

Customer Notification

EWRL78
V2.xx/V3.xx/V4.xx/V5.xx
Embedded Workbench® for RL78 V2.xx/V3.xx/
V4.xx/V5.xx

Operating Precautions

Y-IAR-EWRL78-FULL-MOBILE
Y-IAR-EWRL78-FULL

www.renesas.com

Document No. R20UT3407ED0141
Date Published: February 2024

http://www.renesas.com/

 Customer Notification R20UT3407ED0141 2

Notice
1. All information included in this document is current as of the date this document is issued. Such

information, however, is subject to change without any prior notice. Before purchasing or using any
Renesas Electronics products listed herein, please confirm the latest product information with a Renesas
Electronics sales office. Also, please pay regular and careful attention to additional and different
information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other
intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
technical information described in this document. No license, express, implied or otherwise, is granted
hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product,
whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to
illustrate the operation of semiconductor products and application examples. You are fully responsible
for the incorporation of these circuits, software, and information in the design of your equipment.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising
from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and
regulations. You should not use Renesas Electronics products or the technology described in this
document for any purpose relating to military applications or use by the military, including but not limited
to the development of weapons of mass destruction. Renesas Electronics products and technology may
not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document,
but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions
from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”,
“High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product
depends on the product’s quality grade, as indicated below. You must check the quality grade of each
Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application categorized as “Specific” without the prior written consent of
Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics
shall not be in any way liable for any damages or losses incurred by you or third parties arising from the
use of any Renesas Electronics product for an application categorized as “Specific” or for which the
product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.
The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly
specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement
equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-
disaster systems; anti- crime systems; safety equipment; and medical equipment not specifically
designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems;
medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that
pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified
by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range,
movement power voltage range, heat radiation characteristics, installation and other product
characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the
use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products,
semiconductor products have specific characteristics such as the occurrence of failure at a certain rate
and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to
radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any
other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,
please evaluate the safety of the final products or system manufactured by you.

 Customer Notification R20UT3407ED0141 3

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the
environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics
products in compliance with all applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics
assumes no liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information
contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also
includes its majority- owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas
Electronics.

 Customer Notification R20UT3407ED0141 4

Table of Contents

A) Table of Operating Precautions for the IDE EWRL78 .. 5

B) Table of Operating Precautions for the Assembler ARL78 .. 6

C) Table of Operating Precautions for C/C++ Compiler ICCRL78 ... 7

D) Table of Operating Precautions for the Linker ILINKRL78 and ELF-Tools10

E) Table of Operating Precautions for Debugger C-SPY ...11

F) Table of Operating Precautions for Runtime Library, Linker Files and Include Files13

G) Description of Operating Precautions for the IDE EWRL78 ...14

H) Description of Operating Precautions for the Assembler ARL78 ...21

I) Description of Operating Precautions for the C/C++ Compiler ICCRL7822

J) Description of Operating Precautions for Linker ILINKRL78 and ELF-Tools54

K) Description of Operating Precautions for Debugger C-SPY ..63

L) Description of Operating Precautions for Runtime Library ...72

M) Valid Specification ..75

N) Revision ..76

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 5

A) Table of Operating Precautions for the IDE EWRL78

No. Outline

 EWRL78
Version 8.1.4.5777

(4.10.1)

8.4.0.6247
(4.20.1)

8.4.2.6370
(4.20.2)

8.5.2.7561
(4.21.1)

8.5.2.7561
(4.21.2)

8.5.2.7561
(4.21.3)

9.1.7.10450
(5.10.1)

9.1.9.10638
(5.10.3)

9.1.9.10638
(5.10.4)

A1 Wrong flash mirror configuration for the
device family RL78/G10         

A2 Wrong Section-Name in Linker-Control-File-
Templates         

A3 Wrong mirror end address         

A4 Mirror Area Size not checked         

A5 Loading of *.ipcf file generates warnings         

A6
The symbol _NEAR_CONST_LOCATION_SIZE
will be wrong calculated if Mirror ROM 1 is
selected.

        

A7 MISRA C violation on Assembler module         

A8 The ROM mirror area size is one byte smaller
when using the IAR Embedded Workbench         

A9 Library Configuration tab under General
Options displays the old style of library names         

A10 Two windows might become invisible         
A11 The Renesas E2 self utility does not work         

A12 FAA code and data areas in RAM are not
reserved         

: Applicable : Not applicable - : Not checked

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 6

B) Table of Operating Precautions for the Assembler ARL78

No. Outline

 ARL78
Version 3.10.1

4.10.1

4.20.1

4.20.2

4.21.1

4.21.2

4.21.3

4.21.4

5.10.1

5.10.3

B1 RSEG Directives cannot be used in Macro Definitions          
B2 Assembler File must contain at least one Directive          

: Applicable : Not applicable - : Not checked

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 7

C) Table of Operating Precautions for C/C++ Compiler ICCRL78

No. Outline

 ICCRL78

Version

3.10.1

4.10.1

4.20.1

4.20.2

4.21.1

4.21.2

4.21.3

4.21.4

5.10.1

5.10.3

C1 Internal Compiler Error: Stack Overflow          

C2 Internal Compiler Error: Size mismatch          

C3 Internal Compiler Error: Bad Operator          

C4 Scratch Registers are not saved in Interrupt Service
Routine          

C5 Internal Compiler Error: Illegal State          

C6 Wrong Code may generated for Instructions using
Operand imm[BC]          

C7 Inconsistency of extended Keyword __monitor          

C8 Floating point comparison fails if the difference
between the operands is one bit only.          

C9 An internal error will be generated in case of
accessing a section address by using sfe          

C10 An internal error will be generated in case of
sequential pointer casting          

C11 Wrong Optimization of static local Variable          

C12 Inserted NOP after DIVWU/DIVHU Instruction moved
(cross call optimization)          

C13 The C library function isblank(c) will in some cases
erroneously return true          

C14 Switch statement inside recursive function does not
work correctly          

C15 Error in case a simple character literal is followed by a
wide character literal          

C16 Range error on nextXXX() functions          

C17 No output to stdout when putchar(-1) is used          

C18 Different return value between iswctype and iswblank          

C19 %Z format output for strftime is wrong          

C20 Square root function in the floating point library
returns +0.0 for sqrt(-0.0)          

C21 errno() might cause a range error          

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 8

No. Outline

 ICCRL78

Version

3.10.1

4.10.1

4.20.1

4.20.2

4.21.1

4.21.2

4.21.3

4.21.4

5.10.1

5.10.3

C22 Wrong result in case of Complex_I multiplication with
-0.0          

C23 Function cosh() does not set errno()          

C24 A const long long int array element value is not
referenced correctly          

C25 If there are multiple if-statements that refer to function
argument values, value judgment is incorrect.          

C26 A long long int array element value with auto storage
duration is not referenced correctly.          

C27
A long long int array element value is not referenced
using the const pointer correctly within the for-
statement.

         

C28 printf outputs nothing after long long int two-
dimension arrays operation          

C29 Internal Compiler Error: Double Defined Interrupt
Vector          

C30 Files based on the UTF-8 (BOM) format cannot be
compiled          

C31 Compiler can generate faulty code for 8-bit logical and
arithmetic operations          

C32 Data model will be ignored in case of using #pragma
constseg          

C33 Inline Assembler instruction generates an illegal
syntax error          

C34 Error in floating point division          

C35 Memory dependency problem          

C36 Casting two far pointers to long integer and saving the
difference will result in a wrong subtraction          

C37 Internal error will be thrown in case optimization
"Function inlining" is activated          

C38
Incorrect code will be generated if Compiler
optimization “Common subexpression elimination” is
active

         

C39 C++ Compiler can generate incorrect code for
comparisons of floating-point numbers          

C40 Byte order of the offset in the opcode for MOVW
offset[BC/B/C],AX is swapped.          

C41 long long operations which are using the __Mul64
function are not reentrant          

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 9

No. Outline

 ICCRL78

Version

3.10.1

4.10.1

4.20.1

4.20.2

4.21.1

4.21.2

4.21.3

4.21.4

5.10.1

5.10.3

C42
Faulty code for switches if the code for the switch and
its associated cases span
across a 64k border

         

C43
Constants located outside of the near area (flash
mirror) cannot be used as parameter for printf
function

         

C44

Copying several bits (1-bit bitfields) in sequence to
the same destination byte
can generate faulty code on optimization level
medium or higher.

         

C45 The tools crash when try to enter the debugger with
E1 or E20.          

C46
Accessing the SFR area (0xFFF00) via
near_pointer+index throws an error in case of
Compiler optimization “Medium” and higher.

         

: Applicable : Not applicable - : Not checked

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 10

D) Table of Operating Precautions for the Linker ILINKRL78 and ELF-Tools

No. Outline

 ILINKRL78 and ELF-Tools

Version

3.10.1

4.10.1

4.20.1

4.20.2

4.21.1

4.21.2

4.21.3

4.21.4

5.10.1

5.10.3

D1 Runtime Model Conflict using far Runtime-Library-Calls          
D2 Area in ROM marked as read-write-data in MAP-File          

D3 Routines for HW-Multiplier/Division Unit don’t support
far runtime library calls          

D4
Internal error will be thrown if the section to be copied
by “initialize manually” or “initialize by copy” feature is
not placed

         

D5 The symbol _NEAR_CONST_LOCATION_SIZE will be
wrong calculated if Mirror ROM 1 is selected. Now listed as IDE bug. See No. A6

D6 Constant Data with Memory Attribute ‘near’ are treated
as ‘readwrite’ Data in the Map File          

D7 The linker does not issue a warning if more than one
interrupt function uses the same interrupt vector          

D8 Switch/case statement over 64KB page          
D9 __sfb() returns wrong address for section .text          
D10 End address of SADDR region is wrong          

D11 Linker can terminate with an internal error if other
(relevant) linking errors are present          

D12 Internal error will be thrown in during linking object files
generated by the Renesas compiler          

D13 Error will be thrown by using the ielftool and filler bytes          

D14 EWRL78 ielftool --fill option doesn't fill the first byte of
unused area if the END address defined for --fill points          

D15 Hardware multiplication replacement routines for 64-bit
cannot be placed above the address 0xFFFF - - - - - - - -  

D16 Initializing data can fail if the block to copy is too big to
fit inside the first available block in ROM          

: Applicable : Not applicable - : Not checked

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 11

E) Table of Operating Precautions for Debugger C-SPY

No. Outline

 C-SPY

Version

3.10.1

4.10.1

4.20.1

4.20.2

4.21.1

4.21.2

4.21.3

4.21.4

5.10.1

5.10.3

5.10.4

E1
E1 C-SPY Driver: Debug Session closed after
Error 'Flash macro service ROM accessed or
stepped in'

          

E2 The C-SPY system macro __setLogBreak()
does not work for emulators           

E3 IECUBE C-SPY Driver: Wrong average timer
results         - - -

E4
E1 C-SPY Driver: Step-in Step over doesn't
work for switch case construct with more than
99 cases

          

E5
E1 C-SPY Driver: Specifying the serial number
for the E1/E20 emulator sometime causes it not
to be found.

          

E6
Wrong sampled values might be shown in the
Data Sample/Sampled Graphs window in case
of sampling a variable with a size of 2 bytes

          

E7
E1 C-SPY Driver: Download of an additional
image might destroy a part of the original
application.

          

E8 Data sampling time not constant         - - -

E9 Min. update interval value for Live Watch and
Memory Window is wrong           

E10 Binary image not showing symbol info in
“Disassembly” window           

E11 Simulator interrupts can go wrong if code is
above 64KB           

E12 Simulator interrupts have wrong priority levels
in case of shared vector           

E13 E1/E2 C-SPY Driver: OCD Trace automatically
disabled in case Step-in/Step-over is used.           

E14 EWRL78 hanged-up while power debugging           

E15 In some situations, the debugger crashes when
using an OCD emulator.           

E16 Debugging via hot-plugin doesn’t work           
E17 Simulator result of MACH instruction is wrong           

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 12

E18
Loading of extra images fails if there is data in
the EEPROM memory in the extra image.

          

E19 Several registers are missing in the Register
view. E.g. the register “ADCSR”           

E20 FAA breakpoints cannot be removed after
setting - - - - - - - - -  

E21
The execution speed decreases by
approximately half when activate FAA
debugging

- - - - - - - - -  

E22 The C-SPY system macro __setCodeBreak
does not work with the emulator.           

: Applicable : Not applicable - : Not checked

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 13

F) Table of Operating Precautions for Runtime Library, Linker Files and Include
Files

No. Outline

 Runtime Library, Linker Files and Include Files
Version 2.21.2

3.10.1

4.10.1

4.20.1

4.20.2

4.21.1

4.21.2

4.21.3

4.21.4

5.10.1

5.10.3

F1

Range error will be thrown by the linker in
case of using the “far runtime library calls”
feature in combination with integer arithmetic
libraries

          

F2

If the option “Use far runtime library calls” is
used, assembler support routines from the run
time library are placed in an incorrect section
called “.ftext”

          

F3 The section name .textf_unit64kp is
misspelled in the linker files           

F5 Overlapping of two registers           

F6 In rare cases, the linker might fail with the
following internal error           

F7
Libraries generated with IAR V2.xx version
cannot be linked on newer IAR versions if the
library includes a vector table.

          

: Applicable : Not applicable - : Not checked

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 14

G) Description of Operating Precautions for the IDE EWRL78

No. A1 Wrong flash mirror configuration for the device family RL78/G10

IAR Reference EW26031

Details
The flash mirror area of the device family RL78/G10 is specified as follows:

0000H to 003FFH/007FFH/00FFFH mirrored to the area F8000H to F83FFH/F87FFH/F8FFFH

However, by using the IDE the flash mirror configuration is wrong. The flash mirror address
starts from the address 8000H instead of 0000H

8000H to 083FFH/087FFH/08FFFH mirrored to the area F8000H to F83FFH/F87FFH/F8FFFH

Workaround

Workaround via command line:

Define the linker symbol _NEAR_CONST_LOCATION_START manually within the linker file
and build the application from the command line.

define symbol _NEAR_CONST_LOCATION_START=0x00D8;
define symbol _NEAR_CONST_LOCATION_SIZE=0x100;

Workaround via IDE:

1) Define new linker symbols like e.g. _MY_NEAR_CONST_LOCATION_START and

_MY_NEAR_CONST_LOCATION_SIZE within your linker file
2) Rename all the symbols _NEAR_CONST_LOCATION_START and

_NEAR_CONST_LOCATION_SIZE within the linker file according to the new names

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 15

No. A2 Wrong Section-Name in Linker-Control-File-Templates

IAR Reference EWRL78-511

Details
The section name .textf_unit64kp is misspelled in the linker-control-file-templates (*.icf):

Example:

 "ROMFAR":place in ROM_far { block INIT_ARRAY,
 R_TEXTF_UNIT64KP,
 ro section .text_unit64kp,
 ro section .constf,
 ro section .switchf,
 ro };

Workaround

Correct the section name manually:

"ROMFAR":place in ROM_far { block INIT_ARRAY,
 R_TEXTF_UNIT64KP,
 ro section .textf_unit64kp,
 ro section .constf,
 ro section .switchf,
 ro };

No. A3 Wrong mirror end address

IAR Reference EWRL78-541

Details
The mirror area end address displayed in the project settings dialog is set to the real end-
address plus one instead of the just the end-address. This does not affect the linked code which
uses correct values.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 16

No. A4 Mirror Area Size not checked

IAR Reference EWRL78-558

Details
The size check of the mirror area is ignored if the size is set to zero. The linker allows to place
near-variables without checking the size size of the mirror area.

Workaround
If enough Flash memory is available, don’t use a mirror area of size zero.

No. A5 Loading of .ipcf file generates warnings

IAR Reference IDE-2878

Details
During the load procedure “Add Project Connection...” of an *.ipcf file the following warnings
might occur:

Workaround
Press the “OK” button and ignore the messages.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 17

No. A6 The symbol _NEAR_CONST_LOCATION_SIZE will be wrong calculated if Mirror ROM 1 is
selected

IAR Reference EWRL78-540

Details
The symbol _NEAR_CONST_LOCATION_SIZE will be wrong calculated if Mirror ROM 1 is
selected as shown below:

Workaround
Replace _NEAR_CONST_LOCATION_SIZE in the linker file at the following two places with the
correct size.

define block MIRROR_ROM with maximum size = _NEAR_CONST_LOCATION_SIZE
{ ro R_CONST_init, ro section .const_init, ro section .switch_init };

define block MIRROR_RAM with maximum size = _NEAR_CONST_LOCATION_SIZE
{ rw R_CONST, rw section .const, rw section .switch };

Example:

The size for the above screenshot values shall be calculated as follows
_NEAR_CONST_LOCATION_SIZE = 0xFE900 – 0xF2000 = 0xC900

The define _NEAR_CONST_LOCATION_SIZE shall be replaced within the linker file as follows:

define block MIRROR_ROM with maximum size = 0xC900 { ro R_CONST_init,
ro section .const_init, ro section .switch_init };

define block MIRROR_RAM with maximum size = 0xC900 { rw R_CONST, rw
section .const, rw section .switch };

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 18

No. A7 MISRA C violation on Assembler module

IAR Reference EWRL78-636

Details
The cstartup.s file provided by IAR as a template includes two symbol definitions @cstart and
@cend. These symbols are not referenced by the application, but they will be used by the
Renesas CS+ debugger in order to identify the start and the end of the application.

In case the source file cstartup.s is added to the application and the MISRA C checker is
activated an error for the MISRA-C 2004 rule 8.10 will be thrown, because a symbol is defined in
an assembler module but is not referenced.

Workaround
If the Renesas CS+ debugger is not used for debugging you can remove the definition of the
symbols @cstart and @cend from the cstartup.s file. Otherwise, treat that error as a warning
and document why the MISRA C error appears.

No. A8 The ROM mirror area size is one byte smaller when using the IAR Embedded Workbench

IAR Reference EWRL78-673

Details
The ROM mirror area size is one byte smaller when using the IAR Embedded Workbench.

Workaround
Replace _NEAR_CONST_LOCATION_SIZE in the linker file at the following two places with the
correct size.

define block MIRROR_ROM with maximum size = _NEAR_CONST_LOCATION_SIZE { ro
R_CONST_init, ro section .const_init, ro section .switch_init };

define block MIRROR_RAM with maximum size = _NEAR_CONST_LOCATION_SIZE { rw
R_CONST, rw section .const, rw section .switch };

Example:

The mirror size for the R5F104LE shall be 0xC900. However, in case of using the IDE for the
build the size is one byte smaller:
_NEAR_CONST_LOCATION_SIZE = 0xC8FF

The symbol _NEAR_CONST_LOCATION_SIZE shall be replaced within the linker file as
follows:

define block MIRROR_ROM with maximum size = 0xC900 { ro R_CONST_init, ro
section .const_init, ro section .switch_init };

define block MIRROR_RAM with maximum size = 0xC900 { rw R_CONST, rw section .const, rw
section .switch };

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 19

No. A9 Library Configuration tab under General Options displays the old style of library names

IAR Reference EWRL78-763

Details
The Library Configuration tab under General Options displays the old style of library names
instead of the new one used by V4.10

Example:

The library file in the following example should be dlrlnnf23n.a instead of dlrl78nnf23n.a:

Workaround
Please ignore the displayed library file. Internally the correct file will be used.

No. A10 Two windows might become invisible

IAR Reference EWRL78-775/IDE-4531

Details
If you undock two windows in the debugger and, put them outside the IDE and, put them
together and, leave the debugger, these windows become invisible and cannot be used for
sub-sequent debug sessions.

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 20

No. A11 The Renesas E2 self utility does not work

IAR Reference EWRL78-799

Details
The Renesas E2 self utility does not work with the E2.

Workaround
Download the latest E2 self utility (E2SCP_Vxxxx.exe) via the following link:
http://www.renesas.eu/update?oc=RTE0T00020KCE00000R#packageInfo

No. A12 FAA code and data areas in RAM are not reserved

IAR Reference: EWRL78-1097

Details

The FAA code and data areas in RAM are not reserved in the linker configuration files in a way
that it guarantees that user's variables cannot overwrite.

Workaround

None

http://www.renesas.eu/update?oc=RTE0T00020KCE00000R#packageInfo

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 21

H) Description of Operating Precautions for the Assembler ARL78

No. B1 RSEG Directives cannot be used in Macro Definitions

Details

The assembler calculates a wrong relative jump-distance if the RSEG directive is used within a
macro definition:

Example

myDummyMacro MACRO
 RSEG CODE:CODE
 NOP
 ENDM

Workaround

Don’t use the RSEG directive in macro definitions. The used code-segment must be defined in
the code where the macro is expanded to.

No. B2 Assembler File must contain at least one Directive

Details

An assembler module without any assembler directive causes the following error message:

Error[As074]: Each file must contain at least one directive

Example

#if PLATFORM == RL78
 ; section without directive
#else
 ; section without directive
#endif

Workaround

Please use the END directive:

#if PLATFORM == RL78
 ; section code
 END
#else
 ; section code
 END
#endif

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 22

I) Description of Operating Precautions for the C/C++ Compiler ICCRL78

No. C1 Internal Compiler Error: Stack Overflow

IAR Reference: EW24353

Details

Very deep nestlings of structure declarations, parenthesis or if-else statements, may generate a
stack overflow error in the compiler.

Internal Error:
[CoreUtil/General]: Stack overflow (0xXXXXXXXX) at xxxxxxxx

Examples

1)
#define LBR1 ((((((((((
#define LBR2 LBR1 LBR1 LBR1 LBR1 LBR1 LBR1 LBR1 LBR1 LBR1 LBR1
#define LBR3 LBR2 LBR2 LBR2 LBR2 LBR2 LBR2 LBR2 LBR2 LBR2 LBR2
#define LBR4 LBR3 LBR3 LBR3 LBR3 LBR3 LBR3 LBR3 LBR3 LBR3 LBR3
#define RBR1))))))))))
#define RBR2 RBR1 RBR1 RBR1 RBR1 RBR1 RBR1 RBR1 RBR1 RBR1 RBR1
#define RBR3 RBR2 RBR2 RBR2 RBR2 RBR2 RBR2 RBR2 RBR2 RBR2 RBR2
#define RBR4 RBR3 RBR3 RBR3 RBR3 RBR3 RBR3 RBR3 RBR3 RBR3 RBR3

int q5_var = LBR4 0 RBR4;

2)
#define ONE else if (0) { }
#define TEN ONE ONE ONE ONE ONE ONE ONE ONE ONE ONE
#define HUN TEN TEN TEN TEN TEN TEN TEN TEN TEN TEN
#define THOU HUN HUN HUN HUN HUN HUN HUN HUN HUN HUN

void foo()
{

if (0) { }
THOU THOU THOU THOU THOU THOU THOU THOU THOU THOU THOU

}

Workaround
Avoid such code, this will be listed as a known problem.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 23

No. C2 Internal Compiler Error: Size mismatch

IAR Reference: EW25533

Details

Reading a 16-bit SFR that is located between 0xFFF00-0xFFF1F might generate an internal
error :

Internal error:
[CoreUtil/General]: Size mismatch for “ MOVW HL, S:0xFFFxx ;; 1
cycle, inserted as 3 bytes, assembled as 2 bytes.

Examples

#include <ior5f10ppj.h>

unsigned short v1[10];
unsigned char v2;

void test(void)
{
 v1[v2] = ADCR;
}

Workaround
Use a static temporary variable:

void test(void)
{
 static unsigned short dummy;
 dummy = ADCR;
 v1[v2] = dummy;
}

The issue will be fixed in future update.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 24

No. C3 Internal Compiler Error: Bad Operator

IAR Reference: EW25541

Details

In case of using explicit double casting, an internal compiler error occurs:

Internal error:
[GoBinaryExprCvm::Evaluate]: bad operator

Example

void test (void)
{
 (void)(unsigned short int)((*(unsigned short *)0xF06E6));
}

Workaround

Either remove the (void) cast or make the pointer cast volatile:
(void)(unsigned short int)((*(unsigned short volatile *)0xF06E6))

No. C4 Scratch Registers are not saved in Interrupt Service Routine

IAR Reference: EW25593

Details

Interrupt service routines using the new Renesas calling convention (v2) fail to save the scratch
registers. This occurs independently of the used optimization.

Example

__far const unsigned char data[] = { 0xfa, 0xfa, 0xfa};
 unsigned long v1;

#pragma vector = 0x7A
__interrupt void isr01(void)
{
 v1 = (unsigned long)&data[0];
}

Workaround

Change the calling convention of the for the interrupt service routine:

__v1_call __interrupt void isr01(void)
{
 v1 = (unsigned long)&data[0];
}

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 25

No. C5 Internal Compiler Error: Illegal State

IAR Reference: EW25713

Details

Far pointers that have a constant value (known at compile time) that points into the short
address area can generate an internal error.

Example

typedef union {
 struct {
 unsigned char p10 :1;
 unsigned char p11 :1;
 unsigned char reserve1:6;
 } ;
 unsigned char all;
} SFRDEF;

typedef union {
 SFRDEF byte;
} SFR;

__far SFR sfr @(0xFFF01) ;

void test(void)
{
 sfr.byte.p10 = 0;
 sfr.byte.all = 0;
}

Workaround

Avoid absolute addressing by using a user defined data segment:

#pragma dataseg= __saddr MySeg
__far SFR sfr;
#pragma dataseg= default

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 26

No. C6 Wrong Code may generated for Instructions using Operand imm[BC]

IAR Reference: EW25763

Details

Instructions that have one operand of type imm[BC] can in some cases generate wrong
offsets to BC if the offset is a constant (not a label).

Example

#define D (*((volatile T __near *)(0x1234)))

typedef struct {
 unsigned char c[10];
} T;

int i = 0;
int j;

void test(void)
{
 j = D.c[i];
 // wrong generated code:
 // 000004 49 3412 MOV A, (0x1234)[BC] ;; 1 cycle

 D.c[i] = j;
 // correct code:
 // 000013 48 1234 MOV (0x1234)[BC], A ;; 1 cycle

}

Workaround
None.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 27

No. C7 Inconsistency of extended Keyword __monitor

IAR Reference: EW25971

Details

Using IAR function object attributes (like __monitor) with member functions of template
classes defined outside the class definition does not work properly. Specifying the
attribute both on the declaration and the definition of the function results in a
nonsensical error message ("declaration is incompatible with ...").

Example:

template <typename T, unsigned long Size>
class buffer
{
 __monitor void clear();
};

template <typename T, unsigned long Size>
__monitor void buffer<T, Size>::clear() {
 // ...
}

Workaround

None; it will be fixed in next update.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 28

No. C8 Floating point comparison fails if the difference between the operands is one bit only.

IAR Reference: EW26007

Details

A floating point comparison fails if the difference between the operands is one bit only.

Example:

The following code should return 0, because the value of the expression (-16777215.0F <=
-16777216.0F) is false. But it returns 1.

volatile float a;
const float t = -16777216.0F;

int main()
{
 int ret = 0;

 a = (-16777215.0F);
 if(a <= -16777216.0F) ret |= 1;
 if(a <= t) ret |= 2;
 return ret;
}

Workaround

Compare with a (const) volatile variable or an external const variable instead of a
constant.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 29

No. C9 An internal error will be generated in case of accessing a section address by using sfe

IAR Reference: EW25997

Details

An internal error will be generated in case of accessing section address by using the sfe and
inline Assembler. Following internal error will be thrown.

Internal Error: [CoreUtil/General]: Access violation (0xc0000005) at 0040997E
(reading from address 0x18) Internal
Error: [CoreUtil/General]: Access violation (0xc0000005) at 0040997E (reading
from address 0x18)

Example:

int main()
{
 asm("MOVW SP, #LWRD(sfe(""CSTACK""))");
}

Workaround

Use #pragma section before accessing section addresses:

#pragma section="CSTACK"
asm("MOVW SP, #LWRD(sfe(""CSTACK""))");

No. C10 An internal error will be generated in case of sequential pointer casting

IAR Reference: EWRL78-506

Details

An internal error can be generated in case of casting a near pointer to a short, then casting it to
far pointer and then casting to a long, if optimization level medium or higher is used.

Internal Error: [TaOpPrefix::GetWordIndex]:
Diagnostics: Not implemented yet)

Example:

unsigned long l;
char __near np;

void test()
{
 l = (unsigned long) (void __far *) (unsigned short) &np;
}

Workaround

Avoid pointer casting sequence or reduce optimization level for the function by using #pragma
optimize.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 30

No. C11 Wrong Optimization of static local Variable

IAR Reference: EWRL78-547

Details

At optimization level ‘high’, static local variables assigned only the constants 0 and 1, but
initialized with another value, can be optimized incorrectly.

Example:

typedef enum {
 tt1 = 0,
 tt2,
 tInvalid
} tMyTpe;

int g1, g2;

void test()
{
 static tMyTupe v1;

 if (g1 < g2) && (v1 != tt2) {

 }
}

Workaround

Set initial start value of the first struct member to 1:

typedef enum {
 tt1 = 1,
 tt2,
 tInvalid
} tMyTpe;

No. C12 Inserted NOP after DIVWU/DIVHU Instruction moved (cross call optimization)

IAR Reference: EWRL78-576

Details

The compiler adds a NOP instruction for the RL78 S3 MCU core after every DIVWU and DIVHU
instruction as a workaround for an error in the MCU. However, the cross call optimizer will in
some cases move an instruction in between the DIVHU/DIVWU instruction and the NOP.

This happens only if cross call optimization is activated.

Example:
None

Workaround

Disable the cross call optimization by using the compiler option --no_crosscall

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 31

No. C13 The C library function isblank(c) will in some cases erroneously return true

IAR Reference: EW26558/EWRL78-584

Details

The C library function isblank(c) will in some cases erroneously return true for a few characters
(\f, \n, \r and \v).

Example

if(isblank('\v')) {
 printf("This line will be printed in case of wrong return value!!!");
}

Workaround
None

No. C14 Switch statement inside recursive function does not work correctly.

IAR Reference: EW26549/EWRL78-585

Details

On optimization level -Om or higher the compiler can generate erroneous code for functions
with a recursive call followed directly by a switch statement where one of the switch cases has
the only effect that the function exits.

Example

#include <stdio.h>

int val = 0;
void func(int p)
{
 if(p > 0) {
 func(-1);
 switch(val) {
 case 0 :
 val = 1;
 break ;
 case 1 :
 val = 2;
 break ;
 default :
 break ;
 }
 }
}

int main(void)
{
 func(1);

 if(val != 1) {
 printf("FAILED");
 } else {
 printf("OK");
 }

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 32

No. C15 Error in case a simple character literal is followed by a wide character literal

IAR Reference: EW26564/EWRL78-587

Details

If the code contains a simple character literal followed by a wide character literal, an error is
issued. See Example.

Example

wchar_t buf[] = L"1""2" ;

Error:[Pe1282]: string literals with different character kinds cannot be
concatenated

Workaround
None

No. C16 Range error on nextXXX() functions

IAR Reference: EWRL78-603

Details

The range error occurs when the first argument of the following function is 0.0
nextafter / nextafterf / nextafterl / nexttoward / nexttowardf / nexttowardl.

Example

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <errno.h>

int main(void)
{
errno = 0 ;
nextafter(0.0, 1.0) ;

if (errno == 0) {
 printf("OK") ;
} else {
 printf("NG") ;
}

return(0) ;
}

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 33

No. C17 No output to stdout when putchar(-1) is used

IAR Reference: EWRL78-606

Details

The library function putchar() does not handle the input value -1 according to the standard.
Instead of printing '\0377' (-1 casted to unsigned char) to stdout and return this value it does not
output anything and returns -1.

Example

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <errno.h>

int main(void)
{
errno = 0 ;
nextafter(0.0, 1.0) ;

if (errno == 0) {
 printf("OK") ;
} else {
 printf("NG") ;
}

return(0) ;
}

Workaround

Cast the parameter to unsigned char when calling putchar.

putchar((unsigned char)-1);

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 34

No. C18 Different return value between iswctype and iswblank

IAR Reference: EWRL78-602 / EW26582

Details

The return value of iswctype(wc, wctype("blank")) and the return value of iswblank(wc) are
NOT same.

res1 = iswblank(L' ') ; // res1=1
res2 = iswctype(L' ', wctype("blank")) ; // res2=0

IAO/IEC9899:1999 describes that iswctype(wc, wctype("blank")) and iswblank(wc) have the
same return value.

++++
IAO/IEC9899:1999 : 7.25.2.2.1 The iswctype function Each of the following expressions has
a truth-value equivalent to the call to the wide character classification function
(7.25.2.1) in the comment that follows the expression:
iswctype(wc, wctype("blank")) // iswblank(wc)
++++

Example

#include <stdio.h>
#include <wctype.h>

int main(void)
{
int res1, res2 ;

res1 = iswblank(L' ') ;
res2 = iswctype(L' ', wctype("blank")) ;

if(res1 != res2) {
 printf("NG") ;
} else {
 printf(OK") ;
}

return(0) ;
}

Workaround

None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 35

No. C19 %Z format output for strftime is wrong

IAR Reference: EWRL78-605 / EW26595

Details

By default the character ":" is used as a replacement for %Z if the application has not
implemented time zone handling. However, here the value 0x00 will be written instead of
0x3A ":".

Example

#include <stdio.h>
#include <time.h>
#include <string.h>

int main(void)
{
 char expected[] = ":" ;
 char result[100] ;
 struct tm input ;

 input.tm_sec = 0 ;
 input.tm_min = 0 ;
 input.tm_hour = 0 ;
 input.tm_mday = 1 ;
 input.tm_mon = 0 ;
 input.tm_year = 0 ;
 input.tm_wday = 0 ;
 input.tm_yday = 0 ;
 input.tm_isdst = 0 ;

 strftime(result, 100, "%Z", &input) ;
 if(strcmp(result, expected) == 0) {
 printf("OK") ;
 } else {
 printf("NG") ;
 }

 return(0) ;
}

Workaround

None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 36

No. C20 Square root function in the floating point library returns +0.0 for sqrt(-0.0)

IAR Reference: EWRL78-607 / EW26605

Details

The square root function in the floating point library returns +0.0 for sqrt(-0.0) and not
-0.0 as the standard specifies.

Example

#include <stdio.h>
#include <math.h>

volatile float sqrt_result;
float compare_value = -0.0f;

unsigned long int * value_1 = (unsigned long int *)&sqrt_result;
unsigned long int * value_2 = (unsigned long int *)&compare_value;

int main(void)
{

 sqrt_result = sqrt(-0.0f);

 if(*value_1 == *value_2){
 printf("OK");
 } else {
 printf("NG");
 }
return(0) ;
}

Workaround

None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 37

No. C21 errno() might cause a range error

IAR Reference: EWRL78-604 / EW26577

Details

errno() might cause a range error if the first argument to a function is ±DBL_MIN and the sign of
the second argument is opposite to the first argument.

Example

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <float.h>

int main(void)
{
errno = 0 ;
nextafter(DBL_MIN, -0.1) ;

if (errno == 0) {
 printf("OK") ;
} else {
 printf("NG") ;
}

return(0) ;
}

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 38

No. C22 Wrong result in case of Complex_I multiplication with -0.0

IAR Reference: EWRL78-601 / EW26599

Details

A multiplication of a real floating point type (r1) with a complex type will promote r1 to a complex
type before the multiplication. This will produce undesirable results when infinite number, NaNs,
or -0.0:s are involved. The same thing happens when you divide a complex type with a real
floating type.

Example

#include <stdio.h>
#include <math.h>
#include <complex.h>
#include <string.h>

int main(void)
{
complex double d = -0.0 * _Complex_I ;
char real[10], image[10] ;

sprintf(real, "%g", creal(d)) ;
sprintf(image, "%g", cimag(d)) ;

if((strcmp(real, "-0") != 0) || (strcmp(image, "-0") != 0)) {
 printf("%-12s %04d:NG [-0][-0]--->[%s][%s]\n", __FILE__, __LINE__, real, image) ;
} else {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
}

return(0) ;
}

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 39

No. C23 Function cosh() does not set errno()

IAR Reference: EWRL78-612 / EW26609

Details

The standard library function cosh() called with an infinite does not set errno() to EDOM (domain
error) as expected.

Example

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <errno.h>
int main(void)
{
 double result ;
 union u_data {
 double d ;
 signed long dt[2] ;
 } pt = { 0.0 } ;
 errno = 0 ;
 pt.dt[1] |= 0x7ff00000ul ; //
 result = cosh(pt.d) ;
 printf("cosh--->[%E][%s]\n", result, strerror(errno)) ;
 return(0) ;
}

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 40

No. C24 A const long long int array element value is not referenced correctly

IAR Reference: EWRL78-646

Details

The compiler can sometimes fail to calculate correct live ranges for local long long arrays
causing them to share the same stack space with other local variables.

Example

#include <stdio.h>

int flg = 0 ;

void sub(void);

void sub(void)
{
 int i ;
 const signed long long int ary[1] = { 0LL } ;

 for (i = 0 ; i < 1 ; i++) {
 if (ary[i] != 0LL) {
 flg++ ;
 }
 }
}

int main(void)
{
 sub() ;

 if(!flg) {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 } else {
 printf("%-12s %04d:NG\n", __FILE__, __LINE__) ;
 }

 return(0) ;
}

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 41

No. C25 If there are multiple if-statements that refer to function argument values, value judgment
is incorrect.

IAR Reference: EWRL78-644

Details

The compiler can sometimes remove 16-bit compares in if statements if the variable value
instead of being re-read is restored by adding a constant before the compare.

Example

#include <stdio.h>

void sub(signed int);

void sub(signed int a)
{
 if (a > 10) {
 printf("%-12s %04d:NG [1]\n", __FILE__, __LINE__) ;
 } else if (a > 0 && a <= 10) {
 printf("%-12s %04d:NG [2]\n", __FILE__, __LINE__) ;
 } else if (a >= -10 && a < 0) {
 printf("%-12s %04d:NG [3]\n", __FILE__, __LINE__) ;
 } else {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 }
}

int main(void)
{
 sub(0) ;
 return(0) ;
}

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 42

No. C26 A long long int array element value with auto storage duration is not referenced
correctly.

IAR Reference: EWRL78-645

Details

The compiler can sometimes fail to calculate correct live ranges for local long long arrays
causing them to share the same stack space with other variables.

Example

#include <stdio.h>

int flg = 0 ;

#define N 2

void func(void);

void func(void)
{
 int i ;
 long long int a[N] = { 0, 1 } ;

 for (i = 0; i < N; i++) {
 if (a[i] != i) flg++ ;
 }
}

int main(void)
{
 func() ;

 if(flg == 0) {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 } else {
 printf("%-12s %04d:NG\n", __FILE__, __LINE__) ;
 }

 return(0) ;
}

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 43

No. C27 A long long int array element value is not referenced using the const pointer correctly
within the for-statement.

IAR Reference: EWRL78-640/EWRL78-641

Details

Taking the address of a local long long array/struct and using it to initialize a local long long
pointer can cause the two variables to share the same stack address.

Example

#include <stdio.h>

int flg = 0 ;

void sub(void);

void sub(void)
{
 int i ;
 signed long long int ary[1] = { 0LL } ;
 const signed long long int *ptr = &ary[0] ;
 for (i = 0 ; i < 1 ; i++, ptr++) {
 if (*ptr != 0LL) {
 flg++ ;
 }
 }
}

int main(void)
{
 sub() ;
 if(!flg) {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 } else {
 printf("%-12s %04d:NG\n", __FILE__, __LINE__) ;
 }
 return(0) ;
}

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 44

No. C28 printf outputs nothing after long long int two-dimension arrays operation

IAR Reference: EWRL78-638

Details

The compiler can sometimes fail to calculate correct live ranges for local long long arrays
causing them to share the same stack space.

Example

#include <stdio.h>
int flg = 0 ;
void sub(void);

void sub(void)
{
 int i, j ;
 signed long long int ary1[1][6] = { { 1, 1, 1, 1, 1, 1, } } ;
 signed long long int ary2[1][6] = { { 1, 1, 1, 1, 1, 1, } } ;
 for(i = 0 ; i < 1 ; i++)
 for(j = 0 ; j < 6 ; j++) {
 ary1[i][j] -= ary2[i][j] ;
 if (ary1[i][j] != 0) {
 flg++ ;
 }
 }
}

int main(void)
{
 sub() ;
 if(!flg) {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 } else {
 printf("%-12s %04d:NG\n", __FILE__, __LINE__) ;
 }
 return(0) ;
}

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 45

No. C29 Internal Compiler Error: Double Defined Interrupt Vector

IAR Reference: EWRL78-705/EWRL78-675

Details

Internal Compiler error will be thrown if a interrupt vector is double defined.

Example

#define my1_vect (0x3E)
#define my2_vect (0x3E)

#pragma vector=my1_vect, my2_vect
static __interrupt void my_interrupt (void) {

}

Following internal error will be thrown.

Workaround
None

No. C30 Files based on the UTF-8 (BOM) format cannot be compiled

IAR Reference: EWRL78-719

Details

The compiler emits "Error[Pe007]: unrecognized token" for UTF-8 (BOM) encoded source files.

Example
None

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 46

No. C31 Compiler can generate faulty code for 8-bit logical and arithmetic operations

IAR Reference: EWRL78-699

Details

Depending on the register allocation, the compiler can generate faulty code for
8-bit logical and arithmetic operations where one of the operands is an
indirection of a pointer.

Example

static unsigned char cs_check(COMM_INFO *pi)
{
 RCV_DATA *pp;
 unsigned char rtn;
 unsigned char cs;
 unsigned int i, dtlen;

 pp = &pi->Rx;
 cs = 0;
 dtlen = pp->Len;
 for(i = 0; i < dtlen; i++)
 {
 cs ^= pp->Buf[i];
 }
 if(cs == 0)
 { /* CheckByte OK */
 rtn = TRUE;
 }
 else
 { /* CheckByte Ng */
 rtn = FALSE;
 }
 return rtn;
}

Workaround
Declare one of the operands volatile.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 47

No. C32 Data model will be ignored in case of using #pragma constseg

IAR Reference: EWRL78-698

Details

#pragma constseg defaults to near memory regardless of selected data model.

Example

If project data model is set to far the constant TSV in the example shall be treated as far
constant. However, in the example below the TSV constant will be treated as near constant
whereas the data model is far.

const unsigned char TCV = 0x33;
#pragma constseg=__far "TSFar"
const unsigned char TSVfar = 0x55;
#pragma constseg="TS"
const unsigned char TSV = 0x77;
#pragma constseg = default

unsigned char TC;
unsigned char TSfar;
unsigned char TS;

void main(void)
{
 TC = TCV;
 TSfar = TSVfar;
 TS = TSV;
}

Workaround
Specify a memory attribute when you use #pragma constseg:

#pragma constseg= __far "MY_SEG"

No. C33 Inline Assembler instruction generates an illegal syntax error

IAR Reference: EWRL78-747

Details

The instruction MOV ES, S:label generates an illegal syntax error.

Example

__saddr unsigned char _AA;

int main(void)
{
 asm("MOV ES, S:_AA");
 return _AA;
}

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 48

No. C34 Error in floating point division

IAR Reference: EWRL78-769

Details

Casting (explicit or implicit) a subnormal float to a double can cause the program to loop
endlessly if the exact value of the float is 0x00100000. For other large subnormal values the
result will be incorrect (values between 0x00080000-0x000FFFFF).

Example

None

Workaround

A workaround is to keep all operations in the float domain if possible.

Example:
f * 1.0
change it to
f * 1.0f

No. C35 Memory dependency problem

IAR Reference: EWRL78-770

Details

Due to a memory dependency problem, the compiler might generate slightly different code
depending on which software license locking criteria is used. The code correctness is not
affected.

Example

None

Workaround

A workaround is to keep all operations in the float domain if possible.

Example:
f * 1.0
change it to
f * 1.0f

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 49

No. C36 Casting two far pointers to long integer and saving the difference will result in a wrong
subtraction

IAR Reference: EWRL78-774

Details

Calculating a memory area size by casting two far pointers to long integer and saving the
difference will result in a subtraction of the index part of the pointers, i.e. the lower 16 bits,
instead of the expected 32-bit subtraction.

Example

u_32 GetMemAreaSize(u_32 const __far *pMemAreaStart, u_32 const __far *pMemAreaEnd)
{
 u_32 MemAreaSize = 0;
 MemAreaSize = (u_32) ((u_32)pMemAreaEnd - (u_32)pMemAreaStart);
 return MemAreaSize;
}

GetMemAreaSize returns incorrect result 0xFFFFFFFE when called with 0x10002 & 0x30000.
Correct value is 0x1FFFE.

Workaround

u_32 GetMemAreaSize(u_32 const __far *pMemAreaStart, u_32 const __far *pMemAreaEnd){
 u_32 MemAreaSize = 0;
 MemAreaSize = (u_32)((u_32 const __huge *)pMemAreaEnd - (u_32 const __huge *)pMemAreaStart);
 return MemAreaSize;
}

No. C37 Internal error will be thrown in case optimization "Function inlining" is activated

IAR Reference: EWRL78-788

Details

When using the function inlining optimization with far data model, accessing the first struct
member via a pointer to said struct might cause an internal error.

Workaround

None

No. C38 Incorrect code will be generated if Compiler optimization “Common subexpression
elimination” is active

IAR Reference: EWRL78-779

Details

Subtraction of char values can fail if there are two or more subtractions following each other
where the minuends has the same value.

Workaround

Disable Compiler optimization “Common subexpression elimination”.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 50

No. C39 C++ Compiler can generate incorrect code for comparisons of floating-point numbers

IAR Reference: EWRL78-773

Details

The C++ compiler can generate incorrect code for comparisons of floating-point numbers, on all
optimization levels. If at least one of the numbers is NaN, the result of the comparison is
sometimes reversed.

Workaround

None.

No. C40 Byte order of the offset in the opcode for MOVW offset[BC/B/C],AX is swapped.

IAR Reference: EWRL78-827

Details

The byte order of the offset in the opcode for MOVW offset[BC/B/C],AX is swapped. This
only affects assembler code and C inline assembler, as the C/C++ compiler does not
generate this instruction. Other instructions that use this address mode work correctly.

Example:

__asm("movw 0xdf22[BC],AX");

The above listed MOVW inline instruction will generate a wrong
OP code: 78 22DF  correct OP code shall be 78 DF22

Workaround

Manually swap byte order for the offset to BC/B/C for the instruction MOVW offset[BC/B/C],
AX:

__asm("movw 0xdf22[BC],AX");  __asm("movw 0x22df[BC],AX");

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 51

No. C41 long long operations which are using the __Mul64 function are not reentrant

IAR Reference: EWRL78-650, EWRL78-647, EWRL78-648, EWRL78-646, EWRL78-641,
EWRL78-638

Details

Operations on long long variables might access the IAR __Mul64 library function which is using
the RL78 MACH instruction. By executing the MACH instruction, the result will be stored into the
MACR register. Since the __Mul64 function doesn’t backup/restore the contents of MACR
register that function is not reentrant and shall not be used inside of ISRs.

Workaround

Disable interrupts during the operation of long long variables were __Mul64 is used or avoid
using long long operations inside of ISRs.

No. C42 Faulty code for switches if the code for the switch and its associated cases span
across a 64k border

IAR Reference: EWRL78-831

Details

A program built with far code model, or using __far_func functions, can generate
faulty code for switches if the code for the switch and its associated cases span
across a 64k border. This only happens for one specific switch pattern. To check
if the code might have this bug, check the compiler list files and the linker map
file for labels containing the string VSWITCH.

Workaround

Change the placement of section .textf in the linker file from ROM_huge to
ROM_far.

No. C43 Constants located outside of the near area (flash mirror) cannot be used as parameter for
printf function

IAR Reference: EWRL78-800

Details

The printf function cannot handle a pointer which points to a memory area outside of the near
area (flash mirror).

Example:

#pragma location=0x10000
__root __far const my_const[]=”hello”;

int main(void){
 printf(my_const);
}

Workaround
Copy the data from the constant into a RAM buffer and pass that buffer to the printf function.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 52

No. C44 Copying several bits (1-bit bitfields) in sequence to the same destination byte
can generate faulty code on optimization level medium or higher.

IAR Reference: EWRL78-883

Details

Copying several bits (1-bit bitfields) in sequence to the same destination byte
can generate faulty code on optimization level medium or higher.

Example:

void copy_info(tester_nvm_t * p_xxx, const yyy_t * p_yyy) {
 p_xxx->bbb = p_yyy->bbb; /* should write 0x55, this works */
 p_xxx->ccc = p_yyy->ccc; /* should write 0xAA, this works */
 p_xxx->bit1 = p_yyy->bit1; /* should write 0x01, this works */
 p_xxx->bit2 = p_yyy->bit2; /* should write 0x00, !!!!BUG!!!!! */
}

Workaround
Use optimization level lower than medium for the affected code.

No. C45 The tools crash when try to enter the debugger with E1 or E20.

IAR Reference: EWRL78-903

Details

E1 and E20 emulators cannot update firmware due to missing files in the
installation. This leads to a crash in the debug driver.

Workaround

Install a new instance of EWRL78 V4.21.1 and copy the following files to EWRL78 V4.21.3:

Files from EWRL78 V4.21.1
<IAR_INSTALL_FOLDER>\rl78\config\renesas\execs\BfwE20rl78_V152.s
<IAR_INSTALL_FOLDER>\rl78\config\renesas\execs\BfwE20mini2_V131.s

Copy to the following folder in EWRL78 V4.21.3
<IAR_INSTALL_FOLDER>\rl78\config\renesas\execs

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 53

No. C46 Accessing the SFR area (0xFFF00) via near_pointer+index throws an error in case of
Compiler optimization “Medium” and higher.

IAR Reference: EWRL78-991

Details

Initializing a near pointer with a constant value can generate illegal instructions on medium or
high optimization levels. It mainly occurs with array and pointer indexing with a variable as
index, i.e. ptr[index] or *(ptr+index).

Sample:

volatile char i = 3;
volatile char *firstIOAddress = (char *)0xFF00u;

/* error by reading access + index */
retVal = *(firstIOAddress+i);
retVal = firstIOAddress[i] ;

Following Compiler error will be thrown:

Workaround

Lower optimization level or make the pointer variable volatile or initialize the pointer in another
file.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 54

J) Description of Operating Precautions for Linker ILINKRL78 and ELF-Tools

No. D1 Runtime Model Conflict using far Runtime-Library-Calls

IAR Reference EW25570

Details
In case of using far runtime-library-calls, the following linker error occurs as a matching runtime
library variant is missing:

Error[Li009]: runtime model conflict: Module
__dbg_xxexit.o(dbgrl78fnf23d.a) specifies that '__far_rt_calls' must be
'false', but module <xxxxx.o> has the value 'true'

Using far runtime library calls is only necessary, if the runtime library itself shall be executed in
RAM. The feature can be enabled in the GUI or by compiler command line option
"--generate_far_runtime_library_calls" :

Workaround
Use a customer specific runtime library build with option ‘Using far runtime library calls ‘enabled.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 55

No. D2 Area in ROM marked as read-write-data in MAP File

IAR Reference EW25758

Details
Although located in ROM memory-areas reserved for debugging are included as "read-write"
memory in the linker map file module summary.
In the following sample the block OCD_ROM_AREA is listed as ‘rw data’ in the line ‘Linker
created’:

*** MODULE SUMMARY

 Module ro code ro data rw data ro data rw data
 (abs) (abs)
 ------ ------- ------- ------- ------- -------
C:\...\QB-R5F10BMG-TB\startupsampleqb-r5f10bmg-tb\Debug\Obj: [1]
 globals.o 8
 interrupt.o 24 6
 low_level_initialization.o 137 14 41
 main.o 119 1

 Total: 280 8 20 42

command line: [2]

 Total:

dbgrl78nnf23nd.a: [3]
 __dbg_break.o 3
 __dbg_xxexit.o 15

 Total: 18

dlrl78nnf23n.a: [4]
 cexit.o 5
 cstartup.o 56
 data_init.o 66
 exit.o 3
 huge_zero_init.o 107

 Total: 237

 Linker created 24 640

 Grand Total: 535 24 648 20 42

Workaround
None. Will be fixed in next update

No. D3 Routines for HW-Multiplier/Division Unit don’t support far runtime library calls

IAR Reference EW25784

Details
The assembler routines for the Hardware Multiplier/Division Unit don’t support far runtime
library calls and therefore cause a linker error:

Error[Lp002]: relocation failed: value out of range or illegal: ...
with
>place at address mem:0x20000 { ro section .text object LibReplacement.o };

Workaround
None. Will be fixed in next update

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 56

No. D4 Internal error will be thrown if the section to be copied by “initialize manually” or
“initialize by copy” feature is not placed

IAR Reference EW25983

Details
By using the linker copy feature initialize manually or initialize by copy, a linker internal error will
be generated if the section to be copied is not located in memory.

Error[Lc036]: no block or place matches the pattern "rw code section RAMSECTION in main.o
symbols: [_ram_func]"
Tool Internal Error:
Internal Error: [CoreUtil/General]: Access violation (0xc0000005) at 00441C1C (reading
from address 0x4) Internal Error:
[CoreUtil/General]: Access violation (0xc0000005) at 00441C1C (reading from address 0x4)

Workaround
Define all the sections which shall be copied via “initialize manually” or “initialize by copy”.

No. D5 The symbol _NEAR_CONST_LOCATION_SIZE will be wrong calculated if Mirror ROM 1 is

selected

Now listed as IDE bug. See No. A6

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 57

No. D6 Constant Data with Memory Attribute ‘near’ are treated as ‘readwrite’ Data in the Map File

IAR Reference: EWRL78-527

Details

Constants defined with the __near memory attribute are included as "read-write" memory in the
linker map file module summary.

Example:

__root const char my_const[4] = {0x11, 0x22, 0x33, 0x44};

For data model near the linker map file shows the following results:

 157 bytes of readonly code memory
 4 bytes of readonly data memory
 132 bytes of readwrite data memory

However, the above 4 byte array is a constant and therefore shall be added to the readonly
memory instead of readwrite memory. Below you can see the correct results:

 161 bytes of readonly code memory
 4 bytes of readonly data memory
 128 bytes of readwrite data memory

Workaround
None. Will be fixed in next update.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 58

No. D7 The linker does not issue a warning if more than one interrupt function uses the same
interrupt vector.

IAR Reference: EWRL78-566

Details

Using of the same interrupt vector for two or more interrupt functions will not lead to a linker
warning or error.

Example:

########
File1.c
########

static __interrupt void clock_monitor_interrupt(void);

#pragma vector = INTCLM_vect
static __interrupt void clock_monitor_interrupt(void)
{
 __no_operation();
}

########
File2.c
########

static __interrupt void other_interrupt(void);

#pragma vector = INTCLM_vect
static __interrupt void other_interrupt(void)
{
 __no_operation();
}

Workaround
None. Will be fixed in next update.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 59

No. D8 Switch/case statement over 64KB page

IAR Reference: EWRL78-687

Details

A function using switches can fail if

- the switch is big enough to use a table and
- the switch cases are placed by the linker so that some of them end up in different 64k

pages

Workaround
Use pragma location to place the function in its own section and add that section to the
ROMFAR block in the linker file.

#pragma location=".my64kp"
void test()
{

}

"ROMFAR":place in ROM_far { block INIT_ARRAY,
 block INIT_ARRAY_TLS,
 R_TEXTF_UNIT64KP,
 ro section .textf_unit64kp,
 ro section .constf,
 ro section .switchf,
 ro section .my64kp,
 ro };

No. D9 __sfb() returns wrong address for section .text

IAR Reference: EWRL78-753

Details

Using __sfb() to read the start of section .text in C/C++ can result in a wrong address being
returned.

Example:
Start address of .text section is 0x300A.

Wrong result according to this bug:
__sfb(“.text”)  0xF300A

Correct:
__sfb(“.text”)  0x300A

Workaround
Mask with 0xFFFF to get a correct result for .text.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 60

No. D10 End address of SADDR region is wrong

IAR Reference: -

Details

In all linker configuration file templates (*.icf) of the RL78/G10 series (R5F10Y14, R5F10Y16,
R5F10Y17, R5F10Y44, R5F10Y46, R5F10Y47) the end address of the SDDR area is wrong. It
must be 0xFFEDF instead of 0xFFEF7:

Workaround
Change the end address manually in the linker file.

Example for device R5F10Y14:

define region SADDR = mem:[from 0xFFE60 to 0xFFEF7];

change to

define region SADDR = mem:[from 0xFFE60 to 0xFFEDF];

No. D11 Linker can terminate with an internal error if other (relevant) linking errors are present

IAR Reference: EWRL78-784

Details

When linking object files generated with a compiler using the --mfc and
--discard_unused_publics options, the linker can terminate with an internal error if other
(relevant) linking errors are present at the same time

Workaround
None

No. D12 Internal error will be thrown in during linking object files generated by the Renesas

compiler

IAR Reference: EWRL78-784, EWRL78-801

Details

When linking object files generated by the Renesas compiler (e.g. FSL, FDL and EEL), that
contains symbols in meta sections (like the section symbol for a .rela relocation section), the
linker might display non deterministic behavior for repeated builds. It can either successfully link
the project, generate warnings (or errors), or terminate with an internal error.

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 61

No. D13 Error will be thrown by using the ielftool and filler bytes

IAR Reference: EWRL78-811

Details

When generating filler bytes in applications where the segment ends on address X and the fill
range ends on address X+1, ielftool fails to generate fill for address X+1.

If the byte on address X+1 is accessed by:
a) the checksum generator, this will trigger an error (uninitialized content).
b) the application itself, this will result in a read of uninitialized memory, the byte value is
undefined.

Workaround
A workaround for this problem is to instead fill to address X (the last byte of the segment) or X+2
(or possibly more than 2, if X+1 has to be filled).

No. D14 EWRL78 ielftool --fill option doesn't fill the first byte of unused area if the END address

defined for --fill points

IAR Reference: EWRL78-1013

Details

When generating filler bytes in applications where the segment ends on address X and the fill
range ends on address X+1, ielftool fails to generate fill for address X+1. If the byte on address
X+1 is accessed by:

a) the checksum generator, which will trigger an error (uninitialized content).
b) the application itself, which will result in a read of uninitialized memory, the byte value is
undefined.

Workaround

A workaround for this problem is to instead fill to address X (the last byte of the segment) or X+2
(or possibly more than 2, if X+1 actually has to be filled).

Another workaround is to use ielftool v10.11.1 or newer.

No. D15 Hardware multiplication replacement routines for 64-bit cannot be placed above the

address 0xFFFF

IAR Reference: EWRL78-1055

Details

The hardware multiplication replacement routines for 64-bit integers must be placed in the
address range 0x0'0000-0x0'FFFF to avoid relocation errors while linking.

Workaround

Avoid using the hardware multiplier 64-bit replacement routines or make sure to place them in
the first 64k code area.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 62

No. D16 Initializing data can fail if the block to copy is too big to fit inside the first available block
in ROM

IAR Reference: EWRL78-1056

Details

Using the initialize method copy to initialize data can fail if the block to copy is too big to fit
inside the first available block in ROM, and the linker is forced to split it into two or more source
parts while still maintaining a single destination part.

Example for “block in ROM” marked in yellow:

define region ROM_far = mem:[from 0x000D8 to 0x03D8] | mem:[from 0x10000 to 0x103F0] ;

Workaround

Either make sure there is enough space in the first block used for the init data, or make sure to
shrink the usable space in the first block by either filling it with stuff or shrinking the size of the
block.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 63

K) Description of Operating Precautions for Debugger C-SPY

No. E1 E1 C-SPY Driver: Debug Session closed after Error 'Flash macro service ROM accessed

or stepped in'

IAR Reference EW25668

Details

The debug session is closed after error 'Flash macro service ROM accessed or stepped in'
occurs. The error occurs, if a breakpoint is defined at a jump instruction while the Flash
sequencer is active due to usage of a Renesas Flash Libraries. As the sequencer works
asynchrony to program execution, the sequencer status is unknown to the user.
Due to the breakpoint C-SPY will use a step command to proceed even if the user command is
"Go".

Workaround
Don’t place a breakpoint on jump instructions while the Flash sequencer is active.

No. E2 The C-SPY system macro __setLogBreak() does not work for emulators

IAR Reference EW25840

Details

The C-SPY system macro __setLogBreak() does not work for emulators like E1, IECUBE etc.
It can only be used via the Simulator.

Workaround
None.

No. E3 IECUBE C-SPY Driver: Wrong average timer results

IAR Reference EW25913

Details

In some cases it might happen that the timer average result of a conditional measurement is
wrong.

Example:

Timer 1: Pass count: 369. Average pass time: 5 msec. (total cycles: 239540413, average
cycles: 649161, min cycles: 12288621, max cycles: 12288686, rate: 8.33333 nsec/cycle).

Workaround
None. Please ignore the average result and use the min and max values for the investigation.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 64

No. E4 E1 C-SPY Driver: Step-in Step over doesn't work for switch case construct with more than
99 cases

IAR Reference EW25950

Details
Temporary breakpoints are used for example in case of a single-step at C level. If you exceed
the number of available temporary breakpoints that the OCD driver has allocated space for, an
error is generated.

Workaround
Step at assembler level instead of at C level.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 65

No. E5 E1 C-SPY Driver: Specifying the serial number for the E1/E20 emulator sometime causes
it not to be found.

IAR Reference EWRL78-520

Details
The E1 serial number defined by the user will sometimes not be found whereas it is the correct
one.

Example:

The debugger will throw the following warning and the debug session will be terminated.

Workaround
In case there is only one E1 required you can use the automated detection of the E1 instead of
entering the serial number. Please uncheck the “Serial No” checkbox in that case.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 66

No. E6 Wrong sampled values might be shown in the Data Sample/Sampled Graphs window in
case of sampling a variable with a size of 2 bytes

IAR Reference EWRL78-533

Details
The sampling of two byte variables might lead to wrong values in the Data Sample or Sampled
Graphs window. The probability to get a wrong value increases if the write frequency to the two
byte variable is very high (e.g. toggle of the variable in a loop) and the sample period of the
debugger very low (e.g. 10ms).

Workaround
None

No. E7 E1 C-SPY Driver: Download of an additional image might destroy a part of the original

application.

IAR Reference EWRL78-513

Details

During the download procedure of an image the debugger performs the following steps:

1) Depending on the image size and location the flash will be erased by 2KB units
2) Image will be written to the flash memory

If the additional image to be downloaded is located directly below of the application it might
happens that a part of the application will be destroyed.

Example:

Bootloader: 0x00000 - 0x0DBFF
Application: 0x0DC00 - 0x0FBFF

The above application is the main software which will be downloaded first and the bootloader will
be downloaded afterwards as an image.

Because of the fact that the flash erase unit of the debugger is 2KB the image download will also
erase the address 0xD800 to 0xDFFF. That means the first programmed application part
(0x0DC00 to 0xDFFF) will be erased during the bootloader image download.

Workaround
Change the order of the download process:

1) Download the image with lower address range first (e.g. 0x00000 - 0x0DBFF)
2) Download the image with higher address range (e.g. 0x0DC00 - 0x0FBFF)

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 67

No. E8 Data sampling time not constant

IAR Reference EWRL78-671

Details
The data sampling time can be configured for each variable separately with a minimum sampling
of 10ms. However, because of the fact that the MS Windows is not a real-time OS the real
sampling time depends on the current load of the PC and MS Windows. Therefore the data
sampling time might not be constant.

Workaround
None

No. E9 Min. update interval value for Live Watch and Memory Window is wrong

IAR Reference EWRL78-671

Details
Currently the min. update interval value for the Live Watch and Memory Window can be set to
1ms. However, the min. supported update interval is 10ms.

Workaround
Define an update interval which is not smaller than 10ms.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 68

No. E10 Binary image not showing symbol info in “Disassembly” window

IAR Reference EWRL78-672

Details
During the build process of an application it is possible to link a pure binary file via the linker
option –image_input. The content of the binary file could be code or constant data. However, in
the debug session the “Disassembly” window always represents that content as a constant even
if an additional debug file with code is loaded to the same area.

Workaround
None

No. E11 Simulator interrupts can go wrong if code is above 64KB

IAR Reference EWRL78-756

Details
Interrupts in the simulator can go wrong if the interrupt occurs when the current PC is on an
address >= 64k.

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 69

No. E12 Simulator interrupts have wrong priority levels in case of shared vector

IAR Reference EWRL78-764

Details
If there are several interrupts sharing a vector, the interrupt priority levels for the simulator will be
wrong for all interrupts following.

Workaround
None

No. E13 E1/E2 C-SPY Driver: OCD Trace automatically disabled in case Step-in/Step-over is used.

IAR Reference EWRL78-771

Details
OCD Trace will be automatically disabled in case the user performs a Step-in or Step-over.

Workaround
None

No. E14 EWRL78 hanged-up while power debugging

IAR Reference EWRL78-786

Details
Using power debugging in C-SPY, the IDE sometimes hangs during single-stepping.

Workaround
None

No. E15 In some situations, the debugger crashes when using an OCD emulator.

IAR Reference EWRL78-778

Details
In some situations, the debugger crashes when using an OCD emulator.

Workaround
None

No. E16 Debugging via hot-plugin doesn’t work

IAR Reference EWRL78-862

Details
User is able to connect to the device via hot-plugin but features like Run/Break/Stop are not
available.

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 70

No. E17 Simulator result of MACH instruction is wrong

IAR Reference EWRL78-941

Details
Operation of the signed sum-of-products instruction (MACH) might be wrong in case of using the
simulator for debugging.

Workaround
None

No. E18 Loading of extra images fails if there is data in the EEPROM memory in the extra image.

IAR Reference EWRL78-1078

Details
Loading of extra images fails if there is data in the EEPROM memory in the extra image.

The problem lies in the memory cache and that the EEPROM memory is set to read only. After
the main image is loaded, the cache is turned on and after that no writing of read only areas
takes place.

Workaround
Change the 'Type' from 0x0000A to 0x00002 in the DDF file 'Memory map information' for the
EEPROM area.

Example of DDF file content:

Map2 = 0xF1000, 0xF2FFF, 0x0000A, 0x1

Change to:

Map2 = 0xF1000, 0xF2FFF, 0x00002, 0x1

No. E19 Several registers are missing in the Register view. E.g. the register “ADCSR”

IAR Reference EWRL78-1112

Details
If several sfr’s share the same address, only one of them is used in the group descriptions used
by the register window.

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 71

No. E20 FAA breakpoints cannot be removed after setting

IAR Reference EWRL78-1103

Details
The maximum number of breakpoints that can be set in FAA code is four. If more than four
breakpoints are set, they cannot be removed again.

Workaround
None

No. E21 The execution speed decreases by approximately half when activate FAA debugging

IAR Reference EWRL78-1099

Details
The execution speed decreases by approximately half when you activate FAA debugging,
because the SFR memory is read during execution.

Workaround
None

No. E22 The C-SPY system macro __setCodeBreak does not work with the emulator.

IAR Reference EWRL78-1090

Details
The C-SPY system macro __setCodeBreak does not work with the emulator.

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 72

L) Description of Operating Precautions for Runtime Library

No. F1 Runtime library are placed in the wrong section if generate far runtime library calls is

chosen.

IAR Reference EWRL78-497

Details

When building a project with the “far runtime library calls” feature and usage of integer arithmetic
libraries the linker might throw a range error as shown within the following sample:

main.c
======
long long l = 2;
int main(void)
{
 if (l < 4)
 return 0;
 else
 return 1;
}

Linker output
=============

 IAR ELF Linker V2.21.1.1833 for RL78
 Copyright 2011-2016 IAR Systems AB.
Error[Lp002]: relocation failed: value out of range or illegal: 0x10044
 Kind : R_RL78_DIR16U[0x4]
 Location: 0x10077
 "__CmpGes64" + 0x1
 Module: longlong.o(dlrl78fff23nf.a)
 Section: 6 (.ftext)
 Offset: 0x608
 Target : 0x10044
 "__Cmp64s"
 Module: longlong.o(dlrl78fff23nf.a)
 Section: 6 (.ftext)
 Offset: 0x5be

Workaround
None

No. F2 If the option “Use far runtime library calls” is used, assembler support routines from the

run time library are placed in an incorrect section called “.ftext”

IAR Reference EWRL78-496

Details

If the option “Use far runtime library calls” is used, assembler support routines from the run time
library are placed in an incorrect section called “.ftext”

Workaround
None

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 73

No. F3 The section name .textf_unit64kp is misspelled in the linker files.

IAR Reference EWRL78-511

Details

The section name .textf_unit64kp is misspelled in the standard icf linker file. It is called
".text_unit64kp" instead of ".textf_unit64kp". Therefore the following warning might be thrown by
the linker:

ro section .text_unit64kp,
 ^
"C:\Program Files (x86)\IAR Systems\Embedded Workbench 7.4\rl78\config\lnkr5f104fj.icf",115
Warning[Lc059]: the section name in this pattern caused it to not match any sections.

Workaround
Please rename the section ".text_unit64kp” to ".textf_unit64kp".

No. F5 Overlapping of two registers

IAR Reference none

Details

Depending on the used peripherals of the device there are sometimes two register which are
located at the same address. If both register are referenced by the application the linker will
throw an overlapping error.

Example:

Referenced register are LMD0 and LMD1. The linker will throw the following error:

Error[e24]: Segment NEAR_A (seg part no 7, symbol "_A_LMD1" in module "sci_rl78", address
[f06c8-f06c8]) overlaps segment NEAR_A (seg part no 23, symbol "_A_LMD0" in module
"LIN_Drv_RL78", address [f06c8-f06c8]) .

The root cause for this problem is that both register are defined in the io header file (e.g.
ior5f10pgg_ext.h) for the same address but in different unions:
…..
__near __no_bit_access __no_init volatile union { unsigned char LMD0; __BITS8 LMD0_bit; } @ 0xF06C8;
__near __no_bit_access __no_init volatile union { unsigned char LMD1; __BITS8 LMD1_bit; } @ 0xF06C8;
…..

Workaround
Add both register into one unit like shown below:

__near __no_bit_access __no_init volatile union {
 unsigned char LMD0; __BITS8 LMD0_bit;
 unsigned char LMD1; __BITS8 LMD1_bit;
 } @ 0xF06C8;

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 74

No. F6 Linker might fail with the internal error Distributor::TraverseRanges

IAR Reference: EWRL78-665

Details

In rare cases, the linker might fail with the following internal error:

Internal Error: [CoreUtil/General]: Distributor::TraverseRanges - range overshoot: 0x155a3 >
0x10000

Workaround
None

No. F7 Libraries generated with IAR V2.xx version cannot be linked on newer IAR versions if the

library includes a vector table.

IAR Reference: EWRL78-746

Details

In version V3.10 the handling of the interrupt vector table was changed so it could handle a
movable interrupt vector table. That broke backwards compatibility with version V2.xx since the
compiler now utilizes a vector table instead of placing the vectors at fixed addresses.

The result is that the vector table area is filled with the vector table and trying to link an old file
with a vector entry at a fixed address will generate a placement error as the vector table area is
already filled.

Workaround
Re-build the library on the version V3.xx or newer.

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 75

M) Valid Specification

Item Date published Document No. Document Title

1 November 2022 UIDERL78_I-7 IAR Embedded Workbench
IDE Project Management and Building Guide

2 February 2023 DRL78-I-6a IAR Embedded Workbench
C/C++ Development Guide Compiling and Linking for RL78

3 December 2018 ARL78_I-2 IAR Embedded Workbench
Assembler User Guide for RL78

4 November 2022 UCSRL78_I-5 IAR Embedded Workbench
C-SPY Debugging Guide for RL78

5 April 2016 MUBROFELFRL78_I-
2

IAR Embedded Workbench
Migrating from UBROF to ELF/DWARF

6 January 2011 EWMISRAC1998-4 IAR Embedded Workbench
MISRA C 1998 Reference Guide

7 January 2011 EWMISRAC:2004-3 IAR Embedded Workbench
MISRA C 2004 Reference Guide

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 76

N) Revision

Edition Date published Document No. Comment

1 18-06-2015 R20UT3407ED0100 Initial release.

2 29-06-2015 R20UT3407ED0101 Item C2 added.

3 15-07-2015 R20UT3407ED0102 Compiler and Assembler update to V2.10.2, items
C3 and D1 added.

4 21-08-2015 R20UT3407ED0103 Update V2.10.3
Item C4 added.

5 15-09-2015 R20UT3407ED0104 Item E1 added.

6 20-10-2015 R20UT3407ED0105 Items C5 and D2 added.

7 22-10-2015 R20UT3407ED0106 Item C6 added

8 16-11-2015 R20UT3407ED0107 Update EWRL78 V2.10.4
Item D3 added

9 21-12-2015 R20UT3407ED0108
Update EWRL78 V2.20.1
Item C6 sample updated
Item E2 added.

10 01-02-2016 R20UT3407ED0109 Item E3 added.

11 16-03-2016 R20UT3407ED0110 Item C7 added

12 27.04.2016 R20UT3407ED0111

Item A1 added
Item C8 added
Item C9 added
Item D4 added

13 08.07.2016 R20UT3407ED0112

Update EWRL78 V2.21.1/ V2.21.2
Item E4 added
Item F1 added
Item F2 added

14 14.07.2016 R20UT3407ED0113 Item C10 added

15 22.08.2016 R20UT3407ED0114 Item A2 added, update of valid specification

16 11.10.2016 R20UT3407ED0115
Item E5 added
Item F3 added
Item F5 added

17 23.11.2016 R20UT3407ED0116 Item E6 added

18 21.12.2016 R20UT3407ED0117 Item D5 added
Item A3 added

19 06.02.2017 R20UT3407ED0118 Items A4, C11, and D6 added

20 13.03.2017 R20UT3407ED0119 Item A5 added
Item D7 added

21 21.04.2017 R20UT3407ED0120
Update EWRL78 V2.21.5
Item C12 added
Item E7 added

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 77

Edition Date published Document No. Comment

22 09.06.2017 R20UT3407ED0121

Item C13 added
Item C14 added
Item C15 added
Item C16 added
Item C17 added
Item C18 added
Item C19 added
Item C20 added
Item C21 added
Item C22 added
Item C23 added

23 08.09.2017 R20UT3407ED0122

Item C24 added
Item C25 added
Item C26 added
Item C27 added
Item C28 added

24 02.10.2017 R20UT3407ED0123

Update EWRL78 V3.10.1
Item E8 added
Item E9 added
Item F6 added
Specification Update (Chapter M))

25 08.11.2017 R20UT3407ED0124 Item A7 added
Item A8 added

26 21.12.2017 R20UT3407ED0125 Item E10 added
Item D8 added

27 21.03.2018 R20UT3407ED0126 Item C29 added

28 27.07.2018 R20UT3407ED0127 Item C30 added

29 13.11.2018 R20UT3407ED0128

Item C31 added
Item C32 added

Update C29: Bug with the ID EWRL78-675 is same
as EWRL78-705

30 30.01.2019 R20UT3407ED0129 Update EWRL78 V4.10.1

31 06.05.2019 R20UT3407ED0130 Item C33 added
Item F7 added

32 13.08.2019 R20UT3407ED0131

Item A9 added
Item D9 added
Item D10 added
Item E11 added

33 09.12.2019 R20UT3407ED0132

Update EWRL78 V4.20.1
Item C34 added
Item C35 added
Item E12 added
Item E13 added
Specification Update (Chapter M)

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 78

Edition Date published Document No. Comment

34 20.02.2020 R20UT3407ED0133

Update EWRL78 V4.20.2
Item C36 added
Item C37 added
Item C38 added
Item C39 added
Item E14 added
Item E15 added
Item D11 added

35 04.06.2020 R20UT3407ED0134

Item A10 added
Item A11 added
Item D8 updated:

It showed that this error was partially fixed in
v4.10. One kind of switch that requires tables
was not fixed.

Item D12 added

36 19.03.2021 R20UT3407ED0135
Item C40 added
Item C41 added
Item D13 added

37 14.10.2021 R20UT3407ED0136

Update EWRL78 V4.21.1
Item C26 updated (bug fixed in version V4.20.x)
Item C42 added
Item C43 added
Item E16 added

38 28.04.2022 R20UT3407ED0137

Update EWRL78 V4.21.2 / V4.21.3
Item C44 added
Item C45 added

39 16.11.2022 R20UT3407ED0138
Update EWRL78 V4.21.4
Item C46 added
Item E17 added

40 28.03.2023 R20UT3407ED0139

Update EWRL78 V5.10.1
Item D14 added
Item D15 added
Item D16 added

41 16.10.2023 R20UT3407ED0140

Update EWRL78 V5.10.3
Item A4 corrected for V5.10.1
Item E18 added

42 19.02.2024 R20UT3407ED0141

Update EWRL78 V5.10.4
Item E19 added
Item E20 added
Item E21 added
Item E22 added
Item A12 added

Operating Precautions for EWRL78

 Customer Notification R20UT3407ED0141 79

Before using this material, please visit our website to confirm using the most current document available:
Current version of this document

In case of any technical question related to the Embedded Workbench for RL78, please feel free to contact
the Renesas Software-Tool-Support Team.

http://www.renesas.eu/updates?oc=Y-IAR-EWRL78-FULL-MOBILE_V2XX
mailto:sw_tool_support-eu@lm.renesas.com?subject=Question%20about%20EWRL78%20Operating%20Precautions%20(R2UT3407EDxxxx)

R20UT3407ED0141
February 2024

	Customer Notification
	EWRL78 V2.xx/V3.xx/V4.xx/V5.xx
	Operating Precautions
	Table of Contents
	A) Table of Operating Precautions for the IDE EWRL78
	B) Table of Operating Precautions for the Assembler ARL78
	C) Table of Operating Precautions for C/C++ Compiler ICCRL78
	D) Table of Operating Precautions for the Linker ILINKRL78 and ELF-Tools
	E) Table of Operating Precautions for Debugger C-SPY
	F) Table of Operating Precautions for Runtime Library, Linker Files and Include Files
	G) Description of Operating Precautions for the IDE EWRL78
	No. A1
	No. A2
	No. A3
	No. A4
	No. A5
	No. A6
	No. A7
	No. A8
	No. A9
	No. A10
	No. A11
	No. A12

	H) Description of Operating Precautions for the Assembler ARL78
	No. B1
	No. B2

	I) Description of Operating Precautions for the C/C++ Compiler ICCRL78
	No. C1
	No. C2
	No. C3
	No. C4
	No. C5
	No. C6
	No. C7
	No. C8
	No. C9
	No. C10
	No. C11
	No. C12
	No. C13
	No. C14
	No. C15
	No. C16
	No. C17
	No. C18
	No. C19
	No. C20
	No. C21
	No. C22
	No. C23
	No. C24
	No. C25
	No. C26
	No. C27
	No. C28
	No. C29
	No. C30
	No. C31
	No. C32
	No. C33
	No. C34
	No. C35
	No. C36
	No. C37
	No. C38
	No. C39
	No. C40
	No. C41
	No. C42
	No. C43
	No. C44
	No. C45
	No. C46

	J) Description of Operating Precautions for Linker ILINKRL78 and ELF-Tools
	No. D1
	No. D2
	No. D3
	No. D4
	No. D5
	No. D6
	No. D7
	No. D8
	No. D9
	No. D10
	No. D11
	No. D12
	No. D13
	No. D14
	No. D15
	No. D16

	K) Description of Operating Precautions for Debugger C-SPY
	No. E1
	No. E2
	No. E3
	No. E4
	No. E5
	No. E6
	No. E7
	No. E8
	No. E9
	No. E10
	No. E11
	No. E12
	No. E13
	No. E14
	No. E15
	No. E16
	No. E17
	No. E18
	No. E19
	No. E20
	No. E21
	No. E22

	L) Description of Operating Precautions for Runtime Library
	No. F1
	No. F2
	No. F3
	No. F5
	No. F6
	No. F7

	M) Valid Specification
	N) Revision

