
078-0392-01C

Develop I/O interfaces for Series 6000, 5000, and 3100
chips and Smart Transceivers.

I/O Model Reference
for Smart
Transceivers and
Neuron Chips

Echelon, LONWORKS, LONMARK, NodeBuilder, LonTalk, Neuron,
3120, 3150, ShortStack, LonMaker, and the Echelon logo are
trademarks of Echelon Corporation that may be registered in
the United States and other countries.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips and other OEM Products were not designed
for use in equipment or systems, which involve danger to
human health or safety, or a risk of property damage and
Echelon assumes no responsibility or liability for use of the
Neuron Chips in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. It is the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR
CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY
COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of Echelon
Corporation.

Printed in the United States of America.
Copyright © 1990, 2010 Echelon Corporation.

Echelon Corporation
www.echelon.com

http://www.echelon.com/

Welcome
For the various input/ouput (I/O) pins on an Echelon® Smart Transceiver, an
Echelon Neuron® 5000 or Neuron 6000 Processor, or Series 3100 Neuron Chip,
Echelon’s Neuron C programming language provides a set of I/O models that
allow a program to define I/O objects. An I/O model is an abstract definition
(including the relevant firmware driver) of hardware I/O for a Neuron Chip or
Smart Transceiver; an I/O object is software instance of the specific I/O model.
Together, they provide programmable access to one or more I/O pins in a
specified configuration and for a specified input or output waveform definition.

This document describes the many different I/O models that are available for use
with the Neuron Chips and Smart Transceivers. With only a few exceptions, an
I/O model can be used with any Series 3100 device, Series 5000 or Series 6000
device. Where applicable, this document identifies differences in the I/O models
that are specific to a particular device type.

The information in this document supersedes the equivalent information for
Series 3100 devices contained in the FT 3120 / FT 3150 Smart Transceiver Data
Book, PL 3120 / PL 3150 / PL 3170 Power Line Smart Transceiver Data Book,
Neuron C Programmer’s Guide, and Neuron C Reference Guide.

Audience
This document assumes that you have a good understanding of general Neuron C
language programming concepts and techniques. It also assumes that you are
familiar with the device requirements for Neuron Chips and Smart Transceivers.

Related Documentation
The following manuals are available from the Echelon Web site
(www.echelon.com) and provide additional information that can help you develop
applications for Neuron Chip or Smart Transceiver devices:

• FT 3120 / FT 3150 Smart Transceiver Data Book (005-0139-01D). This
manual provides detailed technical specifications on the electrical
interfaces, mechanical interfaces, and operating environment
characteristics for the FT 3120® and FT 3150® Smart Transceivers.

• Introduction to the LONWORKS Platform (078-0391-01A). This manual
provides an introduction to the ISO/IEC 14908 (ANSI/CEA-709.1 and
EN14908) Control Network Protocol, and provides a high-level
introduction to LONWORKS networks and the tools and components that
are used for developing, installing, operating, and maintaining them.

• LONMARK® Application Layer Interoperability Guidelines. This manual
describes design guidelines for developing applications for open
interoperable LONWORKS devices, and is available from the LONMARK
Web site, www.lonmark.org.

• NodeBuilder® FX User’s Guide (078-0516-01This manual describes how to
develop a LONWORKS device using the NodeBuilder tool.

I/O Model Reference iii

http://www.echelon.com/
http://www.lonmark.org/

• Neuron C Programmer’s Guide (078-0002-01I). This manual describes
how to write programs using the Neuron C Version 2.2 programming
language.

• Neuron C Reference Guide (078-0140-01G). This manual provides
reference information for writing programs using the Neuron C Version
2.2 programming language.

• PL 3120 / PL 3150 / PL 3170 Power Line Smart Transceiver Data Book
(005-0193-01A). This manual provides detailed technical specifications
on the electrical interfaces, mechanical interfaces, and operating
environment characteristics for the PL 3120, PL 3150, and PL 3170™
Smart Transceivers.

• Series 5000 Chip Data Book (005-0199-01A). This manual provides
detailed technical specifications on the electrical interfaces, mechanical
interfaces, and operating environment characteristics for the Neuron
5000 Chips and FT 5000 Smart Transceivers.

• Series 6000 Chip Data Book (005-0230-01). This manual provides the
detailed technical specifications on the electrical interfaces, mechanical
interfaces, and operating environment characteristics for the Neuron
6000 or FT 6000 Smart Transceivers.

All of the Echelon documentation is available in Adobe PDF format. To view the
PDF files, you must have a current version of the Adobe Reader, which you can
download from Adobe at: www.adobe.com/products/acrobat/readstep2.html.

iv

http://www.adobe.com/products/acrobat/readstep2.html

Table of Contents
Welcome ... iii
Audience .. iii
Related Documentation .. iii

Introduction ... 1
Overview ... 2
Summary of the Available I/O Models .. 2
Hardware Considerations .. 10
I/O Timing Issues ... 12

Scheduler-Related I/O Timing Information ... 13
Firmware and Hardware-Related I/O Timing Information 14

Programming Considerations ... 15
Declaring I/O Objects in Neuron C ... 16
Overlaying I/O Objects .. 17
Multiplexing I/O Models ... 18
Performing I/O: Functions and Events .. 18

General I/O Functions .. 18
I/O Events .. 22
Using Functions or Events ... 25
I/O Functions for Timer/Counter Objects 26

I/O Measurements, Outputs, and Functions 28
Direct, Serial, and Parallel I/O Models .. 28
Timer/Counter I/O Models .. 28
Output Models ... 29

Direct I/O Models .. 31
Bit Input/Output .. 32

Hardware Considerations ... 32
Programming Considerations ... 34

Syntax .. 34
Usage ... 35
Bit Input Example .. 35
Bit Output Example .. 35

Byte Input/Output.. 35
Hardware Considerations ... 35
Programming Considerations ... 37

Syntax .. 37
Usage ... 37
Byte Input Example .. 37
Byte Output Example ... 38

Leveldetect Input ... 38
Hardware Considerations ... 38
Programming Considerations ... 39

Syntax .. 40
Usage ... 40
Example ... 40

Nibble Input/Output .. 40
Hardware Considerations ... 40
Programming Considerations ... 42

Syntax .. 43
Usage ... 43
Nibble Input Example... 43

I/O Model Reference v

Nibble Output Example .. 43
Touch Input/Output ... 44

Hardware Considerations ... 44
Programming Considerations ... 46

Syntax .. 46
Usage ... 47
Example ... 50

Parallel I/O Models ... 51
Muxbus Input/Output .. 52

Hardware Considerations ... 52
Programming Considerations ... 54

Syntax .. 54
Usage ... 55
Example ... 55

Parallel Input/Output .. 55
Hardware Considerations ... 56

Master Mode and Slave A Mode .. 56
Slave B Mode ... 63
Token Passing ... 66
Handshaking ... 66
Transferring Data ... 66
Using the IRQ Signal .. 70

Programming Considerations ... 70
Neuron C Resources .. 71
Syntax .. 72
Usage ... 72
Example ... 73

Serial I/O Models ... 75
Bitshift Input/Output... 76

Hardware Considerations ... 76
Programming Considerations ... 79

Syntax .. 79
Usage ... 80
Bitshift Input Example ... 80
Bitshift Output Example .. 80

I2C Input/Output ... 80
Hardware Considerations ... 81
Programming Considerations ... 82

Syntax .. 83
Usage ... 83
Example ... 84

Magcard Bitstream Input .. 84
Hardware Considerations ... 84
Programming Considerations ... 85

Syntax .. 85
Usage ... 85
Example ... 86

Magcard Input .. 86
Hardware Considerations ... 86
Programming Considerations ... 88

Syntax .. 88
Usage ... 89

vi

Example ... 89
Magtrack1 Input .. 89

Hardware Considerations ... 90
Programming Considerations ... 91

Syntax .. 92
Usage ... 92
Example ... 92

Neurowire Input/Output.. 93
Hardware Considerations ... 93

Neurowire Master Mode ... 93
Neurowire Slave Mode .. 95

Programming Considerations ... 96
Syntax .. 97
Usage ... 99
Example ... 99

SCI (UART) Input/Output ... 99
Hardware Considerations ... 100
Programming Considerations ... 101

Syntax .. 102
Usage ... 103
Example ... 104

Serial Input/Output ... 104
Hardware Considerations ... 104
Programming Considerations ... 106

Syntax .. 107
Usage ... 108
Serial Input Example .. 108
Serial Output Example ... 108

SPI Input/Output ... 108
Hardware Considerations ... 109
Programming Considerations ... 115

Syntax .. 115
Usage ... 117
Example ... 118

Wiegand Input .. 119
Hardware Considerations ... 119
Programming Considerations ... 120

Syntax .. 121
Usage ... 122
Example ... 122

Timer/Counter Input Models.. 123
Introduction .. 124
Dualslope Input .. 125

Hardware Considerations ... 126
Programming Considerations ... 127

Neuron C Resources .. 128
Syntax .. 128
Usage ... 129
Example ... 129

Edgelog Input ... 129
Hardware Considerations ... 130
Programming Considerations ... 131

Neuron C Resources .. 131

I/O Model Reference vii

Syntax .. 132
Usage ... 133
Example ... 133

Infrared Input .. 134
Hardware Considerations ... 134
Programming Considerations ... 135

Syntax .. 136
Usage ... 137
Example ... 137

Ontime Input .. 138
Hardware Considerations ... 139
Programming Considerations ... 140

Syntax .. 140
Usage ... 141
Example ... 141

Period Input .. 141
Hardware Considerations ... 142
Programming Considerations ... 144

Syntax .. 144
Usage ... 145
Example ... 145

Pulsecount Input .. 145
Hardware Considerations ... 145
Programming Considerations ... 146

Syntax .. 147
Usage ... 147
Example ... 147

Quadrature Input ... 148
Hardware Considerations ... 148
Programming Considerations ... 150

Syntax .. 150
Usage ... 150
Example ... 151

Totalcount Input .. 151
Hardware Considerations ... 151
Programming Considerations ... 152

Syntax .. 153
Usage ... 153
Example ... 153

Timer/Counter Output Models ... 155
Edgedivide Output ... 156

Hardware Considerations ... 156
Programming Considerations ... 158

Syntax .. 158
Usage ... 158
Example ... 159

Frequency Output .. 159
Hardware Considerations ... 159
Programming Considerations ... 160

Syntax .. 161
Usage ... 161
Example ... 161

Infrared Pattern Output .. 162

viii

Hardware Considerations ... 162
Programming Considerations ... 163

Syntax .. 164
Usage ... 165
Example ... 165

Oneshot Output .. 165
Hardware Considerations ... 166
Programming Considerations ... 167

Syntax .. 167
Usage ... 168
Example ... 168

Pulsecount Output ... 168
Hardware Considerations ... 169
Programming Considerations ... 170

Syntax .. 170
Usage ... 171
Example ... 171

Pulsewidth Output ... 171
Hardware Considerations ... 171
Programming Considerations ... 173

Syntax .. 173
Usage ... 174
Example ... 174

Stretched Triac Output .. 174
Comparing Stretched Triac Output to Triac Output 175
Hardware Considerations ... 176
Programming Considerations ... 177

Syntax .. 178
Usage ... 178
Example ... 179

Triac Output ... 179
Hardware Considerations ... 179
Programming Considerations ... 180

Syntax .. 181
Usage ... 182
Example 1 .. 182
Example 2 .. 183

Triggered Count Output .. 184
Hardware Considerations ... 184
Programming Considerations ... 185

Syntax .. 186
Usage ... 187
Example ... 187

Timer/Counter Periods and Resolution .. 189
Timer/Counter Resolution and Maximum Range 190

Series 3100 Resolution and Range ... 190
Series 5000 and Series 6000 Resolution and Range 191

Timer/Counter Square Wave Output.. 192
Series 3100 Square Wave Output... 193
Series 5000 and Series 6000 Square Wave Output 194

Timer/Counter Pulsetrain Output .. 195
Series 3100 Pulsetrain Output ... 195
Series 5000 and Series 6000 Pulsetrain Output 195

I/O Model Reference ix

Index ... 197

x

1

Introduction

This chapter provides an overview of the available I/O
models for Series 3100 devices, Series 5000, and Series 6000
devices. It includes considerations for hardware,
programming, and timing.

I/O Model Reference 1

Overview
Echelon’s Neuron Chips and Smart Transceivers connect to application-specific
external hardware through 11 or 12 I/O pins, named IO0-IO11. You can
configure these pins to provide flexible input and output (I/O) functions with
minimal external circuitry. These functions are described as I/O models.

The Neuron C programming language allows the application programmer to
declare I/O objects that use one or more I/O pins. An I/O object is a software
instance of an I/O model, and provides programmable access to an I/O driver for a
specified on-chip I/O hardware configuration and a specified input or output
waveform definition. Programs can then refer to most of these objects through
io_in() and io_out() system calls to perform the actual input or output function
during execution of the program. Because events are associated with changes in
input values, the task scheduler can execute associated application code when
these changes occur.

There are many different I/O models available for use with the Neuron Chips and
Smart Transceivers. Most I/O models are available in system images by default.
If an I/O model is required by an application, but is not included in the default
system image, the development tool links the appropriate models into available
memory space. For FT 3120, PL 3120, and PL 3170 Smart Transceiver designs,
this linkage means that internal EEPROM space must be used for the additional
model. For FT 3150 or PL 3150 Smart Transceiver designs, the model is added to
an external flash or EEPROM region beyond the 16 KB space reserved for the
system image. For Series 5000 and Series 6000 device designs, the model is
added to the application image.

Series 5000 and Series 6000 chips also support application-specific interrupts,
which can trigger on either or both edges, or on either level, for any of the I/O
pins, regardless of any associated I/O object. See the Neuron C Programmer’s
Guide for more information about interrupts.

Summary of the Available I/O Models
Many I/O models are available for Neuron Chips and Smart Transceivers.
Certain I/O models are available only for specific chip types, but most are
available to all Neuron Chips and Smart Transceivers. The I/O models are
grouped into the following categories:

• Direct I/O Models are based on a logic level at the I/O pins; none of the
Neuron Chip or Smart Transceiver hardware’s timer/counters are used in
conjunction with these I/O models. These models can be used in multiple,
overlapping combinations within the same Neuron Chip or Smart
Transceiver. Direct I/O models include the following types:

Input Model Types Output Model Types
bit bit
byte byte
leveldetect nibble
nibble touch
touch

2 Introduction

• Timer/Counter I/O Models use a timer/counter circuit in the Neuron
Chip or Smart Transceiver. Each Neuron Chip and each Smart
Transceiver has two timer/counter circuits: One whose input can be
multiplexed, and one with a dedicated input. Timer/counter I/O models
include the following types:

Input Model Types Output Model Types
dualslope edgedivide
edgelog frequency
infrared infrared_pattern
ontime oneshot
period pulsecount
pulsecount pulsewidth
quadrature stretchedtriac
totalcount triac
 triggeredcount

• Serial I/O Models are used for transferring data serially over a pin or a
set of pins. The neurowire, i2c, magcard, magcard_bitstream,
magtrack1, and serial I/O models are mutually exclusive within a
single Neuron Chip or Smart Transceiver. Both the input and output
versions of a serial I/O model can coexist within a single Neuron Chip or
Smart Transceiver. Serial I/O models include the following types:

Serial Input Model Types Serial Output Model Types
bitshift bitshift
magcard serial
magcard_bitstream
magtrack1
serial
wiegand

Serial Input/Output Model Types
i2c
neurowire
sci
spi

• Parallel I/O Models are used for high-speed bidirectional I/O. I/O models
within this group use all of the Neuron Chip or Smart Transceiver I/O
pins. The parallel I/O models include the following types:

Parallel Input/Output Model Types
muxbus
parallel

Table 1 through 5 list the available I/O models within each category. Figure 1
summarizes the pin configuration for each of the I/O models. A single device can
use various I/O models of different types simultaneously.

I/O Model Reference 3

Table 1. Summary of the Direct I/O Models

I/O Model Applicable I/O Pins Total Pins
per Object Input/Output Value

Bit Input1 IO0 – IO11 1 0, 1 binary data

Bit Output1 IO0 – IO11 1 0, 1 binary data

Byte Input IO0 – IO7 8 0 – 255 binary data

Byte Output IO0 – IO7 8 0 – 255 binary data

Leveldetect Input IO0 – IO7 1 Logic 0 level detected

Nibble Input Any adjacent four
in IO0 – IO7

4 0 – 15 binary data

Nibble Output Any adjacent four
in IO0 – IO7

4 0 – 15 binary data

Touch I/O IO0 – IO7 1 Up to 2048 bits of input
or output bits

Notes:

1. The IO11 pin for this I/O model is available only for the following
device types: PL 3120-E4, PL 3150, PL 3170, FT 5000, Neuron 5000,
FT 6000 and Neuron 6000.

See Chapter 2, Direct I/O Models, for more information about the direct I/O
models.

Table 2. Summary of the Parallel I/O Models

I/O Model Applicable I/O Pins Total Pins
per Object Input/Output Value

Muxbus I/O IO0 – IO10 11 Parallel bidirectional port
using multiplexed
addressing

Parallel I/O1 IO0 – IO11 12 Parallel bidirectional
handshaking port

Notes:

1. The IO11 pin for this I/O model is available only for the following
device types: FT 5000, Neuron 5000, FT 6000 and Neuron 6000.

See Chapter 3, Parallel I/O Models, for more information about the parallel I/O
models.

4 Introduction

Table 3. Summary of the Serial I/O Models

I/O Model Applicable I/O Pins Total Pins
per Object Input/Output Value

Bitshift Input Any adjacent pair
(except IO7 + IO8
& IO10 + IO11)

2 Up to 16 bits of clocked
data

Bitshift Output Any adjacent pair
(except IO7 + IO8
& IO10 + IO11)

2 Up to 16 bits of clocked
data

I2C IO8 + IO9 or IO0
+ IO1

2 Up to 255 bytes of
bidirectional serial data

Magcard
Bitstream

IO8 + IO9 + (one
of IO0 – IO7)

2 or 3 Unprocessed serial data
stream from a magnetic
card reader

Magcard Input IO8 + IO9 + (one
of IO0 – IO7)

2 or 3 Encoded ISO7811 track 2
data stream from a
magnetic card reader

Magtrack1 IO8 + IO9 + (one
of IO0 – IO7)

2 or 3 Encoded ISO3554 track 1
data stream from a
magnetic card reader

Neurowire I/O IO8 + IO9 + IO10
+ (one of IO0 –
IO7)

4 Up to 256 bits of
bidirectional serial data

SCI (UART)1 IO8 + IO10 2 Up to 255 bytes input and
255 bytes output

Serial Input IO8 1 8-bit characters

Serial Output IO10 1 8-bit characters

SPI IO8 + IO9 + IO10
+ (IO7)

3 or 4 Up to 255 byes of
bidirectional data

Wiegand Input Any adjacent pair
in IO0 – IO7

2 Encoded data stream
from Wiegand card
reader

Notes:

1. The SCI (UART) model is available only for the following device types:
PL 3120-E4, PL 3150, PL 3170, FT 5000, Neuron 5000, FT 6000 and
Neuron 6000.

See Chapter 4, Serial I/O Models, for more information about the serial I/O
models.

I/O Model Reference 5

Table 4. Summary of the Timer/Counter Input Models

I/O Model Applicable I/O Pins Total Pins
per Object Input/Output Value

Dualslope Input IO0, IO1 + (one of
IO4 – IO7)

2 Comparator output of the
dualslope converter logic

Edgelog Input IO4 1 A stream of input
transitions

Infrared Input IO4 – IO7 1 Encoded data stream from
an infrared demodulator

Ontime Input IO4 – IO7 1 Pulse width of 0.2 µs –
1.678 s

Period Input IO4 – IO7 1 Signal period of 0.2 µs –
1.678 s

Pulsecount Input IO4 – IO7 1 0 – 65,535 input edges
during
0.839 s

Quadrature Input IO4 + IO5, IO6 +
IO7

2 ± 16,383 binary Gray code
transitions

Totalcount Input IO4 – IO7 1 0 – 65,535 input edges

See Chapter 5, Timer/Counter Input Models, for more information about the
timer/counter input models.

Table 5. Summary of the Timer/Counter Output Models

I/O Model Applicable I/O Pins Total Pins
per Object Input/Output Value

Edgedivide
Output

IO0, IO1 + (one of
IO4 – IO7)

2 Output frequency is the
input frequency divided
by a user-specified
number

Frequency
Output

IO0, IO1 1 Square wave of 0.3 Hz to
2.5 MHz

Infrared Pattern
Output

IO0, IO1 1 Series of timed repeating
square wave output
signals

Oneshot Output IO0, IO1 1 Pulse of duration 0.2 µs
to 1.678 s

Pulsecount
Output

IO0, IO1 1 0 – 65,535 pulses

6 Introduction

I/O Model Applicable I/O Pins Total Pins
per Object Input/Output Value

Pulsewidth
Output

IO0, IO1 1 0 – 100% duty cycle pulse
train

Stretched Triac
Output1

IO0, IO1 + (one of
IO4 – IO7)

2 Delay of output pulse
with respect to input edge

Triac Output2 IO0, IO1 + (one of
IO4 – IO7)

2 Delay of output pulse
with respect to input edge

Triggered-
Count Output

IO0, IO1 + (one of
IO4 – IO7)

2 Output pulse controlled
by counting input edges

Notes:

1. The Stretched Triac Output model is available only for the following
device types: FT 5000, Neuron 5000, FT 6000, and Neuron 6000.

2. Dual-edge triggering is not available for the following device types:
Neuron 3150, FT 3150, or PL 3150.

See Chapter 6, Timer/Counter Output Models, for more information about the
timer/counter output models.

Neuron Chips and Smart Transceivers have two 16-bit timer/counters on-chip.
The input to timer/counter 1, also called the multiplexed timer/counter, is
selectable among pins IO4 – IO7, through a programmable multiplexer and its
output can be connected to pin IO0. The input to timer/counter 2, also called the
dedicated timer/counter, can be connected to pin IO4 and its output to pin IO1.

The timer/counters are implemented as a 16-bit load register writable by the
CPU, a 16-bit counter, and a 16-bit latch readable by the CPU. The load register
and latch are accessed a byte at a time. No I/O pins are dedicated to
timer/counter functions. If, for example, timer/counter 1 is used for input signals
only, then IO0 is available for other input or output functions. Timer/counter
clock and enable inputs can be from external pins, or from scaled clocks derived
from the system clock; the clock rates of the two timer/counters are independent
of each other. External clock actions occur optionally on the rising edge, the
falling edge, or both rising and falling edges of the input.

For Series 5000 and Series 6000 devices, many of the timer/counter I/O models
can also trigger interrupt tasks, which can provide minimum application latency
for I/O events that are related to the timer/counter models. See the Neuron C
Programmer’s Guide for more information about defining and using interrupts
for Series 5000 and 6000 devices.

Multiple timer/counter input objects can be declared on different pins within a
single application. By calling the io_select() function, the application can use
the first timer/counter to implement up to four different input objects. If a
timer/counter is configured to implement one of the output models, or is
configured as a quadrature input object, then it can not be reassigned to another
timer/counter object in the same application program.

I/O Model Reference 7

The following guidelines for declaring I/O object types apply to the I/O models
shown in Figure 1:

• Up to 16 I/O objects can be declared.

• Timer/counter 1 can be multiplexed for up to four input objects.

• The neurowire, i2c, magcard, magcard_bitstream, magtrack1, and
serial I/O models are mutually exclusive. One or more of a single type of
these I/O models can be declared in one program.

• Because the parallel and muxbus I/O models require all I/O pins for
some Neuron Chips and Smart Transceivers, no other object types can be
declared when either of these objects is declared. You can declare the
IO11 pin as a bit input or output in addition to the parallel or muxbus
object for the following device types: PL 3120-E4, PL 3150, or PL 3170.
For Series 5000 and Series 6000 devices, you can also declare the IO11
pin as a bit input or output in addition to the parallel (master or slave A
mode) or muxbus object; the IO11 pin serves as an IRQ pin for the
parallel (slave B mode) object.

• Direct I/O object types (such as bit, nibble, byte) can be declared in any
combination; see Overlaying I/O Objects. Timer/counter, serial, and
neurowire I/O object declarations override the pin directions of any
overlaying direct I/O object types.

• The quadrature and dualslope input objects cannot be multiplexed
with other input objects on timer/counter 1. The edgelog input uses both
timer/counters and is exclusive of any other timer/counter objects.

• The bitshift I/O objects cannot be declared on the same I/O pins as
timer/counter objects. Direct I/O objects can be overlaid with bitshift I/O
objects. Two adjacent bitshift I/O objects cannot share any I/O pins.

8 Introduction

Parallel I/O

TIMER/COUNTER
INPUT MODELS

SERIAL I/O
MODELS

PARALLEL I/O
MODELS

DIRECT I/O
MODELS

Bit Input, Bit Output

Byte Input, Byte Output

Leveldetect Input

Nibble Input, Nibble Output

I/O Pin

Muxbus I/O

Master/Slave A

Slave B

Bitshift Input, Bitshift Output

I2C I/O

Magcard Input

Magtrack1 Input

Master

Slave

Serial Input

Serial Output

Wiegand Input

Edgedivide Output

Frequency Output

Oneshot Output

Pulsecount Output

Pulsewidth Output

Stretched Triac Output

Triggered-Count Output

High Sink Pull Ups Standard

Dualslope Input

Edgelog Input

Infrared Input

Ontime Input

Period Input

Pulsecount Input

Quadrature Input

Totalcount Input

Neurowire I/O

8

Legend:
ALS = Address Latch Strobe
WS = Write Strobe
RS = Read Strobe
CS = Chip Select
R/W = Read/Write
HS = Handshake
A0 = Address 0
IRQ = Interrupt Request
C = Clock
D = Data

Pull Up

SCI (UART)

SPI

Magcard Bitstream

Touch I/O

Infrared Pattern Output

TIMER/COUNTER
OUTPUT MODELS

76543210 9 10 11

Triac Output

876543210 9 10 11

Any Pin

All Pins 0 – 7

Any Pin 0 – 7

Any Four Adjacent Pins

Data Pins 0 – 7

Data Pins 0 – 7

Data Pins 0 – 7

ALS WS RS

CS R/W HS

CS R/W A0

C C C C C CD D D D D

C CD D

Optional Timeout C D

Optional Timeout C D

Optional Timeout C D

C D

Optional Timeout C D

Optional Chip Select D

D

Any Two Pins (Optional Timeout)

Control

4 + 5 6 + 7

Sync Input

Sync Input

Sync Input

Sync Input

Control

Control

Control

Notes:
• The I/O 11 pin is only available

for the following device types: PL
3120, PL 3150, PL 3170, and
Series 5000 devices

• The high sinks and pull-ups
apply only to Series 3100
devices

• The Infrared Pattern, Magcard
Bitstream, SCI (UART), and SPI
I/O models are only available for
the following device types: PL
3120, PL 3150, PL 3170, and
Series 5000 devices

• The Stretched Triac I/O model is
only available for Series 5000
devices

Timer/Counter 1 Devices:
One of the following:
IO_4 input edgelog
IO_6 input quadrature
IO_0 output [frequency |
 infrared_pattern | oneshot |
 pulsecount | pulsewidth]
IO_0 output [edgedivide |
 stretchedtriac | triac |
 triggeredcount]
 sync(IO_4..IO_7)

Or up to 4 of the following:
IO_4 input [dualslope | infrared |
 ontime | period | pulsecount |
 totalcount] mux
IO_5..IO_7 input [dualslope |
 infrared | ontime | period |
 pulsecount | totalcount]

Timer/Counter 2 Devices:
One of the following:
IO_4 input edgelog
IO_4 input quadrature
IO_4 input [dualslope | infrared |
 ontime | period | pulsecount |
 totalcount] ded
IO_1 output [frequency |
 infrared_pattern | oneshot |
 pulsecount | pulsewidth]
IO_1 output [edgedivide |
 stretchedtriac | triac |
 triggeredcount] sync(IO_4)

IRQ

Figure 1. Pin Configuration Summary for the I/O Models

I/O Model Reference 9

Example: The following I/O models can be combined for a Neuron Chip or
Smart Transceiver:

• 1 parallel I/O model (on IO_0..IO10)

OR

• 1 muxbus I/O model (on IO_0..IO10)

OR

• A combination of any or all of the other I/O models A through E shown in
Table 6:

Table 6. Example I/O Model Combinations

A B C D E

1 to 4
timer/counter
inputs
(multiplexed on
IO_4, IO_5,
IO_6, IO_7),
including
quadrature
input on IO_6

1 timer/counter
input (on IO_4),
including
quadrature
input on IO_4

1 neurowire
I/O object (on
IO_8, IO_9,
IO_10) and 1 of
IO_0 ... IO_7

Any direct I/O
object type on
any pin (IO_0
through IO_10)

A bit I/O object
on IO_11

OR OR OR

1 timer/counter
output (on IO_0)

1 timer/counter
output (on IO_1)

1 serial I/O
object type (on
IO_8, IO_10)

Hardware Considerations
For a description of the electrical characteristics of the I/O pins, refer to the
appropriate Series 3100, Series 5000, or Series 6000 device data sheet. Pins that
are configured as outputs can also be read as inputs, returning the value that
was last written to the pin. In addition, an application program can optionally
specify the initial values of digital outputs.

For Series 3100 devices, pins IO4 – IO7 and IO11 have optional pull-up current
sources that act as pull-up resistors. You use a Neuron C compiler directive
(#pragma enable_io_pullups) to enable these pull-ups. Also for Series 3100
devices, pins IO0 – IO3 have high current-sink capability (20 mA); the other pins
have standard current-sink capability.

For Series 3100 FT Smart Transceivers, the I/O pull-ups are enabled during the
stack initialization and built-in self-test (BIST) task (see the FT 3120 / FT 3150
Smart Transceiver Data Book for more information about the stack initialization
and BIST task). However, for Series 3100 PL Smart Transceivers, the I/O pull-
ups are not enabled during the stack initialization and BIST task.

Recommendation: For Series 3100 PL Smart Transceivers (especially for
devices with energy storage power supplies), you must ensure that I/O pins that

10 Introduction

are not used by the application are tied high or low on the PC board, or are left
unconnected and configured as a bit output by the application in order to prevent
unnecessary power consumption. See the PL 3120 / PL 3150 / PL 3170 Power
Line Smart Transceiver Data Book for more information.

For Series 5000 and Series 6000 devices, the I/O pins do not have configurable
pull-ups or high current-sink capability. If your I/O circuitry requires pull-up
resistors, you must add them to the hardware design for the device. The I/O pins
on a Series 5000 device have an 8 mA current source and sink capability. If your
I/O circuitry has higher current requirements, you can add external driver
circuitry (for example, using a Fairchild Semiconductor® 74AC245/74ACT245
Octal Bidirectional Transceiver or 74VHC245/74VHCT245 Octal Buffer/Line
Driver).

In addition, the Series 5000 and Series 6000 device pins are all 3.3 V pins: the
input pins are 5 V tolerant, and the output pins are CMOS compatible. Series
3100 device pins are all 5 V pins.

For Series 3100, Series 5000, and Series 6000 devices, pins IO0 – IO7 have low-
level detect latches.

Because the I/O pins are controlled by system firmware, the timing for reading or
writing an I/O pin includes latency that can vary by I/O model and even vary by
I/O pin. All inputs are software sampled during processing for the Neuron C
when statement. In general, the latency scales inversely with the system clock
rate.

To maintain and provide consistent behavior for external events, and to prevent
setup and hold metastability, all I/O pins, when configured as simple inputs, are
passed through a hardware synchronization block, shown in Figure 2, that is
sampled by the internal system clock.

D Q D QIO0-IO11 Inputs

Internal System Clock

Synchronized
IO0-IO11 Inputs

I/O Input Synchronizer
Structure

Figure 2. Synchronization Block
I/O pins used for other functions do not have this synchronization requirement.

For Series 3100 devices, the sample rate is always the input clock divided by two
(for example, for a 10 MHz input clock, the sample rate is 5 MHz). For a signal to
be reliably synchronized with a 10 MHz input clock, it must be at least 220 ns in
duration; see Figure 3.

Internal System
Clock

(XIN Input Clock
10 MHz divided by 2)

IO0-IO11 Inputs
(220 ns pulse)

tsetup
20 ns

thold
0 ns

Figure 3. Synchronization of External Signals for Series 3100 Devices

I/O Model Reference 11

For Series 5000 and Series 6000 devices, the sample rate is equivalent to the
system clock rate. For a signal to be reliably synchronized with an 80 MHz
system clock, it must be at least 17.5 ns in duration; see Figure 4.

80 MHz
System Clock

IO0-IO11 Inputs
(17.5 ns pulse)

tsetup
5 ns

thold
0 ns

Figure 4. Synchronization of External Signals for Series 5000 Devices

Any event that lasts longer than 220 ns (for a Series 3100 device at 10 MHz) or
17.5 ns (for a Series 5000 or Series 6000 device at 80 MHz) is synchronized by
hardware, but there can be latency in software sampling, which can result in a
delay in detecting the event. If the state changes at a faster rate than software
sampling can process, the interim changes are not detected.

The following exceptions apply to the use of the synchronization block:

• The chip select (CS~) input used in the slave B mode of the parallel I/O
object recognizes rising edges asynchronously.

• The leveldetect input is latched by a flip-flop with a 200 ns clock (for
Series 3100 devices) or a 12.5 ns clock (for Series 5000 or Series 6000
devices). The level detect transition event is latched, but there is a delay
in software detection.

• The SCI (UART) and SPI objects are buffered on byte boundaries by the
hardware, and are transferred to memory using an interrupt.

• Events on the I/O pins for the input timer/counter functions are
accurately measured, and a value returned to a register, regardless of the
state of the application or interrupt processor within the Neuron Chip or
Smart Transceiver. However, the application processor can be delayed in
reading the register.

I/O Timing Issues
The I/O timing for Neuron Chips and Smart Transceivers is influenced by four
separate, yet overlapping, areas of the overall chip architecture:

• The scheduler

• The I/O model’s firmware

• The Neuron Chip or Smart Transceiver hardware

• Interrupts

The contribution of the scheduler to the overall I/O timing is approximately
uniform across all I/O objects because its contribution to the overall I/O timing is
at a relatively high functional level.

The contribution of both firmware and hardware varies from one I/O model to
another (for example, Bit I/O as opposed to Neurowire I/O).

The contribution of interrupts varies with the nature of the data interrupting the
processor. See SCI (UART) Input/Output and SPI Input/Output for more

12 Introduction

information. Also, for Series 5000 and Series 6000 devices, when hardware
interrupt tasks run in the application (APP) processor (for the two lowest clock
rates), the contribution of interrupt processing, including the application-specific
interrupt tasks, directly adds to the scheduler delay. However, at higher clock
rates, the contribution of interrupts is very small and approximately constant.

Scheduler-Related I/O Timing Information
As part of the Neuron system firmware, the scheduler provides an orderly and
predictable means to facilitate the evaluation of user-defined events. The when
clause, provided by the Neuron C language, is used to specify such events. For
more information on the operation of the scheduler, see the Neuron C
Programmer’s Guide.

There is a finite latency associated with the operation of the scheduler. The time
required for the scheduler to evaluate the same when clause in a particular user
application program is, to a large extent, a function of the size of the user code,
the total number of when clauses, and the state of the events associated with
those when clauses. Therefore, it is impractical to specify a nominal value for
this latency, because each application has its own distinct behavior.

The best-case latency can be viewed in several ways, each exposing a different
aspect of the operation of the scheduler. A simple example consists of having an
application program that consists of two when clauses, both of which always
evaluate to TRUE, as shown below.

IO_0 output bit testbit;

when (TRUE) {
 io_out (testbit, 1);
}

when (TRUE) {
 io_out (testbit, 0);
}

Processing of when clauses is performed in a round-robin fashion; therefore, the
Neuron C code above performs alternating activation of the IO0 pin (in this case,
to isolate and extract the timing parameters associated with the scheduler). The
waveform seen on pin IO0 of the device, as a result of the above code, is shown in
Figure 5.

I/O Model Reference 13

end-of-loop
processing
begins

TIME

IO_0

1st when
clause

(Not to scale)

IO_out call IO_out call IO_out call

t ww t ww

t sol

1st when
clause

2nd when
clause

Figure 5. Scheduler Overhead Latency: when Clause to when Clause

The when-clause to when-clause latency, tww, in this case includes the execution
time of one io_out() function (which for a Series 3100 device with a 10 MHz
input clock, has approximately 65 µs latency; for a Series 5000 or Series 6000
device with an 80 MHz system clock, this latency is approximately 4 µs) and
applies to an event that always evaluates to TRUE. The actual tww for a
particular application depends on the actual task within the when statement as
well as the when event that is evaluated.

The above example not only measures the best-case minimum latency between
consecutive when clauses (whose events evaluate to TRUE), but also reveals the
scheduler’s end-of-loop overhead latency, tsol. As shown in Figure 5, tww is the
off-time period of the output waveform, and tsol is the on-time of the output
waveform, minus tww. The scheduler overhead latency, or the scheduler end-of-
loop latency, occurs just before the execution of the last when clause in the
program.

The latency associated with the return from the io_out() function is small,
relative to that of the execution of the function call itself.

Note: Some I/O models suspend application processing until the task is complete
because they are firmware-driven. These I/O models include: bitshift,
Neurowire, parallel, software serial I/O models, I2C, magcard, magtrack, Touch
I/O, and Wiegand. However, they do not suspend network communication (which
is handled by the network processor and the media access processor).

Firmware and Hardware-Related I/O Timing
Information

All I/O updates in a Neuron Chip or Smart Transceiver are performed by the
Neuron firmware using system image function calls.

14 Introduction

The total latency for a particular function call, from start to end, has two
separate parts:

• Processing time required before the actual hardware I/O update (read or
write) occurs

• The time required to finish the current function call and return to the
application program

Overall accuracy is always related to the accuracy of the clock in (CLK1 or XIN)
input of the Neuron Chip or Smart Transceiver. Timing diagrams are provided
for all non-trivial cases to clarify the parameters given.

Programming Considerations
Before performing I/O, you must first declare the I/O objects that monitor and
control the 11 or 12 Neuron Chip or Smart Transceiver I/O pins, named IO0, IO1,
..., IO11. By default, any undeclared pin is unused, and is deactivated. In the
deactivated state, the pin is in a high-impedance state. The declaration syntax
for I/O objects is described in detail in subsequent chapters of this manual.

Note: Unused input pins must have pull-up resistors. For Series 3100 devices,
you can use the enable_io_pullups compiler directive for pins IO4 through IO7
(see the Compiler Directives chapter of the Neuron C Reference Guide for more
information on this directive). For Series 3100 power line devices, this directive
also enables the pull-up for the IO11 pin. You can define unused pins as outputs
to avoid using pull-ups.

To perform I/O, you normally use the built-in I/O functions: io_in(), io_out(),
io_set_direction(), io_select(), io_change_init(), and io_set_clock(). The
io_out_request() function is used to perform I/O with a parallel I/O object.
See Performing I/O: Functions and Events for more information about these
functions.

I/O objects can also be linked to Neuron C events, because changes in I/O often
affect task scheduling. See I/O Events for a description of the io_changes and
io_update_occurs events, which are the I/O-related events that are used in
when clauses.

Timer/Counter I/O devices can also be linked to Neuron C interrupt tasks,
allowing for low-latency application-specific response to certain events. The
interrupt trigger is defined by the timer/counter I/O model in use.

All I/O pins IO0..IO11 can also be used to define one or two I/O interrupt tasks,
allowing for low-latency application-specific response to a positive or negative
level, a rising or falling edge, or any edge sampled on that I/O pin. I/O interrupts
operate independently from any I/O devices that are associated with the same
pins.

See the Neuron C Programmer’s Guide for more information about application-
specific interrupts.

For more detailed information on, and additional examples of using I/O, see the
following LONWORKS engineering bulletins:

• Analog-to-Digital Conversion with the Neuron Chip engineering bulletin
(part no. 005-0019-01)

I/O Model Reference 15

• Driving a Seven Segment Display with the Neuron Chip engineering
bulletin (part no. 005-0014-01)

• Neuron Chip Quadrature Input Function Interface engineering bulletin
(part no. 005-0003-01)

• Parallel I/O Interface to the Neuron Chip engineering bulletin (part no.
005-0021-01)

• EIA-232C Serial Interfacing with the Neuron Chip engineering bulletin
(part no. 005-0008-01)

Declaring I/O Objects in Neuron C
Declaring an I/O object in a Neuron C application performs all of the following
tasks:

• Informs the compiler what type of I/O operation will be performed, and on
which pin or pins. The compiler creates instructions that configure the
hardware within the Neuron core as a result of this declaration. The
firmware configures the hardware whenever the device or application is
reset.

• Associates the name of the I/O object with an I/O model.

• Associates the I/O object with one or more I/O pins, and defines
additional properties of the I/O object.

The general syntax for declaring an I/O objects in the Neuron C language is
shown below.

pin direction model [options] io-object-name;

pin

One of the Neuron C keywords that name one of the twelve I/O pins, IO_0
through IO_11 (the IO11 pin is available only on Series 3100 power line
devices and Series 5000 devices). The named pin defines the first pin for
multi-pin I/O models. In general, pins can appear in a single object
declaration only. However, a pin can appear in multiple declarations of the
bit, nibble, and byte I/O object types. Also, IO_8 can appear in multiple
declarations of neurowire master specifying different select pins. In this
case, it is not required that all declarations have the same direction, that is,
input or output; see Overlaying I/O Objects.

direction

Specifies whether the object is an input or an output. Some I/O models are
bidirectional, and do not require the specification of direction.

model

Specifies the I/O model for this I/O object.

options

Optional I/O parameters, dependent on the chosen model for the I/O object.
The description of each model includes the model’s available options. Except
where noted, these options can be listed in any order. All options have
default values that are used when you do not include the option in the object
declaration.

16 Introduction

io-object-name

A user-supplied name for the I/O object, in the ANSI C format for variable
identifiers.

The description for each I/O object includes a detailed explanation of the syntax
for each I/O model.

Example: A logic level needs to be measured at the IO3 input pin of the device,
which is named IO_3 in Neuron C. The pin is connected to a proximity detector,
as its programmatic name indicates.

IO_3 input bit ioProximity;

Your program can now refer to the IO3 binary input through the ioProximity
variable when using utility functions for this I/O object.

Overlaying I/O Objects
For some I/O models, you can declare more than one I/O object for the same pin.
That is, you can overlay one I/O object on another.

Example 1: The following declarations allow a program to read four adjacent
pins in one operation (with the nibble I/O model) or read each pin individually
(with the bit I/O model):

IO_4 input nibble ioAllPoints;
IO_4 input bit ioPoint1;
IO_5 input bit ioPoint2;
IO_6 input bit ioPoint3;
IO_7 input bit ioPoint4;

Example 2: The following declarations enable a program to monitor (read back)
the level on its own oneshot output object:

IO_1 output oneshot clock (3) ioBreakHigh;
IO_1 input bit ioBreakHighLevel;

With respect to overlaying, I/O models can be divided into hard pin direction I/O
models and soft pin direction I/O models:

• The soft pin direction I/O models (bit, nibble, and byte) are changed by
subsequent pin declarations. When multiple soft pin direction I/O objects
are declared for the same pin, the last soft I/O object declared is the one
that affects the initial direction of the pin at run-time.

• The hard pin direction I/O models (all other I/O models) are not affected
by subsequent declarations.

The io_set_direction() function allows the application to change the direction
of any bit, nibble, or byte type I/O object at run time. See the Neuron C
Reference Guide for information about the io_set_direction() function.

In example 2 above, the oneshot model is a hard pin direction I/O model, but the
bit model is a soft pin direction I/O model. The order of declarations is not
important, and the oneshot object is the one that affects the direction of pin IO1
(set during initialization and after reset).

Example 3: If a program declares the following:
IO_2 input bit ioPoint1;
IO_2 output bit ioPoint2;

I/O Model Reference 17

The IO2 pin is an output bit I/O object (because the output is declared last).
Assuming that the io_set_direction() function is not called, a subsequent call
to the io_out() function for ioPoint2 sets the level of this pin. A call to the
io_in() function for ioPoint1 can then be used to read back the actual pin level
of this output object.

Multiplexing I/O Models
Input to one of the timer/counter circuits can be multiplexed among pins IO_4 to
IO_7 or provide output to IO_0. This timer/counter is called Timer/Counter 1 or
the multiplexed timer/counter. A second timer/counter circuit derives input only
from IO_4 or provides output to IO_1. This second timer/counter circuit is called
Timer/Counter 2 or the dedicated timer/counter. Figure 6 shows a signal flow
diagram for both the multiplexed and dedicated timer/counter circuits.

Figure 6. Flow Diagram for Timer/Counter Circuits

Performing I/O: Functions and Events
A Neuron C application program can access I/O objects in either of the following
ways:

• By using an explicit io_in() or io_out() function

• By referring to an event associated with the object in a when clause

• For timer/counter objects, by using the io_select() function

The following sections describe both methods.

General I/O Functions
After you declare the I/O objects for a Neuron C application, you can access the
objects through the I/O functions that are provided by Neuron C language.
Table 7 lists these functions. You do not need to declare or link these functions

18 Introduction

because they are included by the Neuron C compiler. The compiler enforces type
checking for the parameters of these functions.

Table 7. General I/O Functions

Function Description

io_change_init() Initializes the value of an input object for the
io_changes event

io_edgelog_preload() Sets the timer/counter preload value for an
edgelog I/O object

io_edgelog_single_preload(
)

Sets the timer/counter preload value for an
edgelog single_tc I/O object

io_in() Reads data from an I/O object

io_in_ready() An event function that evaluates to TRUE when
a block of data is available to be read from a
parallel I/O object

io_in_request() Starts an I/O input cycle for a dualslope I/O
object

io_out() Writes data to an I/O object

io_out_request() Requests the write token for a parallel I/O
object

io_preserve_input() Causes the first value obtained from a
timer/counter after reset or an io_select() to be
considered valid

io_select() Selects one of the multiplexed input objects (see
Multiplexing I/O Models)

io_set_baud() Changes the bit rate setting for the specified
object

io_set_clock() Changes the clock setting for the specified
object

io_set_direction() Changes the direction of I/O pins associated with
any bit, nibble, or byte I/O objects

See the Neuron C Reference Guide for more information about these functions.
The following sections describe the two most common functions and a common
variable.

io_in() Function
When a program needs to retrieve signals from a peripheral device, declare an
input object and use the built-in io_in() function.

I/O Model Reference 19

The syntax for the io_in() function is:

return-value = io_in (io-object-name [, args])

return-value

The current value read from the input device. The data type of the return
value and its semantics are a function of the I/O model implemented by this
I/O object.

io-object-name

The name for the I/O object, which corresponds to the io-object-name in the
I/O object declaration.

args

Arguments that depend on the type of the I/O model. Some of these
arguments can also appear in the I/O object declaration. If specified in both
places, the value of the function argument overrides the declared value for
the specific function call only. If the value is not specified in either the
function argument or the declaration, the default value is used.

Example: The io_in() function returns the value of the ioProximity proximity
detector declared earlier:

detected = io_in(ioProximity);

See the Neuron C Reference Guide for object-specific rules that apply to this
function.

io_out() Function
When a program needs to send signals to a peripheral device, declare an output
object and use the built-in io_out() function.

The syntax for the io_out() function is:

io_out (io-object-name, output-value [, args])

io-object-name

The name for the I/O object, which corresponds to the io-object-name in the
I/O object declaration.

output-value

The value that the function should set for the output device. The data type of
the value and its semantics are a function of the I/O model implemented by
this I/O object.

args

Arguments that depend on the type of the I/O model. Some of these
arguments can also appear in the I/O object declaration. If specified in both
places, the value of the function argument overrides the declared value for
the specific function call only. If the value is not specified in either the
function argument or the declaration, the default value is used.

Example 1: A lamp device could use the io_out() function to turn the lamp on:
io_out(ioLamp, 0);

20 Introduction

Example 2: A relay is attached to the IO0 pin (with appropriate driver
circuitry). The declaration syntax for this simple device is:

#define ON 1
#define OFF 0

IO_0 output bit ioRelay;
// or IO_0 output bit ioRelay = ON;

The second (commented out) declaration in the example above uses an initializer,
which tells the system that following a reset, the ioRelay object output value
should initially be set to 1. The default initial value is 0.

Now you can control the state of ioRelay by using the io_out() function:
if (flowTotal > 500) {
 io_out(ioRelay, ON);
}

The io_out() function takes a valid C expression for its argument. If the type of
the expression matches the type of the output-value argument (which in turn is a
function of the I/O model in use), you can also control the relay with direct logic:

io_out(ioRelay, flowTotal > 500);

input_is_new Variable
For all timer/counter input models, the built-in input_is_new variable is set to
TRUE whenever the io_in() call returns an updated value. This variable is also
set for implicit calls (see I/O Events for information about implicit io_in() calls).
The data type of the input_is_new variable is an unsigned short. The
frequency with which updates occur depends on the I/O model.

Note that the input_is_new variable is cleared after a related timer/counter
interrupt executes; see the Neuron C Programmer’s Guide for more information
about timer/counter interrupts and their relation to I/O functions and I/O
(timer/counter) events.

Example: This example uses one of the timer/counter I/O devices. Assume that
the IO7 pin is attached to an optical flow meter that presents a number of pulses
proportional to the volume of a fluid. The total volume in gallons needs to be
determined. This example uses a Series 3100 Smart Transceiver with a 10 MHz
input clock.

The pulsecount input model counts input edges and latches the count
approximately every 0.8388608 (specifically, every 223/107 seconds). If you were
to use the io_in() function for this I/O object, you would always read the
currently latched value. If you are summing the total flow, you need to qualify
this operation. Use the input_is_new variable, which is set to TRUE following
an io_in() function only if a new measurement is made, or in this case, every
0.8388608 seconds.

IO_7 input pulsecount ioFlowSensor;
// 451 pulses/gallon
long totalVolume, tempVolume;

...

{
 tempVolume = io_in(ioFlowSensor);

I/O Model Reference 21

 if (input_is_new) {
 totalVolume += tempVolume;
 }
}

...

I/O Events
An alternative to using the explicit io_in() function is to associate an input
object with a predefined event or interrupt. The two I/O-related predefined
events are:

• io_changes

• io_update_occurs

These events are used only with input objects. When they are evaluated, both
the io_update_occurs and io_changes events perform an implicit io_in()
function call to obtain an input value for the object. Your program can access
this input value by using the input_value variable.

You can also associate timer/counter I/O devices or individual I/O pins with
application interrupts on a Series 5000 or Series 6000 device. See the Neuron C
Programmer’s Guide for more information about application interrupts.

io_changes Event
This event is TRUE when the value read from the specified input object changes
state. The change can be one of three types:

• Any change (an unqualified change)

• A change (in absolute value) by a specified amount (or greater)

• A change to a specified value

The syntax for this event is:

io_changes(io-object-name) [by expr | to expr]

The use of this event results in a comparison of the current value read from the
input object with a reference value (except for the to option). The reference value
is the value that was read the last time the change event evaluated to TRUE
(and saved, at that time, by the firmware). For an io_changes event that does
not use either the by option or the to option, a state change occurs when the
current value is different from the reference value. When using the optional
forms of the io_changes event, the expr expression does not need to be a
constant. However, a constant expression is more efficient.

The io_changes event for a timer/counter input device occurs only if the device
has a new value, different from the previous value. For the timer/counter devices,
the io_changes event happens as listed in Table 8, depending on the input
object type.

22 Introduction

Table 8. io_changes Events for Specific I/O Models
I/O Model Event

dualslope Event occurs when the conversion is complete.

ontime Event occurs if the measured time has changed from the last
time.

period Event occurs if the measured time has changed from the last
time.

pulsecount Event occurs if the number of counts measured has changed
from the last count.

quadrature Event occurs if the number of counts measured has changed
from the last count.

Example: A program could use the io_changes event to detect changes in an
ioProximity input object:

when (io_changes(ioProximity)) {
 . . .
}

If you were interested only in when the io_part_detector detected a part (a
value of 1 in this example), you could use the following when clause:

when (io_changes(ioProximity) to 1) {
 . . .
}

io_update_occurs Event
The io_update_occurs event is TRUE when the value read from the input
object specified by io_object_name has an updated value.

The syntax for this event is:

io_update_occurs (io-object-name)

The io_update_occurs event applies only to certain timer/counter input models.
Timing for the event depends on the input model, as listed in Table 9.

Table 9. io_update_occurs Events for Specific I/O Models
I/O Model Event

dualslope Event occurs when the conversion is complete, and the value has
changed.

ontime Event occurs at the end of the time being measured.

period Event occurs at the end of the time being measured.

pulsecount Event occurs every 0.8388608 seconds, when a new pulse count
value is available.

quadrature Event occurs as soon as at least one count is accumulated.

I/O Model Reference 23

input_value Variable
You use the input_value variable to retrieve the input value for an I/O object
when either the io_update_occurs event or the io_changes event occurs. The
input_value built-in variable is a signed long, and it can be cast in the same
manner as any other C variable.

Example:
when (io_update_occurs(ioDevice)) {
 if (input_value > 2) {
 . . .
 }
}

Example: A lamp device could set the value of its nvoSwitch network variable
based on the value of input_value (the switch value):

when (io_changes(ioSwitchInput)) {
 nvoSwitch.state =
 (input_value == SWITCH_ON) ? ST_ON : ST_OFF;
}

The value of the input_value variable depends on the context in which it is
used. The following combination of when clauses is valid. Because both events
refer to the same I/O object, there is no ambiguity about which object is providing
the input.

when (io_changes(ioDevice) to 4)
when (io_changes(ioDevice) to 3)
{
 x = input_value;
}

However, the following combination of when clauses is not a valid context for use
of input_value, because there is no way to know which object is providing the
input value. If the first when clause evaluated to TRUE, input_value would
refer to ioDevice1, but if the second when clause evaluated to TRUE,
input_value would refer to ioDevice2.

when (io_update_occurs(ioDevice1))
when (io_update_occurs(ioDevice2))
{
 x = input_value; // from ioDevice1 or ioDevice2?
}

In addition, input_value is valid only after an io_update_occurs or
io_changes event. In the following example, using multiple when clauses
produces an ambiguous value for input_value because the timer_expires event
does not perform I/O. In such cases, use the io_in() function to retrieve the
value.

when (timer_expires(t))
when (io_update_occurs(ioDevice))
{
 x = io_in(ioDevice); // don’t use input_value here
}

24 Introduction

Using Functions or Events
To determine whether an input value is new, you can use the io_in() function
with the input_is_new variable or you can use the io_update_occurs event
with the input_value variable. Which method you choose depends on the
specific I/O model and the specific task that the program is designed to perform.

The I/O event mechanism tends to be the simpler method, where the Neuron
scheduler decides when to perform the I/O functions. However, when you are
combining multiple events in a single block of logic, you might need to call the
io_in() function explicitly, combined with the input_is_new variable.

The two examples shown in Table 10 demonstrate different ways to accomplish
the same goal.

Table 10. Comparing io_update_occurs and io_in()

io_update_occurs with input_value

IO_5 input pulsecount ioPulsecount;

when (io_update_occurs(ioPulsecount)) {
 if (input_value > 2) {
 . . .
 }
}

io_in() with input_is_new

stimer delayTimer;

IO_5 input pulsecount ioPulsecount;

when (timer_expires(delayTimer)) {
 . . .
 if ((io_in(ioPulsecount) > 2) && input_is_new) {
 . . .
 }
}

Important: If you combine explicit calls to the io_in() function with when
clauses that contain I/O events, synchronization problems can result. For
example, if a when clause evaluates to TRUE near the end of an I/O sampling
period, the io_in() call might not be executed until the following period, and the
value obtained could be misleading.

when (io_update_occurs(ioPulsecount)) {
 . . .
 z = input_value; // don’t use io_in(ioPulsecount) here
 . . .
}

I/O Model Reference 25

I/O Functions for Timer/Counter Objects
For multiplexed I/O objects, the last timer/counter I/O object declared in the
program is the first to take effect after a reset. To change the selected I/O object,
use the io_select() function to specify which of the multiplexed pins is the owner
of the timer/counter circuit.

The syntax for the io_select() function is:

io_select (io-object-name [, clock])

io-object-name

The name for the I/O object, which corresponds to the io-object-name in the
I/O object declaration.

clock

Specifies a clock selector, which can be different from or the same as the clock
selector specified in the object’s declaration, in the range of 0 to 7. If you do
not specify a clock value in the call to the io_select() function, the clock
value is set to the value in the I/O object’s declaration.

Any timer/counter I/O object that has a clock argument in its declaration syntax
can also be reprogrammed to an alternate clock value by using the io_set_clock(
) function.

The syntax for the io_set_clock() function is:

io_set_clock (io-object-name, clock)

io-object-name

The name for the I/O object, which corresponds to the io-object-name in the
I/O object declaration.

clock

Required clock selector value in the range of 0 to 7 (for Series 3100 devices) or
0 to 15 (for Series 5000 and Series 6000 devices), regardless of the clock
selector specified in the object’s declaration. Some I/O objects might not
function properly with all clock values. See the description for a particular
I/O object in Chapter 5, Timer/Counter Input and Chapter 6, Timer/Counter
Output

See Appendix A, Timer/Counter Periods and Resolution, for a description of
how the io_set_clock() function affects the resolution and range of certain
timer/counter I/O models.

When io_set_clock() is used on multiplexed objects, the clock is changed
regardless of whether the object itself is currently selected.

Example: The following code fragment shows several examples of the use of
io_select() and io_set_clock():

IO_1 output pulsecount clock(3) outPulsecount;
IO_5 input period clock(2) inPeriod;
IO_6 input ontime clock(3) inOntime;

when (reset) {
 io_set_clock(outPulsecount, 5);
 io_select(inOntime);

26 Introduction

}

when (io_update_occurs(inOntime)) {
 io_select(inPeriod, 3);
}

When a new clock is set for an I/O object using the io_select() function, this
clock remains in effect until a new value is explicitly set. The next io_select()
call for the same I/O object resets the clock to the value specified in the I/O object
declaration if there is no clock argument in the io_select() call. If your
application specifies an alternate clock value, it must call the io_set_clock()
function within the reset task and after each call to the io_select() function.

If an input measurement is attempted using io_in() or a when clause on an I/O
object that has not been selected with the io_select() function, a data value of
overrange (65535) is returned, and the input_is_new variable and
io_update_occurs event remain FALSE.

Following a call to the io_select() function and after resetting the Neuron Chip
or Smart Transceiver, the first measurement taken for the newly selected I/O
object is discarded to clear out any incomplete measurements (unless the function
io_preserve_input() is called before the io_in() call). The io_update_occurs
event actually occurs when the second measurement is read. Rely on either an
io_update_occurs event or use the input_is_new variable to verify that an
actual measurement has been made following a call to io_select().

Example 1: The following example shows the use of the io_select() function
with the multiplexed timer/counter circuit. For multiplexed I/O objects, the last
I/O object declared in the program is the first to take effect after a reset.

// I/O Definitions
IO_5 input period mux clock (2) ioPeriod2;
IO_4 input period mux clock (2) ioPeriod1;

static long variable1, variable2;

// The following occurs only when ioPeriod1 is selected
when (io_update_occurs(ioPeriod1)) {
 variable1 = input_value;
 // select next I/O object
 io_select(ioPeriod2);
}

// The following occurs only when ioPeriod2 is selected
when (io_update_occurs(ioPeriod2)) {
 variable2 = input_value;
 // select next I/O object
 io_select(ioPeriod1);
}

Example 2: In the following example, the timer/counter is multiplexed between
an ontime measurement on pin IO5 and a period measurement on pin IO6.
Because the ontime input can cover a large range of values, this example uses a
form of “auto-ranging.” The clock value switches between 4 and 2 if the input
measurement value extends beyond certain values. A variable is used when
reselecting the ontime object because its clock can be one of the two values.

unsigned long slope1Raw, cycleAValue;

I/O Model Reference 27

int slope1Clock = 2;
IO_5 input ontime clock (2) ioSlope1;
IO_6 input period clock (1) ioCycleA;
// Following reset, the ioCycleA object is selected
// because it is the last object declared using the mux

when (io_update_occurs(ioSlope1)) {
 if (input_value > 0x4000 && slope1Clock == 2) {
 // Range down (slower)
 slope1Clock = 4;
 io_set_clock(ioSlope1, slope1Clock);
 } else if (input_value < 0x4000 && slope1Clock == 4) {
 // Range up (faster)
 slope1Clock = 2;
 io_set_clock(ioSlope1, slope1Clock);
 } else {
 // Save the measured value, select the other object
 slope1Raw = input_value;
 io_select(ioCycleA);
 }
 // If auto-ranging has occurred, another measurement
 // will be made. Otherwise, the ioCycleA object
 // will be measured next.
}

when (io_update_occurs(ioCycleA)) {
 cycleAValue = input_value;
 // Now select the ioSlope1 object,
 // using the current clock range computed above
 io_select(ioSlope1, slope1Clock);
}

I/O Measurements, Outputs, and Functions
This section describes when the I/O pins are sampled or set, depending on the I/O
model.

Direct, Serial, and Parallel I/O Models
For direct I/O models, input levels are sampled when an io_in() function is
called, or when a when clause that references the object is evaluated.

For serial and parallel I/O models, input levels are sampled when the io_in()
function is called. For a Series 3100 device with a 40 MHz input clock, output
levels are set approximately 12.5 to 25 microseconds after invocation of the
io_out() function. This timing value scales with the input clock speed. See the
specific I/O model for detailed timing diagrams.

Timer/Counter I/O Models
Values for timer/counter input models are latched periodically depending on the
model or the I/O object clock. The relationship between when an io_in()
function or an I/O when clause is used and when the data has been latched is
usually application dependent. After a value is latched, that value continues to

28 Introduction

be returned by subsequent calls to io_in() until a new value is latched based on
the timing in the hardware.

The period input and ontime input models latch a new value on the falling edge
of the input signal (or if the invert keyword is used, these models latch the new
value on the rising edge of the input signal). The pulsecount input model
latches a new value every 0.8388608 seconds. See the Neuron C Programmer’s
Guide for more information about timer frequencies and timer accuracy.

Generally, new values written to timer/counter output objects are acted upon at
the end of the current output signal period. Exceptions to this rule are oneshot
output and I/O models that have been disabled (that is, have a zero control
value), all of which take effect upon return from the io_out() function.

Output Models
The following timer/counter output models reflect a new output value at the end
of the current output signal period:

• edgedivide output

• frequency output

• pulsewidth output

• stretchedtriac output

• triac output

• triggeredcount output

The following timer/counter output models reflect a new output value upon
return from the io_out() function:

• oneshot output

• pulsecount output

All timer/counter output models respond to a zero output value upon return from
the io_out() function.

I/O Model Reference 29

2

Direct I/O Models

This chapter describes direct input/output models. Direct I/O models
are based on a logic level at the I/O pins; none of the Neuron Chip or
Smart Transceiver hardware’s timer/counters are used in conjunction
with these I/O objects. These models can be used in multiple,
overlapping combinations within the same Neuron Chip or Smart
Transceiver.

I/O Model Reference 31

Bit Input/Output
The bit I/O model is used to read or control the logical state of a single pin, where
0 represents low and 1 represents high.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
Pins IO0 – IO11 can be individually configured as single-bit input or output
ports. Inputs can be used to sense transistor-transistor logic (TTL)-level
compatible logic signals from external logic, contact closures, and so on. Outputs
can be used to drive external CMOS and TTL-level compatible logic, switch
transistors, and very low current relays to actuate higher-current external
devices such as stepper motors and lights.

For Series 3100 devices, the high (20 mA) current sink capability of pins IO0 –
IO3 (see Figure 7) allows these pins to drive many I/O devices directly.

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

High Current Sink Drivers Optional Pull-Up Re-
sistors

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

IO11 IO11

Figure 7. Bit I/O for Series 3100 Devices

Notes:

• After a reset, a Series 3100 power line device disables the IO4-IO7 and
IO11 pull-up resistors. The pull-up resistors are not turned on until
application initialization. Pull-ups are only enabled when specified in the
application configuration using the #pragma enable_io_pullups
Neuron C directive.

• After a reset, a Series 3100 FT device performs a self test, which includes
enabling the IO4-IO7 pull-up resistors. Enabling the pull-up resistors
could cause a positive transition on the pins.

Figure 8 and Figure 9 show the bit input and bit output latency times,
respectively. These are the times from the call to the io_in() or io_out()
function, until a value is returned. The direction of bit ports can be changed
between input and output dynamically by using the io_set_direction() function.

32 Direct I/O Models

TIME

INPUT PIN
SAMPLED

END OF
io_in()

START OF
io_in()

INPUT

t fin t ret

Figure 8. Bit Input Timing

Table 11. Bit Input Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to sample
IO0 – IO10
IO11

41 µs
8.4 µs

tret Return from function
IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7
IO8
IO9
IO10
IO11

19 µs
23.4 µs
27.9 µs
32.3 µs
36.7 µs
41.2 µs
45.6 µs
50 µs
19 µs
23.4 µs
27.9 µs
7.8 µs

OUTPUT PIN
UPDATED

END OF
io_out()

START OF
io_out()

TIME

OUTPUT

t fout t ret

Figure 9. Bit Output Timing

I/O Model Reference 33

Table 12. Bit Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfout Function call to update
 IO3 – IO5, IO11
 All others

69 µs
60 µs

tret Return from function
 IO0 – IO11

5 µs

Programming Considerations
For bit input, the data type of the return value for io_in() is an unsigned
short. For bit output, the output value is treated as a Boolean value, so any non-
zero value is treated as a 1.

The bit input and output models are both direct I/O models. Thus, bit input
objects are sampled at the time of the io_in() call, and bit output objects are
driven at the time of the io_out() call.

Although this I/O model is suitable for many simple use-cases, such as driving an
LED or a single relay, many control applications require a synchronized reading
and writing of various bit input and output devices. Applications that require a
synchronized process image should consider using the byte or nibble models
instead.

For Series 3100 devices, add a #pragma enable_io_pullups directive to enable
the Neuron Chip or Smart Transceiver's built-in pull-up resistors on pins IO4
through IO7 and IO11.

IO11 is only available on PL 3120, PL 3150, PL 3170, Series 5000, and Series
6000 chips.

Syntax
pin input bit io-object-name;

pin output bit io-object-name [=initial-output-level];

pin

Specifies one of the twelve I/O pins, IO_0 through IO_11. Bit input/output
can be used on any pin.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

initial-output-level

A constant expression, in ANSI C format for initializers, used to set the state
of the output pin of the I/O object at initialization. The initial state can be 0
or 1. The default is 0.

34 Direct I/O Models

Usage
unsigned int input-value;
unsigned int output-value;

input-value = io_in(io-object-name);
io_out(io-object-name, output-value);

Bit Input Example
IO_1 input bit ioSwitch; // declares pin IO1 as a
// bit input object named ioSwitch

unsigned int switch_on_off;
...

when (reset) {
 io_change_init(ioSwitch);
}

when (io_changes(ioSwitch)) {
 switch_on_off = input_value;
}

Bit Output Example
IO_2 output bit ioLed;
unsigned int led_on_off;
...

when(...) {
 io_out(ioLed, led_on_off);
}

Byte Input/Output
The byte I/O model is used to read or control eight pins simultaneously.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers and to Series 6000
Neuron Processors and Smart Transceiver.

Hardware Considerations
Pins IO0 – IO7 can be configured as a byte-wide input or output port, which can
be read or written using integers in the range 0 to 255. This is useful for reading
or writing a synchronized process image, where multiple binary outputs are
assigned (or sampled) simultaneously. Other uses include driving devices that
require ASCII data, or other data, eight bits at a time. For example, an
alphanumeric display panel can use byte function for data, and use pins IO8 –
IO11 in bit function for control and addressing.

For Series 3100 devices, the high (20 mA) current sink capability of pins IO0 –
IO3 (see Figure 10) allows these pins to drive many I/O devices directly.

I/O Model Reference 35

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6

High Current Sink Drivers Optional Pull-Up Resistors

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7 IO7

IO11IO11

Figure 10. Byte I/O for Series 3100 Devices

Figure 11 and Figure 12 show the byte input and byte output latency times,
respectively. These are the times from the call to the io_in() or io_out()
function, until a value is returned. The direction of bit ports can be changed
between input and output dynamically by using the io_set_direction() function.

TIME

INPUT PIN
SAMPLED

END OF
io_in()

START OF
io_in()

INPUT

t fin t ret

Figure 11. Byte Input Timing

Table 13. Byte Input Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to sample 24 µs

tret Return from function 4 µs

OUTPUT PIN
UPDATED

END OF
io_out()

START OF
io_out()

TIME

OUTPUT

t fout t ret

Figure 12. Byte Output Timing

36 Direct I/O Models

Table 14. Byte Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfout Function call to update 57 µs

tret Return from function 5 µs

Programming Considerations
For byte input/output, the data type of the return value for io_in(), and the data
type of the output value for io_out(), is an unsigned short.

Syntax
IO_0 input byte io-object-name;

IO_0 output byte io-object-name [=initial-output-level];

IO_0

Specifies pin IO_0 as the least significant bit of the byte. Byte input/output
uses pins IO_0 through IO_7. The pin specification denotes the lowest
numbered pin of the set and must be IO_0.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

initial-output-level

A constant expression, in ANSI C format for initializers, used to set the state
of the output pin of the I/O object at initialization. The initial state can be
from 0 to 255. The default is 0.

Usage
unsigned int input-value;
unsigned int output-value;

input-value = io_in(io-object-name);
io_out(io-object-name, output-value);

Byte Input Example
IO_0 input byte ioKeyboard;
unsigned int character;
...

when (reset) {
 io_change_init(ioKeyboard);

I/O Model Reference 37

}

when (io_changes(ioKeyboard)) {
 character = input_value;
}

Byte Output Example
IO_0 output byte ioDisplay;
...

when (...) {
 io_out(ioDisplay, '?');
}

Leveldetect Input
The leveldetect I/O model is used to detect a low level (logical zero) on a single
pin, for example, for a proximity detector.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transcievers.

Hardware Considerations
Pins IO0 – IO7 can be individually configured as leveldetect input pins, which
latch a negative-going transition of the input level with a minimal low pulse
width of 200 ns for a Series 3100 Smart Transceiver with a 10 MHz input clock,
or a minimal low pulse width of 12.5 ns for a Series 5000 or Series 6000 Smart
Transceiver with an 80 MHz system clock. The application can therefore detect
short pulses on the input which might be missed by software polling. This
detection is useful for reading devices, such as proximity sensors.

Important: This is the only direct I/O model that is latched before it is sampled.

The latch is cleared during the when statement sampling, and can be set again
immediately after, if another transition should occur (see Figure 13).

38 Direct I/O Models

1ST NEGATIVE
TRANSITION
IS LATCHED

SYSTEM
CLOCK

(200 ns for
Series 3100
@ 10 MHz)

t rett fin

TIME

INPUT
LATCH

SAMPLED
AND THEN
CLEARED

END OF
io_in()

START OF
io_in()

INPUT
PIN

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6

Optional Pull-Up Resistors

IO7

2ND
NEGATIVE
TRANSITION
IS LATCHED

INPUT
LATCH

IO11

Figure 13. Leveldetect for Series 3100 Devices and Input Timing

Table 15. Leveldetect Input Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to sample
IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

35 µs
39.4 µs
43.9 µs
48.3 µs
52.7 µs
57.2 µs
61.6 µs
66 µs

tret Return from function 32 µs

Programming Considerations
The state of the input is latched in hardware every 50 ns for a Series 3100 device
with a 40 MHz input clock or every 12.5 ns for a Series 5000 device with an 80
MHz system clock (the interval scales with clock speed), capturing any low level
input. This event is represented by a TRUE (1) value returned from the io_in()
call, and the value is then cleared to 0 when read. However, as long as the input
pin level stays at logical zero (0), each io_in() call returns a 1 value.

The leveldetect input model is useful for capturing events of short duration that
would otherwise be missed by the bit input model. For leveldetect input, the data
type of return_value for io_in() is an unsigned short.

For Series 5000 and Series 6000 chips, I/O interrupts are also available to
implement low-latency application-specific response to the I/O pins. Because I/O

I/O Model Reference 39

interrupts can be used independently from I/O objects, and can be triggered by
positive or negative level, rising or falling edge, or either edge of the I/O signal
(regardless of the I/O object’s direction), I/O interrupts can often be used in place
of a leveldetect object.

For Series 3100 devices, add a #pragma enable_io_pullups directive to enable
the Neuron Chip's or Smart Transceiver's built-in pull-up resistors on pins IO_4
through IO_7.

Syntax
pin [input] leveldetect io-object-name;

pin

An I/O pin. Leveldetect input can specify one of the pins IO_0 through IO_7.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned int input-value;

input-value = io_in(io-object-name);

Example
IO_6 input leveldetect ioGrounded;

when (io_changes(ioGrounded) to TRUE) {
 ...
 // this task runs when I/0 reaches logical 0 level
}

Nibble Input/Output
The nibble I/O model is used to read or control four adjacent pins simultaneously.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to the Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
Groups of four consecutive pins between IO0 – IO7 can be configured as nibble-
wide (4-bit) input or output ports, which can be read or written to using integers
in the range 0 to 15. This model is useful for reading or writing a synchronized
process image, where multiple binary outputs are assigned (or sampled)
simultaneously. Other uses include driving devices that require binary-coded
decimal (BCD) data, or other data four bits at a time. For example, a 4x4 key
switch matrix can be scanned by using one nibble to generate an output (row

40 Direct I/O Models

select — one of four rows), and one nibble to read the input from the columns of
the switch matrix.

The direction of nibble ports can be changed between input and output
dynamically under application control (see Programming Considerations). The
least-significant bit (LSB) of the input data is determined by the object
declaration and can be any of the IO0 – IO4 pins.

For Series 3100 devices, the high (20 mA) current sink capability of pins IO0 –
IO3 (see Figure 14) allows these pins to drive many I/O devices directly.

High Current Sink Drivers
Optional Pull-Up Resistors

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

IO11

Figure 14. Nibble Input/Ouput

Figure 15 and Figure 16 show the nibble input and nibble output latency times,
respectively. These are the times from the call to the io_in() or io_out()
function, until a value is returned. The direction of bit ports can be changed
between input and output dynamically by using the io_set_direction() function.

t rett fin

TIME

INPUT PIN
SAMPLED

END OF
io_in()

START OF
io_in()

INPUT

Figure 15. Nibble Input Timing

Table 16. Nibble Input Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to sample
IO0 – IO4

41 µs

I/O Model Reference 41

Symbol Description Typical at 10 MHz

tret Return from function
IO0
IO1
IO2
IO3
IO4

18 µs
22.8 µs
27.5 µs
32.3 µs
36 µs

OUTPUT PIN
UPDATED

END OF
io_out()

START OF
io_out()

t rett fout

TIME

OUTPUT

Figure 16. Nibble Output Timing

Table 17. Nibble Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfout Function call to update
IO0
IO1
IO2
IO3
IO4

78 µs
89.8 µs
101.5 µs
113.5 µs
125 µs

tret Return from function
 IO0 – IO4

5 µs

Programming Considerations
For nibble input/output, the data type of return_value for the io_in() function,
and the data type of the output value for the io_out() function is an unsigned
short.

For Series 3100 devices, add a #pragma enable_io_pullups directive to enable
the Neuron Chip’s or Smart Transceiver's built-in pull-up resistors on pins IO_4
through IO_7.

42 Direct I/O Models

Syntax
pin input nibble io-object-name;

pin output nibble io-object-name [= initial-output-level];

pin

An I/O pin. Nibble input/output requires four adjacent pins. The pin
specification denotes the lowest numbered pin of the set and can be IO_0
through IO_4. The lowest numbered I/O pin is defined as the least
significant bit of the nibble data.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

initial-output-level

A constant expression, in ANSI C format for initializers, used to set the state
of the output pin of the I/O object at initialization. The initial state can be
from 0 to 15. The default is 0.

Usage
unsigned int input-value;
unsigned int output-value;

input-value = io_in(io-object-name);
io_out(io-object-name, output-value);

Nibble Input Example
IO_0 input nibble ioColumnRead;
unsigned column;

when (reset) {
 io_change_init(ioColumnRead);
}

when (io_changes(ioColumnRead)) {
 column = input_value;
}

Nibble Output Example
IO_4 output nibble ioRowWrite;

when (...) {
 io_out(ioRowWrite, 0b1000U);
}

I/O Model Reference 43

Touch Input/Output
The touch I/O model is used to interface to any peripheral device that implements
the 1-Wire® protocol developed by Dallas Semiconductor Corporation (now Maxim
Integrated Products). This protocol provides communications with Touch
Memory devices, iButton™ devices, and other similar devices. This protocol uses
a one-wire, open-drain, bidirectional connection.

The touch I/O model operates only within the timing specifications set forth by
Dallas Semiconductor Corporation for the 1-Wire protocol. This interface
supports bi-directional data transfers across a signal and ground wire pair. An
external pull-up is required, and the interface is connected directly to the
designated I/O pin. This I/O pin is operated as an open-drain device in order to
support the interface.

Up to 255 bytes of data can be transferred at a time.

For more information about this protocol, and the devices that it supports, see
application note 937, Book of iButton Standards, from Maxim Integrated
Products.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to the Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
Up to eight 1-Wire memory busses can be connected to a Smart Transceiver
through the use of the first eight I/O pins, IO0 – IO7. The only additional
component required for this is a pull-up resistor on the data line (refer to the 1-
Wire Memory specification below on how to select the value of the pull-up
resistor). The high current sink capabilities of IO0 – IO3 pins of a Series 3100
Smart Transceiver can be used in applications where long wire lengths are
required between the 1-Wire device and the Smart Transceiver.

The slave acquires all necessary power for its operation from the data line. Upon
physical connection of a 1-Wire device to a master (in this case the Smart
Transceiver), the 1-Wire Memory generates a low presence pulse to inform the
master that it is awaiting a command. The Smart Transceiver can also request a
presence pulse by sending a reset pulse to the 1-Wire device.

Commands and data are sent bit by bit to make bytes, starting with the least-
significant bit (LSB). The synchronization between the Smart Transceiver and
the 1-Wire devices is accomplished through a negative-going pulse generated by
the Smart Transceiver.

Figure 17 shows the details of the reset pulse in addition to the read/write bit
slots.

Note: NodeBuilder 3.1 features the ability to adjust the tlow, twrd, and trdi timing
values.

44 Direct I/O Models

TIME

DATA LINE

START OF
touch_reset()

INPUT
SAMPLED

NEXT
io_in() OR

io_out()

TIME

START OF io_in()
OR io_out()

INPUT
SAMPLED

END OF
io_in() OR

io_out()

DATA LINE

DATA LINE

DATA LINE

RESET
AND

PRESENCE

WRITE 1

WRITE 0

READ

Smart Transceiver
1-Wire Memory
PULL-UP RESISTOR

LINE TYPE LEGEND

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

END OF
touch_reset()

High Current Sink
Drivers

IO11 tibd

tf t low

t wrd

trdi

t ret

t rret

tpdl

t wh

tpdtrsto

trstl

Figure 17. Touch I/O for Series 3100 Devices and Timing

Table 18. Touch I/O Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

trsto Reset call to data line low — 60.0 µs —

trstl Reset pulse width — 500 µs —

tpdh Reset pulse release to data line high
10 MHz
5 MHz

4.8 µs
9.6 µs

—
275 µs
275 µs

tpdl Presence pulse width — 120.0 µs —

twh Data line high detect to presence pulse — 80 µs —

trret Return from reset function — 12.6 µs —

tf I/O call to data line low (start of bit slot) — 125.4 µs —

tlow Start pulse width
10 MHz
5 MHz

—
4.2 µs
8.4 µs

—

trdi Start pulse edge to sampling of input (read
operation)
10 MHz
5 MHz

—

15.0 µs
18.0 µs

—

I/O Model Reference 45

Symbol Description Minimum Typical Maximum

twrd Start pulse edge to Smart Transceiver
releasing the data line
10 MHz
5 MHz

—

66.6 µs
72.0 µs

—

tibd Inter-bit delay
10 MHz
5 MHz

—
61.2 µs
122.4 µs

—

tret Return from I/O call — 42.6 µs —

The leveldetect input model can be used for detection of asynchronous
attachments of 1-Wire devices to the Smart Transceiver. In such a case, the
leveldetect input object is overlaid on top of the Touch I/O object. See Overlaying
I/O Objects for information about I/O object overlays.

Programming Considerations
The touch I/O model is used to interface to the 1-Wire protocol, and allows up to
255 bytes of data can be transferred at a time.

Syntax
pin touch [output_pin(pin)] [timing(t-low, t-rdi, t-wrd)] io-object-name;

pin

An I/O pin. Touch I/O can specify one of the pins IO_0 through IO_7.
Multiple Touch I/O objects can be declared. If you do not explicitly declare a
separate output pin with the output_pin() parameter, this pin specifies
both the input and output pin. Otherwise, it specifies only the input pin.

output_pin(pin)

Optionally specifies the output pin. If not specified, the output pin is the
same as the input pin.

timing(…)

Optionally specifies three timing parameters. There are three time periods
associated with each bit time slot. All values here apply to a Series 3100
device with a 10 MHz input clock (and double for a 5 MHz input clock).
Because these timing controls affect the low-level single bit function used by
both read and write operations, they are required for both 1-wire read and
write operations. A value of 0 for a timing control is the same as a value of
256.

You can optionally specify the following three timing parameters when you
declare the touch I/O object:

• t-low
The length of tLOW. This is the interval where the Neuron firmware
asserts a low on the 1-Wire bus signaling the start of the bit slot.

46 Direct I/O Models

This argument has a minimum value of 7.2 μs (t_low = 1) from the
start of tLOW. The incremental resolution of t_low is 3 μs, so the
control range is 4.2 + n * 3 (in μs) where n is 1 to 255, and a t-low
value of 0 is equivalent to n=256.

• t-rdi
The length of tRDI. This is the interval where the Neuron firmware
asserts either a low or a high on the 1-Wire bus, depending on the
output data bit polarity. For read operations, this data polarity is
always high. This argument has a minimum value of 7.8 μs (t-rdi = 1)
from the start of tRDI. The incremental resolution of t-rdi is 3 μs, so
the control range is 4.8 + n * 3 (in μs) where n is 1 to 255, and a t-rdi
value of 0 is equivalent to n=256.

• t-wrd
Start of tWRD (end of tRDI). This is the point where the Neuron
firmware samples the 1-Wire bus for the input data bit, and occurs
for both read and write operations. This argument has a minimum
value of 15 μs (t-wrd = 1) from the start of tWRD. The incremental
resolution of t-wrd is 3 μs, so the control range is 12 + n * 3 (in μs)
where n is 1 to 255, and a t-wrd value of 0 is equivalent to n=256.

At the end of t-wrd, the Neuron firmware releases the 1-Wire bus.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned int count;

unsigned int touch-buffer[buffer-size];

io_out(io-object-name, touch-buffer, count);
io_in(io-object-name, touch-buffer, count);

The touch-buffer can be any type or structure, and the type of the touch-buffer
parameter is const void*. The address of the buffer is passed to the io_out()
and io_in() functions. There are several additional support functions for the
Touch I/O object: touch_reset(), touch_byte(), touch_bit(), touch_first(),
touch_next(), crc8(), and crc16().

For Neuron Chips and Smart Transceivers that include system firmware version
18 or later, there are other additional support functions for the Touch I/O model:
touch_reset_spu(), touch_byte_spu(), touch_read_spu(),
touch_write_spu(), and crc16_ccitt().

int touch_reset(io-object-name);

The touch_reset() function asserts the reset pulse. The function returns a 1
value if a presence pulse was detected, or a 0 value if no presence pulse was
detected, or a -1 value if the 1-Wire bus appears to be stuck low. The operation of
this function is controlled by several timing constants:

• The reset pulse period, 500 μs.

• After the reset pulse period, the Neuron firmware releases the 1-Wire bus
and waits for the 1-Wire bus to return to the high state. This period is

I/O Model Reference 47

limited to 275 μs, after which the touch_reset() function returns a -1
value with the assumption that the 1-Wire bus is stuck low. There also is
a minimum value for this period: for a Series 3100 device, it must be >4.8
µs @10 MHz, or >9.6 µs @5 MHz; for a Series 5000 or Series 6000 device,
it must be >0.3 µs @ 80 MHz, or >4.8 µs @5 MHz.

After the 1-Wire bus has appeared to go high, the Neuron firmware waits for the
presence pulse for a period up to 80 μs. If a low input level is not sensed within
this period, the function returns a 0 value. When a presence pulse is detected,
the Neuron firmware then waits for the end of the presence pulse by waiting for a
high level on the bus. This period is limited to 250 μs, after which the function
again returns a -1 if the period elapses with the input level still low. Otherwise,
after the input level is high again, the function returns with a 1 value. The
touch_reset() function does not return until the end of the presence pulse has
been detected.

unsigned touch_byte(io-object-name, unsigned write-data);

The touch_byte() function sequentially writes and reads eight bits of data on
the 1-Wire bus. It can be used for either reading or writing. For reading, the
write-data argument should be all ones (0xFF), and the return value contains the
eight bits as read from the bus. For writing, the bits in the write-data argument
are placed on the 1-Wire bus, and the return value normally contains those same
bits.

This function allows combined read and write operations within a single 8-bit
boundary. For example, a 2-bit write can be followed by a 6-bit read. This read
can be accomplished with a single call to the touch_byte() function with a
write-data argument of 0bNN111111 where NN represents the two bits of write
data and (111111) is used to perform the 6-bit read.

unsigned touch_bit(io-object-name, unsigned write-data);

The touch_bit() function writes and reads a single bit of data on the 1-Wire bus.
It can be used for either reading or writing. For reading, the write-data
argument should be one (0x01), and the return value contains the bit as read
from the bus. For writing, the bit value in the write-data argument is placed on
the 1-Wire bus, and the return value normally contains that same bit value, and
can be ignored.

int touch_first(io-object-name, search_data * sd);
int touch_next(io-object-name, search_data * sd);

These functions execute the Search ROM command, as described in the Book of
iButton Standards. Both functions use a search_data_s data structure for
intermediate storage of a bit marker and the current ROM data:

typedef struct search_data_s {
 int search_done;
 int last_discrepancy;
 unsigned rom_data[8];
} search_data;

This data structure is automatically defined in Neuron C, regardless of whether a
program references the touch I/O functions.

A return value of TRUE indicates whether a device was found, and if so, that the
data stored at rom_data[] is valid. A FALSE return value indicates no device
found. The search_done flag is set to TRUE when there are no more devices on

48 Direct I/O Models

the 1-Wire bus. The last_discrepancy variable is used internally and should
not be modified.

To start a new search:

1. Call touch_first()

2. As long as the search_done flag is not set, call touch_next() as many
times as are required.

For a Series 3100 device, each call to touch_first() or touch_next() takes 41
ms to execute at 10 MHz (63 ms at 5 MHz) when a device is being read. For a
Series 5000 or Series 6000 device, each call to touch_first() or touch_next()
takes 14 ms to execute at 80 MHz (29 ms at 10 MHz) when a device is being read.

unsigned crc8(unsigned crc, unsigned new-data);

This function performs the Dallas 1-Wire 8-bit cyclic redundancy check (CRC)
function on the crc and new-data arguments, and returns the new 8-bit CRC
value. You must include <stdlib.h> in your program to use this function.

unsigned long crc16(unsigned long crc, unsigned new-data);

This function performs the Dallas 1-Wire 16-bit CRC function on the crc and new-
data arguments, and returns the new 16-bit CRC value. You must include
<stdlib.h> in your program to use this function.

Certain 1-Wire devices, such as the Maxim Integrated Products DS18S20 High-
Precision 1-Wire Digital Thermometer, require that the 1-Wire bus be actively
held high during certain operations. These devices require more current than a
typical external pull-up resistor can provide for device operations. The following
functions (named touch_xxx_spu) drive the Neuron Chip or Smart Transceiver
output to an active high state when the pin is idle. These functions require
system firmware version 18 or later.

int touch_reset_spu(unsigned pinmask);

The touch_reset_spu() function asserts the reset pulse, just as the
touch_reset() function does. The pinmask defines which pins are driven high
when idle.

void touch_byte_spu(unsigned pinmask, unsigned data);

The touch_byte_spu() function sequentially writes eight bits of data on the 1-
Wire bus, just as the touch_byte() function does. The pinmask defines which
pins are driven high when idle. The data defines the read or write data.

void touch_read_spu(unsigned pinmask, unsigned *dp, unsigned
count);

The touch_read_spu() function reads a specified number of bits of data on the
1-Wire bus, similar to the touch_bit() function. The pinmask defines which
pins are driven high when idle. The dp pointer defines the buffer into which the
function stores the read data. The count defines how many bits to read.

void touch_write_spu(unsigned pinmask, const unsigned *dp,
 unsigned count);

The touch_write_spu() function writes a specified number of bits of data on the
1-Wire bus, similar to the touch_bit() function. The pinmask defines which
pins are driven high when idle. The dp pointer defines the buffer from which the
function writes the data. The count defines how many bits to write.

I/O Model Reference 49

Example
// In this example, a leveldetect input is used on the
// 1-Wire interface to detect the 'presence' signal
// when a Touch Memory device appears on the bus.

#include <stdlib.h>

#define DS_READ_ROM 0x33
unsigned int data[8];
IO_3 input leveldetect ioPresence;
IO_3 touch ioTouchWire;
. . .

when (io_in(ioPresence) == 1) {
 unsigned int i, crc;

 // Reset the device using touch_reset().
 // Skip if there is no device sensed.
 if (touch_reset(ioTouchWire)) {
 // Send a single READ_ROM command byte:
 id_data[0] = DS_READ_ROM;
 io_out(ioTouchWire, data, 1);

 // Read the 8 byte I.D.:
 io_in(ioTouchWire, data, 8);

 // check the crc of the I.D.:
 crc = 0;
 for (i=0; i<7; i++)
 crc = crc8(crc, data[i]);

 if (crc == id_data[7]) {
 // Valid crc: process I.D. data here.
 }
 }
 // Clear leveldetect input.
 (void)io_in(ioPresence);
}

50 Direct I/O Models

3

Parallel I/O Models

This chapter describes parallel input/output models. Parallel I/O
models are used for high-speed bidirectional I/O.

I/O Model Reference 51

Muxbus Input/Output
The multiplexed bus (muxbus) I/O model provides a means of performing parallel
I/O data transfers between a Smart Transceiver and an attached peripheral
device or processor. This I/O model allows you to interface with any device that
requires an address and a data bus, such as a programmable universal
asynchronous receiver/transmitter (UART).

The muxbus I/O model uses eleven I/O pins to form an 8-bit address and bi-
directional data bus interface. This I/O model uses pins IO_0 through IO_7 for
the 8-bit address bus and the 8-bit data bus. Pins IO_8 through IO_10 are
control signals that are always driven by the Neuron Chip or Smart Transceiver,
as shown in Table 19.

Table 19. Muxbus Signals

Pin Function

IO0 thru IO7 Address and bi-directional data

IO_8 C_ALS: Address latch strobe, asserted high

IO_9 C_WS~: Write strobe, asserted low

IO_10 C_RS~: Read strobe, asserted low

This I/O model provides the capability to build an 8-bit data bus system with an
8-bit address bus. Typically, an 8-bit D-type latch (such as a 74HC573) is
connected to the Neuron I/O pins where pins IO_0 through IO_7 are connected to
the eight Q inputs. Pin IO_8 is connected to the Latch Enable input. In this
configuration, eight bits of address are latched on the eight D output pins of the
74HC573 device.

Pins IO_9 and IO_10 are the write and read strobes, normally high.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to the Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
Unlike the parallel input/output model, which uses a token-passing scheme for
ensuring synchronization, the muxbus input/output enables a Smart Transceiver
to essentially be in control of all read and write operations at all times. This
control relieves the burden of protocol handling from the attached device and
results in an easier-to-use interface at the expense of data throughput capacity.
The data bus remains in the last state used.

Figure 18 shows the muxbus I/O latency times. These are the times from the
call to the io_in() or io_out() function, until a value is returned. The direction of
bit ports can be changed between input and output dynamically by using the
io_set_direction() function.

52 Parallel I/O Models

t rret

C_WS~

C_ALS

C_ALS
(IO8)

C_RS~
(IO10)

ADDR/
DATA

TIME

START OF
io_out()

END OF
io_in()

t fout

tahw

tas

C_RS~

ADDR DATA ADDR DATA

tas

tahr

tadrs

t dws
t rhold

trset

C_WS~
(IO9)

START OF
io_in()

END OF
io_out()

twws

tfin
t wret

IO10

IO9

IO8

IO0

IO1

IO2

IO3

IO4

IO5

IO6

IO7

AD0 – AD7

t whold

twas

NOTE: Data is latched 4.8 µs after the falling edge of C_RS~.

IO11

t wrs

Figure 18. Muxbus I/O for Series 3100 Devices and Timing

Table 20. Muxbus I/O Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

tfout io_out() call to valid address — 26.4 µs —

tas Address valid to address strobe — 10.8 µs —

tahw Address hold for write — 4.8 µs —

tahr Address hold for read — 6.6 µs —

twas Address strobe width — 6.6 µs —

twrs Read strobe width — 10.8 µs —

twws Write strobe width — 10.8 µs —

tdws Data valid to write strobe — 6.6 µs —

trset Read setup time 10.8 µs — —

twhold Write hold time 4.2 µs — —

trhold Read hold time 0 µs — —

tadrs Address disable to read strobe — 7.2 µs —

I/O Model Reference 53

Symbol Description Minimum Typical Maximum

tfin io_in() call to valid address — 26.4 µs —

trret Function return from read — 4.2 µs —

twret Function return from write — 4.2 µs —

Programming Considerations
For a muxbus output object, the io_out() function requires an optional 8-bit
address argument, and an 8-bit data argument. If the address argument is
provided, the Neuron firmware first sets pins IO_0 through IO_7 as outputs,
then places the address value on these pins, and pulses C_ALS from low to high
to low. This latches the address into the address data latch device. If the
address is not provided, this step is skipped. The current value latched in the
address latch remains unchanged.

The Neuron firmware then places the data argument value on pins IO_0 through
IO_7, and pulses C_WS~ from high to low to high.

For muxbus input, the io_in() function allows an optional 8-bit address
argument only. If this argument is provided, the address is emitted and latched
in the same manner as for the io_out() function.

Finally, the Neuron firmware sets pins IO_0 through IO_7 as inputs. It drops
C_RS~ from high to low, inputs the 8 bits of data from pins IO_0 through IO_7,
and raises ~_RS~ from low to high. The function then returns the 8-bit data
value read.

After a read operation, pins IO_0 to IO_7 are left in the high impedance state.
This could cause excessive power consumption of the 8-bit latch. Using pull-up
resistors, or ensuring that the last I/O operation is a write, can avoid this
situation.

The address argument is optional and can be left off as a performance
enhancement where a bus device can be repeatedly read from or written to
without changing the bus address. The application must keep track of the
current bus address when using this feature.

No events are associated with this I/O model.

Syntax
IO_0 muxbus io-object-name;

IO_0

Specifies pin IO_0. Muxbus input/output requires eleven pins and must
specify pin IO_0.

io-object-name

54 Parallel I/O Models

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned int data-byte;

data-byte = io_in(io-object-name, address);
data-byte = io_in(io-object-name);

io_out(io-object-name, address, data-byte);
io_out(io-object-name, data-byte);

Example
IO_0 muxbus ioMuxBus;

when (. . .) {
 // Write two bytes to addresses 0x20 and 0x21,
 // and wait for the data at 0x20 to contain
 // the 0x80 value.
 io_out(ioMuxBus, 0x20, 128);
 io_out(ioMuxBus, 0x21, 1);
 if ((io_in(ioMuxBus, 0x20) & 0x80) == 0) {
 // Continue to read the same address.
 while ((io_in(ioMuxBus) & 0x80) == 0);
 }
}

Parallel Input/Output
The parallel I/O model uses eleven I/O pins for an 8 bit parallel interface with
handshaking. This interface allows data transfer at rates up to 3.3 Mbps. A
parallel interface can be used for the following applications:

• To interface a Neuron Chip or Smart Transceiver to an attached
microprocessor or to the bus of a computer system. This interface can use
the Neuron Chip or Smart Transceiver as a communications chip with an
existing processor-based system, provide more application performance,
or supply more memory. This type of interface is enhanced with the
Microprocessor Interface Program (MIP; with a parallel or dual-ported
RAM interface). The MIP moves network variable and application
message processing to the attached processor.

• For application-level gateways, two Neuron Chips or Smart Transceivers
(or one of each) might be connected back to back across the parallel
interface, producing two transceiver interfaces to transport data from one
system to the other.

This interface is bidirectional, with the direction (read/write) controlled by the
device that is declared as the master. When using this interface, the Neuron
Chip or Smart Transceiver can be either a master or a slave. The parallel I/O
model provides three different configurations of the parallel I/O interface: master,
slave A, and slave B:

I/O Model Reference 55

• Master and slave A connections are typically used for parallel port
interfaces and for Neuron Chip/Smart Transceiver to Neuron Chip/Smart
Transceiver communication.

• Slave B connections are typically used for communicating from a
microprocessor bus to a Neuron Chip or Smart Transceiver.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to the Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
Pins IO0 – IO10 can be configured as a bidirectional 8-bit data and 3-bit control
port for connecting to an external processor. The other processor can be a
computer, microcontroller, or another Neuron Chip or Smart Transceiver (for
gateway applications). The parallel interface can be configured in master, slave
A, or slave B mode. Typically, two Smart Transceivers interface in master/slave
A mode, and a Smart Transceiver interfaces with a microprocessor in the slave B
configuration, with the other microprocessor as the master. Handshaking is used
in both modes to control the instruction execution, and application processing is
suspended for the duration of the transfer (up to 255 bytes/transfer).

Upon a reset condition, the master processor monitors the low transition of the
handshake (HS) line from the slave, then passes a CMD_RESYNC (0x5A)
command for synchronization. This command must be sent within 0.84 seconds
after reset goes high (for a Series 3100 slave running at 10 MHz or a Series
5000/6000 slave at any clock rate), to avoid a watchdog reset error condition.

The CMD_RESYNC command is followed by the slave acknowledging with a
CMD_ACKSYNC (0x07) command. This synchronization ensures that both
processors are properly reset before data transfer occurs. When interfacing two
Smart Transceivers, these characters are passed automatically. However, when
using parallel I/O to interface the Smart Transceiver to a microprocessor, that
microprocessor must duplicate the interface signals and characters that are
automatically generated by the parallel I/O function of the Smart Transceiver.

For additional information, see the Parallel I/O Interface to the Neuron Chip
engineering bulletin.

The timing numbers listed in this section are valid for both an explicit I/O call or
an implicit I/O call through a when clause, and are assumed to be for a Series
3100 Smart Transceiver running at 10 MHz.

Master Mode and Slave A Mode
The master mode and the slave A mode are recommended when interfacing two
Neuron Chips or Smart Transceivers. In a master/slave A configuration, the
master drives the IO8 pin as a chip select and the IO9 pin to specify a read or
write cycle, and the slave drives the IO10 pin as a handshake (HS)
acknowledgment (see Figure 19).

Important: The HS line should be pulled up (inactive) with a 10 kΩ resistor to
ensure proper resynchronization behavior after the slave device resets.

56 Parallel I/O Models

PARALLEL SLAVE APARALLEL MASTER

IO10

IO9

IO8

IO0

IO1

IO2

IO3

IO4

IO5

IO6

IO7

D0 – D7

HSIO10

IO9

IO8

IO0

IO1

IO2

IO3

IO4

IO5

IO6

IO7

D0 – D7

HS

CS~

IO11 IO11

10 kΩ

VDD5

CS~

R/ W~ R/ W~

Figure 19. Master Mode and Slave A Mode

The maximum data transfer rate is 1 byte per 4 processor instruction cycles (2.4
µs per byte for a Series 3100 device with a 10 MHz input clock rate, or 300 ns per
byte for a Series 5000 or Series 6000 device with an 80 MHz system clock). The
data transfer rate scales proportionally to the input clock rate (a master write is
a slave read).

CS~

HS

DATA OUT

DATA IN
READ CYCLE WRITE CYCLE

t mhsv

t mrws

tmrdz

tmwds

tmhscs

tmhsdv

t mcspw

tmhsh

R/W~

t mrws

t mhsh

t mcspw

t mrwh

tmwdh
tmwdd

tmrdh
tmrds

t mhsv

Figure 20. Master Mode Timing

Timing for the case where the Smart Transceiver is the master (Table 21), refers
to measured output timing for a Series 3100 device at 10 MHz. After every byte
write or byte read, the HS line is monitored by the master, to verify that the
slave has completed processing (when HS = 0) and the slave is ready for the next
byte transfer. This is done automatically in Smart Transceiver-to-Smart
Transceiver (master/slave A mode) data transfers.

Slave A timing is shown in Figure 21.

I/O Model Reference 57

Table 21. Master Mode Parallel I/O Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

tmrws R/W~ setup before falling edge of CS~ (See
note 1)

150 ns 3 XIN —

tmrwh R/W~ hold after rising edge of CS~ 100 ns — —

tmcspw CS~ pulse width (See note 1) 150 ns 2 XIN —

tmhsh HS hold after falling edge of CS~ 0 ns — —

tmhsv HS checked by firmware after rising edge of
CS~ (See note 1)

150 ns 10 XIN —

tmrdz Master three-state DATA after rising edge
of R/W~ (See notes 2, 3)

— 0 ns 25 ns

tmrds Read data setup before falling edge of HS
(See note 4)

0 ns — —

tmhscs HS low to falling edge of CS~ (See notes 5,
1)

2 XIN 6 XIN —

tmrdh Read data hold after falling edge of CS~ 0 ns — —

tmwdd Master drive of DATA after falling edge of
R/W~ (See notes 2, 1)

150 ns 2 XIN —

tmhsdv HS low to data valid (See note 5) — 50 ns —

tmwds Write data setup before rising edge of CS~
(See note 1)

150 ns 2 XIN —

tmwdh Write data hold after rising edge of CS~
(See note 6)

Note 6 — —

58 Parallel I/O Models

Symbol Description Minimum Typical Maximum

Notes:

1. XIN represents the period of the Smart Transceiver input clock (100 ns for a Series
3100 device at 10 MHz), or the period of the system clock for Series 5000 and Series
6000 devices (12.5 ns at 80 MHz).

2. Refer to the appropriate Neuron Chip or Smart Transceiver data sheet for detailed
measurement information.

3. For Smart Transceiver-to-Smart Transceiver operation, bus contention (tmrdz, tsawdd) is
eliminated by firmware, ensuring that a zero state is present when the token is
passed between the master and slave. See the Parallel I/O Interface to the Neuron
Chip engineering bulletin for additional information.

4. HS high is used as a slave busy flag. If HS is held low, the maximum data transfer
rate is 24 XIN per byte. If HS is not used for a flag, caution should be taken to
ensure that the master does not initiate a data transfer before the slave is ready.

5. Parameters were added to aid interface design with the Smart Transceiver.

6. Master holds output data valid during a write until the slave device pulls HS high.

7. In a master read, CS~ pulsing low acts like a handshake to flag the slave that data
has been latched in.

CS~

HS

R/W~

DATA OUT

DATA IN

READ CYCLE
(MASTER WRITE)

WRITE CYCLE
(MASTER READ)

tsahsv
tsacspw

tsahsv
tsacspw

t sahsh

tsarws tsarws

t sahsh

tsarwh

t sards t sardht sawd

t sawds tsawdh t sardz

Figure 21. Slave A Mode Timing

I/O Model Reference 59

Table 22. Slave A Mode Parallel I/O Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

tsarws R/W~ setup before falling edge of CS~ 25 ns — —

tsarwh R/W~ hold after rising edge of CS~ 0 ns — —

tsacspw CS~ pulse width 45 ns — —

tsahsh HS hold after rising edge of CS~ 0 ns — —

tsahsv HS valid after rising edge of CS~ — — 50 ns

tsawdd Slave A drive of DATA after rising edge of
R/W~ (Notes 1, 2)

0 ns 5 ns —

tsawds Write data valid before falling edge of HS
(Note 3)

150 ns 2 XIN —

tsawdh Write data valid after rising edge of CS~
(Note 3)

150 ns
(Note 4)

2 XIN —

tsardz Slave A three-state DATA after falling edge
of R/W~ (Note 1)

— — 50 ns

tsards Read data setup before rising edge of CS~ 25 ns — —

tsardh Read data hold after rising edge of CS~ 10 ns — —

Notes:

1. Refer to the appropriate Neuron Chip or Smart Transceiver data sheet for detailed
measurement information.

2. For Smart Transceiver-to-Smart Transceiver operation, bus contention (tmrdz, tsawdd) is
eliminated by firmware, ensuring that a zero state is present when the token is
passed between the master and slave. See the Parallel I/O Interface to the Neuron
Chip engineering bulletin for additional information.

3. XIN represents the period of the Smart Transceiver input clock (100 ns for a Series
3100 device at 10 MHz), or the period of the system clock for a Series 5000 device
(12.5 ns at 80 MHz).

4. If tsarwh < 150 ns, then tsawdh = tsarwh.

5. In slave A mode, the HS signal is high a minimum of 4 XIN periods. The typical time
HS is high during consecutive data reads or consecutive data writes is also 4 XIN
periods.

Example
This section describes a pair of example programs that transfer data in a parallel
I/O master/slave A configuration. The code assumes two devices hardwired as
shown in Figure 19. The master program writes the test_data to the input

60 Parallel I/O Models

buffer of the slave (because the master owns the token after reset and has the
first option to write on the bus) and the slave then outputs data to the input
buffer of the master. You can view the buffers using the NodeBuilder debugger
to verify that the transfer was completed.

The master transmits the pattern [5,1,1,1,1,1] to the slave and the slave
transmits the pattern [7,1,2,3,4,5,6,7,0,0,0,0,0,0] to the master. The first byte
indicates the number of bytes being passed; the following non-zero valued bytes
in this example are the actual data bytes transferred. The remaining length of
the array, if any, is filled with zeroes.

The master program writes once to the slave and reads once from the slave. To
implement continuous writes and reads, add an io_out_request() function call
after the io_in() function call in the master program.

If a watchdog timeout occurs for either device, simultaneously reset the two
devices.

Master Program
/*
 * This is the master program. After reset, the buffer is
 * filled with 1s and then the buffer is written to the
 * slave. The master then reads the slave’s buffer. The
 * master’s output buffer should contain [5,1,1,1,1,1]; the
 * input buffer should contain
 * [7,1,2,3,4,5,6,7,0,0,0,0,0,0].
 */

IO_0 parallel master parallelBus;

// data to be written in output buffer
#define TEST_DATA 1

// maximum length of input data expected
#define MAX_IN 13

// output length can be equal to or less than the max
#define OUT_LEN 5

// maximum array length
#define MAX_OUT 5

// output structure
struct parallel_out {
 // actual length of data to be output
 unsigned int length;
 // array setup for max length of data to be output
 unsigned int buffer[MAX_OUT];
} outData;

// input structure
struct parallel_in {
 // actual buffer length to be input
 unsigned int length;
 // maximum input array
 unsigned int buffer[MAX_IN];
} inData;

I/O Model Reference 61

unsigned int i;
when (reset) {
 outData.length = OUT_LEN; // assign output length
 for(i=0; i<OUT_LEN; ++i) {
 // fill output buffer with 1s
 outData.buffer[i] = TEST_DATA;
 }
 io_out_request(parallelBus); // request to output buffer
}

when (io_out_ready(parallelBus)) {
 // output buffer when slave is ready
 io_out(parallelBus, &outData);
}

when (io_in_ready(parallelBus)) {
 // declare the maximum input buffer acceptable
 inData.length = MAX_IN;
 io_in(parallelBus, &inData); // store input in buffer
}

Slave Program
/*
 * This is the slave program. After reset, the output
 * buffer is filled with data and then the slave reads from
 * the master. The slave then writes to the master. The
 * slave’s input buffer should contain [5,1,1,1,1,1]; the
 * output buffer should contain
 * [7,1,2,3,4,5,6,7,0,0,0,0,0,0].
 */

IO_0 parallel slave parallelBus;

// maximum length of input data expected
#define MAX_IN 5

// output length can be equal to or less than the max
#define OUT_LEN 7

// maximum array length
#define MAX_OUT 13

// output structure
struct parallel_out {
 // actual length of data to be output
 unsigned int length;
 // array setup for max length of data to be output
 unsigned int buffer[MAX_OUT];
} outData;

// input structure
struct parallel_in {
 // actual length of buffer to be input
 unsigned int length;
 // maximum input array

62 Parallel I/O Models

 unsigned int buffer[MAX_IN];
} inData;

unsigned int i;
when (reset) {
 outData.length = OUT_LEN; // assign output length
 for(i=0; i<OUT_LEN; ++i) // fill output buffer with 1s
 outData.buffer[i]=i+1;
}

when (io_out_ready(parallelBus)) {
 io_out(parallelBus, &outData); // output buffer
}

when (io_in_ready(parallelBus)) {
 // declare the maximum input buffer acceptable
 inData.length = MAX_IN;
 io_in(parallelBus, &inData); // store input in buffer
 io_out_request(parallelBus); // request to output buffer
}

Slave B Mode
The slave B mode is recommended for interfacing a Smart Transceiver acting as
the slave to a microprocessor acting as the master. When configured in slave B
mode, the Smart Transceiver accepts the IO8 signal as a chip select and the IO9
signal to specify whether the master will read or write, and accepts the IO10
signal as a register select input. Series 5000 and Series 6000 devices accept the
IO11 pin as an interrupt request signal. When the CS~ pin is asserted and either
IO10 is low or IO10 is high and R/W~ is low, pins IO0 – IO7 form the
bidirectional data bus. When IO10 is high, R/W~ is high, and CS~ is asserted,
IO0 is driven as the HS acknowledgment signal to the master.

The Smart Transceiver can appear as two registers in the master’s address space:

• A read/write data register

• A read-only status register

Therefore, reads by the master to an odd address access the status register for
handshaking acknowledgments, and all other reads or writes access the data
register for I/O transfers. The least-significant bit (LSB) of the control register,
which is read through pin IO0, is the HS bit. The master reads the HS bit after
every master read or write.
Important: The D0/HS line should be pulled up (inactive) with a 10 kΩ resistor
to ensure proper resynchronization behavior after resets.

When acting as a slave to a microprocessor, the Smart Transceiver slave B mode
handles all handshaking and token passing automatically. However, the master
microprocessor must read the HS bit after each transaction and must also
internally track the token passing. This mode is designed for use with a master
processor that uses memory-mapped I/O, because the LSB of the master’s
address bus is typically connected to the IO10 pin of the Smart Transceiver. This
is illustrated in Figure 22 and Figure 23.

I/O Model Reference 63

IO10 = 1 IO10 = 0
R/W~ = 1
IO10 = 1

READ ONLY
STATUS REGISTER

READ/WRITE
DATA REGISTER D0/HS

IO10

IO9

IO8

IO0

IO1

IO2

IO3

IO4

IO5

IO6

IO7

A0

R/W~

CS~

HS

SLAVE B

D7

D6

D5

D4

D3

D2

D1

HS/D0 – D7

X

X

X

X

X

X

X

D0

D1

D2

D3

D4

D5

D6

D7

OR
IO11R/W~ = 1 R/W~ = 0 OR 1 IRQ

Figure 22. Parallel I/O Master/Slave B as a Memory-Mapped Device

MASTER A0

SLAVE
DATA OUT

READ CYCLE
(MASTER WRITE)

WRITE CYCLE
(MASTER READ)

LATCH

MASTER CS~

MASTER R/W~

MASTER
DATA OUT

tsbcspwtsbcspw

t spah

t sbas tsbrwh tsbrws

tsbrws tsbrdhtsbrds

t sbwdz

t sbwdh

tsbwdv

Figure 23. Slave B Mode Timing

Table 23. Slave B Mode Parallel I/O Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

tsbrws R/W~ setup before falling edge of CS~ 0 ns — —

tsbrwh R/W~ hold after rising edge of CS~ 0 ns — —

tsbcspw CS~ pulse width Note 1 — —

64 Parallel I/O Models

Symbol Description Minimum Typical Maximum

tsbas A0 setup to falling edge of CS~ 10 ns — —

tsbah A0 hold after rising edge of CS~ 0 ns — —

tsbwdv CS~ to write data valid — — 50 ns

tsbwdh Write data hold after rising edge of CS~
(Notes 2, 3)

0 ns 30 ns —

tsbwdz CS~ rising edge to Slave B release data bus
(Note 2)

— — 50 ns

tsbrds Read data setup before rising edge of CS~ 25 ns — —

tsbrdh Read data setup before rising edge of CS~ 10 ns — —

Notes:

1. The slave B write cycle (master read) CS~ pulse width is directly related to the slave
B write data valid parameter and master read setup parameter. To calculate the
write cycle CS~ duration needed for a special application use:
tsbcspw = tsbwdv + master’s read data setup before rising edge of CS~.
Refer to the master’s specification data book for the master read setup parameter.
The slave read cycle minimum CS~ pulse width = 50 ns.

2. Refer to the appropriate Neuron Chip or Smart Transceiver data sheet for detailed
measurement information.

3. The data hold parameter, tsbwdh, is measured to the disable levels shown in the
appropriate Neuron Chip or Smart Transceiver data sheet, rather than to the
traditional data invalid levels.

4. In a slave B write cycle, the timing parameters are the same for a control register
(HS) write as for a data write.

5. Special applications: Both the state of CS~ and R/W~ determine a slave B write
cycle. If CS~ cannot be used for a data transfer, then toggling the R/W~ line can be
used with no changes to the hardware. That is, if CS~ is held low during a slave B
write cycle, a positive pulse (low to high to low) on R/W~ can execute a data transfer.
The low-to-high transition on R/W~ causes slave B to drive data with the same
timing parameters as tsbwdv (redefined R/W~ to write data valid). Likewise, the
falling edge of R/W~ causes slave B to release the data bus with the same timing
limits as the CS~ rising edge in tsbwdz. This scenario is only true for a slave B write
cycle, and is not applicable to a slave B read cycle or any slave A data transitions.
This application can be helpful if the master has separate read and write signals but
no CS~ signal. Caution must be taken to ensure the bus is free before transfers to
avoid bus contention.

I/O Model Reference 65

Token Passing
Virtual token passing is implemented to eliminate the possibility of data bus
contention. The token is owned by the master after synchronization and is
passed between the master and slave devices. After each data transfer is
completed, the token owner writes an end of message (EOM) (0x00) to indicate
that the transfer is complete. The EOM is never read. Instead, “processing the
EOM” indicates passing of the token.

Token passing can be achieved by executing either a data packet or a NULL
transfer. Only the owner of the token can write to the bus. Therefore, when the
master performs two writes of data (1 – 255 bytes each), a dummy read cycle
(NULL character = 0x00) must be inserted between them in order to pass the
token. Token passing is executed automatically in a Smart Transceiver-to-Smart
Transceiver interface. See Transferring Data for master/slave flow transactions.

Handshaking
Handshaking allows the master to monitor the slave between every byte transfer,
ensuring that both processors are ready for the byte to be transferred. If the
master owns the token, the master waits for the HS from the slave before writing
data to the bus. If the slave owns the token, the master monitors the low
transition of the HS before reading the bus.

In master or slave A mode, the Smart Transceiver HS line is pin IO10. In slave
B mode, the Smart Transceiver HS bit is monitored on IO0 which corresponds to
the least significant data bit of the status register.

Transferring Data
The data transfer operation between the master and the slave is accomplished
through the use of a virtual write token-passing protocol. The write token is
passed alternatively between the master and the slave on the bus in an infinite
ping-pong fashion. The owner of the token has the option of writing a series of
data bytes, or alternatively, passing the write token without any data. Figure
24 illustrates the sequence of operations for this token passing protocol.

66 Parallel I/O Models

Neuron Chip
Or

Smart Transceiver

Pass Token CMP_RESYNCWrite Data

Pass Token CMP_ACK
RESYNCWrite Data

Master Has
Token

Slave Has
Token

MASTER

SLAVE

Figure 24. Handshake Protocol Sequence between Master and Slave

When in possession of the write token, the device (Neuron Chip, Smart
Transceiver, or a host processor) can transfer up to 255 bytes of data. The stream
of data bytes is preceded by the command and length bytes. The token holder
keeps possession of the token until all data bytes have been written, after which
the token is passed to the attached device.

The same process can now be repeated by the other side or, alternatively, the
token can be passed back without any data.

Resynchronization Procedure
The procedure shown in Table 24 through Table 28 applies to master/slave A
and master/slave B configuration. The master initiates the resynchronization
with a RESYNC (0x5A) command, and the slave acknowledges with an
ACKSYNC (0x07) command. If the slave does not respond, the master continues
to send the RESYNC command until the slave responds correctly.

Table 24. Resynchronization

Step Master Slave Comment

1 (Owns Token)

2 Write RESYNC Master initiates resynchronization
(0x5A)

I/O Model Reference 67

Step Master Slave Comment

3 Read RESYNC

4 Write EOM End of message (EOM=0x00)

5 Process EOM

6 Write
ACKSYNC

Slave acknowledges resynching (0x07)

7 Read
ACKSYNC

8 Write EOM

9 Process EOM Master owns token when reset

10 (Owns Token)

Table 25. Master Writes Buffer to Slave: R/W~=0

Step Master Slave Comment

1 (Owns Token)

2 Write XFER Master has data to write
(XFER=0x01)

3 Read XFER

4 Write (length) Length=number of bytes of data

5 Read (length)

6 Write (data_0) Master begins data transfer to slave

7 Read (data_0)

8 Repeat steps 6 and 7 length times

9 Write (data_n) Last byte of data to be transferred

10 Read (data_n)

11 Write EOM End of data transfer (EOM=0x00)

12 Process EOM Exchange token

13 (Owns Token)

68 Parallel I/O Models

Table 26. Slave Writes Buffer to Master: R/W~=1

Step Master Slave Comment

1 (Owns Token)

2 Write XFER Slave has data to write (XFER=0x01)

3 Read XFER

4 Write (length) Length=number of bytes of data

5 Read (length)

6 Write (data_0) Salve begins data transfer to master

7 Read (data_0)

8 Repeat steps 6 and 7 length times

9 Write (data_n) Last byte of data to be transferred

10 Read (data_n)

11 Write EOM End of data transfer (EOM=0x00)

12 Process EOM Exchange token

13 (Owns Token)

Table 27. Master Passes Token to Slave

Step Master Slave Comment

1 (Owns Token)

2 Write NULL Master has no data to send to slave

3 Read NULL NULL=0x00

4 Write EOM End of data transfer (EOM=0x00)

5 Process EOM Exchange token

6 (Owns Token)

I/O Model Reference 69

Table 28. Slave Passes Token to Master

Step Master Slave Comment

1 (Owns Token)

2 Write NULL Slave has no data to send to master

3 Read NULL NULL=0x00

4 Write EOM End of data transfer (EOM=0x00)

5 Process EOM Exchange token

6 (Owns Token)

Using the IRQ Signal
The Series 5000 and Series 6000 devices can use the IRQ pin as an indication
that the network is ready, either for uplink or for downlink. The Neuron C
application in the FT 5000 Smart Transceiver, Neuron 5000 Processor, FT 6000
Smart Transceiver or Neuron 6000 Processor would assert the IRQ pin high to
cause an interrupt for the host device.

A downlink ready interrupt would allow the Series 5000 or Series 6000 device to
inform the host when it has read the first byte of a transfer. This interrupt
would account for the latency of the parallel interface, that is, between a host
write for a downlink transfer and the Series 5000 or Series 6000 device read for
the transfer. This latency would be on the order of 110 microseconds (for a 10
MHz system clock), but it could be longer if the Series 5000 or Series 6000 device
is busy processing an incoming network frame. The host could initiate a downlink
transfer by writing only the length byte; it then could let the interrupt service
routine handle the rest of the transfer.

An uplink ready interrupt would provide an indication from the Series 5000 or
Series 6000 device that uplink traffic needs to be transferred. The IRQ pin would
be asserted only when the Series 5000 or Series 6000 device does not own the
write token.

The IRQ pin would be deasserted during downlink activity.

Although there are two interrupt cases, there is only a single interrupt request
(IRQ) line. The interrupt type would be determined by the host based on the
state of the Series 5000 or Series 6000 device and token ownership.

Programming Considerations
Multiple slave B devices can be connected to a single bus. The difference between
slave A and slave B concerns the use of one of the three control signals (see the
description of the slave, slave_b, and master keywords).

No other I/O objects can be declared on pins IO_0 through IO_10 when the
parallel I/O object is being used.

70 Parallel I/O Models

Neuron C Resources
In order to use the parallel I/O model of the Neuron Chip or Smart Transceiver,
the io_in() and io_out() functions require a pointer to the
parallel_io_interface structure:

struct parallel_io_interface {
 unsigned length; // length of data field
 unsigned data[MAXLENGTH]; // data field
} piofc;

The parallel_io_interface structure must be declared in the application
program, with an appropriate definition of MAXLENGTH to signify the largest
expected buffer size for any data transfer, up to a maximum value of 255.

For the io_out() function, length is the number of bytes to be transferred out
and is set by the application program. For the io_in() function, length is the
number of bytes to be transferred in. If the incoming length is larger than
length, then the incoming data stream is flushed, and length is set to zero.
Otherwise, length is set to the number of data bytes read. The length field must
be set before calling the io_in() or io_out() function. The maximum value for
the length field is 255.

The following functions and events are provided specifically for use with the
parallel I/O object:

io_in_ready

This event becomes TRUE whenever a message arrives on the parallel bus
that must be read. The application must then call the io_in() function to
retrieve the data.

io_out_request()

This function is used to request an io_out_ready indication for a parallel I/O
object. It is up to the application to buffer the data until the io_out_ready
event is TRUE. This function acquires the token for the parallel I/O
interface.

io_out_ready

This event becomes TRUE whenever the parallel bus is in a state where it
can be written to and the io_out_request() function was previously called.
The application must then call the io_out() function to write the data to the
parallel port. This function relinquishes the token for the parallel I/O
interface.

Neuron C applications can also use the parallel bus in a unidirectional manner
(that is, applications don't need to use both the when(io_in_ready) or
when(io_out_ready) clauses if they only need to use one).

See Performing I/O: Functions and Events, the Neuron C Programmer's Guide,
and the Parallel I/O Interface to the Neuron Chip engineering bulletin (part no.
005-0021-01) for additional information.

To prevent contention for the data bus, a virtual write token is passed back and
forth between the master device and the slave device (in both slave A and slave B
modes). The master device has the write token initially after a reset. The
parallel I/O object automatically manages the write token; no specific application
code is needed.

I/O Model Reference 71

Syntax
IO_0 parallel slave | slave_b | master io-object-name;

IO_0

Parallel input/output requires eleven pins and must specify pin IO_0. Table
29 shows how the pins are used.

Table 29. Pins for Parallel I/O Object

Pin Master Slave A Slave B

IO_0 thru IO_7 Data Bus Data Bus Data Bus

IO_8 Chip select
output

Chip select
input

Chip select
input

IO_9 RD/~WR output RD/~WR input RD/~WR input

IO_10 HANDSHAKE
input

HANDSHAKE
input

A0 input

IO_11 N/A N/A IRQ

Note: IO_11 as IRQ is only available for Series 5000 and Series 6000
devices.

slave | slave_b | master

Specifies slave A, slave B, or master mode. For master and slave A modes,
IO_10 is a handshake signal. For slave B mode, IO_10 becomes an address
line input, A0, and the handshake signal appears on the data bus on pin
IO_0 when A0=1. When A0=0, the data appears on the data bus. This mode
is used to allow a Neuron Chip or Smart Transceiver to reside on a
microprocessor bus with the data at one address location and the handshake
signal at another.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
struct parallel_io_interface {
 unsigned int length;
 unsigned int data[data-size];
} piofc;

io_in(io-object-name, &piofc);

io_request(io-object-name);

io_out(io-object-name, &piofc);

72 Parallel I/O Models

Example
The following example shows how to use the io_in_ready and io_out_ready
events, in conjunction with the io_out_request() function, to handle parallel I/O
processing.

#define DATA_SIZE 255
struct parallel_io_interface {
 unsigned int length; // length of data field
 unsigned int data [DATA_SIZE]; // data field
} piofc;
IO_0 parallel slave slaveBus;

// ready to input data
when (io_in_ready(slaveBus)) {
 piofc.length = DATA_SIZE; // number of bytes to read
 io_in(slaveBus, &piofc); // get 10 bytes of incoming data
}

// ready to output data
when (io_out_ready(slaveBus)) {
 piofc.length = 10; // number of bytes to write
 io_out(slaveBus, &piofc); // output 10 bytes from buffer
}

// user defined event
when (...) {
 io_out_request(slaveBus); // post the write request
}

I/O Model Reference 73

4

Serial I/O Models

This chapter describes serial input/output models. Serial
I/O objects are used for transferring data serially over a pin
or a set of pins. Only one type of serial I/O model can be
used within a single Neuron Chip or Smart Transceiver.
Both the input and output versions of the serial type can
coexist within a single Neuron Chip or Smart Transceiver.

I/O Model Reference 75

Bitshift Input/Output
The bitshift I/O model is used to shift a data word of up to 16 bits into or out of
the Neuron Chip or Smart Transceiver. Data is clocked in and out by an
internally generated clock. This model is useful for transferring data to external
logic that uses shift registers.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to the Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
Pairs of adjacent pins can be configured as serial input or output lines. The first
pin of the pair can be IO0-IO6, IO8, or IO9, and is used for the clock (driven by
the Smart Transceiver). The adjacent higher-numbered I/O pin is then used for
up to 16 bits of serial data. The bit rate can be configured as 1 kbps, 10 kbps, or
15 kbps for a Series 3100 device with a 10 MHz input clock; the bit rate can be
configured as 16 kbps, 160 kbps, or 240 kbps for a Series 5000 and Series 6000
device with an 80 MHz input clock. The bit rate scales proportionally to the
input clock rate. The active clock edge can be specified as either rising or falling.
This function suspends application processing until the operation is complete.

For bitshift input, the clock output is deasserted (to the inactive level) at the
same time as the start of the first bit of data. For bitshift output, the clock
output is initially inactive prior to the first bit of data (unless overridden by a bit
output overlay).

Figure 26 and Figure 27 show the bitshift input and output latency times,
respectively. These are the times from the call to the io_in() or io_out()
function, until a value is returned. The direction of bit ports can be changed
between input and output dynamically by using the io_set_direction() function.

BITSHIFT OUTPUT

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

Clk

Data
Clk

Clk
Data
Clk
Data

Data
Clk
Data

BITSHIFT INPUT

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

Clk

Data
Clk

Clk
Data
Clk
Data

Data
Clk
Data

IO11 IO11

Figure 25. Bitshift I/O Examples

76 Serial I/O Models

DATA IN

Active clock edge assumed to be positive in the above diagram.

OUTPUT
CLOCK

INPUT SAMPLED

END OF
io_in()

START OF
io_in()

thold

t fin t tae

t ret

taet

Figure 26. Bitshift Input Timing

Table 30. Bitshift Input Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to first edge 156.6 µs

tret Return from function 5.4 µs

thold Active clock edge to sampling of input
data
 15 kbps bit rate
 10 kbps bit rate
 1 kbps bit rate

9 µs
40.8 µs
938.2 µs

taet Active clock edge to next clock
transition
 15 kbps bit rate
 10 kbps bit rate
 1 kbps bit rate

31.8 µs
63.6 µs
961 µs

ttae Clock transition to next active clock
edge
 15 kbps bit rate
 10 kbps bit rate
 1 kbps bit rate

14.4 µs
14.4 µs
14.4 µs

f Clock frequency = 1/(taet + ttae)
 15 kbps bit rate
 10 kbps bit rate
 1 kbps bit rate

21.6 kHz
12.8 kHz
1.03 kHz

I/O Model Reference 77

DATA OUT

Active clock edge assumed to be positive in the above diagram.

OUTPUT
CLOCK

END OF
io_in()

START OF
io_in()

tsetup

tfin taet ttae

tret

Figure 27. Bitshift Output Timing

Table 31. Bitshift Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to first data out stable
 16-bit shift count
 1-bit shift count

185.3 µs
337.6 µs

tret Return from function 10.8 µs

tsetup Data out stable to active clock edge
 15 kbps bit rate
 10 kbps bit rate
 1 kbps bit rate

10.8 µs
10.8 µs
10.8 µs

taet Active clock edge to next clock
transition
 15 kbps bit rate
 10 kbps bit rate
 1 kbps bit rate

10.2 µs
42 µs
939.5 µs

ttae Clock transition to next active clock
edge
 15 kbps bit rate
 10 kbps bit rate
 1 kbps bit rate

34.8 µs
34.8 µs
34.8 µs

f Clock frequency = 1/(taet + ttae)
 15 kbps bit rate
 10 kbps bit rate
 1 kbps bit rate

22 kHz
13 kHz
1.02 kHz

78 Serial I/O Models

Programming Considerations
For bitshift input/output, the data type of the return value for io_in(), and the
data type of the output value for io_out(), is an unsigned long.

When using multiple serial I/O devices that have differing bit rates, you must use
the following compiler directive: #pragma enable_multiple_baud. This
pragma must appear prior to the use of any I/O function (such as io_in() or
io_out()).

Figure 28. Bitshift Output

Syntax
pin input bitshift [numbits (const-expr)] [clockedge (+|-)]
 [kbaud (const-expr)] io-object-name;

pin output bitshift [numbits (const-expr)] [clockedge (+|-)]
 [kbaud (const-expr)] io-object-name [=initial-output-level];

pin

An I/O pin. Bitshift input/output requires adjacent pins. The Clock pin is the
pin specified, and the Data pin is the adjacent pin. The pin specification
denotes the lower-numbered pin of the pair and can be IO_0 through IO_6,
IO_8, or IO_9.

numbits (const-expr)

Specifies the number of bits to be shifted in or out. The const-expr expression
can evaluate to any number from 1 to 31. The default is 16.

Data is shifted in and out with the most significant bit of data first. For the
io_in() function, only the last 16 bits shifted in are returned. For the
io_out() function, after 16 bits, zeros are shifted out.

You can also specify the number of bits to be shifted in the io_in() or
io_out() call. This number temporarily overrides the number specified in
the device declaration, for that one call only.

clockedge (+|-)

For inputs, this option specifies whether the data is read on the positive-
going or negative-going edge of the clock. For outputs, it specifies whether
the data is stable on the positive-going or negative-going edge of the clock.
The default value is [+].

I/O Model Reference 79

kbaud (const-expr)

Specifies the bit rate. The expression const-expr can be 1, 10, or 15. The
default is 15. The firmware uses this value as a multiplier based on the
Series 3100 input clock, or the Series 5000 ore Series 6000 system clock. For
example, for a Series 3100 device at 10 MHz, kbaud(15) yields 15 kbps; for a
Series 5000 or Series 6000 device at 10 MHz, kbaud(15) yields 30 kbps. The
bit rate scales proportionally with the input or system clock.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

initial-output-level

A constant expression, in ANSI C format for initializers, used to set the state
of the clock pin at initialization. The initial state can be 0 or 1; this applies to
the clock pin only. The default is 0.

Usage
unsigned long input-value;

unsigned long output-value;

input-value = io_in(input-object [, numbits]);
io_out(output-object, output-value[, numbits]);

Bitshift Input Example
IO_6 input bitshift numbits(8) ioShiftregister;
unsigned long data;
...

when (...) {
 data = io_in(ioShiftregister);
}

Bitshift Output Example
IO_8 output bitshift numbits(5) clockedge(+) ioAdcControl;
...

when (...) {
 io_out(ioAdcControl, 0b10010UL);
}

I2C Input/Output
The I2C I/O model type is used to interface a Neuron Chip or Smart Transceiver
to any device that uses the Inter-Integrated Circuit (I2C) bus protocol developed
by Philips Semiconductors (now NXP® Semiconductors). See the Bitshift,
Neurowire, SCI, SPI, or Touch I/O models for alternate forms of serial I/O.

80 Serial I/O Models

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
The Smart Transceiver is always the master, with IO8 as the serial clock (SCL)
signal and IO9 the serial data (SDA) signal. Alternatively, IO0 can be used as
the serial clock (SCL) and IO1 as the serial data (SDA). These I/O lines are
operated in the open-drain mode in order to accommodate the special
requirements of the I2C protocol. With the exception of two pull-up resistors, no
additional external components are necessary for interfacing a Smart
Transceiver to an I2C device.

Up to 255 bytes of data can be transferred at a time. At the start of all transfers,
a right-justified 7-bit I2C address argument is sent out on the bus immediately
after the I2C “start condition.” For more information about this protocol, refer to
UM10204: I2C-bus specification and user manual from NXP Semiconductors.

Figure 29 shows the I2C I/O latency times. These are the times from the call to
the io_in() or io_out() function, until a value is returned. The direction of bit
ports can be changed between input and output dynamically by using the
io_set_direction() function.

TIME

SCL

SDA

START OF
io_in() OR

io_out()

INPUT DATA
SAMPLED

SCL

SDA

TIME

END OF
io_in() OR

io_out()
BIT TRANSFER TIMING START AND STOP TIMING

t start
t cla

tf

tstop

tret

tdch t cld
t chcl

t chd
t clcht dcl

IO11
IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

Clock
Serial Data

Clock
Serial Data

Figure 29. I2C I/O and Timing

I/O Model Reference 81

Table 32. I2C I/O Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

tf I/O call to start condition
io_in()
io_out()

—
54.6 µs
43.4 µs

—

tstart End of start condition
io_in()
io_out()

5.4 µs
5.4 µs

— —

tcla End of start to start of address
io_in()
io_out()

24.0 µs
24.0 µs

— —

tcld SCL low to data for io_out() 24.6 µs — —

tdch Data to SCL high for io_out() 7.2 µs — —

tchcl Clock high to clock low for io_out() 12.6 µs — —

tchd SCL high to data sampling for io_in() 13.2 µs — —

tdcl Data sample to SCL low for io_in() 7.2 µs — —

tclch Clock low to clock high for io_in() 24.0 µs — —

tstop Clock high to data
io_in()
io_out()

12.6 µs
12.6 µs

— —

tret SDA high to return from function
io_in()
io_out()

— —
4.2 µs
4.2 µs

Programming Considerations
The i2c I/O object can be declared with pin IO_8 as the serial clock (SCL) line,
and pin IO_9 as the serial data (SDA) line, or it can be declared with pin IO_0 as
the serial clock line, and pin IO_1 as the serial data line. The Neuron Chip or
Smart Transceiver acts as a master only. Two external pull-ups are required,
and the interface is connected directly to the I/O pins. These I/O pins are
operated as open-drain devices in order to support the interface.

An i2c I/O object declared on pin IO_8 can be declared with the
use_stop_condition option keyword. This option allows for combined format
data transfers. For example, you can address and write to a peripheral device
with one or more io_out() calls with stop set to FALSE, followed by a call to
io_out() with stop set to TRUE to finish the transfer with the STOP condition.

82 Serial I/O Models

For all transfers, an I2C device address argument is required. This byte must be
the right-justified 7-bit I2C device address. Up to 255 bytes of data can be
transferred at a time. The address is written to the bus at the start of any
transfer, immediately following the I2C bus start condition. A count argument is
also required; this controls how many data bytes are to be written or read.

For I2C input/output, io_in() and io_out() return a 0 or 1 value reflecting the
fail (0) or pass (1) status of the transfer. A failed status indicates that the
addressed device did not acknowledge positively on the bus, or that the SCL was
low at the start of the transfer.

For more information on this protocol and the devices that it supports, see
documentation for Philips Semiconductors Microcontroller Products, under I2C
bus descriptions. This I/O model implementation was modified for Neuron C
Version 2.1. To use the previous implementation (in case of modification to
existing applications where the previous implementation is required for memory
considerations) use the #pragma codegen use_i2c_version_1 compiler
directive. See the Neuron C Reference Guide for information about this pragma.
If you use the Version 1 i2c model, you must use pin IO_8 and you cannot use
any modifiers.

Syntax
pin i2c [use_stop_condition] [__slow] [__fast] io-object-name;

pin

Specify pin IO_0 or IO_8. The i2c model requires pins IO_0 and IO_1, or
IO_8 and IO_9.

use_stop_condition

Optionally specifies that data transfers should be repeated until a stop
condition is reached. A stop condition is defined as a change in the state of
the data line (SDA), from LOW to HIGH, while the clock line (SCL) is HIGH.

__slow

Optionally specifies that the I2C bus should use the standard mode of 100
kbps. This mode is the default if no mode is specified. Mutually exclusive
with __fast.

__fast

Optionally specifies that the I2C bus should use the fast mode of 400 kbps.
Mutually exclusive with __slow.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
boolean return-value;
unsigned int data-buffer[buffer-size];
unsigned int dev-address, count;

I/O Model Reference 83

// i2c I/O object without the stop condition specified (stop assumed)
return-value = io_in(io-object-name, data-buffer, dev-address, count);
return-value = io_out(io-object-name, data-buffer, dev-address, count);

// i2c I/O object with the stop condition specified
return-value = io_in(io-object-name, data-buffer, dev-address, count, stop);
return-value = io_out(io-object-name, data-buffer, dev-address, count, stop);

Example
#define AD_ADDR 0x48 // address of the A/D converter
IO_8 i2c ioI2C;
unsigned int buffer[5];
unsigned int control;
boolean result;
. . .

when (...) {
 // Read the A/D converter.
 // First, write a control word byte.
 control = 0x04;
 result = io_out(ioI2C, &control, AD_ADDR, 1);

 // Next, perform a 5-byte read of the A/D converter.
 result = io_in(ioI2C, buffer, AD_ADDR, 5);
}

Magcard Bitstream Input
The magcard_bitstream I/O model provides the ability to read un-processed
serial data streams from most magnetic stripe card readers in real time. This
model can be used to read magnetic card data in either direction, forward or
reverse, because the data does not need to follow any specific format.

This I/O model can read up to 65 535 bits of data, stored in 8192 bytes of data,
from a magnetic stripe card reader.

This model applies to 3120 Power Line Smart Transceivers, to 3150 Power Line
Smart Transceivers, to 3170 Power Line Smart Transceivers, to Series 5000
Neuron Processors and Smart Transceivers, and to Series 6000 Neuron
Processors and Smart Transceivers.

Hardware Considerations
Figure 30 shows the magcard bitstream input.

84 Serial I/O Models

Serial Data
Clock

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

Timeout

IO11
Figure 30. Magcard Bitstream Input

Programming Considerations
The data item unit is a single bit, and the maxbits and count values indicate the
number of bits that can be read, or have been read, respectively. In case of a
timeout, the count will be less than maxbits.

Syntax
IO_8 [input] magcard_bitstream [timeout (pin-nbr)] [clockedge (+|-)]
 [invert] io-object-name;

IO_8

Specifies pin IO_8. The magcard bitstream input requires both pins IO_8
and IO_9. Pin IO_8 is the negative-going clock, IO_9 is the serial data input.

timeout(pin-nbr)

Optionally specifies the timeout signal pin, in the range of IO_0 to IO_7. The
Neuron Chip or Smart Transceiver checks the logic level at this pin whenever
it is waiting for either rising or falling edges of the clock. If a high logic level
is sensed on the timeout pin, the transfer is terminated.

clockedge (+|-)

Specifies the polarity of the clock input signal. The default is clockedge (-).

invert

Specifies that the data input signal is inverted. The default is no inversion.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned long count, maxbits;
unsigned short input-buffer[buffer-size];

I/O Model Reference 85

count = io_in(io-object-name, input-buffer, maxbits);

Example
IO_8 magcard_bitstream timeout(IO_7) ioMagcard;
const unsigned long maxbits = 64*8;
unsigned long count;
unsigned short input_buffer[64];

when (...) {
 count = io_in(ioMagcard, input_buffer, maxbits);
}

Magcard Input
The magcard I/O model is used to transfer synchronous serial data from an ISO
7811 Track 2 magnetic stripe card reader in real time.

See the magtrack1 I/O model for track 1 compatible input, and the
magcard_bitstream input model for a general-purpose magnetic card input.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
The data is presented as a data signal input on pin IO9, and a clock, or a data
strobe, signal input on pin IO8. The data on pin IO9 is clocked on or just
following the falling (negative) edge of the clock signal on IO8, with the least-
significant bit (LSB) first. In addition, any one of the pins IO0 – IO7 can be used
as a timeout pin to prevent lockup in case of abnormal abort of the input bit
stream during the input process.

Up to 40 characters can be read at one time. Both the parity and the
Longitudinal Redundancy Check (LRC) are checked by the Neuron Chip or Smart
Transceiver.

86 Serial I/O Models

Serial Data
Clock

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

CLOCK
(IO8)

TIMEOUT

DATA
(IO9)

TIME

START OF
io_in()

END OF
io_in()

Timeout

thold

IO11

t high
tsetup

tclk
t low twto

tret

ttrettfin

Figure 31. Magcard Input and Timing

Table 33. Magcard Input Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

tfin I/O call to first clock input — 45.0 µs —

thold Data hold 0 µs — —

tsetup Data setup 0 µs — —

tlow Clock low width 60 µs — —

thigh Clock high width 60 µs — —

twto Width of timeout pulse 60 µs — —

tclk Clock period 120 µs — —

ttret Return from timeout 21.6 µs — 81.6 µs

tret Return from function — — 301.8 µs

I/O Model Reference 87

Programming Considerations
The magcard input model reads track 2 in the forward direction only (the
magcard_bitstream input model can read in either direction). The data is
presented as a data signal input on pin IO_9, and a clock, or data strobe, signal
input on pin IO_8. The data on pin IO_9 is clocked on or just following the
falling edge of the clock signal on IO_8, with the least significant bit first.

Data is recognized as a series of 4-bit characters plus an odd parity bit per
character. This process begins when the start sentinel (0x0B) is recognized, and
continues until the end sentinel (0x0F) is recognized. No more than 40
characters, including the two sentinels, will be read. The data is stored as
packed binary-coded decimal (BCD) digits in the buffer space pointed to by the
buffer pointer argument to the io_in() function with the parity bit stripped, and
includes the start and end sentinel characters. This buffer should be 20 bytes
long. The data is stored with the first character in the most significant nibble of
the first byte in the buffer.

For magcard input, the io_in() function requires a pointer to a data buffer, into
which the series of BCD pairs are stored. The io_in() function returns a signed
int that contains the actual number of characters stored.

The parity of each character is checked. The longitudinal redundancy check
(LRC) character, which appears just after the end sentinel, is also checked. If
either of these tests fail, if more than 40 characters are being clocked in, or if the
process aborts due to an input pin event, the io_in() function returns the value
(-1). The LRC character is not stored.

The magcard object optionally uses one of I/O pins IO_0 through IO_7 as a
timeout/abort pin. Use of this feature is suggested because the io_in() function
updates the watchdog timer during clock wait states, and could result in a lockup
if the card were to stop moving in the middle of the transfer process. If a high
level is detected on the I/O timeout pin, the io_in() function aborts. This input
can be a one-shot timer counter output, an RC circuit, or a ~Data_valid signal
from the card reader.

A Series 3100 Neuron Chip or Smart Transceiver with a 10 MHz input clock rate
can process a bit rate of up to 8334 bps (at a bit density of 75 bits per inch, this is
a card speed of 111 inches per second). Most magnetic card stripes contain a 15-
bit sequence of zero data at the start of the card, allowing time for the application
to start the card reading function. At 8334 bps, this period is about 1.8 ms. If
the scheduler latency is greater than the 1.8 ms value, for example, due to
application processing in another when task, the io_in() function can miss the
front end of the data stream.

Syntax
IO_8 [input] magcard [timeout (pin-nbr)] [clockedge (+|-)] [invert] io-object-
name;

IO_8

Specifies pin IO_8. Magcard input requires both pins IO_8 and IO_9. Pin
IO_8 is the negative-going clock, IO_9 is the serial data input.

88 Serial I/O Models

timeout(pin-nbr)

Optionally specifies the timeout signal pin, in the range of IO_0 to IO_7. The
Neuron Chip or Smart Transceiver checks the logic level at this pin whenever
it is waiting for either rising or falling edges of the clock. If a high logic level
is sensed on the timeout pin, the transfer is terminated.

clockedge (+|-)

Specifies the polarity of the clock input signal. The default is clockedge (-).

invert

Specifies that the data input signal is inverted. The default is no inversion.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned int count, input-buffer[buffer-size];

count = io_in(io-object-name, input-buffer);

Example
// In this example I/O pin IO_7 is connected to a
// ~Data_valid signal which is asserted low as long
// as a valid clock input is being generated by the
// reader device.

IO_8 input magcard timeout(IO_7) ioCardData;

// This next object allows monitoring of
// the ~Data_valid input signal.
IO_7 input bit ioDataValid;

int nibbles;
unsigned int buffer[20];
. . .

when (io_changes(ioDataValid) to 0) {
 nibbles = io_in(ioCardData, buffer);
}

Magtrack1 Input
The magtrack1 I/O model is used to transfer synchronous serial data from an
ISO 3554 track 1 magnetic stripe card reader.

See the magcard input model for track 2 compatible input, and the
magcard_bitstream input model for a general-purpose magnetic card input.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

I/O Model Reference 89

Hardware Considerations
The data input is on pin IO9, and the clock, or data strobe, is presented as input
on pin IO8. The data on pin IO9 is clocked in just following the falling edge of the
clock signal on IO7, with the least-sigificant bit (LSB) first.

Serial Data
Clock

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

Timeout

CLOCK
(IO8)

SDA
(IO9)

TIMEOUT

START OF
io_in()

t hold

END OF
io_in()

t high

TIME

IO11

tsetup

t low

t clk

twto

tret

ttrettfin

Figure 32. Magtrack1 Input and Timing

Table 34. Magtrack1 Input Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

tfin I/O call to first clock input — 45.0 µs —

thold Data hold tlow — tclk

tsetup Data setup 0 µs — —

tlow Clock low width 31 µs — —

thigh Clock high width 31 µs — —

twto Width of timeout pulse 60 µs — —

tclk Clock period 138 µs — —

ttret Return from timeout 21.6 µs — 81.6 µs

tret Return from function — — 301.8 µs

90 Serial I/O Models

The minimum period for the entire bit cycle (tclk) is greater than the sum of tlow
and thigh. The tsetup and thold times should be such that the data is stable for the
duration of tlow.

The magtrack1 input object optionally uses one of the I/O pins IO0 – IO7 as a
timeout/abort pin. Use of this feature is suggested because the io_in() function
updates the watchdog timer during clock wait states, and could result in a lockup
if the card were to stop moving in the middle of the transfer process. If a logic 1
level is detected on the I/O timeout pin, the io_in() function aborts. This input
can be a oneshot timer counter output, an R/C circuit, or a DATA_VALID~ signal
from the card reader.

A PL Smart Transceiver with a clock rate of 10 MHz can process an incoming bit
rate of up to 7246 bits/second when the strobe signal has a 1/3 duty cycle (thigh =
46 µs, tlow = 92 µs). At a bit density of 210 bits/inch, this translates to a card
speed of 34.5 inches/second. The bit rate processing capability scales with PL
Smart Transceiver input clock rate. Most magnetic card stripes contain a series
of zero data at the start of the card, allowing time for the application to start the
card reading function.

Programming Considerations
The data is presented as a data signal input on pin IO_9, and a clock, or data
strobe, signal input on pin IO_8. The data on pin IO_9 is clocked on or just
following the falling edge of the signal on IO_8, least significant bit first.

Data is recognized in the International Air Transport Association (IATA) format
as a series of 6-bit characters plus an odd parity bit per character. This process
begins when the start sentinel (0x05) is recognized, and continues until the end
sentinel (0x0F) is recognized. No more than 79 characters, including the two
sentinels and the longitudinal redundancy check (LRC) character, are read. The
data is stored in the buffer pointed to by the input-buffer pointer argument to the
io_in() function. The data is stored without the parity bit, and the data includes
the start and end sentinel characters. This buffer should be 78 bytes long.

For magtrack1 input, the io_in() function requires a pointer to a data buffer,
into which the series of 6-bit characters are stored. The io_in() function returns
a signed int that contains the actual number of bytes stored.

The parity of each character is checked. The LRC character, which appears just
after the end sentinel, is also checked. If either of these tests fail, if more than 79
characters are being clocked in, or if the process aborts due to an input pin event
(see below), the io_in() function returns the value (-1) as an error indication.
The LRC character is not stored.

The magtrack1 object optionally uses one of I/O pins IO_0 through IO_7 as a
timeout or abort pin. Use of this feature is suggested because the io_in()
function updates the watchdog timer during clock wait states, and could result in
a lockup if the card were to stop moving in the middle of the transfer process. If
a high level is detected on the I/O timeout pin, the io_in() function aborts. This
input can be a one-shot timer counter output, an RC circuit, or a ~Data_valid
signal from the card reader.

I/O Model Reference 91

Syntax
IO_8 [input] magtrack1 [timeout (pin-nbr)] [clockedge (+|-)]
 [invert] io-object-name;

IO_8

Specifies pin IO_8. Magtrack1 input requires both pins IO_8 and IO_9. Pin
IO_8 is the negative-going clock, IO_9 is the serial data input.

timeout(pin-nbr)

Optionally specifies the timeout signal pin, in the range of IO_0 to IO_7. The
Neuron Chip or Smart Transceiver checks the logic level at this pin whenever
it is waiting for either rising or falling edges of the clock. If a high logic level
is sensed on the timeout pin, the transfer is terminated.

clockedge (+|-)

Specifies the polarity of the clock input signal. The default is clockedge (-).

invert

Specifies that the data input signal is inverted. The default is no inversion.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned int count;
unsigned int input-buffer[buffer-size];

count = io_in(io-object-name, input-buffer);

Example
// In this example I/O pin IO_7 is connected to a
// ~Data_valid signal which is asserted low as long
// as a valid clock input is being generated by the
// reader device.
IO_8 input magtrack1 timeout(IO_7) ioCardData;

// This next object allows monitoring of the
// ~Data_valid input signal.
IO_7 input bit ioDataValid;

int read;
unsigned int buffer[78];
. . .

when (io_changes(ioDataValid) to 0) {
 read = io_in(ioCardData, buffer);
}

92 Serial I/O Models

Neurowire Input/Output
The neurowire I/O model implements a full-duplex synchronous transfer of data
to a peripheral device, and is used to transfer data using a fully synchronous
serial data format.

Neurowire I/O is useful for external devices, such as analog-to-digital (A/D) and
digital-to-analog (D/A) converters, and display drivers incorporating serial
interfaces that conform with National Semiconductor’s Microwire™ serial
interface or Motorola's Serial Peripheral Interface (SPI).

Important: The Neurowire I/O model is provided for legacy support. Echelon
recommends using the hardware SPI I/O model instead of the legacy software I/O
model (see SPI Input/Output). The hardware SPI interface provides higher
performance with lower software overhead.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
The neurowire I/O model can operate as the master (drive a clock out) or as the
slave (accept a clock in). In both master and slave modes, up to 255 bits of data
can be transferred at a time. The Neurowire I/O suspends application processing
until the operation is completed.

Neurowire Master Mode
In Neurowire master mode, pin IO8 is the clock (driven by the Smart
Transceiver), IO9 is the serial data output, and IO10 is the serial data input.
Serial data is clocked out on pin IO9 at the same time as data is clocked in from
pin IO10. Data is clocked by the rising edge of the clock signal by default. In
addition, one or more of the IO0 – IO7 pins can be used as a chip select, allowing
multiple Neurowire devices to be connected on a three-wire bus. The clock rate
can be specified as 1 kbps, 10 kbps, or 20 kbps for a Series 3100 device with an
input clock rate of 10 MHz, or as 16 kbps, 160 kbps, and 320 kbps for a Series

Data In
Data Out

Clock

Timeout

Neurowire SLAVENeurowire MASTER

Data In
Data Out
Clock

Select

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

IO11IO11

Figure 33. Neurowire I/O

I/O Model Reference 93

5000 or Series 6000 device with a system clock rate of 80 MHz; these scale
proportionally with input clock.

DATA OUT

DATA IN

CLOCK

SELECT

CLOCK

END OF
io_in() OR io_out()

START OF
io_in() OR io_out()

INPUT SAMPLED

tsetup
t hold

t high tlow

tfin
tcs_clock tclock_cs

t ret

Figure 34. Neurowire Master Timing

Table 35. Neurowire Master Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to CS~ active 69.9 µs

tret Return from function 7.2 µs

thold Active clock edge to sampling of input
data
 20 kbps bit rate
 10 kbps bit rate
 1 kbps bit rate

11.4 µs
53.4 µs
960.6 µs

thigh Period, clock high (active clock edge = 1)
 20 kbps bit rate
 10 kbps bit rate
 1 kbps bit rate

25.8 µs
67.8 µs
975.0 µs

tlow Period, clock low (active clock edge = 1) 33.0 µs

tsetup Data output stable to active clock edge 5.4 µs

tcs clock Select active to first active clock edge 91.2 µs

94 Serial I/O Models

Symbol Description Typical at 10 MHz

tclock cs Last clock transition to select inactive 81.6 µs

f Clock frequency = 1/(thigh + tlow)
 20 kbps bit rate
 10 kbps bit rate
 1 kbps bit rate

17.0 kHz
9.92 kHz
992 Hz

Neurowire Slave Mode
In Neurowire slave mode, pin IO8 is the clock (driven by the external master),
IO9 is the serial data output, and IO10 is the serial data input. Serial data is
clocked out on pin IO9 at the same time as data is clocked in from pin IO10.
Data is clocked by the rising edge of the clock signal (default), which can be up to
18 kbps for a Series 3100 device at 10 MHz. This data rate scales with Smart
Transceiver input clock rate. One of the IO0 – IO7 pins can be designated as a
timeout pin. A logic 1 level on the timeout pin causes the Neurowire slave I/O
operation to be terminated before the specified number of bits has been
transferred. This prevents the Smart Transceiver watchdog timer from resetting
the chip in the event that fewer than the requested number of bits are
transferred by the external clock.

DATA OUT

DATA IN

INPUT
CLOCK

TIME

tret

START
OF

io_in()
END OF
io_in()

DATA
OUTPUT

CLOCK
AND DATA
SAMPLED

DATA
OUTPUT

tdocki

tcklodotcklotfin

CLOCK
SAMPLED

Figure 35. Neurowire Slave Timing

I/O Model Reference 95

Table 36. Neurowire Slave Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to data bit out 41.4 µs

tret Return from function 19.2 µs

tdocki Data out to input clock and data
sampled

4.8 µs

tcklo Data sampled to clock low sampled 24.0 µs

tcklodo Clock low sampled to data output 25.8 µs

f Clock frequency (max) 18.31 kHz

The algorithm for each bit of output/input for the Neurowire slave objects is
described below. In this description, the default active clock edge (positive) is
assumed; if the invert keyword is used, all clock levels stated should be reversed.

1. Set IO9 to the next output bit value.

2. Test pin IO8, the clock input, for a high level (to test for the rising edge of
the input clock). If the input clock is still low, sample the timeout event
pin and abort if high.

3. When the input clock is high, store the next data input bit as sampled on
pin IO10.

4. Test the input clock for a low input level (to test for the falling edge of the
input clock). If the input clock is still high, sample the timeout event pin
and abort if high.

5. When the input clock is low, return to step 1 if there are more bits to be
processed.

6. Else return the number of bits processed.

When either clock input test fails (that is, the clock is sampled before the next
transition), there is an additional timeout check time of 19.8 µs (wait for clock
high) or 19.2 µs (wait for clock low) added to that stage of the algorithm.

The chip select logic for the Neurowire slave can be handled by the user through
a separate bit input object, along with an appropriate handshaking algorithm
implemented by the user application program. To prevent unnecessary timeouts,
the setup and hold times of the chip select line, relative to the start and end of
the external clock, must be satisfied.

The timeout input pin can either be connected to an external timer or to an
output pin of the Smart Transceiver that is declared as a oneshot object.

Programming Considerations
The Neurowire I/O object can be configured in master mode or slave mode. The
primary difference between master and slave modes is that the clock signal is an

96 Serial I/O Models

output for the master mode, and an input for the slave mode. Data is shifted in
at the same time as data is shifted out.

In Neurowire master mode, one or more of the pins IO_0 through IO_7 can be
used as a chip select, allowing multiple Neurowire devices to be connected on a 3-
wire bus. The clock rate can be specified as 1, 10, or 20 kbps for a Series 3100
Neuron Chip or Smart Transceiver with an input clock rate of 10 MHz, or as 16,
160, or 320 kbps for a Series 5000 or Series 6000 device with an input clock of 80
MHz; these scale proportionally with input clock.

In Neurowire slave mode, one of the IO_0 through IO_7 pins can be designated
as a timeout pin. A logic one level on the timeout pin causes the Neurowire slave
I/O operation to be terminated before the specified number of bits has been
transferred. This prevents the Neuron Chip or Smart Transceiver watchdog
timer from resetting the chip in the event that fewer than the requested number
of bits are transferred by the external clock.

In both master and slave modes, up to 255 bits of data can be transferred at a
time. Neurowire I/O suspends application processing until the operation is
complete.

For Neurowire input/output, the io_in() and io_out() functions require a
pointer to the data buffer as the input_value and output_value. Because
Neurowire I/O is bidirectional, input and output occur at the same time, and
therefore, the calls io_in() and io_out() are equivalent. Use of either call
initiates a bidirectional transfer. Data is transmitted 8 bits at a time, most
significant bit first. The clock edge used to clock the data is specified by the
clockedge parameter. Data is also then transferred into the same buffer
pointed to by input_value or output_value, most significant bit first, following
the clock edge, overwriting the original contents of the buffer. If the number of
bits to be transferred is not a factor of eight as defined by count, the last byte
transferred into the buffer will contain undefined data bit values in the
remaining (unfilled) bit locations.

When using multiple serial or Neurowire I/O objects that have differing bit rates,
the following compiler directive must be used: #pragma
enable_multiple_baud. This pragma must appear prior to the use of any I/O
function, such as io_in() or io_out().

For examples on the use of the Neurowire input/output model, see the following
engineering bulletins: Driving a Seven Segment Display with the Neuron Chip
(part no. 005-0014-01) and Analog-to-Digital Conversion with the Neuron Chip
(part no. 005-0019-01).

Syntax
IO_8 neurowire master | slave [select (pin-nbr)] [timeout (pin-nbr)]
 [kbaud (const-expr)] [clockedge (+|-)] io-object-name;

IO_8

Specifies pin IO_8. The Neurowire object requires pins IO_8 through IO_10
and must specify IO_8. The select pin must be one of IO_0 through IO_7.
Pin IO_8 is the clock, driven by the Neuron Chip or Smart Transceiver (or
the external master). Pin IO_9 is serial data output and IO_10 is serial data
input. Up to 255 bits of data can be transferred at a time.

I/O Model Reference 97

master

Specifies that the Neuron Chip or Smart Transceiver provides the clock on
pin IO_8, which is configured as an output pin.

slave

Specifies that the Neuron Chip or Smart Transceiver senses the clock on pin
IO_8, which is configured as an input pin. The maximum input clock rate is
72 kbps, 50/50 duty cycle, for a Series 3100 device with a 40 MHz input clock.
This rate scales proportionally to the input clock.

select (pin-nbr)

Specifies the chip select pin for a Neurowire master. This keyword is
applicable to master mode only.

Before the data transfer, the chip select pin goes low; after the data transfer,
the select pin goes high. In addition to this declaration with the select
keyword, the chip select pin must also be declared with a bit output object,
unless there is no chip select pin in use. If no chip select pin is in use, the pin
declared as the select pin can also be declared as any of the allowable input
objects for that pin (for example, bit input).

timeout (pin-nbr)

Specifies the optional timeout signal pin for a Neurowire slave, in the range
of IO_0 to IO_7. This keyword is applicable to slave mode only.

When a timeout signal pin is used, the Neuron firmware checks the logic
level at this pin whenever it is waiting for either rising or falling edges of the
clock. If a logic level of 1 is sensed, the transfer is terminated. This allows
the use of an external timeout signal, or an internally generated timeout
signal, such as an inverted oneshot output object, to limit the duration of the
transfer. The watchdog timer is updated by this object with every falling
edge of the clock on pin IO_8.

98 Serial I/O Models

kbaud (const-expr)

Specifies the bit rate for a Neurowire master. The expression const-expr can
evaluate to 1, 10, or 20. The default is 20. The firmware uses this value as a
multiplier based on the Series 3100 input clock or Series 5000 and 6000
system clock. For example, for a Series 3100 device at 10 MHz, kbaud(10)
yields 10 kbps; for a Series 5000 or Series 6000 device at 10 MHz, kbaud(10)
yields 20 kbps. The bit rate scales proportionally with the input or system
clock.

Not used for a Neurowire slave.

clockedge (+|-)

Specifies the polarity of the clock signal. The default is a rising edge clock,
clockedge (+). Specifying clockedge (-) causes the data to be clocked at the
falling edge of the clock signal.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned int count, io-buffer[buffer-size];

io_out(io-object-name, io-buffer, count);

Example
IO_8 neurowire master select(IO_2) ioDisplay;
IO_2 output bit ioDisplaySelect = 1; // active low

// 8 bits=>display config reg
unsigned int config = 0x01;

// 24 bits=>display data reg
unsigned int data[3];

when (...) {
 io_out(ioDisplaySelect, 0);
 config = 0x01;
 io_out(ioDisplay, &config, 8);
 data[0] = 0x80;
 data[1] = 0xAB;
 data[2] = 0xCD;
 io_out(ioDisplay, data, 24);
 io_out(ioDisplaySelect, 1);
}

SCI (UART) Input/Output
You can use the hardware Serial Communications Interface (SCI) I/O model in
applications that you develop for Smart Transceivers or Neuron Chips with
integrated universal asynchronous receiver/transmitter (UART) hardware such
as the PL 3120 Smart Transceiver, PL 3150 Smart Transceiver, PL 3170 Smart

I/O Model Reference 99

Transceiver, Series 5000 device, or a Series 6000 device. SCI is an asynchronous
serial communication interface that is compatible with EIA-232 serial interfaces
(with the exception of voltage levels). External driver hardware can be used to
adjust the voltage levels. The SCI I/O model uses the UART hardware and
interrupt capability in designated Neuron Chips and Smart Transceivers. You
cannot use both hardware SCI and hardware SPI I/O in the same application.

The hardware SCI I/O object does not include any form of hardware flow control,
such as CTS/RTS flow control. If your application requires flow control, you must
implement some form of handshaking in your application.

This model applies to 3120 Power Line Smart Transceivers, 3150 Power Line
Smart Transceivers, 3170 Power Line Smart Transceivers, Series 5000 Neuron
Processors and Smart Transceivers, and Series 6000 Neuron Processors and
Smart Transceivers.

Hardware Considerations
Pins IO8 and IO10 can be configured as asynchronous SCI input and output
lines, respectively. The SCI object model supports the following bit rates for half-
duplex transfers: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and
115200 bits per second. The effective transmitted data rate for half-duplex
transfers corresponds to the bit rate at all speeds. There are no inter-byte idle
periods, and the bit rate for the input and output can not be independently
specified.

For full-duplex transfers, when data is being received and transmitted at the
same time, the effective bit rate will be 60% at 57600 bits per second, and 30% at
115200 bits per second. All other bit rates specified above for half-duplex
transfers are also supported for full-duplex transfers. No errors are introduced
(other than inter-byte spacing of transmitted data) under these conditions.

For 6.5536 MHz operation (Series 3100 power line Smart Transceivers), the bit
rates are limited to a maximum of 19200 bits per second for both half and full-
duplex transfers.

The frame format is one start bit, eight data bits, and one stop bit plus a parity
bit or two stop bits. Up to 255 output bytes and 255 input bytes can be
transferred at a time. If an input stop bit has the wrong polarity, the interface
attempts to recover and re-synchronize. However, a framing error is flagged in
the status register. If necessary, the application code can use other bit I/O pins
for flow-control handshaking.

This I/O model depends on interrupts to receive data at high speed. After
reception has been set up, control is returned to the application immediately, and
the application needs to poll the I/O model for reception completion. Reception
can be suspended and resumed by disabling and enabling interrupts. Turning off
interrupts might be required when going off-line, or for ensuring that other time-
critical application execution is not disturbed by background interrupts.
Additionally, SCI reception can also be aborted. Note that for Series 3100
devices, sustained reception at 115200 bps can starve the application processor.
Care must be given to allow the Smart Transceiver to process received bytes in a
timely manner and update the watchdog timer.

However, for the Series 3100 data transmission is not handled by interrupts;
control is returned to the application only after the last byte has been placed in
the transmission shift register. It is important to note that if previously set up,

100 Serial I/O Models

reception interrupts work even while transmission is taking place, thus providing
the full duplex interface.

DATA

ONE FRAME

87654321

SCI
INPUT

ST
AR

T

ST
AR

T

ST
O

P

SCI Output

SCI Input

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

IO11

Figure 36. SCI I/O and Timing

Programming Considerations
You can enable and disable SCI interrupts. For example, you can turn off
interrupts when going offline, or to assure that other time-critical application
functions are not disturbed by SCI interrupts. The SCI interrupt signal is used
by the firmware driver for the SCI I/O object. It is not directly accessible by the
application program.

The SCI interrupt is enabled by default. For Series 3100 devices, the io_idis()
function disables I/O interrupts. The function has the following signature:

void io_idis(void);

For Series 3100 devices, the io_iena() function enables I/O interrupts. The
function has the following signature:

void io_iena(void);

For Series 5000 and Series 6000 devices, you cannot disable the SCI interrupt.

To cancel an SCI operation currently in progress, use the sci_abort() function
rather than disabling interrupts.

When using hardware SCI I/O, the Neuron C application must specify the clock
frequency that drives the on-chip SCI UART. To specify this frequency, the I/O
clock rate, use the following compiler directive:

#pragma specify_io_clock clock-rate

The clock-rate value must be one of the following quoted strings: “20 MHz”, “10
MHz”, “6.5536 MHz”, “5 MHz”, or “2.5 MHz”. If the pragma-specified clock rate
does not match the Series 3100 physical clock frequency or the Series 5000 or
Series 6000 system clock rate, the Neuron Exporter component of the

I/O Model Reference 101

NodeBuilder FX Development Tool reports an error to prevent generation of an
incorrect communications bit rate.

If you do not specify the #pragma specify_io_clock compiler directive, the
compiler uses a default I/O clock rate of 10 MHz.

Syntax
IO_8 sci [baud (const-expr)] [twostopbits] [parity (parity-expr)] io-object-
name;

baud (const-expr)

Optionally specifies the serial bit rate through use of the enumeration values
found in the <io_types.h> include file. These enumeration values are:

• SCI_300

• SCI_600

• SCI_1200

• SCI_2400

• SCI_4800

• SCI_9600

• SCI_19200

• SCI_38400

• SCI_57600

• SCI_115200

The enumeration values select serial bit rates of 300, 600, 1200, 2400, 4800,
9600, 19200, 38400, 57600, and 115200, respectively. This clause is optional
in the declaration, but, if omitted, the io_set_baud() function must be used.

These bit rates are accurate for devices running at input or system clock
rates that are a multiple of 2.5 MHz. Devices using the 6.5536 MHz clock
rate can be inaccurate (off by more than 3%) at baud rates of 38400 and
higher because the bit rate divisor has been optimized for input clocks that
are a multiple of 2.5 MHz.

twostopbits

Set this option to use two stop bits. By default, there is one stop bit.

You cannot use two stop bits if you also specify even or odd parity. That is, to
use two stop bits, you must specify __parity(none).

This keyword is not supported for Series 5000 or Series 6000 devices.

__parity (parity-expr)

Specifies optional parity for the serial communications. A parity bit ensures
that the number of “1” bits between the start and stop bits is always even or
odd. Using parity allows you to perform error checking of the
communications channel.

102 Serial I/O Models

The parity-expr can be one of the following values: none, odd, or even.
__parity(none) is the default.

The use of parity is supported for the Series 5000 and Series 6000 devices.

 io-object-name

Specifies a name for the I/O object, in the ANSI C format for variable
identifiers.

You can call the io_set_baud(io-obj-name, rate) function to change the bit rate
for the SCI interface. The specified rate must be one of the enumeration values
listed above.

Usage
unsigned short buffer-size;
unsigned short buffer[buffer-size];

unsigned short io_in_request(io-object-name, buffer, buffer-size);
unsigned short io_out_request(io-object-name, buffer, buffer-size);

unsigned short io_in_ready(io-object-name);
unsigned short io_out_ready(io-object-name);
unsigned short sci_get_error(io-object-name);
void sci_abort(io-object-name);

The SCI I/O object uses pins IO_8 for RX data (in) and IO_10 for TX data (out).

The io_in() and io_out() functions are not available with the hardware SCI
model. Instead, use the io_in_request() and io_out_request() functions:

• For input, call io_in_request(io-object-name, void *buf, unsigned len)
to set up and initiate an input operation.

• For output, call io_out_request(io-object-name, void *buf, unsigned
len) to set up and initiate an output operation.

A call to either io_in_request() or io_out_request() clears any previous SCI
error code – see sci_get_error().

You can use the io_in_ready(io-object-name) and io_out_ready(io-object-name)
event functions to test the state of the SCI interface. You can use these events to
determine when the transmission is complete. The io_out_ready event returns
TRUE after the Neuron firmware loads the output data into the hardware
UART. The UART then continues transmitting the remaining data. The
io_in_ready event returns the number of bytes read in as an unsigned short,
so when this value matches the len parameter from the call to io_in_request()
the input operation is complete.

You can use the sci_get_error(io-object-name) function to test for SCI errors,
including parity errors. Calling the sci_get_error() function clears the SCI
error code after it is returned. This function returns a cumulative OR of the
following bits that reflect data errors:

0x02 Parity error

0x04 Framing error

0x08 Noise detected

0x10 Receive overrun detected

I/O Model Reference 103

You can use the sci_abort(io-object-name) function to terminate any reception in
progress. After an abort, the io_in_ready() function returns the number of
characters read up to the abort.

Example
#pragma specify_io_clock "10 MHz"
IO_8 sci twostopbits baud(SCI_2400) ioSci;
unsigned short buffer[20];

when (...) {
 io_set_baud(ioSci, SCI_38400); // Optional baud change
 io_out_request(ioSci, buffer, 20);
}

when (io_out_ready(ioSci)) {
 unsigned short sciError;
 sciError = sci_get_error(ioSci));
 if (sciError) {
 // Process SCI error
 ...
 }
 else {
 // Process end of SCI transmission
 ...
 }
}

Serial Input/Output
The serial I/O model is used to transfer data using an asynchronous serial data
format, such as EIA-232 (formerly RS-232) and Serial Communications Interface
(SCI) communications. This I/O model is useful for devices such as intelligent
LCD displays, terminals, modems, and computer serial interfaces. External
driver circuitry is required to adjust the signal voltage levels to be compatible to
the EIA-232 standard.

Important: The serial I/O model is provided for legacy support. Echelon
recommends using the SCI (UART) model instead of the legacy software serial
I/O model (see SCI (UART) Input/Output). The hardware UART provides higher
performance with lower software overhead.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
Pin IO8 can be configured as an asynchronous serial input line, and pin IO10 can
be configured as an asynchronous serial output line. The bit rates for input and
for output can be independently specified to be 600, 1200, 2400, or 4800
bits/second for a Series 3100 device with a 10 MHz input clock rate, or 4800,
9600, 19200, 38400, or 76800 bits/second for a Series 5000 or Series 6000 device
with an 80 MHz system clock. The data rate scales proportionally to the input
clock rate.

104 Serial I/O Models

Either a serial input or a serial output operation (but not both) can be in effect at
any one time. The interface is half-duplex only. This function suspends
application processing until the operation is completed. If the stop bit has the
wrong polarity (it should be a 1), the input operation is terminated with an error.
Parity is not supported for this model. The application code can use bit I/O pins
for flow control handshaking if required.

END OF
FRAME

DATA

ONE FRAME

START BIT
APPEARS

START
OF

io_in()

tfin

87654321

TIME

SERIAL
INPUT

S
TA

R
T

S
TA

R
T

S
TO

P

END OF
io_in()

tret

Serial Output

Serial Input

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

IO11

Figure 37. Serial Input and Timing

Table 37. Serial Input Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to input sample
Min (first sample)
Max (timeout)

67 µs
20 byte frame

tret Return from function 10 µs

The duration of this function call is a function of the number of data bits
transferred and the transmission bit rate. tfin (max) refers to the maximum
amount of time this function waits for a start bit to appear at the input. After
this time, the function returns a 0 as data. tfin (min) is the time to the first
sampling of the input pin. For example, the timeout period at 2400 bits/second is
(20 x 10 x 1/2400) + tfin (min).

I/O Model Reference 105

END OF
FRAME

DATA

ONE FRAME

START BIT
APPEARS

START OF
io_out()

tfout

87654321

TIME

SERIAL
OUTPUT

S
TA

R
T

S
TA

R
T

S
TO

P

END OF
io_in()

t ret

Figure 38. Serial Output Timing

Table 38. Serial Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfout Function call to start bit 79 µs

tret Return from function 10 µs

The duration of this function call is a function of the number of data bits
transferred and the transmission bit rate. For example, to output 100 bytes at
300 bits/second requires a time duration of (100 x 10 x 1/300) + tfout + tret.

Programming Considerations
The format for data frame transfer is fixed: one start bit, followed by eight data
bits (least significant bit first), followed by one stop bit. The input serial I/O
object waits for the start of the data frame to be received for up to the time it
would take to receive 20 characters before timing out and returning a zero. Input
is terminated when either the total count in bytes is received, or the amount of
time it would take to receive 20 characters has passed with no data received. The
input serial I/O model stops receiving data on invalid stop bit. At 2400 bps, the
input timeout is 83 ms.

Unlike the SCI and SPI I/O models, which are available only for certain Neuron
Chip models, the serial input/output model does not require special hardware and
is available for all Neuron Chip models.

Both serial input and output models are purely software I/O models, with no
hardware support other than the physical I/O pins. The serial stream is read in
and transmitted out using CPU timing. See the sci I/O model for an equivalent
I/O object that uses UART hardware on certain Smart Transceivers and Neuron
Chips. The following issues should be considered when using the serial I/O
model:

• The io_out() function is a blocking function, so the function does not
return until the entire data set is transmitted.

106 Serial I/O Models

• Serial input can only work successfully if the application is responsive
enough to capture the start bit of the first byte received. Usually the best
way to succeed with the serial input model is to employ bi-directional
handshaking using two additional I/O pins, so that the sender can
coordinate the transfer with the Neuron C application. If this is not
possible, the serial input can be monitored with a when(io_changes(io-
object-name)) statement or an I/O interrupt task, however, you must
ensure that the io_in() function is called less than 25% into the start bit.
For example, the start bit is approximately 4.2 ms at 2400 bps. For
reliable reception of a 2400 bps start bit, the io_in() function must be
called within 1 ms of the beginning of the start bit. The minimum
scheduler latency is approximately 0.24 ms with for a Series 3100 device
with a 40 MHz input clock, and is typically longer depending on the
number and type of when clauses in the application. See I/O Timing
Issues for a description of the scheduler-related I/O timing. Scheduler
latencies do not affect an I/O interrupt task; see the Neuron C
Programmer’s Guide for more information about timing of application-
defined interrupt tasks.

When using multiple serial I/O devices that have differing bit rates, you must use
the #pragma enable_multiple_baud compiler directive. This pragma must
appear prior to the use of any I/O function, such as, io_in() or io_out().

For serial input/output, the io_in() and io_out() functions require a pointer to
the data buffer as the input_value and output_value. The io_in() function
returns an unsigned short int that contains the count of the actual number of
bytes received. See the EIA-232C Serial Interfacing with the Neuron Chip
engineering bulletin (part no. 005-0008-01) for more information.

The serial input model provides only one bit of buffering and a maximum speed of
4800 bps. For higher bit rates, use a Smart Transceiver or Neuron Chip with
integrated UART hardware, such as the PL 3120 Smart Transceiver, PL 3150
Smart Transceiver, PL 3170 Smart Transceiver, Series 5000 device, or a Series
6000 device. Alternatively, for bit rates up to 115.2 kbps, and 16 bytes of
buffering, consider using the PSG-20 or PSG/3 programmable serial gateway
devices. See the LTS-20 LonTalk Serial Adapter and PSG-20 User's Guide for
more details.

Syntax
pin input serial [baud (const-expr)] io-object-name;

pin output serial [baud (const-expr)] io-object-name;

pin

An I/O pin. Serial input requires one pin and must specify IO_8. Serial
output also requires one pin and must specify IO_10.

baud (const-expr)

Specifies the bit rate. The expression const-expr can be 600, 1200, 2400, or
4800. The default is 2400. The firmware uses this value as a multiplier
based on the Series 3100 input clock or Series 5000 system clock. For
example, for a Series 3100 device at 10 MHz, baud(4800) yields 4800 bps; for

I/O Model Reference 107

a Series 5000 or Series 6000 device at 10 MHz, baud(4800) yields 9600 bps.
The baud rate scales proportionally with the input or system clock.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned int count, input-buffer[buffer-size], output-buffer[buffer-size];

count = io_in(io-object-name, input-buffer, count);
io_out(io-object-name, output-buffer, count);

Serial Input Example
IO_8 input serial ioKeyboard;
char buffer[20];
unsigned int chars;

when (...) {
 chars = io_in(ioKeyboard, buffer, 20);
}

Serial Output Example
IO_10 output serial ioDisplay;

when (...) {
 io_out(ioDisplay, “Hello world.\r\n”, 14);
}

SPI Input/Output
You can use the hardware Synchronous Peripheral Interface (SPI) I/O model in
applications that you develop for Smart Transceivers or Neuron Chips with
integrated SPI hardware such as the PL 3120 Smart Transceiver, PL 3150 Smart
Transceiver, PL 3170 Smart Transceiver, Series 5000 or Series 6000 device. SPI
is a full-duplex synchronous serial communication interface initially advanced by
Motorola, but now available on a wide variety of devices. The spi I/O model uses
the SPI hardware and the I/O interrupt capability in designated Neuron Chips
and Smart Transceivers. You cannot use both hardware SCI and hardware SPI
I/O in the same application.

The hardware SPI I/O model does not include any form of hardware flow control
such as CTS/RTS or TREQ/R/W flow control. If your application requires flow
control, you must implement some form of handshaking in your application.

This model applies to 3120 Power Line Smart Transceivers, 3150 Power Line
Smart Transceivers, 3170 Power Line Smart Transceivers, Series 5000 Neuron
Processors and Smart Transceivers, and to Series 6000 Neuron Processors and
Smart Transceivers.

108 Serial I/O Models

Hardware Considerations
Pins IO8, IO9 and IO10 can be configured as a SPI port. The directions of the
pins vary with the configuration:

• In master mode, pin IO8 is the clock (driven by the Smart Transceiver),
IO9 is serial data input (Master In Slave Out or MISO), and IO10 is
serial data output (Master Out Slave In or MOSI).

• In slave mode, pin IO8 is the clock input, IO9 is serial data output
(MISO), and IO10 is serial data input (MOSI).

The declaration of the SPI I/O object supports several modifiers, including
neurowire. If the neurowire keyword is used, the pins assume a Neurowire-
compatible direction in which IO9 is always output and IO10 is always input.
Serial data is clocked out on the output pin at the same time as it is clocked in on
the input pin. In SPI master mode, no other masters are allowed on the bus. IO7
can be used as a select pin in slave mode, allowing the Smart Transceiver to
coexist with other slave mode devices on a 3-wire bus. A logic one level on the
select line disables the output drivers of the output pins and puts them in a high
impedance state.

If the Smart Transceiver is the only slave device on the SPI bus, and the master
device does not drive the Slave Select (SS~) signal (the signal is disabled), then
you can initialize the IO7 pin to a value of 1 and use it as an input pin:

• Pin IO7 should be declared as an input pin and externally grounded.

OR

• Pin IO7 must be declared in the following order:
IO_7 output bit io7out = 1; // initialize to '1'
IO_7 input bit io7in;

Note that SS~ should be used whenever possible to ensure proper
synchronization and recovery in the event of framing errors from the master
device.

The bit rates supported by the SPI port are summarized in Table 39 through
Table 42.

Table 39. SPI Master Mode for Series 3100 Power Line Devices

Clock Bit Rate for 10 MHz Bit Rate for 6.5536 MHz

7 19.531 kbps 12.8 kbps

6 39.063 kbps 25.6 kbps

5 78.125 kbps 51.2 kbps

4 156.250 kbps 102.4 kbps

3 312.500 kbps 204.8 kbps

2 625.000 kbps 409.6 kbps

I/O Model Reference 109

Clock Bit Rate for 10 MHz Bit Rate for 6.5536 MHz

1 1250.000 kbps 819.2 kbps

0 2500.000 kbps 1638.4 kbps

Note: For Clock 5 and higher bit rates, the bit rate shown is the peak rate. The
data is burst out in pairs of bytes, and the overall average data rate is limited to
approximately 40 kbps and 25 kbps for 10 MHz and 6.5536 MHz input clocks,
respectively.

Table 40. SPI Master Mode for Series 5000/6000 Devices

Clock
Bit Rate for 80
MHz

Bit Rate for 40
MHz

Bit Rate for 20
MHz

Bit Rate for 10
MHz

Bit Rate for
5 MHz

7 156.25 kbps 78.125 kbps 39.063 kbps 19.531 kbps 9.765 kbps

6 312.5 kbps 156.25 kbps 78.125 kbps 39.063 kbps 19.531 kbps

5 625 kbps 312.5 kbps 156.25 kbps 78.125 kbps 39.063 kbps

4 1.25 Mbps 625 kbps 312.5 kbps 156.25 kbps 78.125 kbps

3 2.5 Mbps 1.25 Mbps 625 kbps 312.5 kbps 156.25 kbps

2 5 Mbps 2.5 Mbps 1.25 Mbps 625 kbps 312.5 kbps

1 10 Mbps 5 Mbps 2.5 Mbps 1.25 Mbps 625 kbps

0 20 Mbps 10 Mbps 5 Mbps 2.5 Mbps 1.25 Mbps

Note: For Clock 5 and higher bit rates, the bit rate shown is the peak rate. The data is
burst out in pairs of bytes, and the overall average data rate is limited to approximately 430
kbps for an 80 MHz system clock.

Table 41. SPI Slave Mode for Series 3100 Power Line Devices

Parameter Value for 10 MHz Value for 6.5536 MHz

Max burst rate 1250 kbps 819.2 kbps

Max burst size 2 bytes 2 bytes

Min burst spacing (from
start of one burst to next)

400 µs 640 µs

Max sustained data rate 40 kbps 25 kbps

110 Serial I/O Models

Table 42. SPI Slave Mode for Series 5000/6000 Devices

Parameter
Value for
80 MHz

Value for
40 MHz

Value for
20 MHz

Value for
10 MHz

Value for
5 MHz

Max burst rate 10 Mbps 5 Mbps 2.5 Mbps 1.25 Mbps 625 kbps

Max burst size 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes

Min burst spacing
(from start of one
burst to next)

100 µs 200 µs 400 µs 800 µs 1600 µs

Max sustained data
rate

430 kbps 210 kbps 100 kbps 40 kbps 25 kbps

Sustained reception in slave mode at high bit rates can starve the application
processor and cause overruns, and presents a possible risk of watchdog timeout.
Care must be given to allow the Smart Transceiver to process received bytes in a
timely manner. Master mode has no such restriction because the Smart
Transceiver regulates the data transfer.

The clockedge and invert keywords are used to determine the point at which
data is sampled and the idle level of the clock signal. By default, the clock signal
is idle at the logic 1 level. Use the invert keyword to change the idle state to
correspond to a logic 0 level. Common SPI implementations use the terms clock
phase (CPHA) and clock polarity (CPOL) to determine the behavior of the clock
signal during SPI transmissions. These terms relate directly to the clockedge
and invert keywords used in the I/O object declaration, as described in Table 43.

Table 43. Relating CPHA and CPOL to Neuron C Declarations

SPI Clock Signal State Neuron C Declaration

CPHA
 0
 1

clockedge(-)
clockedge(+)

CPOL
 0
 1

invert
[default]

The active edge of the clock is determined by the clockedge and invert
keywords. If the clock signal is idle at logic 1 (default), then clockedge(-)
indicates that the falling edge of the clock signal is active. If the invert keyword
is used, the rising edge of the clock signal would be active (see Figure 39 and
Figure 40). In-phase interfaces (CPHA=1) present the data bit on the first
transition of the clock signal, and latch it on the second transition. Out-of-phase
interfaces (CPHA=0) present the data bit before the first transition of the clock
signal, and latch it on the first transition.

I/O Model Reference 111

Up to 255 bytes can be bi-directionally transferred at a time. This I/O model
depends on interrupts to process data at high speed and does not use the io_in()
and io_out() function calls. After transfer is initiated, control is returned to the
application immediately, and the application needs to poll the I/O model for
completion. Transfers can be suspended and resumed by disabling and enabling
interrupts. Turning off interrupts might be required when going off-line, or for
assuring that other time-critical application execution is not disturbed by
background interrupts. Additionally, transfers can be aborted.

[default] (CPOL = 1)

Present bit

Sample bit

Invert (CPOL = 0)

SS

MISO

MOSI msb lsbbit5 bit4bit6 bit2bit3 bit1

msb lsbbit5 bit4bit6 bit2bit3 bit1

Figure 39. Transmission Timing for Clockedge(-) (CPHA : 0)

[default] (CPOL = 1)

Present bit

Sample bit

invert (CPOL = 0)

SS

MISO

MOSI msb lsbbit5 bit4bit6 bit2bit3 bit1

msb lsbbit5 bit4bit6 bit2bit3 bit1

Figure 40. Transmission Timing for Clockedge(+) (CPHA : 1)

112 Serial I/O Models

Table 44. SPI Master Mode I/O Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

Tck Clock cycle (user specified) — — —

Tsc Select low to Clock transition 4.8 µs — —

Tdoc Data out to Clock (1st bit of invert mode) 0.5 * Tck — —

Tcdo Clock to data out — — 5 ns

Tdis Data in setup 10 ns — —

IO0

IO10

IO9

IO8

IO7

IO6

IO5

IO4

IO3

IO2

IO1

IO11

SPI Master

IO0

IO10

IO9

IO8

IO7

IO6

IO5

IO4

IO3

IO2

IO1

IO11

SPI Master (Neurowire
pin mode)

Clock

MISO

MOSI

Clock

Data Out

Data In

Figure 41. SPI Master Mode I/O

Tcdo

Clock
(invert for

clockedge+
or

invert=true)

Data Out

Data In

Select

Tdis
Tdih

Tsc

Tdoc

Tck

Figure 42. SPI Master Mode Timing

I/O Model Reference 113

Symbol Description Minimum Typical Maximum

Tdih Data in hold 10 ns — —

IO0

IO10

IO9

IO8

IO7

IO6

IO5

IO4

IO3

IO2

IO1

IO11

SPI Slave

Clock

Data Out

Data In

Select

Figure 43. SPI Slave Mode I/O

Tcdo

Clock
(invert for

clockedge- or
invert=true)

Data Out

Data In

Select

Tdis
Tdih

Tsc

Tdoc

Tck

Figure 44. SPI Slave Mode Timing

114 Serial I/O Models

Table 45. SPI Slave Mode I/O Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

Tck Clock cycle (user specified) — — 1.25

Tsc Select low to Clock transition 220 µs — —

Tdoc Data out to Clock (1st bit of invert mode) 440 ns — —

Tcdo Clock to data out — — 45 ns

Tdis Data in setup 10 ns — —

Tdih Data in hold 10 ns — —

Tsdz Select high to data in high impedance — — 220 ns

Programming Considerations
You can enable and disable SPI interrupts. For example, you can turn off
interrupts when going offline, or to assure that other time-critical application
functions are not disturbed by background interrupts. The SCI interrupt signal
is used by the firmware driver for the SCI I/O model. It is not directly accessible
by the application program.

The SPI interrupt is enabled by default. For Series 3100 devices, the io_idis()
function disables I/O interrupts. The function has the following signature:

void io_idis(void);

For Series 3100 devices, the io_iena() function enables I/O interrupts. The
function has the following signature:

void io_iena(void);

For Series 5000 and Series 6000 devices, you cannot disable the SPI interrupt.

To cancel an SPI operation currently in progress, use the spi_abort() function
rather than disabling interrupts.

Syntax
IO_8 spi master|slave [select(IO_7)] [clock(const-expr)] [invert]
 [clockedge(+|-)] [neurowire] io-object-name;

master|slave

Determines whether the hardware is in master or slave mode. When using a
Neuron C device in SPI master mode, no other masters can be used in the
same bus.

I/O Model Reference 115

select(IO_7)

Set this option to have pin IO_7 used as a slave select (SS) signal in slave
mode. In slave mode, this option is used when there are multiple slaves
connected to a master. However, when the device is the only slave (and thus
there is no need for the master to use a dedicated slave select signal), then
pin IO_7 should be separately declared as an input pin and externally
grounded.

In master mode, the select keyword is not used; thus, IO_7 can be used for
other purposes.

clock(const-expr)

The clock selection can be an integer from 0 to 7, and selects a clock divisor
for the SPI interface. This clock divisor and the input clock control the serial
bit rate of the SPI interface. Clock selection applies only to master mode.
For a Series 3100, Series 5000, or Series 6000 device at 10 MHz, the
minimum serial bit rate is 19531 bps and the maximum rate is 156250 bps.

If you omit this keyword, the default used is clock(0).

invert

By default, the clock is idle at 1. Set this option to specify that the clock is
idle at 0.

This definition relates directly to the clock polarity (CPOL) parameter
defined for other SPI implementations. Using the invert keyword is
equivalent to defining CPOL = 0; the default declaration is equivalent to
defining CPOL =1. Both the SPI master and the SPI slave are required to
use the same clock polarity.

See Hardware Considerations for more information.

clockedge(+|-)

Set this option to + for in-phase interfaces (CPHA=1) to specify that data is
valid on the rising edge of the clock. Set this option to – for out-of-phase
interfaces (CPHA=0) to specify that data is valid on the falling edge of the
clock. By default, if you omit this parameter, data is valid on the rising edge
of the clock (clockedge(+)). The clock phase (CPHA) must be identically
specified for both the SPI master and SPI slave devices.

In-phase interfaces present the data bit on the first transition of the clock
signal, and latch it on the second transition. Out-of-phase interfaces present
the data bit before the first transition of the clock signal, and latch it on the
first transition.

See Hardware Considerations for more information.

neurowire

Set this option to select Neurowire compatible mode, where the MOSI and
MISO pins do not change direction based on any slave select. The default is
SPI mode.

116 Serial I/O Models

io-object-name

Specifies a name for the I/O object, in the ANSI C format for variable
identifiers.

You can call the io_set_clock() function to change the clock divisor and clock
edge at run-time. You cannot change the master/slave or Neurowire/SPI modes
at run-time.

io_set_clock(io-object-name, clock-value, clockedge(clock-code));

io_set_clock(io-object-name, clock-value, clockedge(clock-code), invert);

The clock-value value corresponds to the specification for the clock() keyword.
For SPI slave mode devices, the clock-value should be 0. The clock-code value can
either be a single plus character (“+”) or a single minus character (“–“), as
described under the clockedge parameter above.

Usage
unsigned short buffer-size;
unsigned short buffer[buffer-size];

unsigned short io_in(io-object-name, buffer, buffer-size);
unsigned short io_out(io-object-name, buffer, buffer-size);

unsigned short io_in_ready(io-object-name);
unsigned short io_out_ready(io-object-name);
unsigned short spi_get_error(io-object-name);
void spi_abort(io-object-name);

The SPI I/O object uses pins IO_8, IO_9, and IO_10 depending on the mode, as
shown in Table 46.

Table 46. Pin Use for SPI I/O Object

Mode IO_8 IO_9 IO_10

master Clock output Data input Data output

slave Clock input Data output Data input

neurowire — Data output Data input

You can use the io_in() and io_out() functions to read and write a hardware
SPI interface. This interface is very similar to the neurowire I/O model. The
io_in() and io_out() calls are functionally equivalent, because SPI input and
output occur simultaneously. Because the SPI interface is full duplex, the same
buffer is used for both transmission and reception of data, with data transferred
serially out of and into the single data buffer at the same time.

A call to the io_in() or io_out() function causes the firmware to set up the
receive/transmit buffer and update the receive and transmit counts, which are
initially equal. Because the SPI model is interrupt-driven, when the SPI
transmitter is empty, the hardware transfers the first (and second if the count is
greater than 1) bytes to the hardware shift register; at this point, the transmit
count is greater by 2 than the receive count. Thus, after the call to the io_out()

I/O Model Reference 117

function, there are two bytes of data that have moved out of the buffer and into
the hardware.

A consequence of this transmit behavior is that if a SPI transfer by a slave device
is set up to transmit a maximum number of bytes and truncate the transfer
based on data within the transfer itself, the truncation will likely include 1 to 2
extra bytes. For example, if a transfer is set up by the slave for 100 bytes, and
there is a need to stop the transfer after 50 bytes, the interrupt driven firmware
will have most likely placed bytes 51 and 52 into the SPI’s transmit hardware.

You can use either the io_in() or io_out() function to initiate an I/O operation:

io_in(io-object-name, void * buf, unsigned len)

io_out(io-object-name, void * buf, unsigned len)

The io_in() and io_out() functions are non-blocking; they just initiate the data
transfer. You can use the io_in_ready(io-object-name) and io_out_ready(io-
object-name) event functions to test the state of the SPI interface. These
functions are used to determine when the transmission is complete. The
io_out_ready event returns TRUE when output is complete. The io_in_ready
event returns the number of bytes read in as an unsigned short, so when this
value matches the len parameter from the call to io_in_request() the input
operation is complete.

Although the io_in_ready() and io_out_ready() event functions both test the
SPI interface, the io_out_ready() function returns TRUE before the
io_in_ready() function returns a count for the expected count. This difference
is due to the fact that the transmit data register chain holds two bytes of data
and completes the transmit process before the receive process completes. Thus,
you should use the io_in_ready() function to qualify the completion of a
transfer.

You can use the spi_get_error(io-object-name) function to test for SPI errors.
Calling io_in() or io_out() clears any previous SPI error code. The
spi_get_error() function also clears any SPI error code after returning it. This
function returns a cumulative OR of the following bits that reflect data errors:

0x10 Mode fault occurred

0x20 Receive overrun detected

You can use the spi_abort(io-object-name) function to terminate any operation
in progress. After an abort, the io_in_ready() function returns the number of
characters read up to the abort.

Example
IO_8 spi master clock(4) ioSpi;

when (...) {
 io_out(ioSpi, “Hello SPI World!\r\n”, 18);
}

when (io_out_ready(ioSpi)) {
 unsigned short spiEerror;
 spiEerror = spi_get_error(ioSpi));
 if (spiEerror) {
 // Process SPI error

118 Serial I/O Models

 ...
 }
 else {
 // Process end of SPI transmission
 ...
 }
}

Wiegand Input
The wiegand input model provides an easy interface to any card reader that
supports the Wiegand interface standard.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, as well
as Series 5000 and Series 6000 Neuron Processors and Smart Transceivers.

Hardware Considerations
Data from the reader is presented to the Neuron Chip or Smart Transceiver
through two of its first eight I/O pins, IO0 – IO7. Up to four Wiegand devices can
be connected to the Smart Transceiver. Data is read most-significant bit (MSB)
first.

Wiegand data starts as a negative-going pulse on one of the two pins selected.
One input represents a logical 0 bit and the other pin a logical 1 bit, as selected
through the I/O declaration. The bit data on the two lines are mutually
exclusive, and are spaced at least 150 µs apart. Figure 45 shows the timing
relationship of the two data lines with respect to each other and to the Smart
Transceiver.

Any unused I/O pin from IO0 to IO7 can be optionally selected as the timeout pin.
When the timeout pin goes high, the function aborts and returns. The
application processor’s watchdog timer is automatically updated during the
operation of this input object.

Incoming data on any of the Wiegand input pins is sampled by a Series 3100
device every 200 ns for a 10 MHz input clock and by the Series 5000 and Series
6000 devices every 12.5 ns for an 80 MHz system clock (scales inversely with the
clock frequency). Because the Wiegand data is usually asynchronous, care must
be taken in the application program to ensure that this function is called in a
timely manner in order that no incoming data is lost.

I/O Model Reference 119

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

Optional Pull-Up Resistors
(3100 Family Only)

IO11

t dw

DATA
A

START OF
io_in()

END OF
io_in()

DATA
B

TIMEOUT

TIME

t ibd

t fin
t tow

t tret
t ret

Figure 45. Wiegand Input and Timing

Table 47. Wiegand Input Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

tfin Function call to start of second data edge — 75.6 µs —

tdw Input data width (at 10 MHz) 200 ns 100 µs 880 ms

tibd Inter-bit delay 150 µs — 900 µs

tlow Timeout pulse width — 39 µs —

ttret Timeout to function return — 18.0 µs —

tret Last data bit to function return — 74.4 µs —

Programming Considerations
The wiegand I/O model is used to transfer data from a Wiegand format data
stream source. This format encodes data as a series of pulses on two signal lines:

• The zero data bit signal

120 Serial I/O Models

• A one data bit signal

Data pulses appear exclusively of each other and are typically spaced
approximately 1 ms apart. Specifications for the duration of the pulse are
typically between 50 to 100 μs, but they can be as short as 50 ns for a Series 3100
device with a 40 MHz input clock, or 12.5 ns for Series 5000 and Series 6000
devices with an 80 MHz system clock. Table 48 shows the pulse width and inter-
bit period (the period between bit pulses).

Table 48. Wiegand Pulse Width and Inter-Bit Period

Parameter Minimum Maximum Typical

Pulse Width 200 ns 880 ms 100 μs

Inter-Bit Time 150 μs None 900 μs

Wiegand data is asynchronous. The io_in() function must be executing before
the second bit arrives, otherwise the first bit data is lost because it then becomes
impossible to determine the order of a zero and one event sequence. Data is read
most-significant bit (MSB) first, that is, the first data bit read will be stored in
the most significant bit location of the first byte of the array when eight bits are
read into that byte. If the number of bits transferred is not a multiple of eight, as
defined by count, the last byte transferred into the array contains the remaining
bits right justified within the byte.

For Wiegand input, one of the IO_0 through IO_7 pins can optionally be
designated as a timeout pin. A logic one level on the timeout pin causes the
Wiegand input operation to terminate before the specified number of bits has
been transferred. The Neuron Chip or Smart Transceiver updates the watchdog
timer while waiting for the next zero or one data bit to arrive. This timeout input
can be a one-shot timer counter output, an RC circuit, or a ~Data_valid signal
from the reader device.

The return_value for the io_in() function for this model is an unsigned short,
and it indicates the number of bits stored into the array. Whenever the io_in()
function for a Wiegand I/O object is called, it immediately returns if there is
currently no activity on the indicated I/O pins. Otherwise, the function continues
to process input data until either count bits are stored, or until the timeout event
occurs. When the timeout event occurs, the number of bits read and stored is
returned. The io_in() function is blocking, and can take more than one second to
process the card information, depending upon the speed at which the card travels
through the reader. Because this function ties up the application processor, it
handles updates to the watchdog timer.

Syntax
pin [input] wiegand [timeout(pin-nbr)] io-object-name;

pin

An I/O pin. Wiegand input requires two adjacent pins. The DATA 0 pin is
the pin specified, and the DATA 1 pin is the following pin. The pin
specification denotes the lower-numbered pin of the pair and can be IO_0
through IO_6.

I/O Model Reference 121

timeout (pin-nbr)

Optionally specifies the timeout signal pin, in the range of IO_0 to IO_7. The
Neuron firmware checks the logic level at this pin whenever it is waiting for a
pulse at either the DATA 0 or DATA 1 pins. If a logic level 1 is sensed, the
transfer is terminated.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned int count, input-buffer[buffer-size], bit-count;

count = io_in(object-name, input-buffer, bit-count);

Example
// This application is written so that the
// Wiegand input is being polled for a majority
// of the time, breaking out and returning to the
// scheduler only periodically. This makes the
// probability of capturing the first bits of
// the input much higher since the bits arrive
// asynchronously. Timeout is from a hardware oneshot.

unsigned int data[4], breaker, nbits;
IO_2 input wiegand timeout (IO_0) ioCardData;
IO_0 output oneshot invert clock (7) ioPinTimer = 1;

when(TRUE) {
 for (breaker=200; breaker; breaker--) {
 io_out(ioPinTimer, 19500UL);
 // Store 26 bits into data
 nbits = io_in(ioCardData, data, 26);
 if (nbits) {
 . . . // Process data just read
 }
 }
}

122 Serial I/O Models

5

Timer/Counter Input Models

This chapter describes timer/counter input models.
Timer/counter I/O models use a timer/counter circuit in the
Neuron Chip or Smart Transceiver. Each Neuron Chip and
each Smart Transceiver has two timer/counter circuits: One
whose input can be multiplexed, and one with a dedicated
input.

I/O Model Reference 123

Introduction
A Neuron Chip or Smart Transceiver has two 16-bit timer/counters:

• For the first timer/counter, IO0 is used as the output, and a multiplexer
selects one of pins IO4 – IO7 as the input.

• The second timer/counter uses IO1 as the output and IO4 as the input.

Figure 46 shows the basic timer/counter circuits for the Neuron Chip and Smart
Transceiver.

Figure 46. Timer/Counter Circuits

A single application can declare multiple input devices that use timer/counter I/O
models. By calling the io_select() function, the application can use the first
timer/counter in up to four different input functions. If a timer/counter is
configured in one of the output functions, or as a quadrature input, then it cannot
be reassigned to another timer/counter object in the same application program.

The timing numbers shown in this chapter are valid for either an explicit I/O call
or an implicit I/O call through a when clause, and are assumed to be for a Series
3100 Smart Transceiver running at 10 MHz.

Input timer/counter models have the advantage (over non-timer/counter objects)
in that input events are captured even if the application processor is occupied
doing something else when the event occurs. A when statement condition for an
event being measured by a timer/counter is TRUE when the measurement is
complete and a value is returned to an event register. If the processor is delayed
due to software processing and cannot read the register before another event
occurs, then the value in the register reflects the status of the last event. The
timer/counters are automatically reset upon completion of a measurement.

Timer/counter I/O models can also be used to trigger application-specific
interrupts. See the Neuron C Programmer’s Guide for more information about
application interrupts.

124 Timer/Counter Input Models

Important: The first measured value of a timer/counter is always discarded to
eliminate the possibility of a bad measurement after the chip comes out of a reset
condition.

Single events cannot be measured with the timer/counters. Figure 47 shows an
example of how the timer/counter objects are processed with a Neuron C when
statement.

TIME

INPUT
SIGNAL

STOP TIMER/COUNTER
SET FLAG LOAD NEW VALUE
INTO REGISTER

START
TIMER/

COUNTER

READ TIMER/COUNTER FLAG AND
REGISTER FROM THE PREVIOUS EVENT

END OF
io_in()

START OF
io_in()

STOP
TIMER/COUNTER

SET FLAG
LOAD EVENT

REGISTER

START
TIMER/

COUNTER

TIME

INPUT
SIGNAL
(event)

READ
TIMER/

COUNTER
FLAG AND
REGISTER

CLEAR FLAG

END OF
io_in()

START OF
io_in()

statement)

tfin tret

tfin tret

Example of a
when statement
evaluating to true
(unless it is the
first event)

Example of a
when statement
missing a current
event but
evaluating a
previous event

when(

Figure 47. Example of when Statement Processing for the Ontime Input Object

As with all CMOS devices, floating I/O pins can cause excessive current
consumption. To avoid this excess current consumption, declare all unused I/O
pins as bit output. Alternatively, unused I/O pins can be connected to + VDD5
(for Series 3100 devices), +VDD33 (for Series 5000 devices), or GND.

Dualslope Input
The dualslope I/O model is used to control and measure the integration periods
of a dualslope integrating analog-to-digital (A/D) converter. You can use this I/O
model to implement low-cost A/D converters for analog input.

The I/O model controls a timer/counter output pin based on a control_value
argument and the state of a timer/counter input pin. When combined with
external analog circuitry, the Neuron Chip or Smart Transceiver performs A/D
measurements with 16 bits of resolution for as little as a 3.278 ms integration
period for a Series 3100 device with a 40 MHz input clock (the period scales with

I/O Model Reference 125

the input clock). Faster conversion rates are attainable at the expense of bit
resolution.

For a Series 3100 device, the duration of the first integration period is a function
of control_value and the selected clock value:

duration (ns) = control_value * 2000 * 2^(clock) / input_clock (MHz)

where clock ranges from 0..7

For Series 5000 and Series 6000 devices, the duration of the first integration
period is a function of control_value and the selected clock value:

duration (ns) = control_value * 2000 * 2^(value) / 10 MHz

where value ranges from 0..15

For a Series 3100 device, the value read back by this device reflects the length of
the second integration period, and is also in units of the selected clock value:

2nd_integration (ns) = input_value * 2000 * 2^(clock) / input_clock (MHz)

where clock ranges from 0..7

For Series 5000 and Series 6000 devices, the value read back by this device
reflects the length of the second integration period, and is also in units of the
selected clock value:

2nd_integration (ns) = input_value * 2000 * 2^(value) / 10 MHz

where value ranges from 0..15

A single timer/counter provides the control out signal and senses a comparator
output signal. The control output signal controls an external analog multiplexer
that switches between the unknown input voltage and a voltage reference. The
timer/counter’s input pin is driven by an external comparator that compares an
integrator output with a voltage reference.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
The timer/counter provides the control output signal, and senses a comparator
output signal. The control output signal controls an external analog multiplexer
that switches between the unknown input voltage and a voltage reference. The
timer/counter’s input pin is driven by an external comparator that compares the
integrator’s output with a voltage reference. At the end of conversion, the
external comparator drives a low level to one of pins IO4 – IO7. If external
circuitry indicates “end of conversion” with a high level, use the invert keyword
in the I/O object’s declaration.

The resolution and range of the timer/counter period options is described in
Timer/Counter Resolution and Maximum Range.

126 Timer/Counter Input Models

Timer/Counter 1

Timer/Counter 2

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

mux

Control Output

From
Comparator

IO11

OUTPUT
(IO0 OR IO1)

START OF
io_in_request()

END OF
io_in()LATCHED COUNT

AVAILABLE TO
APPLICATION

START
OF io_in()

TIME

INPUT
(IO4 TO IO7)

ANALOG SWITCH
CONTROL

COMPARATOR
OUTPUT

INTEGRATOR
OUTPUT

Vthresh

treqo tfin

Figure 48. Dualslope Input and Timing

Table 49. Dualslope Input Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

treqo io_in_request() to output toggle — 75.6 µs —

tfin Input function call and return — 82.8 µs —

Programming Considerations
For dualslope input, the data type of the control_value for the io_in_request()
function is an unsigned long. The return value of the io_in() function is an
unsigned long. Both the return value for io_in() and the value stored at
input_value is a number biased negatively by the control_value used for the
io_in_request() function, and can be corrected by adding the control_value
value into it.

I/O Model Reference 127

For additional information regarding dualslope A/D conversion, see the Analog to
Digital Conversion with the Neuron Chip engineering bulletin (part no. 005-0019-
02).

Neuron C Resources
The following functions and events are provided for use with the dualslope input
model:

io_in_request()

Starts the first step of the integration process. The control_value argument
controls the length of the first integration period.

io_update_occurs

Signals the end of the entire conversion process. The value at input_value
now contains the new measurement data.

Syntax
pin [input] dualslope [mux | ded] [invert] [clock (const-expr)] io-object-name;

pin

An I/O pin. Dualslope input can specify pins IO_4 through IO_7.

mux | ded

Specifies whether the I/O object is assigned to the multiplexed or dedicated
timer/counter. This field only applies, and must be used, when pin IO_4 is
the input pin. The mux keyword assigns the I/O object to the multiplexed
timer/counter. The ded keyword assigns the I/O object to the dedicated
timer/counter.

When the dedicated timer/counter is used, the control output pin will be
IO_1. When the multiplexed timer/counter is used, the control output pin
will be IO_0. The multiplexed timer/counter is always used for pins IO_5
through IO_7.

invert

Reverses the logical value of the input pin. Use this keyword if the
comparator output is high when the converter is in the idle state.

clock (const-expr)

Specifies a clock in the range 0 to 7, where 0 represents the fastest clock and
7 represents the slowest clock. The default value is clock 0.

You can change resolution for the timer base clock frequency by calling the
io_set_clock() function with a clock value in the range 0..7 (using one of the
TCCLK_* macros defined in <echelon.h>). This function overrides the
resolution value specified for clock() within the I/O object declaration.

For an application running on a Series 5000 device, you can specify an
increased resolution for the timer base clock frequency by calling the
io_set_clock() function with a clock value in the range 0..15 (using one of

128 Timer/Counter Input Models

the TCCLK_* macros defined in <echelon.h>). This function overrides the
resolution value specified for clock() within the I/O object declaration.

See Appendix A, Timer/Counter Periods and Resolution, for a description of
the timer resolution and maximum range for each specification of the clock()
value or each value of the TCCLK_* macros. See the Neuron C Reference
Guide for information about the io_set_clock() function.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned long input-value, control-value;

io_in_request(io-object-name, control-value);
input-value = io_in(io-object-name);

Example
IO_4 input dualslope ded clock(0) ioDualSlope;
mtimer repeating goTime;
unsigned long data;
...

when (reset) {
 goTime = 500; // Perform a measurement every 500ms
}

when (timer_expires(goTime)) {
 // Start the first integration period (9ms at 10MHz).
 io_in_request(ioDualSlope, 45000UL);
}

when (io_update_occurs(ioDualSlope)) {
 // The value at input_value is biased by the
 // negative value of the control value used.
 // Correct this by adding it back now.
 data = input_value + 45000UL;
}

Edgelog Input
The edgelog I/O model can record a stream of input pulses that measure the
consecutive low and high periods at the input and store them in user-defined
storage (see Figure 49). The values stored represent the units of clock period
between rising and falling input signal edges.

For a Series 3100 device, this I/O model measures a series of both high and low
input signal periods on a single input pin, IO_4, in units of the clock period:

time_on/time_off (ns) = value_stored * 2000 * 2^(clock) / input_clock (MHz)

where clock ranges from 0..7

I/O Model Reference 129

For Series 5000 and Series 6000 devices, this I/O model measures a series of both
high and low input signal periods on a single input pin, IO_4, in units of the clock
period:

time_on/time_off (ns) = value_stored * 2000 * 2^(value) / 10 MHz

where value ranges from 0..15

Edgelog input can be used to capture complex waveforms such as infrared
command input (see also Infrared Input), or to decode any type of bitstream that
contains data in the time domain (an arbitrarily-spaced stream of input edges or
pulses), such as bar code input.

This model applies to Series 3100 Neuron Chips and Smart Transceivers,to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
The measurement series starts on the first rising (positive) edge, unless the
invert keyword is used in the I/O object declaration. The measurement process
stops whenever an overflow condition is sensed on either timer/counter.

The resolution and range of the timer/counter period options is described in
Timer/Counter Resolution and Maximum Range.

Timer/Counter 1

Timer/Counter 2

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

Input
Bit Stream

IO11

END
OF io_in()OVERFLOW

TIME

INPUT
(IO4)

START OF
io_in()

twin

twtcp

tret

toretthold

tsetup

Figure 49. Edgelog Input and Timing

130 Timer/Counter Input Models

Table 50. Edgelog Input Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

tsetup Input data setup 0 — —

twin Input pulse width 1 T/C clk — 65534
T/C clks

thold io_in() call to data input edge for inclusion of
that pulse

26.4 µs — —

twtcp Two consecutive pulse widths 104 µs — —

toret Return on overflow — 42.6 µs —

tret Return on count termination — 49.6 µs —

Note: T/C clk represents the period of the clock used during the declaration of the I/O
object.

Programming Considerations
For edgelog input, the io_in() function requires a pointer to a data buffer, into
which the series of unsigned long values are stored, and a count argument,
which controls the number of values to be stored. The values stored represent
the units of clock period between input signal edges, rising or falling. The
io_in() function returns an unsigned short int that contains the actual
number of edge-to-edge periods stored. No input events are associated with an
edgelog input object.

During the io_in() function call, the measurement process stops whenever the
maximum period is exceeded. In this case, the value returned will not be equal to
the count argument passed.

If a preload value is specified, it must be added to the value returned by io_in().
The resulting addition may cause an overflow, but this is normal.

This I/O model uses both of the Neuron timer/counters.

Neuron C Resources
The following functions are provided specifically for use with the edgelog I/O
object:

• io_edgelog_preload()

Changes the maximum value for each period measurement. The maximum
value may range from 1 to 65535; the default value is 65535. This function is
only used for an edgelog device that is not declared with the single_tc option
keyword.

• io_edgelog_single_preload()

I/O Model Reference 131

Changes the maximum value for each period measurement for an edgelog
device declared with the single_tc option keyword. The maximum value may
range from 1 to 65535; the default value is 65535.

Example for a Series 3100 device with a 10 MHz input clock: An edgelog
input object using clock(3) and the default maximum period yields a 1.6 μs
resolution and does not overflow until 104.86 ms elapse. Using a value of 7500
for io_edgelog_preload() results in the io_in() function call terminating if 12
ms elapse with no input edges.

Syntax
pin [input] edgelog [single_tc] [mux | ded] [clock (const-expr)] io-object-
name;

pin

Specifies a Neuron input pin for the edgelog input object. The input pin can
be IO_4 through IO_7 if the single_tc option is specified, otherwise the
input pin must be IO_4.

single_tc

Optionally specifies that a single timer/counter should be used. If this
keyword is not specified, two timer/counters are used. If a single
timer/counter is specified, the application can only be loaded on a device
based on a Series 3100, Series 5000, or Series 6000 Smart Transceiver, a
Neuron 3120 Chip, or a Neuron 3150B1 Chip (or newer).

mux | ded

Specifies whether the I/O object is assigned to the multiplexed or dedicated
timer/counter. This option is only necessary with the single_tc option when
the edgelog device is declared on pin IO_4. The multiplexed timer/counter is
always used on pins IO_5 through IO_7.

clock(const-expr)

Specifies a clock in the range 0 to 7, where 0 represents the fastest clock and
7 represents the slowest clock. The default value is clock 0.

You can change resolution for the timer base clock frequency by calling the
io_set_clock() function with a clock value in the range 0..7 (using one of the
TCCLK_* macros defined in <echelon.h>). This function overrides the
resolution value specified for clock() within the I/O object declaration.

For an application running on a Series 5000 device, you can specify an
increased resolution for the timer base clock frequency by calling the
io_set_clock() function with a clock value in the range 0..15 (using one of
the TCCLK_* macros defined in <echelon.h>). This function overrides the
resolution value specified for clock() within the I/O object declaration.

See Appendix A, Timer/Counter Periods and Resolution, for a description of
the timer resolution and maximum range for each specification of the clock()
value or each value of the TCCLK_* macros. See the Neuron C Reference
Guide for information about the io_set_clock() function.

132 Timer/Counter Input Models

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

In Figure 50, an io_in() function call is executed sometime after the IO_4 input
signal is sensed as changing to high, but before it has changed back to low. The
first period, Period [1], is stored as a value in the array pointed to by the buffer
argument. If the io_in() function call occurs within the Period [2] time frame,
the data for Period [1] is lost.

Individual period measurements can be skipped if the sum of two consecutive
periods is less than 104 μs (for a Series 3100 device with a 10 MHz input clock),
regardless of the timer/counter clock setting. The minimum value scales with the
input clock.

Figure 50. Call to io_in(device, buffer, count)

If the IO_4 input pin has been at a constant level for longer than the overflow
period before the call to io_in() is made, the first value stored in the buffer is not
the maximum value, but rather the value for the next period.

Usage
unsigned int count;
unsigned long input-buffer[buffer-size];

count = io_in(io-object-name, input-buffer, count);

Example
IO_4 input edgelog clock(7) ioTimeStream;

// The next object allows direct reading
// of time_stream level.
IO_4 input bit ioTimeStreamLevel;

unsigned int edges;
unsigned long buffer[20];
unsigned long preLoad = 0x4000;

when (reset) {
 io_edgelog_preload(preLoad);
}

when (io_changes(ioTimeStreamLevel) to 1) {
 int i;

I/O Model Reference 133

 // Retrieve edge log
 edges = io_in(ioTimeStream, buffer, 20);
 // Correct for preload offset
 for (i = 0; i < edges; i++) {
 buffer[i] += preLoad;
 }
 // Process data
 ...
}

Infrared Input
The infrared I/O model is used to capture a data stream generated by a class of
infrared remote control devices (see Figure 51). This class of devices generates a
stream of ones and zeros by modulating an infrared emitter for an on and off
cycle, each cycle representing either a one or a zero. The period of this on/off
cycle determines the data bit value, a longer cycle implies a one, a shorter cycle
implies a zero. The actual threshold for the on/off determination is set at the
time of the call of the function. The measurements are made between the
negative edges of the input bits unless the invert keyword is used in the I/O
object declaration.

Typically, an infrared signal consists of an infrared source modulated at a carrier
frequency between 38 kHz and 42 kHz. An infrared receiver/demodulator is used
external to the Neuron Chip or Smart Transceiver to produce a digital sequence
with the carrier removed. Upon execution of the io_in() function for the infrared
I/O object, the Neuron Chip or Smart Transceiver measures the cycle times and
stores the data bits into a buffer passed to the io_in() function.

For a Series 3100 device, a timer/counter is used to make the series of cycle time
measurements. The resolution of these measurements is in units of the clock
period:

period (ns) = measured_value * 2000 * 2^(clock) / input_clock (MHz)

where clock ranges from 0..7

For Series 5000 and Series 6000 devices, a timer/counter is used to make the
series of cycle time measurements. The resolution of these measurements is in
units of the clock period:

period (ns) = measured_value * 2000 * 2^(value) / 10 MHz

where value ranges from 0..15

See the edgelog input model for an alternate method to decode infrared inputs.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceviers.

Hardware Considerations
The input to this I/O object is the demodulated series of bits from infrared
receiver circuitry. The infrared input model, based on the input data stream,
generates a buffer containing the values of the bits received. The resolution and
range of the timer/counter period options is described in Timer/Counter
Resolution and Maximum Range.

134 Timer/Counter Input Models

This I/O model can be used with an off-the-shelf infrared encoder/decoder chip
that uses the NEC IR protocol to quickly develop an infrared interface to a
Neuron Chip or Smart Transceiver. You can also use the edgelog input model for
this purpose, but your application program will likely require more code.

Timer/Counter 1

Timer/Counter 2

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

mux
Input
Data Stream

IO11

INPUT
(IO0 TO IO7)

TIME

START OF
io_in()

END OF
io_in()

trettfin

twin (1 BIT)

Figure 51. Infrared Input and Timing

Table 51. Infrared Input Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

tfin Function call to start of input sampling — 82.2 µs —

tret End of last valid bit to function return max-period max-
period

—

twin Minimum input period width — 93 µs —

Note: max-period is the timeout period passed to the function at the time of the call.

Programming Considerations
For infrared input, the io_in() function requires, in addition to the io-object-
name, four arguments:

• A pointer to a data buffer in which the series of data bits are stored

I/O Model Reference 135

• A bit_count argument, which is the expected number of data bits to be
received and stored

• A max_period argument limiting the range of the timer/counter
measurement process

• A threshold argument, representing the half way point, in timer/counter
count clocks, between a zero data period and a one data period

The value returned by the io_in() function is the actual number of bits read. If
less than the expected number of bits (controlled by bit_count) appear at the
input pin, the io_in() function waits for the max_period period before returning.
If the expected number of bits, or more, appear at the input pin, the io_in()
function waits for silence at the input pin before returning. Silence is defined as
a lack of input cycles for the max_period period. If input cycles persist, the
function returns after 256 input cycles occur. This data may be retrieved using
the tst_bit() function.

The max_period argument is an unsigned long, and is passed as the negative
(two's complement) of the required value. The threshold argument is passed as
the max_period value plus the required threshold value. The edgelog input
object type can be used to read inputs from infrared devices that do not conform
to the assumptions of the infrared input model.

Syntax
pin [input] infrared [mux | ded] [invert] [clock (const-expr)] io-object-name;

pin

An I/O pin. Infrared input can specify pins IO_4 through IO_7.

mux | ded

Specifies whether the I/O object is assigned to the multiplexed or dedicated
timer/counter. This field only applies, and must be used, when pin IO_4 is
the input pin.

The mux keyword assigns the I/O object to the multiplexed timer/counter.
The ded keyword assigns the I/O object to the dedicated timer/counter. The
multiplexed timer/counter is always used on pins IO_5 through IO_7.

invert

Causes the measurement of the cycle period to be between positive input
edges rather than the default, which is between negative input edges.

clock (const-expr)

Specifies a clock in the range 0 to 7, where 0 is the fastest clock and 7 is the
slowest clock. The default clock for infrared input is clock 6. The
io_set_clock() function can be used to change the clock. Table 52 shows
the clock values for a Series 3100 device with an input clock of 10 MHz, and a
Series 5000 or Series 6000 device with a system clock of 80 MHz. The values
in the table can be adjusted for different input clocks by scaling them
inversely proportional to the change in input clock (for example, for a 20 MHz
clock, divide all values in the table by 2, and for a 5 MHz clock, multiply all
values in the table by 2).

136 Timer/Counter Input Models

Table 52. Clock Values

Clock

Range and Resolution Period

Series 3100 (10 MHz Clock) Series 5000 and Series 6000 (80 MHz
Clock)

0 0 to 13.11 ms in steps of 200 ns
(0-65535)

0 to 1.639 ms in steps of 12.5 ns (0-
65535)

1 0 to 26.21 ms in steps of 400 ns 0 to 3.278 ms in steps of 25 ns

2 0 to 52.42 ms in steps of 800 ns 0 to 6.555 ms in steps of 50 ns

3 0 to 104.86 ms in steps of 1.6 μs 0 to 13.11 ms in steps of 100 ns

4 0 to 209.71 ms in steps of 3.2 μs 0 to 26.21 ms in steps of 200 ns

5 0 to 419.42 ms in steps of 6.4 μs 0 to 52.42 ms in steps of 400 ns

6 (default) 0 to 838.85 ms in steps of 12.8 μs 0 to 104.86 ms in steps of 800 ns

7 0 to 1.677 s in steps of 25.6 μs 0 to 209.71 ms in steps of 1.6 μs

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned int bit-count;
unsigned int input-buffer[buffer-size];
unsigned long max-period, threshold;

count = io_in(io-object-name, input-buffer, bit-count, max-period, threshold);

Example
This example works with a Series 3100 device and an infrared encoder/decoder
chip that uses the NEC IR protocol. This encoder produces a 9 ms start bit cycle
before the actual data stream. During the start bit cycle, the input signal is
driven low. This start condition is typical of infrared encoders because it allows a
receiver’s or demodulator’s automatic gain control (AGC) circuit time to adjust.
It also gives the Neuron Chip or Smart Transceiver some time to catch this
condition from the scheduler, and enter the io_in() function. After the AGC
burst, the protocol includes a 4.5 ms space, which is then followed by 32 bits for
the device address and command.

The NEC protocol uses pulse distance encoding of the bits. Each pulse is a 560 µs
long 38 kHz carrier burst (about 21 cycles). A logical one requires 2.250 ms to
transmit, and a logical zero requires 1.125 ms to transmit. The input clock is 10

I/O Model Reference 137

MHz, and the timer/counter clock is clock (7). This yields a 25.6 μs timer/counter
clock resolution.

The max-period parameter is set to cause an overflow at 110% of the start cycle
(the timer/counter will count up from this value):

65149
10*6.25

)10*9(*10.165536 6

3

=

− −

−

Given the one and zero data periods, the threshold value is:

65215
6665149

10*6.25
2

)10*25.2()10*125.1(

65149 6

33

=
+=

 +

+ −

−−

This encoder always sends 32 bits, so the count will be 32, and the returned
input-buffer will be an array of 4 bytes.

// This is the demodulated IR input.
// Use the non-inverted mode to read falling to falling
// input periods.
IO_4 input infrared ded clock (7) ioIr;

// This object allows the application to monitor the input
// signal before entering the io_in() function.
IO_4 input bit ioIrLevel;

unsigned int bits;
unsigned int irb[4];
. . .

when (io_changes(ioIrLevel) to 0) {
 bits = io_in(ioIr, irb, 32, 65149UL, 65149UL + 66UL);
 if (bits == 32) {
 // So far, a valid data message.
 . . .
 }
}

Ontime Input
For a Series 3100 device, the ontime I/O model measures pulsewidth or period of
an input signal (the high or low period) in units of the clock period:

time_on (ns) = return_value * 2000 * 2^(clock) / input clock (MHz)

where clock ranges from 0..7

138 Timer/Counter Input Models

For Series 5000 and Series 6000 devices, the ontime I/O model measures
pulsewidth or period of an input signal (the high or low period) in units of the
clock period:

time_on (ns) = return_value * 2000 * 2^(value) / 10 MHz

where value ranges from 0..15

You can use this model to implement digital-to-analog (D/A) converters,
frequency counters, or tachometers.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
A timer/counter can be configured to measure the time for which its input is
asserted. The resolution and range of the timer/counter period options is
described in Timer/Counter Resolution and Maximum Range. Assertion can be
defined as either logic high or logic low. This model can be used as a simple
analog-to-digital converter with a voltage-to-time circuit, or for measuring
velocity by timing motion past a position sensor (see Figure 47 and Figure 52).

The ontime I/O model is level sensitive. The active level of the input signal
gates the clock driving the internal counter in the Neuron Chip or Smart
Transceiver.

The actual active level of the input depends on whether the invert option is used
in the declaration of the I/O object. The default is the high level.

mux

Event Register

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

System Clock
Divide Chain

Optional Pull-Up Resistors for 3100 Family Devices

Event Register

Timer/Counter 2

Timer/Counter 1

IO11

Figure 52. Ontime Input

Table 53. Ontime Input Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to input sample 86 µs

I/O Model Reference 139

Symbol Description Typical at 10 MHz

tret Return from function 52 µs or 22 µs

Note: If the measurement is new, tret = 52 µs. If a new time is not being
returned, tret = 22 µs.

Programming Considerations
For ontime input, the data type of the return value for the io_in() function is an
unsigned long.

The state of the input pin is latched in hardware every 50 ns for a Series 3100
device with a 40 MHz input clock, or every 12.5 ns for the Series 5000 and Series
6000 devices with an 80 MHz system clock (the value scales inversely with clock
speed). If no edges occur during the measuring period, an overflow condition
occurs. The next call to the io_in() function after the overflow occurs returns
the out-of-range value (0xFFFF). The io_update_occurs event is not asserted
as TRUE unless the program uses the io_preserve_input() function after the
io_select() when using the multiplexed timer/counter, or in the reset task when
using the dedicated timer/counter.

Syntax
pin [input] ontime [mux | ded] [invert] [clock (const-expr)] io-object-name;

pin

An I/O pin. Ontime input can specify one of pins IO_4 through IO_7 as the
input pin.

mux | ded

Specifies whether the I/O object is assigned to the multiplexed or dedicated
timer/counter. This keyword is used only when pin IO_4 is used as the input
pin.

The mux keyword assigns the I/O object to the multiplexed timer/counter.
The ded keyword assigns the I/O object to the dedicated timer/counter. The
multiplexed timer/counter is always used for pins IO_5 through IO_7.

invert

Causes the measurement of the low period of the input signal. By default,
measurement occurs on the high period of the input signal.

clock (const-expr)

Specifies a clock in the range 0 to 7, where 0 represents the fastest clock and
7 represents the slowest clock. The default value is clock 0.

You can change resolution for the timer base clock frequency by calling the
io_set_clock() function with a clock value in the range 0..7 (using one of the

140 Timer/Counter Input Models

TCCLK_* macros defined in <echelon.h>). This function overrides the
resolution value specified for clock() within the I/O object declaration.

For an application running on a Series 5000 or Series 6000 device, you can
specify an increased resolution for the timer base clock frequency by calling
the io_set_clock() function with a clock value in the range 0..15 (using one
of the TCCLK_* macros defined in <echelon.h>). This function overrides
the resolution value specified for clock() within the I/O object declaration.

See Appendix A, Timer/Counter Periods and Resolution, for a description of
the timer resolution and maximum range for each specification of the clock()
value or each value of the TCCLK_* macros. See the Neuron C Reference
Guide for information about the io_set_clock() function.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned long input-value;

input-value = io_in(io-object-name);

Example
IO_4 input ontime ded clock(7) ioGateTime;
unsigned long pulseDuration;

when (io_update_occurs(ioGateTime)) {
 pulseDuration = input_value;
 // measures up to 1.677 seconds
}

Period Input
For Series 3100 devices, the period I/O model measures the total period, from
edge to edge, of an input signal in units of the clock period, calculated as follows:

period (ns) = (return-value+n) * 2000 * 2^(clock) / input_clock (MHz)

where clock ranges from 0..7, and n = 1 for clock(0) or n = 0 otherwise. Also, the
value return-value is equivalent to the input-value shown in Usage.

For Series 5000 and Series 6000 devices, the period I/O model measures the
total period, from edge to edge, of an input signal in units of the clock period,
calculated as follows:

period (ns) = (return-value+n) * 2000 * 2^(value) / 10 MHz

where value ranges from 0..15, and n = 1 for clock(0) or n = 0 otherwise. Also,
the value return-value is equivalent to the input-value shown in Usage.

You can use this model to implement digital-to-analog (D/A) converters,
frequency counters, or tachometers. This model applies to Series 3100 Neuron
Chips and Smart Transceivers, to Series 5000 Neuron Processors and Smart
Transceivers, and to Series 6000 Neuron Processors and Smart Transceivers.

I/O Model Reference 141

Hardware Considerations
A timer/counter can be configured to measure the period from one rising or
falling edge to the next corresponding edge on the input. The resolution and
range of the timer/counter period options is described in Timer/Counter
Resolution and Maximum Range. This model is useful for instantaneous
frequency or tachometer applications. Analog-to-digital conversion can be
implemented using a voltage-to-frequency converter with this model (see Figure
53).

This I/O model is edge sensitive. The clock driving the internal counter in the
Neuron Chip or Smart Transceiver is free running. The detection of active input
edges stops and resets the counter each time.

The actual active edge of the input depends on whether the invert option is used
in the declaration of the function block. The default is the negative edge.

Because the period function measures the delay between two consecutive active
edges, the invert option has no effect on the returned value of the function for a
repeating input waveform.

142 Timer/Counter Input Models

READ
TIMER/

COUNTER
FLAG AND

EVENT
REGISTER

CLEAR FLAG

END OF
io_in()

START OF
io_in()

STOP TIMER
COUNTER

START TIMER
COUNTER

TIME

INPUT

t fin t ret

mux

Event Register

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

System Clock
Divide Chain

Optional Pull-Up Resistors for 3100 Family Devices

Event Register

Timer/Counter 2

Timer/Counter 1

IO11

Figure 53. Period Input and Timing

Table 54. Period Input Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to input sample 86 µs

tret Return from function 52 µs or 22 µs

Note: If the measurement is new, tret = 52 µs. If a new time is not being
returned, tret = 22 µs.

I/O Model Reference 143

Programming Considerations
For period-input, the data type of the return-value for the io_in() function is an
unsigned long.

The input is latched every 50 ns for a Series 3100 device with a 40 MHz input
clock, or every 12.5 ns for Series 5000 and Series 6000 devices with an 80 MHz
system clock. This value scales inversely with the input clock speed. If no edges
occur during the measuring period, an overflow condition occurs. The next io_in(
) function call after the overflow has occurred returns the out-of-range value of
0xFFFF. The io_update_occurs event is not asserted as TRUE unless the
program uses the io_preserve_input() function after the io_select() when
using the multiplexed timer/counter, or in the reset task when using the
dedicated timer/counter.

Syntax
pin [input] period [mux | ded] [invert] [clock (const-expr)] io-object-name;

pin

An I/O pin. Period input can specify pins IO_4 through IO_7.

mux | ded

Specifies whether the I/O object is assigned to the multiplexed or dedicated
timer/counter. This keyword only applies, and must be used, when pin IO_4
is the input pin.

The mux keyword assigns the I/O object to the multiplexed timer/counter.
The ded keyword assigns the I/O object to the dedicated timer/counter. The
multiplexed timer/counter is always used for pins IO_5 through IO_7.

invert

Causes the measurement of time between positive edges and typically has no
effect. By default, period input measures the time between negative edges.

clock (const-expr)

Specifies a clock in the range 0 to 7, where 0 represents the fastest clock and
7 represents the slowest clock. The default value is clock 0.

You can change resolution for the timer base clock frequency by calling the
io_set_clock() function with a clock value in the range 0..7 (using one of the
TCCLK_* macros defined in <echelon.h>). This function overrides the
resolution value specified for clock() within the I/O object declaration.

For an application running on a Series 5000 or Series 6000 device, you can
specify an increased resolution for the timer base clock frequency by calling
the io_set_clock() function with a clock value in the range 0..15 (using one
of the TCCLK_* macros defined in <echelon.h>). This function overrides
the resolution value specified for clock() within the I/O object declaration.

See Appendix A, Timer/Counter Periods and Resolution, for a description of
the timer resolution and maximum range for each specification of the clock()
value or each value of the TCCLK_* macros. See the Neuron C Reference
Guide for information about the io_set_clock() function.

144 Timer/Counter Input Models

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned long input-value;

input-value = io_in(io-object-name);

Example
IO_4 input period mux clock(7) ioPeriod;

// END OF PERIOD:
when (io_update_occurs(ioPeriod)) {
 unsigned short timegap; // in tenths of a second

 // convert to tenths of sec
 timegap = (unsigned short)(io_in(ioPeriod) / 3906);
}

Pulsecount Input
The pulsecount I/O model counts the number of input edges at the input pin
over a period of 0.8388608 seconds. You can use this model to perform average
frequency measurements, implement tachometers, or control devices that require
a precision count of pulses, such as stepper motors.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
A timer/counter can be configured to count the number of input edges (up to
65535) in a fixed time (0.8388608 second) at all allowed input clock rates. Edges
can be defined as rising or falling.

This I/O model is edge sensitive. The clock driving the internal counter in the
Neuron Chip or Smart Transceiver is the actual input signal. The counter is
reset automatically every 0.839 second.

The internal counter increments with every occurrence of an active input edge.
Every 0.839 second, the content of the counter is saved and the counter is then
reset to 0. This sequence is repeated indefinitely.

The actual active edge of the input depends on whether the invert option is used
in the declaration of the function block. The default is the negative edge.

I/O Model Reference 145

0.839 s
STOPSTART

trettfin

READ
TIMER/

COUNTER
FLAG AND

EVENT
REGISTER

CLEAR FLAG

END OF
io_in()

START OF
io_in()

mux

Event Register

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

System Clock
Divide Chain

Optional Pull-Up Resistors for 3100 Family Devices

Event Register

Timer/Counter 2

Timer/Counter 1

IO11

Figure 54. Pulsecount Input and Timing

Table 55. Pulsecount Input Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to input sample 86 µs

tret Return from function 52 µs or 22 µs

Note: If the measurement is new, tret = 52 µs. If a new time is not being
returned, tret = 22 µs.

Programming Considerations
For pulsecount input, the data type of the return value for the io_in() function is
an unsigned long.

146 Timer/Counter Input Models

The input is latched every 50 ns for a Series 3100 device with a 40 MHz input
clock, or every 12.5 ns for Series 5000 and Series 6000 devices with an 80 MHz
system clock. This value scales inversely with the input clock. The value of a
pulsecount input object is updated every 0.8388608 seconds and the
io_update_occurs event becomes TRUE.

If no edges occur during the measuring period, an overflow condition occurs. The
next io_in() function call after the overflow has occurred will return the out-of-
range value of 0xFFFF. The io_update_occurs event is not asserted as TRUE
unless the program uses the io_preserve_input() function after io_select()
when using the multiplexed timer/counter, or in the reset task when using the
dedicated timer/counter.

Syntax
pin input pulsecount [mux | ded] [invert] io-object-name;

pin

An I/O pin. Pulsecount input can specify pins IO_4 through IO_7.

mux | ded

Specifies whether the I/O object is assigned to the multiplexed or dedicated
timer/counter. This keyword is used only when pin IO_4 is used as the input
pin.

The mux keyword assigns the I/O object to the multiplexed timer/counter.
The ded keyword assigns the I/O object to the dedicated timer/counter. The
multiplexed timer/counter is always used for pins IO_5 through IO_7.

invert

Causes positive edges to be counted. Typically this keyword has no effect
because the number of positive edges equals the number of negative edges.
By default, pulsecount input counts the number of negative input edges.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned long input-value;

input-value = io_in(io-object-name);

Example
IO_7 input pulsecount ioTotalTicks;
unsigned long ticks;

when (io_update_occurs(ioTotalTicks)) {
 ticks = input_value;
 // for up to 65535 ticks per 0.839 seconds
}

I/O Model Reference 147

Quadrature Input
The quadrature I/O model is used to read a shaft or positional encoder input on
two adjacent pins. You can use this model to monitor input data from shaft
encoders for low-cost angular position input.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
A timer/counter can be configured to count transitions of a binary Gray code
input on two adjacent input pins. The Gray code is generated by peripheral
devices such as shaft encoders and optical position sensors, which generate the
bit pattern (00,01,11,10,00, …) for one direction of motion and the bit pattern
(00,10,11,01,00, …) for the opposite direction. Reading the value of a quadrature
object gives the arithmetic net sum of the number of transitions since the last
time it was read (-16384 to 16383).

For Series 3100 devices, the maximum frequency of the input is one-quarter of
the input clock rate, for example 2.5 MHz for a 10 MHz Smart Transceiver input
clock. For Series 5000 devices, the maximum frequency of the input is one-half of
the system clock rate, for example 5 MHz with a 10 MHz system clock.

Quadrature devices can be connected to timer/counter 1 through pins IO6 and
IO7, and timer/counter 2 through pins IO4 and IO5 (see Figure 47 and Figure
55). If the second input transitions low while the first input is low, and high
while the first input is high, the counter counts up. Otherwise, the count is
down.

A call to the io_in() function returns the current value of the quadrature count
since the last read operation. The counter is then reset and ready for the next
series of input transitions. The count returned is a 16-bit signed binary number,
capped at ±16K.

The number shown in the diagram above is the minimum time allowed between
consecutive transitions at either input of the quadrature function block. For
more information, see the, Neuron Chip Quadrature Input Function Interface
engineering bulletin (part number 005-0003-01).

148 Timer/Counter Input Models

A

B

read, resetread, resetread, resetread, reset

t ret

READ
TIMER/COUNTER

FLAG AND
EVENT

REGISTER
CLEAR FLAG

END OF
io_in()

START OF
io_in()

Count + 6 counts Count – 6 counts

2 x XIN (or CLK1) Period, Ex: 200 ns @ 10MHz
(minimum time allowed

between consecutive transitions)

INPUT 1

INPUT 2

tfin

Event Register
IO10

IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

Optional Pull-Up Resistors for 3100 Family Devices

Event Register

Timer/Counter 2

Timer/Counter 1

IO11

Figure 55. Quadrature Input and Timing

Table 56. Quadrature Input Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to input sample 90 µs

tret Return from function 88 µs

I/O Model Reference 149

Programming Considerations
A signed long value is returned from the io_in() function, based on the change
since the last input. The input is sampled every 50 ns for a Series 3100 device
with a 40 MHz input clock, or every 12.5 ns for Series 5000 and Series 6000
devices with an 80 MHz system clock. This value scales inversely with the input
clock speed.

For Series 3100 devices, add a #pragma enable_io_pullups directive to enable
the Neuron Chip's or Smart Transceiver's built-in pull-up resistors.

For more information on quadrature input, see the Neuron Chip Quadrature
Input Function Interface engineering bulletin (part number 005-0003-01).

Syntax
pin [input] quadrature io-object-name;

pin

An I/O pin. Quadrature input requires two adjacent pins. The pin
specification denotes the lower-numbered pin of the pair. The pin can be
IO_4 (which uses the dedicated timer/counter) or IO_6 (which uses the
multiplexed timer/counter).

Figure 56 shows the use of the two signal inputs A and B. Both edges of
input A are counted. Input B indicates whether input A is moving in a
positive or a negative direction.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Figure 56. Quadrature Input

Usage
long input-value;

150 Timer/Counter Input Models

input-value = io_in(io-object-name);

Example
IO_4 input quadrature ioDial;

long angle = 0;

when (io_update_occurs(ioDial)) {
 angle += input_value; // integrate angle in software
}

Totalcount Input
The totalcount I/O model counts the number of input edges at the input pin
since the last io_in() operation, or since initialization. Thus, this model can
count external events, such as contact closures where it is important to keep an
accurate running total (see Figure 47 and Figure 57).

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
A timer/counter can be configured to count either rising or falling input edges,
but not both. Reading the value of a totalcount model gives the number of
transitions since the last time it was read (0 to 65535). Maximum frequency of
the input is one-quarter of the input clock rate for a Series 3100 device, or one-
half of the system clock rate for Series 5000 and Series 6000 devices. For
example, 2.5 MHz for a Series 3100 device at a maximum of 10 MHz input clock.

A call to the io_in() function returns the current value of the totalcount value
corresponding to the total number of active clock edges since the last call. The
counter is then reset, and ready for the next series of input transitions.

The actual active edge of the input depends on whether the invert option is used
in the declaration of the I/O object. The default is the negative edge.

I/O Model Reference 151

read input_value = 4, resetread, reset

trettfin

READ
TIMER/

COUNTER
FLAG AND

EVENT
REGISTER

CLEAR FLAG

END OF
io_in()

START OF
io_in()

mux

Event Register

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

Optional Pull-Up Resistors for 3100 Family Devices

Event Register

Timer/Counter 2

Timer/Counter 1

IO11

Figure 57. Totalcount Input and Timing

Table 57. Totalcount Input Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfin Function call to input sample 92 µs

tret Return from function 61 µs

Programming Considerations
For totalcount input, the data type of return_value for the io_in() function is
an unsigned long.

The minimum duration for a high or low input signal for this I/O object is 50 ns
for a Series 3100 device with a 40 MHz input clock, or 12.5 ns for Series 5000 and
Series 6000 devices with an 80 MHz system clock. This value scales inversely
with the input clock speed.

152 Timer/Counter Input Models

Syntax
pin [input] totalcount [mux | ded] [invert] io-object-name;

pin

An I/O pin. Totalcount input can specify pins IO_4 through IO_7.

mux | ded

Specifies whether the I/O object is assigned to the multiplexed or dedicated
timer/counter. This keyword is used only when pin IO_4 is used as the input
pin.

The mux keyword assigns the I/O object to the multiplexed timer/counter.
The ded keyword assigns the I/O object to the dedicated timer/counter. The
multiplexed timer/counter is always used for pins IO_5 through IO_7.

invert

Causes positive edges to be counted. By default, totalcount input counts the
number of negative input edges.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned long input-value;

input-value = io_in(io-object-name);

Example
IO_4 input totalcount ded ioEventCount;
unsigned long events = 0;
mtimer repeating tick = 100;

when (timer_expires(tick)) {
 events += io_in(ioEventCount);
 // this sums up all events since initialization-time
}

I/O Model Reference 153

6

Timer/Counter Output Models

This chapter describes timer/counter output models.
Timer/counter I/O models use a timer/counter circuit in the
Neuron Chip or Smart Transceiver. Each Neuron Chip and
each Smart Transceiver has two timer/counter circuits: One
whose input can be multiplexed, and one with a dedicated
input.

I/O Model Reference 155

Edgedivide Output
The edgedivide I/O model is used to control an output pin by toggling its logic
state every output_value negative edges on an input pin. This toggling results
in a acts as a frequency divider by providing an output frequency on either pin
IO0 or IO1: divide-by-n*2 counter, where n is the value defined by the
output_value argument.

The output frequency is a divided-down version of the input frequency applied on
pins IO4 – IO7. This object is useful for any divide-by-n operation, where n is
passed to the timer/counter object through the application program and can be
from 1 to 65 535. The value of 0 forces the output to the off level and halts the
timer/counter.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
A new divide value does not take effect until after the output toggles, with two
exceptions:

• If the output is initially disabled, the new (non-zero) output starts
immediately after tfout

• For a new divide value of 0, the output is disabled immediately

Normally, the negative edges of the input sync pulses are the active edge. Using
the invert keyword in the object declaration makes the positive edge active.

The initial state of the output pin is logic 0 by default. This initial state can also
be changed to logic 1 through the object declaration.

Figure 58 shows the pinout and timing information for this output model.

156 Timer/Counter Output Models

OUTPUT

SYNC INPUT

TIME

tsod

START OF
io_out()

INTERNAL
COUNT
BEGINS

END OF
io_out()

START OF
io_out()

OUTPUT
INACTIVE

t fod

t fout
twin

t ret

Timer/Counter 1

Timer/Counter 2

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

mux

Output

Sync
Input

Optional Pull-Up Resistors
for 3100 Family Devices

High Current Sink Drivers
for 3100 Family Devices

IO11

Figure 58. Edgedivide Output and Timing

Table 58. Edgedivide Output Latency Values for Series 3100 Devices

Symbol Description Minimum Typical Maximum

tfout Function call to start of timer — 96 µs —

tfod Function to output disable — 82.2 µs —

tsod Active sync edge to output toggle 550 ns — 750 ns

twin Sync input pulse width (10 MHz) 200 ns — —

I/O Model Reference 157

Symbol Description Minimum Typical Maximum

tret Return from function — 13 µs —

Programming Considerations
For edgedivide output, the data type of the output value for io_out() is an
unsigned long. Following reset of the Neuron Chip or Smart Transceiver, the
divider is disabled until the first call to the io_out() function. The first call to
the io_out() function for the edgedivide output model sets the output pin high
and starts the divider. When the divider is running, the function call to io_out()
only sets the value used for the divider and does not affect the state of the output
pin. However, when the output value is 0, the output signal is forced to a low
state and the divider is halted.

Syntax
pin [output] edgedivide sync (pin-nbr) [invert] io-object-name
 [= initial-output-level];

pin

An I/O pin. Edgedivide output can specify pins IO_0 or IO_1. If IO_0 is
specified, the multiplexed timer/counter is used and the sync pin can be IO_4
through IO_7. If IO_1 is specified, the dedicated timer/counter is used and
the sync pin must be IO_4.

sync (pin-nbr)

Specifies the sync pin, which is the counting input signal. By default, the
divider counts negative edges.

invert

This keyword causes positive edges at the sync pin input to be counted rather
than the default negative edges.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

initial-output-level

A constant expression, in ANSI C format for initializers, used to set the state
of the output pin of the I/O object at initialization. The initial state can be 0
or 1. The default is 0.

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

158 Timer/Counter Output Models

Example
IO_0 output edgedivide sync(IO_4) ioDivider;
...

when (reset) {
 // There is a 60Hz signal at pin IO_4.
 // Set up the divider to produce
 // a change on pin IO_0 once a minute.
 io_out(ioDivider, 3600UL);
}

Frequency Output
For Series 3100 devices, the frequency I/O model produces a repeating square
wave output signal whose period is a function of output_value and the selected
clock value:

period (ns) = (output_value+n) * 4000 * 2^(clock)/ input_clock (MHz)

where clock ranges from 0..7, and n = 1 for clock(0) or n = 0 otherwise.

For Series 5000 and Series 6000 devices, the frequency I/O model produces a
repeating square wave output signal whose period is a function of output_value
and the selected clock value:

period (ns) = (output_value+n) * 4000 * 2^(value)/ 10 MHz

where value ranges from 0..15, and n = 1 for clock(0) or n = 0 otherwise.

You can use this I/O model for frequency synthesis to drive an audio transducer
or to drive a frequency-to-voltage converter to generate an analog output.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
A timer/counter can be configured to generate a continuous square wave of 50%
duty cycle. Writing a new frequency value to the device takes effect at the end of
the current cycle. This object is useful for frequency synthesis to drive an audio
transducer, or to drive a frequency to voltage converter to generate an analog
output (see Figure 59 and Figure 60).

The resolution and range of the timer/counter period options is described in
Timer/Counter Resolution and Maximum Range.

A new frequency output value does not take effect until the end of the current
cycle, with two exceptions:

• If the output is disabled, the new (non-zero) output starts immediately
after tfout

• For a new output value of zero, the output is disabled immediately and
not at the end of the current cycle

I/O Model Reference 159

A disabled output is a logic zero by default unless the invert keyword is used in
the I/O object declaration. The resolution and range for this object scale with
Neuron Chip or Smart Transceiver input clock rate.

System Clock
Divide Chain

Timer/Counter 1

Timer/Counter 2

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

High Current Sink Drivers

IO11

Figure 59. Frequency Output

END
OF io_out()

tret

NEW OUTPUT
APPEARS ON PIN

HARDWARE
UPDATED

INTERNALLY

tfout

START
OF io_out()

TIME

FREQUENCY
 OUTPUT

ONE CYCLE

Figure 60. Frequency Output Timing

Table 59. Frequency Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfout Function call to output update 96 µs

tret Return from function 13 µs

Programming Considerations
For frequency output, the data type of output_value for io_out() is an
unsigned long. An output_value of 0 forces the output signal to a low state
(unless the invert keyword is used in the declaration).

160 Timer/Counter Output Models

Syntax
pin [output] frequency [invert] [clock (const-expr)] io-object-name [=initial-
output-level];

pin

Specifies either pin IO_0 (using the multiplexed timer/counter) or IO_1
(using the dedicated timer/counter).

invert

This keyword inverts the output for an output value of 0. The default output
for 0 is low.

clock (const-expr)

Specifies a clock in the range 0 to 7, where 0 represents the fastest clock and
7 represents the slowest clock. The default value is clock 0.

You can change resolution for the timer base clock frequency by calling the
io_set_clock() function with a clock value in the range 0..7 (using one of the
TCCLK_* macros defined in <echelon.h>). This function overrides the
resolution value specified for clock() within the I/O object declaration.

For an application running on a Series 5000 or Series 6000 device, you can
specify an increased resolution for the timer base clock frequency by calling
the io_set_clock() function with a clock value in the range 0..15 (using one
of the TCCLK_* macros defined in <echelon.h>). This function overrides
the resolution value specified for clock() within the I/O object declaration.

See Appendix A, Timer/Counter Periods and Resolution, for a description of
the timer resolution and maximum range for each specification of the clock()
value or each value of the TCCLK_* macros. See the Neuron C Reference
Guide for information about the io_set_clock() function.

 io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

initial-output-level

A constant expression, in ANSI C format for initializers, used to set the state
of the output pin of the I/O object at initialization. The initial state is limited
to 0 or 1. The default is 0.

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

Example
IO_1 output frequency clock(3) ioAlarm;
...

I/O Model Reference 161

when (...) {
 io_out(ioAlarm, 100);
 // outputs 3.125kHz signal at clock(3)
}

when (...) {
 io_out(ioAlarm, 50);
 // outputs 6.25kHz signal at clock(3)
}

when (...) {
 io_out(ioAlarm, 0);
 // output signal is stopped
}

Infrared Pattern Output
An infrared_pattern I/O model produces a series of timed repeating square
wave output signals. The frequency of the square wave output is controlled by
the application. Normally, this frequency is the modulation frequency used for
infrared transmission.

This I/O model is useful for driving an infrared LED to provide infrared control of
devices that support infrared remote control. For example, for a Series 3100
device with a 10 MHz input clock, a clock(1) configuration and an output-
frequency value of 33 results in a 37.878 kHz (38 kHz) modulation signal.

This model applies to 3120 Power Line Smart Transceivers, 3150 Power Line
Smart Transceivers, 3170 Power Line Smart Transceivers, Series 5000 Neuron
Processors and Smart Transceiver, and to Series 6000 Neuron Processors and
Smart Transceiver.

Hardware Considerations
The pattern of the modulation frequency is controlled by the application, which
specifies how long the output is active and how long the output is idle. This
pattern is then repeated to produce a sequence of frequency output bursts
separated by idle periods.

Timer/Counter 1

Timer/Counter 2

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

High Current Sink Drivers for 3100 Family Devices

IO11

System Clock
Divide Chain

Figure 61. Infrared Pattern Output

162 Timer/Counter Output Models

Programming Considerations
The frequency of the square wave output is controlled by the clock-expr setting
and by the unsigned long output-frequency value passed to the io_out()
function. The pattern of this modulation frequency is controlled by an array of
unsigned long timing values, also passed to the io_out() function:

• The first value in this array controls the length of the first burst of
modulation frequency signal output—the output is active for this period.

• The second value in this array controls the length of an absence of the
modulation frequency signal—the output is idle for this period.

This pattern is then repeated by subsequent values in the array to produce a
sequence of frequency output bursts separated by idle periods. This array is
similar to the array generated by the edgelog input model.

The values in the timing-table array control the on and off time of the modulation
frequency output. This timing also is a product of the Neuron input clock, and is:

On/off period (μs) = (25.2 * value + 29.4) * S

In the formula above, the scaling factor S is determined by the input clock, as
shown in Table 60.

Table 60. Determining S

S

Input Clock Rate

(Series 3100)

System Clock Rate

(Series 5000)

0.063 — 80 MHz

0.125 — 40 MHz

0.25 40 MHz 20 MHz

0.5 20 MHz 10 MHz

1 10 MHz 5 MHz

1.5259 6.5536 MHz —

2 5 MHz —

4 2.5 MHz —

8 1.25 MHz —

16 625 kHz —

The square wave output state is always toggled, between idle (off) and active (on),
at the end of the io_out() function. Typically, the number of elements in the
timing-table should always be an odd number, which will result in the output
being toggled to idle (turned off) at the end of the io_out() function. The last

I/O Model Reference 163

element of the timing-table controls the last active period before toggling to idle
(off) and returning from the io_out() function. If the number of elements in the
timing table is even, the output will be toggled on at the end of the io_out()
function, which is typically not the desired behavior.

Syntax
pin [output] infrared_pattern [invert] [clock(clock-expr)] io-object-name [=
initial-output-level] ;

pin

Specifies a Neuron output pin. The value can be IO_0 or IO_1.

invert

Set this option to specify that the output pin is idle at 1. Otherwise, the
output pin is idle at 0.

clock(const-expr)

Specifies a clock in the range 0 to 7, where 0 is the fastest clock and 7 is the
slowest clock. The default clock for infrared_pattern output is clock(0).
You can use the io_set_clock() function to change the clock at run time.
Table 61 shows the clock values for a Series 3100 device with a 10 MHz
input clock and Series 5000 and Series 6000 devices with an 80 MHz system
clock (the values scale inversely proportional to the input or system clock).

Table 61. Clock Values

Clock

Range and Resolution Period

Series 3100 (10 MHz Clock) Series 5000 (80 MHz Clock)

0 (default) 800 ns to 26.21 ms in steps of 400 ns
(1-65535)

12.8 μs to 419.36 ms in steps of 25 ns
(1-65535)

1 0 to 52.42 ms in steps of 800 ns
(0-65535)

0 to 838.72 ms in steps of 50 ns
(0-65535)

2 0 to 104.86 ms in steps of 1.6 μs 0 to 1.677 sec in steps of 100 ns

3 0 to 209.71 ms in steps of 3.2 μs 0 to 3.355 sec in steps of 200 ns

4 0 to 419.42 ms in steps of 6.4 μs 0 to 6.71 sec in steps of 400 ns

5 0 to 838.85 ms in steps of 12.8 μs 0 to 13.42 sec in steps of 800 ns

6 0 to 1.677 sec in steps of 25.6 μs 0 to 26.84 sec in steps of 1.6 μs

7 0 to 3.355 sec in steps of 51.2 μs 0 to 53.68 sec in steps of 3.2 μs

164 Timer/Counter Output Models

io-object-name

Specifies a name for the I/O object, in the ANSI C format for variable
identifiers.

initial-output-level

A constant expression, in ANSI C format for initializers, used to set the state
of the output pin of the I/O object at initialization. The initial state is limited
to 0 or 1. The default is 0.

Usage
unsigned count;
unsigned long output-frequency, timing-table[count];

io_out(io-object-name, output-frequency, timing-table, count);
(There is no return value for the function.)

Example
IO_0 output infrared_pattern ioIrOut;

unsigned long timing [5]={395,395,783,783,395};
unsigned long frequency = 62;

when (...) {
 io_out(ioIrOut, frequency, timing, 5);
}

Oneshot Output
The oneshot I/O model produces output pulses of a specified period or duty cycle.
That is, for Series 3100 devices, it can produce a single output pulse whose
duration is a function of the output value and the selected clock value, calculated
as follows:

duration (ns) = output_value * 2000 * 2^(clock) / input_clock (MHz)

where clock ranges from 0..7

For Series 5000 and Series 6000 devices, it can produce a single output pulse
whose duration is a function of the output value and the selected clock value,
calculated as follows:

duration (ns) = output_value * 2000 * 2^(value) / 10 MHz

where value ranges from 0..15

You can use this I/O model to implement digital-to-analog (D/A) converters or to
control any device with a pulsewidth modulated input.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

I/O Model Reference 165

Hardware Considerations
A timer/counter can be configured to generate a single pulse of programmable
duration. The asserted state can be either logic high or logic low. Retriggering
the oneshot before the end of the pulse causes it to continue for the new duration.
The resolution and range of the timer/counter period options is described in
Timer/Counter Resolution and Maximum Range. This object is useful for
generating a time delay without intervention of the application processor (see
Figure 62).

While the output is still active, a subsequent call to this function cause the
update to take effect immediately, extending the current cycle. This is, therefore,
a retriggerable oneshot function.

END
OF

io_out()

START
OF 2ND
io_out()

T = User-defined oneshot output period

T

ONESHOT
OUTPUT

TIME

HARDWARE
UPDATE/

RETRIGGER
HARDWARE

UPDATE

START
OF 1ST
io_out()

tfoutt fout

Timer/Counter 1

Timer/Counter 2

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

High Current Sink Drivers for 3100 Family Devices

T

IO11

tjit

tret

System Clock
Divide Chain

Figure 62. Oneshot Output and Timing

166 Timer/Counter Output Models

Table 62. Oneshot Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfout Function call to output update 96 µs

tret Return from function 13 µs

tjit Output duration jitter —

Note: The maximum value for tjit is 1 timer/counter clock period.

Programming Considerations
The oneshot I/O model can be retriggered. A call to the io_out() function for a
oneshot object starts a new pulse, even if one is currently in progress.

For oneshot output, the data type of the output value for the io_out() function
is an unsigned long. An output value of zero (0) forces the output to a low state.

Syntax
pin [output] oneshot [invert] [clock (const-expr)] io-object-name
 [=initial-output-level];

pin

Specifies either pin IO_0 (using the multiplexed timer/counter) or IO_1
(using the dedicated timer/counter).

invert

Causes the output to be inverted, producing a signal that is normally high
with low pulses. The default is normally low with high pulses.

clock (const-expr)

Specifies a clock in the range 0 to 7, where 0 represents the fastest clock and
7 represents the slowest clock. The default value is clock 0.

You can change resolution for the timer base clock frequency by calling the
io_set_clock() function with a clock value in the range 0..7 (using one of the
TCCLK_* macros defined in <echelon.h>). This function overrides the
resolution value specified for clock() within the I/O object declaration.

For an application running on Series 5000 or Series 6000 devices, you can
specify an increased resolution for the timer base clock frequency by calling
the io_set_clock() function with a clock value in the range 0..15 (using one
of the TCCLK_* macros defined in <echelon.h>). This function overrides
the resolution value specified for clock() within the I/O object declaration.

See Appendix A, Timer/Counter Periods and Resolution, for a description of
the timer resolution and maximum range for each specification of the clock()

I/O Model Reference 167

value or each value of the TCCLK_* macros. See the Neuron C Reference
Guide for information about the io_set_clock() function.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

initial-output-level

A constant expression, in ANSI C format for initializers, used to set the state
of the output pin of the I/O object at initialization. The initial state can be 0
or 1. The default is 0.

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

Example
IO_0 output oneshot ioFlash;
unsigned long pulse = 39062; // 1 second pulse

mtimer repeating flashTimer;

when (...) {
 // start timer, flash every 2 secs
 flashTimer = 2000;
}

when (timer_expires(flashTimer)) {
 // outputs a 1 sec pulse
 io_out(ioFlash, pulse);
}

Pulsecount Output
For Series 3100 devices, the pulsecount I/O model produces a sequence of pulses
whose period is a function of the clock period, calculated as follows:

period (ns) = 256 * 2000 * 2^(clock) / input_clock (MHz)

where clock ranges from 0..7

For Series 5000 and Series 6000 devices, the pulsecount I/O model produces a
sequence of pulses whose period is a function of the clock period, calculated as
follows:

period (ns) = 256 * 2000 * 2^(value) / 10 MHz

where value ranges from 0..15

This I/O model can perform average frequency measurements and implement
tachometers. You can use the pulsecount input to control devices that require a
precision count of pulses, such as stepper motors.

168 Timer/Counter Output Models

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
A timer/counter can be configured to generate a series of pulses. The number of
pulses output is in the range 0 to 65535, and the output waveform is a square
wave with 50% duty cycle. This function suspends the current application
context until the pulse train is complete. See Timer/Counter Square Wave
Output for the frequency of the waveform for various clock select values. This
model is useful for external counting devices that can accumulate pulse trains,
such as stepper motors (see Figure 63).

The io_out() function does not return until all output pulses have been
produced. tfout is the time from function call to first output pulse. Therefore, the
calling of this function ties up the application processor for a period of N x (pulse
period) + tfout + tret, where N is the number of specified output pulses.

The polarity of the output depends on whether the invert option is used in the
declaration of the function block. The default is low with high pulses.

RETURN FROM
io_out()

FUNCTION CALL

trettfout

1ST ACTIVE
OUTPUT

PULSE EDGE

io_out()
FUNCTION

CALL

Timer/Counter 1

Timer/Counter 2

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

High Current Sink Drivers for 3100 Family Devices

IO11

System Clock
Divide Chain

Figure 63. Pulsecount Output and Timing

I/O Model Reference 169

Table 63. Pulsecount Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfout Function call to first active output pulse
edge

115 µs

tret Return from function 5 µs

Programming Considerations
The output_value determines the number of pulses output. When this I/O
model is used, the io_out() function call does not return until all pulses have
been produced. This process ties up the application processor for the duration of
the pulsecount.

For pulsecount output, the data type of the output value for the io_out()
function is an unsigned long. An output value of 0 forces the output signal to
its normal state.

Syntax
pin output pulsecount [invert] [clock (const-expr)] io-object-name
 [=initial-output-level];

pin

Specifies either pin IO_0 (using the multiplexed timer/counter) or IO_1
(using the dedicated timer/counter).

invert

Causes the signal to be inverted, normally high with low pulses. By default,
the signal is normally low with high pulses.

clock (const-expr)

Specifies a clock in the range 1 to 7, where 1 is the fastest clock and 7 is the
slowest clock. The default clock for pulsecount output is clock 7. The
io_set_clock() function can be used to change the clock.

Specifying clock 0 for the io_set_clock() function results in an unspecified
number of counts, because 0 is not a valid clock for pulsecount output.

See Appendix A, Timer/Counter Periods and Resolution, for a description of
how the io_set_clock() function affects the resolution and range of certain
timer/counter I/O models.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

initial-output-level

170 Timer/Counter Output Models

A constant expression, in ANSI C format for initializers, used to set the state
of the output pin of the I/O object at initialization. The initial state can be 0
or 1. The default is 0.

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

Example
IO_1 output pulsecount ioTrainOut;

when (...) {
 // will produce 100 pulses on pin 1
 // each pulse of period 6.554 milliseconds
 io_out(ioTrainOut, 100);
}

Pulsewidth Output
For Series 3100 devices, the pulsewidth I/O model produces output pulses of a
specified period or duty cycle to create a repeating waveform whose duty cycle is
a function of output-value and whose period is a function of the clock period,
calculated as follows:

pulsewidth (ns) = output-value * 2000 * 2^(clock) / input_clock (MHz)

total_period (ns) = 256 * 2000 * 2^(clock) / input_clock (MHz)

where clock ranges from 0..7

For Series 5000 and Series 6000 devices, the pulsewidth I/O model produces
output pulses of a specified period or duty cycle to create a repeating waveform
whose duty cycle is a function of output-value and whose period is a function of
the clock period, calculated as follows:

pulsewidth (ns) = output-value * 2000 * 2^(value) / 10 MHz

total_period (ns) = 256 * 2000 * 2^(value) / 10 MHz

where value ranges from 0..15

You can use this I/O object to implement digital-to-analog (D/A) converters or to
control any device with a pulsewidth-modulated input.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
A timer/counter can be configured to generate a pulsewidth modulated repeating
waveform. In pulsewidth short function, the duty cycle ranges from 0% to 100%
(0/256 to 255/256) of a cycle, in steps of about 0.4% (1/256). See Timer/Counter
Square Wave Output for the frequency of the waveform for various clock values.

I/O Model Reference 171

In pulsewidth long function, the duty cycle ranges from 0% to almost 100%
(0/65536 to 65535/65536) of a cycle in steps of 15.25 ppm (1/65536). See
Timer/Counter Pulsetrain Output for the frequency of the waveform for various
clock values. The asserted state of the waveform can be either logic high or logic
low. Writing a new pulsewidth value to the device takes effect at the end of the
current cycle. A pulsewidth modulated signal provides a simple means of digital-
to-analog conversion (see Figure 64).

The new output value does not take effect until the end of the current cycle, with
two exceptions:

• If the output is disabled, the new (non-zero) output starts immediately
after tfout

• For a new output value of zero, the output is disabled immediately and
not at the end of the current cycle

A disabled output is a logic 0 by default, unless the invert keyword is used in the
I/O object declaration.

ONE CYCLE

NEW OUTPUT
APPEARS ON PIN

HARDWARE
UPDATED

INTERNALLY

START
OF

io_out()

ONE CYCLE

TIME

PULSEWIDTH
OUTPUT

t fout

tret

Timer/Counter 1

Timer/Counter 2

IO10
IO9
IO8

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

High Current Sink Drivers for 3100 Family Devices

IO11

System Clock
Divide Chain

Figure 64. Pulsewidth Output and Timing

Table 64. Pulsewidth Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

172 Timer/Counter Output Models

Symbol Description Typical at 10 MHz

tfout Function call to output update 101 µs

tret Return from function 13 µs

Programming Considerations
For 8-bit pulsewidth output, the data type of output-value for the io_out()
function is an unsigned short. An output-value of 0 results in a 0% duty cycle.
A value of 255 (the maximum value allowed) results in a 100% duty cycle. The
duty cycle of the pulse train is (output-value/256), except when output-value is
255; in that case, the duty cycle is 100%.

For 16-bit pulsewidth output, the data type of output-value for the io_out()
function is an unsigned long. An output-value of 0 results in a 0% duty cycle. A
value of 65535 (the maximum value allowed) results in a 99.998% duty cycle.
The duty cycle of the pulse train is (output-value/65536).

Important: Do not use an output-value of 1 in combination with clock(0).

Syntax
pin [output] pulsewidth [short | long] [invert] [clock (const-expr)] io-object-
name
 [=initial-output-level];

pin

Specifies either pin IO_0 (using the multiplexed timer/counter) or IO_1
(using the dedicated timer/counter).

short | long

Resolution of the data value: short specifies 8-bit pulsewidth output, long
specifies 16-bit. If neither of these options is specified, the pulsewidth I/O
object defaults to the 8-bit (short) mode.

invert

Causes the output signal to be inverted, normally high for a 0% duty cycle.
By default, the output signal is normally low for a 0% duty cycle.

clock (const-expr)

Specifies a clock in the range 0 to 7, where 0 is the fastest clock and 7 is the
slowest clock. The default clock for pulsewidth output is clock 0. The
io_set_clock() function can be used to change the clock.

See Appendix A, Timer/Counter Periods and Resolution, for a description of
how the io_set_clock() function affects the resolution and range of certain
timer/counter I/O models.

I/O Model Reference 173

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

initial-output-level

A constant expression, in ANSI C format for initializers, used to set the state
of the output pin of the I/O object at initialization. The initial state is limited
to 0 or 1. The default is 0.

Usage
unsigned int output-value; // for 8-bit output
unsigned long output-value; // for 16-bit output

io_out(io-object-name, output-value);

Example
IO_1 output pulsewidth clock(7) ioDimmer;

mtimer repeating tick;
unsigned short brightness;

when (...) {
 tick = 10; // start clock for fading
 brightness = 255; // start brightness for fading
}

when (timer_expires(tick_timer)) {
 io_out(ioDimmer, --brightness);
 if (brightness == 0) {
 tick = 0;
 // turn off the timer
 }
}

Stretched Triac Output
The stretchedtriac I/O model is used to control the delay of an output pulse
signal with respect to an input trigger signal. For control of AC circuits using a
stretchedtriac I/O object, the sync input is typically a zero-crossing signal, and
the pulse output is the triac trigger signal. The output pulse width is
programmatically controlled, normally active low, but it can be inverted. The
pulse width is independent of the Neuron input clock.

You can use this I/O model to control AC circuits that use a triac device, such as
lamp dimmers.

This model applies to Series 5000 and Series 6000 Neuron Processors and Smart
Transceivers.

For Series 3100 devices, see Triac Output.

174 Timer/Counter Output Models

Comparing Stretched Triac Output to Triac Output
Figure 65 shows basic triac operation for a Series 3100 device using the triac
I/O object. For a Series 3100 device, the turn-on pulse has a fixed duration of
25.6 µs, which is sufficient to control many triac devices.

t
Li

ne
 S

ig
na

l

t

N
eu

ro
n

C
hi

p
or

 S
m

ar
t T

ra
ns

ce
iv

er

C
on

tro
l Count Count

Trigger
Pulse

Trigger
Pulse

t

D
es

ire
d

D
im

m
ed

 S
ig

na
l

Triac Auto
Turn-Off

t

Ze
ro

 C
ro

ss
in

g
S

ig
na

l

Figure 65. Series 3100 Triac Output

Figure 66 shows basic triac operation for a Series 5000 and Series 6000 device
using the stretchedtriac I/O object. For Series 5000 and Series 6000 devices,
the turn-on pulse has a programmatically controlled duration. By increasing the

I/O Model Reference 175

turn-on pulse duration, the stretchedtriac I/O object can control triac devices
that run under highly inductive loads.

t

Li
ne

 S
ig

na
l

t

N
eu

ro
n

C
hi

p
or

 S
m

ar
t T

ra
ns

ce
iv

er

C
on

tro
l Count Count

Stretched
Trigger
Pulse

Stretched
Turn-On

Pulse

t

D
es

ire
d

D
im

m
ed

 S
ig

na
l

Triac Auto
Turn-Off

t

Ze
ro

 C
ro

ss
in

g
S

ig
na

l

Figure 66. Series 5000 and Series 6000 Stretched Triac Output

Hardware Considerations
On a Smart Transceiver, a timer/counter can be configured to control the delay of
an output signal with respect to a synchronization input. This synchronization

176 Timer/Counter Output Models

can occur on the rising edge, the falling edge, or both the rising and falling edges
of the input signal. For control of AC circuits using a triac device, the sync input
is typically a zero-crossing signal, and the pulse output is the triac trigger signal.

The output gate pulse is asserted after the control period and is deasserted at or
near the next sync input point. Although the input trigger signal (zero crossing)
is asynchronous relative to the internal clock, there is minimal jitter, tjit,
associated with the output gate pulse.

The actual active edge of the sync input and the triac gate output can be set by
using the clockedge or invert parameters, respectively.

trigger
output

Timer/Counter 1

Timer/Counter 2

sync

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

mux

to
triac
gate

from
zero
crossing
detector

IO10
IO9
IO8

t ret

END OF
 io_out()

tgpw

NEW
GATE-PULSE
DELAY

FIRST GATE
PULSE WITH
NEW DELAY

HARDWARE
UPDATED

START
OF

io_out()

TIME

(OUTPUT)

ZERO
CROSSING

DETECTOR

AC
INPUT

CLOCK EDGE
(+)

t ret

END OF
 io_out()

NEW
GATE-PULSE
DELAY

FIRST GATE
PULSE WITH
NEW DELAY

HARDWARE
UPDATED

START
OF

io_out()

TIME

TRIAC GATE
(OUTPUT)

ZERO
CROSSING
DETECTOR

AC
INPUT

CLOCK EDGE
(+-)

tjit

IO11

tfout

t jit

t gpw

tfout

TRIAC GATE

System Clock
Divide Chain

Figure 67. Stretched Triac Output and Timing

The hardware update does not happen until the occurrence of an external active
sync clock edge. The internal timer is then enabled, and a triac gate pulse is
generated after the user-defined period has elapsed. This sequence is repeated
indefinitely until another update is made to the triac gate pulse delay value.

tfout (min) refers to the delay from the initiation of the function call to the first
sampling of the sync input. In the absence of an active sync clock edge, the input
is repeatedly sampled for 10 ms (1/2 wave of a 50 Hz line cycle time), tfout (max),
during which the application processor is suspended.

Programming Considerations
Execution of this I/O object type is synchronized with the sync pin input and
might not return for up to 10 ms. That is, the application program could be
delayed for as long as 10 ms. Because of this synchronization, the frequency of

I/O Model Reference 177

the sync pin input (and the frequency of the AC circuit being controlled) is
limited to the 50-60 Hz range.

Syntax
pin [output] stretchedtriac sync (pin-nbr) [clockedge (+)|(-)|(+-)]
 frequency(value) io-object-name;

pin

An I/O pin. Stretched triac output can specify pins IO_0 or IO_1. If IO_0 is
specified, the sync pin can be IO_4 through IO_7. If IO_1 is specified, the
sync pin must be IO_4.

sync (pin-nbr)

Specifies the sync pin, which is the input trigger signal.

clockedge (+)|(-)|(+-)

(+) Causes the sync input to be positive-edge sensitive.

(-) Causes the sync input to be negative-edge sensitive. This is the default.

(+-) Causes the sync input to be both positive- and negative-edge sensitive.

frequency(value)

Specifies the frequency of the sync pin input. Valid values range from 40 to
70, with the most usual values’ being 50 (for 50 Hz input) or 60 (for 60 Hz
input).

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

Usage
unsigned short control-value;

io_out(io-object-name, control-value);

The io_out() function for a stretchedtriac I/O object uses a control-value
parameter to specify duration of the triac trigger pulse. This 8-bit control value
allows you to stretch the triac trigger pulse to any width within the half-cycle
(between zero crossings). The control value is related to the number of clock
cycles between zero crossings, and depends on the AC frequency (50 or 60 Hz)
that the triac is controlling. Valid values are:

• 0-193 specifies an amount of stretching for 50 Hz control frequency

• 0-160 specifies an amount of stretching for 60 Hz control frequency

The 193 or 160 values represent a minimum stretching of the triac control signal
(the triac is pulsed on for the minimum time before the control signal’s zero
crossing – for example, a light is almost completely dim). A 0 value represents
maximum stretching of the triac control signal.

178 Timer/Counter Output Models

The io_set_terminal_count() function allows the application to change the
terminal count for the stretched triac I/O object at runtime. This function allows
a device to:

• Have a single application for both 50 Hz and 60 Hz power domains

• Operate at a non-standard power line frequency

• Provide higher-than-typical tolerances to changes in frequency

The application can determine the current values for frequency at runtime, and
use this function to adjust the triac on-time as needed.

Example
IO_0 output stretchedtriac sync (IO_5) frequency(60)
ioTriac;

when (...) {
 io_out(ioTriac, 160); // full on
}

when (...) {
 io_out(ioTriac, 80); // half on
}

when (...) {
 io_out(ioTriac, 0); // full off
}

Triac Output
The triac I/O model is used to control the delay of an output pulse signal with
respect to an input trigger signal. For control of AC circuits using a triac I/O
object, the sync input is typically a zero-crossing signal, and the pulse output is
the triac trigger signal. The output pulse is 25 μs wide, normally low. The pulse
width is independent of the Neuron input clock.

You can use this I/O model to control AC circuits that use a triac device, such as
lamp dimmers.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

For applications that drive inductive loads, or applications that operate with a
wide range of power line frequencies, see Stretched Triac Output.

Hardware Considerations
On a Smart Transceiver, a timer/counter can be configured to control the delay of
an output signal with respect to a synchronization input. This synchronization
can occur on the rising edge, the falling edge, or both the rising and falling edges
of the input signal. For control of AC circuits using a triac device, the sync input
is typically a zero-crossing signal, and the pulse output is the triac trigger signal.
The resolution and range of the timer/counter period options is described in
Timer/Counter Resolution and Maximum Range (see Figure 68).

I/O Model Reference 179

The output gate pulse is gated by an internal clock with a constant period of 25.6
µs for a Series 3100 device at 10 MHz (39.062 µs at 6.5536 MHz). Because the
input trigger signal (zero crossing) is asynchronous relative to this internal clock,
there is a jitter, tjit, associated with the output gate pulse.

The actual active edge of the sync input and the triac gate output can be set by
using the clockedge or invert parameters, respectively.

trigger
output

Timer/Counter 1

Timer/Counter 2

sync

IO0
IO1
IO2
IO3
IO4
IO5
IO6
IO7

mux

to
triac
gate

from
zero
crossing
detector

IO10
IO9
IO8

t ret

END OF
 io_out()

tgpw

NEW
GATE-PULSE
DELAY

FIRST GATE
PULSE WITH
NEW DELAY

HARDWARE
UPDATED

START
OF

io_out()

TIME

(OUTPUT)

ZERO
CROSSING

DETECTOR

AC
INPUT

CLOCK EDGE
(+) or (-)

t ret

END OF
 io_out()

NEW
GATE-PULSE
DELAY

FIRST GATE
PULSE WITH
NEW DELAY

HARDWARE
UPDATED

START
OF

io_out()

TIME

TRIAC GATE
(OUTPUT)

ZERO
CROSSING
DETECTOR

AC
INPUT

CLOCK EDGE
(+-)

High Current Sink Drivers
for 3100 Family Devices

t jit

Optional Pull-Up Resistors
for 3100 Family Devices

IO11

tfout

t jit

t gpw

tfout

TRIAC GATE

System Clock
Divide Chain

Figure 68. Triac Output and Timing
The hardware update does not happen until the occurrence of an external active
sync clock edge. The internal timer is then enabled, and a triac gate pulse is
generated after the user-defined period has elapsed. This sequence is repeated
indefinitely until another update is made to the triac gate pulse delay value.

tfout (min) refers to the delay from the initiation of the function call to the first
sampling of the sync input. In the absence of an active sync clock edge, the input
is repeatedly sampled for 10 ms (1/2 wave of a 50 Hz line cycle time), tfout (max),
during which the application processor is suspended.

Programming Considerations
Execution of this I/O model is synchronized with the sync pin input and might
not return for up to 10 ms. That is, the current application context could be
delayed for as long as 10 ms. Because of this synchronization, the frequency of

180 Timer/Counter Output Models

the sync pin input (and the frequency of the AC circuit being controlled) is
limited to the 50-60 Hz range.

When using the pulse output configuration, an output value of 65535 (the
overrange value) assures that no output pulse is generated. This is the
equivalent of an OFF state. When using the level output configuration, there is
always some amount of output signal; use an output value that is about 95% of
the half-cycle period to approximate the OFF state.

Syntax
pin [output] triac [pulse] sync (pin-nbr) [invert] [clock (const-expr)]
 [clockedge (+)|(-)|(+-)] io-object-name;

pin

An I/O pin. Triac output can specify pins IO_0 or IO_1. If IO_0 is specified,
the sync pin can be IO_4 through IO_7. If IO_1 is specified, the sync pin
must be IO_4.

sync (pin-nbr)

Specifies the sync pin, which is the input trigger signal.

invert

Causes the output signal to be inverted, normally high. The default output
signal is normally low.

clock (const-expr)

Specifies a clock in the range 0 to 7, where 0 represents the fastest clock and
7 represents the slowest clock. The default value is clock 0.

You can change resolution for the timer base clock frequency by calling the
io_set_clock() function with a clock value in the range 0..7 (using one of the
TCCLK_* macros defined in <echelon.h>). This function overrides the
resolution value specified for clock() within the I/O object declaration.

For an application running on a Series 5000 or Series 6000 device, you can
specify an increased resolution for the timer base clock frequency by calling
the io_set_clock() function with a clock value in the range 0..15 (using one
of the TCCLK_* macros defined in <echelon.h>). This function overrides
the resolution value specified for clock() within the I/O object declaration.

See Appendix A, Timer/Counter Periods and Resolution, for a description of
the timer resolution and maximum range for each specification of the clock()
value or each value of the TCCLK_* macros. See the Neuron C Reference
Guide for information about the io_set_clock() function.

clockedge (+)|(-)|(+-)

(+) Causes the sync input to be positive-edge sensitive.

(-) Causes the sync input to be negative-edge sensitive. This is the default.

(+-) Causes the sync input to be both positive- and negative-edge sensitive
(valid for all Neuron 3120xx Chips, all models of Neuron 3150 Chips except
minor model 0, all Smart Transceivers, Series 5000 and Series 6000 devices).
Can be used with pulse mode only.

I/O Model Reference 181

Note: The clockedge (+-) option does not work with minor model 0 of
Neuron 3150 Chips. When using a Neuron 3150 Chip, a 3150 Smart
Transceiver, or a LonBuilder emulator, the compiler inserts code in the
application that checks for the availability of this feature. This code logs an
error if the chip does not support the feature.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

[pulse]
Specifies that the output signal produces a 25 μs pulse at the delay point.

The output pulse is generated by an internal clock with a constant period of
25.6 μs (independent of the Neuron input clock). Because the input sync edge
is asynchronous relative to the internal clock, there is a jitter associated with
the pulse output relative to the input sync edge. This jitter spans a period of
25.6 μs.

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

Example 1
IO_0 output triac sync (IO_5) ioTriac;

when (...) {
 io_out(ioTriac, 325); // delay pulse by 8.3 ms
}

when (...) {
 io_out(ioTriac, 650); // delay pulse by 16.6 ms
}

when (...) {
 io_out(ioTriac, 0); // full on
}

182 Timer/Counter Output Models

Figure 69. Triac Output, Example 1

Example 2
This example does not apply to model 0 Neuron 3150 Chips.

IO_1 output triac sync (IO_4) clockedge (+-) io_dimmer_2;
...
io_out(io_dimmer_2,325);

Figure 70. Triac Output, Example 2

I/O Model Reference 183

Triggered Count Output
You can use this I/O model to control stepper motors or position actuators that
provide position feedback in the form of a pulse train.

This model applies to Series 3100 Neuron Chips and Smart Transceivers, to
Series 5000 Neuron Processors and Smart Transceivers, and to Series 6000
Neuron Processors and Smart Transceivers.

Hardware Considerations
A timer/counter can be configured to generate an output pulse that is asserted
under program control, and de-asserted when a programmable number of input
edges (up to 65535) has been counted on an input pin (IO4 – IO7). Assertion can
be either logic high or logic low. This object is useful for controlling stepper
motors or positioning actuators which provide position feedback in the form of a
pulse train. The drive to the external device is enabled until it has moved the
required distance, and then the device is disabled (see Figure 71).

The active output level depends on whether the invert option is used in the
declaration of the function block. The default is high.

184 Timer/Counter Output Models

Figure 71. Triggered Count Output and Timing

Table 65. Triggered Count Output Latency Values for Series 3100 Devices

Symbol Description Typical at 10 MHz

tfout Function call to output update 109 µs

tcod Last negative sync
Clock edge to output inactive

min 550 ns
max 750 ns

tret Return from function 7 µs

Programming Considerations
The triggeredcount I/O model is used to control an output pin to the active
state and keep it active until output-value negative edges are counted at the

I/O Model Reference 185

input sync pin. After output-value edges have counted off, the output pin returns
to the low state.

For triggeredcount output, the data type of output-value for the io_out()
function is an unsigned long. An output-value of 0 forces the output signal to
an inactive state.

Syntax
pin [output] triggeredcount sync (pin-nbr) [invert] io-object-name
 [=initial-output-level] ;

pin

An I/O pin. Triggeredcount output can specify pins IO_0 or IO_1. If IO_0 is
specified, the multiplexed timer/counter is used and the sync pin can be IO_4
through IO_7. If IO_1 is specified, the dedicated timer/counter is used and
the sync pin must be IO_4.

sync (pin-nbr)

Specifies the sync pin, which is the counting input signal with low pulses.

invert

Causes the output signal to be inverted, normally high. By default, the
output signal is normally low with high pulses.

io-object-name

A user-specified name for the I/O object, in the ANSI C format for variable
identifiers.

initial-output-level

A constant expression, in ANSI C format for initializers, used to set the state
of the output pin of the I/O object at initialization. The initial state can be 0
or 1. The default initial state is 0.

In Figure 72, an io_out() function call is executed with a count argument of 11.
After 11 negative edges at the input pin, the output goes low. The delay from the
last input edge to the output falling edge is 50 ns or less for a Series 3100 device
with an input clock of 40 MHz, or 12.5 ns or less for Series 5000 and Series 6000
devices with an 80 MHz system clock.

186 Timer/Counter Output Models

Figure 72. Triggered Count Output

Usage
unsigned long output-value;

io_out(io-object-name, output-value);

Example
IO_0 output triggeredcount sync (IO_4) ioCascader;

when (...) {
 // 1 big output pulse for 10 input pulses
 io_out(ioCascader, 10);
}

I/O Model Reference 187

A

Timer/Counter Periods and
Resolution

This appendix describes resolution, range, rate, frequency,
and period information that is common to several
timer/counter I/O models.

I/O Model Reference 189

Timer/Counter Resolution and Maximum Range
Various combinations of I/O pins can be configured as basic inputs or outputs.
The application program can optionally specify the initial values of basic outputs.
Pins configured as outputs can also be read as inputs, returning the value last
written.

The gradient behavior of the timing numbers for different Neuron Chip or Smart
Transceiver pins for some of the I/O models is due to the shift-and-mask
operation performed by the Neuron system firmware.

Series 3100 Resolution and Range
For dualslope input, edgelog input, ontime input, and period input, and infrared
input, the timer/counter returns a value (or a table of values, in the case of
edgelog input) in the range 0 to 65535, representing elapsed times from 0 up to
the maximum range given in Table 66.

For oneshot output, frequency output, and triac output, the timer/counter can be
programmed with a number in the range 0 to 65535. This number represents the
waveform ontime for oneshot output, the waveform period for frequency output,
and the control period from sync input to pulse/level output for the stretched triac
and triac output.

Table 66 gives the range and resolution for these timer/counter objects at 10
MHz (the values scale for other clock rates; that is, for a 20 MHz device, divide
the values in the table by 2). The clock select value is specified with the clock
keyword in the declaration of the I/O object in the Neuron C application program,
and can be modified at runtime by using the io_set_clock() function.

Table 66. Series 3100 Timer/Counter Resolution and Maximum Range at 10
MHz

Clock Select

Dualslope, Edgelog, Ontime, and
Period Inputs; Oneshot and Triac

Outputs Frequency Output

Resolution
Maximum

Range Resolution
Maximum
Range

0 0.2 µs 13.1 ms 0.4 µs 26.2 ms

1 0.4 µs 26.2 ms 0.8 µs 52.4 ms

2 0.8 µs 52.4 ms 1.6 µs 105 ms

3 1.6 µs 105 ms 3.2 µs 210 ms

4 3.2 µs 210 ms 6.4 µs 419 ms

5 6.4 µs 419 ms 12.8 µs 839 ms

6 12.8 µs 839 ms 25.6 µs 1678 ms

190 Timer/Counter Periods and Resolution

7 25.6 µs 1678 ms 51.2 µs 3355 ms

To Calculate for Other Clock Rates:

• Resolution =
InputClock

ntClockSelec)(2 +

ClockSelect = 0..7
n = 1 for dualslope, edgelog, oneshot output, ontime, period input,

 and triac output
n = 2 for frequency output

InputClock in MHz
Resolution in seconds

• Maximum Range = 65535 x Resolution
Resolution in seconds

Maximum Range in seconds

For each of the timer/counter I/O models, the range and resolution in Table 66
should be read as:

• Range of 13.1 ms in steps of 0.2 µs

• Range of 26.2 ms in steps of 0.4 µs

• And so on

Series 5000 and Series 6000 Resolution and Range
For dualslope input, edgelog input, ontime input, and period input, and infrared
input, the timer/counter returns a value (or a table of values, in the case of
edgelog input) in the range 0 to 65535, representing elapsed times from 0 up to
the maximum range given in Table 67.

For oneshot output, frequency output, and triac output, the timer/counter can be
programmed with a number in the range 0 to 65535. This number represents the
waveform ontime for oneshot output, the waveform period for frequency output,
and the control period from sync input to pulse/level output for the triac output.
The clock select value is specified with the clock keyword in the declaration of
the I/O object in the Neuron C application program, and can be modified at
runtime by using the io_set_clock() function.

The resolution and range values in Table 67 apply to all system clock settings,
that is, they do not scale with changes to the system clock.

If you specify an alternate clock value (using the io_set_clock() function with a
TCCLK_* macro value) that is lower than your device’s system clock setting, the
resolution and range values reflect the expected values specified in Table 67.

However, you cannot specify a value that defines a clock rate that is higher than
one-half of the device’s system clock. For example, if your system clock rate is 20
MHz, you can specify any TCCLK_* macro that defines a 10 MHz or lower clock
rate (that is, you cannot specify TCCLK_40MHz or TCCLK_20MHz – no error
is issued, but the effective value used in this case is TCCLK_10MHz).

I/O Model Reference 191

Table 67. Series 5000 and Series 6000 Timer/Counter Resolution and Maximum Range

TCCLK Macro

Dualslope, Edgelog, Ontime, and
Period Inputs; Oneshot and Triac
Outputs Frequency Output

Resolution Maximum Range Resolution Maximum Range

TCCLK_40MHz 25 ns 1.64 ms 50 ns 3.28 ms

TCCLK_20MHz 50 ns 3.28 ms 0.1 µs 6.56 ms

TCCLK_10MHz 0.1 µs 6.56 ms 0.2 µs 13.1 ms

TCCLK_5MHz 0.2 µs 13.1 ms 0.4 µs 26.2 ms

TCCLK_2500kHz 0.4 µs 26.2 ms 0.8 µs 52.4 ms

TCCLK_1250kHz 0.8 µs 52.4 ms 1.6 µs 105 ms

TCCLK_625kHz 1.6 µs 105 ms 3.2 µs 210 ms

TCCLK_312k5Hz 3.2 µs 210 ms 6.4 µs 419 ms

TCCLK_156k2Hz 6.4 µs 419 ms 12.8 µs 839 ms

TCCLK_78k12Hz 12.8 µs 839 ms 25.6 µs 1678 ms

TCCLK_39k06Hz 25.6 µs 1678 ms 51.2 µs 3355 ms

TCCLK_19k53Hz 51.2 µs 3355 ms 102.4 µs 6711 ms

TCCLK_9k77Hz 102.4 µs 6711 ms 204.8 µs 13 422 ms

TCCLK_4k88Hz 204.8 µs 13 422 ms 409.6 µs 26 843 ms

TCCLK_2k44Hz 409.6 µs 26 843 ms 819.2 µs 53 686 ms

TCCLK_1k22Hz 819.2 µs 53 686 ms 1638.4 µs 107 373 ms

For each of the timer/counter I/O models, the range and resolution in Table 67
should be read as:

• Range of 13.1 ms in steps of 0.2 µs

• Range of 26.2 ms in steps of 0.4 µs

• And so on

Timer/Counter Square Wave Output
The following sections list the possible choices for pulsetrain repetition
frequencies for pulsewidth short output and pulsecount output.

192 Timer/Counter Periods and Resolution

Series 3100 Square Wave Output
For pulsewidth short output and pulsecount output, Table 68 lists the possible
choices for pulsetrain repetition frequencies for a Series 3100 device. Pulsecount
cannot be used with clock select 0. The table lists the values for a 10 MHz input
clock (the values scale for other clock rates).

Table 68. Series 3100 Timer/Counter Square Wave Output at 10 MHz

Clock Select
System Clock
Divider Repetition Rate

Repetition Period
or Pulse Period

Resolution of
Pulse

0 ÷ 1
(5 MHz)

19531 Hz 51.2 µs 0.2 µs

1 ÷ 2
(2.5 MHz)

9766 Hz 102.4 µs 0.4 µs

2 ÷ 4
(1.25 MHz)

4883 Hz 204.8 µs 0.8 µs

3 ÷ 8
(625 kHz)

2441 Hz 409.6 µs 1.6 µs

4 ÷ 16
(312.5 kHz)

1221 Hz 819.2 µs 3.2 µs

5 ÷ 32
(156.25 kHz)

610 Hz 1638.4 µs 6.4 µs

6 ÷ 64
(78.125 kHz)

305 Hz 3276.8 µs 12.8 µs

7 ÷ 128
(39.06 kHz)

153 Hz 6553.6 µs 25.6 µs

To Calculate for Other Clock Rates:

• Period =

×

InputClock

tClockSelec)(2512

ClockSelect = 0..7
InputClock in MHz
Period in seconds

• Frequency = 1 / Period
Frequency in Hertz
Period in seconds

I/O Model Reference 193

Series 5000 and Series 6000 Square Wave Output
For pulsewidth short output and pulsecount output, Table 69 lists the possible
choices for pulsetrain repetition frequencies for a Series 5000 device.

The resolution and range values in Table 69 apply to all system clock settings,
that is, they do not scale with changes to the system clock.

If you specify an alternate clock value (using the io_set_clock() function with a
TCCLK_* macro value) that is lower than your device’s system clock setting, the
resolution and range values reflect the expected values specified in Table 69.

However, you cannot specify a value that defines a clock rate that is higher than
one-half of the device’s system clock. For example, if your system clock rate is 20
MHz, you can specify any TCCLK_* macro that defines a 10 MHz or lower clock
rate (that is, you cannot specify TCCLK_40MHz or TCCLK_20MHz – no error
is issued, but the effective value used in this case is TCCLK_10MHz).

Table 69. Series 5000 and Series 6000 Timer/Counter Square Wave Output

TCCLK Macro Repetition Rate
Repetition Period or
Pulse Period Resolution of Pulse

TCCLK_40MHz 156.2 kHz 6.4 µs 25 ns

TCCLK_20MHz 78.1 kHz 12.8 µs 50 ns

TCCLK_10MHz 39.1 kHz 25.6 µs 0.1 µs

TCCLK_5MHz 19531 Hz 51.2 µs 0.2 µs

TCCLK_2500kHz 9766 Hz 102.4 µs 0.4 µs

TCCLK_1250kHz 4883 Hz 204.8 µs 0.8 µs

TCCLK_625kHz 2441 Hz 409.6 µs 1.6 µs

TCCLK_312k5Hz 1221 Hz 819.2 µs 3.2 µs

TCCLK_156k2Hz 610 Hz 1638.4 µs 6.4 µs

TCCLK_78k12Hz 305 Hz 3276.8 µs 12.8 µs

TCCLK_39k06Hz 153 Hz 6553.6 µs 25.6 µs

TCCLK_19k53Hz 76.3 Hz 13.11 ms 51.2 µs

TCCLK_9k77Hz 38.1 Hz 26.21 ms 102.4 µs

TCCLK_4k88Hz 19.1 Hz 52.43 ms 204.8 µs

TCCLK_2k44Hz 9.5 Hz 104.86 ms 409.6 µs

TCCLK_1k22Hz 4.77 Hz 209.72 ms 819.2 µs

194 Timer/Counter Periods and Resolution

Timer/Counter Pulsetrain Output
The following sections list the possible choices for pulsetrain repetition
frequencies for pulsewidth short output and pulsecount output.

Series 3100 Pulsetrain Output
For pulsewidth long output, Table 70 lists the possible choices for pulsetrain
repetition frequencies. The table lists the values for a Series 3100 device with a
10 MHz input clock (the values scale for other clock rates).

Table 70. Series 3100 Timer/Counter Pulsetrain Output at 10 MHz

Clock Select Frequency Period

0 76.3 Hz 13.1 ms

1 38.1 Hz 26.2 ms

2 19.1 Hz 52.4 ms

3 9.54 Hz 105 ms

4 4.77 Hz 210 ms

5 2.38 Hz 419 ms

6 1.19 Hz 839 ms

7 0.60 Hz 1678 ms

To Calculate for Other Clock Rates:

• Period =

×

InputClock

tClockSelec)(2131072

ClockSelect = 0..7
InputClock in MHz
Period in seconds

• Frequency = 1 / Period
Frequency in Hertz
Period in seconds

Series 5000 and Series 6000 Pulsetrain Output
For pulsewidth long output, Table 71 lists the possible choices for pulsetrain
repetition frequencies.

The resolution and range values in Table 71 apply to all system clock settings,
that is, they do not scale with changes to the system clock.

I/O Model Reference 195

If you specify an alternate clock value (using the io_set_clock() function with a
TCCLK_* macro value) that is lower than your device’s system clock setting, the
resolution and range values reflect the expected values specified in Table 71.

However, you cannot specify a value that defines a clock rate that is higher than
one-half of the device’s system clock. For example, if your system clock rate is 20
MHz, you can specify any TCCLK_* macro that defines a 10 MHz or lower clock
rate (that is, you cannot specify TCCLK_40MHz or TCCLK_20MHz – no error
is issued, but the effective value used in this case is TCCLK_10MHz).

Table 71. Series 5000 Timer/Counter Pulsetrain Output

TCCLK Macro Frequency Period

TCCLK_40MHz 610.4 Hz 1.64 ms

TCCLK_20MHz 305.2 Hz 3.28 ms

TCCLK_10MHz 152.6 Hz 6.56 ms

TCCLK_5MHz 76.3 Hz 13.1 ms

TCCLK_2500kHz 38.1 Hz 26.2 ms

TCCLK_1250kHz 19.1 Hz 52.4 ms

TCCLK_625kHz 9.54 Hz 105 ms

TCCLK_312k5Hz 4.77 Hz 210 ms

TCCLK_156k2Hz 2.38 Hz 419 ms

TCCLK_78k12Hz 1.19 Hz 839 ms

TCCLK_39k06Hz 0.60 Hz 1678 ms

TCCLK_19k53Hz 0.30 Hz 3.4 sec

TCCLK_9k77Hz 0.15 Hz 6.7 sec

TCCLK_4k88Hz 0.075 Hz 13.4 sec

TCCLK_2k44Hz 0.037 Hz 26.8 sec

TCCLK_1k22Hz 0.019 Hz 53.7 sec

196 Timer/Counter Periods and Resolution

Index

#pragma codegen use_i2c_version_1, 83
#pragma enable_io_pullups, 10
#pragma enable_multiple_baud, 96, 106
#pragma specify_io_clock, 100

1
1-Wire protocol, 43

3
3554 device, 89

7
7811 device, 86

A
A/D converter, 125
angular position measurement, 148
ASCII data, 35

B
BCD data, 40
bit I/O, 32
bitshift I/O, 76
byte I/O, 35

C
CPHA, 110
CPOL, 110
crc16 function, 49
crc8 function, 49

D
D/A converters, 138, 141, 165, 171
declaration, I/O object, 16
documentation, iii
dualslope input, 125

E
edgedivide output, 156
edgelog input, 129
EIA-232, 103
engineering bulletins, 15

event
I/O, 22
io_changes, 22
io_in_ready, 71
io_out_ready, 71
io_update_occurs, 23, 128

F
frequency

counters, 138, 141
dividers, 156
measurements, 168

frequency output, 159
function

crc16, 49
crc8, 49
I/O, 18
io_edgelog_preload, 131
io_edgelog_single_preload, 132
io_idis, 100, 114
io_iena, 100, 114
io_in(), 19
io_in_ready, 102, 117
io_in_request, 102, 128
io_out(), 20
io_out_ready, 102, 117
io_out_request, 71, 102
io_set_baud, 102
io_set_terminal_count(), 178
sci_abort, 102
sci_get_error, 102
spi_abort, 117
spi_get_error, 117
touch_bit, 48
touch_byte, 48
touch_byte_spu, 49
touch_first, 48
touch_next, 48
touch_read_spu, 49
touch_reset, 47
touch_reset_spu, 49
touch_write_spu, 49
tst_bit, 136

H
hardware

considerations, 10
synchronization, 11

I/O Model Reference 197

I
I/O

A/D converter, 125
angular position measurement, 148
ASCII data, 35
BCD data, 40
D/A converter, 138, 141, 165, 171
EIA-232, 103
eight pin, 35
frequency counter, 138, 141
frequency divider, 156
frequency measurement, 168
infrared command input, 129
infrared remote control, 134, 162
lamp dimmer, 174, 179
latched, 38
LCD display, 103
magnetic card reader, 84, 86
magnetic stripe reader, 89
measurements, 28
modem, 103
parallel, 55
position actuator, 183
running total, 151
shaft encoder, 148
shift register, 76
single pin, 32
sixteen bit, 76
square wave output signal, 159
stepper motor, 145, 168, 183
tachometer, 138, 141
terminal, 103
time-domain data, 129
triac device, 174, 179
TTL signal, 32
UART, 52, 98

I/O functions
for timer/counters, 26
general, 18

I/O object
bit, 32
bitshift, 76
byte, 35
declaring, 16
definition, 2
direct, 31
dualslope, 125
edgedivide, 156
edgelog, 129
frequency, 159
guidelines, 8
I2C, 80
infrared, 134
infrared pattern, 162
leveldetect, 38
magcard, 86
magcard bitstream, 84
magtrack1, 89

multiplexing, 18
muxbus, 52
neurowire, 92
nibble, 40
oneshot, 165
ontime, 138
overlaying, 17
parallel, 51, 55
period, 141
pulsecount, 145, 168
pulsewidth, 171
quadrature, 148
SCI, 98
serial, 75, 103
SPI, 107
stretched triac, 174
summary, 2
syntax, 16
timer/counter, 123, 155
totalcount, 151
touch, 43
triac, 179
triggered count, 183
Wiegand, 118

I/O timing
firmware and hardware, 14
scheduler, 13

I2C I/O, 80
iButton devices, 43
infrared

command input, 129
remote control, 134, 162

infrared input, 134
infrared pattern output, 162
input_is_new variable, 21
input_value variable, 24
Inter-Integrated Circuit I/O, 80
interrupt, 100, 114
introduction, 2
io_changes event, 22
io_edgelog_preload function, 131
io_edgelog_single_preload function, 132
io_idis function, 100, 114
io_iena function, 100, 114
io_in() function, 19
io_in_ready event, 71
io_in_ready function, 102, 117
io_in_request function, 102, 128
io_out() function, 20
io_out_ready event, 71
io_out_ready function, 102, 117
io_out_request function, 71, 102
io_set_baud function, 102
io_set_terminal_count() function

definition, syntax and example, 178
io_update_occurs event, 23, 128
ISO 3554 track 1 device, 89
ISO 7811 Track 2 device, 86

198 Index

L
lamp dimmers, 174, 179
latch, 38
latency

function call, 15
scheduler, 13

LCD displays, 103
leveldetect input, 38

M
magcard bitstream input, 84
magcard input, 86
magnetic card reader, 84, 86
magnetic stripe reader, 89
magtrack1 input, 89
measurements, I/O, 28
Microprocessor Interface Program, 55
Microwire interface, 92
MIP, 55
modems, 103
multiplexing, I/O object, 18
muxbus I/O, 52

N
NEC infrared protocol, 135
neurowire I/O

master mode, 93
overview, 92
slave mode, 94

nibble I/O, 40

O
oneshot output, 165
ontime input, 138
overlaying, I/O object, 17

P
parallel I/O

data transfer, 66
example, 60
handshake, 66
IRQ signal, 70
master mode, 56
overview, 55
resynchronization, 67
slave A mode, 56
slave B mode, 63
token passing, 66

parallel_io_interface structure, 71
period input, 141
pin compatibility, 11
pin sampling, 28
position actuators, 183
pragma codegen use_i2c_version_1, 83

pragma enable_io_pullups, 10
pragma enable_multiple_baud, 96, 106
pragma specify_io_clock, 100
programming considerations, 15
pull-ups, enabling, 10
pulsecount input, 145
pulsecount output, 168
pulsetrain output, timer/counter, 193
pulsewidth output, 171

Q
quadrature input, 148

R
RS-232, 103
running totals, 151

S
sampling, pin, 28
scheduler latency, 13
SCI, 103
SCI I/O, 98
sci_abort function, 102
sci_get_error function, 102
search_data_s structure, 48
serial communications interface, 98
serial I/O, 103
serial peripheral interface, 92, 107
shaft encoders, 148
shift register, 76
ShortStack Micro Server, 55
SPI, 92
SPI I/O, 107
spi_abort function, 117
spi_get_error function, 117
square wave output signal, 159
square wave output, timer/counter, 190
stepper motors, 145, 168, 183
stretched triac output, 174
structure

parallel_io_interface, 71
search_data_s, 48

syntax, for I/O object, 16

T
tachometers, 138, 141
terminals, 103
time-domain data, 129
timer/counter

maximum range, 188
overview, 124
pulsetrain output, 193
resolution, 188
square wave output, 190
types, 7

I/O Model Reference 199

token passing, 66
totalcount input, 151
touch I/O, 43
touch_bit function, 48
touch_byte function, 48
touch_byte_spu function, 49
touch_first function, 48
touch_next function, 48
touch_read_spu function, 49
touch_reset function, 47
touch_reset_spu function, 49
touch_write_spu function, 49
triac device, 174, 179
triac output, 179
triggered count output, 183
tst_bit function, 136

TTL signals, 32

U
UART, 52, 98

V
variable

input_is_new, 21
input_value, 24

W
Wiegand input, 118

200 Index

	Welcome
	Audience
	Related Documentation
	Table of Contents
	Introduction

	Overview
	Summary of the Available I/O Models
	Hardware Considerations
	I/O Timing Issues
	Scheduler-Related I/O Timing Information
	Firmware and Hardware-Related I/O Timing Information

	Programming Considerations
	Declaring I/O Objects in Neuron C
	Overlaying I/O Objects
	Multiplexing I/O Models
	Performing I/O: Functions and Events
	General I/O Functions
	io_in() Function
	io_out() Function
	input_is_new Variable

	I/O Events
	io_changes Event
	io_update_occurs Event
	input_value Variable

	Using Functions or Events
	I/O Functions for Timer/Counter Objects

	I/O Measurements, Outputs, and Functions
	Direct, Serial, and Parallel I/O Models
	Timer/Counter I/O Models
	Output Models
	Direct I/O Models

	Bit Input/Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Bit Input Example
	Bit Output Example

	Byte Input/Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Byte Input Example
	Byte Output Example

	Leveldetect Input
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Nibble Input/Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Nibble Input Example
	Nibble Output Example

	Touch Input/Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example
	Parallel I/O Models

	Muxbus Input/Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Parallel Input/Output
	Hardware Considerations
	Master Mode and Slave A Mode
	Example
	Master Program
	Slave Program

	Slave B Mode
	Token Passing
	Handshaking
	Transferring Data
	Resynchronization Procedure

	Using the IRQ Signal

	Programming Considerations
	Neuron C Resources
	Syntax
	Usage
	Example
	Serial I/O Models

	Bitshift Input/Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Bitshift Input Example
	Bitshift Output Example

	I2C Input/Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Magcard Bitstream Input
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Magcard Input
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Magtrack1 Input
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Neurowire Input/Output
	Hardware Considerations
	Neurowire Master Mode
	Neurowire Slave Mode

	Programming Considerations
	Syntax
	Usage
	Example

	SCI (UART) Input/Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Serial Input/Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Serial Input Example
	Serial Output Example

	SPI Input/Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Wiegand Input
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example
	Timer/Counter Input Models

	Introduction
	Dualslope Input
	Hardware Considerations
	Programming Considerations
	Neuron C Resources
	Syntax
	Usage
	Example

	Edgelog Input
	Hardware Considerations
	Programming Considerations
	Neuron C Resources
	Syntax
	Usage
	Example

	Infrared Input
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Ontime Input
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Period Input
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Pulsecount Input
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Quadrature Input
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Totalcount Input
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example
	Timer/Counter Output Models

	Edgedivide Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Frequency Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Infrared Pattern Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Oneshot Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Pulsecount Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Pulsewidth Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Stretched Triac Output
	Comparing Stretched Triac Output to Triac Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example

	Triac Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example 1
	Example 2

	Triggered Count Output
	Hardware Considerations
	Programming Considerations
	Syntax
	Usage
	Example
	A
	Timer/Counter Periods and Resolution

	Timer/Counter Resolution and Maximum Range
	Series 3100 Resolution and Range
	Series 5000 and Series 6000 Resolution and Range

	Timer/Counter Square Wave Output
	Series 3100 Square Wave Output
	Series 5000 and Series 6000 Square Wave Output

	Timer/Counter Pulsetrain Output
	Series 3100 Pulsetrain Output
	Series 5000 and Series 6000 Pulsetrain Output
	Index

