUM, TIMG,
CSMI, CSMR, etc), the ISI protocol also supports the propagation of network
variable heartbeat messages in the same slot. This allows for network variable
heartbeats to be sent at an optimal rate for the network size, since self-installed
networks cannot rely on configuration tools for adjustment of heartbeat intervals.

Domain Configuration
Devices in an ISI network must join two domains, a primary and a secondary.
The primary domain is the application domain, and is used for all application
communication and for ISI connection-related messages. The initial primary
domain is fixed for all ISI devices that are not domain address servers, and is
assigned by the domain address server for devices installed in ISI-DA networks.
For devices that are not domain address servers, the initial domain must be a 3-
byte domain ID with a value of 0x49, 0x53, 0x49 (the ASCII codes for “ISI”). The

12 ISI Protocol Specification

domain ID for a domain address server is a 6-byte ID that is initially derived
from the Neuron ID of one of the devices in the network—typically from the first
domain address server in the network. Use of a unique domain assigned by a
domain address server can prevent inadvertent communication between devices
in different networks when those devices are within earshot of each other. This
can happen, for example, in a power line network where devices in neighboring
homes may be within earshot of each other.

The secondary domain is the ISI administrative domain. The secondary domain
is fixed for all ISI devices. The standard fixed value is the zero-length domain
with the clone domain attribute set. The clone domain attribute allows devices to
receive messages that originate from a device with the same subnet/node ID as
the receiver. Devices without the clone domain attribute automatically reject
packets originating from their own address—this is typically desirable except
when it is necessary to find duplicate addresses. The clone domain attribute on
the secondary domain allows ISI devices to detect and repair duplicate addresses.
Use of a common secondary domain allows multiple ISI networks to coexist on
the same, shared, media. All ISI networks on the same shared media scale
correctly as a function of the total number of ISI devices using that media,
independent from the primary domain ID in use.

Interoperable Data
A device application may be divided into one or more functional blocks. A
functional block is a portion of a device’s application that performs a task by
receiving configuration and operational data inputs, processing the data, and
sending operational data outputs. A functional block may receive inputs from the
network, hardware attached to the device, and from other functional blocks on
the device. A functional block may send outputs to the network, to hardware
attached to the device, and to other functional blocks on the device.
The device application typically implements a functional block for each function
on the device to which other devices should communicate, or that requires
configuration for particular application behavior. Each functional block must be
defined by a functional profile. Functional profiles are templates for functional
blocks, and each functional block is an implementation of a functional profile.
The network inputs and outputs of a functional block, if any, are provided by
network variables and configuration properties. A network variable is an
operational data input or output for a functional block. A configuration property
is a data value used for configuring or documenting the behavior of one or more
network variables, one or more functional blocks, or the entire device.
Configuration properties used to configure or document an entire device are
either associated with the entire device or associated with a special type of
functional block called the Node Object functional block.
Network tools use the Node Object functional block to test and manage the other
functional blocks on a device. The Node Object functional block may also be used
to enable or disable self-installation, to manage time, to report alarms, and to
transfer data logs.
Network variables are used to share data between devices. Every network
variable has a direction, type, and length. The network variable direction can be
either input or output, depending on whether the network variable is used to
receive or send data. The network variable type determines the encoding and
format of the data. LONMARK International publishes standard network variable
definitions called Standard Network Variable Types, or SNVTs. Device

ISI Protocol Specification 13

manufacturers may also create custom network variable types, called user
network variable types, or UNVTs.

Network variables of identical type and length but opposite directions can be
connected to allow devices to share information. A single network variable may
be connected to multiple network variables of the same type but opposite
direction. A single network variable output connected to multiple inputs is called
a fan-out connection. A single network variable input that receives inputs from
multiple network variable outputs is called a fan-in connection.
The application program in a device is not required to know from where input
network variable values come nor to where output network variable values go.
When the application program has a changed value for an output network
variable, it simply passes the new value to the device firmware. Through a
process called enrollment (for self-installed networks) or binding (for managed
networks) the device firmware is configured to know the logical address of the
other device or devices in the network that are expecting that network variable’s
values. It assembles and sends the appropriate packets to these devices.
Similarly, when the device firmware receives an updated value for an input
network variable required by its application program, it passes the data to the
application program. The enrollment or binding process thus creates logical
connections between an output network variable in one device and an input
network variable in another device or group of devices. Connections may be
thought of as virtual wires.
The enrollment or binding process may configure a network variable to appear as
multiple identical network variables on the network. The additional virtual
network variables created by this process are called aliases. Aliases are
transparent to the device applications—an alias update to an input network
variable appears identical to a network variable update to the primary network
variable; an update to an output network variable with aliases is automatically
sent to the primary network variable and all its aliases.
ISI supports up to 254 network variables and 254 aliases on a single device.
Devices may implement more than 254 network variables and 254 aliases, but
only those with index 0 through 253 can be used with ISI connections.
When the same device is used within a managed network, a maximum of 4096
network variables and 4096 aliases may be used on a single device.

Addressing
ANSI/CEA-709.1 (ISO/CEN EN14908-1) devices typically communicate using
network variables. A network variable update is sent on the network in a packet
that contains a network variable value and addressing information that is used
to identify the device or devices to send the update to, and to identify the network
variables on those devices to receive the update. The addressing information is
contained in two components—a layer-3 address that identifies the device or
devices to receive the update, and a layer-6 address called the network variable
selector that identifies the network variables on the receiving devices to receive
the update. The layer-3 address may identify a single device, a group of devices,
or all devices in the network.

14 ISI Protocol Specification

Subnet and Node ID
A subnet and node ID is a pair of layer-3 identifiers that provide a unique
address for each device in a network. For ISI networks, the subnet ID is a value
between 64 and 127 for TP/FT-10 devices and between 128 and 191 for PL-20
devices. Multiple devices can share the same subnet. Subnets are used in
managed networks for efficient routing; allocating subnet identifiers as a function
of the local transceiver type allows a self-installed ISI network to be prepared for
upgrading into a managed network in the future.
The node ID is a value between 2 and 125. The combination of the subnet ID and
node ID for a device must be unique for every device in a network. Subnet and
node IDs are assigned using the fire-and-forget protocol and the protocol
maintains the uniqueness of the subnet/node ID value pairs.

Groups
A group is a logical collection of devices within a domain. Each group is
identified by a layer-3 address called a group ID. The group ID is an identifier
with a value between 0 and 255, which are split between 128 standard IDs (0 –
127) and 128 manufacturer-defined IDs (128 – 255). Each ISI standard group ID
describes a device usage category. Devices are designed to recognize a certain set
of group IDs, and might join up to 15 different groups at any time. For example,
a washing machine appliance could belong to a manufacturer-specific group by
default, but be designed to recognize standard groups for appliances, gateways,
and controllers. The standard IDs and categories are defined in ISI Group IDs
and Usage Categories.
In an ISI network, network variables are typically sent using group addressing.
Since network variables are typically sent using group addressing, devices that
belong to the same group, but do not belong to the same connection, might receive
the network variable update message. This is typically benign, since the network
variable selector will have a unique value, and network variable updates that
relate to a selector value unknown to the receiving device are dropped.

If a device is a member of multiple groups, one of the groups must be identified as
the primary group. A device may belong to up to 15 groups. The maximum
number of concurrent groups is defined by the address table size, which is
determined by the device application.

Network Variable Selectors
A network variable selector is the layer-6 address for a network variable. The
network variable selector is an identifier that is included with every network
variable update that is used to associate the network variable with a network
variable within the receiving application. The network variable selector is a 14-
bit identifier with a value between 0 and 3FFF hex, for a maximum of 16384
selector values. Selector values 0 to 2FFF hex are available for bound network
variables. This provides a total of 12288 network variable selectors for bound
network variables. Selector values 3000 to 3FFF hex are reserved for unbound
network variables, with the selector value equal to 3FFF hex minus the network
variable index.

Selectors are assigned using the fire-and-forget protocol. The protocol maintains
the uniqueness of the selectors.

ISI Protocol Specification 15

Network Variable Tables
Every ANSI/CEA-709.1 device maintains two tables that are used to associate a
network variable selector contained in a network variable update message with a
network variable on the device. These tables are also used to determine which
selector or selectors to use when the application sends a network variable update.
The first table is called the network variable configuration table. This table
contains a single network variable selector per network variable on the device.
The selector contained in this table is called the primary network variable
selector. The second table is called the alias table. This table contains a variable
number of selectors for each network variable on the device. The alias table is
used as a pool of selectors, where any number of selectors may be assigned to
each of the network variables on the device, up to the number of entries available
in the alias table. Each entry in the alias table is called an alias.
The ISI prototocol supports aliases, but does not require them. Device
manufacturers can choose to include support for aliases in the device, at the
expense of some memory and for the benefit of being able to support more
flexibible connection schemes. Aliases are also supported by network
management tools, allowing these tools to support more types of connections in
managed networks.

Implicit and Explicit Addressing
Every ANSI/CEA-709.1 device maintains an address table that is used as a pool
of layer-3 addresses for sending messages, and is also used by the ANSI/CEA-
709.1 protocol implementation to qualify incoming group-addressed messages.
When an application writes to a network variable, the ANSI/CEA-709.1 protocol
implementation looks up the network variable’s selector and address table entry
to use in the network variable configuration table. It then sends the update to
the address in the specified entry in the address table. This process is called
implicit addressing, because the device application never has to deal with any of
the addressing information. Implicit addressing reduces application code size
and complexity, but limits the number of distinct network addresses that can be
used by the application to the number of entries in the address table.
Applications can bypass the address table by using explicit addressing. With
explicit addressing, the application explicitly identifies the destination layer-6
and layer-3 addresses for a network variable update. Controllers may use this
capability to send a network variable update to an individual device without
needing to establish a connection first, and without requiring an address table
entry.

Connection Model
ISI connections are created among connection assemblies. A connection assembly
is the network interface for a block of functionality, much like a functional block.
A simple assembly refers to a single network variable:

A connection assembly that consists of a single network variable is called a
simple assembly. A single assembly can include multiple network variables in a

16 ISI Protocol Specification

functional block, can include multiple network variables that span multiple
functional blocks, or can exist on a device that does not have any functional
blocks; an assembly is simply a collection of one or more network variables that
can be connected as a unit for some common purpose. A connection assembly
consisting of more than one network variable is called a compound assembly:

For example, a combination light-switch and lamp ballast controller may have
both a switch and a lamp functional block, which are paired to act as a single
assembly in an ISI network, but may be handled as independent functional
blocks in a managed network:

To communicate and identify an assembly, the device application assigns a
unique number to each assembly. This assembly number must be in the 0–254
range, sequentially assigned, starting at 0. Required assemblies for standard
profiles must be first, assigned in the order the profiles are declared in the
application. Standard ISI profiles that define multiple assemblies must specify
the order the assemblies are to be assigned.

An assembly has a width, which equals the number of network variable selectors
required for the connection of the assembly. Typically, the width equals the
number of network variables in the assembly. For example, assembly 0 has a
width of 1, assembly 1 typically has a width of 2, and assembly 2 typically has a
width of 4. All assemblies must have a width of at least 1. Simple assemblies
have a width of 1; compound assemblies have a width of greater than 1. One of
the network variables in a compound assembly is designated as the primary
network variable. If the primary network variable is part of a functional block,
that functional block is designated as the primary functional block. Information
about the primary network variable may be included in the connection invitation.
To open enrollment, the connection host broadcasts a connection invitation that
may include the following information about the assembly on offer: the network
variable type of the primary network variable in the assembly, the functional

ISI Protocol Specification 17

profile number of the primary functional profile in the assembly, and the
connection width. The connection invitation is sent using an ISI message called
the open enrollment message (CSMO). Other devices on the network receive the
invitation and interpret the offered assembly to decide whether they could join
the new connection.

In the case of assembly 0, the CSMO may just specify a width of 1 and the
network variable type. This is a case similar to the one employed by a generic
switch device where: the switch offers a SNVT_switch network variable that is
not tied to a specific functional profile.
Devices that receive this CSMO message decide whether or not to join this
connection based on the CSMO data (for example, a SNVT_switch network
variable is on offer), and knowledge of the local application (for example, the local
application itself implements a SNVT_switch network variable).

Assembly 1 demonstrates a more specialized example. In this example, a switch
offers the assembly, and the assembly is described as an implementation of
SFPTclosedLoopSensor with a width of 2 and the implementation of SNVT_xxx
as SNVT_switch. The ISI protocol defines how selector values are mapped to the
individual network variables offered.
Accepting devices may include devices implementing SFPTclosedLoopActuator
with SNVT_xxx as SNVT_switch, but are not limited to these. Any device that
understands the data that is being offered (SFPTclosedLoopSensor implementing
SNVT_switch) may join this connection.
Since the invitation includes no more than one functional profile number, a
compound assembly is typically limited to a single functional block on each
device. To include multiple functional blocks in an assembly, a variant may be
specified. A variant is an identifier that customizes the information specified in
the connection invitation. Variants may be defined for any device category and/or
any functional profile/member number pair. For example, a variant can be
specified with the SFPTclosedLoopSensor functional block offered in assembly 2
above to specify that the SFPTclosedLoopActuator functional block is included in
the assembly. A value of zero specifies that a variant is not specified. Variant
values 1 – 127 are standard variant values specified by this specification and by
ISI profiles published by LONMARK International. Variant values 128 – 254 are
available for use by manufacturer-specific connections.
The open enrollment message (CSMO) includes fields for the manufacturer ID,
scope at which the types are defined, and a variant field. For standard
connections, the manufacturer ID and scope are both set to zero. The variant
field, too, is typically set to zero.

A manufacturer-specific connection is one where the CSMO message can only be
interpreted with manufacturer-specific knowledge. A manufacturer-specific
connection may use any scope, but must set the manufacturer ID field to a non-
zero, valid manufacturer ID. The manufacturer ID identifies a LONWORKS®
device manufacturer. Manufacturers who are members of LONMARK
International have a standard manufacturer ID. These are listed at
www.lonmark.org/spid. Manufacturers who are not members of LONMARK
International can request a free manufacturer ID by filling out a simple form at
www.lonmark.org/mid.

With manufacturer-specific compound connections, the variety of connection
models supported with the CSMO message is virtually unlimited. The ISI
protocol is limited to connections with a width of no more than 63.

18 ISI Protocol Specification

Each assembly on a device has a unique number that is assigned by the
application. Each network variable on a device may be assigned to an assembly.

Selector Mapping
When a device accepts a CSMO message with a width greater than 1 (a
compound connection), the accepting and inviting devices must have knowledge
of the selector mapping. Selector mapping rules define how, in the event of a
compound connection, multiple selector values relate to the associated network
variables.
For example, a SFPTclosedLoopSensor functional block may have an assembly
with a width of 2, using two selectors S0 and S1. The CSMO message contains the
width and the starting selector S0. The value of selector S1 is defined as:

S1 = (S0 + 1) AND 0x2FFF
In general terms:

Sj = (Sj-1 + 1) AND 0x2FFF.

This formula defines the selectors S0 – Swidth-1 used for an assembly. These
selectors are mapped to the network variables in the assembly based on the
following rules:

• In a simple connection with a single selector, this selector is applied to
the network variable(s) involved.

• In a generic compound connection (one with manufacturer ID of zero and
a width greater than 1), the device that sends the CSMO message maps
the selector values in ascending order of the functional profile member
number, starting with the first selector S0 used with the functional block
member network variable indicated with the Member field in the CSMO
message:

Assembly #1

SFPTclosedLoopSensor

nviValueFb nvoValue

Member #1 Member #2
Selector S1Selector S0

Devices accepting this CSMO for a new connection must not only understand the
type of data that is being offered, but also understand the selector mapping

ISI Protocol Specification 19

applied on the inviting device. Devices then have to associate local network
variables with the selector values such that a meaningful connection is created.

For example, if the accepting device implements a SFPTclosedLoopActuator
functional block with the same network variable type, it can map selector S0 to its
local output network variable and selector S1 to its local input network variable.

A variant value may be used to identify alternate mappings.

Compound Connection Example Walk-Through
Following is a walk-through a reasonably complex connection example. These
examples are available as part of the Mini EVK Evaluation Kit.

a. MGSwitch devices, implementing one dimmer sensor each. The dimmer may
be on or off, with levels between 0 and 100%. MGSwitch uses two SNVT_switch
network variables:

b. MGLight devices, implementing one dimmable light each. The light may be on
or off, with levels between 0 and 100%. MGLight uses two SNVT_switch network
variables:

Switches and lights are connected in many-to-many connections with a complete
feedback loop, allowing all devices and dimmer sensors to synchronize and
assume the same on/off position and light level, as shown in the following
example.

20 ISI Protocol Specification

MGSwitch initiated the creation of this connection (it is called the connection
host) by offering an assembly consisting of a SFPTclosedLoopSensor functional
block with a width of 2 and an NV type of SNVT_switch to the lighting group.
Two selectors are used with the assembly, in growing order of the host’s
functional profile member numbers. The nviValueFb member of the
SFPTclosedLoopSensor functional block is defined as member number 1 and the
nvoValue of the SFPTclosedLoopSensor functional block is defined as member
number 2, so the first of the two selectors is used with the feedback connection,
and the second selector value is used with the control connection.
The MGLight device joins the connection because it expects to connect to
SFPTclosedLoopSensor functional blocks. It applies the first of the two selector
values to its output network variable, and the second to its input networks
variable.

Had MGLight been the connection host, the resulting connection would have
performed the same, but the selector mapping would have been the opposite: the
first selector would apply to the control path, and the second to the feedback path
(because the two are reversed in the two functional profiles).
Creating a many-to-many connection with, say, two dimmers and three lights, is
easy and can be accomplished with a single connection creation step. No aliases
are needed if the many-to-many connection is made in a single step:

Network variable aliases are needed for the many-to-many connection in three
cases: the connection is made sequentially, some functional blocks share the
same physical device, or some of the participating network variables are already
engaged in other connections.

In the last case, where a individual network variable is already engaged with a
different connection, the ISI protocol supports a means to replace the previous
connection information (no alias needed in this example), or the network variable
can be aliased to join both the previous and the new connection.

ISI Protocol Specification 21

In the second case, which is the case of a single device implementing two
switches, the connection cannot be made in a single step. The ISI protocol can
only apply a single assembly at a time per device, even if a given device may
provide multiple applicable assemblies. In order to establish the resulting many-
to-many connection, a multi-step procedure must be used.

The same multi-step procedure is also used to extend an existing connection. ISI
connections may be extended by adding an additional aliased connection. The
resulting user-experience is that of an extended connection, although the
ANSI/CEA 709.1 mapping is that of an aliased, separate, connection.

22 ISI Protocol Specification

EXAMPLE

A system may start with a one-to-one MGSwitch to MGLight connection:

Adding a second light, no matter which connection host is chosen when
extending the connection, requires two aliases on the switch, employing 4
selector values in total:

Multiple Network Variable Mapping
The connection shown at the beginning of the walk-through example, which
consists of one closed-loop actuator and one closed-loop sensor, can be
implemented with a single selector as follows:

ISI Protocol Specification 23

Because selector values are not shared among input network variables (each
input network variable on given device must always have a unique network
variable selector), a many-to-many connection among SFPTclosedLoopSensor and
SFPTclosedLoopActuator functional blocks is possible with the use of a single
selector. In this case, the connection width is one, since a single selector is used.

Accepting Partial Connections
Typically, devices create connections for all the network variables in an
assembly. In some cases, it is possible for devices to create connections for a
subset of the network variables in the assembly.

EXAMPLE

A connection host offers an assembly with a SFPThvacTempSensor
functional block with a width of 3 that includes the mandatory
nvoHVACTemp network variable (member 1) and the two optional
nvoFixPtTemp (member 2) and nvoFloatTemp (member 3) network variables:

A device that knows about the SFPThvacTempSensor functional block and its
members may only be interested in the nvoFloatTemp network variable. If
the device has that knowledge and knows it is safe to do so, the device might
only connect to this particular member. For connection management and
maintenance functions as discussed below, the device still needs to track the
entire connection with 3 selectors, but it may chose to employ only one.

24 ISI Protocol Specification

From the viewpoint of the device that implements the SFTPhvacTempSensor
functional block, several options exist: the device can offer an assembly of 3
network variables, starting with member 1, as shown in the previous
illustration. The device could also choose to offer an assembly of 1 network
variable, starting with member 1: this would be the case where only the
mandatory nvoHVACTemp network variable is offered. The device could
also choose to offer an assembly of one network variable, starting with
member 3: only the optional nvoFloatTemp is offered. The device cannot,
however, offer members 1 and 3, skipping member 2. Skipping members is
not supported with generic compound connections.

Manufacturer-specific connections may be created using any manufacturer-
specific selector mapping.
A device should not accept a partial connection unless this is safe to do. For
example, creating a partial connection to the following SFPTlampActuator
functional block with a width of 2 will break the feedback loop:

The broken feedback loop may be safe in systems where the feedback is not
required, but may not be safe if the feedback is required for proper system
operation.

Connection Management
All ISI connections are maintained automatically: duplicate selectors are
detected by the ISI protocol implementation and resolved using the fire-and-

ISI Protocol Specification 25

forget algorithm, and existing connections can change to a new selector in
concert, without losing connection. The process of creating a connection with the
ISI protocol is called enrollment. There are three distinct enrollment methods:
manual, automatic, and controlled. Manual enrollment can be used with a very
simple user-interface on each device, consisting of at least a push button and an
LED to create a connection. Manual enrollment is suitable for devices where
user interaction is required to select the devices to be enrolled in a connection—
for example when connecting switches to lights. Automatic enrollment allows
connections to be automatically created without user-intervention, and can be
used where the devices themselves can determine which connections should be
created—for example when an appliance automatically connects to a home
gateway. Controlled enrollment allows connections to be created from a central
device—for example a controller with a user interface that allows the user to
select devices to be connected. The central device is called the connection
controller. Using a connection controller is similar to using a network
management tool. The difference is that the actual network management is still
performed by the devices themselves when using controlled enrollment. The
connection controller performs a similar function to the push buttons in manual
enrollment

To join a connection, a device must support at least one type of enrollment. A
device may support multiple types of enrollment—a device may even support all
three types of enrollment. For example, a lamp actuator may support automatic
enrollment to a gateway, controlled enrollment configured by a user interface
panel, and manual enrollment with switch devices. Devices that support
controlled enrollment must also support connection recovery to enable the
connection controllers to learn about existing connections.

While the ISI protocol supports further connection maintenance such as the
removal or addition of individual devices from an existing connection, or the
removal of complete connections, these management tasks may be limited on
devices with a single push-button interface.

Manual Enrollment
Connections can be created manually by the user using manual enrollment.
These connections are sometimes referred as push-button connections, based on
the idea that only a simple button is necessary to create simple connections in a
network: a user can touch devices that they want to connect, and those devices
will be connected. Connections created with manual enrollment are also called
plug-touch-and-play connections.

ISI devices that support manual enrollment must implement a suitable user
interface to control this procedure. This might be as simple as a push button and
an LED for each connection assembly, but devices are free to provide the best
possible user interface for this functionality. The user interface used to initiate
or join a connection is called the Connect button. The user interface used to
provide feedback the user is called a Connect light.
From a user’s perspective, creating a manual connection works by pressing the
Connect button that is related to the desired assembly on one of the devices that
will be a member of the connection. The selected device becomes the connection
host and opens the connection for enrollment by broadcasting a connection
invitation; other networked devices (and even other assemblies on the connection
host) that might join this connection will indicate this on their user interface.
Typically, the related Connect lights will start flashing slowly. The user then

26 ISI Protocol Specification

chooses each assembly that ought to participate in the new connection and
identifies each assembly by pressing the related Connect button. The related
Connect light will now be solid on, reflecting the fact that the assembly is ready
to join the connection. The Connect light on the connection host will also change
to solid on, indicating that at least one connection member has been identified.
Finally, the user returns to the connection host and confirms the connection by
pressing its Connect button once more. This implements the connection on the
connection host and all devices that the user has identified. All related Connect
lights will flash briefly to indicate the completion, be turned off, and the
connection is operational.

The open enrollment times out if the connection is not confirmed by pressing the
Connect button on the connection host a second time in time Tacq. Only one
assembly for each device may join a connection at one time; if multiple
assemblies implemented on the same device need to join the same connection, the
enrollment procedure must be repeated.

SFPTclosedLoopActuator

nviValue

SFPTclosedLoopSensor

nvoValue

Simple Connection

Compound connections may also be created manually:

SFPTclosedLoopSensor

nviValueFb nvoValue

SFPTclosedLoopActuator

nviValue nvoValueFb

SFPTclosedLoopActuator

nviValue nvoValueFb

Selector #0

Selector #0

Selector #1

Selector #1

Compound Connection 1

nviValueFb nvoValue nviValue nvoValueFb

nvoValue nviValue

nvoValue nviValue

Selector #0

Selector #3

Selector #2

Selector #1

Compound Connection 2

Devices are free to choose the level of connection complexity that they support,
where more complex connections come at the cost of more complex code and more
complex knowledge about different connection models built into the participating
devices.

ISI Protocol Specification 27

Automatic Enrollment
Connections can be created automatically with no user intervention using
automatic enrollment. This allows for complete plug-and-play operation of a set
of devices. For example, a general-purpose home gateway device may
automatically create connections from its time output network variable to all the
time input network variables on all devices in the network, and may
automatically create connections from all alarm output network variables from
all devices of the network to its own alarm input network variable.
Automatic enrollment occurs using messages that are automatically issued by
the connection host (the home gateway, for example). These messages are re-sent
periodically, allowing newly added devices to join the existing automatic
connection (the time and alarm reporting connections in the example).
Automatic connections offer an assembly in a similar way as manual connections,
and maintenance of automatic connections is largely identical to maintaining
manually initiated connections.
Receiving devices can determine if the connection invitation is for automatic or
manual/controlled enrollment, and can use this information when determining
whether or not to join the connection.
To avoid a peak traffic demand at power-up, devices implementing automatic
connections are required to do so no sooner than Tauto after power-up, which
includes a randomized initial wait-time after reset.

Controlled Enrollment
Connections can be created by a user interacting with a connection controller
device using controlled enrollment. The connection controller may be a simple
user interface panel or other controller. The user initiates enrollment by
interacting with the connection controller. The connection controller in turn
sends requests to the devices to be enrolled. This takes the place of the user
pressing Connect buttons on the devices. However, the operations performed by
the devices hosting and joining the connection are the same operations that are
performed during manual enrollment. The only difference is that the procedure
is initiated by the connection controller instead of local push buttons.
To send a request to a device, the connection controller sends a control request
(CTRQ) message to the device. The CTRQ message contains a controlled
enrollment request code and a parameter for the device to respond to. If the
destination devices supports controlled enrollment, it responds with a control
response (CTRP) message to indicate whether the requested operation is
supported or not. If the destination device does not support controlled
enrollment, it will not send any response. The request codes are defined in
Controlled Enrollment Request Codes.
The request is always sent on the primary domain, using Neuron ID addressing.
Using the primary domain is required so that the response can reach the

28 ISI Protocol Specification

connection controller. Using Neuron ID addressing allows for simpler device
tracking. Because the response only contains the source subnet and node ID, the
Neuron ID is included in the CTRQ message. This allows the controller device to
correlate responses to devices without tracking subnet/node IDs.

ISI Protocol Specification 29

2

Self-Installation Procedures

This chapter describes the procedures defined by the ISI
protocol.

30 ISI Protocol Specification

Domain Acquisition
Devices in an ISI network must join two domains, a primary and a secondary.
The primary domain is the application domain, and is used for all application
communication and for ISI connection-related messages. The primary domain for
a device that is not a domain address server is initially a 3-byte domain ID with a
value of 73, 83, 73 (0x49, 0x53, 0x49—the ASCII codes for “ISI’). The domain ID
for devices installed in an ISI-DA network is a 6-byte ID that is initially derived
from the Neuron ID of one of the devices in the network—typically the first
domain address server in the network. There are four methods to assign a
primary domain to an ISI device:

1. The domain may be fixed and assigned by the device application. All ISI
devices support this method since an initial application domain must be
assigned prior to acquiring a domain using one of the other methods.
This enables all ISI devices to be used in an ISI-S network. The standard
default domain ID used by ISI devices is a 3-byte long domain ID with
decimal values 73, 83, 73 (0x49, 0x53, 0x49—the ASCII codes for “ISI”).

2. A device that supports domain acquisition or a domain address server
(DAS) can acquire a unique domain address from another DAS. If a DAS
is not available, domain acquisition will fail and the ISI engine will
continue to use the default domain. Devices that support domain
acquisition also support multiple, redundant, domain address servers.
Domain address acquisition is initiated by the user and controlled by the
DAS and the device acquiring the domain ID. This method allows the
device acquiring the domain ID to make intelligent decisions about
retries, preventing enrollment during the domain acquisition. It also
allows the device acquiring the domain ID to increase automatic
enrollment performance following the completion of domain acquisition.

3. A domain address server can assign a domain to a device without a
request from the device. This minimizes the code required in the device,
and can be used with any ISI device. This procedure is called fetching a
device.

4. A domain address server can fetch the domain from any of the devices in
a network and assign it to itself. This keeps multiple domain address
servers in a network synchronized with each other, or allows a
replacement domain address server to join an existing ISI network. This
procedure is called fetching a domain.

For the second method, the domain acquisition procedure is used by a device that
supports domain acquisition to obtain a domain ID for a network. A domain
address server (DAS) only assigns a domain ID when it is in device acquisition
mode. This mode must be manually enabled by a user and will only last for a
limited time Tacq — the purpose being to minimize the possibility of acquiring a
neighbor’s device. If a domain address server is requested to serve a domain
address, but has not yet itself been assigned a domain, it will use its Neuron ID
as the domain ID, or it may fetch the Neuron ID from another device in the
network using the fetch domain procedure. A replacement domain address
server can obtain the primary domain ID from any of the presently installed
devices on the network using the fetch domain procedure. The following domain
acquisition procedure is used to assign a domain ID to a device joining an ISI-DA
network using domain acquisition:

ISI Protocol Specification 31

1. The user starts domain acquisition mode on the DAS by pressing the Connect
button on the DAS (or by another user interface on the DAS). The DAS
automatically terminates device acquisition mode after Tacq, unless re-
triggered.

2. The user presses the Connect button on the new device to be added to the
domain. The device broadcasts a domain ID request (DIDRQ) message on the
secondary domain. The DIDRQ message contains the sender’s Neuron ID.

3. The DAS that is currently in device acquisition mode responds with a domain
ID response (DIDRM) message. The DAS uses Neuron ID addressing to
target the requesting device alone, therefore reducing the risk of accidentally
providing a domain ID to the incorrect device.

4. The new device receives the DIDRM response message and indicates receipt
of this message by executing its Wink function. The Wink function is a
standard option for ANSI/CEA 709.1 devices, resulting in some suitable,
benign, visual or audible feedback. For example, a device might flash all its
LEDs for 5 seconds.

5. The user confirms that the correct device has executed its Wink function to
the DAS by pressing the Connect button on the DAS again (or by another
user interface on the DAS). This restarts the DAS device acquisition mode
timer (Tacq), and causes a domain ID confirmation message (DIDCF) to be
sent to the device. Like with DIDRM, the DAS uses Neuron ID addressing to
target the requesting device alone, therefore reducing the risk of accidentally
providing a domain ID to the incorrect device.

6. If more then one response is received containing different domain IDs, the
device discards them all, and aborts the domain address acquisition
procedure.

7. If the device receives a confirmation message that matches the initial domain
ID response message, the device configures its primary domain accordingly
and exits registration mode.

8. If the device receives a confirmation message (DIDCF) that does not match
the initial response (DIDRM), the device indicates failure and aborts
registration mode. It will continue to operate using the most recent primary
domain ID. The registration procedure may be restarted with step 1.

9. If a device fails to receive an initial response (DIDRM) within Trm from the
issue of the request (DIDRQ), or fails to receive a confirmation (DIDCF)
within Tcf from the receipt of the DIDRM response, the device waits 5 * Trm
and re-enters the registration procedure by re-sending a domain ID request
(DIDRQ) message, as described in step 2.

10. If the whole procedure is repeated 20 times without success, the device aborts
registration mode. It will continue to operate using the most recent primary
domain ID. The registration procedure may be restarted with step 1.

Network Address Assignment
A subnet and node ID is a pair of layer-3 identifiers that provide a unique
address for each device in a network. For ISI devices, the subnet ID is a value
between 64 and 127 for TP/FT-10 devices and between 128 and 191 for PL-20
devices. The node ID is a value between 2 and 125. The network address
assignment procedure automatically assigns a subnet and node ID to a device
when it is installed for the first time. It is performed on initial power-on reset for
all ISI devices, and may be repeated once the domain acquisition procedure has

32 ISI Protocol Specification

been completed when joining an ISI-DA network. Subnet and node IDs are
assigned using the fire-and-forget algorithm as follows:

1. The device randomly chooses a subnet ID from the value range defined in
the previous paragraph and sets its subnet ID in the primary domain.

2. The device randomly chooses a node ID from the value range defined in
the previous paragraph and sets its node ID in the primary domain.

3. The device immediately broadcasts a domain resource usage message
(DRUM), using the secondary domain.

Any device receiving a DRUM with a duplicate subnet/node ID and the same
primary domain ID reconfigures its subnet/node ID using the standard
registration procedure (but ensuring that the duplicate address is not assigned
again).

Network Address Verification
The network address verification procedure verifies that a device’s network
address is valid. The network address verification procedure is used periodically,
but is especially important when a device that has a network address is powered
off and then is later powered back on. While the device is powered off, it is
possible for a duplicate address to be assigned. To detect address conflicts, all
devices periodically resend the DRUM at the Tdrum interval (see Timing and
Bandwidth Control for details). As with the initial allocation, any device
receiving a DRUM with a different Neuron ID, the same primary domain ID, and
duplicate subnet/node ID reconfigures itself using the standard network address
assignment procedure.

Device Discovery
The device discovery procedure enables any device to learn the network address
and program types for all devices in a network. This procedure is typically only
used by gateways and controllers. Since all devices periodically send a device
resource usage message (DRUM), any device on the network can learn about
every other active device on the network that is within network listening range
by monitoring DRUMs. This is useful for controllers that must control many
other devices or that must monitor data from many other devices. Such
controllers may monitor DRUMs and build a device table containing details of all
the devices with which the controller must interact. Details may include the
device’s network address and any other detail provided with the DRUM. This
table may be constructed and maintained by the controller application or self-
installation firmware. Any device constructing such a device table must
continuously monitor DRUMs and update the table with new devices, devices
with changed addresses, and deleted devices. To detect deleted devices, the
device application must monitor the time of update for each device-table entry
and detect stale entries that no longer have corresponding DRUMs.

Connection Enrollment
The connection enrollment procedure creates network variable connections
among the devices in a network. This procedure may be invoked once the
network address assignment procedure has been completed, and subsequently at
any time. Connections may be created using automatic, controlled, or manual
enrollment. For controlled or manual enrollment, user intervention is required to

ISI Protocol Specification 33

identify devices or assemblies to be connected. Controlled enrollment is initiated
by a centralized tool such as a controller or user interface panel. This centralized
tool is called the connection controller. Manual enrollment is initiated from the
devices to be connected, typically with a push button called the Connect button.
For automatic enrollment, connections are automatically created and no user
intervention is required.
The type of enrollment depends on the application. For example, appliances
typically use automatic enrollment, lighting and security devices installed by
electricians or professional installers typically use controlled enrollment, and
lighting and security devices installed by end-users typically use manual
enrollment. When using automatic enrollment, no user intervention is required
to create connections. When using controlled or manual enrollment, the user
chooses the device that becomes the connection host.

A connection is created during an open enrollment period that is initiated by a
user for controlled or manual enrollment or by an application for automatic
enrollment.

Multiple connections may be created during the open enrollment period. For
example, a home gateway device may offer automatic enrollment for many of its
inputs and outputs.

Most connections are created using repeated group connections. There are two
exceptions:

• Polling input network variables use request/response messaging.

• Acknowledged service is supported, but requires the use of subnet/node
ID addressed unicast messages. Devices initiating acknowledged
network variable updates must track subnet/node ID allocation similar to
the mechanisms described under Device Discovery.

Connections can be simple connections requiring a single selector or they can be
compound connections that require multiple selector values. The first selector is
always allocated randomly, but subsequent selectors are allocated sequentially
following this first selector as described in Network Variable Selectors.
Manufacturer-specific compound connections are free to use any manufacturer-
specific scheme to map the width selector values to the network variables
involved. Generic compound connections, however, must always use the
standard selector mapping scheme described in Network Variable Selectors.

The enrollment procedure is as follows:
1. For manual enrollment, the user identifies a connection assembly to be

enrolled in a new connection. This is typically done by the user pressing a
Connect button on the device to be connected. For controlled enrollment, the
user identifies connection assemblies to be enrolled in a new connection. This
is done by the user interacting with a user interface on the connection
controller. The connection controller then instructs the participating devices
accordingly; the remainder of the controlled enrollment procedure is much
like the manual enrollment procedure, with one of the devices appointed by
the controller to become the connection host. For automatic enrollment, the
connection host and connection members automatically identify the
connection assembly to be enrolled in a new connection. The enrollment
procedure must be repeated once per connection to be created on each
connection host, and it must be repeated once per connection assembly to be
added on each participating device. Devices that support multiple connection
assemblies must provide device-specific methods to allow the user to
determine which connection is to be made or re-made. In the simplest case,

34 ISI Protocol Specification

this could mean pressing a single Connect button once for the first
connection, twice for the second one, etc. Alternatively, there may be a single
Connect button per assembly, for example, one button per switch. More
sophisticated devices, such as room temperature controllers with multiple
buttons and an LCD display, for example, might provide a different and
easier-to-use method for multi-connection management.

2. The connection host randomly chooses an NV selector between 0 and 12287.
Even though the NV selector is selected randomly by the connection host,
once selected it must be used by all network variables that will enroll in the
same connection. For a compound connection, the host randomly chooses a
selector S between 0 and 12287, and assumes the remaining number of
selectors to be sequentially following the starting selector:

Sj = (Sj-1 + 1) AND 0x2FFF

When choosing the selector values, the connection host ensures local
uniqueness—that is, the connection host will choose a new selector or selector
range such that no conflict occurs with any bound selector on the same
device.

3. The connection host assigns a unique connection ID. The connection ID
uniquely identifies a connection and is used to repair network variable
selector conflicts. It must be unique for all connections in the network. To
ensure uniqueness, the connection ID combines the Neuron ID of the
connection host with a connection serial number assigned by the connection
host.

4. For manual and controlled enrollment, the connection host sends a
connection invitation by broadcasting an open enrollment message (CSMO) to
the primary domain, signaling an open enrollment period. The connection
host periodically repeats this message until the connection is confirmed or
cancelled by the user, or cancelled automatically as a timeout at the Tenroll
interval. The CSMO message is repeated each Tcsmo interval.
For automatic enrollment, the connection sends an automatic connection
invitation message (CSMA), and repeats this invitation periodically by
broadcasting automatic connection invitation reminders (CSMR). CSMA and
CSMR messages share a message format with CSMO messages, but use a
different ISI message code.3

5. Receiving devices determine whether or not they will provisionally approve
the connection invitation based on the information provided with the CSMO
message. In the manual enrollment scenario, devices indicate provisionally
approved members for the connection by providing some feedback to the user
such as flashing an LED. When a device receives an open enrollment
message (CSMO), it initially only provisionally approves, but does not yet
join, the connection. To provisionally approve a connection means to confirm
that this is an acceptable, possible, connection for the device to participate in.
This includes the acceptance of the data offered (as described in the CSMO
message), and the confirmation that sufficient device resources appear to be
available (alias table space, connection table space, etc).

3 Unless specifically noted, CSMO, CSMA, and CSMR messages behave identically—the remainder of this
section refers to a CSMO message type as the common term for CSMO, CSMA, and CSMR message types.

ISI Protocol Specification 35

In the controlled or automatic enrollment scenarios, devices are not required
to indicate eligible assemblies to the user, as no local user intervention is
required.

6. Any device provisionally approving the connection may add one or more
network variables to the connection. This is called accepting the connection
invitation. The user or device application identifies network variables to be
enrolled in the connection. For manual enrollment this is typically done by
the user pressing a Connect button on the device to be connected. For
controlled enrollment, this is typically done by the user interacting with the
connection controller and the connection controller then sending a connection
request (CTRQ) to the device. For automatic enrollment, this is done
automatically by rules and algorithms defined in the device’s application. As
devices are selected and accept the connection invitation, they send an
enrollment acceptance message (CSME) and will typically provide visual or
audible feedback to the user to signal the acceptance of the connection
invitation.

A device that accepts a connection invitation by sending a CSME message
starts to resend the CSME message periodically at Tcsme intervals, until the
connection attempt either times out, is cancelled, or the connection is
confirmed and implemented.

7. If the connection was initiated manually, the user must manually close the
enrollment on the connection host, for example by pressing the same Connect
button on the connection host that was used to start the connection. If the
connection was initiated with controlled enrollment, the connection controller
closes the enrollment on the connection host. To close the enrollment, the
connection host implements the connection by broadcasting a connection
confirmation message (CSMC) to the primary domain, signaling a closed
enrollment period. Upon receiving this message, any selected devices use the
network variable selector(s) and group ID to join the connection, and
associate the connection ID with the connection. The connection host may
only close the enrollment if at least one enrollment acceptance message
(CSME) has been received.
Automatic enrollment closes implicitly and immediately; no CSMC or CSME
messages are required in the automatic enrollment case.

8. If the enrollment is not closed within T4 (5 * Tenroll), the connection host will
cancel the enrollment. The connection host will also cancel the enrollment if
an open enrollment message is received from another device within the
domain. To cancel the enrollment, the connection host broadcasts an
enrollment cancellation message (CSMX) to the primary domain, signaling a
cancelled enrollment period.
Cancellation does not apply to automatic enrollment. Automatic enrollment
cannot be cancelled, but connections made through automatic enrollment
may be removed just like other connections.

9. If a device has accepted a connection invitation but does not receive manual
or automatic confirmation or cancellation, the device discards the invitation
after T4.

Connection Verification
The connection verification procedure automatically verifies and maintains
network variable connections. All connection hosts periodically resend the
connection status information message (CSMI) for each connection that they host

36 ISI Protocol Specification

on their primary domain. The CSMIs are sent one at a time for each connection,
cycling through the connections on each update. As a result, if a device is host of
5 simple connections, the update interval for all connections will be 5 * Tperiod.
Other message types may also use the periodically scheduled Tperiod intervals,
increasing this update interval. See Timing and Bandwidth Usage Control for
details about scheduling of periodic messages.
Connection hosts hosting compound connections also send out CSMIs. The CSMI
for a compound connection specifies a starting selector value S0 and a count 0 – 3
to indicate the number of subsequent selector values also governed by this CSMI.
A compound connection with a total width of 6 selectors requires 2 CSMIs, one
for the selector set S0 – S3 (CSMI count 3) and one for the set S4 – S5 (CSMI count
1). Since all related CSMIs must use the same connection ID (because they
relate to the same connection), receivers must be able to distinguish between a
selector update, and a CSMI for a different selector slice. To enable this, the
CSMI also contains an Offset field, which indicates the N-th slice within the
selectors belonging to this connection. In the above example, the first CSMI has
an offset of zero, the second one an offset of one.
Any device receiving a CSMI with count 0 and offset 0 (a simple connection) does
the following for all connections of which the device is currently a member:

• Any device receiving a connection status message with a duplicate NV
selector and different connection ID reconfigures itself by assigning a new
selector that is a function of the old selector and connection ID. The
function is the sum of the old selector plus each of the bytes of the
connection ID, masked by 0x2FFF.

• Any device receiving a connection status message with a different selector
and duplicate connection ID reconfigures itself by assigning the new
selector. The new selector is the one provided with the CSMI.

Any device receiving a CSMI with count greater than 0 or offset greater than 0 (a
compound connection or part of a compound connection) does the following for all
connections of which the device is currently a member:

• Any device receiving a connection status message with a duplicate NV
selector and different connection ID, where the duplicate selector relates
to any of the selector values governed by the CSMI, reconfigures itself by
assigning new selectors that are a function of the old selectors and
connection ID. It does so for all selectors governed by the CSMI. The
first replacement selector in the affected range is the sum of the old
selector plus each of the bytes of the connection ID, masked by 0x2FFF.
The remaining selectors in the CSMI range follow sequentially, also
masked by 0x2FFF.

• Any device receiving a connection status message with a different start
NV selector and duplicate connection ID reconfigures itself by assigning
the new starting selector, and all other selectors in the set follow
sequentially. The new starting selector is the one provided with the
CSMI.

Devices that are connection hosts for automatic connections may also monitor
DIDRQ messages. At a time Tcsmr after the last DIDRQ message seen (where
each DIDRQ re-triggers the Tcsmr timer), the device propagates a CSMR message
for each automatic connection for which the device acts as a connection host.
This accelerates discovery of the automatic connections by the new device that
just joined the network (i.e., the device that issued the DIDRQ message). The
CSMR message data equals that of the CSMO message. A device receiving a

ISI Protocol Specification 37

CSMR message that refers to an existing connection on the device discards the
message. A device receiving a CSMR where the message relates to an automatic
connection that the device is prepared to join automatically joins that connection
in one step (there is no confirmation CSMC or cancellation CSMX message
following CSMR). This simple mechanism allows for new devices to be added to
the network and to automatically join existing connections as needed, with
minimum network burden.

Connection Discovery
A self-installed network may include one or more connection controllers.
Connection controllers orchestrate connection enrollment, as described under
Controlled Enrollment. Additionally, connection controllers can also be used to
manage existing connections by removing or extending existing connections.
A connection controller normally accumulates the information required for
optional maintenance throughout its lifetime. This information may be lost, or a
new connection controller may be installed into or added to an existing, self-
installed, network.
The connection discovery procedure allows the connection controller to recover
the current connection status of each device in the network. This is typically
done by a device that also performs controlled enrollment on devices in the
network. The controlling device sends a read connection table request (RDCT)
message to each device that it wishes to query. The RDCT message includes a
connection table index. If the member and host fields in the message are set to
0xFF, then the device returns a read connection table success (RDCS) response
with the connection information for that device’s connection table index. If the
index does not exist, then it responds with a read connection table failure (RDCF)
response. Devices may optionally support filtering by host and member assembly
numbers. This reduces the number of messages required to find a specific entry.
If the host or member field is different from 0xFF, and the device supports
filtering, the index provided acts as a starting index. The first matching
connection table entry is returned, if any. If both host and member filter are set
to a value different from 0xFF, then connection table entries matching either the
host or the member assembly number are returned, if any. If the host or member
field is different from 0xFF and the device does not support filtering, the
connection table entry indicated by the index specified in the RDCT message is
returned.

Connection Removal
The connection removal procedure removes a network variable connection among
devices in a network. As with the initial connection enrollment, connections may
be removed using automatic, controlled, or manual connection removal. Once
initiated, any device may broadcast a connection deletion request message
(CSMD) to the primary domain, signaling a deleted connection. This causes all
enrolled devices to delete the NV selector and group ID (if not in use by another
connection) from their network configuration and connection table.

Devices are not required to support connection removal. They may instead only
support deinstallation, which removes the device from all connections.
Further, devices are free to support means of removal of local connection
information only (the local device would leave the connection without

38 ISI Protocol Specification

propagating a CSMD message), or to support removal of the entire connection, or
both.

Connection hosts, however, cannot delete the connection locally without deleting
the connection on the network. When a connection is removed from a connection
host, the host must issue CSMD connection deletion messages for all connections
the related assembly was engaged with.

Instance Identification
The instance identification procedure enables the user to perform an action on a
device upon request by a controller. As described in the discovery procedure, a
controller can create a device table of all devices in a network, or a subset of the
devices based on program ID. By using explicitly constructed network variable
updates or polls, the controller application can individually access any device and
network variable in the network. In this case, the controller may still join the
connections using the standard connection enrollment procedure. This allows the
controller application to use the network variable selector acquired during the
connection enrollment procedure. For a network variable update or poll, the
controller application uses the assigned selector with the subnet and node ID
from the device table.

Deinstallation
The deinstallation procedure enables the user to perform an action on a device to
remove all configuration data. The configuration data includes the domain,
network address, and network variable connections. Support for this procedure
is required. It is used when a device is moved to a new network, or when a device
is accidentally acquired by the wrong domain address server. The procedure is
also used by devices that do not provide connection removal, since it then
provides the only means to remove the device from a connection. Self-installed
devices must support a manual mechanism for this, even without a network
connection. For example, a self-installed device may initiate deinstallation when
the user presses and holds the Connect button for 10 seconds. To complete the
deinstallation procedure, the device application clears the configuration data and
resets itself.
When a device joins a new primary domain using the domain acquisition
procedure, it may automatically deinstall all current configuration data. This
requires reinstallation of the entire network in the event of changing the primary
domain ID by using domain acquisition, but allows moving of individual devices
into different networks (domain IDs) with little precaution. A DAS with a device
table can change the primary domain by selecting a new domain ID, and fetching
all devices in the old domain. To move a device to a new network, reset it to the
factory default prior to physically installing it in the new network.

ISI Protocol Specification 39

3

Message Profiles

This chapter describes the ISI protocol message structures.
It also gives details on the timing of how the messages are
sent.

40 ISI Protocol Specification

Periodic Messages
ISI devices propagate several messages on regular intervals. Most of these
messages serve administrative purposes: the domain resource usage message
(DRUM) that is used to detect duplicate subnet/node IDs, the connection status
information message (CSMI) that is used to resolve duplicate selector values, the
automatic enrollment reminder message (CSMR) that is used to create automatic
connections, and the timing guidance message (TIMG) that provides network
performance figures. Optionally, ISI devices may also use the same periodic
broadcast mechanism to schedule network variable heartbeat messages.

Each ISI device always has N such messages scheduled for propagation. The
number N is always at least 1, because each device must always be able to send a
DRUM. For each connection hosted on a device, the device also schedules a
number of CSMIs as described in Connection Verification. Devices capable of
hosting automatic connections may send periodic reminder messages (CSMRs).
The TIMG with timing guidance data is only sent by a domain address server.
Network variable heartbeat messages are optional and may apply to any or all
connected output network variables on a device.

Any ISI device will also ensure that at least every eighth message issued on the
scheduled slot is a DRUM.

ISI Protocol Specification 41

Periodic Message Type Transport Note

Domain Resource
Usage (DRUM)

Secondary domain,
domain broadcast,
repeated (one repeat)

Each device always has
a DRUM (or DRUMEX)
to deliver.

Extended Domain
Resource Usage
(DRUMEX)

Secondary domain,
domain broadcast,
repeated (one repeat)

Extended version of a
DRUM

Connection Status
Information (CSMI)

Primary domain, domain
broadcast, repeated (one
repeat)

Only issued by
connection hosts, at
least one per hosted
connection.

Automatic Enrollment
Reminder (CSMR)

Primary domain, domain
broadcast, repeated (one
repeat)

Only automatically
issued by automatic
connection hosts. In
ISI-DA systems CSMR
messages can also be
sent in response to
DIDRQ messages.

Extended Automatic
Enrollment Reminder
(CSMREX)

Primary domain, domain
broadcast, repeated (one
repeat)

Extended version of a
CSMR message.

Timing Guidance
(TIMG)

Primary domain, domain
broadcast, repeated (one
repeat)

Only sent by a domain
address server.

NV Heartbeat Primary domain, group
addressing, repeated (one
repeat)

42 ISI Protocol Specification

The following diagram illustrates an example periodic messaging timeline in a
system, showing 3 devices:

DRUM

DRUM

DRUM

TIMG

NVHB

CSMI0

DRUM

NVHB

NVHB

TIMG

DRUM

CSMI1

DAS
Device 1

Not a Host,
2x Heartbeat

DRUM

NVHB

NVHB

Device 2
2x Host,

1x Heartbeat

n
n+1
n+2

0
1
2

2n+1
2n+2

2n

3n
3n+1
3n+2

4n
4n+1
4n+2

Since all ISI broadcasts are implemented as repeated domain broadcasts, ISI
devices use very short non-group receive timers, therefore effectively disabling
duplicate detection for any non-group messages. Since network variable
messages are normally sent using group addressing, different timers are used to
govern network variable messages.
All ISI messages are idempotent. An idempotent transaction is one that can be
safely repeated. For example, the command “turn on the light” can be sent
repeatedly without changing the end effect (the light goes on). A non-idempotent
transaction cannot be safely repeated without changing the meaning. The
command “increase the light brightness by 10%” is an example of a non-
idempotent message. Responding to it ten times is not the same thing as
responding to it once. Since all ISI messages are idempotent, receipt of duplicate
ISI messages is safe. Any application messages or NV updates sent by an ISI
device must either be idempotent, or must be sent using group addressing.

Normal and Extended Message Structures
DRUMs, CSMOs, CSMRs, and CSMAs each have two structures, a normal
version and an extended version: DRUMEX, CSMOEX, CSMREX, and CSMAEX
respectively. Both messages are processed the same. The normal versions of
these messages can only reference standard types—that is SNVTs, SCPTs, and
SFPTs. The extended versions support user types—UNVTs, UCPTs, and UFPTs.
Unless stated otherwise, references to the normal version (such as DRUM and
CSMO) refer to both the normal and the extended version in the remainder of
this document. Either version can be used when the extended fields are not
required and message size is not an issue. The extended version must be used
when any of the fields available only in the extended version is required. The
normal version must be used by PL-20 devices implementing energy-storage
power supplies. These devices may fail to transmit any of the extended messages
under worst-case conditions (line voltage, line impedance, message timing, and
part tolerances). See the PL 3120, PL 3150 and PL 3170 Power Line Smart
Transceiver Data Book for more information on energy-storage power supplies.

ISI Protocol Specification 43

Timing and Bandwidth Control
Each device must calculate numbers for various timers, such as timeout periods,
heartbeat intervals for repeatedly resent messages such as DRUMs and CSMIs,
or network transport properties such as ANSI/CEA-709.1 (ISO/CEN EN14908-1)
receive-timer values. In an ISI-DA network, the domain address server
periodically provides updated timing-guidance data with TIMG messages to
assist all devices in the network with calculation of these timers. Since support
for TIMG messages is optional, only devices that support TIMG messages can be
installed in an ISI-DA network.

In an ISI-S network that does not contain a domain address server, all devices
assume a device count of 32 and a single channel. These devices derive the
transport parameters from their local transceiver type. Any ISI device can be
installed in an ISI-S network.
Timing-guidance data contains two figures: an encoded value for approximate
worst-case single-trip propagation delay between any two devices on the network,
and the device count estimate. The encoding for the propagation delay is the
channel type identifier, as used with the standard-format program ID. The
domain address server advises on the slowest channel type observed in the
network, allowing all devices to adjust to this performance expectation as the
common denominator throughout the system.

The domain address server establishes the propagation delay figure based on its
local transceiver type in a single-segment network. In a multi-segment network,
the domain address server monitors DRUMs from all devices and chooses the
least performing channel to derive propagation delay guidance.
The domain address server provides a device count estimate. This figure is not
necessarily the exact number of active devices at the time, but it should be a
reasonable approximation. The approximation should err on the side of
overestimating rather than underestimating. The domain address server
assumes a minimum of 8 devices, itself included.
The domain address controller broadcasts timing guidance data in a TIMG
message regularly, alternating with its own DRUM, scheduled at intervals
governed by the periodic broadcast scheduler.
Each device broadcasts messages regularly, one each D * Tslot seconds, where D is
the estimated device count. Several messages share this scheme: DRUM, TIMG,
CSMI, CSMR, and network variable heartbeat messages all enter a propagation
queue, and the message at the head of this queue will be sent each D seconds.
The queue will never be empty, as it always contains at least one DRUM. Each
device ensures that at least every eighth message is a DRUM.
Each device ensures a minimum interval of D* Tslot between each repeated
DRUM or CSMI, therefore evenly distributing all maintenance messages that are
sent from this device.
To support even distribution of all maintenance messages (DRUM, TIMG, CSMI,
CSMR, and network variable heartbeat messages) in the entire network, and to
avoid peak bandwidth demand therefore, devices implement a spreading
technique: whenever a device is ready to propagate one of its regularly scheduled
messages but has received one such message from another device within Tspread,
the device completes the necessary broadcast and re-allocates the broadcasting
slot.

ANSI/CEA-709.1 (ISO/CEN EN14908-1) receive timers are derived from the
channel type identifier in the timing guidance data. The ANSI/CEA 709.1

44 ISI Protocol Specification

protocol distinguishes two different receive timers, the receive timer associated
with each individual group, and the non-group receive timer.

Receive timer values for group connections (i.e., data exchange) are based on the
propagation delay figure from the timing guidance data, adjusting to the worst-
case in the entire network. Connections in multi-channel networks including a
power line channel will always perform to the worst-case for this network—which
is the power line channel, even if all participating devices are on a single, high-
performing, channel.
Non-group receive timers are also based on the propagation delay figure from the
timing guidance data. In the ISI protocol, the non-group receive timer applies to
all management messages; all of which are sent as repeated domain broadcasts.
In order to prevent the receive transaction database in each device from being
flooded with DRUM, TIMG, and CSMI messages, the non-group receive timer is
kept short.
ANSI/CEA-709.1 repeat timers are also derived from the propagation delay
figure received in the timing guidance data.

ANSI/CEA-709.1 repeat counters are set based on usage. Any unacknowledged
message sent onto the network needs at least one repeat, so as to employ the
secondary carrier frequency supported by the ANSI/CEA-709.2 power line
channel. An excessive repeat count will quickly exhaust bandwidth on low-
bandwidth channels like ANSI/CEA-709.2, however. Thus, two different repeat
count values are used:

1. Messages that are repeatedly sent, and that are of an informative nature
therefore, are sent with one repeat. This includes repeated data updates
(network variable heartbeats), DRUM, CSMI, CSMR, and TIMG
messages. During the connection procedure, a CSMO is repeated after
the initial CSMO, and each message is sent with 1 repeat, as are CSMEs.

2. Messages that are rarely sent but that are of higher immediate
importance are sent with three repeats by default. This includes DIDRQ,
DIDRM, and all enrollment-related messages except CSME, CSMI, and
CSMR.

Following is a table of all ISI protocol timers and counters:

Name Description Value

Tslot Average time between two adjacent slots 5s in TP/FT-10
networks, 10s in
PL-20 and hybrid
TP/FT-10 / PL-20
networks

Tperiod Time for all D devices to execute one slot D * Tslot
Tspread Minimum distance between two slots 1s in TP/FT-10

networks, 1.5s in
PL-20 and hybrid
TP/FT-10 / PL-20
networks

Trm Timeout for receipt of DIDRM after issue of
DIDRQ

5s

Tcf Timeout for receipt of DIDCF after receipt of
DIDRM

1 minute

ISI Protocol Specification 45

Name Description Value

Tacq Duration of device acquisition mode and
domain ID sniffing mode at domain address
servers

5 * 60s

T4 Timeout for close enrollment 5 * Tenroll

Tdrum Period of DRUMs issued by a single device <= 8 * Tperiod

Tcsmo Re-send interval for CSMOs 5s

Tcsme Re-send interval for CSMEs Tcsmo

Tcsmr Minimum time after receipt of a DIDCF or
reset, whichever last, to send, a CSMR

60s

Tenroll Maximum duration of an open enrollment
prior to automatic cancellation

 Tacq

D Device count estimate 8 ≤ D ≤ 255

Tauto Time following completion of domain ID
acquisition and prior to start of automatic
enrollment

120s

ISI Constants
The ISI constants are defined in this section. The constants are used in specified
fields of the ISI messages defined in the next section.

ISI Group IDs and Usage Categories
ISI network variable updates are sent to ANSI/CEA-709.1 (ISO/CEN EN14908-1)
groups that identify the usage of the data in the update. An ISI device recognizes
a certain set of group IDs, and may join up to 15 different groups at any time.

Group ID Usage Category

 1 Network Infrastructure (including data loggers and
schedulers)

 10 Sensors (including temperature, humidity, and pressure
sensors)

 20 Energy Management (including meters and circuit breakers)
 30 Lighting (including lamp actuators and keypad switches)
 40 Wiring Devices (including switched receptacles)
 50 Access/Intrusion/Monitoring
 60 Motor Controls (including sunblinds, pumps, and motor

drives)
 65 Industrial
 70 Gateways and Controllers
 80 Heating, Ventilation, and Air Conditioning
 84 Time and Date
 87 Automated Food Service
 90 Transportation
 95 Vertical/Conveyer Transportation (elevators)

46 ISI Protocol Specification

Group ID Usage Category

 100 Refrigeration (commercial)
 110 Fire and Smoke Detection
 120 Appliances (white goods)

ISI Message Codes
All ISI messages use the same ANSI/CEA-709.1 (ISO/CEN EN14908-1) message
code, which is decimal 61 (0x3D). The data portion of each ISI message starts
with an ISI message code that supplements the 709.1 message code. The ISI
message codes are listed in the following table.

Message Name Short Name Code

Domain resource usage DRUM 0x00
Extended DRUM DRUMEX 0x01
Connection: open enrollment CSMO 0x02
Connection: extended CSMO CSMOEX 0x03
Connection: automatic enrollment CSMA 0x04
Connection: extended CSMA CSMAEX 0x05
Connection: automatic enrollment reminder CSMR 0x06
Connection: extended CSMR CSMREX 0x07
Domain ID request DIDRQ 0x08
Domain ID response DIDRM 0x09
Domain ID confirmation DIDCF 0x0A
Timing guidance TIMG 0x0B
Connection: enrollment cancellation CSMX 0x0C
Connection: enrollment confirmation CSMC 0x0D
Connection: enrollment acceptance CSME 0x0E
Connection: deletion request CSMD 0x0F
Connection: status information CSMI 0x10
Controlled enrollment: control request CTRQ 0x11
Controlled enrollment: control response CTRP 0x12
Connection table: read request RDCT 0x13
Connection table: read success RDCS 0x14
Connection table: read failure RDCF 0x15

Controlled Enrollment Request Codes
The controlled enrollment request codes specify the requested operation for a
controlled enrollment request contained in a control request (CTRQ) message.

Request Name Value Note

isiNoop 0 No action.

ISI Protocol Specification 47

Request Name Value Note

isiOpen 1 Call IsiOpenEnrollment() using the
assembly number passed in as the
parameter.

isiCreate 2 Call IsiCreateEnrollment() using the
assembly number passed in as the
parameter.

isiExtend 3 Extend a connection by calling
IsiExtendEnrollment() using the
assembly number passed in as the
parameter.

isiCancel 4 Cancel an open (pending or approved)
enrollment by calling
IsiCancelEnrollment().

isiLeave 5 Remove the specified assembly from all
enrolled connections on the local device
by calling IsiLeaveEnrollment() using
the assembly number passed in as the
parameter.

isiDelete 6 Remove the specified assembly from all
enrolled connections on all devices by
calling IsiDeleteEnrollment() using the
assembly number passed in as the
parameter.

isiFactory 7 Restore the device’s self-installation
data to factory defaults by calling
IsiReturnToFactoryDefaults().

ISI Message Structures
The ISI message structures are defined in this section. The specification
provided here is based on Neuron C types. The Neuron C language employs a 1-
byte-centric, big-endian, programming model. The char, int, short, and enum
types all use a single byte. The long type uses 2 bytes in big-endian ordering.
Bitfields are arranged in big-endian order within a single byte boundary.
Aggregate packing is 1, aggregate padding is 0.

The Neuron C language boolean constant FALSE has a value of zero, whereas
the value of TRUE may be anything but zero.

ISI Message Header
The data portion of each ISI message starts with an ISI message code that
supplements the 709.1 message code.

Byte Offset Data Type Field Name Note

0 int Code ISI message code as
defined in ISI Message
Codes.

48 ISI Protocol Specification

Connection Management Messages
Following the ISI message header, all connection-related messages (message
names starting with CSM) start with the connection ID and the selector value:

Byte Offset Data Type Field Name Note

1 unsigned [5] UniqueID A unique ID derived from
the connection host’s
Neuron ID, forming part
of the connection identifier
CID. Consists of the 5
most significant bytes of
the Neuron ID (bytes 1
through 5), with the two
least significant bits from
byte 6 copied to the two
most significant bits of
byte 1.

6 unsigned long SerialNumber Host-allocated serial
number. The serial
number and the UniqueID
field value together form
the unique connection
identifier CID. The serial
number is only required to
be unique for the
connection host it is
associated with.

8 unsigned long Selector Selector value 0 – 0x2FFF.
The most significant 2 bits
must be cleared and are
reserved.

ISI Protocol Specification 49

DRUM 0x00 - Domain Resource Usage
The device resource usage message (DRUM) reports a device’s subnet and node
ID, and is used to detect and resolve subnet/node ID collisions. Support for the
DRUM message is required for all ISI devices. The DRUM consists the following
data following an ISI message header:

Byte Offset Data Type Field Name Note

1 unsigned : 3 DidLength Number of significant
bytes in the primary
domain ID; may be 1, 3, or
6.

1 unsigned : 3 Reserved for future use.
Set to zero when sending,
ignore field when
receiving a DRUM unless
otherwise known.

1 unsigned : 2 UserDefined Used for manufacturer-
specific extensions in non
ISI systems. Ignored
when receiving and set to
zero when sent by
standard ISI
implementations.

2 unsigned [6] Did Primary domain ID
packed into the first N
bytes of this field, where N
is specified by the
DidLength field

8 unsigned [6] NeuronId Sender’s Neuron ID
14 unsigned SubnetId Sender’s current subnet

ID
15 unsigned NodeId Sender’s current node ID
16 unsigned Nuid Sender’s non-unique

device ID as described in
DIDRQ 0x08 - Domain ID
Request

17 unsigned ChannelType Value from the Channel
Type standard program ID
field

DRUMEX 0x01 - Extended DRUM
The extended device resource usage message (DRUMEX) extends the DRUM to
report additional fields of the program ID. The DRUMEX shares all
characteristics with DRUMs, aside from the additional fields present in the
message. Support for the DRUMEX message is optional. The DRUMEX consists
of the following data following an ISI message header:

50 ISI Protocol Specification

Byte Offset Data Type Field Name Note

1 unsigned : 3 DidLength Number of significant
bytes in the primary
domain ID; may be 1, 3, or
6.

1 unsigned : 3 Reserved for future use.
Set to zero when sending,
ignore field when
receiving a DRUM unless
otherwise known.

1 unsigned : 2 UserDefined Used for manufacturer-
specific extensions in non
ISI systems. Ignored when
receiving and set to zero
when sent by standard ISI
implementations.

2 unsigned [6] Did Primary domain ID
packed into the first N
bytes of this field, where N
is specified by the
DidLength field

8 unsigned [6] NeuronId Sender’s Neuron ID
14 unsigned SubnetId Sender’s current subnet

ID
15 unsigned NodeId Sender’s current node ID
16 unsigned Nuid Sender’s non-unique

device ID as described in
DIDRQ 0x08 - Domain ID
Request

17 unsigned ChannelType Value from the Channel
Type standard program ID
field

18 unsigned long Extended.
DeviceClass

Value from the Device
Class standard program
ID field

20 unsigned Extended.Usage Value from the Usage
standard program ID field

CSMO 0x02 - Open Enrollment
The open enrollment message (CSMO) delivers an invitation to join a connection.
It initiates the enrollment procedure that is used to create an ISI connection
when using manual or controlled enrollment. Support for the CSMO message is
required for devices that support manual or controlled enrollment, and optional
for all other devices. The CSMO consists of the following data following an ISI
connection message header:

ISI Protocol Specification 51

Byte Offset Data Type Field Name Note

10 unsigned Group ID The group ID specifying a
usage category for the
offered ISI connection.
The group ID may be a
standard ID (0 – 127) or a
manufacturer-defined ID
(128 – 255). The standard
group IDs are defined in
ISI Group IDs and Usage
Categories.

11 unsigned : 2 Direction Set to one of the following
values:
0 if the offered NV is an
output NV
1 if the offered NV is an
input NV
2 for any NV direction (to
support N:M connections)
3 for various NV
directions specified by the
functional profile

11 unsigned : 6 Width Number of selector values
used with this connection,
starting with the value of
the Selector field.
Value 0 is reserved for
future use.

12 unsigned long Profile Profile number of the
functional profile
containing the primary
network variable, or zero
if not specified.

14 unsigned NvType SNVT or UNVT type
index of the primary
network variable, or zero.
For a SNVT, this is the
same as the SNVT ID.

52 ISI Protocol Specification

Byte Offset Data Type Field Name Note

15 unsigned Variant The variant value which is
an identifier that
customizes the
information specified in
the connection invitation.
Variants may be defined
for any device category
and/or functional
profile/member number
pair. Set to zero unless
otherwise known. Values
1 – 127 reserved for
standard variant values
specified by this
specification and by
standard functional
profiles. Values 128 – 254
are available for use by
manufacturer-specific
connections.
Value 255 is reserved.

CSMOEX 0x03 - Extended CSMO
The extended open enrollment message (CSMOEX) extends the CSMO to support
manufacturer-defined types and profiles. The CSMOEX shares all
characteristics with CSMOs, aside from the additional fields present in the
message. Support for the CSMOEX message is optional. The CSMOEX consists
of the following data following an ISI message header:

ISI Protocol Specification 53

Byte Offset Data Type Field Name Note

10 unsigned Group ID The group ID specifying a
usage category for the
offered ISI connection.
The group ID may be a
standard ID (0 – 127) or a
manufacturer-defined ID
(128 – 255). The standard
group IDs are defined in
ISI Group IDs and Usage
Categories.

11 unsigned : 2 Direction Set to one of the following
values:
0 if the offered NV is an
output NV
1 if the offered NV is an
input NV
2 for any NV direction (to
support N:M connections)
3 for various NV
directions specified by the
functional profile

11 unsigned : 6 Width Number of selector values
used with this connection,
starting with the value of
the Selector field.
Value 0 is reserved for
future use.

12 unsigned long Profile Profile number of the
functional profile
containing the primary
network variable, or zero
if not specified.

14 unsigned NvType SNVT or UNVT type
index, or zero if not
specified. For a SNVT,
this is the same as the
SNVT ID.

54 ISI Protocol Specification

Byte Offset Data Type Field Name Note

15 unsigned Variant The variant value, which
is an identifier that
customizes the
information specified in
the connection invitation.
Variants may be defined
for any device category
and/or functional
profile/member number
pair. Set to zero unless
otherwise known. Values
1 – 127 reserved for
standard variant values
specified by this
specification and by
standard functional
profiles. Values 128 – 254
are available for use by
manufacturer-specific
connections.
Value 255 is reserved for
future use.

16 unsigned : 1 Extended.
Acknowledged

Typically cleared to enable
a multicast repeated
connection. Set to one for
an acknowledged unicast
connection. See
Connection Enrollment for
details.

16 unsigned : 1 Extended.
Poll

Typically cleared to enable
an event-driven
connection. Set to one for
a polled connection where
the destination devices
must poll the source
devices for data.

ISI Protocol Specification 55

Byte Offset Data Type Field Name Note

16 unsigned : 2 Extended.
Scope

Set to zero to indicate that
Profile and NvType values
refer to the standard types
defined in the standard
resource files. Set to 3 to
indicate that Profile and
NvType values refer to
user-defined types defined
in a scope 3 manufacturer
resource file with a
program ID template
matching the
manufacturer ID
contained in the
Application field.
Values 1 and 2 are
reserved.

16 unsigned : 4 Reserved. Clear when
sending, ignore when
receiving.

17 unsigned [6] Extended.
Application

The first 6 bytes of the
host’s standard program
ID—the last two standard
program ID bytes (channel
type and model number)
are not included here. All
bytes are zero if not
specified.

23 unsigned Extended.
Member

Network variable member
number within the
functional profile, or zero
if not specified.

CSMA 0x04 - Automatic Enrollment
The automatic enrollment message (CSMA) delivers an invitation to join a
connection. It initiates the enrollment procedure that is used to create an ISI
connection when using automatic enrollment. The CSMA consists of the same
data as the CSMO following an ISI connection message header. Support for the
CSMA message is required for devices that support automatic enrollment, and
optional for all other devices.

CSMAEX 0x05 - Extended CSMA
The extended automatic enrollment message (CSMAEX) extends the CSMA to
support manufacturer-defined types and profiles. The CSMAEX consists of the
same data as the CSMOEX following an ISI connection header. Support for the
CSMAEX message is optional.

56 ISI Protocol Specification

CSMR 0x06 - Automatic Enrollment Reminder
The automatic enrollment reminder message (CSMR) delivers an invitation to
join a connection. It continues the enrollment procedure initiated by a CSMA
that is used to create an ISI connection when using automatic enrollment. The
CSMR consists of the same data as the CSMO following an ISI connection
message header. Support for the CSMR message is required for devices that
support automatic enrollment, and optional for all other devices.

CSMREX 0x07 - Extended CSMR
The extended automatic enrollment reminder message (CSMREX) extends the
CSMR to support manufacturer-defined types and profiles. The CSMREX
consists of the same data as the CSMOEX following an ISI connection header.
Support for the CSMREX message is optional.

DIDRQ 0x08 - Domain ID Request
The domain ID request (DIDRQ) message is used by a device to request a domain
ID from a domain address server (DAS). Support for the DIDRQ message is
required for domain address servers and for ISI devices that support domain
acquisition, and is optional for all other devices. Domain address servers must be
able to send and respond to DIDRQ messages; devices that support domain
acquisition must be able to send a DIDRQ message and must be able to process
the response. The DIDRQ message consists of the following data following an ISI
message header:

Byte Offset Data Type Field Name Note

1 unsigned [6] NeuronId Neuron ID of the
requesting device.

7 unsigned Nuid Non-unique device ID.
The non-unique ID is a
random number between 0
and 255 that may be used
by a DAS to approximate
the number of devices
within earshot. This
number does not need to
be unique between
devices, but a statistic
distribuition of Nuid
values is required. The
Nuid value is typically
randomly drawn from the
0 – 255 range when the
device powers up for the
first time.

DIDRM 0x09 - Domain ID Response
The domain ID response message (DIDRM) is delivered by a DAS as a response
to a device requesting a domain ID with the DIDRQ message. Support for the

ISI Protocol Specification 57

DIDRM message is required for domain address servers and for ISI devices that
support domain acquisition, and is optional for all other devices. Domain address
servers must be able to send and respond to DIDRM messages; devices that
support domain acquisition must be able to receive and process a DIDRM
message. The DIDRM consists of the following data following an ISI message
header:

Byte Offset Data Type Field Name Note

1 unsigned : 3 DidLength Number of significant
bytes in the primary
domain ID; may be 1, 3, or
6.

1 unsigned : 5 Reserved for future use;
set to zero when sending,
ignore when receiving.

2 unsigned [6] Did Primary domain ID
packed into the first N
bytes of this field, where N
is specified by the
DidLength field

8 unsigned [6] NeuronId Neuron ID of the DAS,
used for matching DIDRM
messages with DIDCF
messages.

14 unsigned DeviceCountEst Estimated device count of
all devices within the
primary domain plus any
other devices within
earshot. This figure is not
necessarily the exact
number of active devices
at the time, but is a
reasonable approximation.
The approximation should
err on the side of
overestimating rather
than underestimating.
The minimum value is 8.

15 unsigned ChannelType The least performing
channel type observed.
For encoded values, see
www.lonmark.org/spid.

The DIDRM and DIDCF messages exceed the maximum message length
supported by PL-20 devices with energy-storage power supplies. As a result, ISI
domain address servers (DASs) for power line channels cannot be built with
energy-storage power supplies. These devices may fail to transmit DIDRM and
DIDCF messages under worst-case conditions (line voltage, line impedance,
message timing, and part tolerances). See the PL 3120, PL 3150 and PL 3170
Power Line Smart Transceiver Data Book for more information on energy-storage
power supplies.

58 ISI Protocol Specification

DIDCF 0x0A - Domain ID Confirmation
The domain ID confirmation (DIDCF) message is delivered by a DAS to a device
to confirm a previous DIDRM. A DAS sends the message after the user confirms
that the correct device has confirmed joining the network. The DIDCF consists of
the same data as the DIDRM. When a device receives a DIDCF, it must confirm
that it contains the same domain ID and length as originally returned in the
DIDRM. Support for the DIDCF message is required for domain address servers
and for ISI devices that support domain acquisition, and is optional for all other
devices. Domain address servers must be able to send and respond to DIDCF
messages; devices that support domain acquisition must be able to receive and
process a DIDCF message.

The DIDRM and DIDCF messages exceed the maximum message length
supported by PL-20 devices with energy-storage power supplies as described in
DIDRM 0x09 - Domain ID Response.

TIMG 0x0B - Timing Guidance
The timing guidance (TIMG) message is a periodic message sent by a DAS to
notify all devices in the network of the estimated network size and topology.
Support for receiving TIMG messages is required for ISI-DA compatible devices
that can be installed in ISI-DA networks and is optional for ISI devices that can
only be installed in ISI-S networks. The TIMG message consists of the following
data following an ISI message header:

Byte Offset Data Type Field Name Note

1 unsigned : 4 Originator Set to eight. All other
values are reserved.

1 unsigned : 4 Reserved
2 unsigned DeviceCountEst Estimated device count of

all devices within the
primary domain plus any
other devices within
earshot. This figure is not
necessarily the exact
number of active devices
at the time, but is a
reasonable approximation.
The approximation should
err on the side of
overestimating rather
than underestimating.
The minimum value is 8.

Byte Offset Data Type Field Name Note

3 unsigned ChannelType The least performing
channel type ID observed.
For encoded values, see
www.lonmark.org/spid.

ISI Protocol Specification 59

CSMX 0x0C - Enrollment Cancellation
The enrollment cancellation (CSMX) message cancels an open enrollment. Any
pending connections for the enrollment are not created. The CSMX consists
solely of an ISI connection message header. Support for the CSMX message is
required.

CSMC 0x0D - Enrollment Confirmation
The enrollment confirmation (CSMC) message closes and confirms an open
enrollment and implements a connection among all devices that have accepted
the connection invitation. The CSMC consists solely of an ISI connection
message header. Support for the CSMC message is required.

CSME 0x0E - Enrollment Acceptance
The enrollment acceptance (CSME) message conditionally accepts a connection
invitation. Any pending connections for the enrollment are not created until a
CSMC is received. The CSME consists solely of an ISI connection message
header. Support for the CSME message is required.

CSMD 0x0F - Connection Deletion Request
The connection deletion request (CSMD) message identifies a deleted connection.
This causes all enrolled devices to delete the NV selector and group ID (if not in
use by another connection) from their network configuration and connection
table. The CSMD consists solely of an ISI connection message header. Support
for the CSMD message is optional.

CSMI 0x10 - Connection Status Information
A connection status information message (CSMI) is sent by a connection host for
each hosted connection. The CSMI notifies all devices in the network of a
selector that is in use for a connection and is used to detect and resolve selector
collisions. Support for the CSMI message is required. The CSMI consists of the
following data following the ISI connection message header:

Byte Offset Data Type Field Name Note

10 unsigned : 6 Offset Offset into the selector set
of a compound connection;
zero for simple
connections or connections
using less than five
selectors.

10 unsigned : 2 Count Number of selectors
governed by this CSMI
minus one, 0 – 3.
The value in this field is
one less than the total
connection width.

60 ISI Protocol Specification

CTRQ 0x11 - Control Request
The control request (CTRQ) message defines a requested operation and
parameter. It is sent by a connection controller to another device to open, create,
extend, leave, or delete a connection. Support for the CTRQ message is required
for devices that support controlled enrollment and is optional for all other
devices. The CTRQ consists of the following data following an ISI message
header:

Byte Offset Data Type Field Name Note

1 IsiControl Control Specifies the requested
operation. Values are
defined in Controlled
Enrollment Request Codes.

2 unsigned Parameter Parameter to be used with
the requested operation
passed in through the
Control field.

CTRP 0x12 - Control Response
The control response (CTRP) response message is returned by a device to a
connection controller in response to a CTRQ, immediately prior to performing the
requested operation. The CTRP reports whether or not the device implements
the requested operation. Support for the CTRP message is required for devices
that support controlled enrollment and is optional for all other devices. The
CTRP consists of the following data following the ISI message header:

Byte Offset Data Type Field Name Note

1 boolean Success TRUE if the requested
operation is supported,
FALSE otherwise.

2 unsigned[6] NeuronID The Neuron ID of the device
sending the control
response.

ISI Protocol Specification 61

RDCT 0x13 - Connection Table Read Request
The connection table read (RDCT) request message request an entry in a device’s
connection table. It is sent by a connection controller to determine the
connections that a device has joined. Support for the RDCT message is required
for devices that support controlled enrollment and is optional for all other
devices. The RDCT consists of the following data following the ISI message
header:

Byte Offset Data Type Field Name Note

1 unsigned Index The connection table index
to return, or the starting
index to start searching
from if the device support
filtering and Host or
Member are not 0xFF.

2 unsigned Host The host assembly to
search for in the
connection table, or 0xFF.
Support for this field is
optional.

3 unsigned Member The member assembly to
search for in the
connection table, or 0xFF.
Support for this field is
optional.

RDCS 0x14 - Connection Table Read Success
The connection table read success (RDCS) message is returned by a device in
response to a RDCT from a connection controller. It returns the connection table
entry requested by the RDCT. Support for the RDCS message is required for
devices that support controlled enrollment and is optional for all other devices.
The RDCS consists of the following data following the ISI message header:

Byte Offset Data Type Field Name Note

1 unsigned Index The index of the
connection table that is
being sent.

2 IsiConnection Data The connection table
entry.

RDCF 0x15 - Connection Table Read Failure
The connection table read failure (RDCF) message is returned by a device in
response to a RDCT from a connection controller. It notifies the connection
controller that the requested connection table entry is not available. The RDCS

62 ISI Protocol Specification

consists solely of an ISI message header. Support for the RDCF message is
required for devices that support controlled enrollment and is optional for all
other devices.

www.echelon.com

	
	
	Introduction
	Table of Contents

	ISI Network Architecture
	 Network Topology and Limits
	Where ISI Fits
	How the ISI Protocol Works
	Fire-and-Forget
	Periodic Broadcasting of Data
	Domain Configuration

	Interoperable Data
	Addressing
	 Subnet and Node ID
	Groups
	Network Variable Selectors
	Network Variable Tables
	Implicit and Explicit Addressing

	Connection Model
	Selector Mapping
	Compound Connection Example Walk-Through
	Multiple Network Variable Mapping
	Accepting Partial Connections

	Connection Management
	Manual Enrollment
	Automatic Enrollment
	Controlled Enrollment

	Self-Installation Procedures
	 Domain Acquisition
	Network Address Assignment
	Network Address Verification
	Device Discovery
	Connection Enrollment
	Connection Verification
	Connection Discovery
	Connection Removal
	Instance Identification
	Deinstallation

	Message Profiles
	 Periodic Messages
	Normal and Extended Message Structures
	Timing and Bandwidth Control
	ISI Constants
	ISI Group IDs and Usage Categories
	ISI Message Codes
	Controlled Enrollment Request Codes

	ISI Message Structures
	ISI Message Header
	 Connection Management Messages
	 DRUM 0x00 - Domain Resource Usage
	DRUMEX 0x01 - Extended DRUM
	CSMO 0x02 - Open Enrollment
	CSMOEX 0x03 - Extended CSMO
	CSMA 0x04 - Automatic Enrollment
	CSMAEX 0x05 - Extended CSMA
	CSMR 0x06 - Automatic Enrollment Reminder
	CSMREX 0x07 - Extended CSMR
	DIDRQ 0x08 - Domain ID Request
	DIDRM 0x09 - Domain ID Response
	DIDCF 0x0A - Domain ID Confirmation
	TIMG 0x0B - Timing Guidance
	CSMX 0x0C - Enrollment Cancellation
	CSMC 0x0D - Enrollment Confirmation
	CSME 0x0E - Enrollment Acceptance
	CSMD 0x0F - Connection Deletion Request
	CSMI 0x10 - Connection Status Information
	CTRQ 0x11 - Control Request
	CTRP 0x12 - Control Response
	RDCT 0x13 - Connection Table Read Request
	RDCS 0x14 - Connection Table Read Success
	RDCF 0x15 - Connection Table Read Failure

