To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

USER'S MANUAL RENESAS

IE-17K-ET

CLICE-ET
VERSION 1.6

Document No EEU-1466
{0.0.No. EEU~831)

Date Published January 1994 P

Printed i Japan

USER'S MANUAL

IE-17K-ET

© NEC Corporation 1994

CLICE-ET
VERSION 1.6

SIMPLEHOST is a trademark of NEC Corporation.
Windows is a trademark of MicroSoft Corporation.

PC/AT is a trademark of IBM Corporation.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights
or other intellectual property rights of NEC Corporation or of others.

PREFACE

Intended Readership :

This manual is intended for engineers who use the 4-bit single-
chip microcomputer 17K series and are responsible for using the

IE-17K-ET and designing and developing application system.

Purpose :

This purpose of this manual is to describe the IE-17K-ET
in-circuit emulator that is used when designing and developing
17K series application systems and its interpreter CLICE
(Command Language for In-Circuit Emulator)-ET and to provide the

user with an understanding of the various functions of this IE.

Organization :

This manual consists primarily of the following:

General

Specifications
Installation

Starting

Description of commands
Editor

Program execution

SE board PROM creation

Error messages

Requirements

Readers of this manual must have a general understanding of

electric and logic circuits and microcomputers.

To gain an understanding of the functions of the IE-17K-ET

+ Read this manual in accordance with the table of contents.

To study the functions of a specific command in detail

+ Read Chapter 5 "Description of Commands”.

Legend

The following symbcls are used in this manual:

Ny : Line feed input

{ } : Indicate that one of the character strings

inside the braces should be selected.

[] : Indicates

Indicates

(under bar)

4 : Indicates

@ : Indicates

that omission is possible.

console input.

control key input.

space key input.

Terminology :

The terms used in this manual are defined below.

Term

Meaning

Target device

Device to be emulated (this chip)

User program

Program to be debugged (program written
by the user).

Target system

System to be debugged (system created by
the user).

The target system includes the target
program and user hardware.

In the narrow sense, it indicates the

hardware only.

- iii -

CONTENTS

CHAPTER 1. GENERALccvivennon. e et e e 1-1
1.1 Generaloiiiiiiieeneean G e e 1-1
1.2 Features of IE-17K-ETuveeeon. e 1-2
1.2.1 Interface with Target System 1-2
1.2.2 Program MEemMOIY .« ..vveveetvonancssssan e 1-2
1.2.3 Emulation Method 1-2
1.2.4 Break FUnNCtionNsttt inneennennan 1-2
1.2.5 Real-Time Trace Function 1-3
1.2.6 Data Memory Coverage Function 1-4
1.2.7 Program Memory Coverage Function 1-4
1.2.8 Other FeatUILESttt ineeeneneennas 1-5
1.3 CompPosition ...t e e e e 1-6
1.3.1 System Diagramt ie e 1-6
1.3.2 121 WoTol -G DI =T f of =Y 1 1-6

CHAPTER 2. SPECIFICATIONS ...t ittt ti e iciettonacsennas 2-1
2.1 Console INterface . ..v. ittt innnneeennssnsas 2-1
2.2 Environmental Conditionsc.c.c0i... 2-1
2.3 POWEL SUPPLY vttt ottt et et ttteae e eananes oo 2-1
2.4 DB R 111=Y o R K1 o < 2-1
2.5 EXtErior VIEWS it ittt ittt enneneneneeonssnsas 2-2
2.6 Accessories e e ettt e e e 2-4

CHAPTER 3. INSTALLATION . ittt ittt ottt v oo sanones oo 3-1
3.1 Switch Settings ..ot e i e e 3-1
3.2 Connector Connectionscuov i 3-6
3.3 SE Board Installationcc.0iceeceenn 3-7
3.4 Connection to Host Machinec..... 3-9
3.5 Connection to PROM Programmerooeeoees 3-10
3.6 Connection to Target Systemc...c..a.. 3-11

CHAPTER 4. STARTING ..ttt it ittt ettt tteen e, 4-1

4.1 Communication with WINDOWS (Version 3.1) 4-2
4.1.1 Terminal Start-upo ... 4-2
4.1.2 SEELINgS it e e e e e 4-5
4.1.3 Program Download to IE-17K-ET 4-9
CHAPTER 5. DESCRIPTION OF COMMANDSttt it iinennn.. 5-1
5.1 5 o111 o 5-3
5.2 Command Line Formatciiuiiitennnenn.. 5-5
5.3 Command Bufferciiiiiiiiiiteeriennneennn. 5-7
5.4 Character Setttt it 5-8
5.4.1 Special Control Characters 5-8
5.4.2 Special Characters0t nnn... 5-11
5.4.3 Dummy CharaCterttt ittt 5-13
5.5 EXpression e e e e e e 5-15
5.6 Constant ... i i e e e 5-17
5.7 Variablest i e e e e e e 5-18
5.7.1 S b a2 5-18
5.7.2 O~Registerttt it i e e e 5-18
5.8 Built-In Macro Commandscuoueiueunneeen. 5-20
5.8.1 Program Memory Control Commands............. 5-20
5.8.2 Data Memory Control Commands 5-42
5.8.3 Peripheral Circuit Control Commands 5-49
5.8.4 Emulation Commands i, 5-55
5.8.5 Break/Trace Condition Control Commands 5-64
5.8.6 Coverage Display Commandc.c.oviunn.. 5-95
5.8.7 Help Command ...t i ittt inian e 5-98
CHAPTER 6. PROGRAM EXECUTION ... ittt ittt it aeneannns 6-1
6.1 Real-Time Emulation, 6-1
6.2 Break Point Setting i i, 6-2
6.2.1 Break by Program Addresso.ooeeu... 6-4
6.2.2 Break by Data Memory Modification 6-8
6.2.3 Break by Multiple Break Condition 6-16
6.3 1-Step Emulation i, ~ 6-18

CHAPTER 7. SE BOARD PROM CREATION ..t i ittt nnenennnennn. 7-1
CHAPTER 8. ERROR MESSAGES 0. e et 8-1
8.1 Command ETTOTS .. vivnee s e e 8-1

8.2 Hardware Errorsttt nnnnenenn.. 8-8
APPENDIX A. PRIMITIVE COMMANDS ...ttt ittt ettt teeeaeenn. A-1
.1 Primitive Commands Tableviiiun... A-2
Array Table e A-5

Condition Register Offset Address A-8

Condition Unit Register Offset Address A-9

. Description of Primitive Commands e A-11

.1 Pointer i e e A-11

.2 FUNCEION .. ittt ittt ettt iie et eeen oo A=-15

.5.3 ASSignment e e e e, A-23

.4 Argument Stack ittt e i A-30

.5.5 O-StacKk ittt e e e e e e e e e e A-33

.6 £ T o A-36

.7 O £ v o & 1 A-42

.8 DiSplay vt e e e e e e e A-49

.9 L0 o 1= o = A-56

e e I ol o A-63

.1 Command Buffer Editing A-63

.6. O-Register Editing it A-63

. 6. Editor Commandscii it ennnennn A-64
APPENDIX B. BUILT-IN MACRO COMMANDSttt ennnnnnn B-1
.1 Program Memory Control Commands e B-2

B. Data Memory Control Commandsc.0c0uen. B-3

.3 Peripheral Circuit Control Commands B-4
Emulation Commandsottt it iietneeneeneennns B-5
Break/Trace Condition Control Commands B-6

Coverage Display Command ittt unnn. B-6

. Help Commandttt ittt tennenann. B-7

List of Figures

Figure
No. Title Page
- IE-17K~ET System Diagram e r et 1-6
1- IE-17K-ET Block Diagramieteeenneeennnsens 1-7
-1 IE-17K~-ET Exterior Viewscev... e cve. 2-2
- Nomenclaturec. it eennnnn e e e 2-3
- Supervisor Board Switches Positions 3-1
RS-232-C Interface Circuit Diagram 3-3
- Accessory Cable Connection 3-4
-4 DIP Switch Settingsc..ciiiiiiina.. 3-5
- Connectors Layout (Supervisor Board) 3-6
3- SE Board Installationci0iiiiinianean. 3-8
- IE-17K-ET and PC-9800 Series Connection 3-9
- IE-17K-ET and PROM Programmer Connection 3-10
-9 IE-17K-ET and Target System Connection 3-11
-1 Terminal SLaArt-UD .ttt ittt ittt ittt e et ensosanns 4-3
Communicationsttt ittt eneeononeennan 4-6
- Terminal Preferencesceuieuiieunoneenns .. 4-8
- Loading Wait Status e e e e e 4-10
- Sending Text Fille ...ttt ennennn 4-12
- File Transfer et i e 4-13
- File Transfer Endt iiinneneanenns 4-15
5-1 CLICE~ET Positioning P e e 5-1
- Break Condition Settingo ... 6-3
- Break by Break Condition Sequence 6-3

- vii -

List of Tables

Table
No., Title Page
1-1 CLICE-ET and SIMPLEHOST Version Conjunction 1-1
-1 Break/Trace Conditions Tableciveeieenn.n. 5-79
- Trace State Transition et e 5-85
A-1 Commands Tableiiiitieiinennitneineennnnnnns A-2
A-2 Array Table ittt i it i i e e A-5
A-3 Condition Register Offset Address A-8
A-4 Condition Unit Register Offset Address A-9

- viii -

CHAPTER 1. GENERAL

This chapter describes the features and system configuration of
the IE-17K-ET.

1.1 GENERAL

The IE-17K-ET is a software development tool for the 4-bit

single-chip microcontroller 17K Series.

The IE-17K-ET supports all the models in the 17K Series.
A dedicated SE board is available for each model. The
IE-17K-ET is used in conjunction with these boards. The
SE board has an emulation function of the hardware unique
to each model and can also be used alone for program

evaluation.

The IE-17K-ET can be operated alone by connecting it to a
terminal. A more advanced debugging environment can also
be realized by connecting the IE-17K-ET to the host
machine and operating SIMPLEHOSTTM, which acts as the
man-machine interface software between the IE-17K-ET and

the operator.

Table 1-1 shows the version conjunction used for the
IE-17K-ET interpreter CLICE (Command Language for
In-Circuit Emulator) and SIMPLEHOST.

Table 1-1 CLICE-ET and SIMPLEHOST Version Conjunction

CLICE-ET Ver. 1.5 Ver. 1.6
SIMPLEHOST
Ver. 1.10 o X
Ver. 1.11 X o

FEATURES OF IE-17K-ET
INTERFACE WITH TARGET SYSTEM

The actual product is used as the interface with the
target system so that the electrical specifications as the

same as those of the target product.

PROGRAM MEMORY

A CMOS static RAM mounted on the SE board is used as the

program memory.
EMULATION METHOD

Two user program emulation methods are available, real-

time emulation and 1 step emulation.
BREAK FUNCTIONS
(1) Programmable break function

The following four steps can be set.

(D Break when single condition established.

(2 Multiple conditions of (D above are set and
break is generated when one, or all, of these
conditions are established.

C) Multiple conditions (up to 4) of (@) above are
set and break is generated when one of these

conditions is established.

() Break is generated when the conditions of ©)

above are established in the set order.

The following can be set as break conditions.

1-2

1.2.5

Program memory address
Data memory address
. Data memory contents
. Register file address
Register file contents
Stack level
. Interrupt
DMA
. Operation code
Instruction execution count
. Condition established count

(2) Error detection function

This function aborts the program or issues a warning
when the program accessed a resource not allowed by

the software development target product, etc.
It detects the following errors.

. Access to an illegal data memory
Access to an illegal system register
. Stack level overflow/underflow
Read or test of memory to which data was not

written even once

REAL-TIME TRACE FUNCTION

This function stores the program executed result in real

time. The trace memory size is 32K steps.
{1) The trace data are as follows.

Program memory address
Executed instruction code
Skipped instructions

Written data memory address

1.

2.6

. 2.7

Written data memory contents
Relative time of each execution instruction

(2) Trace on/off condition can be specified.
DATA MEMORY COVERAGE FUNCTION

This function stores the data memory addresses which were

written.

The following information can be obtained with this

function.

Unwritten bits

Bits written "1"

Bits written "O"

Bits written "O0" and "1"

PROGRAM MEMORY COVERAGE FUNCTION

This function stores the number of times each program

memory address is executed.

The maximum value of each address counter is 255, and
becomes 255 when an address is executed 255 times or more.
This counter is counted up when the instruction of that
address is not skipped but is executed, or when that
address is referenced by table reference instruction

(MOVT, etc.) and is not counted up when the instruction

is skipped.

1.2.8 OTHER FEATURES

(1)

(2)

The 1E-17K-ET has two RS-232-C serial channels.
Channel 0 is for console use and channel 1 is for
PROM programmer, etc. use. A more advanced debugging
environment can be realized by connecting channel 0
to a host machine PC-9800 Series and operating the
man-machine interface software SIMPLEHOST.

B5 size (25.7 cm x 18.2 cm x 6 cm) is extremely

compact and easy to carry.

1.3 COMPOSITION

1.3.1 SYSTEM DIAGRAM

Figure 1-1 IE-17K-ET System Diagram

IE-17K~-ET
Main Body

SE Board K) Target System
|
|
[
|
l
l
|
|
|
I
|
i
!

CHO CHI PROM
Programmer

Host Machine

(PC-9800 Series,
etc.) :

1.3.2 BLOCK DIAGRAM

The IE-17K-ET consists of a mainframe and accessories.

The mainframe consists of the following parts.

Cabinet (including connectors, switches, etc.)

Supervisor (SV) board

1-6

Figure 1-2 IE-17K-ET Block Diagram

N
SE Board*l To Target System
< (e

Supervisor <L_':l> RS-232-C
Board — -

T

Power Supply*2
(bDC5V)

An SE board (optional) is available for each model.
The IE-17K-ET does not incorporate a power supply,
and therefore a separate commercially available DC

power supply is necessary.

.1

CHAPTER 2. SPECIFICATIONS

CONSOLE INTERFACE

RS-232-C x 2ch (CHO, CH1)

Baud rate (bps) : 600, 1200, 2400, 4800, 9600, 19200,
38400, 76800

Character length : 7, 8 bits

Stop bit length : 1, 2 bits

Parity : None, even, odd

ENVIRONMENTAL CONDITIONS

Operating temperature range : 0 to +40°C
Storage temperature range : -10 to +50°C

(no condensation)
POWER SUPPLY

DC 5 V +5% 1.0 A (MAX.)
0.5 A (TYP.)

NOTE: The IE-17K-ET does not incorporate a power
supply, and therefore a separate
commercially available DC power supply is

necessary.
DIMENSIONS

Cabinet dimensions 257 mm x 182 mm x 60 mm (excluding

projecting parts)

2.5 EXTERIOR VIEWS

Figure 2-1 IE-17K-ET Exterior Views

Figure 2-2 Nomenclature

Top

Cover
Cover Fixed Latch Power Switch

\\\\\ (Built-In LED)
/

’ QO RS-232-C

Cable Connector

Reset Switch

Pull Power Supply
Connector
Rubber Stopper
° L 4
L/
o ' 4
® o
° ®
Rubber
Stopper
Rubber
Stopper
Bottom

2-3

2.6

ACCESSORIES

When the IE-17K-ET is shipped, the following parts are

packed in the same carton as IE-17K-ET accessories.

(1) DC 5V power cable

e e, 1

(2) RS-232-C cable (cross cable) 1

(3) Others
. User's manual (Japanese, English) 1 each
. Warranty «... 1 copy
. Packing list 1 copy

CHAPTER 3.

INSTALLATION

This chapter covers settings of each switch on supervisor board

connection with host machine and terminals required before

IE-17K-ET start-up.

SWITCH SETTINGS

There is a supervisor board in the IE-17K-ET. Figure 3-1

shows configuration of switches on the supervisor board

(The hatched area indicates switches).

Figure 3-1

NOTE:

RS-232-C
Channel 1

RS

Supervisor Board Switches Positions

-232-C

Channel O

ZZZZstz
zzajm

CcpPU

77

JP5

iéé%é i

SW2
ROM ictt
ROM ICt7

CN9

CN7

Z
CNS Afi

JP5 is already se

t.

Do not change the setting.

Set the switches on the board as described below.
0 RS-232-C control switches
JpPl, JP2, SW2 and SW3 are for RS-232-C control.

JP1 and SW2 are for channel 0, and JP2 and SW3 are for

channel 1.

JP1l and JP2 switch the RTS signal. Set them to match

the host machine used.

SW2 and SW3 switch the terminal mode and modem mode.

The switches set at the factory are as follows.

JPl, JP2 Open
SW2, SW3 Terminal mode

When the IE-17K-ET is connected to a PC-9800 Series
with the accessory RS-232-C cable, it can be used in

the factory setting state above.

SW4 is a DIP switch for RS-232-C setting.

Figure 3-4 shows DIP switch settings.

Figure 3-2 RS-232-C Interface Circuit Diagram
’ { DSK Iii
DTRPO { b ’C\
DSR D C t DTR J20
‘””f‘ﬁ . ; (o]
T |
4 R |3
T | (o]
1 A |
} { T.D lZ
1
R.D !
12V | I cNl
b, | !——-o O s RS-232-C
: 0-0 @ " Channel 0
' LO O 2
R.ROY ——5 :
1’ CTS |5
O o< |
2y Ty | 5]
”r LT
I
Modem Modew 1
CLK SW2
- Terminal Mcde
CLK
DSR |6
DTREO {)3 Cx
DSRO { DTR IZO
+12V l;_r al
';—W*-O‘f—' I
4 D |3
+3V '
: 1
R.D " vﬁ} |
- JPl CN2
l;r : [——O [RTS, |4 RS-232-C
} O-O :RTS..]“ Channel 1
| L—O' O —RTS.. 21
R.RDY !
+3V -1 —% i
4 GTS |5
N 1
I
t_wi“z N b, ! 7
7 .
#PD71051 |
Modem Mode i 1
SW3
Terminal Mode

Figure 3-3 Accessory Cable Connection

[RS~232-C Cable (cross cable)]

Pin No. Pin No.

Y R T S
N de I 2 e

PC Side IE-17K-ET Side

1)

Figure 3-4 DIP Switch Settings

OFF ON
[:- Control Method
.:] 1 Setting Contents
ON Flow control
.:] OFF' Line control
[] Parity Bit
(:. 2 l 3 ' Setting Contents
_ ON | ON odd
D ON | QFF Not allowed
E. OFF} ON Even
OFF | OFF None
- Stop Bit
4 Satting Contents
ON 2 bits
OFF 1 bit

Character Length

5 Satting Contents
ON 8 bits

OFF 7 bits
Baud Rate

6 7 § | setting Contents
OFF | OFF | ON 76300 bps
OFF | OFF | OFF 38400 bps

ON | On | O 19200 bps

ON | ON | OFF 9600 bps
ON |OFF| ON 4300 bps
ON | OFF | OFF 2400 bps
OFF | ON | ON 1200 bps
OFF | ON | OFF 600 bps

Remarks : The shaded area is factory setting

CONNECTOR CONNECTIONS

The layout of the three connectors CN7, CN8, and CN9 of
the supervisor board connection is shown below (The

shaded areas are connectors).

Figure 3-5 Connectors Layout (Supervisor Board)

RS-232-C RS-232-C
Channel 1 Channel 0

SW3 JPl
SW2

jP3

ROM Iclit

CcpPU ROM IC17

CN9

7
e é
’

Ips CN8

|27 SW4

Three connectors, CN7, CN8 and CN9 are used to mount the
SE board.

SE BOARD INSTALLATION

When the IE-17K-ET is shipped, the supervisor board is
installed to the IE-17K-ET as a control board. However,
the SE board corresponding to the 17K Series model is not
installed. Therefore, when developing the 17K Series,
the SE board corresponding to the model must be installed
to the IE-17K-ET separately from the IE-17K-ET.

For a detailed description of the SE boards, refer to the
user's manual for each SE board. Then installing an

SE board to the IE-17K-ET, proceed as follows.

(@D Pull the cover latches at the top of the IE-17K-ET

and remove the top outsider cover.

C) Connect the connector on the supervisor board and the

connector at the rear top of the SE board.

The SE board is installed by pushing it in
perpendicularly to the memory board and is removed by

pulling it out perpendicularly.

Connector

Connector

Supervisor Board

g

Spacer

Fasten the SE board and the supervisor board with the

SCrews.

Reinstall the top inside and outside covers.

.4

CONNECTION TO HOST MACHINE

This section describes an example of connection when the

PC-9800 Series is used as the host machine.

Turn OFF the IE-17K-ET and PC-9800 Series power switch and
connect the RS-232-C channel 0 connector of the IE-17K-ET
to the standard serial interface (RS-232-C) connector of
the PC-9800 Series with the RS-232-C cable supplied with
the IE-17K-ET.

Figure 3-7 IE-17K-ET and PC-9800 Series Connection

/Connect to
standard serial
interface

(RS-232-C)
connector.

PC-9800 Series
.(Host Machine)

+——RS=-232-C Cable

rRS-232-C
channel O

Cm—) ao

IE-17K-ET

CONNECTION TO PROM PROGRAMMER

To load the program from the IE-17K-ET body to the PROM
programmer, in the state in which the IE-17K-ET body is
connected to the host machine (PC-9800 Series), connect
the RS-232-C channel connector of the IE-17K-ET body to
the PROM programmer with the PROM programmer RS-232-C

cable.

Figure 3-8 IE-17K-ET and PROM Programmer Connection

]

(o e

/Connect: to
standard serial
= interface
{RS-232-C)
connector.
79
PC-9800 Series
(Host Machine)
«—— RS5-232-C Cable
RS-232-C
Channel 1
@
RS-232-C
Channel 0 PROM Programmer
IE-17K-ET //////
LT

h

3-10

.6

CONNECTION TO TARGET SYSTEM

Connect the emulation probe to the SE board and the target

system.

For more information, refer to the user's manual for each
SE board.

Figure 3-9 IE-17K-ET and Target System Connection

“/’Connect to
standard serial
interface

{RS=-232-C)
connector.

PC-9800 Series
(Host Machine)

RS-232-C Cable

Emulation Probe

Conversion Commmes——ry 00
Socket’ RS-232-C
Channel O

-
& IE~17K-ET

1]

1)

Target System

CHAPTER 4. STARTING

The IE-17K-ET is used by connecting it to a PC-9800 series or IBM
PC/ATTM host machine using an IE-17K-ET exclusive RS$-232-C cable

(supplied with the IE-17K-ET).

Communication and start-up of the IE-17K-ET is performed using

commercially sold software that is RS-232-C compatible.

This chapter introduces the method of communication using a
WindowsTM (version 3.1) terminal. If communication is performed
using commercially sold communications software, this chapter

should be used as a reference when starting-up the IE-17K-ET.

NEC has prepared special communications software, called
SIMPLEHOST, which is to be used with the IE-17K-ET (man-machine

interface software) and that operates using Windows.

Besides having communications functions for use with the IE-17K-
ET, in order to smoothly perform debugging, SIMPLEHOST has a
command menu that is aimed at making operation manual free, and
because the execution results are graphical, there is no need to

read this chapter if SIMPLEHOST is used.

.1.

COMMUNICATION WITH WINDOWS (VERSION 3.1)

The description below will center around using Windows
(Version 3.1) for the PC-9800 series, and how to connect
the IE-17K-ET to the PC-9800 series.

Before starting Windows, check to make sure that the IE-
17K-ET in which the SE board is installed and PC-9800
series are connected using the special IE-17K-ET RS-232-C
cable, and that the IE-17K-ET power has been turned ON.
(Refer to Chapter 3 "Installation'".)

TERMINAL START-UP

First, starting from the Windows opening screen, select
(double click) the "Accessory" group icon, and select the
"Terminal" icon, and then execute them (double click). An

example selection screen is given below.

Figure 4-1

(a) PC-9800 Series

Terminal Start-up

TAAD AT aAQ T4 Fo) ~jLIH)

2 B
34+ RA TS m A E¥K
= &Y a8 B4
I L3O=-&— HN-=FI74)0 N & ®d |
3
g pig [113
A Y-l RA-F7v9Z BEFIAN

Accessories .

Partbrush f-lrmua

Calculator

= A

Madia

Sound
Player

Recorder

=l

R

Recordet

a %
Obyect
Packager

Notepad

The "Terminal” window 1s opened after double clicking on

the "Terminal" icon of the "Accessory" group.
Figure 4-1 Terminal Start-up (cont'd)

(a) PC-9800 Series

= — 3+ - (BE) - B
Z774L(F) WEE) BE(S) BEP) EXT) ALT(H)

Lt
I n
| o
* -

(b) IBM PC/AT

— armina o DA
File Edit Settings Phone Iransfers Help

+

1
o | ?

1.

SETTINGS

In order to exchange data and commands with the IE-17K-ET,

the "Communication Condition Settings", which specify the

communication speed, etc., and the "Terminal Preferences",

which specify the operation of the terminal during

communication, are set.

(1)

Communication condition settings

The communication conditions for the IE-17K-ET at the
time of shipping are: 9600 baud communication speed,
8-bit data length, 2 stop bits, no parity, and
Xon/Xoff flow control. Therefore, the Windows

settings must be set to match these conditions.

Select "Communication Conditions" from the menu bar
item "Settings" in the "Terminal " window. After
doing this, the "Communications" dialog box will
appear, and the conditions should be set as shown in

Figure 4-2.

Figure 4-2 Communications

(a) PC-9800 se

ries

rB(3:2(0)

oKk
07 0150 0300 O 40 HE
01200 ©2400 © 4800 @[TEM
[T~ 58D rAFyZ ey M
o5 06 07 @8 01 015 @21
FISUF 4 (D= [7O HRKD
® 130 ® Xon/Xoff i%fwm~rmn
O Wi ON-Fu:7 | I

i o, COMZ
O M ¥ .

Q1UF4 Fzo5®
O %+ U7 DHRER)

(b) IBM PC/AT

(ORI

" Baud Rale

Comnunications -

Q3 Oseon O1200

O1 O15 @2

Cancel

"D_ata Bits ’ Stop Buis
Oy O O7 & IV
" Parity Elow Contiol Connector
® None ® Xon/Xolf None
O 0dd O Hacdware CUHZ.
O Even QO None COM3:
QO Mark
QO Space| [J Paiity Check (7] Carrier Detect
A

After all settings have been completed, click the

"OK" button to end "Communications".

Next, select "Terminal Preferences" from the menu bar
item "Settings" in the "Terminal" window, to specify
the operation of the terminal during communication.
The "Terminal Preferences" dialog box shown in Figure
4-3 will be displayed. Except for "Sound" and
"Cursor", the settings should be as shown in Figure
4-3.

(a)

(b)

Figure 4-3 Terminal Settings

PC-9800 Series

IBM PC/AT

™~ Terminal Mades ™

Reba e et

{0 Local Echo
X Sound

I~ Columns

8 77730 $-, KAlei-. -4 3-8 5GRWTRAC)

- WFDIE |
RERE= F CRECR+HLFATIA [T Dt .
oERETECY || DEEoa0 ||eme | []
OQ-L T3-(® QRIDEF) [o132 :
8 PLEFFEBSTS) B
F RO T L MO~ [XFI— FORRAED — 11— VIO
?wm ' v EET © BAd
ourier New
FoZCotn = [||° THY
Preview : OBMI- FpdANEAG | |8 SED
FRTFY D RO FD a S
®yrIS O.US CIBIS | @2o0-1) i-0&ETR
OMCRT OACOSEF ofC 159 77 DIFRIL):

Terminal Fretersnces

[Cursor

® Block O Underkine

®go O132

X Blink

 Terminal Eont

Iranzlations

United Kingdom
Dopm!klNocway

FI7) 18M to ANSI

X1 Show Scioll Bars

After all settings have been completed, click the
button to end

" OK "

Buffer Lines:

4-8

& Uze Function Arrow,and Clil Kayz for Windows
W

"Terminal Preferences".

4.1.3

PROGRAM DOWNLOAD TO IE-17K-ET

After the "Communications Settings" and "Terminal

Preferences”" have been completed, it is possible to

- communicate with the IE-17K-ET. After pressing the reset

switch on the "Terminal" window screen, an opening
message and @QRQ@> prompt are sent from the IE-17K-ET to the
"Terminal"” window screen. If the @@@> prompt is not
returned, the following problems may exist and should be

checked:

() The SE board is not installed properly.

C) Power 1s not being supplied to the SE board. (There
are some SE boards that require two power supplies.)

(® The special IE-17K-ET RS-232-C cable is not connected.

When the @@Q@> prompt has been returned properly, use the
keyboard to input .LP0OSS after the @@E@> prompt, to set the
IE-17K-ET to wait for loading. This condition is shown in

Figure 4-4.

4-9

Figure 4-4 Loading Wait Status

(a) PC-9800 Series

o e 2l ~ TEMPIRM
BES FEP D AJLIH

7D BED
UUPD-17K SUPERYISOR [13992 §/19]]

READY!

CLICE YERSION Y1.6 (17 MAR "93)
COPYRIGHT (C) NEC CORPORATION 1388 - 1993

8860>.LP033
LOADING. ..}

] 0

(b) IBM PC/AT

Lo : Terminad ~TEMPIRES = - 0 R

fFile Edit Settings Phone Transfers Help

+
UPD-17K SUPERVISOR [1992 6-19] ;:
READY!
CLICE VERSION V1.6 (17 MAR '93)
COPYRIGHT (C) NEC CORPORATION 1985 - 1993
@R@> .LP0SS
LOADING. . .§

v
«[x [|+

Next, select "Transfers" item from the menu bar in the
"Terminal" window, and then select "Text File Transfer".
From the "Text File Transfer" screen, input *.ICE in the
"File Name". Search for the drive or directory having
that file using "Drive" or "Directory", then select the
file form the "File Name" list, or input the file name
directly in the text box. After the file has been
selected, click the "OK" button to start transfer of the

file.

Figure 4-5 shows the "Text File Transfer" screen, and

Figure 4-6 shows the screen during file transfer.

Figure 4-5 Sending Text File

(a) PC-9800 Series

FH2 b T AINOAE
27 4 ILBN): F4 L7 D
[+.ic4] | :¥iel Tk
dema.xe, [[o
axampie.ics .
printice & el
lesalld.ice
lest.ice
o | tROE:
D7 A WOHIKD: k4 FW: a LFE AT (A
70D i [=¢ 1] @ LFEIRUBRC(SD

T A R S S A

(b) 1IBM PC/AT

e Have: Dicctaer
[Fice] | dNiel7k
demo.ice * & &N |t
example.ice] P ie17k
print.ice
tesalld.ice
testice
1 | | Following CR:
*] O Append LF
List Files of Type: Driyes: X Suip LF
[Text fHes(*.TXT) [¢] [=24 IE

Figure 4-6 File Transfer

(a) PC-9800 Series

A, =4y - TEMLIRM - R -
274D RED LEQ ®EHP) XD AVIH)

UPD-17K SUPERYISOR [1892 6/19]

[[~

READY!

CLICE YERSION ¥1.6 (17 MAR '93)
COPYRIGHT (C) NEC CORPORATION 1986 - 1993

868>.LP0SS
LOADING. .. K

i |—45F PTTTLET L1/ DXAMPLEICE] L]

<1 L,

(b) IBM PC/AT

S - Terminal = TEMPIRM - 0o 0 - R
File ﬁdd _S_e’rhngs Phone Transfers Help

UPD-17K SUPERVISOR [1992 6-19]]
READY!

CLICE VERSION V1.6 (17 MAR '93)
COPYRIGHT (C) NEC CORPORATION 1986 - 1993

@e@> .LP0SS
LOADING. . .}

Stop_| Powre |RTTTLITLLL)Sending: EXAMPLE.ICE 1]

1 B

4-13

After the file has been transferred, the BRK> prompt is
returned together with "OK" and the "Device Name". After
this happens, press the ESC key two times or input $$, and
make sure that the IE-17K-ET is set to be able to receive
commands. If the BRK> prompt is returned when the ESC key
is pressed twice or when $$ is input, it means that the
macro commands built-in to the IE-~17K-ET such as .R, or
.RN can be used. For details about the built-in macro

commands, refer to 5.8 "Built-In Macro Commands".

If the BRK> prompt is not returned, it is possible that
power is not being supplied to this chip on the SE board,
or the SE board may be reset. Therefore, refer to the SE

board user's manual and check the settings.

(a)

(b)

Figure 4-7 File Transfer End

PC-9800 Series

IrAUD BED BES TP 2D AL IH)
UPD-17K SUPERYISOR [1382 6/19] '
READY!

CLICE YERSION ¥1.6 (17 MAR "33)
COPYRIGHT (C) NEC CORPORATION 1386 - 1393

088>,LP0$S
LOADING. .. OK
D17010

Z

BRK>

$3

BRKA

[I»

#f 1

I+

IBM PC/AT

‘ : Terminal ~ TEMP.TRM -
File Edit Settings Phone Transfers Help

UPD-17K SUPERVISOR [1992 6-19]
READY |

LICE VERSION V1.6 (17 MAR '93)
COPYRIGHT (C) NEC CORPORATION 1986 - 1993

@> .LPOSS
LOADING. . .OK
D17010

~Z

BRK>

~Z$SS

BRK> |}

«| |

CHAPTER 5. DESCRIPTION OF COMMANDS

The IE-17K-ET contains a command processing system known as CLICE

(Command Language for In-Circuit Emulator)-ET.

This chapter explains the description, special characters, etc.
usage conditions, and the detailed functions for all the

commands supported by CLICE-ET.

Figure 5-1 CLICE-ET Positioning

Man

i

Keyboard, Display

Terminal Software, SIMPLEHOST

SE Board

There are two kinds of command, built-in macro commands and

primitive commands.

Built-in macro commands are described by a period and two upper
case alphabetic characters, such as [.AP]. Built-in macro
commands are used when using the basic functions of the

IE-17K-ET.

Primitive commands are a group of commands which offer a more
advanced debugging method for those with experience in program
development using the basic functions of the IE-17K-ET (See

Appendix A "Primitive Commands").

When the IE-17K-ET power is turned on and CLICE-ET is started,
the CLICE-ET title, version No., etc. are displayed at the
console as shown below.

UPD~17K SUPERVISOR [*#**% %% /%%]

READY!

CLICE-ET VER. V¥, % (%% *xk% k&)
COPYRIGHT (C) NEC CORPORATION 1986 - 1991

@re>

*: 'Version No. and date

PROMPT

The CLICE-ET prompts show the status of the IE-17K-ET

target device.

It also shows that key input is possible.

The prompts indicate the following states.

@ eee>
@ BRK>
@ Run>
@ sTP>
® HLT>
® DbpMAa>
@ Dsp>
RES>

Waiting to load HEX file

starting

Target device
Target device
Target device
Target device

Target device

stopped
running
executed a
executed a

is running

.DS command is executing

Reset signal is input to

5-3

at IE-17K-ET

STOP instruction
HALT instruction
in the DMA mode

target device

[Note]

(1)

(2)

(3)

When prompt () is displayed, that is, when the IE-
17K-ET is started, the model used is not set at the
IE-17K, and therefore, the program must be loaded by
restarting the IE-17K-ET by .Q command or by entering
an .LPO or .LPl1 command.

When the status of the target device changes during
command input (prompt changes from RUN to BRK, etc.),
the command string input up to that point is output

and command input is accepted after the new prompt.

(Example) When prompt changes from RUN to BRK
while [0, 100. DPSS] is being input

RUN> 0, 100. Prompt changes
v from RUN to BRK
here.
BRK> 0, 100. DP$S .. O, CLICE outputs
100.

In the example above, since the status of the target
device changes from RUN to BRK when 0, 100 1is
input, line feed is performed automatically and the
prompt shows the new state and the command string

0, 100 1is output and the system waits for key

input.

Once the prompt changes from RUN> to STP>, HLT>,
DMA>, or RES>, the prompt does not automatically
return to the original prompt even if that state is
reset. In this case, the prompt changes the next

time $$ is input.

5.

COMMAND LINE FORMAT

Commands are input in the following format.

xxx> command $$

xxx> part is called "prompt" and shows the IE-17K-ET

operation.

A command is executed by entering the command after the
prompt and striking the IESCI or | $] key two times.
(When the key is input, "S$" is echoed back.)

The two S symbols input after the command indicate the end
of the command and are called "terminator”". When the
terminator is input, the IE-17K-ET starts execution of

that command.

Multiple commands can be input consecutively by separating

them from each other by a delimiter ($) as shown below.

XxX> commandl$Scommand2$ ScommandnS$$

Some commands require a delimiter as a delimiting symbol
and other commands do not. S (ESC code) is used as the

command delimiter.

One $§ input after a command that does not require a

delimiter has no affect on execution of the command.

When multiple commands which do not require a delimiter
are described, $ can be inserted between the commands to

facilitate reading of the command string.

A command string is executed by input of two consecutive

$. In short, input of two consecutive $ ends the command

lines and starts command execution.

A command string can be corrected before it is terminated.

There are commands with arguments and commands without

arguments.
The basic command formats are shown below.

<numeric argument><command name>

<numeric argument><command name><Q-register
identifier>

<command name><Q-register identifier><character
string»>$

<command name><Q-register identifier>

<command name>

@O0® © 06

<numeric argument><command name><character string>$

An expression can also be described where a numeric

argument is described in all commands.

5-6

5.

COMMAND BUFFER

CLICE-ET has a command buffer which stores the command

input from the console.

In most cases, the input characters are stored in the

command buffer directly.

However, in the following cases, the input characters are

not stored directly.

(D special control characters
(See 5.4.1 "Special Control Characters".)

C) * and ? input immediately after the prompt
(See Appendix A.5.9 "Others", *command (assignment

to Q-register), ? command error display).)

When command execution ends normally and the prompt is

displayed, the command buffer is cleared.

5.

.4.

CHARACTER SET
The ASCII character set can be used with CLICE-ET.

The control characters (ASCII codes 00 to 1FH) from
control A (4 A) to control _ (+°) are displayed by ~ and
an alphabetic character.

-~

CLICE-ET interprets the two characters and A as if

control A (¢+ A) were input even if they are input

consecutively.

(Example) Pressing the A key while pressing the control
key is called control A (abbreviated + A). At
this time, ASCII code 01lH is input at CLICE-ET
and the two characters ~ (ASCII code 5EH) and
A (ASCII code 41H) are displayed as "A.

SPECIAL CONTROL CHARACTERS

CLICE-ET has the following special control characters.

(1) DEL

When the DEL (ASCII code 7FH) is input, the previous

character is deleted.

When the previous character is a control character,
the two characters ~ and alphabetic character are
deleted.

(2) EsC

When the ESC (ASCII code 1BH) key is input, $§ (ASCII
code 24H) is displayed.

1BH is stored in the command buffer.

5-8

(3)

(4)

Control C

Control C (4+ C)(ASCII code 03H) is a special control
character for interrupt command execution. The two

characters ~ and C are displayed in that order.

When +4 C is input before a command string is
terminated, the entire input command string becomes
invalid and the prompts displayed and the system

waits for command input.
However, in this case, the data in the command buffer
is not cleared. (See Appendix A.5.9 "Others", the

*command (assignment to Q-register).)

To interrupt execution after a command is terminated
(i.e., after command execution starts), +C is input

twice.

When execution of a command string is interrupted,

the following message is displayed.

ABORTED!

At this time, the interrupted command string is saved

in the command buffer.

Control X

The control X (+X)(ASCII code 18H) key deletes the

line containing the cursor.

The command string deleted by 4 X is not saved in

the command buffer.

5-9

(5)

(6)

(7)

(8)

(9)

Control H

The control H (+ H) and BS keys (ASCII code 08H)

perform the same operation as the DEL key.

Control U

Control U (+ U)(ASC code 15H) is functionally the
same as +X, but displays U and line feed.

+U is the command deletion control character for TTY

type consoles other than CRT.

Control G

When control G (+ G)(ASCII code 07H) is input, the
contents of the current line are displayed.

Similar to +U, 4G this is a control character for

a TTY type console.

Control E

When control E (+E)(ASCII code 05H) is input before
a command string is terminated, the IE-17K enters the
edit mode (See Appendix A.6 "Editor".)

Control S

When control S (4 S)(ASCII code 13H) is input,
character display of the command executing at that

time is temporarily interrupted.

Execution is resumed by entering control Q (+ Q)

(ASCII code 11H).

5-10

5.4.2 SPECIAL CHARACTERS

CLICE-ET has the following special characters.

(1)

(2)

(3)

-

" (ASCII code 5EH) is always followed by a character.

For the character following ~, the same character as
a control character is stored to the command buffer.

(Example) When B is input from the cursor following

", the same code as when 4B is input

’

(ASCII code 02H) is stored to the command
buffer.

When $ (ASCII code 24H) is input, ESC (ASCII code
1BH) is stored to the command buffer.

Control R

For control R (4R)(ASCII code 12H), the character
following *+R is stored to the command buffer

unchanged.

This is used when you want to store a character which
only performs special control character, control

character, etc. operation to the command buffer.

(Example) "R4R ... +R (ASCII code 12H) is stored

as one character.

"R"R ... The two characters -~ (ASCII
code 5EH) and R (ASCII code

52H) are stored.

(4)

+R4+4R ... 4R (ASCII code 12H) is stored

as one character.

*R"R ... The two characters -~ (ASCII
code 5EH) and R (ASCII code
52H) are stores.

However, + R does not apply to +C and DEL. These

characters can only be stored by editor command.

Other special control characters

Besides the special control characters, CLICE has the

following characters.

Control B (*B), control D (+ D), control P (tP),

(period).

Of these, 4B, 4D, and %P are prefixes which show
the type of constant to be described later.

(period) is a prefix which identifies a built-in

command.

.4.3

DUMMY CHARACTER

"Dummy character" is a character which is not defined as a

command itself, but does not generate an error even if

executed.

There are dummy characters that perform a special

operation when they are output to the console.

Therefore, dummy characters can be inserted into a
character string to simplify reading of the character

string.
(1) CR

When CR (+M)(ASCII code ODH) is output to the

console, line feed is performed.

(2) LF

LF (4J)(ASCII code OAH) is not stored to the

command buffer unchanged.

To store LF to the command buffer, input +4J after.

+R.
(3) Blank

When blank (ASCII code 20H) is output to the console,

a one character blank is displayed.
(4) NULL

NULL (4@)(ASCII code OOH) is not stored to the

command buffer.

To store NULL to the command buffer, input +@ after
*R.

(5) TAB

TAB (+ I)(ASCII code 09H) displays 8 columns of
blanks.

+I (ASCII code 09H) is stored to the command
buffer.

5-14

EXPRESSION

The operators that can be used in expressions by CLICE-ET

are shown below.

+ ... + sign or addition symbol

- ... - sign or subtraction symbol
* ... Multiplication symbol

/ ... Division symbol

Remainder symbol

& AND symbol

... OR symbol

| ... Exclusive-OR symbol
- ... Negate symbol

{ ... Left shift symbol

} ... Right shift symbol

Expressions are all evaluated not in expression operation

priority order, but from left to right.

However, when desiring to change the priority, () can

be used.

Constants, variables, and functions can be used as the

component element of each item of an expression.

(Example) The evaluated value (right side of +) of the
examples shown below are all shown in decimal.

C) Xxx>3+4 > 7
(@ xxx>10+ 4D10* 4+ B1O > 52
C) Xxx>10+ (4D10* 4B1l0O) + 36
(@ xxx> +B1010} 1 + 5
® xxx> +B1011) 1& 4B1000 ~» 8
® xxx> ~FFFFFFFC + 3
@ xxx>5""3+ (5/3) + 3
XXx>5773+5/3 + 2

[6)]
!

15

(9 xxx>Ql+@ +FDTM 4 V +

Q@ XXx> 4+FPRM+ (100%2) 4V =~

Sum of contents of Q-
register 1 and array
assigned to top address of
data memory (that is,
contents of data memory
address 0)

Contents (16 bits) of
program memory address
100H

5.

CONSTANT

Hexadecimal, decimal, and binary integers and 17K series
instruction identifiers (1-4-3-4-4 bit format) can be used
with CLICE-ET to represent constants.

The range of values which can be represented is,

decimal : -231 to (+231-l)

hexadecimal : 0 to FFFFFFFFH

Two's complement representation is used as negative

representation.
The constants representation method is shown below.

Binary constant: Represented by adding 4B in front of

the binary number
(Example) +B1010 represents the decimal number 10.

Decimal constant : Represented by adding +D in front of

the decimal number.
(Example) 4 D324 represents the decimal number 324.
Hexadecimal constant : Represented by decimal number only.
(Example) Fl represents the decimal number 241.
1-4-3-4-4 bit format constant : Represented by adding +P
in front of the

hexadecimal number.

(Example) +PO074F0 represents NOP.

.7,

7.

VARIABLES

CLIC-ET has arrays and Q-registers as the variable

concept.
ARRAY

"Array" represents all the resources managed by
CLICE-ET.

Each element of an array corresponds to a target device

resource.

Therefore, when a value is assigned to an array by
CLICE-ET, data is written to the hardware in the target

device corresponding to the element of that array.

When the contents of an array element are referenced, the
data (status) of the corresponding hardware at that array

element is read.

Each element of an array can be referenced by pointer and

data can be assigned by XB, XC, and XW command.
Q-REGISTER

CLICE-ET has a registers (Q-registers) that can store a
value or character string. This register corresponds to

the variable concept of general programming languages.

The Q-registers are described by the character Q followed
by an upper case alphabetic character or numeric. (The
upper case alphabetic character is called the Q-register

identifier.)

(Examples) Ql, QA, 08, QZ, etc.

All the Q-registers can be used as numeric variable or

character variable.

The kind of variable a Q-register is used as is determined

by the contents stored in it.
When CLICE-ET starts, all the Q-registers are cleared.

The range of values which can be stored in the Q-registers
is the same as the range of values of constants. When a
value is assigned to a Q-register, that value can be used

by an expression.

A character string is stored to the Q-registers by U
command and * command. When a character string is stored
to a Q-register, that character string can be executed as

a macro command.

5.

.8.

BUILT-IN MACRO COMMANDS

This section describes the built-in macro commands which
are used when executing the basic functions of the
IE-17K-ET.

The symbols used in the formats described in this section

are defined below.

- : Line feed input
{ } : Indicates that one of the character
strings described in the (} is
to be selected.
[] : Input can be omitted

(Underline) : Console input

PROGRAM MEMORY CONTROL COMMANDS

The commands are listed in order of the actual procedures.

(1) Program memory load
.LP (Load Program Memory)

(2) Program memory verify
.VP (Verify Program Memory)

(3) Program memory initialize
.IP (Initialize Program Memory)

(4) Program memory modification
.CP (Change Program Memory)

(5) Assemble command
.AP (Assemble Program)

(6) Program memory dump
.DP (Dump Program Memory)

(7)

(8)

(9)

(10)

(11)

Reverse assemble command
.UP

Program memory search
.FP (Find Program Memory)

Program memory save
.SP (Save Program Memory)

PROM DATA OUTPUT
. XS (Save PROM Date)

IE-17K-ET restarting
-Q

.LPO .LP1 Load Program Memory
Format .LPO
.LP1
RS-232-C channel 0: LPO
channel 1: LP1
[Function] 1Inputs the contents of an AS17K HEX file from
the RS-232-C channel specified by .LPO or .LPl.
(Example) Load the program from line O.
@@@> .LPOSS
[Notes] When the power is turned on, or when the

IE-17K-ET is reset (prompt @EE@>), load the
AS17K HEX file by .LP.

When the program loaded by this command
occupies only a part of the program memory,
the previous program remains at the unloaded

part of program memory.

The program coverage is cleared.

.VPO .VP1 Verify Program Memory

Format : .VPO
.VP1
RS-232-C channel 0: VPO
channel 1: VPl
[Function] Verifies the contents of program memory and

the data of the AS17K HEX file sent from the
RS-232-C channel specified by .VPO or .VPL.

When verifying, "Verify...NG" is always
displayed for areas outside the user program.
This is because in the memory where the ICE
file is stored, the IE-17K-ET processes data
in a portion of the assembly environment
information area and in the SE board

environment information area.

Refer to Chapter 5 "Load Module File

Format" of the device file user's manual for
details about the assembly environment
information area and the SE board environment
information area, and check to make sure that
the address where the error occurred is

outside the user program area.

(Example)

BRK>.VPOSS

Verify...NG

00
BRK>000000000030303231313011

5-23

[Note]

:1007C40038303731441212FF073356202020F0F6
:1007D40000000000" == === mt
:0407FC000100C11522

:00000001FF

When the data memory information is different,
"Verify NG DATA INITIAL VALUE" is displayed.

When EPA is different, "Verify NG EPA" is
displayed.

When IFL and DFL are different, "Verify NG IFL
DFL" is displayed.

.IP Initialize Program Memory

Format : [«ao], B, vy.IP

Start address

End address

(a$ B, a> B generates an error)
Initialize data (1-4-3-4-4 bit format)

[Function]

Initializes the contents of program memory

addresses ¢ to B to v.
When a is O, a can be omitted.

(Example 1) Initialize addresses 10H to 20H
to 074F0.

BRK>10,20,074F0. IPSS

(Example 2) Initialize addresses OH to 20H
to 120FF.

BRK>, 20,120FF.IPSS

.CP Change Program Memory

Format : [a].CP

@ : Program memory address to be changed

[Function] Changes the contents of program memory address

a.
When ¢ is O, ¢ can be omitted.

(Example) Change the program contents

beginning from address 100.

BRK>100.CPS$SS
0100:074F0-120F5 074F0-14001
074F0-11000 074F0-06100
0104:074F0-

L~ $s also possible

in exchange for 4

When a 14344 format value is input
up to 5 digits, the cursor
automatically moves to the next
address.

To end operation, input "o " or

"$8" instead of a value.

5-26

BRK>100.CPSS
0100:074F0- @

Space key pressed

0100:074F0~074F0 074F0- M
Input wait of next
address

When the space key is input instead
of a value, the program contents
are not changed and the cursor

moves to the next address.

If the wrdng value is input, it can
be corrected with the "DEL" key.
(This also applies to the "BS"
key.)

0100:120AF-120A1 074F0-120_

. "DEL" key pressed.

0100:120AF-120A1 074F0-12_

. "DEL" key pressed.

0100:120AF-120A1 074F0-1_

. "DEL" key pressed.

0100:120AF-120AF 074F0~_

. "DEL" key pressed.

0100:120AF-_ "DEL" key pressed.

v
0OFF:120C1-_

Remarks _: Cursor

.AP Assemble Command

Format : [q].AP [g]
g ¢ Start address
B : Q-register name

[Function] Assembles the mnemonic applied to Q-register B
and stores it beginning from program memory

address «a .
When O, o can be omitted.

When Q-register B is omitted, the code of
program memory address ais reverse assembled
and displayed. The mnemonic input mode is
set. In the mnemonic input mode, it is
possible to change the contents of the

program memory at mnemonic level.
(Example 1)
BRK>5.APSS

0005: MOV 05,#5 - $$ S$$ input exits the

BRK> mnemonic input mode.

BRK> .APS$S

0000: MOV 00, #1 - MOV 01,41 d

0001:

MOV 10,42 - N

Waits for inpu’c.--wJ

BRK> .APSS
0000: MOV 00, #1
ASSEMBLE ERROR
0000: MOV 00, #1

Waits for input.
BRK>.APS$S

0000: MOV 00, #1

0001: MOV 10, #2

Waits for input.
BRK> .APSS

0000: MOV 00, #1

0001: MOV 10, #2

« input

performs

assembly and
the next
(The BS key

be used.)

moves to
address.

can also

- MOV O1,#14

When an error occurs
during assembly, it
returns to the

original address and

waits for input.

When « is only
pressed, it waits
for the next address

to be input.

- MOV 01,#1
- MOV 01, #1 W

L———* 4P (CTRL + P)

If +P are pressed
while it is waiting
the

previously input

for input,

character string
(here that is MOV
01,#1) is displayed.

(Example 2)

BRK>USMOV 01, #05
ADD 1,78

$$

BRK>5.APSSS
BRK>5, 6.DPSS

0005: 1DO15 00781

The character string
is assigned to the Q
register S using the
U command.

The contents of Q
register S are
assembled, and the
assembled results

are dumped.

[Note]

(1)

(2)

(3)

(4)

(5)

(6)

Describe RF addresses by 40H to BFH.

However, OOH to 3FH, when written, it treated
the same as 80H to BFH. COH to FFH is
treated as 40H to 7FH.

Use space or tab as the mnemonic and operand

separator.
Describe addresses in hexadecimal numbers.

Describe immediate data with the symbol #

followed by a hexadecimal number.

(Example)
MOV 11, 40 STOP O
ADD 0,11 BR 00SF
POKE 81,WR BR @AR
PUT 01,DBF MOV @5, 00

When an error is generated during assembly,
the error line and its contents are displayed
and assembly stops. At this time, the codes
up to the line before the error line are
stored to program memory. The operand range

is not checked.

When the assembly contents exceed the last
program memory address, storage is continued
from address O.

To use EPA, specifies address 8000H or a

subsequent address.

(Example)
8000.APDSS
Assemble and store contents
of Q-register D at EPA.

.DP Dump Program Memory

Format : [al[, R].DP

Start address
End address (¢ B8, a> B: error)

[Function]

Dumps the program contents of addresses ¢ to
B .

- When a is 0, a can be omitted. If ", B" is

omitted, the end address becomes o +3FH.

(Example 1) Dump the contents of addressed
10H to 20H in 1-4-3-4-4 bit

format.

BRK>10, 20.DPSS

0010:074F0 074F0 074F0 074F0
074F0 074F0 074F0 074F0
0018:074F0 074F0 074F0 074r0
074F0 074F0 074F0 Q74FO
0020:074F0

5-32

(Example 2) Dump the contents of addressed 0
to 1O0H.

BRK>, 10.DP$$

0000:074F0C 074F0 074F0 074F0
074F0 074F0 074F0 074F0
0008:074F0 074F0 074F0 074F0
074F0 074F0 074F0 074F0
0010:074F0

(Example 3) Dump the contents beginning from
address 10H.
(Dump addresses 10H to 10H+3FH.)

BRK>10.DPS$$

0010:1D790 1D7D0 1D7EOQ 074F0
074F0 074F0 074F0 167EO
0018:1D770 08770 10771 08771
10771 08772 10771 08773
0020:10771 08774 10771 08775
10771 08776 10771 08777
0028:10771 08778 10771 08779
10771 0877A 10771 0877B
0030:10771 0877C 10771 0877D
10771 0877E 10771 O877F
0038:1D000 074F0 074F0 074F0
074F0 074F0 074F0 074F0
0040:1D7FO 00000 074F0 074F0
0B7D0 097EQ 0C049 1C146
0048:0C050 097F2 0C170 09000
0C171 18770 09770 OC172

.UP Reverse Assemble Command

Format : [al[(, BJ1.UP [y]

Start address
End address (a¢B, a>B: Error)

Q-register name

{Function]

When vy is omitted, this command reverse
assembles and displays the contents of program
memory addresses a to B. At this time, EPA
information is also output.

When y is specified, this command reverse
assembles the contents of program memory
addresses o to 8 and stores the mnemonics to
Q-register vy.

When ¢ is O, ¢ can be omitted. When ", B" is

omitted, the end address becomes o +10.

(Example 1)
BRK>.UPSS When both start address and
end omitted.

EPA ADDR CODE MNEMONIC
0000 O070EQ0 RET
0001 O0OO7F0C ADD 0,7F
0002 002A5 ADD 5,2A
0003 00558 ADD 8,55
0004 OOOQOOF ADD F,00
0005 1000F ADD 00, #F
0006 102A5 ADD 2A, #5
0007 1055A ADD 55, #A
0008 107F0 ADD 7F, #0

0009
BRK>8.UPSS

EPA ADDR
0008
0009
000A
000B
000cC
000D
OO00E
O00F
000E
000F

027F0

CODE

007F0
002A5
00558
O0O0O0F
1000F
102A5
1055A
107F0
1055A
107F0

BRK>44,4B.UPSS

EPA ADDR
0044

1 0045
0046

1 0047
0048

0049

004A

0048B

(Example 2)

CODE

057F0
052A5
05558
0500F
1500F
152A5
1555A
157F0

BRK>10, 20.UPBSS

BRK>50.APBSS

5-35

ADDC O,7F

When only

specified.
MNEMONIC
ADD 0,7F
ADD 5,2A

ADD 8,55

ADD F,00
ADD 00, #F
ADD 2A, #5
ADD 55, #A
ADD 7F, #0
ADD 55, #A
ADD 7F, #0

When both start address and

start address

end address specified.

MNEMONIC
XOR 0,7F
XOR 5,2A
XOR 8,55
XOR F,00
XOR 00, #F
XOR 2A,#5
XOR 55, #A
XOR 7F,#0

Reverse assemble contents
of program memory addresses
10H to 20H and load result

into Q-register B.

Assemble contents of Q-

register B and expand at

program memory address 50H

and subsequent address.

(Example 3)
BRK>10, 20.UPBSS

BRK> .EDBSS
>

.

Reverse assemble contents
of program memory addresses
10H to 20H and load result
into Q-register B.

Edit by edit command.

(Editing example omitted)

>
BRK>10.APBSS

Assemble contents of Q-
register B and expand at
program memory address 10H
and subsequent addresses.

[Note] Codes which cannot be reverse assembled are
displayed at the mnemonic field as [DW].

5-36

.FP Find Program Memory

Format : [a], B, yI[, 8].FP

Start address
End address

.o

Data to be searched
Mask data
(y, §: 1-4-3-4-4 bit format)

oy <X ™ R

[Function] Searches the contents of y masked by ¢§ at the

program memory contents from addresses o to R.

When o is 0, o can be omitted.

When § is omitted, the mask data becomes
1F7FF.

(Example) Find if 12xxx is in addressed O to
300H.

BRK>0,300,12000,1F000.FPSS

0110:12120 0120:12200
0140:12240 0152:12250
0160:12151 0180:12152

[Note] "Mask data" is 1-4-3-4-4 bit format data with 1
set in the bit to be searched and 0 set in bits

which can be 1 or 0.

.SPO .SP1 Save Program Memory

Format : .SPO
.SP1

RS-232-C channel 0: SPO
channel 1: SP1l

[Function] Outputs the contents of program memory to the
RS-232-C channel specified by .SP0C or .SPLl.

The output format is the same as the AS17K ICE
file format.

(Example) Output the contents of program

memory to channel 1.

BRK>.SP1SS
:1000000063A03CF061273CFOEFEQ40423CEQEFO4AD
:10001000EF10EF20EF30EF91EFOOEF10EF20EF3017
:10002000EF90EBCOEBDOESDOEBFO3CA138A538A6B9
:1000300038A738EOEB820E8303CFO3CF080219030F0
:10004000F7F4601C38EOB204EB8EOEBFO38A538EQE6
:10005000E830E82038E08031902038E0F6F4605055

)

5-38

.XS0 .XS1 Save PROM Data

Format : . XS0
.XS1

RS-232-C channel 0: XS0
channel 1: XSl

[Function] Outputs the contents of program memory in
AS17K PROM file formal at the RS-232-C
channel specified by .XS0O or .XSl.

(Example) Output the contents of program
memory at channel 1.

BRK>.XS1S$

:1000000063A03CF061273CFOEFEO40423CEOEF04AD
:10001000EF10EF20EF30EF91EFO0OEF10EF20EF3017
:10002000EF90E8COEBDOEBEOEBFO3CA138A538A6B9
:1000300038A738EOE820EB8303CFO3CF080219030F0
:10004000F7F4601C38EOB204EBEOEBFO38A538E0QOEG
:10005000E830E82038E08031902038EOF6F4605055

)

.Q Restart IE-17K-ET

Format

[Function] Restarts the IE-17K-ET from the previous state

[Note]

when the IE-17K-ET reset switch is pressed and
when the power is turned off and then turned
back on. When restarting is successful, the

same program as before need not be loaded.

(Example) @@@>.QSS
17XXX
BRK>

Product name is displayed 2 to
3 seconds after .Q command is

input.

I1f the product name is not displayed 2 to 3
seconds after the .Q command is executed, the
program will be lost. Therefore, after the
IE-17K-ET is reset, reload the program.

Since the program is also lost when the message

Your program must be lost.

Please load it again!

is displayed instead of the product name, reload

the program after resetting the IE-17K-ET.

Whether the program is preserved or lost is judged
by whether or not the program checksum is matched.

Therefore, part of the program may be lost even if

the product name is displayed.

The time at which the program is preserved after
the IE-17K-ET power is turned off depends on the
SE board.

5.

8.

2

DATA MEMORY CONTROL COMMANDS

(1)

(2)

(3)

(4)

Data memory initialize

.ID (Initialize Data Memory)

Date memory change
.CD (Change Data Memory)

Data memory dump

.DD (Dump Data Memory)

All data memory dump
.D (Dump All Data Memory)

.ID Initialize Data Memory

Format : ([a], B, vy.ID

Start address
End address (a8, a>B: Error)

Contents

[Function]

Initializes the contents of data memory
address o to B to y.

When ¢ is O, a can be omitted.

(Example 1) Initialize contents of addressed
10H to 20H to O.

BRK>10,20,0.1IDSS

(Example 2) Initialize contents of addressed
0 to 20H to 1.

BRK>, 20, 1.IDS$$

.CD Change Data Memory

Format : [a].CD

a

: Data Memory address to be changed

[Function]

Change the contents of data memory address o
When O, o can be omitted.

(Example) Change the contents from data
address 0.

BRK> .CDSS
0000 0-0 1-0 2-0 3-0 4-0 5-0 6-0 7-0
0008 8-0 9-J

L— $5 also possible
instead of 4

When one data is input, the cursor moves
address. To end operation, input " " or "s"

instead of a value.
BRK>100.CDSS$

0100 3-8 Space key input.
0100 3-3 2- M Waits for next address

change input.

When the space key is input instead of a
value, the data contents are not changed and

the cursor moves to the next address.

If the wrong value is input, it can be
corrected with the "DEL" key. (This also
applies to the "BS" key.)

0010:2-3 4-5 6-_ "DEL" key pressed.
+

0010:2-3 5-_ "DEL" key pressed.
¥

0010:3-_ "DEL" key pressed.
¥

000F:4-_

*: _:+ Cursor

.DD Dump Data Memory

Format : [a](, B].DD
a ;: Start address
B: End address (a ¢ B , a>B : Error)

[Function] Dumps the contents of data memory addresses «
to B . '
When O, a can be omitted.

(Example 1) Dump the contents of data memory
addressed O to BOH.
BRK>0, 80.DDSS

0000:01 234567 89 ABCDETF
0010:01 23 4567 8939ABCDETF
0020:01 234567 89 ABCDETF
0030:01 234567 89ABCDETF
0040:01 234567 89ABCDETF
0050:01 234567 89 ABCDETF
0060:01 234567 89ABCDETF
0070:01 23 4567 89 ABCDETF
0080:0

(Example 2) Dump the contents of address 30H.
(Dump the contents from address 30H
to address 7FH.)

BRK>30.DDSS

0030:0 0 0 3 0 5 890146 O0F
0040:0 1 2 3 4 5 8 3ABCDETF
0050:0 0 2 D F F 4 9A0CO00TF
0060:0 1 2 3 4 5 89 A00DOTF
0070:0 ¢ 2 B 4 5 879BCO0O0O
[Note] . When ", g " is omitted, the data from address

a to the last address of the bank allocated
address o is dumped.

When address o of a register file is specified,
the data from address a to the end of the

register file is dumped.

The contents of uninstalled data memory are

" "
- .

indicated by

Dump of addressed 0080 to OOBF dumps the
contents of the register file. If the register
file is not installed, the status of the

internal bus is displayed.

.D Dump All Data Memory

Format

[Function]

[Note]

(Example) BRK>.DS$$S

0000:0 O
0010:0 O
0020:0 O
0030:0 O
0040:0 O
0050:0 O
0060:4 O
0070:5 O

0080:2
0090:0
00A0:0
00BO:0

O = O !,
N NN O N
W www
[>

Register file is also

Dumps all the data memory

M O O O O O K
O O O O © O O 0N
O O O O O O O o
O O O O O O O O
O O O O O O O O
O O O O O O O O

N g O ow;m

NI N e e)

dumped.

contents.

H O O O O O O O
O O O O O ©o o o
O O O O O O 0o O
N O O O O O o O
O O O O ©O O o o
O O O ©O O O o O

Mo O b
©O o o N
O O v Y
> x> o
v o ow w
Qo0 o0
U U 9 U
fmom mom

QO O O O O O O O

O O O O O © O o

N O O =

5.8.3

PERIPHERAL CIRCUIT CONTROL COMMANDS

(1) Peripheral register contents display
.GD (Get & Display)

(2) Peripheral register contents read
.GE (GET)

(3) Write to peripheral register
.PD (Put Direct)

(4) Indirect write to peripheral register

.PU (PUT)

5-49

.GD Get & Display command

Format : a .GD

@ : Peripheral address

[Function] Display the contents of peripheral address a

in hexadecimal.

(Example 1)
BRK>1.GDSS. Display contents of
00000002 peripheral address 1.

(Example 2)
BRK>UP1.GD"A TIMEl "A2.GD"A TIMEZ2 "A3.GD"A SIO

“ASS Define macro P.

BRK>MPSS Execute macro P.
00000034 TIME1l

00000022 TIME2

00000004 s1I0

[Note] When peripheral address o« is not this model, the

following message is displayed.

?POS INVALID ADDRESS

.GE Get Command

Format : a .GEB
@ : Peripheral address
B Q-register name
[Function] Assigns the value of peripheral address a to

Q-register B8 by numeric.

(Example 1)

BRK>1.GEASS Assigns the value of peripheral
address 1 to Q-register A.

BRK>QA=HS10 Displays contents of Q-register
A in hexadecimal.

(Example 2)
BRK>UQ1l.GEA2.GEB3.GEC"A SI0O= "AQA=H A
TM1l= "AQB=H A TM2= "AQC=HSS

Define macro Q.

BRK>MQSS SI0= 34 TMl= 66 TM2= 2
Execute macro Q.

BRK>

[Note] [TA] in macro Q defined in Example 2 is an

instruction to display character strings directly.

If there is a character string you want to display

at macro-defined command execution, enclose that

character string in ["A].

(8;]
§

51

When peripheral address is not a value at this

model, the following message is displayed,

?POS INVALID ADDRESS

.PD Put Direct Command

Format : a , B .PD

Peripheral address
Data

[Function] Assigns numeric B to peripheral address q.

(Example) BRK>1,55.PDS$S
Assign 55H to peripheral

address 1.

[Note] When peripheral address ¢ is a value not at this

model, the following message is displayed.

?POS INVALID ADDRESS

.PU Put Command

Format : a.PUB
@ : Peripheral address
B : Q-register name

[Function] Assigns the contents (numeric) of Q-register

B to peripheral address o.

(Example) BRK>55UASS Assign 55H to
Q-register A.

BRK>1.PUASS Assign the value of Q-
register A to

peripheral address 1.

[Note] When peripheral address ¢ is a value not at this

model, the following message is displayed.

?P0S INVALID ADDRESS

5-54

5.8.4 EMULATION COMMANDS

(1)

(2)

(4)

(5)

(6)

Reset
.R (Reset)

Program execution
.RN (Run)

Program execution (reset condition)

.BG (Run Beginning Condition)

Break
.BK (Break)

Program start address change
.CA (Change Start Address)

Step operation
.S (Step)

Display
.DS (Display)

.R Reset

Format : .R

[Function] Resets the SE board.
(Example) BRK>.RS$S

[Note] . The register file and data memory contents
' become the same as the reset contents of the

target product.
The data coverage contents are cleared.

The run start address becomes OH.

5-56

.RN Run

Format : .RN

[Function] Executes the program from the current

specified program run state address.

The conditions used at break and trace do not

change.

(Example) BRK>.RNSS
RUN>

.BG Run Beginning Condition

Format : .BG

[Function]

Executes the program from the currently
specified program run start address.

However, the following conditions used at

break and trace are set.

<Reset contents>

. Counter used at level 1 (reset value: 0)

. Sequential stack used at level 2 (to
initial value)
Trace on, tract one shot, and trace off
specification (all to trace state)

. Level 1 condition

(Example) BRK>.BGSS
RUN>

.BK Break

Format : .BK

[Function] Stop program execution.

Display the contents of the system registers

and general registers at this time.

This command can be accepted in the break

state also.

(Example) RUN>.BKS$S
ADDR INSTRUCTION
0002 Q74F0 BREAK Break processed
instruction
0003 074F0 OVERRUN Instruction
executed last
0004 0cCO004 NEXT Instruction to
be executed
NEXT
PC SP AR WR BR MP 1IX
0004 3 0700 O 0 *** 000
PSW: DB CP CY Z IXE MPE JG System
0 0 0 0 0 0] 0 registers
RP 0123456789ABCDEF
000 0000000000000320 General
registers

.CA Change Start Address

Format : a.CA

@ : Run start address

[Function] Changes the program run start address.

(Example) Change the program run start
address to 100H.

BRK>100.CASS

.8 Step

Format : [a].S

o ¢ Number

of times

[Function] Runs the

times.

(Example

BRX>. S§S
BR RP PC INST MNEMONIC
0 00 0000 074F0 NOP
0 00 0001 IDOOO MOV 00,20
0 00 0002 1DOLL MOV OI,%1
0 00 0003 1000A ADD 00, A

(Example

BRK>4. S8§
BR RP PC INST MNEMONIC
0 00 0000 074F0 NOP

program that specified number of

1)

2138 E @

N
~—

0 00 0001 1D00OO MOV 00,%0 :
0 00 0002 IDOI1 MOV O1,%1 :
0 00 0003 10004 ADD 00,%A :

| Mnemonic
Instruction
Code
Program
Counter
Register
Pointer

Bank

Perform step operation.

Advance 1 step at space key input.

Advance 1 step at space key input.
Advance 1 step at space key input.

Terminate step operation at S input.

Perform 4 step operations.

Specify step number.

Execute 4 steps.

[Note]

Step operation is ended by $$ or 4 (return)

input.

When g is O or omitted, operation is performed

1 step at each instruction.

[8)]
1

62

.DS Display

Format : .DS

[Function] Enables the liquid crystal display during
break (this function only applies to the
product with LCD controller).
Depending on the product, the liquid crystal
display may go off during break. This command
is used when desiring to view the liquid
crystal display during break.
(Example) BRK>.DSSS

DSP>
[Note] Since a RUN state (BR instruction executed

repeatedly) is provided as an emulation state,
the trace and coverage contents are not
guaranteed after this command is used.

Input of any key returns to the original state
(break state).

5.8.5 BREAK/TRACE CONDITION CONTROL COMMANDS

(1)

(2)

(4)

(6)

(7)

Break/trace condition change
.CC (Change Break/Trace Condition)

Trace on/off condition change

.CT (Change Trace Condition)

Break/trace condition dump
.DC (Dump Break Condition)

Trace table dump
.DT (Dump Trace Table)

Break/trace condition save

.SC (Save Break/Trace Condition)

Break/trace condition load
.LC (Load Break/Trace Condition)

Break/Trace condition verify

.VC (Verify Break/Trace Condition)

.CC Change Break/Trace Condition

Format : .CC

[Function] Sets and changes the break and trace

conditions.

[Explanation]

Four independent break/trace conditions can
be set simultaneously. In short, the
condition setting unit is 4 units. When
items are set in 4 units, .CC command level
1 is used. When each unit is set as a
break condition, .CC command level 2 is
used and when each unit is set as a trace

condition, the .CT command is used.

The .CC command sets the conditions

interactively.

The setting items are shown below.

J (return) is input when the predefined
value of items C) to L) (however, H) is
invalid) is as it is input and $ is input

when exiting from the setting.

<Break condition setting items (for level
1)>

A) LEVEL (1,2): 71

Selects the level. There are two

levels: 1 and 2.

B) UNIT (O to 3): 72

Selects the unit. There are four
units: O to 3. For the items which

can be set at each unit, see Table 5-1.

CATG (C to L): 7

Specifies which setting item of C) to
L) from which condition setting is to
be performed. Depending on the unit,
there may be no setting items. When no
items are specified, setting becomes

possible from the item after that item.

C) CONDITION AND(1)/OR(Q): Predefined

value ?

Selects if the setting items from D) to
K) are ANDed or ORed. When the AND
condition is selected, the unit break
condition is established after all the
setting items in the unit are
satisfied. Therefore, when you want to
remove a condition from the AND
conditions, set the conditions so that

that condition is always satisfied.

However, since the timing signal
contributes to establishment of
conditions E) and 1), to remove
from the AND conditions, set 1 at
RELEASE~FROM AND-~.

D) PROG ADDR UPPER: Predefined value ?

Specifies the upper limit of the
program address break/trace

conditions range.

PROG ADDR LOWER: Predefined value ?

Specifies the lower limit of the
program address break/trace conditions

range.

MATCH(1)/UNMATCH(Q): Predefined

value ?

When MATCH is specified, the above
program address range becomes the

break/trace condition.

When UNMATCH is specified, outside the
above program address range becomes the

break/trace condition.

. E) RELEASE DATAMEMORY FROM AND YES(1l)/
NO(0O): Predefined value ?

When releasing item E) related to data
memory from the AND condition of D) to
K) (when 1 selected at (C), 1 is input.
when the OR condition of D) to K) is
selected (when 0 is selected at (C)),
the contents of this setting are

ignored and can be either 1 or O.

The data memory condition becomes the
AND of the three conditions DATA ADDR,
CURRENT DATA, and PREVIQUS DATA (may

not exist, depending on the unit).

5-67

DATA ADDR: Predefined value ?

Sets the break/trace condition using
the data memory address in which data

is written.

DATA ADDR MASK: Predefined value ?

Sets the mask data for the break/trace
condition data memory address. The
mask data is hexadecimal data with 1
set in the bit of the data memory
address to be made the break/trace
condition and 0 set in bits which may

be either 1 or O.

Since this item does not exist at unit
2, the data memory address break/trace

condition cannot be masked.

MATCH(1)/UNMATCH(O): Predefined value

?

When MATCH is specified, the DATA ADDR
value above becomes the break/trace

conditions.
When UNMATCH is specified, a value
other than the DATA ADDR value above

becomes the break/trace condition.

CURRENT DATA: Predefined value 7

Sets the break/trace condition by

written data memory value.

CURRENT MASK: Predefined value ?

Sets the mask data for the value of the

break/trace condition data memory.

Since this item does not exist at unit
2, the data memory break/trace

condition cannot be masked.

MATCH(1)/UNMATCH(QO): Predefined value
)

When MATCH is specified, the CURRENT
DATA value above becomes the break/

trace condition.

When UNMATCH is specified, a value
other than the CURRENT DATA value above

becomes the break/trace condition.

PREVIOUS DATA DISABLE YES(1l)/NO(Q):

Predefined value ?

Since the DATA ADDR, CURRENT DATA, and
PREVIOUS DATA break/trace conditions

are AND conditions.
When you want to remove the PREVIOUS
DATA break/trace condition from the

item of E), input 1.

PREVIOUS DATA: Predefined value ?

Sets the break/trace condition by
value of data memory to which data is

previously written.

MATCH(1)/UNMATCH(Q): Predefined value

?

5-69

When MATCH is specified, the PREVIQUS
DATA value above becomes the break/

trace condition.

When UNMATCH is specified, a value
other than the PREVIOUS DATA value

becomes the break/trace condition.

F) SP LEVEL UPPER: Predefined value ?

Specifies the upper limit of the stack

pointer break/trace condition range.

SP LEVEL LOWER: Predefined value ?

Specifies the lower limit of the stack

pointer break/trace condition range.

MATCH(1)/UNMATCH(O): Predefined value

?

When MATCH is specified, within the
stack pointer range above becomes the

break/trace condition.
When UNMATCH is specified, outside the
stack pointer above becomes the break/

trace condition.

G) INST CODE: Predefined value ?

Sets the break/trace condition by

instruction code to be executed.

The instruction code description is
1-4-3-4-4 bit format.

INST MASK: Predefined wvaLue ?

5-70

Sets the break/trace condition by
instruction code to be executed.

MATCH(1)/UNMATCH(O): Predefined value

?

When match is specified, the above
instruction code becomes the break/

trace condition.

When UNMATCH is specified, codes other
than the above instruction code become

the break/trace condition.
I) Currently, this item is not supported.

Therefore, always mask the break/trace

condition of this item as follows:

RELEASE MAR FROM AND YES(1) / NO(O) : 0 7 1
MAR DATA : 07
MAR MASK : 07

Ll ()

MATCH(1) / UNMATCH(O): O ?

10

J) INTERRUPT ACKNOWLEDGE: Predefined

value ?

Sets the break/trace condition by

interrupt generation.

When 1 is set at this item, the
break/trace condition is established
when an interrupt is generated during

program execution.

The address that starts break and trace
by interrupt generation is the

corresponding vector address.

INTERRUPT MASK: Predefined value ?

Sets the mask data for the predefined
value related to break/trace condition

interrupt.

MATCH(1)/UNMATCH(Q): Predefined value

?

When MATCH is specified, the set value
for the interrupt set above becomes the

break/trace condition.

When UNMATCH is specified, other than
the set value for the interrupt set
above becomes the break/trace condition

value.

K) DMA: Predefined value ?

Sets the break/trace condition by DMA

(Direct Memory Access) generation.

When "DMA generated" is made the
break/trace condition, 1 is set and
when "DMA not generated" is made the

break/trace condition, 0O is set.

Note that when DMA is generated, break
is not generated.

DMA MASK: Predefined value ?

Sets the mask data for the break/trace
condition DMA set value.

MATCH(1)/UNMATCH(O): Predefined value
?

When MATCH is specified, the set value
for DMA above becomes the break/trace

condition.

When UNMATCH is specified, other than
the set value for DMA above becomes the

break/trace value.

L) COUNTER SOURCE SELECT
NO(Q)/INST(1)/CONDITION(2)/INST AFTER
CONDITION(3): 0 2

Sets the break/trace condition by

counter overflow.

The counter is initialized to O and
becomes an up counter that is

incremented by one.

NO(O) ... Do not use counter.

INST(1) ... Count number of
instruction
executions
unconditionally.

CONDITION(2) ... Count number of

executions of
instructions that
satisfy break/trace
condition as unit
set at C) to K).

INST AFTER CONDITION(3)
Count number of
executions of
executed
instructions after
conditions of
items C) to K)

satisfied.

TERMINAL COUNTER: Predefined value ?

Sets the counter final wvalue.

'COUNTER MASK: Predefined value ?

Sets the mask data value for the set
value of the break/trace condition

counter.

MATCH(1)/UNMATCH(O): Predefined value

?

When MATCH is specified, the counter
value above becomes the break/trace

condition.

When UNMATCH is specified, a value
other than the counter value above

becomes the break/trace condition.

5-74

(Output example for each unit)

<Unit O>
BRK>.CC3$
A) LEVEL(1 , 2) ¢ 21
B) UNIT(0-3):?280
CATG(C-L):?2C
C) CONDITION AND(1) / OR(CO) : 0 ?

D) PROG ADDR UPER . FFFF ?

PROG ADDR LOWER . 0000 ?] Program Memory
NATCH(1) / UNMATCH(O) : 0 ?

E) RELEASE DATAMEMORY FROM AND YES(1) / NOCO) : ?
DATA ADOR . 000
DATA ADDR MASK . 000
MATCH(1)/UNMATCH(0)-1
CURRENT DATA :
CURRENT MASK
NATCH(1) / UNMATCH(O) :

F) SP LEVEL UPER :
SP LEVEL LOWER :
NATCH(1) / UNMATCH(O) :

J) INTERRUPT ACKNOWLEDGE :
INTERRUPT MASK :
NATCH(1) / UNMATCH(O) :

K) DMA
ONA MASK
NATCH(1) / UNNATCH(O)

L) COUNTER SOURCE SELECT
NO(G) / INST(1) / CONDITION(2) / INST AFTER CONDITION(3) : 0 ? }

Counter

Data Memory

Stack Pointer

Interrupt

DNA

O OO OoODOOOOoOoOoOCoOoo
N 2D D D D D D D D D D D 2D D oD

TERMINAL CONTER : 0000 ?
COUNTER MASK : 0000 ?
MATCH(1) / UNMATCH(0) : 0 ?

5-75

<Unit 1>

BRK>,CC3$

A)
B)

C)
D)

E)

L)

LEVEL(L , 2) : 7 L
UNIT €O -3) & 21
CATG (C- L) : ?2C
CONDITION ANDC1) 7/ OR(O) : 0 ?
PROG ADOR UPER @ FFFF ?

PROG ADOR LOWER : 0000 ? J Program Memory
MATCHCL) / UNNATCHCO) : 0 2

RELEASE DATANEMORY FROM AND YESC1) / NOCO) : 7 -
DATA ADDR © 000 ?

DATA ADDR WASK : 000 ?

MATCHC1) / UNMATCH(O) :
CURRENT DATA :
CURRENT ~ MASK :
MATCH(1) / UNMATCH(O) :

Data Memory

-

/ NO(Q) : 0 7? *
'] MAR

NATCH(1) / UNMATCH(O) :

MAR DATA
MAR MASK :
XATCH(1) / UNMATCH(O) :
COUNTER SOURCE SELECT
NOCO) / INST(1) / CONDITION(2) / INST AFTER CONDITION(3) : 0 ?

} Counter

0 ?
0
0
0 ?
S
PREVIOUS DATA 10
0 ?
(
: 0
: 0
07

TERMINAL CONTER © 00 ?
COUNTER NASK 007
NATCH(1) / UNNATCH(O) : 0 ?

*: Not currently supported.

<Unit 2>

BRK>.CC3$$
A) LEVELCl , 2) : 21
B) UNIT (0 -3) : 72
CATG(C- L) ?2C
C) CONDITION AND(1) / ORCO) : 0 ?
D) PROG ADDR UPER : FFFF ?
PROG ADDR LOWER : 0000 ? 1 Program Memory
NATCH(1) / UNMATCH(O) : 0 ?
E) RELEASE DATAMEMORY FROM AND YES(C1) / NOCO) : 0 ?
DATA ADDR ' 000 7
MATC”(” / UNMATCH(O) : 0 ? Data Memory
CURRENT DATA 07
MATCH(1) / UNMATCHCO) : 0 ?
L) COUNTER SOURCE SELECT
NOCO) / INST(1) / CONDITION(2) / INST AFTER CONDITION(3) * 0 ?
TERMINAL CONTER : 00 ? } Counter
COUNTER MASK : 0079
NATCH(C1) / UNMATCH(O) : 0 ?
<Unit 3>
BRK>.CC3
A) LEVEL(1 , 2) : 72 1
B) UNIT (0 -3) : 2?3
CATG (C-L):?7¢C
C) CONDITION AND(1) / ORCO) : 0 ?
0) PROG ADDR UPER : FFFF 2
PROG ADDR LOWER : 0000 ?] program Memory
NATCH(1) / UNNATCH(O) : 0 ?
G) INST CODE : 00000 ?
INST MASK : 00000 ? :] Instruction Code
NATCH(1) / UNMATCH(0) : 0 ?

<Break condition setting items (for
level 2)>

Level 2 is used when setting each unit
(unit O to 3) set at level 1 as a

break condition.

Setting is divided into four layers
based on the DEPTH concept.

The OR condition of four units can be
set in one DEPTH. The units specified
1 becomes the target unit of the OR
condition. Units specified 0 are

invalid.

When the OR condition in DEPTH is
satisfied, the program waits for the
next DEPTH condition and when the
DEPTH-0 condition is satisfied, break

is generated.

The condition order is DEPTH3 to
‘DEPTHO. DEPTH that starts at INITIAL
DEPTH setting can be specified.

(Example)

BRK>.CC$$

A) LEVELC1 , 2) : 7 2

B) LEVEL2 » 0123
DEPTH-3 » 0101 0000
DEPTH-2 ©Hor ? 1t
OEPTH-1 > 11a1 ? 1010
DEPTH-0 : 1101 ? 0001

INITIAL DEPTH : 0 ?]

Set so that a break is generated if
the unit 3 condition set at level 1
is established after the unit 0 or

unit 2 condition set at level 1 is

established.

Table 5-1 Break/Trace Conditions Table

Item UNITO | UNIT1 | UNIT2 | UNIT3

C) CONDITION AND(1)/OR(0) o 0 o] o

D) PROG ADDR UPER
PROG ADDR LOWER o o o 0
MATCH(1)/UNMATCH(O)

E) RELEASE DATA MEMORY FROM AND YES(1)/NO(O) o o} o X
DATA ADDR
DATA ADDR MASK o o) X X
__ k-.............
MATCH(1) /UNMATCH(O) o] o] o X
CURRENT DATA
CURRENT MASK o) o X X
MATCH(1)/UNMATCH(O) o] o o X

PREVIOUS DATA DISABLE YES(1)/NO(O)
PREVIOUS DATA x o X x
MATCH(1) UNMATCH(O)

F) SP LEVEL UPER
SP LEVEL LOWER o X X X
MATCH(1) /UNMATCH(O)

G) INST CODE

INST MASK X X X o
MATCH (1) /UNMATCH(O)

I) RELEASE MAR FROM AND YES(1)/NO(O)
MAR DATA X o* X X
MAR MASK

MATCH(1) /UNMATCH(O)

(to be continued)

Item

UNITO

UNIT1

INTERRUPT ACKNOWLEDGE
INTERRUPT MASK
MATCH(1)/UNMATCH(O)

DMA
DMA MASK
MATCH (1) /UNMATCH(O)

L)

COUNTER SOURCE SELECT

NO(0)/INST(1)/CONDITION(2)/
INST AFTER CONDITION(3)

TERMINAL COUNTER

COUNTER MASK

MATCH(1)/UNMATCH(O)
O ... Settable
X ... Not settable

*: Not currently supported

.CT Change Trace Condition

Format : .CT

[Function] Changes the trace on/off condition.

{Explanation]
Sets each unit set at .CC level 1 as the trace
condition. Trace on/off condition setting is

shown below.

BRK>.CT$$
TRACE CONDITION MODE
D : TRACE DON'T CARE -
T : TRACE ON =@
U @ TRACE OFF -=-@
S ¢ TRACE ONE SHOT ----@
LEVEL 1 UNIT © 0123
. boop ?
L

Predefined Value

(D Trace is not affected even if the unit

trace condition is established.

C) When the unit trace condition is

satisfied, trace starts.

() When the unit trace condition is

satisfied, trace ends.

(@ only the place where the unit trace
condition is established is traced.

(Trace one-shot)

[Note]

(Example)

BRK>,CT$$
TRACE CONDITION MODE
* TRACE DON'T CARE
: TRACE ON

EVEL

When the unit

trace starts.

When the unit

trace ends.

When the unit

trace starts.

When the trace
multiple units

condition prio

D
T
U ¢ TRACE OFF
S
L

TRACE ONE SHOT

1 UNIT ¢ 0123
: DDDD ? TUSS

0 condition is established,

1 condition is established,

2 or 3 condition is established,

condition is satisfied by
at the same point, the trace

rity is

TRACE ON>TRAC

E ONE SHOT>TRACE OFF

There are two
status trace.
Address trace

this command.

For execution

is started by

kinds of trace, address trace and

is performed without regard to

after .R input and when execution

.BG, trace is turned on.

For execution after .R input and when execution
is started by .BG, the contents set by .CT are
not affected.

After TRACE ON and TRACE OFF, that state is
held even if set to TRACE DON'T CARE.

TRACE ONE SHOT is effective only in the trace
off state. When TRACE ONE SHOT is specified in
the trace off state, only an address which

satisfies the condition is traced.

After TRACE ONE SHOT is specified, even if
TRACE DON'T CARE is specified, TRACE ONE SHOT
specification is not held, but the program
enters the trace off state before TRACE ONE
SHOT is specified.

When TRACE OFF is specified, trace is not
executed after trace off, but the execution
address that decides the start of trace off is
traced. In this case, the same operation as

TRACE ONE SHOT specification is performed.

5-83

(Example 1) When trace off continues after
trace off starts at address 5H.

Program Execution Trace Address
Address
0 0
1 1
Y 2
3 3
4 4
[s 5 —1-
6
7
8 Trace Off State

-1 Traced

[3)%

ser 1 [N DD e .

(Example 2) When TRACE DON'T CARE is
' specified at address 5H after
trace off starts at address 5H.

Program Execution Trace Address
Address.
0 0
1 l
2 2
3 3
4 4
5 5 T T
[- Trace Off State
7

Specifies TRACE DON'T CARE at unit address 5H.

Not Traced

|

R TR~ T3 I &1 R SUREY JU R

Table 5-2 Trace State Transition

Current
Trace
tate

Condition

Trace On

Trace Off

Trace One Shot

Trace on

Trace conditions

Trace starts

Trace starts

Trace off

Trace ends

Trace off continues

Trace one shot ends

Trace one
shot

Trace continues
(one short invalid)

Trace one shot
starts

Trace one shot
continues (newest
condition valid)

85

[6)]
i

.DC Dump Break Condition

Format : .DC

[Function] Dumps the break/trace conditions.

(Example) Dump the units 0 to 3 break/trace

condition.
BRK>,0OC$$
UNIT (0 -3) 70
CONDITION : OR

PROG ADDR : FFFF - 0000 UNMATCH
OATA ADDR @ 000 <000> UNMATCH
CANT 0 < 0 > UNMATCH
SP LEVEL : F - O UNMATCH
INTERRUPT : 0 <0> UNMATCH

ONA : 0 <0> UNMATCH
COUNT SEL : NO 0000 <0000> UNMATCH
TRACE SEL : TRACE ON

BRK>.0C$$

UNIT (0 -3) 21

CONDITION : OR

PROG ADDR : FFFF - 0000 UNMATCH

OATA ADDR : 000 <000> UNMATCH
CRNT : 0 < 0 > UNMATCH
PRYS : 0 UNMATCH

NAR DATA : 0 <0O> UNMATCH

COUNT SEL : NO 00 < 00> UNMATCH
TRACE SEL : TRACE OFF
BRK>.DC$$

UNIT (0 -3) 72

CONDITION : OR

PROG ADDR : FFFF - 0000 UNMATCH

DATA ADDR : 000 <000> UNMATCH
CRNT © 0 < 0 > UNMATCH

COUNT SEL : NO 00 < 00> UNMATCH
TRACE SEL : TRACE DON'T CARE

BRK>,0C$$

UNIT (0 -3) 73

CONDITION : OR

PROG ADDR : FFFF - 0000 UNMATCH
INST CODE : 0000 <0000> UNMATCH
TRACE SEL : TRACE DON'T CARE

[Note] < >: Mask data

.DT Dump Trace Table

Format :{ a, B].DT

a

B

.
.

Dump start trace number (o B ;

Dump end trace number a>B : Error)

[Function]

Dumps the trace contents from specified trace
number ¢ to 8. When both ¢ and B are omitted,
the contents of the end of the trace table are
displayed. System reset initializes the trace

table and clears the trace counter to 0.

For trace within 32K (32768 decimal) steps,
the trace counter shows the end of the trace
table.

For trace exceeding 32K steps, the trace
contents of the newest 32K steps are stored
to the trace table and the trace counter
becomes 7FFFH (32767).

There are two kinds of trace, address trace

and status trace.

Address trace traces the newest program
execution contents without regard to the trace

conditions.

Status trace traces the range specified by the

trace conditions.

Status trace includes much more information

than address trace.

(Example 1) Dump the address trace results of
trace numbers 0O to 10.

BRK>0, D10.DT$S
ADDRESS (1) / STATUS (0) TRACE ? 1 dJ

TR_NO ADDR MNEMONIC INST
0000 0000 0000 MOV 00 ,#A 1D0OOA
0001 0001 0001 MOV 01 ,#B 1DO1B
0002 0002 0002 MOV 02 ,#C 1DO2C
0003 0003 0003 MOV 03 ,#D 1DO3D
0004 0004 0004 MOV 04 ,H#E 1DO4E
0005 0005 0005 MOV 05 ,#F 1DOSF
0006 0006 0006 MOV 06 ,#0 1D060O
0007 0007 0007 MOV 07 ,#1 1DO71
0008 0008 0008 MOV 08 ,#2 1D082
0009 0009 0009 MOV 09 ,#3 1D0O93
0010 000A 000A NOP 074F0
(1) (2) (3) (4) (3)

(Example 2) Dump the status trace results
from O to 10H.

BRK>0, 10.DTSS

ADDRESS (1) / STATUS (0O) TRACE ? 0+

TR_NO ADDR INSTRUCTION WA DB JG TIME
0000 0000 0000 MOV 00 ,#A 1DOOA 000 A O 0000001
0001 0001 0001 MOV O1 ,#B 1D0O1B 001 B O 0000002
0002 0002 0002 MOV 02 ,#C 1D0O2C 002 C O 0000003
0003 0003 0003 MOV 03 ,#D 1DO3D 003 D O 0000004
0004 0004 0004 MOV 04 ,#E 1DO4E 004 E O 0000005
0005 0005 0005 MOV 05 ,#F 1DOSF 005 F O 0000006
0006 0006 0006 MOV 06 ,#0 1D0O60 006 O O 0000007

0007 0007 0007 MOV 07 ,#1 1DO71 007 1 O 0000008
0008 0008 0008 MOV 08 ,#2 1D082 008 2 0O 0000009
0009 0009 0009 MOV 09 ,#3 1D0O93 009 3 0 0000010
0010 000A 000A NOP 074F0 04F 0 0 0000011
0011 000B 000B NOP 074F0 0O4F 0O O 0000012
0012 0O00OC 000C NOP 074F0 04F O 0 0000013
0013 000D 000D NOP 074F0 04F O O 0000014
0014 OOOE OOQOOE NOP 074F0 04F O O 0000015
0015 OOOF OOOF BR 0O0OF OCOOF 000 F 0O 0000016
0016 0010 OOOF BR OOOF OCOOF 006G F O 0000017
(1) (2) (3) (4) (5) (6)(7)(8) (9)

(1) Trace number decimal display

(2) Trace number hexadecimal display

(3) Program address (program counter value)
(4) Instruction mnemonic display
(5) Instruction code (1-4-3-4-4 bit format)
(6) Data memory write address
Effective when data is written to data
memory . ¥
(7) Data bus
Shows the value written when data is

written to data memory.*

(8) * is displayed for instructions that are

skipped at skip instruction execution.

5-90

(9)

Time stamp

Set to 1
one each
(However,

executed,

by .RN command and counted up by
time an instruction is executed.
when a MOVT instruction is

it is counted up by 2.)

This is valid only when written
in the data memory. The
contents displayed when writing
to the register file (PEEK
instruction), or when writing to
the peripheral register (PUT
instruction) are contents on the
IE-17K-ET bus and so the

displayed contents are invalid.

.SCO0 .SCl Save Break/Trace Condition

Format : .SCO
.8C1

RS-232-C channel 0 : SCO
channel 1 : SC1

[Function] Outputs the break/trace conditions set at .CC
level 1 to the RS-232-C channel specified by
.SCO or .SCl in Intel hexadecimal format.

(Example) Output break/trace conditions to

channel O.

BRK>.SCO$$
:104143000B0B0BOBOCFF0202020000000000010034

- 1041530000010100000000FFFFO000100000FF0746
- 104163000B000F0400000F00040000FFFFOOCOOL1C
+104173000001000F0000010100010100000000FF29
- 104 18300FF000010000000FFFFO000100000FFO0709
- 1041930008000F0400040F0000000CFFFFO00001EC
- 1041A3000001000F0400010000010000000000FFF7
- 10418300FF000008000000F FFF0000100000FFO7E]
: 1041C3000B8000F0400000F00000000FFFF000001CO
+104103000001000F0000010000010000000000FFCB
: 1041E300FFO00008000000FFFFO000100000FF078B1
+ 1041F30000000F0000000F00000000FFFF1000018F
- 104203000001000F0000010000010000000000FF34A
-07421300FF0000000000004A5

:0000000LFF

.LCO .LCl1 Load Break/Trace Condition

Format : .LCO
.LC1

RS-232-C channel O : LCO
channel 1 : LC1

[Function] Stores the data sent to the IE-17K-ET in the
area in which the break/trace conditions in

the IE-17K-ET is stored.

(Example) Input the break/trace conditions

from channel O.

BRK> . LC0S$S

5-93

.VCO .vCl1

Verify Break/Trace Condition

Format

RS§-232~-C channel 0 : VCO

channel 1 : VC1

[Function]

Verifies the break/trace conditions in the
IE-17K-ET and the data sent to the IE-17K-ET
specified by .VCO or .VCl.

If the conditions and data are the same, the

message
Verify OK

and if the conditions and data are not the

same, the message
Verify NG
is output.

(Example) Verify the break/trace condition

input from line O.

BRK> .VC0OSS
Verify OK

5.8.6 COVERAGE DISPLAY COMMAND

(1) Coverage Memory Dump

.DM (Dump Coverage Memory)

.DM Dump Coverage Memory

Format : [a, B].DM

@ : Start address (o g8 ;
B: End address a>f8: Error)

[Function] Dumps the contents of the coverage memory.

There are two coverage objectives, PC (Program
Counter) and DATA.

PC coverage records the number of
executions for the executed address by O
to FFH. For values over FFH, FFH is
displayed.

DATA coverage displays the data memory
write state (bit units). The display is
defined below.

<Definition of display>

— e e Bit not written even once

* ... Bit written O and 1
0 Bit written O only
1 Bit written 1 only

When PC coverage is selected, when a and B
are omitted, program memory addresses O to

7FH are displayed.

When DATA coverage 1is selected, when g

and B are omitted, data memory addresses

0 to 3FH are displayed. Register files are
outside the coverage objective.

(Example 1) Display the contents of PC

coverage.

BRK>. DNSS
PC (1) / DATA (0) COVERAGE : ? 1o

ADDR 0 | 2 34567389 ABCDETF
0000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0040 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0050 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0060 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0070 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

(Example 2) Display the contents of DATA

coverage.

BRK>. DNSS

PC (1) 7 DATA (0) COVERAGE : ? 0«

ADDR 0/8 1/9 2/4 3/B 4/C 5D 6/ /T
0000 ---- ---- mm memeeee ceee eoem e-e-
0008 ---- ---- ceem eemeeeemeoememee eeeo
0010 ==-- ==== =m=s mmmm meme eee eon ooee
0018 ---- =--- mmem mmmm semeeeee e eoes
0020 =--- smms mesmeeoceen s emon mmee s eees
0028 ---- ---- seen meeneeeeeeee eeee oees
0030 =--- =mss mmmnmmeo smmeeeee mmee ooes
0038 ---= ---- eeem emeeemee mem mmes eoe

[Note] Depending on the device, when a and B are omitted,

an error may be generated.

5.8.7 HELP COMMAND

(1) Display of all commands

.H (Help)

.H Help

Format : .H

[Function] Display the commands table.

(Example)

BRK>.H$$
.1P .CP

.10 .CD
R .RN
.CC .CT

.0P
.00 .
.BG
.0C

.FP

.BX
DT

Display the commands table

.SPO .SP1 .LPO .LP1 .YPO .YP1 .XSO XSl

<< PROGRAM MEMORY COMMAND >>

<< DATA MEMORY COMMAND >>

.CA .S

<< ENULATION COMMAND >>

.DM .SCO .SC1 .LCO .LCI .YCO .VvCl

<< BREAK , TRACE CONDITION COMMAND >>

CHAPTER 6. PROGRAM EXECUTION

The following program execution methods are available.

(1) Real-time emulation

(2) l-step emulation

6.1 REAL-TIME EMULATION

When desiring to run the program at the same speed as the
actual product, use .RN. Break at an arbitrary condition

is possible by setting the break point.

Execution can also be aborted by .BK.

(Example 1) Execute after resetting the CPU.

BRK>.R$3
BRK>.RN$$
RUN>

(Example 2) Resume after real-time emulation is

broken.

RUN>.BK$$
ADDR INSTRUCTION
0027 1ETF2 BREAK
0028 0C026 OYERRUN
0029 O70E0 NEXT
PC SP AR WR BR NP IX
0029 0 9833 * x xxx Xxx
PS¥ (0B CP CY Z IXE MPE JG
o 1 0 1 x x 0
RP 0123456789ABCDEF
x0 8D98DIII99FFADSD

BRK>.RN$$
RUN>

BREAK POINT SETTING

Execution can be broken by an arbitrary condition by
setting the break point. At the break condition, program
" memory address, data memory address, data write to data
memory, logic analyzer probe input level change, etc. can

be set. (See Figure 6-1.)

The break condition can not only be used alone, but can
also be set so that execution is broken when multiple
break conditions are established simultaneously or

multiple break conditions are established continuously.

(See Figure 6-2.)

Figure 6-1 Break Condition Setting

Break Condition (C to L)

CATGC |
CATG_D }—-’-— Break Condition Setting Unit

l

l

| CATGE }|——rl

| cATGF | ADOT UNIT 0 f——
[

l

l

CATG] |——
CATG K |——]
CATG L |——r

CATGC p—
CATGD |—

CATGE |
|

AND/OR

UNIT 1 f——]

—d

Unit Combination

CATG I

CATG L f—r OR
; DEPTHn

h=0-~3)
CATG C |
CATGD |—————{ AND/OR
UNIT 2 f—r
CATGE |———]
CATG L |

I

——

CATGC |
AND,/OR
CATG D | N —

CATG H |———

P

—

Figure 6-2 Break by Break Condition Sequence

| DpEPTH3 |}—{ DEPTH? }— DEPTH1! |—+{ DEPTHO |

6-3

6.2.1 BREAK BY PROGRAM ADDRESS

Break by program address is performed by specifying the

address by .CC command.

(Example 1) Break when the program address reached
OOFOH.

BRK>. CC3$$
A) LEVELCL , 2) : 7 1
B) UNIT (0 -3): 1?0
CATG (C - L) : ?°C
)7

C) CONDITION AND(I ORCO) 0 : 7?0
D) PROG ADDR UPER . FFFF ? 00F0
PROG ADDR LOYER : 0000 ? 00FO

MATCH(1) / UNMATCHCO) 0 ? I
E) RELEASE DATAMEMORY FROM AND YES(C1) / NO(0) : ? §

BRK>.CC$$

A) LEVEL(1 , 2) : 2?2

B) LEVEL2 07123
DEPTH-3 : 1101 ? 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 : 1101 ? 0000
DEPTH-0 : 1101 ? 1000

[NITIAL DEPTH : 0 2 0
BRK>.R$$
BRK>.RN3$

ADOR INSTRUCTION
OOF0 1D069 BREAK

00F1 1D053 OVERRUN
00F2 1D045 NEXT

PC SP AR ¥R BR MP IX
00F2 0 0000 x x xxx xxx
PS¥ DB CP CY Z IXE MPE JG

0 0 0 0 x x 0

RP 0123456783ABCDEF
*0 0000099930008005
BRK>

(Example 2) Break when the program address enters
the address OOFOH to OOFFH range.

BRK>.CC$3
A) LEVELCL , 2) @ ?
B) UNIT (0 -3) : ?

l
1)
CATG (C-L): 2T
C) CONDITION AND(1) 7 OR(0) 0 : 720
D) PROG ADDR UPER . FFFF ? QOFF
PROG ADDR LOWER : 0000 ? OOFO
KATCH(1) / UNMATCH(0) 0 ? 1|
E) RELEASE DATAMEMORY FROM AND YES(1) / No(0) : ? §

BRK>. CC$$

A) LEVELTI , 2) : ? 2

B) LEVEL2 ;0123
DEPTH-3 : 1101 ? 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 @ 1101 ? 0000
DEPTH-0 : 1101 ? 1000

INITIAL DEPTH : 0 2 0
BRK>., R$$
BRK>RN$$

ADDR INSTRUCTION
O00F0 1D069 BREAK
00F1 10053 OVERRUN
00F2 1D045 NEXT
PC SP AR ¥R BR MP X
00F2 0 0000 x x xxx xxx
PSY DB CP CY Z IXE MPE JG
0 0 0 0 x x 0

RP 0123456789ABCDEF

x0 0000099990008005

BRK>

(Example 3)

Break when the program address exceeds
the address 0000OH to OOEFH range.

BRK>.CC3$

A) LEVELCL , 2) ¢ ?

B) UNIT (0 -3) ¢ ?
CATG (C - L) = ?

C) CONDITION ANDCI)

D) PROG ADDR UPER

PROG ADDR LOWER

~NO ol —

E)

BRK>.CC$$

A) LEVECT1 , 2) : 2?2

B) LEVEL2 : 0123
DEPTH-3 ;1101 ?
DEPTH-2 ;1101 ?
DEPTH-1 ;1101 ?
DEPTH-0 ;1101 ?

[NITIAL DEPTH : 0 2 0

BRK>.R$$
BRK>.RN3$
ADDR [NSTRUCTION
00F0 1D069 BREAK
00F! 1D059 OVERRUN
00F2 1D045 NEXT

PC SP AR WR BR MP |
00F2 0 0000 x =x xxx x
PSW :DB CP CY Z IXE MP
6 0 0 0 x «x
0123456783ABCDEF
00000399990008005

RP
*0
BRK>

OR(0) 0O & 7
. FFFF ?
: 0000 ?
MATCH(1) / UNMATCH(O) 0 ? 0
RELEASE DATAMEMORY FROM AND

X

XX

E JG
0

YES(1) / NOCO) : 7§

(Example 4) Break when program address OOFOH is

executed five times.

BRK>.CC$3
A) LEVELCL , 2) + 2 1
B) UNIT (0 -3): 1?0
CATG (C-L):?C
C) CONDITION AND(I) 7 OR(0) 0 : ? 0
0) PROG ADDR UPER . FFFF ? 00FQ
PROG ADDR LOWER : 0000 ? 00F0

MATCH(1) / UNMATCH(O) 0 2 1 =
E) RELEASE DATAMEMORY FROM AND YES(L) / NOCO) : ? §

BRK>.CCS$$
A) LEVELCL , 2) 1 2 1
B) UNIT (0 - 8) : 20
CATG (C - L) : ? L
L) COUNTER SOURCE SELECT
NO(0)/INST(1)/CONDITIONC2)/INST AFTER CONDITION(3) : 0 ? 2

TERMINAL COUNTER 007?75 Break when condition above
COUNTER MASK : 00 ? FF establishes 5 times
KATCH(1)/UNNATCHCO) : 0 2 T~
BRK>.CC$$
A) LEVELTL , 2) @ ? 2
B) LEVEL2 . 0123
DEPTH-3 . 1101 7 gggg
DEPTH-2 © 1101 ? 0oao
DEPTH-1 .11etr ? 0000
DEPTH-0 » 110l ? 1000
INITIAL DEPTH @ 0 2 0
BRK>;E§§
BRK>.RN$S

ADDR INSTRUCTION

00F0 10069 BREAK

00F1 1D053 OVERRUN

00F2 1D045 NEXT

PC SP AR ¥R BR M¥P IX

00F2 0 0000 x x =xxx xxx

PSY¥ :DB CP CY Z IXE MPE JG
6 0 0 0 x x 0

RP 0123456783ABCDEF

*0 0000099930008005

BRK>

2.

BREAK BY DATA MEMORY MODIFICATION

Break by data memory modification can be performed by

specifying the data memory address and modification data

by .CC command.

(Example 1) Break when data memory address 1.30H is
modified.
BRK> .CCS$$
A) LEVEL(1 , 2) : ? 1
B) UNIT (O - 3) : 2?2 1
CATG (C - L) : ? E
E) RELEASE DATAMEMORY FROM AND YES(l1) / NO(O) : 72 O
DATA ADDR 000 7 Set data memory
address to 1.30H
DATA ADDR MASK 000 2 Enable all bits
of address
specification
MATCH(1)/UNMATCH(O) 0 1 Break at the
CURRENT DATA 0 0 address above
CURRENT MASK 0 0] Unrelated to write
data
MATCH(1)/UNMATCH(O) 0? 1
PREVIOUS DATA DISABLE YES(1)/NO(O0) 071
PREVIOUS DATA 0?0 Unrelated to data
MATCH(1)/UNMATCH(Q) 0?21 before modification

BRK>.CCS$S

A) LEVEL(1 , 2) : 2 2

B) LEVEL2 : 0123
DEPTH-3 : 1101 ? 0000
DEPTH-2 : 1101 2 0000
DEPTH-1 : 1101 ? 0000
DEPTH-0 : 1101 2 0100

INITIAL DEPTH : 0 ? Q

BRK>,RS$$

BRK> .RNSS
ADDR INSTRUCTION

OOFO 1D309 BREAK

OOF1 1D059 OVERRUN
00F2 1D045 NEXT

PC SP AR WR BR MP IX
O0F2 O 0000 O 1 Q00 000
PSW :DB CP CY Z IXE MPE JG

0 0 0] 0O O 0 0

RP 0123456789ABCDEF
00 0000099990008005
BRK>

(Example 2) Break when 5H is written to data memory
address 1.30H.

BRK>.CCS$S

A) LEVEL(1 , 2) : 7 1

B) UNIT (O - 3) : 7?1
CATG (C - L) : ? E

E) RELEASE DATAMEMORY FROM AND YES(1) / NO(O) : ? O
DATA ADDR : 000 7?7 130 Set data memory

address to 1.30H

DATA ADDR MASK : 000 ? F7F Enable all bits

of address
specification

MATCH(1)/UNMATCH(O) : O ?

CURRENT DATA : 07?7 S5 Break when written
CURRENT MASK : 07 E value is 5H
MATCH(1)/UNMATCH(O) : 0 ? 1

PREVIOUS DATA DISABLE YES(1)/NO(O) : 0 2?2 1

PREVIOUS DATA : 0720 Unrelated to data

before modification

MATCH(1)/UNMATCH(O) : 0 ? 1

BRK>.CCS$

A) LEVEL(1 , 2) : 2 2

B) LEVEL2 : 0123
DEPTH-3 : 1101 ? 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 : 1101 ? 0000
DEPTH-0 : 1101 ? 0100

INITIAL DEPTH : 0 2 O

6-10

BRK>.RSS
BRK>.RNSS
ADDR INSTRUCTION
O0FO0 1D305 BREAK
00F1 1DO59 OVERRUN
00F2 1D045 NEXT
PC SP AR WR BR MP IX
OOF2 O 0000 O 1 000 000
PSW :DB CP CY Z IXE MPE JG
0 0 0 0 O 0 0
RP 0123456789ABCDEF
00 0000099990008005
BRK>

6-11

(Example 3) Break when bit 0 of data memory address 1.3xH

is set.
BRK> .CC$$
A) LEVEL(1 , 2) : ? 1
B) UNIT (O - 3) : 721
CATG (C - L) : ? E
E) RELEASE DATAMEMORY FROM AND YES(1) / NO(QO) : ? O
DATA ADDR : 000 2 130 Set data memory
address to 1.30H
DATA ADDR MASK : 000 ? F70 Column address can
be anything
MATCH(1)/UNMATCH(O) : O 7 1
CURRENT DATA 0?2 1 Break when bit 0 is
set
CURRENT MASK : 07 1
MATCH(1)/UNMATCH(O) : 0 ? 1

PREVIOUS DATA DISABLE YES(1)/NO(O) : O ? 1

PREVIOUS DATA : 0?20 Unrelated to data
before modification

MATCH(1)/UNMATCH(O) : O ?

|

6-12

BRK> .CCSS
A) LEVEL(l , 2) : ? 2
B) LEVEL2 : 0123

DEPTH-3 : 1101 ? 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 : 1101 ? 0000
DEPTH-0 : 1101 2 0100

INITIAL DEPTH : 0 ? O

BRK>.RSS

BRK>.RNS§$S
ADDR INSTRUCTION

OOFO0 1D309 BREAK
00F1 1D059 OVERRUN
O0F2 1D045 NEXT

PC SP AR WR BR MP IX
OOF2 0O 0000 O 1 000 000
PSW :DB CP CY Z IXE MPE JG

0 0 0 0 O 0 0

RP 0123456789ABCDEF
00 0000099990008005
BRK>

6-13

(Example 4) Break when data memory address 1.30H is
changed from 1 to 5.

BRK>.CC$$
A) LEVEL(1 , 2) : 2?2 1
B) UNIT (0 - 3) : 2?2 1
CATG (C - L) : ? E
E) RELEASE DATAMEMORY FROM AND YES(1l) / NO(O) : 2?2 O
DATA ADDR : 000 7 130 Set data memory
address to 1.30H
DATA ADDR MASK : 000 ? F7F Enable all bits
of address
specification
MATCH(1)/UNMATCH(O) : O 7 1
CURRENT DATA : 07?2 5 Break when write
value is 5H
CURRENT MASK : 07?7 F
MATCH(1)/UNMATCH(O) : O 7 1

PREVIOUS DATA DISABLE YES(1)/NO(O) : 0 2 O
PREVIOUS DATA : 071 Data before change
is 1

MATCH(1)/UNMATCH(O) : 0 ?

el

BRK>.CCS$$

A) LEVEL(1 , 2) : 2 2

B) LEVEL2 : 0123
DEPTH-3 : 1101 ? 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 : 1101 ? 0000
DEPTH-0 : 1101 ? 0100

INITIAL DEPTH : 0 ? O

BRK> .R$$

BRK>.RNS$S

ADDR INSTRUCTION

O0FO0 1D305 BREAK

00F1 1D059 OVERRUN

O0F2 1D045 NEXT

PC SP AR WR BR MP IX

O0F2 O 0000 O 1 000 000

PSW :DB CP CY Z IXE MPE JG
0 0 0 0 O 0 0

RP 0123456789ABCDEF

00 0000099990008005

BRK>

6.2.3

(Example 1)
address OOFOH

BRK>.CC3$3

A) LEVELTL , 2) + 2 1

B) UNIT (0 -3):?20
CATG (C - L) : ?2°C

'C) CONDITION AND(C1) 7

D) PROG ADDR UPER . FFFF ?
PROG ADDR LOWER : 0000 ?
HATCHC1) / UNMATCH(0) 0 ? 1

E) RELEASE DATAMEMORY FROM AND

—

BRK>.CC$3
A) LEVECTL , 2) : 21
B) UNIT (0-38): 21
CATG (C-L):?2C
C) CONDITION AND(1) 7 OR(0) O :
D) PROG ADDR UPER . FFFF ?
PROG ADDR LOYER : 0000 ?

MATCH(1) / UNMATCHCO0) 0 ? |
E) RELEASE DATAMEMORY FROM AND

BRK>.CCS$$

A) LEVEL(L , 2) : 2 2

B) LEVEL2 : 0723
DEPTH-3 L1101 ? 0000
DEPTH-2 @ 1101 ? 0000
DEPTH-1 : 1101 ? 0000
DEPTH-0 @ 1101 ? TI0O

[NITIAL DEPTH : 0 2 Q
BRK>. R$$
BRK>_ RNS$

ADDR™ INSTRUCT [ON

00F0 1D069 BREAK

00F1 1D059 OVERRUN

00F2 10045 NEXT

PC SP AR HWR BR MP IX

00F2 0 0000 x =x xxx xxx

PS¥ :DB CP CY Z IXE MPE JG
0 0 ¢ 0 x x 0

RP 0123456789ABCDEF

*0 0000099990008005

BRK>

6-16

OR(0) 0 : ¢

BREAK BY MULTIPLE BREAK CONDITION

Break when program address reaches

or O1FOH.

Set O0FOH at unit Q

00F0
00F0

YESC1) / NOCO) = 7§

Set OlFOH at unit 1

?
01F
0lF

YES(1) / NOCO) © 2§

olo

O

Break when unit O or unit 1
condition establishes

(Example 2)

BRK
A)
B)

C)
D)
E)
BRK
A)
B)
C)
D)
E)
BRK

A)
B)

BRK

- BRK

ADD
0LF
O1lF
0LF

PC
OlIF
PSH

RP
*0
BRK

Break when program address OlFOH is

executed after address OOFQOH.

>.CC$$

LEVELCI , 21

UNIT (0 - 3) 20

CATG (C - L) : ?2°C
CONDITION AND(I) 7 0RC0O) O :
PROG ADDR UPER . FFFF
PROG ADDR LOWER : 0000
MATCH(L) / UNMATCH(O) 0 ?
RELEASE DATAMEMORY FROM AN
>.CC$$

LEVEL(L , 2) : 2 1

UNIT (0 -8) : 2T

CATG (C - L) :?C
CONDITION AND(I) 7 OR(0) O :
PROG ADDR UPER . FFFF
PROG ADDR LOWER : 0000

MATCH(1) / UNMATCH(O) 0 ?

()
()
1
]

?
?
1

Set O0OFOH at unit O

7 0
00F0

.__—_

ECR

YES(1) / NOCO) @ 7 $

Set QlFOH at unit 1

RELEASE DATAMEMORY FROM AND YES(1) / NO(0) :

[ew] fenl e’ Hen)

>, CC$3

LEVELTL , 2) : 2 2

LEVEL2 : 0723
DEPTH-3 : 1101 ? 0000
DEPTH-2 : 1101 ? 0000
DEPTH-1 : 1101 ? 1000
DEPTH-0 @ 1101 ? 0100

INITIAL DEPTH : 0 2 1

>, R$S

> RN$S

R INSTRUCTION
0 1D069 BREAK
| 100539 OVYERRUN
2 10045 NEXT
SP AR WR BR MP X
2 0 0000 x x =xxx Xxx

:DB CP CY Z IXE MPE J
0 0 0 0 x x
0123456789ABCDEF
0000099990008005

>

G
0

To DEPTHQ condition when unit
0 establishes
Break when unit 1 establishes

6.

3

1-STEP EMULATION

One-step emulation is used when desiring to verify the

processing flow by executing the program one instruction

at a time.

(Example 1)

(Example 2)

Execute one program execution.

BRK>.S33
BR RP PC [NSTRUCTION
x x0 0034 0CO3D 33

BRK>

The instruction of displayed address

0034H is not executed.

When a numeric is described in front of
the .S command, the number of steps can

be specified.

Execute the two instructions of address
33H and address 34H.

BRK>33.CA$2.S

BR RP PC INSTRUCTION
x x0 0034 0C03D
x x0 003D 11001 $3

BRK>

After the .S command is executed, the
next instruction is executed by

entering a space.

6-18

(Example 3) Execute the two instructions of address

33H and address 34H.

BRK>33.CA$. 533

BR RP PC INSTRUCTION

x x0 0034 0CO3D0 _ e Yhen a space is input, the
x x0 003D 11001 33 program is executed 1 step
BRK>

CHAPTER 7. SE BOARD PROM CREATION

Programs corrected by IE-17K-ET can output the PROM file format
hexadecimal codes output by AS17K to channel O or channel 1 by
using .XSO or .XSl. Connecting PROM programmer to channel 1

makes it possible to create SE board PROM.

CHAPTER 8. ERROR MESSAGES

The IE-17K-ET generates error messages for command errors and for

IE-17K-ET hardware errors.
8.1 COMMAND ERRORS
Command errors are error messages which are displayed when
there is an error in the command name and when the number
of arguments do not match at command input.
The error messages and their meanings are shown below.
(1) ?ANF ARY NOT FOUND
Array not found.
Specify the correct array.
(2) ?ARG IMPROPER ARGUMENT
Incorrect argument.
Input the correct argument.
(3) ?ASC ARGUMENT STACK COUNTER ERROR

Number of arguments is incorrect.

Adjust the commands so that the number of arguments

is correct.

(3)

(6)

(7)

(8)

?AST ARGUMENT STACK OVERFLOW

Number of arguments is too large.

Reduce the number of arguments.

7AUN ARGUMENT STACK UNDERFLOW

No value in argument stack.

Assign a value to the argument stack.

?ILL ILLEGAL COMMAND

An unsupported command is used or a command is used

incorrectly.

Use the correct command.

?INA ILLEGAL NUMBER OF ARGUMENTS

Number of macro command arguments is small.

Correct input the macro command arguments.

?IPE INPUT ERROR

Illegal value is set by .CC command.

Reset the correct wvalue.

(9)

(10)

(11)

(12)

(13)

(14)

?IQN ILLEGAL Q-REGISTER NAME

Q-register name is incorrect.

Use the correct Q-register name.

?IVA INVALID AEGUMENT

An illegal value is specified at an argument.
Specify the correct argument.

?IWT ILLEGAL WAIT TIME VALUE

Z command argument is incorrect.

Specify the correct argument.

?MLA MISSING<

'<' at loop is less than the number of '>'.
Correct the < > correspondence.

?MLP MISSING)

'(' is less than the number of ')'.

Correct the (} correspondence.

?MNF MACRO COMMAND NOT FOUND

Character string beginning with '.' is not found as a

built-in macro command.

Input the correct built-in macro command.

(15)

(16)

(17)

(18)

(19)

7MRA MISSING>

'>' in loop is less than the number of '<',
Correct the < > correspondence.

?MRP MISSING(

"}' is less than the number of '('.

Correct the ()} correspondence.

?MVQ NO VALUE IN Q-REGISTER

A Q-register that is not macro-defined is executed as

a maqro.
Specify the correct macro-defined Q-register name.
?NAE NO ARGUMENT BEFORE=

No = command argument.

Input the argument.

?NAQ NO ARGUMENT BEFORE"

No " command argument.

Input the afgument.

(20)

(21)

(22)

(23)

(24)

?NVQ NO VALUE IN Q-REGISTER

There is no value (numeric or character string) in

the Q-register.
Assign a value to the Q-register.
?P0OS INVALID ADDRESS

Address specification exceeds the program memory

address range of the target product.

Specify a value within the last program memory

address.

7QNF QUOTATION NOT FOUND

' not found.

Input the '.

7QRO Q-REGISTER AREA OVERFLOW

Q-register area is full.

Delete the contents of the unwanted Q-register.
70ST Q-STACK OVERFLOW

O-stack area is full.

Delete the unwanted contents of the Q-register.

(25)

(26)

(27)

(28)

(29)

?QUN Q-STACK UNDERFLOW

There is no value at the Q-stack area.
Assign at value to the Q-stack area.
?RNE CPU RUN ERROR

An unexecutable command is input during program

execution.

Stop the program by .BK command and re-input the

command.

?7RNG NUMERIC RANGE OVER

Numeric exceeds the effective range.

Set the numeric to within the effective range.
?RSE CPU RESET ERROR

An unexecutable command is input during program

execution.

Stop the program by .BK command and re-input the

command.
?RTE CPU RESET ERROR

An unexecutable command is input during program

execution.

Stop the program by .BK command and re-input the

command.

(30)

(31)

(32)

(33)

(34)

(35)

?7SYN INVALID SYNTAX
Syntax is incorrect.

Use the correct syntax.
?TAG MISSING TAG !XXX!
Tag is not found.
Specify the correct tag.
?UPE UNPRINTABLE ERROR

An error that is not available with the CLICE-ET

system is generated. Restart it.

?2UPO UNTERMINATED POINTER @ OR _

@ command or _ command not terminated by | V.
Terminate with | V.

?2UTG UNTERMINATED TAG

Tag not enclosed in !.

Enclose tag in !.

?WRE WRITE ERROR

When writing to memory, a verify error is generated.

Execute the command again.

8.2 HARDWARE ERRORS

Hardware errors are error messages that are displayed when

the IE-17K-ET malfunctions during program execution.

The messages and their meanings are shown below.

(1)

(2)

(4)

(3)

SYSTEM REGISTER ACCESS ERROR

Displayed when an uninstalled bit is set at a system

register other than the AR register.
STACK OVER/UNDER FLOW

Displayed when the stack pointer underflows or

overflows.
RAM NOT INITIALIZE

Displays when an instruction which reads a data
memory, other than a port, etc., which is not
written even once or data memory without an initial

value is executed.

ILLEGAL RAM WRITE

Displayed when a nonexistent data memory is written.
?I10S INVALID OPTION SWITCH AT 0000

Displays when the option switch specification
described when a program is loaded to the IE-17K-ET
or at program execution is different from the setting
of the option switch on the SE board. The last
number is the number of the SE board switch with the

different setting.

(6)

(7)

(8)

(9)

?ISE INVALID SE BOARD NUMBER [00-00]

Displayed when the device file used by the assembler
when a program is loaded to the IE-17K-ET or at
program execution and the SE board are different.

It is also displayed when the SE board installation
state is bad. The left side of the last number is
the SE board number and the right side is the number

included at the device file.

?IDI INVALID DEVICE ID NUMBER [00-00]

Displayed when the device file used by the assembler
when a program is loaded to the IE-17K-ET or at
program execution and the device on the SE board are
different. It is also displayed when the SE board
installation state is bad. The left side of the last
number is the device number on the SE board and the
left side is the number included at the device file.

Displayed when the option information is not loaded

normally when a program is loaded to the IE-17K-ET.

PC ERROR!

Displayed when the program counter does not operate

as expected due to a malfunction of the device on the

~SE board.

Error message shown from (10) to (15) below are displayed

when there is an error in the result of IE-17K-ET self-

diagnosis when the power is turned on and at system reset.

When these error messages are displayed, the hardware is

fault and must be repaired.

(10) MEMORY ERROR -+ (0000:0000 to 7000:FFFF

Displayed when there is an error in the memory used
by the IE-17K-ET.

(11) DEVICE ERROR - PTC (UPD71054) #0

Displayed when there is an error at programmable

timer O (uPD71054).
(12) DEVICE ERROR + PTC (UPD71054) #1

Displayed when there is an error at programmable

timer 1 (uPD71054).
(13) DEVICE ERROR -+ SCU (UPD71051) #O

Displayed when there is an error at serial control

unit O (uPD71051).
(14) DEVICE ERROR + SCU (UPD71051) #1

Displayed when there is an error at special control

unit 1 (uPD71051).
(15) DEVICE ERROR =+ ICU (UPD71059)

Displayed when there is an error at the interrupt
controller (uPD71059).

Error messages (16) to (21) below are displayed when IE-

17K-ET CPU runs away or otherwise malfunctions.
(16) <<DIVIDE BY ZERO>>

Divided by '0'.

(17)

(18)

(19)

(20)

(21)

<<CHECK FIELD>»>

Memory boundary crossed.

<<SINGLE STEP>>

Single step is performed.

<<BREAK MODE>>

Break instruction is executed.

<<OVERFLOW>>

Overflow is generated during operation.

<<NMI>>

NMI is generated.

APPENDIX A. PRIMITIVE COMMANDS

The primitive command is used when creating a user original macro
instruction. However, IE-17K-ET CLICE-ET 1.6 supports 52 built-
in macro instructions that are combined with this primitive
command. Therefore, the primitive command is not necessary for

normal work. This chapter should be read for making the most of

built-in commands.

A.l PRIMITIVE COMMANDS TABLE
Table A-1 Commands Table
Command éigél Function Command éigix Function
+@ 00 |Dummy +V 16 |Pointer
A 01 Character string display W 17 {Undefined>
4B 02 |Binary constant prefix +X 18 |1 line deletion
tC 03 Abort +Y 19 {Undefined>
4D 04 |Decimal constant prefix VA 14 | <Undefined>
+E 05 |Editor start + 1B | Dummy
+F 06 Array address function +¥ 1C {Undefined>
4G 07 |Current line display 4] 1D | <Undefined>
+H 08 |1 character deletion e 1E |Remainder operator
11 09 |Dummy + 1IF [<Undefined>
t+J OA |Dummy SPACE | 20 |Dummy
1K 0B <{Undefined> ! 21 Tag
L 0C |<Undefined> " 22 |Conditional branch
™M 0D |Dummy # 23 |OR operator
N OE |<Undefined> $ 24 | Dummy
+0 OF {Undefined> % 25 |Q-register increment
AP 10 |1434Y4 constant prefix & 26 | AND operator
1Q 11 |User-defined function ' 27 |Conditional branch
call
4R 12 |Control character input (28 |Priority indicator
+S 13 |Screen display pause) 29 |Priority indicator
AT 14 Key input function * 2A Integration operator
U 15 1 line deletion + 2B |Addition operator

(to be continued)

Table A-1 Commands Table (cont'd)
Command ASCLI Function Command ASCLI Function
Code Code

! 2C | Dummy B 42 | Hexadecimal constant
- 2D Subtraction operator C 43 Hexadecimal constant
. 2E |Built-in macro prefix D 44 |Hexadecimal constant
/ 2F Division operator E s Hexadecimal constant
0 30 Numeric constant F L6 Hexadecimal constant
1 31 |Numeric constant G 47 | <Undefined>
2 32 |Numeric constant H 48 | <Undefined>

33 |[Numeric constant I 49 | <Undefined>
4 34 |Numeric constant J 4a | <Undefined>
5 35 |Numeric constant K 4B | <Undefined>
6 36 |Numeric constant L he (Undefined>
7 37 |Numeric constant M QD‘ Macro definition

command

8 38 |Numeric constant N LE <Undefined>
9 39 |Numeric constant 0 L4r GOTO
: 3A Argument pop P 50 {Undefined>
H 3B Loop abort Q 51 Q-register prefix
< 3C Loop start R 52 {Undefined>
= 3D Display command S 53 {Undefined>
> 3E | Loop end T 54 (Undefined>
? 3F Error display U 55 Q-register assignment
@ 40 |8-bit pointer v 56 <{Undefined>
A 41 |Hexadecimal constant W 57 <Undefined>

(to be continued)

Table A-1 Commands Table (cont'd)

Command ASCLL Function Command ASCLL Function
Code Code

X 58 |Array assignment 6E |<Undefined>

Y 59 | <Undefined> 6F |<Undefined>

YA 5A [Wait 70 | <Undefined>

[5B |Q-register pop 71 | <Undefined>

¥ 5C | Numeric function 72 {Undefined>

] 5D |Q-register push 73 |<Undefined>

" S5E Control character prefix Th <{Undefined>

B 5F |16-bit pointer 75 | <Undefined>
60 <(Undefined> 76 |<Undefined>
61 | <Undefined> 77 |<Undefined>
62 | <Undefined> 78 |<Undefined>
63 | <Undefined> 79 |<Undefined>
64 | <Undefined> 78 | <Undefined>
65 (Undefined> { 78 iLeft shift operator
66 | <Undefined> | 7C |Exclusive-OR operator
67 | <Undefined> } 7D [Right shift operator
68 {Undefined> ~ 7E Negate operator
69 | <Undefined> DEL | 7F |1 character deletion
6A | <Undefined>
6B | <Undefined>
6C {Undefined>
6D | <Undefined>

A.2 ARRAY TABLE

When referencing an array shown in Table A-2, use tFVER=H

(CLICE-ET version displayed in hexadecimal), etc.

Table A-2 Array Table

Array Name

Function

VER CLICE version

WRK CLICE work area top address

PRM Program memory top address

TRM Trace memory top address (be careful of the current bank)
BANK#0: PC, BANK#1:PORT, BANK#2:WA, DB, JG,
BANK#3: PC, BANK#4:TMO, BANK#5:TM1

PCV PC coverage memory top address

DCV Data coverage memory top address

CND Condition memory top address

ERG Emulator register top address

CRG Condition register top address

CRO Condition register unit #0O

CR1 Condition register unit #1

CR2 Condition register unit #2

CR3 Condition register unit #3

SRG System register top address

DTM Data memory top address

RGF Register file top address

RNI RAM NOT INITIALIZE break register

SPE STACK OVERFLOW/UNDERFLOW break register

(to be continued)

Table A-2 Array Table (cont'd)

Array Name Function
IRW ILLEGAL RAM WRITE break register
pC] System register PC address
sp System register SP address
ARO System register ARO address
AR1 System register ARl address
AR2 System register AR2 address
AR3 System register AR3 address
WR [System register WR address
BNK System register BANK address
IXH System register IXH address
IXM System register IXM address
IXL System register IXL address
RPH System register RPH address
RPL System register RPL address
PSW System register PSW address
JG System register JG address
ICU INTERRUPT CONTROL (uPD71059)
TCO TIMER CONTROL#0 (uPD71054)
TC1 TIMER CONTROL#1 (uPD71054)
SCO SERIAL CONTROL#0O (uPD71051)
SC1 SERIAL CONTROL#1 (uPD71051)

(to be continued)

Table A-2 Array Table (cont'd)

Array Name Function
DSW DIP SWITCH
RES RESET Mam'Chip
SEN SE BOARD NUMBER
Remarks: indicates space.

A.3 CONDITION REGISTER OFFSET ADDRESS
The offset addresses for the array CRG are shown in
Table A-3.
When referencing an array, use 4+FCRG+ +FDPO=H (address
that stores the break condition DEPTHO in hexadecimal),
etc.
Table A-3 Condition Register Offset Address
Array Name Function

DPO Break condition DEPTHO

DP1 Break condition DEPTH1

bp2 Break condition DEPTHZ2

DP3 Break condition DEPTH3

LvC Break condition DEPTH counter

CNB Condition break enable flag

RIB RAM NOT INITIALIZE break enable flag

IWB ILLEGAL RAM WRITE break enable flag

S0B SP OVER/UNDERFLOW break enable flag

TT™ Trace timer

TTP Trace timer prescalér

TAD Status trace/address trace switching flag

PDB PREVIOUS DATA break enable [lag

PCA PC break address

PCB PC break enable flag

A.4 CONDITION UNIT REGISTER OFFSET ADDRESS

Table A-4 shows the offset addresses for arrays CRO to

CR3.
When referencing an array, use *FCRO+ #FPAU=H (address of
unit 0 which stores the upper limit of the program address

break/trace condition range in hexadecimal), etc.

Table A-4 Condition Unit Register Offset Address

Array Name Function

PAU Upper limit of program address break/trace condition range

PAL Lower limit of program address break/trace condition range

PAM Program address break/trace condition range MATCH/UNMATCH
specification

DTA Data memory address break/trace condition

DMK Data memory address break/trace condition mask

DTU Data memory address break/trace condition MATCH/UNMATCH
specification

CRD Data memory write data break/trace condition

CRM Data memory write data break/trace condition mask

CRU Data memory Write data break/trace condition MATCH/UNMATCH
specification

PDT Break/trace condition of data previously written to data
memory '

PDM MATCH/UNMATCH Specification of break/trace condition of data
previously written to data memory

SPU Upper limit of stack pointer break/trace condition range

SPL Lower limit of stack pointer break/trace condition range

SPM Stack pointer break/trace condition range MATCH/UNMATCH
specification

(to be continued)

Table A-4 Condition Unit Register Offset Address (cont'd)

Array Name Function

ISD Break/trace condition by execution of specified instruction

ISM Mask of break/trace condition by execution of specified
instruction

1SU MATCH/UNMATCH specification of break/trace condition by
execution of specified instruction

MAR Break/trace condition of data specified by MAR (Monitor
Address Register)

MAM Mask of break/trace condition of data specified by MAR

MAU MATCH/UNMATCH specification of break/trace condition of data
specified by MAR

INT Break/trace conditicn by interrupt

INM Mask of break/trace condition by interrupt

INU MATCH/UNMATCH specification of break/trace condition by
interrupt

DMA Break/trace condition by DMA

DMM Mask of break/trace condition by DMA

DMU MATCH/UNMATCH specification of break/trace condition by DMA

AND AND/OR specification of break/trace condition

CNT Number of times break/trace condition established count
condition

CND Break/trace condition by number of times break/trace

condition established

CNM Mask of number of times break/trace condition established
CDR Current number of times break/trace condition established
CNU MATCH/UNMATCH specification of number of times break/trace

condition established

TRS Trace condition ON/OFF condition specification

.5.

DESCRIPTION OF PRIMITIVE COMMANDS

This section describes the functions of the primitive
commands. Primitive commands offer a more advanced
debugging method for those experienced in the development

of programs using the IE-17K-ET.

New commands (macro commands) can be added to the
IE-17K-ET or a series of debugging procedures can be

programmed.
POINTER
Pointer reads the resources indicated by array elements.

(1) Byte pointer
@14V

(2) Word pointer
_tv

@ 4V Byte Pointer

Format : @a4 V

@ : Expression

[Function] Reads one byte from the array element.

The byte pointer reads the one byte (8 bits)
data from the array element indicated by the
evaluated value of the expression described

between @ and +4V.

{Example)
@ 100+ Vv ... Refer to contents of
array element number 100H.
@+ FDTM + V ... Refer to contents of data

memory start address
(address 0).

Here, ¢+ FDTM is a function
which returns the array
address that indicates the

data memory start address.

_ 4%V Word Pointer

Format : _ atV

a

Expression

{Function]

Reads one word from the array element.

The word pointer reads one word (16 bits) of

data by reading one byte (8 bits) of data from

the array element indicated by the evaluated

value of the expression described between _

and +V and making it the high-order byte and

reading one byte (8 bits) of data from the

array elements specified by evaluated value +

1 and making it the low-order byte.

(Example 1)

_AFDTM 4V ...

A-13

Refer to 16-bit data by
making the contents of the
data memory start address
(address 0) the high-order
byte and the contents of
address 1 the low-order
byte.

Here, 4+ FDTM is a function
which returns the data

memory start address.

(Example 2)

_ 4+ FPRM+ (10H (1) +V=P

Display the contents of
program memory address
10H.

Here, *+ FPRM is a function
which returns the array
address that indicates the
program memory start

address.

A.5.2 FUNCTION

CLICE-ET has two kinds of functions, "built-in functions"
which are built into the system and "user-defined
functions" (+Q commands) which are defined by the user.

Various built-in functions, including array address
function (4F command), key input function (4T
command), and numeric function (¥ command), are

available.

(1) User-defined function
10

(2) Array address function
+F

(3) Key input function
+T

(4) Numeric function
Y

+Q User-defined Function

Format : +Qa

Q-register name

[Function]

Executes the contents of the Q-register and

returns a value.

The 1Q command executes the command string
(character string) stored in the Q-register
indicated by & and returns the defined value

in it.

For a detailed description of this command,

see Appendix A.5.6 "Macro".

tF Array Address Functions

Format : +Fa

Array element name

[Function]

Returns the array address of an array element

name.

The +F command returns the array address
indicated by the array element name «
specified by the three characters following

it.

The array element names table is shown in

Appendix A.2.

(Example) + FPRM
This command returns the array

address corresponding to program

memory address Q.

Therefore, when the program memory

address uses array address.

+FPRM+1 ... Low-order 8 bits of
address O

+ FPRM+n

A- 18

When n an even number:
High-order 8 bits of
address n/2

Wwhen n an odd number:
Low-order 8 bits of
address (n-1)/2

+T Key Input Function

Format : 4T

{Function] Returns the code of the keyed in character.

Returns the ASCII code of the keyed in
character. When there is no key input, this
command waits until a key is input.

When the 4 C key is input two consecutive
times, the 4T command is terminated even 1if

it is being executed.

(Example) +TU14TU24TU3
® @ 03
When the command string above is
executed, first the program enters
the input wait state at +T(Q .
When +C is keyed in here, +T (D
returns 03H and assigns O3H to Ql.
(See "U command (Assignment to
Q-register)" in Appendix A.5.3
"Assignment")

Then, command execution shifts to

172 .

>
{

b

O

When +C is keyed in here,
execution of the command string is
terminated by 1T () .

In short, two consecutive ¢C

cannot be input at +T.

The input characters are displayed

automatically.

¥ Numeric Function

Format : ¥a

@ : Q-register name

[Function] Converts a character string to a numeric.

Returns the numeric which represents the
character string stored in the Q-register

specified by a.

At this time, the number of digits of the
numeric is the number of digits from the
specified Q-register start address up to
the appearance of the first character other
than a numeric or from the start of the Q-
register to the last character of the Q-

register.

(Example) When the contents of Q-register 1

are as shown below, for ¥1,
(D +B1234 ... Returns 1.

(2 is not a binary number)
(@ BACK ... Returns OBACH.

(K is not a hexadecimal

number.)

+D16*2 ... Returns 10H.

(* is not a decimal number.)

When 1 character cannot be
converted as a numeric and
when the range which can be
represented as a constant is
exceeded as shown below, an

error is recognized.

+DECIMAL ... Error
12345678901234567890
Error

.5.

ASSIGNMENT

A U command and XB, XC and XW commands as available with

CLICE-ET to assign a numeric or character string to a

variable.

(1)

(2)

(4)

Assignment to Q-register
U

Byte data assignment to array
XB

Word data assignment to array
XW

Character string assignment to array
XC

U Q-register Assignment

Format : (@ BU«
C) Uay $ (macro definition)

C) §, eUa

Q-register'name
Expression
Character string

: Array start address

M O <X W R

Array end address

[Function] Assigns a numeric or character string to the

Q-register.

Format () assigns the evaluated value of
expression B to the Q-register specified by

a.

(Example) 3UA ... Assign 3 to Q-register A.

@ +FDTM+1 + VU3 _
Assign the contents of

data memory address 1 to

Q-register 3.

Format C) assigns the character string y up
to $§ to the Q-register specified by a.

When a character string is assigned as
character string y, it can be used as a macro.

(Example) ULABCS ... Assign ABC to Q-register
1.

Format 3 assigns the contents from the array
address specified by the evaluated value of
expression § to the array address specified by
the evaluated value of expression e to the
Q-register specified by & as a character

string.
(Example) 4+ FDTM, +FDTM+3UX

Assign the contents of data
memory addresses 0 to 3 to
Q-register X as character

string.

Data Memory Contents of Q-Register X

0.00H 0.01H 0.02H 0.03H
L 1 2 3 [4 J - [0|1 olz]o} 3|o[4]

8 Characters Loaded

XB Byte Data Assignment to Array

Format : a, B XB
o : Expression (only low-order 8 bits valid)
B : Array address

[Function] Assigns 8-bit data a to array 8.

Assigns the low-order 8 bits of the evaluated
value of expression g to the elements of the
array address indicated by the evaluated
value of expression 8.

(Example 1) Q1l, +FDTMXB

Assign low-order 8 bits of Q-
register 1 to data memory

address O.

(Example 2) A sample program which stores the
keyed in characters to the array

work area is shown below.

IFWRKUP < TTU2 D-Q2 ; Q2, QPXB %P>
QP="FWRK Q2=key if CR > ARRAY (Ql)=Q2 QP=QP+l!

This program exits from the loop
when the keyed characters are
ASCII code ODH or less. (Also
see "<> command (loop)" in
Appendix A.5.7 "Control".)

A-26

XW Word Data Assignment ‘to Array

Format : a, B XW
¢ : Expression (only low-order 16 bits valid)
B : Array address

[Function] Assigns 16-bit data a to array B.

Assigns the low-order 16 bits of the evaluated
value of expression ¢ to the elements of the
array address indicated by the evaluated

value of expression 8.
(Example) Q1, * FPRMXW
.. Assign low-order 16-bits of Q-
register 1 to data memory

addresses 0O and 1.

This example can also be
described as follows by using
the XB command.

Q1}8, 4FDTMXBQl, + FDTM+1XB

XC Character String Assignment to Array

Format : RBXCa

Q-register name

Array address

[Function]

Assigns the character string stored in Q-
register @ to array B.

The character string stored in the Q-register
specified by a is assigned to the array range
of that number of characters sequentially from
the array address element showing the

evaluated value of expression B.

(Example) ULlABCS +FWRKXCL1

@ @

This example assigns the character string ABC
to Q-register 1 at () and assigns its value
to A, B and C sequentially from the start of
the array work area at (2 .

That is, A is assigned to array address
+FWRK, B is assigned to 4FWRK+1l, and C is
assigned to +FWRK+2.

This example can also be described as follows

by using the XB command.
41, 41FWRKXB42, *tFWRK+1XB43, *+FWRK+2XB

However, 41H, 42H, 43H shows A, B, C by ASCII

code.

.5.

4

ARGUMENT STACK

CLICE-ET has an argument stack as a temporary memory for

passing command numeric arguments.
A numeric argument consists of a constant, function value,
or other expression evaluated value. It is stored in an
argument stack and used by reading it by command.
How an argument stack is used is shown below.

3, 4*2, 5+1§
The numeric argument 3 is pushed to the argument stack and
the numeric arguments 8 and 6 separated by a comma (,) are

then pushed to the argument stack in order.

Then, the command is used by popping the numeric arguments

from the argument stack in 6,8,3 order.

The argument stack is also initialized at the end of

execution of the command string.

(1) Argument push

Numeric

(2) Argument pop

Argument Push

Format : o, a]

¢ : Expression

[Function] Pushes a numeric to the argument stack.

The value of the expression is pushed to the

argument stack.

The level of the argument stack is incremented

(+1).
(Example) 12, 34, 568

The values 12H and 34H and 56H are pushed to

the argument stack in order.

31

>
[

Argument Pop

Format : tQ

Q-register name

[Function]

Pops the numeric from the argument stack and
stores it to the Q-register.

Pops the numeric from the argument stack and
stores it to the Q-register specified by a .

The level of the argument stack is decremented
(-1).

(Example) UM:A:BQA*(QB=DSS
+ D12, 3MMS$36

Stores a command string to Q-register M and
then executes macro M, which makes 12 and 3

arguments.
The result 36 is displayed.

(For a description of the commands used, see
Appendix A.5.6 "Macro" and Appendix A.5.8
"Display”.)

A.

5.

5

Q-STACK

The Q-stack is a stack for saving the contents stored in

the Q-registers.

The Q-stack is initialized at the end of execution of a

command string.

(1) Q-register push
[

(2) Q-register pop
]

[Q-register Push

Format

[a

a

.
.

Q-register name

[Function]

Pushes the contents of Q-register a to the Q-

stack.

Pushes the contents (numeric or character
string) of the Q-register specified by ¢ to
the Q-stack.

The level of Q-stack is incremented (+1).

(Example) 34UN [N

Assigns 34H to Q-register N and pushes 34H to
the Q-stack.

] Q-register Pop

Format :] a

a 2

Q-register name

[Function]

Stores the contents popped from the Q-stack to

Q-register «a.

Stores the contents (numeric or character
string) popped from the Q-stack to the Q-

register specified by «a.
The level of the Q-stack is decremented (-1).
(Example)] NQN=H

The contents popped from Q-register N are
displayed as a hexadecimal value.

.5.

MACRO

A macro is a function which executes a character string

stored in a Q-register as a command.

There are two kinds of macro execution, macro command (M
command) and user function (+Q command).

(1) Macro command execution
M

(2) User function execution
+Q

M Macro Command Execution

Format

.
.

Ma

a

Q-register name

[Function]

Executes the contents of Q-register ¢ as a

command string.

Executes the contents stored in the Q-register

specified by a¢ as a command.

The parameters (arguments) are passed to the
character string in the Q-register through
variable, Q-stack, and argument stack.

Macro commands can also be nested.

A macro which displays the sum of two

arguments in hexadecimal is shown below.

(Example 1) Pass parameters through a

variable.

UMQ1+Q2=HSS
100U1200U2MMS$300

Stores a command which adds and hexadecimal
displays the contents of Q-register 1 and Q-
register 2 and stores the result to Q-register

M.

Next, it assigns 100H and 200H to Q-register 1
and Q-register 2, respectively, and passes the
parameters by executing macro M.

The result 300 is displayed.

When the same operation as the example above

is performed through an array.

UM _ 4FWRK t V+_ 4+ FWRK+2 t V=HSS
100, * FWRKXW200, *FWRK+2XWMMS$$300

(Example 2) Pass parameters through the Q-
stack

When macros are nested, parameters may be
passed through variables by stacking the
variables (Q-register, etc.) used.

One method of solving this problem is to use

the Q-stack.

UM] 1Q1+] 1Q1=HSS
100Ul [1 200Ul [1 MMSS$S300

Stores a command string that adds and
hexadecimal displays the numerics popped to
Q-register 1 to Q-register M.

Next, the numeric assigned to Q-register 1l is
pushed to the Q-stack and parameters can be

passed by executing macro M.

(Example 3) Pass parameters through argument
stack

This is the most simple method of passing

parameters.

UM:1Q1+ :1Q1=HS$S
100, 200MMS$S300

Stores a command string which adds and
hexadecimal displays the numerical values

popped to Q-register 1 to Q-register M.

Next, the numeric is pushed to the argument
stack and the parameters can be passed by

executing macro M.

+Q User Function Execution

Format : +Quq

@ : Q-register name

[Function] Executes the contents of Q-register a as a

command string (function) and returns a value.

Executes the contents stored in the Q-register

specified by ¢ as a command.

The value which can be returned as a function

in this command is pushed to the Q-stack.

A value is fetched automatically from the Q-
register when execution of this function is

completed by means of this.

Parameters (arguments) are passed to the
command string in the Q-register through
variable, Q-stack, or argument stack, the same

as a macro command.
User-defined functions can also be nested.
(Example) An example of definition of a

function that returns a program

memory address is shown below.

This function returns the logical address (1
address/8 bits) on an array, with a program
memory address (1 address/16 bits) as the

input.

UM:1 +FPRM+ (Q1*2) 4+ VUl [1S

This macro M is used as follows:

100 +OM 4+ V=HSS

This hexadecimal displays the contents of

program memory address 100H.

A.5.7 CONTROL

CLICE-ET can control the execution order of each command.

(1) Loop

<>

(2) Loop abort

3
’

(3) Tag

(4) Unconditional branch

0s

(5) Conditional branch

" 1

<> Loop

Format : [a] < B>

Number of repetitions
Command string

[Function]

Executes command string 8 a times.
When o is 232—1, it can be omitted.

Command string 8 enclosed in < > 1s executed
the number of times indicated by the value of

the numeric argument specified by «a.
Loops can be nested.

When the number of repetitions o is omitted,
232

-1 times is assumed.

(Example) 10<command string A 5 <command

string B> command string C>

In this case, command string A is executed
once, command string B is executed 5 times,
and command string C is executed once so that

processing is repeated 16 times.

; Loop Abort

Format

; a

a

End conditional expression

[Function]

Aborts a repetitive loop.

When the value of the numeric argument
specified by o becomes O or more before the
end of the specified number of repetitions of
a repetitive loop, repetition of the command
string ends and the program exits from the
loop.

In other words, control shifts to the command
described at the immediate right of the > that

indicates the end of the loop containing:;.

When the numeric argument specified by a is
smaller than 0, this command is ignored.

A ; command outside a loop generates an error.
(Example) 100<1F- +T;command string>
Executes the command string repeatedly until

the loop reaches 256 repetitions or a control
key (ASCII code OOH to 1FH) is input.

o
o—

Tag

Format : !

{Function]

Shows the tag in a command string.
A comment is described to explain processing
contents in the command string or specify

the jump destination of an 0 command.

The character string enclosed in ! has no

affect on execution of the command.

(Example) +FWRKU1!Ql=WORK POINTER!

Assigns the array WRK address to Q-register 1.

The character string enclosed in ! is treated

as a comment and is not executed as a command.

0$ Unconditional Branch

Format : 0Oas$s

Tag

[Function]

Unconditionally shifts control to the

specified tag.

The O command changes the command flow at the
tag described by the same character string as
the character string (tag) described at the

right side of the command.

When the same tag is not described, the tag

that appears first is valid.

(Example) !LOOP! command string OLOOPS$

Executes the command string infinitely.

" ' Conditional Branch

Format : a"By'$
a Conditional expression
B Condition
Y Command string 1
§ Command string 2
[Function] Changes the command to be executed according

to the condition.

Judges the value of conditional expression q

and controls the command execution flow.

When the value of the numeric argument
specified by a satisfies condition B described
at the right side of ", command string ¥y
following the condition is executed, then

command string ¢ is executed.

If the condition is not satisfied, only
command string § following ' is executed.

That is, command string Yy is skipped.

This conditional branch command can be nested.

The following four conditions can be

described:

E: Equal zero (n=0)
N: Not equal zero (n#£0)
L: Less than zero (n<0)
G: Greater than zero (n>0)

(Example) Q1-3" EQU2'Ql+Q2U01

In this example, if Q1-3 is O (that is, Q1=3),
after O is assigned to Q-register 2, the next

command Q1+Q2Ul1 is executed.

If Ql#3, 0U2Z2 is not skipped and Ql1+Q2Ul

following ' is executed.

A.

5.

8

DISPLAY

CLICE-ET has

numerics.

(1)

(2)

(4)

(5)

(6)

Numeric
=B

Numeric
=D

Numeric
=H

commands which display characters and

binary display

decimal display

hexadecimal display

Q-register contents character display

=C

Character string display

+ A

1-4-3-4-

=P

4 bit format display

=B Numeric Binary Display

Format : [B ,] a =B
a : Numeric data
B : Number of display digits

[Function] Binary displays the value of the numeric

argument specified by numeric data «a.

The value of the numeric argument specified by
B indicates the number of display digits.
When it is O or is omitted, the data is

displayed by suppressing the leading zeros.
(Example 1) A=BS$$1010

Binary displays OAH. At this time, the
command is executed by $$, but line feed is

not performed and the value is displayed

unchanged.

(Example 2) 8, A=B$S00001010

Binary displays OAH in 8 digits.

=D Numeric Decimal Display

Format : . [B,] a=D

Q

Numeric data

Number of display digits

[Function]

Decimal displays the value of the numeric

argument specified by numeric data a.

The value of the numeric argument specified by
B indicates the number of display digits.

When it is O or is omitted, the value is
displayed by suppressing the leading zeros.

(Example 1) A=DSS10
Decimal displays OAH. At this time, the
command is executed by $$, but line feed is

not performed and the value is displayed as

is.
(Example 2) 4, A=DS0010

Decimal display OAH in 4 digits.

=H Numeric Hexadecimal Display

Format : (B8 ,] a=H

8

Numeric data
Number of display digits

{Function]

Hexadecimal displays the value of the numeric

argument specified by numeric data «a.

The value of the numeric argument specified by
8 indicates the number of display digits.
When it is 0 or is omitted, the value is

displayed by suppressing the leading zeros.
(Example 1) +D10=HSSA

Hexadecimal displays the decimal number 10.
At this time, the command is executed by S§§,
but line feed is not performed and the value
is displayed unchanged.

(Example 2) 4, A=HS$S000A

Hexadecimal displays OAH in 4 digits.

=C Q-register Contents Character Display

Format : =Cuq

@ : Q-register name

[Function] Displays the contents stored in Q-register a

as a character string.

(Example) ULlABCS=ClSSABC

+A Character String Display

Format : = 4+ Aa + A
a Character string
[Function] Displays character string « enclosed in + A.

(Example) + ABELL +R + GBELL TWICE 4R 4+ G 4R
+ G+ ASS

Display BELL and sound one beep and displays
BELL TWICE and sounds two beeps.

=P 1-4-3-4-4 Bit Format Display

Format a =P
a Numeric data
[Function] Displays the value of the numeric argument

specified by a in 1-4-3-4-4 bit format.

(Example) 4+ B0011110011110000=P$$078F0

Display 0011110011110000B(NOP) in 1-4-3-4-4
format. At this time, the command is executed
by $$, but line feed is not performed and the

value is displayed unchanged.

A.

5.

9

OTHERS

CLICE-ET has the following commands,

described above.

(1)

(2)

(3)

(4)

(5)

(6)

Q-register increment
%

Wait

Assignment to Q-register
*

Error display
n

Data memory read from device
Y

Data memory write to device
W

besides those

% Q-register Increment

Format : %a

a : Q-register name

[Function] Increment (+1) the contents of the Q-register.

Increments (+1) the contents stored in Q-

register a as a numeric.
(Example) 100U1%1

After 100H is assigned to Q-register 1, the
contents of Q-register 1 are incremented (+1)

by % command.

As a result, the contents of Q-register 1

become 101H.

Z Wait

Format

al

a

¢ Wait time

[Function]

Halts execution of the next command for the
time indicated by the value of the numeric
argument specified by a¢. The time units

are 10 msec.
(Example) +D1000Z

Halts execution for 10 seconds.

* Assignment to Q-register

Format : *aqa

@ : Q-register name

[Function] Assigns the contents of the command buffer to

Q~-register a.

When command string input is interrupted by
+C and when command execution is interrupted
by +CtC or when a prompt is displayed by
interrupt by an error during command
execution, the contents of the command buffer
can be stored to the Q-register by entering *
at the 1lst character and specifying the Q-
register at the 1lst character following the

prompt.

(Example)
xxx>:1— +FPRM+ (Q1 (1) 4v=H$ +C ... (D
XXX>*2 .. ()
XXX>M28S e ()

At () , a command string is input
and the command is terminated by §$

and input is interrupted by #4C.

At (@), the command string of (D
is assigned to Q-register 2 by *2.

At this time, if assignment is
performed normally, a prompt is
displayed as shown at ().

The command string stored to Q-
register 2 can be executed by M

command.

Macros can be easily created by using the *
like this.

When command execution is interrupted by an
error, the error can be corrected and the
command can be re-executed by .ED command by
assigning the contents of the command buffer

to a Q-register by * command.

This function allows efficient command input
without the need to re-input the command from
the beginning even when a long command string
is input and an error is generated.

Y Data Memory Read Command

Format : Y

[Function]

Reads the contents of the data memory and
register file of a device on the SE board to
CLICE-ET.

Reads the contents of the data memory of the
device on the SE board to the address
indicated by array DTM and succeeding
addresses. The contents of a register file
are read to the address indicated by array RGF

and succeeding addresses.

(CLICE-ET) (Device on SE Board)

t FDTM Address -+

+ FRGF Address +

Data Memory

Register, File

W Data Memory Write Command

Format : W

[Function]

Writes the data on CLICE-ET to the data memory
and register file of the device on the SE

board.

Writes the data beginning from the address
indicated by array DTM to the data memory of
the device on the SE board. Writes the data
beginning from the address indicated by array
RGF to the register file of the device on the
SE board.

(CLICE-ET) (Device on SE Board)

+ FDTM Address -+

+ FRGF Address -+

Data Memory

Register File

.6.

.6.

1

EDITOR

CLICE-ET has editor functions for editing command strings.

The editor can add, change, and delete all, or part, of a

command string (character string).

COMMAND BUFFER EDITING

[Function] Edits the command buffer.

[Format] +E

When 4E is input during command string input, CLICE-ET
enters the editor mode which edits the input command

string.

The editor command to be described later can be used in

editor mode.

(Example) xxx>Ul + ASTRINGS 4 AS +E
> ... Enters editor

mode

Q-REGISTER EDITING

[Function] Edits the contents of the Q-register.

[Format] .EDu

CLICE-ET enters the editor mode which edits the contents
stored in the Q-register specified by a as a character

string.

The editor commands to be described later are used in the

editor mode.

.6.

(Example) xxx>Ul + ASTRINGS *+ ASS
Xxx>.ED1SS

> ... Enters the editor

mode.

[Note] When Q-register a is not defined, the error

message

?NVQ NO VALUE IN Q-REGISTER

is displayed.

EDITOR COMMANDS

The editor commands include move, insert, delete, search,

replace, display and end.

In some commands, the number of times the command is to be

executed can be specified in front of the command.

The number of times is specified by a 2-digit decimal.

When O is specified or specification is omitted, 1 is

assumed.

Each editor command consists of one uppercase alphabetic
character. Note that an editor command is not displayed

even if input.

When an editor command generates an error, a beep is

sounded and the input command is ignored.

(1) Cursor Control

The cursor is moved to the right and the character to be

edited is displayed with the space key.

The cursor is moved to the left and the displayed
character is detected with the BS or DEL key.

The cursor can be moved to the position to be edited by

these operations.

Editing is performed at the position indicated by the

cursor.

(Example) >N The first character is edited.
>SN When the cursor is moved to the

right with the space key, a

character string is displayed.

>ST Ml

>STRING W

>STRINH When the cursor is moved to the
left with the BS or DEL key,
the displayed character is

deleted.

B indicates the cursor.

(2) Insertion

[Command] I

Inserts the keyed in character string at the current

cursor position.

Insertion is ended by pressing the ESC key.

(Example)

[Command] X

>ABCGHI M Original character string.
>ABCH Cursor is moved to G.
>ABCDEF IDEF(ESC) is input.

>ABCDEFGHI B
When the cursor is moved, it

can be seen that a character

string have been inserted.

After moving the cursor to the end of the line, this

command operates the same as the I command.

Insertion is ended by pressing the ESC key.

(Example)

> Ml Original character string.

>ABCDEFM When X is input, the entire
character string is displayed.

>ABCDEFGHI B
GHI(ESC) is inserted and

insertion ends.

[Command] P

Inserts the keyed in character at the current cursor

position.
(Example) »>ABCEFN
>ABC

>ABCD W
>ABCDEF B

(3) Deletion
[Command] D
Deletes one character from

When a count is specified,
deleted. ‘

(Example 1)
>ABCDEF

>ABCD IR

>ABCDYEY i

Original character string
Cursor is moved to E.

PD is input

When the cursor is moved, it

can be seen that characters

have been inserted.

the current cursor position.

that number of characters are

Original character string.

The cursor is moved to E.

When D is input, the deleted
character is displayed.

(Example 2)
>ABCDEF Original character string.

>ABC 8 The cursor is moved to D.

>ABC¥DEFY¥ |
When 3D is input, the three

deleted characters are

displayed.

[Command] H

Deletes the characters from the current cursor position to

the end of the line and operates the same as the I

command.
Insertion is ended by pressing the ESC key.

(Example) »>ABCN - Original character string.

>¥ABCY The characters deleted by the H

command are displayed.

>¥ABCY¥DEF W
DEF (ESC) are input.

(4) Search

[Command] S

Searches for the keyed in character from the current

cursor position and moves the cursor to the found

position.

If the character is not found, moves the cursor to the end

and sounds a beep.

When a count is specified, searches for that number of

characters.

(Example 1) >ABCDEFGHIM
Original character string.

>H
The cursor is moved to the
top.

>ABCDEF B

When SG is input, the cursor

moves to G.

(Example 2) >ABCABCABCHE
Original character string.

> M The cursor is moved to the top.
>ABCABCA R

When 3SB is input, the cursor

moves to the 3rd B.

(5) Replace
[Command] C

Replaces the character at the current cursor position with

the keyed in character.

When a count is specified, characters are replaced by the

number of key inputs.

(Example 1) »>ABC*EF N
Original character string.

>ABC B Cursor is moved to the *.

>ABCDOM When CD is input, the * is
replaced by D.

(Example 2) >ABC1234HI N
Original character string.

>ABCH Cursor is moved to I.
>ABCDEFG M

When 4CDEFG is input, 1234 are
replaced by DEFG.

[Command] R

Replaces the character string from the current cursor
position with the keyed in character string.

Replacement is ended with the ESC key.

(Example) >ABC123GHI N
Original character string.

>ABC R Cursor is moved to 1.

A-70

>ABCDEFEM RDEF (ESC) are input.

>ABCDEFGHI M
When the cursor is moved, the
replaced character string can

be seen.

(6) Display
[Command] L

Displays the character string from the current cursor
position to the end of the line and moves the cursor to

the top of the line.
(Example) »>ABCDEFG Original character string.
>ABCH Cursor is moved.

>ABCDEFG The character string is
displayed by L command.

>l Automatic line fed cursor moves

to the top of the line.

{Command] T
Displays the character string from the current cursor

position to the last character string being edited and
moves the cursor to the top of the character string being

edited.
(Example) >ABCDEFGHN

HIJKL N Original character string.

>ABCH Cursor is moved.

>ABCDEFG

HIJKL Character string displayed by

T command.

>H Automatically line fed cursor

moves to top.

(7) End

The editor mode is ended with the ESC key.

APPENDIX B. BUILT-IN MACRO COMMANDS

The built-in macro commands have been gathered in table format.
This table should be helpful during program development. This

list can also be used as an index.

The IE-17K-ET does not support the PPG (program pattern
generator) and so there are no PPG control commands.

{channel 1)

the program in the IE-17K-ET. This is
useful for saving patched programs.

B.1l PROGRAM MEMORY CONTROL COMMANDS
Command Function Summary Page
Name
.LPO Program memory load Downloads the xxx.ICE file using channel 5-22
(channel 0) 0 of the RS-232-C after the IE-17K-ET
has started up.
.LP1 Program memory load Downloads the xxx.ICE file using channel 5-22
(channel 1) 1 of the RS-232-C after the IE-17K-ET
has started up.
VPO Program memory verify | Uses channel O of the RS-232-C to verify 5-23
(channel 0) the program memory with the ICE file
downloaded to the IE-17K-ET.
VP1 Program memory verify | Uses channel 1 of the RS-232-C to verify 5-23
{channel 1) the program memory with the ICE file
downloaded to the IE-17K-ET.
AP Program memory Rewrites a selected range of the IE-17K-ET | 5-25
initialization program area with specified data
(1-4-3-4-4 format).
.CP Program memory change | Rewrites a selected address of the 5-26
IE-17K-ET program area for each instruction
(1-4-3-4-U4 format).
.AP Assemble command Rewrites a selected address of the 5-28
{mnemonic conversion) IE-17K-ET program area in mnemonics. This
is useful when using it with the UP command.
.DP Program memory dump Displays on the screen a maximum of a 3FH 5-32
address size of the selected address range
of the IE-17K-ET program area
(1-4-3-4-4 format).
.Up Disassemble command Displays up to 10 steps on the screen of 5-34
(mnemonic dump) a selected address of the IE-17K-ET
program area (mnemonic format) .
.FP Program memory search | Searches the contents of the program 5-37
memory in 1-4-3-4-4 format.
.SPO Program memory save Uses channel O of the RS-232-C to save 5-38
(channel 0) the program in the IE-17K-ET. This is
useful for saving patched programs.
.SP1 Program memory save Uses channel 1 of the RS-232-C to save 5-38

(to be continued)

memory dump

Command Function Summary Page

Name

.XS0 PROM data output Uses channel O of the RS-232-C to change 5-39

(channel 0) the program in the IE-17K-ET to a PROM
file and then output it.
.XS1 PROM data output Uses channel 1 of the RS-232-C to change 5-39
(channel 1) the program in the IE-17K-ET to a PROM
file and then output it.

Q Restart If this command is executed when the prompt| 5-40
is >@@@, it is possible to restart the
downloaded program.

B.2 DATA MEMORY CONTROL COMMANDS
Command Function Summary Page

Name

ID Data memory Initializes a selected range of the data 5-U43

initialization memory with specified data.

.CD Data memory change Rewrites a selected address of the data 5-U44
memory one data at a time.

.DD Data memory dump Dumps the data memory of a selected range. 5-46

.D Complete data Dumps all of the data memory. 5-48

B.3 PERIPHERAL CIRCUIT CONTROL COMMANDS
Command Function Summary Page
Name
.GD Display the peripheral| Displays on the screen the contents of a 5-50
register contents peripheral register.
.GE Read the peripheral Assigns the contents of the peripheral 5-51
register contents - register in the Q-register. This is used
when creating a user macro with the
primitive command.
.PD Write to the Assigns a numeric value to the peripheral 5-53
peripheral register register.
.PU Indirect write to the | Assigns the contents of the Q-register to 5-54

peripheral register

the peripheral register. This is used when
creating a user macro with the primitive
command.

B.4 EMULATION COMMANDS
Command Function Summary Page

Name

.R Reset Resets the SE board. The program execution | 5-56,
address becomes OH, and the data memory and | 6-1
register file are set to the same reset
state as the target device.

.RN Program execution Executes the specified program from the 5-57,
start address. The break and trace 6-1
conditions are not changed.

.BG Program execution Executes the specified program from the 5-58

(reset some break start address. (The break and trace
and trace conditions) conditions are partially reset.)
.BK Break Stops program execution. 5-59,
6-1

.CA Program start Changes the start address of the program. 5-60

address change

.S Step operation The program is executed one instruction at | 5-61,
a time by using the space key, for the 6-18
number of times specified from the numeric
input from the keyboard.

.DS Display This command is for products that have an 5-63

LCD controller. LCD display is possible
during a break.

B.5 BREAK/TRACE CONDITION CONTROL COMMANDS
Command Function Summary Page
Name
.CC Break/trace Sets or changes the break/trace condition. 5-65,
condition change 6-U4
.CT Trace ON/OFF Sets the starts and end of a trace, and 5-81
condition change performs the trace-one-shot setting.
.DC Break/trace Dumps the break and trace conditions 5-86
condition dump onto the screen.
DT Trace table dump Dumps the trace results. 5-88
.SCO Break/trace condition | OQutputs the break/trace condition set by 5-92
save {channel 0) .CC level 1 to channel O of the RS-232-C.
.SC1 Break/trace condition | Outputs the break/trace'condition set by 5-92
save (channel 1) .CC level 1 to channel 1 of the RS-232-C.
.LCO Break/trace condition | Downloads the break/trace condition from 5-93
load (channel O) channel O of the RS-232-C.
LC1 Break/trace condition | Downloads the break/trace condition from 5~93
load (channel 1) channel 1 of the RS-232-C.
.VCo Break/trace condition | Used to verify the break/trace condition 5-9l}
verify (channel 0) using channel O of the RS-232-C.
.vel Break/trace condition | Used to verify the break/trace condition 5-94
verify (channel 1) using channel 1 of the RS-232-C.
B.6 COVERAGE DISPLAY COMMAND
Command Function Summary Page
Name
.DM Coverage memory dump Displays the passage history of the program | 5-96

memory, and the write history of the data
memory.

B.7

HELP COMMAND

Command
Name

Function

Summary

Page

Support commands
display

Displays a list of commands.,

5-99

	COVER
	PREFACE
	CHAPTER 1. GENERAL
	1.1 General
	1.2 Features of EI-17K-ET
	1.2.1 Interface with Target System
	1.2.2 Program Memory
	1.2.3 Emulation Method
	1.2.4 Break Functions
	1.2.5 Real-Time Trace Function
	1.2.6 Data Memory Coverage Function
	1.2.7 Program Memory Coverage Function
	1.2.8 Other Features

	1.3 Composition
	1.3.1 System Diagram
	1.3.2 Block Diagram

	CHAPTER 2. SPECIFICATIONS
	2.1 Console Interface
	2.2 Environmental Conditions
	2.3 Power Supply
	2.4 Dimensions
	2.5 Exterior Views
	2.6 Accessories

	CHAPTER 3. INSTALLATION
	3.1 Switch Settings
	3.2 Connector Connections
	3.3 SE Board Installation
	3.4 Connection to Host Machine
	3.5 Connection to PROM Programmer
	3.6 Connection to Target System

	CHAPTER 4. STARTING
	4.1 Communication with WINDOWS (Version 3.1)
	4.1.1 Terminal Start-Up
	4.1.2 Settings
	4.1.3 Program Download to IE-17K-ET

	CHAPTER 5. DESCRIPTION OF COMMANDS
	5.1 Prompt
	5.2 Command Line Format
	5.3 Command Buffer
	5.4 Character Set
	5.4.1 Special Control Characters
	5.4.2 Special Characters
	5.4.3 Dummy Character

	5.5 Expression
	5.6 Constant
	5.7 Variables
	5.7.1 Array
	5.7.2 Q-Register

	5.8 Built-In Macro Commands
	5.8.1 Program Memory Control Commands
	5.8.2 Data Memory Control Commands
	5.8.3 Peripheral Circuit Control Commands
	5.8.4 Emulation Commands
	5.8.5 Break/Trace Condition Control Commands
	5.8.6 Coverage Display Command
	5.8.8 Help Command

	CHAPTER 6. PROGRAM EXECUTION
	6.1 Real-Time Emulation
	6.2 Break Point Setting
	6.2.1 Break by Program Address
	6.2.2 Break by Data Memory Modification
	6.2.3 Break by Multiple Break Condition

	6.3 1-Step Emulation

	CHAPTER 7. SE BOARD PROM CREATION
	CHAPTER 8. ERROR MESSAGES
	8.1 Command Errors
	8.2 Hardware Errors

	APPENDIX A. PRIMITIVE COMMANDS
	A.1 Primitive Commands Table
	A.2 Array Table
	A.3 Condition Register Offset Address
	A.4 Condition Unit Register Offset Address
	A.5 Description of Primitive Commands
	A.5.1 Pointer
	A.5.2 Function
	A.5.3 Assignment
	A.5.4 Argument Stack
	A.5.5 Q-Stack
	A.5.6 Macro
	A.5.7 Control
	A.5.8 Display
	A.5.9 Others

	A.6 EDITOR
	A.6.1 Command Buffer Editing
	A.6.2 Q-Register Editing
	A.6.3 Editor Commands

	APPENDIX B. BUILT-IN MACRO COMMANDS
	B.1 Program Memory Control Commands
	B.2 Data Memory Control Commands
	B.3 Peripheral Circuit Control Commands
	B.4 Emulation Commands
	B.5 Break/Trace Condition Control Commands
	B.6 Coverage Display Command
	B.7 Help Command

