Enabling Multi-peer Support with a White Paper
ID I Standard-Based PCIl Express®
» Multi-ported Switch
Notes By Kwok Kong
Introduction

There are basically three different types of devices in a native PCI Express (PCle®) system; Root
Complexes, PCle switches, and Endpoints. There is only a single Root Complex in a PCle tree. A Root
Complex should be thought of as a single processor sub-system with a single PCle port even though it
consists of one or more CPUs, plus their associated RAM and memory controller, as well as other inter-
connect and/or bridging functions.

PCI Express routes are based on memory address or ID, depending on the transaction type. Thus,
every register and device (or function within a device) must be uniquely identified within the scope of the
PCI Express tree. This requires a process called enumeration.

During system initialization, the Root Complex performs the enumeration process to determine the
various buses that exist and the devices that reside on each bus, as well as the required address space for
the device's registers and memory. The Root Complex allocates bus numbers to all the PCle Buses and
configures the bus numbers to be used by the PCle switches. A PCle switch behaves as if it were multiple
PCI-PCI Bridges (see inset in Figure 1). The Root Complex allocates and configures the Memory and 1/0
address space for each PCle Switch and Endpoint device. A PCle tree topology is shown in Figure 1.

Pereal UP: Upstream port

Bridge Virtual Root Complex

| Fcisus DP: Downstream Port

PCI-PCI PCI-PCI
Bridge Bridge UP

PCle
Switch

PCle
Switch

DP DP

Endpoint

Figure 1 PCle Tree Topology

A multi-peer system is one in which more than one processor sub-system exists in the scope of a PCI
Express tree. For example, a second Root Complex may be added to the system via the Downstream Port
(DP) of a PCle switch, possibly to act as a warm stand-by to the primary Root Complex. However, an issue
arises when the second Root Complex also attempts the enumeration process. Assuming that the link
trains (i.e. using crosslink training), it sends out Configuration Read Messages to discover other PCle
devices on the system. Configuration transactions can only move from Upstream to Downstream. A PCle

1o0f13 January 27, 2006

© 2006 Integrated Device Technology, Inc.

IDT

Notes switch does not forward or respond to Configuration Messages that are received on its Downstream Port
(DP); it ignores and silently drops all the configuration messages. Thus, the second Root Complex is
isolated from the rest of the PCle tree and will not detect any PCle devices in the system. So, simply adding
processors to a Downstream Port of a PCle switch will not provide a multi-peer processing solution.

Supporting multiple processors in a PCI system by using proprietary solutions, such as Non-transparent
Bridging (NTB), has been around for some time. This paper proposes a solution to support multiple proces-
sors in a PCle system using a standards-based PCle switch.

Multi-peer Systems

A multi-peer system topology is shown in Figure 2. There is only a single Root Complex (RC) processor
in the topology. The RC processor is attached to the single Upstream Port (UP) of the PCle switch. The RC
processor is responsible for the system initialization and enumeration process as in any other PCle system.
A 16-port PCle switch is used as an example in this paper, allowing up to 15 End Point (EP) processors to
be connected in this system.

RC
Processor

UP

16-Port PCle Switch

DP DP DP

EP EP EP EP EP
Processor Processor Processor Processor e Processor

Figure 2 Multi-peer PCle System Topology

An EP processor is a processor with one of its PCle interfaces configured as a PCle endpoint. Two
examples of an EP processor are the AMCC PowerPC® 440Spe and the FreeScale MPC8641. An EP
processor may also be an intelligent 1/0 adapter which is able to process /O transactions, such as RAID
controllers for storage. An example of an intelligent I/O is the Intel® IOP333. Figure 3 defines PCle Address
Domains.

2 of 13 January 27, 2006

IDT

Notes

RC System domain

Processor /

UP

16-Port PCle Switch

DP DP DI P
pma—m

Processor
EP EP

Processor Processor Processor
Processor

€~ Local domain

P D
EP

Figure 3 PCle Address Domains

An EP processor may have local PCI or PCle devices on its other port(s). The EP processor is the Root
Complex processor for the local PCI and PCle devices. In a multi-peer system, there are multiple PCle
domains. The system domain is owned by its RC processor and includes the RC processor, the 16-port
PCle Switch, and the PCle endpoints on each of the EP processors in the system domain. The RC
processor is responsible for the allocation of the PCI bus number and address space in the system domain.
The RC processor stops the device discovery process on an EP processor when it detects the endpoint on
the EP processor. The RC processor treats the EP processor as a PCle endpoint device, in particular
during its enumeration process. The class code as reported in the Configuration Register is typically 05H
(Memory controller).

The EP processor is the Root Complex processor for its local PCl and PCle devices; it is responsible for
the allocation of PCI bus numbers and address space in the local domain. The PCle endpoint device that
connects to the system domain is typically an integrated local device in the EP processor. The EP
processor does not detect any device in the system domain during its enumeration process. The PCle
endpoint device on the EP processor isolates the local domain from the system domain and it presents one
endpoint configuration space to the system domain and another endpoint configuration space to the EP
processor in the local domain.

Implementation Issues in Multi-Peer Systems

There are several issues involved in supporting multi-peer communication:
¢ Memory map management

Enumeration and Initialization

Peer-to-peer communication mechanisms

Interrupt and error reporting

Redundancy

Memory Map Management

Address routing is used to transfer data to or from memory, memory mapped I/O, or I/O locations. The
RC processor is responsible for the allocation of memory addresses for the system domain. The EP
processor is responsible for the allocation of memory addresses for its local domain. To avoid any memory
address conflicts, a general implementation uses address translation between the system and local
domain. In the system domain, the RC processor reserves a block of memory address space for all the EP
processors. This reserved block of memory is divided equally, for example, into 16 smaller blocks of

3o0of 13 January 27, 2006

IDT

Notes address ranges. Each smaller block of addresses is reserved for one EP processor that connects to one of
the ports of the 16-port PCle switch. The actual physical memory of each smaller block exists in an EP
processor. An example of the address map is shown in Figure 4. This example assumes that the EP
processors are implemented on processing blades, one slot per PCI Express port, and that 1 MByte of
address space is reserved per slot. A total of 16 MBytes of address space is reserved and the starting
address is assumed to be 0x80000000. Whenever the RC processor detects an EP processor in a partic-
ular slot (or port of the PCle switch) during system initialization, the RC processor assigns the address
space to the EP processor based on what slot number the EP processor is in. The address space allocation
and assignment is fixed based on the slot number and doesn’t change when a EP processor blade is added
or removed from a slot. The starting address, size of the address block that is reserved per slot, and the
number of PCle ports in the system should be adjusted based on system architecture. I/O transactions are
not used for multi-peer communication and hence 1/0O address translation is not required.

The EP processor is responsible for the address map of its local domain; it allocates and assigns
memory address ranges to its local devices. This is independent of the memory map of the system domain.
(Only the address ranges should correlate, although the system range may be larger than the range
required by the EP processor.) An address translation unit is required on the EP processor to translate
address space between the system domain and the local domain. The EP processor supports both inbound
and outbound address translation. Transactions initiated in the system domain and targeted at the EP
processor’s local domain are referred to as inbound transactions. Transactions initiated on the EP
processor’s local domain and targeted at the system domain are referred to as outbound transactions.

An example of the address translation is shown in Figure 5. This example assumes the EP processor is
in slot 2. Two outbound address translation windows are created. One outbound address window is created
to access the system domain address for slot 1. The second outbound address window is created to access
the system domain address for slots 3 to 16. Note that since this EP is in Slot 2, there is no outbound
window to address itself. Whenever the EP processor accesses any local address space that falls within
one of the two outbound address windows, the address translation unit forwards the request to the system
domain. The address is also translated from the local domain address space to the system domain address
space. A single outbound address window may be used instead of creating two outbound address
windows. An outbound address window is created for the entire system domain address that is reserved
from slot 1 to slot 16. The software than runs on the EP processor makes sure that there is no local memory
access to the address range that will be translated to its own slot (slot 2 in this example) in the system
domain address map.

RC Processor Address Map
4 GByte

Slot#16=

0x80F00000

Slot Address
| Reserved |

Slot#2=

0x80100000
Slot#1=

0x80000000

0

Figure 4 System Domain Address Map

4 of 13 January 27, 2006

IDT

Notes -

EP Processor Local Domain Address

4 GByte System Domain Address

Outbound
PCl address Slot#16=
0x80F00000

Outbound
PCl address

Inbound
translated address

Slot#2=
0x80100000

Slot#1=
0x80000000

Figure 5 Address Translation Unit

A single inbound address translation window is set up to allow initiators in the system domain to directly
access the local domain within the address range. The EP processor sets up the inbound and outbound
address translation units (ATU's) to translate addresses between its local domain and the system domain,
as shown in Figure 5. When the EP processor receives a memory request from the system domain, it
receives the packet only if the address in the packet header is within the memory range assigned to the EP
in the system domain. (The ATU may further check if the requested address is within a tighter address
window as configured in the inbound address translation unit.) In this example, the address window is
between 0x80100000 and 0x801FFFFF. If the requested address is within the address window, the request
packet is forwarded from the system domain to the local domain. The address field in the requested packet
is also translated to the inbound local address. The inbound local address may represent a local buffer in
memory that the EP processor will read and respond to, or it may represent a local register that affects the
EP processor directly.

When the EP processor accesses the ATU via its PCle interface, then the Requester ID and Completer
ID in the PCle packet also have to be translated between the local domain and the system domain. If the
processor accesses the address translation unit via a different bus, such as the local CPU bus, then there is
no need to translate the Requester and Completer IDs.

Enumeration and Initialization

During system initialization, the RC processor scans the system domain for PCle devices. The RC
processor assigns unique bus numbers to all the PCle links and the virtual buses within PCle switches. The
process of discovering the PCle tree topology and the devices and functions which reside on this topology
is referred to as the enumeration process. The normal PCle (or PCI) enumeration process reserves bus
numbers and address space for empty slots. There is no change in the normal enumeration process for
multi-peer support. All PCle switches and endpoints within the system domain are detected at the end of
the enumeration process. Remember that all EP processors are detected as PCle endpoints in the system
domain and that devices locally attached to the EPs are not detected in the system domain at all.

After the enumeration process has completed, the RC processor assigns memory address space to
each endpoint device in the system domain. The absolute memory address range (in the system domain)
allocated to an EP processor is based on which slot the EP processor is plugged into, as shown in Figure 4.
This example assumes that an EP processor requests no more than 1 Mbyte of address space in its Base
Address Register (BAR). If an EP processor requires more than 1 MByte of address space, then the
address map has to be adjusted accordingly. The corresponding address space is assigned to an EP by
writing to its Base Address Register (BAR).

5o0f 13 January 27, 2006

IDT

Notes

Pri=1 Addr Range:
Sec =2 0x80100000
Sub =17 O0x80FFFFFF

Pri=2 Addr Range:
Sec =17 0x80F00000
Sub =17 0x80FFFFFF

Pri=2 Addr Range: Pri=2 Addr Range:
Sec =3 0x80100000 Sec=4 0x80200000
Sub =3 0x801FFFFF Sub =4 0x802FFFFF

Slot2 | gys=3 Slot3| Bus=4 Slot 16| Bus =17

EP Processor EP Processor EP Processor

Figure 6 PCle Switch Configuration after Enumeration and Initialization

There are multiple virtual PCI-PCI bridges in a PCle switch. The configuration of the PCI-PCI bridges
after enumeration and initialization is shown in Figure 6. The Primary Bus number (Pri), Secondary Bus
number (Sec), Subordinate Bus number (Sub), and Address Range for a particular slot (or port) are shown
in this example. After the enumeration and initialization process is completed, memory requests can be
forwarded to the targeted EP processor using address routing in the PCle switch.

Each EP processor also runs its own enumeration and initialization process on its local domain. Note
that due to the isolation provided by the endpoint function within the EP processor, the local and system
domain enumeration and initialization processes are independent and may proceed in parallel. The EP
treats the PCle interface to the system domain as a PCle endpoint (i.e. just another local device),
depending on the architecture of the EP processor.

The EP processor relies on the RC processor to detect the existence of other EP processors in the
system domain. The RC processor has a complete topology map of the system domain. It notifies an EP
processor of the existence of other EP processors.

The RC processor is also responsible for hot plug events in the system domain. A bus number and a
memory address range are reserved for each slot in the PCle switch. When an EP processor is plugged
into the system, the pre-assigned bus number is used to access this EP processor. The BAR of the newly
inserted EP processor is configured to the pre-assigned memory address offset. As shown in Figure 6, Bus
number 4 is used, and memory address 0x80200000 is programmed into the BAR of an EP processor
when an EP processor is plugged into slot 3. When the initialization of the EP processor is complete, the
RC processor notifies all other EP processors that a new EP processor has been plugged into slot 3.

Conversely, when the EP processor is unplugged from slot 3, the RC processor notifies all other EP
processors that the EP processor in slot 3 has been removed so that the resources associated with the
removed EP processor can be released and cleaned up. However, the bus number and memory address
are not re-assigned since they are reserved for slot 3.

Peer-to-Peer Communication Mechanisms

An interprocessor communication protocol has to be defined to enable peer-to-peer data transfer. The
protocol has to define the handshake between the peers and the message format. This paper does not
attempt to define the message format. Rather, it discusses methods of passing a block of data from one EP
processor to another.

There are three basic categories of communication mechanisms:

* low volume of data traffic between an EP processor and the RC processor
* low volume of data traffic between the EP processors
* high volume of data traffic between the EP processors (including the RC processor)

6 of 13 January 27, 2006

IDT

For low volume data traffic between an EP processor and an RC processor, scratchpad registers, such
as those implemented by a typical EP processor, may be used. Both the EP processor and the RC
processor may read and write to/from the scratchpad registers. The EP processor usually implements
multiple (for example, 8-16) scratchpad registers. Doorbell registers are used to send interrupts to both the
EP processor and the RC processor. When the RC processor needs to send some data to an EP processor,
the RC processor writes the data to the scratchpad registers. It then writes to the Doorbell register to inter-
rupt the EP processor to indicate that a message is ready to be consumed by the EP processor in the
scratchpad. The same procedure applies when an EP processor sends data to the RC processor.

Notes

For low volume data traffic between an EP processor and another EP processor, both scratchpad and
doorbell registers can be used. A semaphore register with a lock/unlock mechanism is required to control
the usage of the scratchpad registers since they are shared by all the EP processors. Before an EP
processor can use the scratchpad, it has to acquire ownership of the scratchpad using the semaphore
register. Once the semaphore is acquired, it has the ownership of the scratchpad and can start writing to it.
Once the data is consumed, the sender releases the semaphore. An alternative method is for the RC
processor to relay the data between the EP processors.

Advanced queueing is needed for high volume data traffic between the EP processors. A possible
queueing structure is to follow the Intelligent I/O Architecture[1] which offers two paths for data messages:
an inbound queue structure and an outbound queue structure. The inbound queue structure is used to
receive data messages from any EP or RC processor in the system domain. The outbound queue structure
is used to send data messages to the RC processor only. It is assumed that all EP processors implement
the inbound and outbound queue structures and the RC processor does not implement any inbound/
outbound queue structure. When an EP processor sends data messages to another processor, the local EP
processor uses the inbound queue structure of the remote EP processor. When an EP processor sends
data messages to the RC processor, the local EP processor uses its local outbound queue structure. The
queue structure contains a pair of First In First Out (FIFO) Queues; FreeQ and PostQ. A read from the FIFO
queue removes the first entry in the queue and a write to the FIFO queue adds an entry to the end of the
queue. The FreeQ contains free buffer locations into which data messages can be written. The PostQ
contains the locations of data messages that have been written to it (i.e., and posted by the sender).

Hardware-based Queue Structure

If the FIFO queue is implemented in hardware, such as the Intel IOP332/3 1/0 processor, then a single
memory read operation removes the first entry from the queue and a single memory write operation adds
an entry to the queue. An EP processor needs to have just a single pair of inbound FreeQ and PostQ to
receive data from multiple EP processors.

The inbound translated address is configured as shown in Figure 7. The translated address is basically
divided into three different regions: the Queue Structure, some other hardware dependent control struc-
tures, and data buffers. The queue structure contains only a single address location to be accessed per
queue. A memory read removes the first entry from a queue and a memory write moves an entry to the end
of the queue. As an example, when the EP 1 processor needs to send a data message to the EP 2
processor, the EP 1 processor performs a memory read operation from the Inbound FreeQ on EP 2 to get a
free buffer. After the EP1 processor has transferred all the data to the buffer, it performs a memory write
operation to the inbound PostQ on EP 2 to notify it that a data message is ready for processing.

7 of 13 January 27, 2006

IDT

Notes

EP Processor Local Domain address

T

Queue data
buffers

4 GByte

Outbound
FreeQ

Inbound Outbound
translated address Other Control PostQ
Structures

Inbound

FreeQ

Inbound
Queue Structures PostQ

Figure 7 Hardware-based Inbound Translated Address Usage

Software-based Queue Structure

If hardware does not support the FIFO queue structure in the EP processor, the FIFO queue structure
has to be implemented in software. Four addresses of the queue have to be maintained in the queue struc-
ture: Qstart, Qend, Qread, and Qwrite. Qstart points to the beginning of the queue and Qend points to the
end of the queue. Qstart and Qend together specify the maximum number of entries in the queue. Qstart
and Qend are static and do not change after initialization. An entry is removed from the location pointed to
by Qread and an entry is added to the location pointed to by Qwrite. Qread is updated to point to the next
location in the FIFO queue after removing an entry, and Qwrite is updated to point to the next location after
adding an entry. The FIFO queue is empty when Qread is the same as Qwrite. The FIFO queue is full when
Qread is one entry ahead of Qwrite. The operation to remove an entry from a FIFO queue requires multiple
memory read/write operations:

* Read Qread

* Read Qwrite

* If Qread = Qwrite, move on to next step. Otherwise, FIFO is empty and stops here
* Read the location pointed to by Qread

* Adjust Qread to point to the next location.

* Write new value of Qread to FIFO queue structure.

The operation to add an entry to a FIFO queue requires similar operations:
* Read Qread
* Read Qwrite
* If Qread is one entry ahead of Qwrite, FIFO is full and stops here. Otherwise, move to the next step
* Write new entry to the location pointed to by Qwrite
¢ Adjust Qwrite to point to the next location.
* Write new value of Qwrite to FIFO queue structure.

Multiple Read and Write operations are required to add an entry to or remove an entry from a FIFO
queue. Once an EP processor performs the first Read operation on a FIFO queue, no other EP processor
should access the FIFO queue until all the Read and Write operations to add an entry or remove an entry
from a FIFO queue are completed. Otherwise, the FIFO queue is corrupted. In order to guarantee that the
queue add/remove operation does not get interrupted in the middle of an adding or removing operation,
either a semaphore or multiple queues are needed. Assuming there is no semaphore support in the hard-
ware, multiple FIFO queues are proposed here. A single pair of inbound FreeQ and PostQ has to be
reserved per sender (EP or RC processor). In other words, a pair of inbound FreeQ and PostQ is dedicated
to a single sender. For a 16-port (or slot) system, 16 pairs of inbound FreeQ and PostQ are required. 15
pairs of inbound FreeQ and PostQ should be sufficient because an EP processor does not need to use the
inbound Queue structure to send data to itself. In this example,16 pairs of inbound Queue Structures are
used.

8 of 13 January 27, 2006

IDT

The inbound translated address is configured as shown in Figure 8. The translated address is basically
divided into three different regions: the Queue Structure, some other hardware dependent control struc-
tures, and data buffers.

Notes

The queue structure contains queue pointers plus the queue itself to store entries. At initialization time,
queue pointers are configured to be empty. There are 2 queue structures, one for inbound and the other
one for outbound, per EP processor (or per slot) in the system. There are 16 inbound and 16 outbound
Queue Structures.

EP Processor Local Domain address
4 GByte . Queue data
. buffers
Inbound l :
translated address Other Control
Structures

Qwrite

Qread
Queue Structures Qstart

0 a Qend

Figure 8 Software-based Inbound Translated Address Usage

Data Buffer Structure and Date Transfer Protocol

A local inbound queue is used to receive data from a remote EP processor. The inbound queue and
data buffer usage are shown in Figure 9. In this example, the queue data space is divided into 128 equal
size buffers. The buffer size is system dependent but 4 KBytes is reasonable since 4 KBytes is a common
page size. The local EP processor adds the data buffer addresses (pointers) into the FreeQ to make buffer
space available for re-use. The buffer addresses may be added in any order to the FreeQ. When a remote
EP processor needs to send data to this local EP processor, the remote EP processor gets a data buffer by
removing the first entry from the FreeQ of the local EP processor. The data is then transferred to the data
buffer referenced by that entry. Next, the data buffer address is written into the PostQ of the local EP
processor. The local EP processor reads the data buffer address from its PostQ and processes the data.

The local EP processor may poll the PostQ periodically to check if there is any new entry in the PostQ. If
doorbells are supported, the remote EP processor can assert a doorbell after adding an entry to the PostQ
of the local EP processor to notify the local EP processor that a new entry has been added to its PostQ.

Local EP processor
Remote EP Processors

¢ .| Buffer #128 *

#128 Address

. Buffer #4

#4 Address —I Buffer #3
> #2 Address

#3 Address —I Buffer #2
< #1 Address

Buffer #1 I
l Free Q < lPost Q

Remote

Local EP processor
EP Processors

Local EP processor
data buffer space

Figure 9 Inbound Queue and Data Buffer Usage

9 of 13 January 27, 2006

IDT

Notes The data transfer protocol is summarized in Figure 10. In this example, the EP processor in slot 3 (EPP
3) transfers a block of data to the EP processor in slot 2 (EPP 2). EPP 3 first gets a free buffer from the
FreeQ on EPP 2. EPP 3 then writes data into the buffer. After all the data has been written, the buffer
address is written into the PostQ of EPP 2. EPP 2 gets the buffer address from its PostQ. Then it reads and
processes the data in the data buffer. Finally, the buffer is returned to the FreeQ.

Transfer a block of data
EP Processor > EP Processor
in Slot 3 in Slot 2

—Read Byffer Address

Return AddresS_—T[FreeQ

(2]

Write
Post Process Data

\

Return buffer to FreeQ

[FreeQ —

Figure 10 Data Transfer Protocol

Interrupt and Error Reporting

Interrupts in the system domain are handled in the normal PCle way. Because the EP processor is a
native PCle device, a Message Signaled Interrupt (MSI) is used to deliver the interrupt to the RC processor.
A device-dependent method is needed to deliver interrupts to an EP processor. Typically, an EP processor
supports a doorbell register which can be used to interrupt an EP processor.

There are two methods to report errors: error messages or a completion status. Error messages are
routed to the RC processor. A completion status is a field within the completion header that enables the
transaction completer to report errors back to the requester.

An EP processor only makes memory read or write requests to another EP processor. When an error
occurs in any EP processor to EP processor request, an error status message is reported back to the
requester via the completion status, enabling the EP processor to begin its error handling procedure.

All other system domain related errors, such as data link layer and physical layer errors, are reported to
the RC processor which initiates the error handling procedure.

Redundancy

A multi-peer application often requires some level of redundancy. A dual RC processor topology has
both an active and a standby RC processor. An example of this dual RC processors topology is shown in
Figure 11. A Mux/DeMux device such as the IDT™ PS421 multiplexer/demultiplexer switch connects the
Upstream Port (UP) of the PCle switch to either the RC 1 or 2 processor. The RC processor that is
connected to the UP of the PCle switch is the active RC processor, and the one not connected to the UP is
the standby RC processor. During normal operation, the active RC processor is in control of the system and
is the Root Complex of the system domain. The standby RC processor has no connection to the system
domain. There is an out-of-band connection (not shown) between the RC processors. Heart beat and
checkpoint messages are sent periodically from the active RC processor to the standby RC processor. The
standby processor monitors the state of the active RC processor.

10 of 13 January 27, 2006

IDT

The standby RC processor takes over as the active RC processor when a managed switchover is
requested or a failure is detected in the active RC processor by the standby RC processor. A managed
switchover is one that is initiated by the user for scheduled maintenance or software upgrades or in
response to some form of demerit checking within the primary RC processor.

Notes

Managed switchover procedure:
* Active RC 1 processor requests all EP processors to stop making requests to the system domain.

* Wait for a short period of time for all outstanding requests to finish. The actual waiting time is system
dependent.

* The multiplexer/demultiplexer is switched to connect to the standby RC 2 processor.

* During the switchover, the Upstream port of the switch transitions from the Up state to the Down
state, and then back to the Up state. This causes all the Downstream ports to be reset. The EP
processors should not reset their data/queue structures during this downstream port reset, so that
normal processing can resume from where the EP processors stop before the switchover.

¢ After the switchover, RC 2 processor becomes the active RC processor. It initializes the PCle switch
to the same state as before the switchover.

* RC 2 processor notifies all EP processors that the system is back to normal and that requests can
now be made.

Failure switchover procedure:;

¢ Standby RC 2 processor monitors the state of the active RC 1 processor through heart beat and
checkpoint messages.

* When there is a failure in the active RC 1 processor, the standby RC 2 processor takes over as the
active RC processor. The RC 2 processor configures the multiplexer/demultiplexer to switch its
connection to the RC 2 processor.

* During the switchover, the Upstream port of the switch transitions from the Up state to the Down
state, and then back to the Up state. This causes all the Downstream ports to be reset. The EP
processors should not reset their data/queue structures during this downstream port reset so that
normal processing can resume from where the EP processors stop before the switchover.

¢ After the switchover, the RC 2 processor becomes the active RC processor. It initializes the PCle
switch to the same state as before the switchover.

RC 1 RC 2
Processor Processor

UP

16-Port Switch
DP

EE =6 =6 =6 EE EE ER
Processor Processor Processor Processor Processor Processor [Processor

Figure 11 Dual RC Processors Topology

The switch is still a single point of failure in the dual RC processors topology. For a fully redundant
system, a dual-star topology may be deployed as shown in Figure 12. In this topology, an additional PCle
switch is added and the multiplexer/demultiplexer is added to the EP processor blade. The PCle switch is

11 of 13 January 27, 2006

IDT

Notes

added to the RC processor blade, so that the RC processor blade has the RC processor and a 16-port PCle
switch. Each EP processor blade connects to two PCle switches but only one of the two connections is
active.

During normal operation, all EP processors connect to the active RC 1 processor blade, and the RC 2
processor blade is in standby mode. It has the same configuration as the RC 1 processor for the system
domain. During a switchover, there is no need to re-initialize the PCle switch. The active RC processor is in
control of the system and is the Root Complex of the system domain. The standby RC processor has no
connection to the system domain. There is an out-of-band connection (not shown) between the RC proces-
sors. Heart beat and checkpoint messages are sent periodically from the active RC processor to the
standby RC processor. The standby RC processor monitors the state of the active RC processor.

The switchover procedure is similar for the Dual RC processors and the Dual-star topology.

Managed switchover procedure:
* Active RC 1 processor requests all EP processors to stop making requests to the system domain.

* Wait for a short period of time for all outstanding requests to finish. The actual waiting time is system
dependent.

* The multiplexer/demultiplexers are switched to connect to the standby RC 2 processor.
* After the switchover, the RC 2 processor becomes the active RC processor.
* RC 2 processor notifies all EP processors that the system is back to normal and that requests can
now be made.
Failure switchover procedure:

* Standby RC 2 processor monitors the state of the active RC 1 processor through heart beat and
checkpoint messages.

* When there is a failure in the active RC 1 processor, the standby RC 2 processor takes over as the
active RC processor. The RC 2 processor configures the multiplexer/demultiplexers to switch the
EP connections to the RC 2 processor.

* After the switchover, the RC 2 processor becomes the active RC processor.

P EP P
Processo Processor Processo

Figure 12 Dual-star Topology

12 of 13 January 27, 2006

IDT

Notes Summary

Multi-peer support can be achieved using a standard PCle switch without any proprietary solutions. A
few EP processors have been identified to be part of the solution of a multi-peer system. System software in
the RC processor has to be extended to support the allocation of the memory map in the system domain. A
simple peer-to-peer communication protocol has been shown to transfer large blocks of data between EP
processors using PCle memory read and write operations.

Redundancy is important in a multi-peer system. A dual RC processor topology and a dual-star topology
have been identified as providing different levels of redundancy.

Reference
[1] PCI Express Base specification Revision 1.1
[2] Intelligent I/O Architecture Specification Version 2.0, 120 Special Interest Group

IDT is a trademark and the IDT logo is a registered trademark of Integrated Device Technology, Inc. All
other brand, product names, and marks are or may be trademarks or registered trademarks used to identify
products or services of their respective owners.

13 of 13 January 27, 2006

	Introduction
	Multi-peer Systems

	Implementation Issues in Multi-Peer Systems
	Memory Map Management
	Enumeration and Initialization
	Peer-to-Peer Communication Mechanisms
	Hardware-based Queue Structure
	Software-based Queue Structure
	Data Buffer Structure and Date Transfer Protocol

	Interrupt and Error Reporting
	Redundancy
	Summary
	Reference

