Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

USER'S MANUAL

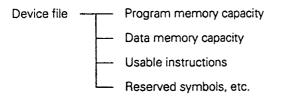
AS17062 DEVICE FILE

VERSION V1

PC-9800 SERIES (MS-DOSTM) BASE IBM PC/ATTM (PC DOSTM) BASE

Document No. EEU-1491 (O. D. No. EEU-936) Date Published July 1994 P Printed in Japan

SIMPLEHOST is a trademark of NEC Corporation. MS-DOS is a trademark of Microsoft Corporation. PC DOS, PC/AT are trademarks of IBM Corporation.


The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others.

INTRODUCTION

The AS17062 is a device file used together with the AS17K assembler to assemble the μ PD17062 program. This device file contains the following information.

For how to handle the AS17K assembler and AS17062 device file, refer to the AS17K USER'S MANUAL (EEU-603).

.

. .

CONTENTS

CHAPTE	R 1	DEVICE INFORMATION	1
CHAPTE	R 2	μPD17062 INSTRUCTION SET	3
2.1	Outl	ine of Instruction Set	3
2.2	Lege	ends	4
2.3		of Instructions	5
CHAPTE	R 3	RESERVED SYMBOLS	7
3.1	Data	Buffer	8
3.2	Syst	em Register	8
3.3	Port	Register	9
3.4	Regi	ster File	10
3.5		pheral Registers	13
3.6		of Reserved Words (Alphabetical order)	14
	3.6.1		14
	3.6.2	Registers and flags	15
CHAPTE	R 4	CHARACTER PATTERN DEFINITION PSEUDO INSTRUCTIONS	17
CHAPTE	R 5	PRECAUTIONS FOR USING THE DEVICE FILE	19
5.1	Prec	autions for Using Writing Instructions for the IRQXXX Flag	19
	5.1.1	Precautions	19
	5.1.2	Writing instruction prohibition reason	19
	5.1.3	Writing	19
СНАРТЕ	R 6	LOAD MODULE FILE FORMAT	21

.

CHAPTER 1 DEVICE INFORMATION

The AS17062 device file provides the following information on the μ PD17062 during assembly.

- (1) Program memory (ROM) capacity 3968×16 bits (0000H-0F7FH)
- (2) Data memory (RAM) capacity 336x4 bits (BANK0 to BANK3)
- (3) Usable instructions
 Refer to CHAPTER 2 μPD17062 INSTRUCTION SET.
- (4) Reading and writing information on register files, port registers, and peripheral registers. Refer to **CHAPTER 3 RESERVED SYMBOLS**.
- (5) Reserved symbols Refer to CHAPTER 3 RESERVED SYMBOLS.

CHAPTER 2 µPD17062 INSTRUCTION SET

2.1 Outline of Instruction Set

	bıs						
			0		1		
BIN	HEX						
0000	0	ADD	r , m	ADD	m, #n4		
0001	1	SUB	r, m	SUB	m, #n4		
0010	2	ADDC	. r, m	ADDC	m, #n4		
0011	3	SUBC	r, m	SUBC	m, #n4		
0100	4	AND	r, m .	AND	m, #n4		
0101	5	XOR	_ r, m	XOR	m, #n4		
0110	6	OR	r, m	OR	m, #n4		
0111	7	INC INC RORC MOVT PUSH POP PEEK POKE GET PUT BR CALL RET RETSK RETI EI DI STOP HALT NOP	AR IX r DBF, @AR AR AR WR, rf rf, WR DBF, p p, DBF @AR @AR @AR				
1000	8	LD	r, m	ST	m, r		
1001	9	SKE	m, #n4	SKGE	m, #n4		
1010	A	ΜΟΥ	Ør, m	MOV	m, @r		
1011	В	SKNE	m, #n4	SKLT	m, #n4		
1100	с	BR	addr (Page 0)	CALL	addr (Page 0		
1101	D	BR	addr (Page 1)	мо∨	m, #n4		
1110	E			sкт	m, #n		
1111	F			SKF	m, #n		

2.2 Legends

AR	:	Address register								
(AR)ROM	:	Contents of ROM with the address specified by AR								
ASR	:	Address stack register specified by the stack pointer								
addr	:	Program memory address (Lower 11 bits)								
BANK	:	Bank register								
CMP	:	Compare flag								
CY	:	Carry flag								
DBF	:	Data buffer								
h	:	Halt release condition								
INTEF	:	Interrupt enable flag								
INTR	:	Register automatically stored in the stack during interruption								
INTSK	:	Interruption stack register								
IX	:	Index register								
IXE	:	Index enable flag								
MP	:	Data memory row address pointer								
MPE	:	Memory pointer enable flag								
m	:	Data memory address represented by mR and mc								
MΒ	:	Data memory row address (Higher)								
Пc	:	Data memory column address (Lower)								
n	:	Bit position (4 bits)								
n4	:	Immediate data (4 bits)								
PAGE	:	Page (Program counter's bit 11)								
PC	:	Program counter								
р	:	Peripheral address								
рн	:	Peripheral address (Higher 3 bits)								
рL	:	Peripheral address (Lower 4 bits)								
r	:	General register column address								
rf	:	Register file address								
rfr	:	Register file address (Higher 3 bits)								
rfc	:	Register file address (Lower 4 bits)								
SP	:	Stack pointer								
S	:	Stop release condition								
WR	:	Window register								
(x)	:	Contents addressed by x								
		x: Direct addresses such as m and r or a register such as ASR.								

2.3 List of Instructions

ction		Original	Occurties	Mac	Machine Code				
Instruction Set	Mnemonic	Operand	Operation	Operation Code		Operanc	J		
	400	r, m	(r)←(r)+(m)	00000	ma	mc	r		
	ADD	m, #n4	(m)←(m)+n4	10000	mβ	mc	n4		
Addition	r, m ADDC		(r)←(r)+(m)+CY	00010	mβ	mc	r		
Add	ADDC	m, #n4	(m)←(m)+n4+CY	10010	mπ	mc	n4		
	110	AR	AR←AR+1	00111	000	1001	0000		
	INC	IX	IX←IX+1	00111	000	1000	0000		
	0110	r, m	(r)←(r)-(m)	00001	ma	mc	r		
Subtraction	SUB	m, #n4	(m)←(m)–n4	10001	Μ Β	mc	n4		
Subtra	01120	r, m	(r)←(r)-(m)-CY	00011	ma	mc	r		
	SUBC	m, #n4	(m)←(m)–n4–CY	10011	ma	mc	n4		
	<u></u>	r, m	(r)←(r)∨(m)	00110	MR	тс	r		
ion	OR	m, #n4	(m)←(m)∨n4	10110	ШВ	mc	n4		
Logical Operation		r, m	(r)←(r)∧(m)	00100	MR	mc	r		
ical O	AND	m, #n4	(m)←(m)∧n4	10100	m ₽	mc	n4		
Log	r, m		(r)←(r) ★(m)	00101	ma	mc	r		
	XOR	m, #n4	(m)←(m) ∀ n4	10101	ma	mc	n4		
sion	SKT	m, #n	CMP←0, if(m)∧n=n, then skip	11110	ma	mc	n		
Decision	SKF	m, # n	CMP←0, if(m)∧n=0, then skip	11111	mв	mc	n		
	SKE	m, #n4	(m)–n4, skip if zero	01001	ma	mc	n4		
arison	SKNE	m, #n4	(m)–n4, skip if not zero	01011	mа	mc	n4		
Compar	SKGE	m, #n4	(m)–n4, skip if not borrow	11001	mв	mc	n4		
	SKLT	m, #n4	(m)–n4, skip if borrow	11011	mя	mc	n4		
Rotation	RORC	r	$ \qquad \qquad$	00111	000	0111	r		
	LD	r, m	(r)←(m)	01000	ma	mc	r		
	ST	m, r	(m)←(r)	11000	ma	mc	r		
Transfer		@ r, m	if MPE=1: (MP, (r))←(m) if MPE=0: (BANK, m _R , (r))←(m)	01010	MΒ	mc	r		
	MOV	m, @r	if MPE=1: (m)←(MP, (r)) if MPE=0: (m)←(BANK, ma, (r))	11010	ma	mc	r		
		m, #n4	(m) ← n4	11101	MR	mc	n4		

S and Mnemonic		0	0	Machine Code					
Instru Set	Mnemonic Operand		Operation	Operation Code	Operand				
	MOVT	DBF, ØAR	SP←SP-1, ASR←PC, PC←AR, DBF←(AR)ROM, PC←ASR, SP←SP+1	00111	000	0001	0000		
	PUSH	AR	SP←SP–1, ASR←AR	00111	000	1101	0000		
Transfer	POP	AR	AR&ASR, SP&SP+1	00111	000	1100	0000		
Tran	PEEK	WR, rf	WR←(rf)	00111	rfa	0011	rfc		
	POKE	rf, WR	(rf)←WR	00111	rfa	0010	rfc		
	GET	DBF, p	DBF←(p)	00111	рн	1011	p∟		
	PUT	p, DBF	(p)←DBF	00111	рн	1010	₽L		
			PC10₀⊶addr, PAGE←0	01100	addr				
Branch	5 BR addr © BR @AR	addr	PC10-0←addr, PAGE←1	01101					
		ØAR	PC←AR	00111	000	0100	0000		
		addr	SP←SP-1, ASR←PC+1, PC11←0, PC100←addr	11100		addr			
Sub-Routine		CALL @AR	SP←SP-1, ASR←PC+1, PC←AR	00111	000	0101	0000		
Sub-	RET		PC←ASR, SP←SP+1	00111	000	1110	0000		
	RETSK		PC←ASR, SP←SP+1 and skip	00111	001	1110	0000		
	RETI		PC←ASR, INTR←INTSK, SP←SP+1	00111	100	1110	0000		
dŋ.	EI		INTEF←1	00111	000	1111	0000		
Interrup- tion	DI		INTEF-0	00111	001	1111	0000		
	STOP	5	STOP	00111	010	1111	s		
Others	HALT	h	HALT	00111	011	1111	h		
	NOP		No operation	00111	100	1111	0000		

.

CHAPTER 3 RESERVED SYMBOLS

The symbols defined by the μ PD17062 device file are shown from the next page. These symbols are as follows.

- Data buffer
- System register
- Port register
- Register file (Control register)
- Peripheral register

3.1 Data Buffer

Symbol	Attribute	Value	R/W	Function
DBF3	МЕМ	0.0CH	R/W	Bits 15 to 12 of the data buffer
DBF2	MEM	0.0DH	R/W	Bits 11 to 8 of the data buffer
DBF1	MEM	0.0EH	R/W	Bits 7 to 4 of the data buffer
DBF0	MEM	0.0FH	R/W	Bits 3 to 0 of the data buffer

3.2 System Register

Symbol	Attribute	Value	R/W	Function
AR3	MEM	0.74H	R	Bits 15 to 12 of the address register
AR2	MEM	0.75H	R	Bits 11 to 8 of the address register
AR1	MEM	0.76H	R/W	Bits 7 to 4 of the address register
ARO	MEM	0.77H	R/W	Bits 3 to 0 of the address register
WR	MEM	0.78H	R/W	Window register
BANK	MEM	0.79H	R/W	Bank register
IXH	MEM	0.7AH	R	Bits 10 to 8 of the index register
МРН	MEM	0.7AH	R	Bits 6 to 4 of the memory pointer
MPE	FLG	0.7AH.3	R/W	Memory pointer enable flag
IXM	MEM	0.7BH	R/W	Bits 7 to 4 of the index register
MPL	MEM	0.7BH	R/W	Bits 3 to 0 of the memory pointer
IXL	MEM	0.7CH	R/W	Bits 3 to 0 of the index register
RPH	MEM	0.7DH	R	Bits 6 to 3 of the register pointer
RPL	МЕМ	0.7EH	R/W	Bits 2 to 0 of the register pointer
PSW	MEM	0.7FH	R/W	Program status word
BCD	FLG	0.7EH.0	R/W	BCD operation flag
СМР	FLG	0.7FH.3	R/W	Compare flag
СҮ	FLG	0.7FH.2	R/W	Carry flag
Z	FLG	0.7FH.1	R/W	Zero flag
IXE	FLG	0.7FH.0	R/W	Index enable flag

3.3 Port Register

Symbol	Attribute	Value	R/W	Function
P0A3	FLG	0.70H.3	R/W	Bit 3 of port 0A
P0A2	FLG	0.70H.2	R/W	Bit 2 of port 0A
P0A1	FLG	0.70H.1	R/W	Bit 1 of port 0A
P0A0	FLG	0.70H.0	R/W	Bit 0 of port 0A
P0B3	FLG	0.71H.3	R/W	Bit 3 of port 0B
P0B2	FLG	0.71H.2	R/W	Bit 2 of port 0B
P0B1	FLG	0.71H.1	R/W	Bit 1 of port 0B
P0B0	FLG	0.71H.0	R/W	Bit 0 of port 0B
P0C3	FLG	•0.72H.3	R/W	Bit 3 of port 0C
P0C2	FLG	0.72H.2	R/W	Bit 2 of port 0C
P0C1	FLG	0.72H.1	R/W	Bit 1 of port 0C
P0C0	FLG	0.72H.0	R/W	Bit 0 of port 0C
P0D3	FLG	0.73H.3	RNote	Bit 3 of port 0D
P0D2	FLG	0.73H.2	RNote	Bit 2 of port 0D
P0D1	FLG	0.73H.1	RNote	Bit 1 of port 0D
PODO	FLG	0.73H.0	RNote	Bit 0 of port 0D
P1A3	FLG	1.70H.3	R/W	Bit 3 of port 1A
P1A2	FLG	1.70H.2	R/W	Bit 2 of port 1A
P1A1	FLG	1.70H.1	R/W	Bit 1 of port 1A
P1A0	FLG	1.70H.0	R/W	Bit 0 of port 1A
P1B3	FLG	1.71H.3	R/W	Bit 3 of port 1B
P1B2	FLG	1.71H.2	R/W	Bit 2 of port 1B
P1B1	FLG	1.71H.1	R/W	Bit 1 of port 1B
P1B0	FLG	1.71H.0	R/W	Bit 0 of port 1B
P1C3	FLG	1.72H.3	R/W	Bit 3 of port 1C
P1C2	FLG	1.72H.2	R/W	Bit 2 of port 1C
P1C1	FLG	1.72H.1	R/W	Bit 1 of port 1C

Note Although these ports are for inputting only, the IE-17K assembler will not output error messages even if output instructions are written into these ports.

No problems will occur when they are executed on the device.

3.4 Register File

Symbol	Attribute	Value	R/W	Function
IDCDMAEN	FLG	0.80H.1	R/W	DMA enable flag
SP	MEM	0.81H	R/W	Stack pointer
CE	FLG	0.87H.0	R	CE pin status flag
SIOOCH	FLG	0.88H.3	R/W	SIO0 channel select flag
SB	FLG	0.88H.2	R/W	SIO0 mode select flag
SIOOMS	FLG	0.88H.1	R/W	SIO0 clock mode select flag
SIOOTX	FLG	0.88H.0	R/W	SIO0 TX/RX select flag
BTM0ZX	FLG	0.89H.3	R/W	Timer 0 interrupt mode select flag
BTM0CK2	FLG	0.89H.2	R/W	Timer 0 carry FF mode select flag
BTM0CK1	FLG	0.89H.1	R/W	Timer 0 carry FF mode select flag
втмоско	FLG	0.89H.0	R/W	Timer 0 carry FF mode select flag
INTVSYN	FLG	0.8FH.2	R	Vsync pin status flag
INTNC	FLG	0.8FH.0	R	RMC pin status
HSCGT3	FLG	0.91H.3	R/W	Hsync counter mode select flag (Dummy:0)
HSCGT2	FLG	0.91H.2	R/W	Hsync counter mode select flag (Dummy:0)
HSCGT1	FLG	0.91H.1	R/W	Hsync counter mode select flag
HSCGTO	FLG	0.91H.0	R/W	Hsync counter mode select flag
HSCGOSTT	FLG	0.92H.3	R	Hsync counter gate open flag
PLLRFCK3	FLG	0.93H.3	R/W	PLL reference clock select flag
PLLRFCK2	FLG	0.93H.2	R/W	PLL reference clock select flag
PLLRFCK1	FLG	0.93H.1	R/W	PLL reference clock select flag
PLLRFCK0	FLG	0.93H.0	R/W	PLL reference clock select flag
INTNCMD3	FLG	0.95H.3	R/W	RMC pin status flag (Dummy)
INTNCMD2	FLG	0.95H.2	R/W	RMC pin status flag
INTNCMD1	FLG	0.95H.1	R/W	RMC pin status flag
INTNCMD0	FLG	0.95H.0	R/W	RMC pin status flag
BTMOCY	FLG	0.97H.0	R	Timer 0 carry FF status flag

Symbol	Attribute	Value	R/W	Function
SBACK	FLG	0.98H.3	R/W	Serial bus acknowledge flag
SIOONWT	FLG	0.98H.2	R/W	SIO0 no wait flag
SIO0WRQ1	FLG	0.98H.1	R/W	SIO0 wait request flag
SIOOWRQO	FLG	0.98H.0	R/W	SIO0 wait request flag
IEGVSYN	FLG	0.9FH.2	R/W	Vsync interrupt edge select flag
IEGNC	FLG	0.9FH.0	R/W	RMC interrupt edge select flag
ADCCH2	FLG	0.0A1H.3	R/W	A/D converter channel select flag
ADCCH1	FLG	0.0A1H.2	R/W	A/D converter channel select flag
ADCCH0	FLG	0.0A1H.1	R/W	A/D converter channel select flag
ADCCMP	FLG	0.0A1H.0	R/W	A/D converter judge flag
PLLUL	FLG	0.0A2H.0	R	PLL unlock FF flag
P1CGIO	FLG	0.0A7H.0	R/W	Port 1C I/O select flag
SIO0SF8	FLG	0.0A8H.3	R	SIO0 shift 8 clock flag
SIO0SF9	FLG	0.0A8H.2	R	SIO0 shift 9 clock flag
SBSTT	FLG	0.0A8H.1	R	Serial bus start test flag
SBBSY	FLG	0.0A8H.0	R	Serial bus busy flag
IPSIO0	FLG	0.0AFH.3	R/W	SIO0 interrupt permission flag
IPVSYN	FLG	0.0AFH.2	R/W	Vsync interrupt permission flag
ІРВТМО	FLG	0.0AFH.1	R/W	Timer 0 interrupt permission flag
IPNC	FLG	0.0AFH.0	R/W	RMC interrupt permission flag
CROMBNK	FLG	0.0B0H.0	R/W	CROM bank select flag
IDCEN	FLG	0.0B1H.0	R/W	IDC enable flag
PLULSEN3	FLG	0.0B2H.3	R/W	PLL unlock time select flag (Dummy:0)
PLULSEN2	FLG	0.0B2H.2	R/W	PLL unlock time select flag (Dummy:0)
PLULSEN1	FLG	0.0B2H.1	R/W	PLL unlock time select flag
PLULSENO	FLG	0.0B2H.0	R/W	PLL unlock time select flag
P1BBIO3	FLG	0.0B5H.3	R/W	P1B3 I/O select flag
P1BBIO2	FLG	0.0B5H.2	R/W	P1B2 I/O select flag
P1BBIO1	FLG	0.0B5H.1	R/W	P1B1 I/O select flag
P1BBIO0	FLG	0.0B5H.0	R/W	P1B0 I/O select flag

Symbol	Attribute	Value	R/W	Function
P0BBIO3	FLG	0.0B6H.3	R/W	P0B3 I/O select flag
P0BBIO2	FLG	0.0B6H.2	R/W	P0B2 I/O select flag
P0BBIO1	FLG	0.0B6H.1	R/W	P0B1 I/O select flag
POBBIOO	FLG	0.0B6H.0	R/W	P0B0 I/O select flag
P0ABIO3	FLG	0.0B7H.3	R/VV	P0A3 i/O select flag
P0ABIO2	FLG	0.0B7H.2	R/W	P0A2 I/O select flag
P0ABIO1	FLG	0.0B7H.1	R/W	P0A1 I/O select flag
POABIOO	FLG	0.0B7H.0	R/W	P0A0 I/O select flag
SIO0IMD3	FLG	0.0B8H.3	R/W	SIO0 interrupt mode select flag (Dummy:0)
SIO0IMD2	FLG	0.0B8H.2	R/W	SIO0 interrupt mode select flag (Dummy:0)
SIO0IMD1	FLG	0.0B8H.1	R/W	SIO0 interrupt mode select flag
SIO0IMD0	FLG	0.0B8H.0	R/W	SIO0 interrupt mode select flag
SIO0CK3	FLG	0.0B9H.3	R/W	SIO0 shift clock select flag (Dummy:0)
SIO0CK2	FLG	0.0B9H.2	R/W	SIO0 shift clock select flag (Dummy:0)
SIO0CK1	FLG	0.0B9H.1	R/W	Serial clock selection
SIO0CK0	FLG	0.0B9H.0	R/W	Serial clock selection
IRQSIO0	FLG	0.0BFH.3	R	SIO0 interruption request flag
IRQVSYN	FLG	0.0BFH.2	R	Vsync interruption request flag
IRQBTM0	FLG	0.0BFH.1	R	Timer 0 interruption request flag
IRQNC	FLG	0.0BFH.0	R	RMC pin interruption request flag

3.5 Peripheral Registers

Symbol	Attribute	Value	R/W	Function
IDCORG	DAT	01H	R/W	IDC start position setting register
ADCR	DAT	02H	R/W	A/D converter VREF data register
SIO0SFR	DAT	03H	R/W	SIO0 register
нѕс	DAT	04H	R	Hsync counter data register
PWMR0	DAT	05H	R/W	PWM data register 0
PWMR1	DAT	06H	R/W	PWM data register 1
PWMR2	DAT	07H	R/W	PWM data register 2
PWMR3	DAT	08H	R/W	PWM data register 3
AR	DAT	40H	R/W	Address register
PLLR	DAT	41H	R/W	PLLR data register
DBF	DAT	OFH	_	Data buffer (Can be used only as GET/PUT/MOVT instruction operand.)
IX	DAT	01H	_	Index register (Can be used only as INC instruction operand.)
AR_EPA1	DAT	8040H		CALL/BR/MOVT instruction operand (EPA bit on)
AR_EPA0	DAT	4040H		CALL/BR/MOVT instruction operand (EPA bit off)

3.6 List of Reserved Words (Alphabetical order)

3.6.1 Instructions and pseudo instructions

ADD	ADDC	AND	BANKO
BANK1	BANK2	BELOW	BR
C14344	C4444	CALL	CASE
CLR1	CLR2	CLR3	CLR4
CSEG	DAT	DB	DCP
DI	DW	El	EJECT
ELSE	END	ENDCASE	ENDIF
ENDIFC	ENDIFNC	ENDM	ENDP
ENDR	EOF	EXIT	EXITR
EXTRN	FLG	GET	GLOBAL
HALT	IF	IFCHAR	IFNCHAR
INC	INCLUDE	INITFLG	IRP
LAB	LBMAC	LD	LFCOND
LIST	LITERAL	LMAC	MACRO
MEM	MOV	MOVT	NIBBLE
NIBBLE1	NIBBLE2	NIBBLE2V	NIBBLE3
NIBBLE3V	NIBBLE4	NIBBLE4V	NIBBLE5
NIBBLE5V	NIBBLE6	NIBBLE6V	NIBBLE7
NIBBLE7V	NIBBLE8	NIBBLE8V	NOBMAC
NOLIST	NOMAC	NOP	NOT1
NOT2	NOT3	NOT4	OBMAC
OMAC	OR	ORG	OTHER
PEEK	POKE	POP	PUBLIC
PURGE	PUSH	PUT	REPT
RET	RETI	RETSK	RORC
SBMAC	SET	SET1	SET2
SET3	SET4	SFCOND	SKE
SKF	SKF1	SKF2	SKF3
SKF4	SKGE	SKLT	SKNE
SKT	SKT1	SKT2	SKT3
SKT4	SMAC	ST	STOP
SUB	SUBC	SUMMARY	TAG
TITLE	XOR	ZZZERROR	ZZZMCHK
ZZZMSG			

3.6.2 Registers and flags

ADCCH0	ADCCH1	ADCCH2	ADCCMP
ADCR	AR	AR0	AR1
AR2	AR3	AR_EPA0	AR_EPA1
BANK	BCD	BTM0CK0	BTM0CK1
BTM0CK2	BTM0CY	BTMOZX	CE
CMP	CROMBNK	CY	DBF
DBF0	DBF1	DBF2	DBF3
HSC	HSCGOSTT	HSCGT0	HSCGT1
HSCGT2	HSCGT3	IDCDMAEN	IDCEN
IDCORG	IEGNC	IEGVSYN	INTNC
INTNCMD0	INTNCMD1	INTNCMD2	INTNCMD3
INTVSYN	IPBTM0	IPNC	IPSIO0
IPVSYN	IRQBTM0	IRQNC	IRQSI00
IRQVSYN	IX	IXE	IXL
IXM	MPE	MPL	P0A0
P0A1	P0A2	P0A3	POABIOO
P0ABIO1	P0ABIO2	P0ABIO3	P0B0
P0B1	P0B2	P0B3	P0BBIO0
P0BBIO1	P0BBIO2	P0BBIO3	POCO
P0C1	P0C2	P0C3	P0D0
P0D1	P0D2	P0D3	P1A0
P1A1	P1A2	P1A3	P1B0
P1B1	P1B2	P1B3	P1BBIO0
P1BBIO1	P1BBIO2	P1BBIO3	P1C1
P1C2	P1C3	P1CGIO	PLLR
PLLRFCK0	PLLRFCK1	PLLRFCK2	PLLRFCK3
PLLUL	PLULSEN0	PLULSEN1	PLULSEN2
PLULSEN3	PSW	PWMR0	PWMR1
PWMR2	PWMR3	RPH	RPL
SB	SBACK	SBBSY	SBSTT
SIO0CH	SIOOCKO	SIO0CK1	SIO0CK2
SIOOCK3	SIO0IMD0	SIO0IMD1	SIO0IMD2
SIO0IMD3	SIO0MS	SIOONWT	SIO0SF8
SIO0SF9	SIO0SFR	SIO0TX	SIOOWRQ0
SIO0WRQ1	SP	WR	Z
ZZZ0	ZZZ1	ZZZ2	ZZZ3
ZZZ4	ZZZ5	ZZZ6	ZZZ7
ZZZ8	ZZZ9	ZZZALBMAC	ZZZALMAC
ZZZARGC	ZZZDEVID	ZZZEPA	ZZZLINE
ZZZLSARG	ZZZPRINT	ZZZSKIP	ZZZSYDOC

. •

CHAPTER 4 CHARACTER PATTERN DEFINITION PSEUDO INSTRUCTIONS

The AS17062 has DCP (Define Character Pattern) pseudo instructions for defining character patterns for the IDC (Image Display Controller).

(1) Description Format

Symbol Column	Mnemonic Column	Operand Column	Comment Column
[Label:]	DCP	Equation, Display Pattern	[;Comment]

(2) Explanation

- (a) The equation is represented by value "0" or "1" and they specify whether or not to fringe the display pattern described by the 2nd operand.
 - "0": Does not fringe
 - "1": Fringes

When the evaluation value of the equation is not "0" or "1", it indicates an error.

(b) Only three types of characters are used for the display pattern. They are "○", "#", " " (space). The pattern is described in 10 characters.

When the pattern is described using characters other than these, or more/less than 10 characters are used, errors will result. These three characters are equivalent to one dot of the display pattern and result in the following.

"O": Lights up "#": Fringes "": Blank

When the evaluation value obtained from the equation of the 1st operand is "0", "#" cannot be used for the display pattern.

CHAPTER 5 PRECAUTIONS FOR USING THE DEVICE FILE

5.1 Precautions for Using Writing Instructions for the IRQXXX Flag

5.1.1 Precautions

Do not write data in address 3FH (BFH) of register files containing IRQxxx (IRQNC, IRQBTM0, IRQVSYN, IRQSIO0) flags using the following instructions because assemble errors will result.

- Writing instructions (POKE)
- On-chip macro instructions (SETn, CLRn, NOTn, INITFLG)

5.1.2 Writing instruction prohibition reason

The IRQxxx flag is set when interruption requests are issued. When interruptions can be received, these flags will be reset.

Use the following programs to set or reset the IRQxxx flag (E.g. when initializing the interruption request or processing polling for the interruption request).

Example To reset the IRQSIO0 flag

PEEK	WR, MF. IRQSIO0 SHR 4	; (D
AND	WR, #.DF. (NOT IRQSIO0) AND	OFH; (2
POKE	.MF. IRQSIO0 SHR 4, WR	: (3

In the above example, even if the IRQxxx flag in the same address is changed while instructions (1) and (2) are executed, the IRQxxx flag will return to its original state since the value read with the (1) instruction is written into the (3) instruction. To prevent such problems, assemble errors are generated when data is written in the IRQxxx flag.

5.1.3 Writing

When executing writing instructions for the IRQxxx flag, assemble errors result. However, if this flag must be changed for an application program, use the following method.

First, read the IRQ. MAC file of the device file using the INCLUDE instruction. Execute the macro instructions defined by the IRQ. MAC file. These macro instructions are as follows.

SETIRQn CLRIRQn NOTIRQn INITIRQ

Assemble errors do not result when these macro instructions are executed. However, error messages calling for caution will be output.

Remark For details on the on-chip macro instructions, refer to the "AS17K assembler user's manual (EEU-603)".

CHAPTER 6 LOAD MODULE FILE FORMAT

The HEX load module file output by the AS17K assembler has two types of output formats—ICE file and PRO file.

These files must be selected according to the purpose of use.

They have areas for user programs, assembler environment information, in-circuit emulator operation environment information, etc.

(1) Format of HEX Load Module File

The data in each HEX load module file output by the assembler are output in the following format.

EC

(6)

- 1
 2
 3
 4
 5

 :
 00
 0000
 01
 FF

 |
 |
 |
 |

 1
 2
 3
 4
 6
- Record Mark Indicates the start of recording.

(2) Code Number (2 Digits)

Indicates the number of codes (byte data) stored in the record. It is displayed as an hexadecimal number and is 10H at the maximum (16 codes). It is 00H for the last record.

(3) Address (4 Digits)

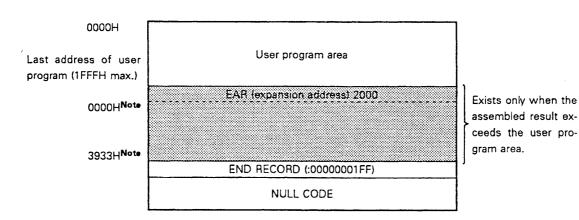
Indicates the start address of the code representing the record. It is 0000H for the last record and is not related to addresses.

(4) Record Type (2 Digits)

When it is 00H, it indicates that the record is a data record. When it is 01H, it indicates that the record is the last one.

(5) Code (Max. 32 Digits (16 Bytes))Up to 16 bytes will be output to this field one byte at a time.

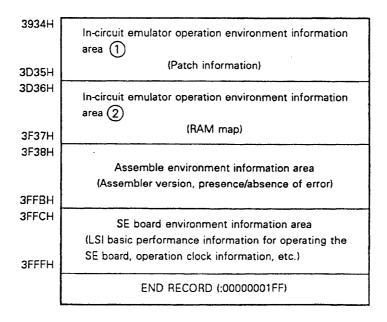
(6) Check Sum (2 Digits)
 Outputs to (6) byte data that makes the lowermost byte become 00H when the data of (2), (3),
 (4), (5), and (6) are totaled up in bytes. (Even parity)


(2) ICE File

File output in the HEX format for the in-circuit emulator (IE-17K or IE-17K-ET or EMU-17K^{Note}) by AS17K. When assembling using the μ SxxxAS17062, the output format will be as shown in Figure 6-1.

Note Manufactured by I.C Co., Ltd.

The ICE file consists of two files. The first is the area for the program. It is divided into the user program area and patch area. The patch area exists only when a patch is created on the in-circuit emulator. The second file contains the in-circuit emulator operation environment information area, assemble environment information area, and SE board environment information area. These areas contain information for regulating in-circuit emulator operations.


Figure 6-1. ICE File Format

1st file Program Area

Note With the in-circuit emulator, it is 8000H to B933H.

2nd file .. In-circuit emulator operating environment area + Assemble environment information area

(3) PRO File

HEX data output by AS17K for the PROM and one time PROM products used for ordering masks or for evaluating SE board by itself. These are output during assembly when /PRO is specified at the assemble option.

The output format when assembling using the μ SxxxxAS17062 is shown in Figure 6-2.

The PRO file consists of one file. It contains the user program area, assemble environment information area, and SE board environment information area.

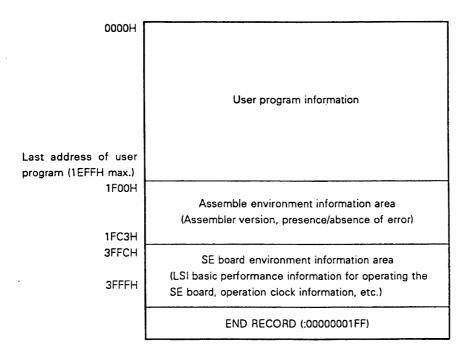


Figure 6-2. PRO File Format

Remark The addresses 1FC4H to 3FFBH do not exist in the PRO file.

(4) Load Module File Comparison

Even when source files are not changed, the outputs of the assembler (assemble environment information area) may differ. This is because this assemble environment information area contains information such as the date the source file was created.

Table 6-1. Items with which assembler outputs may differ evenwhen the source file has not been changed

ltem	Address	
	ICE file	PRO file
Program name Character string specified with assemble option (/'PROG=') (Max. 32 bytes)	3F38H-3F57H	1F00H-1F1FH
	3FADH	1F75H
Presence/absence of errors or warnings	3FB0H	1F78H
Source file creation year, month, date, time, and minute ^{Note}	3FBEH-3FC7H	1F86H-1F8FH
Device file version	3FDDH	1FA5H
Assembler version	3FE1H	1FA9H

Note If the source file is divided into several modules, the latest year, month, date, time, and minute of the module will be written.

Caution Do not change only the load module file.

Change the load module file by changing the source file and assembling. If only the load module file is changed, its history will not match that of other files and this will result in bugs.

