

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

V850E1
32-Bit Microprocessor Core

Architecture

Document No. U14559EJ3V1UM00 (3rd edition)
Date Published February 2004 N CP(K)

Printed in Japan
 1999

User’s Manual U14559EJ3V1UM 2

[MEMO]

User’s Manual U14559EJ3V1UM 3

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the

CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may

malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,

and also in the transition period when the input level passes through the area between VIL (MAX) and

VIH (MIN).

HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is

possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS

devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND

via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must

be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as

much as possible, and quickly dissipate it when it has occurred. Environmental control must be

adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that

easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static

container, static shielding bag or conductive material. All test and measurement tools including work

benches and floors should be grounded. The operator should be grounded using a wrist strap.

Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for

PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power

source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does

not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the

reset signal is received. A reset operation must be executed immediately after power-on for devices

with reset functions.

NOTES FOR CMOS DEVICES

User’s Manual U14559EJ3V1UM 4

These commodities, technology or software, must be exported in accordance
with the export administration regulations of the exporting country.
Diversion contrary to the law of that country is prohibited.

The information in this document is current as of February, 2004. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its

majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics

(as defined above).

•

•

•

•

•

•

M8E 02. 11-1

User’s Manual U14559EJ3V1UM 5

Regional Information

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

[GLOBAL SUPPORT]
 http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-558-3737

NEC Electronics Shanghai Ltd.
Shanghai, P.R. China
Tel: 021-5888-5400

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311

J04.1

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65030

• Sucursal en España
Madrid, Spain
Tel: 091-504 27 87

Vélizy-Villacoublay, France
Tel: 01-30-67 58 00

• Succursale Française

• Filiale Italiana
Milano, Italy
Tel: 02-66 75 41

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45

• Tyskland Filial
Taeby, Sweden
Tel: 08-63 80 820

• United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, pIease contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

User’s Manual U14559EJ3V1UM 6

PREFACE

Target Readers This manual is intended for users who wish to understand the functions of the V850E1

CPU core for designing application systems using the V850E1 CPU core.

Purpose This manual is intended to give users an understanding of the architecture of the

V850E1 CPU core described in the Organization below.

Organization This manual contains the following information.

 • Register set

 • Data types

 • Instruction format and instruction set

 • Interrupts and exceptions

 • Pipeline

How to Use This Manual It is assumed that the reader of this manual has general knowledge in the fields of

electrical engineering, logic circuits, and microcontrollers.

 To learn about the hardware functions,

 → Read Hardware User’s Manual of each product.

 To learn about the functions of a specific instruction in detail,

 → Read CHAPTER 5 INSTRUCTIONS.

 The mark shows major revised points.

Product Types This manual explains the products divided into types.

 Before reading this manual, check the corresponding product type.

Product Type Product Name

Type A NU85E CPU core

Type B NU85ET CPU core

Type C NB85E, NB85ET CPU core

Type D V850E/IA1, V850E/IA2, V850E/MA1, V850E/SV2

Type E V850E/IA3, V850E/IA4, V850E/MA3

Type F V850E/MA2, V850E/ME2

User’s Manual U14559EJ3V1UM 7

Conventions Data significance: Higher digits on the left and lower digits on the right

 Active low representation: ×××B (B is appended to pin or signal name)

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numerical representation: Binary ... ×××× or ××××B

 Decimal ... ××××

 Hexadecimal ... ××××H

 Prefix indicating the power of 2 (address space, memory capacity):

 K (Kilo): 210 = 1,024

 M (Mega): 220 = 1,0242

 G (Giga): 230 = 1,0243

User’s Manual U14559EJ3V1UM 8

CONTENTS

CHAPTER 1 GENERAL... 12
1.1 Features... 13
1.2 Internal Configuration .. 14

CHAPTER 2 REGISTER SET... 15
2.1 Program Registers ... 16
2.2 System Registers ... 18

2.2.1 Interrupt status saving registers (EIPC, EIPSW).. 19
2.2.2 NMI status saving registers (FEPC, FEPSW) .. 20
2.2.3 Exception cause register (ECR)... 20
2.2.4 Program status word (PSW) .. 21
2.2.5 CALLT caller status saving registers (CTPC, CTPSW).. 23
2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW) .. 24
2.2.7 CALLT base pointer (CTBP) .. 25
2.2.8 Debug interface register (DIR) ... 26
2.2.9 Breakpoint control registers 0 and 1 (BPC0, BPC1)... 29
2.2.10 Program ID register (ASID) .. 30
2.2.11 Breakpoint address setting registers 0 and 1 (BPAV0, BPAV1)... 31
2.2.12 Breakpoint address mask registers 0 and 1 (BPAM0, BPAM1) ... 31
2.2.13 Breakpoint data setting registers 0 and 1 (BPDV0, BPDV1) .. 32
2.2.14 Breakpoint data mask registers 0 and 1 (BPDM0, BPDM1)... 32

CHAPTER 3 DATA TYPES .. 33
3.1 Data Format... 33
3.2 Data Representation... 35

3.2.1 Integer.. 35
3.2.2 Unsigned integer .. 35
3.2.3 Bit... 35

3.3 Data Alignment ... 36

CHAPTER 4 ADDRESS SPACE .. 37
4.1 Memory Map.. 38
4.2 Addressing Mode ... 39

4.2.1 Instruction address... 39
4.2.2 Operand address ... 41

CHAPTER 5 INSTRUCTIONS ... 43
5.1 Instruction Format.. 43
5.2 Outline of Instructions ... 47
5.3 Instruction Set... 51

ADD ... 53
ADDI .. 54
AND ... 55
ANDI .. 56

User’s Manual U14559EJ3V1UM 9

Bcond ...57
BSH ..59
BSW ...60
CALLT ..61
CLR1 ..62
CMOV...63
CMP..64
CTRET..65
DBRET ...66
DBTRAP...67
DI..68
DISPOSE..69
DIV..71
DIVH...72
DIVHU ..74
DIVU...75
EI ..76
HALT ..77
HSW ...78
JARL...79
JMP ..80
JR ...81
LD.B..82
LD.BU...83
LD.H ...84
LD.HU...86
LD.W...88
LDSR..90
MOV ...91
MOVEA...92
MOVHI..93
MUL..94
MULH ...96
MULHI ..97
MULU ...98
NOP..100
NOT..101
NOT1..102
OR ..103
ORI ...104
PREPARE ..105
RETI ...107
SAR ..109
SASF ..110
SATADD...111
SATSUB ...112
SATSUBI ..113
SATSUBR...114

User’s Manual U14559EJ3V1UM 10

SET1.. 115
SETF.. 116
SHL.. 118
SHR ... 119
SLD.B .. 120
SLD.BU.. 121
SLD.H .. 122
SLD.HU.. 124
SLD.W ... 126
SST.B .. 128
SST.H .. 129
SST.W ... 131
ST.B... 133
ST.H... 134
ST.W.. 136
STSR ... 138
SUB ... 139
SUBR... 140
SWITCH... 141
SXB.. 142
SXH ... 143
TRAP ... 144
TST.. 145
TST1 .. 146
XOR... 147
XORI .. 148
ZXB.. 149
ZXH.. 150

5.4 Number of Instruction Execution Clock Cycles .. 151

CHAPTER 6 INTERRUPTS AND EXCEPTIONS.. 155
6.1 Interrupt Servicing.. 156

6.1.1 Maskable interrupts.. 156
6.1.2 Non-maskable interrupts .. 158

6.2 Exception Processing .. 159
6.2.1 Software exceptions... 159
6.2.2 Exception trap .. 160
6.2.3 Debug trap ... 161

6.3 Restoring from Interrupt/Exception Processing ... 162
6.3.1 Restoring from interrupt and software exception.. 162
6.3.2 Restoring from exception trap and debug trap ... 163

CHAPTER 7 RESET .. 164
7.1 Register Status After Reset... 164
7.2 Starting Up .. 165

CHAPTER 8 PIPELINE.. 166
8.1 Features... 167

User’s Manual U14559EJ3V1UM 11

8.1.1 Non-blocking load/store ..168
8.1.2 2-clock branch ..169
8.1.3 Efficient pipeline processing ...170

8.2 Pipeline Flow During Execution of Instructions ... 171
8.2.1 Load instructions...171
8.2.2 Store instructions ..172
8.2.3 Multiply instructions ..172
8.2.4 Arithmetic operation instructions...173
8.2.5 Saturated operation instructions ...174
8.2.6 Logical operation instructions ...174
8.2.7 Branch instructions ...174
8.2.8 Bit manipulation instructions ...176
8.2.9 Special instructions...176
8.2.10 Debug function instructions...181

8.3 Pipeline Disorder.. 182
8.3.1 Alignment hazard..182
8.3.2 Referencing execution result of load instruction ...183
8.3.3 Referencing execution result of multiply instruction ..184
8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC...185
8.3.5 Cautions when creating programs ..185

8.4 Additional Items Related to Pipeline .. 186
8.4.1 Harvard architecture ...186
8.4.2 Short path ...187

CHAPTER 9 SHIFTING TO DEBUG MODE .. 189
9.1 How to Shift to Debug Mode ... 189
9.2 Cautions .. 195

APPENDIX A NOTES.. 197
A.1 Restriction on Conflict Between sld Instruction and Interrupt request 197

A.1.1 Description..197
A.1.2 Countermeasure ...197

APPENDIX B INSTRUCTION LIST.. 198

APPENDIX C INSTRUCTION OPCODE MAP.. 212

APPENDIX D DIFFERENCES WITH ARCHITECTURE OF V850 CPU.. 217

APPENDIX E INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU...... 219

APPENDIX F INDEX.. 221

APPENDIX G REVISION HISTORY... 224
G.1 Major Revisions in This Edition.. 224
G.2 History of Revisions up to This Edition... 225

User’s Manual U14559EJ3V1UM 12

CHAPTER 1 GENERAL

Real-time control systems are used in a wide range of applications, including:

 • office equipment such as HDDs (Hard Disk Drives), PPCs (Plain Paper Copiers), printers, and facsimiles,

 • automobile electronics such as engine control systems and ABSs (Antilock Braking Systems), and

 • factory automation equipment such as NC (Numerical Control) machine tools and various controllers.

The great majority of these systems conventionally employ 8-bit or 16-bit microcontrollers. However, the

performance level of these microcontrollers has become inadequate in recent years as control operations have risen

in complexity, leading to the development of increasingly complicated instruction sets and hardware design. As a

result, the need has arisen for a new generation of microcontrollers operable at much higher frequencies to achieve an

acceptable level of performance under today’s more demanding requirements.

The V850 Series of microcontrollers was developed to satisfy this need. This series uses RISC architecture that

can provide maximum performance with simpler hardware, allowing users to obtain a performance approximately 15

times higher than that of the existing 78K/III Series and 78K/IV Series of CISC single-chip microcontrollers at a lower

total cost.

In addition to the basic instructions of conventional RISC CPUs, the V850 Series is provided with special

instructions such as saturation, bit manipulation, and multiply/divide (executed by a hardware multiplier) instructions,

which are especially suited to digital servo control systems. Moreover, instruction formats are designed for maximum

compiler coding efficiency, allowing the reduction of object code sizes.

The V850E1 CPU is a 32-bit RISC CPU core for ASIC, newly developed as the CPU core central to system LSI in

the current age of system-on-a-chip. This core includes not only the control functions of the V850 CPU, the CPU core

incorporated in the V850 Series, but also supports data processing through its enhanced external bus interface

performance, and the addition of features such as C language switch statement processing, table lookup branching,

stack frame creation/deletion, data conversion, and other high-level language supporting instructions.

In addition, because the instruction codes are upwardly compatible with the V850 CPU at the object code level, the

software resources of systems that incorporate the V850 CPU can be used unchanged.

CHAPTER 1 GENERAL

User’s Manual U14559EJ3V1UM 13

1.1 Features

(1) High-performance 32-bit architecture for embedded control

• Number of instructions: 83

• 32-bit general-purpose registers: 32

• Load/store instructions in long/short format

• 3-operand instruction

• 5-stage pipeline of 1 clock cycle per stage

• Hardware interlock on register/flag hazards

• Memory space Program space: 64 MB linear

 Data space: 4 GB linear

(2) Special instructions

• Saturation operation instructions

• Bit manipulation instructions

• Multiply instructions (On-chip hardware multiplier executing multiplication in 1 clock)

 16 bits × 16 bits → 32 bits

 32 bits × 32 bits → 32 bits or 64 bits

CHAPTER 1 GENERAL

User’s Manual U14559EJ3V1UM 14

1.2 Internal Configuration

The V850E1 CPU executes almost all instructions such as address calculation, arithmetic and logical operation,

and data transfer in one clock by using a 5-stage pipeline.

It contains dedicated hardware such as a multiplier (32 × 32 bits) and a barrel shifter (32 bits/clock) to execute

complicated instructions at high speeds.

Figure 1-1 shows the internal block diagram.

Figure 1-1. Internal Block Diagram of V850E1 CPU

Data cache

ROM

Instruction
queue

Multiplier
(32 × 32 → 64)

Barrel
shifter

ALU

Instruction
cache

Program
counter

General-purpose
registers

System registers

User’s Manual U14559EJ3V1UM 15

CHAPTER 2 REGISTER SET

The registers can be classified into two types: program registers that can be used for general programming, and

system registers that can control the execution environment. All the registers are 32 bits wide.

Figure 2-1. Registers

(a) Program registers

031

r0 (Zero register)

r1 (Assembler-reserved register)

r2

r3 (Stack pointer (SP))

r4 (Global pointer (GP))

r5 (Text pointer (TP))

r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30 (Element pointer (EP))

r31 (Link pointer (LP))

PC (Program counter)

(b) System registers

031

EIPC (Interrupt status saving register)

EIPSW (Interrupt status saving register)

FEPC (NMI status saving register)

FEPSW (NMI status saving register)

ECR (Exception cause register)

PSW (Program status word)

CTPC (CALLT caller status saving register)

CTPSW (CALLT caller status saving register)

DBPC (Exception/debug trap status saving register)

DBPSW (Exception/debug trap status saving register)

CTBP (CALLT base pointer)

DIR (Debug interface register)

BPC0 (Breakpoint control register 0)

ASID (Program ID register)

BPAV0 (Breakpoint address setting register 0)

BPAM1 (Breakpoint address mask register 1)

BPDV0 (Breakpoint data setting register 0)

BPDM1 (Breakpoint data mask register 1)

BPC1 (Breakpoint control register 1)

BPAV1 (Breakpoint address setting register 1)

BPAM0 (Breakpoint address mask register 0)

BPDV1 (Breakpoint data setting register 1)

BPDM0 (Breakpoint data mask register 0)

Note These registers are reserved for the

debug function. They can only be used in

type A or B products. They cannot be

used in other product types.

Note

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 16

2.1 Program Registers

The program registers include general-purpose registers (r0 to r31) and a program counter (PC).

Table 2-1. Program Registers

Program Registers Name Function Description

r0 Zero register Always holds 0.

r1 Assembler-reserved register Used as working register for address generation.

r2 Address/data variable register (when the real-time OS to be used is not using r2)

r3 Stack pointer (SP) Used for stack frame generation when function is called.

r4 Global pointer (GP) Used to access global variable in data area.

r5 Text pointer (TP) Used as register for pointing to start address of text area

(area where program code is placed)

r6 to r29 Address/data variable registers

r30 Element pointer (EP) Used as base pointer for address generation when memory

is accessed.

General-purpose

registers

r31 Link pointer (LP) Used when compiler calls function.

Program counter PC Holds instruction address during program execution.

Remark For detailed descriptions of r1, r3 to r5, and r31 used by an assembler or C compiler, refer to the CA850 (C

Compiler Package) Assembly Language User’s Manual.

(1) General-purpose registers (r0 to r31)

Thirty-two general-purpose registers, r0 to r31, are provided. All these registers can be used for data variables

or address variables.

However, care must be exercised as follows in using the r0 to r5, r30, and r31 registers.

(a) r0, r30

r0 and r30 are implicitly used by instructions.

r0 is a register that always holds 0, and is used for operations using 0 and offset 0 addressing. r30 is

used as a base pointer when accessing memory using the SLD and SST instructions.

(b) r1, r3 to r5, r31

r1, r3 to r5, and r31 are implicitly used by the assembler and C compiler.

Before using these registers, therefore, their contents must be saved so that they are not lost. The

contents must be restored to the registers after the registers have been used.

(c) r2

r2 is sometimes used by a real-time OS. When the real-time OS to be used is not using r2, r2 can be

used as an address variable register or a data variable register.

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 17

(2) Program counter (PC)

This register holds an instruction address during program execution. The lower 26 bits of this register are

valid, and bits 31 to 26 are reserved for future function expansion (fixed to 0). If a carry occurs from bit 25 to

bit 26, it is ignored. Bit 0 is always fixed to 0 so that execution cannot branch to an odd address.

Figure 2-2. Program Counter (PC)

31 26 25 1 0

PC 0 Initial value
00000000H

0 0 0 0 0 0 (Instruction address during execution)

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 18

2.2 System Registers

The system registers control the CPU status and hold information on interrupts.

System registers can be read or written by specifying the relevant system register number from the following list

using a system register load/store instruction (LDSR or STSR instruction).

Table 2-2. System Register Numbers

Operand Specifiability Register

No.

Register Name

LDSR

Instruction

STSR

Instruction

0 Interrupt status saving register (EIPC)

1 Interrupt status saving register (EIPSW)

2 NMI status saving register (FEPC)

3 NMI status saving register (FEPSW)

4 Exception cause register (ECR) ×

5 Program status word (PSW)

6 to 15 (Numbers reserved for future function expansion (operation cannot be guaranteed if

accessed))

× ×

16 CALLT caller status saving register (CTPC)

17 CALLT caller status saving register (CTPSW)

18 Exception/debug trap status saving register (DBPC) Note 1

19 Exception/debug trap status saving register (DBPSW) Note 1

20 CALLT base pointer (CTBP)

21 Debug interface register (DIR) Note 1

22 Breakpoint control registers 0 and 1 (BPC0, BPC1)Note 2 Note 1 Note 1

23 Program ID register (ASID)

24 Breakpoint address setting registers 0 and 1 (BPAV0, BPAV1)Note 2 Note 1 Note 1

25 Breakpoint address mask registers 0 and 1 (BPAM0, BPAM1)Note 2 Note 1 Note 1

26 Breakpoint data setting registers 0 and 1 (BPDV0, BPDV1)Note 2 Note 1 Note 1

27 Breakpoint data mask registers 0 and 1 (BPDM0, BPDM1)Note 2 Note 1 Note 1

28 to 31 (Numbers reserved for future function expansion (operation cannot be guaranteed if

accessed))

× ×

Notes 1. These registers can be accessed only in the debug mode of type A and B products. Accessing these

registers in other product types is prohibited. If they are accessed, the operation is not guaranteed.

 2. The actual register to be accessed is specified by the DIR.CS bit.

Caution When returning using the RETI instruction after setting bit 0 of EIPC, FEPC, or CTPC to 1 using

the LDSR instruction and servicing an interrupt, the value of bit 0 is ignored (because bit 0 of the

PC is fixed to 0). Therefore, be sure to set an even number (bit 0 = 0) when setting a value to

EIPC, FEPC, or CTPC.

Remark O: Accessible

 ×: Inaccessible

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 19

2.2.1 Interrupt status saving registers (EIPC, EIPSW)

Two interrupt status saving registers are provided: EIPC and EIPSW.

If a software exception or maskable interrupt occurs, the contents of the program counter (PC) are saved to EIPC,

and the contents of the program status word (PSW) are saved to EIPSW (if a non-maskable interrupt (NMI) occurs,

the contents are saved to the NMI status saving registers (FEPC, FEPSW)).

Except for some instructions, the address of the instruction next to the one being executed when the software

exception or maskable interrupt occurs is saved to EIPC (see Table 6-1 Interrupt/Exception Codes).

The current value of the PSW is saved to EIPSW.

Because only one pair of interrupt status saving registers is provided, the contents of these registers must be

saved by program when multiple interrupt servicing is enabled.

Bits 31 to 26 of EIPC and bits 31 to 12 and 10 to 8 of EIPSW are reserved for future function expansion (fixed to 0).

Figure 2-3. Interrupt Status Saving Registers (EIPC, EIPSW)

31 0

EIPSW (Contents of PSW)

811

31 26 25 0

EIPC (Contents of PC)0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0Note

91012

Initial value
0xxxxxxxH

(x: Undefined)

Initial value
00000xxxH

0

(x: Undefined)

7

Note Contents of SS flag in PSW

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 20

2.2.2 NMI status saving registers (FEPC, FEPSW)

Two NMI status saving registers are provided: FEPC and FEPSW.

If a non-maskable interrupt (NMI) occurs, the contents of the program counter (PC) are saved to FEPC, and the

contents of the program status word (PSW) are saved to FEPSW.

Except for some instructions, the address of the instruction next to the one being executed when the NMI occurs is

saved to FEPC (see Table 6-1 Interrupt/Exception Codes).

The current value of the PSW is saved to FEPSW.

Because only one pair of NMI status saving registers is provided, the contents of these registers must be saved by

program when multiple interrupt servicing is enabled.

Bits 31 to 26 of FEPC and bits 31 to 12 and 10 to 8 of FEPSW are reserved for future function expansion (fixed to

0).

Figure 2-4. NMI Status Saving Registers (FEPC, FEPSW)

 31 26 25 0

FEPC (Contents of PC)

31 0

FEPSW (Contents of PSW)

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0

811

0 0 0Note

91012

Initial value
0 xxxxxxxH

(x: Undefined)

0 0000xxxH
0

(x: Undefined)

Initial value

7

Note Contents of SS flag in PSW

2.2.3 Exception cause register (ECR)

The exception cause register (ECR) holds the cause information when an exception or interrupt occurs. The ECR

holds an exception code which identifies each interrupt source (see Table 6-1 Interrupt/Exception Codes). This is a

read-only register, and therefore no data can be written to it by using the LDSR instruction.

Figure 2-5. Exception Cause Register (ECR)

31 0

ECR FECC EICC

16 15

Initial value
00000000H

 Bit Position Bit Name Function

 31 to 16 FECC Exception code of non-maskable interrupt (NMI)

 15 to 0 EICC Exception code of exception or maskable interrupt

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 21

2.2.4 Program status word (PSW)

The program status word (PSW) is a collection of flags that indicate the status of the program (result of instruction

execution) and the status of the CPU.

If the contents of the bits in this register are modified by the LDSR instruction, the PSW will assume the new value

immediately after the LDSR instruction has been executed. Setting the ID flag to 1, however, will disable interrupt

requests even while the LDSR instruction is being executed.

Bits 31 to 12 and 10 to 8 are reserved for future function expansion (fixed to 0).

Figure 2-6. Program Status Word (PSW) (1/2)

31 8 7 6 5 4 3 2 1 0

PSW N
P

S
A
T

E
P

I
D

O
V

S ZC
Y

Initial value
00000020H

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0

11

S
S

91012

 Bit Position Flag Name Function

 11 SSNote Operates with single-step execution when this flag is set to 1 (debug trap occurs each time
instruction is executed).
This flag is cleared to 0 when branching to the interrupt servicing routine.
When the SE bit of the DIR register is 0, this flag is not set (fixed to 0).

 7 NP Indicates that non-maskable interrupt (NMI) servicing is in progress. This flag is set to 1
when an NMI request is acknowledged, and multiple interrupt servicing is disabled.
 0: NMI servicing is not in progress
 1: NMI servicing is in progress

 6 EP Indicates that exception processing is in progress. This flag is set to 1 when an exception
occurs. Even when this bit is set, interrupt requests can be acknowledged.
 0: Exception processing is not in progress
 1: Exception processing is in progress

 5 ID Indicates whether a maskable interrupt request can be acknowledged.
 0: Interrupts enabled (EI)
 1: Interrupts disabled (DI)

 4 SATNote Indicates that an overflow has occurred in a saturated operation and the result is saturated.
This is a cumulative flag. When the result is saturated, the flag is set to 1 and is not cleared
to 0 even if the next result is not saturated. To clear this flag to 0, use the LDSR instruction.
This flag is neither set to 1 nor cleared to 0 by execution of an arithmetic operation
instruction.
 0: Not saturated
 1: Saturated

 3 CY Indicates whether a carry or borrow occurred as a result of the operation.
 0: Carry or borrow did not occur
 1: Carry or borrow occurred

 2 OVNote Indicates whether overflow occurred as a result of the operation.
 0: Overflow did not occur
 1: Overflow occurred

Note Can only be used in type A or B products. Cannot be used in other product types.

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 22

Figure 2-6. Program Status Word (PSW) (2/2)

 Bit Position Flag Name Function

 1 SNote Indicates whether the result of the operation is negative.
 0: Result is positive or zero
 1: Result is negative

 0 Z Indicates whether the result of the operation is zero.
 0: Result is not zero
 1: Result is zero

 Note In the case of saturate instructions, the SAT, S, and OV flags will be set according to the result of the

operation as shown in the table below. Note that the SAT flag is set to 1 only when the OV flag has

been set to 1 during a saturated operation.

 Status of Flag

Status of Operation

Result SAT OV S

Operation Result of Saturation

Processing

 Maximum positive

value is exceeded

1 1 0 7FFFFFFFH

 Maximum negative

value is exceeded

1 1 1 80000000H

 Positive (Not exceeding

maximum value)

Holds the

value before

0 0 Operation result

 Negative (Not exceeding

maximum value)

operation 1

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 23

2.2.5 CALLT caller status saving registers (CTPC, CTPSW)

Two CALLT caller status saving registers are provided: CTPC and CTPSW.

If a CALLT instruction is executed, the contents of the program counter (PC) are saved to CTPC, and the contents

of the program status word (PSW) are saved to CTPSW.

The contents saved to CTPC are the address of the instruction next to the CALLT instruction.

The current value of the PSW is saved to CTPSW.

Bits 31 to 26 of CTPC and bits 31 to 12 and 10 to 8 of CTPSW are reserved for future function expansion (fixed to

0).

Figure 2-7. CALLT Caller Status Saving Registers (CTPC, CTPSW)

 31 26 25 0

CTPC (Contents of PC)

31 0

CTPSW (Contents of PSW)

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0

811

0 0Note

91012

Initial value
0xxxxxxxH

(x: Undefined)

00000xxxH
0

Initial value

(x: Undefined)

7

Note Contents of SS flag in PSW

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 24

2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)

Two exception/debug trap status saving registers are provided: DBPC and DBPSW.

When an exception trap, debug trapNote, or debug break occurs or during a single-step operation, the contents of the

program counter (PC) are saved to DBPC, and the contents of the program status word (PSW) are saved to DBPSW.

The contents to be saved to DBPC are as follows.

Table 2-3. Contents to Be Saved to DBPC

Cause for Saving Contents Saved to DBPC

Occurrence of exception trap Address of the instruction next to the instruction that caused an

exception trap

Occurrence of debug trap Address of the instruction next to the instruction that caused a debug

trap

Execution trap

Misalign access exception

Alignment error exception

Address of the instruction that caused a break Occurrence of debug break

Access trap Address of the instruction next to the instruction that caused a break

Single-step operation execution Address of the instruction to be executed next (instruction executed

when restoring from the debug monitor routine)

Remark For details of causes for saving, refer to CHAPTER 9 SHIFTING TO DEBUG MODE.

The current value of the PSW is saved to DBPSW.

Reading from this register is enabled only in debug mode (DIR.DM bit = 1) (writing to this register is always

enabled). If this register is read in user mode (DM bit = 0), an undefined value is read.

Bits 31 to 26 of DBPC and bits 31 to 12 and 10 to 8 of DBPSW are reserved for future function expansion (fixed to

0).

Note Type C products do not support a debug trap.

Figure 2-8. Exception/Debug Trap Status Saving Registers (DBPC, DBPSW)

 31 26 25 0

DBPC (Contents of PC)

31

DBPSW

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0

0

(Contents of PSW) 0

811

0 0Note

91012

Initial value
0 xxxxxxxH

(x: Undefined)

0 0000xxxH
0

Initial value

(x: Undefined)

7

Note Contents of SS flag in PSW

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 25

2.2.7 CALLT base pointer (CTBP)

The CALLT base pointer (CTBP) is used to specify a table address and to generate a target address (bit 0 is fixed

to 0).

Bits 31 to 26 are reserved for future function expansion (fixed to 0).

Figure 2-9. CALLT Base Pointer (CTBP)

31 26 25 0

CTBP (Base address)0 0 0 0 0 0 0 Initial value
0xxxxxxxH

(x: Undefined)

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 26

2.2.8 Debug interface register (DIR)

The debug interface register (DIR) controls the debug function and indicates the debug function status.

The values of the bits in this register can be changed by using the LDSR instruction. Changed values become

valid immediately after the execution of this instruction is complete.

This register can only be written in the debug mode (DM bit = 1) (except for bits 3 and 1) but can always be read.

Bits 14 to 8, 6 to 4, 2, and 1 are undefined in the user mode (DM bit = 0).

Bits 31 to 15 and 7 are reserved for future function expansion (fixed to 0).

Caution Use of the debug interface register (DIR) is possible only in type A and B products, not in other

product types.

Figure 2-10. Debug Interface Register (DIR) (1/3)

31 8 7 3 2 1 0

DIR A
T

D
M

Initial value
00000040H

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S
Q

R
E

C
S

0 0 S
E

11 910

C
E

M
A

A
E

0 M
T

I
N

T
1

T
0

C
M

45612131415

 Bit Position Bit Name Function

 14 SQ
Notes 1, 2

 Sets sequential break mode (sets a break if a break occurs for channel 0 and channel 1 in that

order).

 0: Normal break mode

 1: Sequential break mode

 13 RE
Notes 1, 2

 Sets range break mode (sets a break only when a break occurs for channels 0 and 1

simultaneously).

 0: Normal break mode

 1: Range break mode

 12 CS
Note 2

 Sets break register bank.

 0: Select bank 0 register (channel 0 control register)

 1: Select bank 1 register (channel 1 control register)

 11 CE Enables/disables COMBO interrupt.

 0: COMBO interrupt disabled

 1: COMBO interrupt enabled

 10 MA Enables/disables misalign access exception detection.

 0: Misalign access exception detection disabled

 1: Misalign access exception detection enabled

 9 AE Enables/disables alignment error exception detection.

 0: Alignment error exception detection disabled

 1: Alignment error exception detection enabled

 Notes 1. Always set either the SQ or RE bit to 1 or clear both bits to 0. If both bits are set to 1, the

operation cannot be guaranteed.

 2. While the IN bit is set to 1, writing to the SQ, RE, and CS bits is disabled. When the IN bit is set to

1, each bit is automatically cleared to 0.

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 27

Figure 2-10. Debug Interface Register (DIR) (2/3)

 Bit Position Bit Name Function

 8 SE Enables/disables writing to SS flag of PSW.
 0: Writing to SS flag disabled (SS flag is fixed to 0)

 1: Writing to SS flag enabled

 6 INNote 1 Set to 1 by debug function reset.

Be sure to clear this bit to 0 after reset (while this bit is set to 1, writing to SQ, RE, and CS bits

is disabled, and T1 and T0 bits do not operate).

 5 T1Notes 1, 2 Set to 1 by channel 1 break generation.

Cleared to 0 by setting 0Note 4.

 4 T0Notes 1, 2 Set to 1 by channel 0 break generation.

Cleared to 0 by setting 0Note 4.

 3 CMNote 3 Set to 1 by shift to COMBO interrupt routine or debug monitor routine 2.

Writing to this bit is disabled.

 2 MTNote 1 Set to 1 by detection of misalign access exception.

Cleared to 0 by setting 0Note 4.

 1 ATNote 1 Set to 1 by detection of alignment error exception.

Cleared to 0 by setting 0Note 4.

 0 DMNote 3 Set to 1 when debug mode is entered. Cleared to 0 when user mode is entered.

Writing to this bit is disabled.

 Remark The explanations of the Notes are given on the next page.

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 28

Figure 2-10. Debug Interface Register (DIR) (3/3)

 Notes 1. The IN, T1, T0, MT, and AT bits are not automatically cleared to 0 after being set to 1 (they are

cleared to 0 only by the LDSR instruction).

 2. While the IN bit is set to 1, the T1 and T0 bits do not operate (even if a break occurs, these bits

are not set to 1), and are automatically cleared to 0.

 3. The DM and CM bits change as follows.

0

1

0

1

0

1

0

0

1

0

Main
routine

Debug
monitor
routine 1

COMBO
interrupt
routine

Debug
monitor
routine 2

DM
bit

CM
bit

User
mode

Debug
mode

User
mode

Debug
mode

User
mode

Debug
mode

User
mode

Debug
trap,
debug
break

Maskable/
non-maskable
interrupt

Debug
trap,
debug
break

Notes 4. The T1, T0, MT, and AT bits cannot be arbitrarily set to 1 by a user program.

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 29

2.2.9 Breakpoint control registers 0 and 1 (BPC0, BPC1)

Breakpoint control registers 0 and 1 (BPC0, BPC1) indicate the control and status of the debug function.

One or other of these registers is enabled by the setting of the DIR.CS bit.

The values of the bits in these registers can be changed by using the LDSR instruction. Changed values become

valid immediately after execution of this instruction. (If the FE bit is set to 1, the timing at which the changed values

become valid is delayed, but the changes are definitely reflected after the DBRET instruction is executed.)

These registers can only be set in the debug mode (DIR.DM bit = 1). In the user mode (DM bit = 0), bit 0 = 0, and

bits 23 to 15, 11 to 7, and 4 to 1 are undefined.

Bits 31 to 24, 14 to 12, 6, and 5 are reserved for future function expansion (fixed to 0).

Caution Use of breakpoint control registers 0 and 1 (BPC0, BPC1) is possible only in type A and B

products, not in other product types.

Figure 2-11. Breakpoint Control Registers 0 and 1 (BPC0, BPC1) (1/2)

31 8 7 3 2 1 0

BPC0
W
E

R
E

Initial value
00xxxxx0H

0 0 0 0 0 0 0 00
V
A

11 910

TY
V
D

M
D

F
E

12131415

00

6

00
I
E

162324

BP ASID

31 8 7 3 2 1 0

BPC1
W
E

R
E 00xxxxx0H

0 0 0 0 0 0 0 00
V
A

11 910

TY
V
D

M
D

F
E

12131415

00

6

00
I
E

162324

BP ASID

(x: Undefined)

Initial value

(x: Undefined)

5 4

5 4

B
E

T
E

B
E

T
E

 Bit Position Bit Name Function

 23 to 16 BP ASID Sets the program ID that generates a break (valid only when IE bit = 1).

 15 IE Sets the comparison of the BP ASID bit and the program ID set in the ASID register.

 0: Not compared

 1: Compared

 11, 10 TY Sets the type of access for which a break is detected.

 0,0: Access by all data types

 0,1: Byte access (including bit manipulation)

 1,0: Halfword access

 1,1: Word access

Note that the contents set in this register are ignored in the case of an execution trap.

 9 VD Sets the match condition of the data comparator.

 0: Break on a match

 1: Break on a mismatch

 8 VA Sets the match condition of the address comparator.

 0: Break on a match

 1: Break on a mismatch

 7 MD Sets the operation of the data comparator.

 0: Break on match of data and condition.

 1: Whether data matches (data comparator) is ignored regardless of the setting of the VD bit

or BPDVx and BPDMx registers

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 30

Figure 2-11. Breakpoint Control Registers 0 and 1 (BPC0, BPC1) (2/2)

 Bit Position Bit Name Function

 4 TENote 1 Enables/disables trigger output.

 0: Trigger output disabled

 1: Trigger output enabled (output corresponding trigger before break occurs in channel 0 or 1).

 3 BENote 1 Sets whether or not a break in channel 0 or 1 is reported to the CPU.

 0: Not reported.

 1: Reported (break).

 2 FE Enables/disables break/trigger due to instruction execution address match.

 0: Break/trigger disabled

 1: Break/trigger enabledNote 2

 1 WE Enables/disables break/trigger on data write.

 0: Break/trigger disabled

 1: Break/trigger enabledNote 3

 0 RE Enables/disables break/trigger on data read.

 0: Break/trigger disabled

 1: Break/trigger enabledNote 3

 Notes 1. The TE and BE bits can be set only in type B products. In other product types, the TE and BE bits

are fixed to 0 (however, even when the BE bit is fixed to 0, it reports a break to the CPU).

 2. If the FE bit is set to 1, always clear the WE and RE bits to 0.

 3. If the WE and RE bits are set to 1, always clear the FE bit to 0.

2.2.10 Program ID register (ASID)

This register sets the ID of the program currently under execution.

The program ID is used when a shift to the debug mode is necessary only in cases such as when a specific

program is being executed to download different programs to the RAM of the same address area. While the BPCn.IE

bit is set to 1, the system does not shift to the debug mode if the program IDs set to the BPCn.BP ASID bit and the

ASID register do not match; even if the break conditions match (n = 0, 1).

Bits 31 to 8 are reserved for future function expansion (fixed to 0).

Caution Use of the program ID register (ASID) is possible only in the type A and B products, not in other

product types.

Figure 2-12. Program ID Register (ASID)

31 8 7 0

ASID 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 0 0 0 0 0 0 ASID
Initial value
000000xxH

(x: Undefined)

 Bit Position Flag Name Function

 7 to 0 ASID ID of program currently under execution

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 31

2.2.11 Breakpoint address setting registers 0 and 1 (BPAV0, BPAV1)

These registers set the breakpoint addresses to be used by the address comparator.

One or other of these registers is enabled by the setting of the DIR.CS bit.

Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1). If read in the user

mode (DM bit = 0), an undefined value is read.

When these registers are not used, be sure to set each bit to 1.

Bits 31 to 28 are reserved for future function expansion (fixed to 0).

Caution Use of breakpoint address setting registers 0 and 1 (BPAV0, BPAV1) is possible only in the type

A and B products, not in other type products.

Figure 2-13. Breakpoint Address Setting Registers 0 and 1 (BPAV0, BPAV1)

31 0

BPAV0 0 0 0 0 (Breakpoint address)

2728

Initial value
0xxxxxxxH

(x: Undefined)
31 0

BPAV1 0 0 0 0

2728

0xxxxxxxH(Breakpoint address)
Initial value

(x: Undefined)

2.2.12 Breakpoint address mask registers 0 and 1 (BPAM0, BPAM1)

These registers set the bit mask for address comparison (masked by 1).

One or other of these registers is enabled by the setting of the DIR.CS bit.

Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1). If read in the user

mode (DM bit = 0), an undefined value is read.

When these registers are not used, be sure to set each bit to 1.

Bits 31 to 28 are reserved for future function expansion (fixed to 0).

Caution Use of breakpoint address mask registers 0 and 1 (BPAM0, BPAM1) is possible only in the type A

and B products, not in other product types.

Figure 2-14. Breakpoint Address Mask Registers 0 and 1 (BPAM0, BPAM1)

31 0

BPAM0 0 0 0 0 (Breakpoint address mask)

2728

Initial value
0xxxxxxxH

(x: Undefined)
31 0

BPAM1 0 0 0 0

2728

0xxxxxxxH(Breakpoint address mask)
Initial value

(x: Undefined)

CHAPTER 2 REGISTER SET

User’s Manual U14559EJ3V1UM 32

2.2.13 Breakpoint data setting registers 0 and 1 (BPDV0, BPDV1)

These registers set the breakpoint data to be used by the data comparator.

One or other of these registers is enabled by the setting of the DIR.CS bit.

Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1). If read in the user

mode (DM bit = 0), an undefined value is read.

When these registers are not used, be sure to set each bit to 1.

Caution Use of breakpoint data setting registers 0 and 1 (BPDV0, BPDV1) is possible only in the type A

and B products, not in other product types.

Remark Set the instruction code for 16-bit instructions aligned to the LSB. Set the instruction codes for 32-bit

instructions in little endian format.

Figure 2-15. Breakpoint Data Setting Registers 0 and 1 (BPDV0, BPDV1)

31 0

BPDV0 Initial value
Undefined(Breakpoint data)

31 0

BPDV1 (Breakpoint data)
Initial value
Undefined

2.2.14 Breakpoint data mask registers 0 and 1 (BPDM0, BPDM1)

These registers set the bit mask for data comparison (masked by 1).

One or other of these registers is enabled by the setting of the DIR.CS bit.

Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1). If read in the user

mode (DM bit = 0), an undefined value is read.

When these registers are not used, be sure to set each bit to 1.

When the data access type that detects breaks is set to the byte access (BPCn.TY bit = 0, 1), set bits 31 to 8 to 1,

and if halfword access (TY bit = 0, 1), set bits 31 to 16 to 1 (n = 0, 1).

Caution Use of breakpoint data mask registers 0 and 1 (BPDM0, BPDM1) is possible only in the type A

and B products, not in other product types.

Figure 2-16. Breakpoint Data Mask Registers 0 and 1 (BPDM0, BPDM1)

31 0

BPDM0 Initial value
Undefined(Breakpoint data mask)

31 0

BPDM1 (Breakpoint data mask)
Initial value
Undefined

User’s Manual U14559EJ3V1UM 33

CHAPTER 3 DATA TYPES

3.1 Data Format

The following data types are supported (see 3.2 Data Representation).

• Integer (32, 16, 8 bits)

• Unsigned integer (32, 16, 8 bits)

• Bit

Three types of data lengths: word (32 bits), halfword (16 bits), and byte (8 bits) are supported. Byte 0 of any data

is always the least significant byte (this is called little endian) and is shown at the rightmost position in figures

throughout this manual.

The following paragraphs describe the data format where data of fixed length is in memory.

(1) Word

 A word is 4-byte (32-bit) contiguous data that starts from any word boundaryNote. Each bit is assigned a number

from 0 to 31. The LSB (Least Significant Bit) is bit 0 and the MSB (Most Significant Bit) is bit 31. A word is

specified by its address “A” (with the 2 lowest bits fixed to 0 when misalign access is disabledNote), and occupies 4

bytes, A, A+1, A+2, and A+3.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword

or word units. See 3.3 Data Alignment.

31 24 23 16 15 7 0

Data

8

AddressAA+1A+2A+3

L

B
S

M

B
S

CHAPTER 3 DATA TYPES

User’s Manual U14559EJ3V1UM 34

(2) Halfword

 A halfword is 2-byte (16-bit) contiguous data that starts from any halfword boundaryNote. Each bit is assigned a

number from 0 to 15. The LSB is bit 0 and the MSB is bit 15. A halfword is specified by its address “A” (with the

lowest bit fixed to 0Note), and occupies 2 bytes, A and A+1.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword

or word units. See 3.3 Data Alignment.

 15 7 0

Data

8

AddressAA+1

M

B
S

L

B
S

(3) Byte

 A byte is 8-bit contiguous data that starts from any byte boundaryNote. Each bit is assigned a number from 0 to 7.

The LSB is bit 0 and the MSB is bit 7. A byte is specified by its address “A”.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword

or word units. See 3.3 Data Alignment.

 7 0

Data

AddressA

L

B
S

M

B
S

(4) Bit

 A bit is 1-bit data at the nth bit position in 8-bit data that starts from any byte boundaryNote. A bit is specified by its

address “A” and bit number “n”.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword

or word units. See 3.3 Data Alignment.

7

Byte of address A ...

0

AddressA

Bit numbern

Data

CHAPTER 3 DATA TYPES

User’s Manual U14559EJ3V1UM 35

3.2 Data Representation

3.2.1 Integer

An integer is expressed as a binary number of 2’s complement and is 32, 16, or 8 bits long. Regardless of its

length, bit 0 of an integer is the least significant bit. The higher the bit number, the more significant the bit. Because

2’s complement is used, the most significant bit is used as a sign bit.

The integer range of each data length is as follows.

• Word (32 bits): –2,147,483,648 to +2,147,483,647

• Halfword (16 bits): –32,768 to +32,767

• Byte (8 bits): –128 to +127

3.2.2 Unsigned integer

While an integer is data that can take either a positive or a negative value, an unsigned integer is an integer that is

not negative. Like an integer, an unsigned integer is also expressed as 2’s complement and is 32, 16, or 8 bits long.

Regardless of its length, bit 0 of an unsigned integer is the least significant bit, and the higher the bit number, the more

significant the bit. However, no sign bit is used.

The unsigned integer range of each data length is as follows.

• Word (32 bits): 0 to 4,294,967,295

• Halfword (16 bits): 0 to 65,535

• Byte (8 bits): 0 to 255

3.2.3 Bit

1-bit data that can take a value of 0 (cleared) or 1 (set) can be handled as bit data. Bit manipulation can be

performed only on 1-byte data in the memory space in the following four ways.

• SET1

• CLR1

• NOT1

• TST1

CHAPTER 3 DATA TYPES

User’s Manual U14559EJ3V1UM 36

3.3 Data Alignment

Data must be aligned (boundary aligned) in accordance with the setting of misalign access enable/disable.

Misalign access indicates access to other than a halfword boundary (LSB of the address is 0) when the target data

is in halfword format, and access to other than a word boundary (lower two bits of the address are 0) when the target

data is in word format.

Remark The V850E1 CPU enables/disables misalign access in accordance with the IFIMAEN pin input level.

(1) When misalign access is enabled

Regardless of the data format (byte, halfword, word), data can be allocated to all addresses.

However, when halfword or word data is used, at least one bus cycle occurs and the bus efficiency is

degraded if data is not aligned.

(2) When misalign access is disabled

The lower bit(s) of the address (LSB if halfword data is used, lower two bits if word data is used) are masked

by 0 and accessed. Therefore, if the target data is not aligned correctly, data may be lost or be rounded off.

Therefore, allocate the halfword data to be processed from a halfword boundary, and the word data to be

processed from a word boundary.

Figure 3-1. Example of Data Allocation When Misalign Access Is Disabled

 (a) Example of correct data allocation (b) Example of incorrect data allocation

HW

W

HW

HW

W

x x x x x x 0 7 H
x x x x x x 0 6 H

x x x x x x 0 5 H
x x x x x x 0 4 H
x x x x x x 0 3 H

x x x x x x 0 2 H
x x x x x x 0 1 H
x x x x x x 0 0 H

x x x x x x 0 7 H
x x x x x x 0 6 H

x x x x x x 0 5 H
x x x x x x 0 4 H
x x x x x x 0 3 H

x x x x x x 0 2 H
x x x x x x 0 1 H
x x x x x x 0 0 H

←Halfword boundary

←Halfword boundary/
word boundary

←Halfword boundary

←Halfword boundary/
word boundary

←Halfword boundary/
word boundary

←Halfword boundary

←Halfword boundary/
word boundary

←Halfword boundary

←Halfword boundary/
word boundary

←Halfword boundary/
word boundary

Remark W: Word data

 HW: Halfword data

User’s Manual U14559EJ3V1UM 37

CHAPTER 4 ADDRESS SPACE

The V850E1 CPU supports a 4 GB linear address space. Both memory and I/O are mapped to this address space

(memory-mapped I/O). The V850E1 CPU (NB85E) outputs 32-bit addresses to the memory and I/O. The maximum

address is 232–1.

Byte data allocated to each address is defined with bit 0 as the LSB and bit 7 as the MSB. With regards to

multiple-byte data, the byte with the lowest address value is defined to be the LSB and the byte with the highest

address value is defined to be the MSB (little endian).

Data consisting of 2 bytes is called a halfword, and 4-byte data is called a word.

In this user’s manual, data consisting of 2 or more bytes is illustrated as shown below, with the lower address

shown on the right and the higher address on the left.

31 24 23 16 15 7 08

Data

Address

Data

Address

Data

Address

AA+1A+2A+3

15 7 08

AA+1

7 0

A

Word at
address A

..
Halfword at
address A

 ..
Byte at

address A

.......

CHAPTER 4 ADDRESS SPACE

User’s Manual U14559EJ3V1UM 38

4.1 Memory Map

The V850E1 CPU employs a 32-bit architecture and supports a linear address space (data area) of up to 4 GB for

operand addressing (data access).

It supports a linear address space (program area) of up to 64 MB for instruction addressing.

Figure 4-1 shows the memory map.

Figure 4-1. Memory Map

(a) Address space

(b) Program area

00000000H

03FFFFFFH
04000000H

FFFFFFFFH

Data area
(4 GB linear)

Program area
(64 MB linear)

3FFFFFFH

3FFF000H
3FFEFFFH

0000000H

64 MB

Peripheral I/O
area (4 KB)

RAM area

External memory
area

ROM area

CHAPTER 4 ADDRESS SPACE

User’s Manual U14559EJ3V1UM 39

4.2 Addressing Mode

The CPU generates two types of addresses: instruction addresses used for instruction fetch and branch

operations; and operand addresses used for data access.

4.2.1 Instruction address

An instruction address is determined by the contents of the program counter (PC), and is automatically

incremented (+2) according to the number of bytes of an instruction to be fetched each time an instruction is executed.

When a branch instruction is executed, the branch destination address is loaded into the PC using one of the following

two addressing modes.

(1) Relative addressing (PC relative)

 The signed 9- or 22-bit data of an instruction code (displacement: disp×) is added to the value of the program

counter (PC). At this time, the displacement is treated as 2’s complement data with bits 8 and 21 serving as sign

bits (S).

 This addressing is used for the JARL disp22, reg2, JR disp22, and Bcond disp9 instructions.

Figure 4-2. Relative Addressing (1/2)

(a) JARL disp22, reg2 instruction, JR disp22 instruction

31 25 0

0 PC0 0 0 0 0

31 22 0

Sign extension S

+
21

0disp22

Memory to be manipulated

31 25 0

0 PC0 0 0 0 0

26

26

0

0

CHAPTER 4 ADDRESS SPACE

User’s Manual U14559EJ3V1UM 40

Figure 4-2. Relative Addressing (2/2)

(b) Bcond disp9 instruction

31 25 0

0 PC0 0 0 0 0

31 0

Sign extension S

+

0disp9

Memory to be manipulated

31 25 0

0 PC0 0 0 0 0

26

26

89

0

0

(2) Register addressing (register indirect)

 The contents of a general-purpose register (reg1) specified by an instruction are transferred to the program

counter (PC).

 This addressing is used for the JMP [reg1] instruction.

Figure 4-3. Register Addressing (JMP [reg1] Instruction)

31 0

reg1

Memory to be manipulated

31 25 0

0 PC0 0 0 0 0

26

0

CHAPTER 4 ADDRESS SPACE

User’s Manual U14559EJ3V1UM 41

4.2.2 Operand address

When an instruction is executed, the register or memory area to be accessed is specified in one of the following

four addressing modes.

(1) Register addressing

 The general-purpose register or system register specified in the general-purpose register specification field is

accessed as operand.

 This addressing mode applies to instructions using the operand format reg1, reg2, reg3, or regID.

(2) Immediate addressing

 The 5-bit or 16-bit data for manipulation is contained in the instruction code.

 This addressing mode applies to instructions using the operand format imm5, imm16, vector, or cccc.

Remark vector: Operand that is 5-bit immediate data for specifying a trap vector (00H to 1FH), and is used in

the TRAP instruction.

 cccc: Operand consisting of 4-bit data used in the CMOV, SASF, and SETF instructions to specify a

condition code. Assigned as part of the instruction code as 5-bit immediate data by

appending 1-bit 0 above the highest bit.

(3) Based addressing

 The following two types of based addressing are supported.

(a) Type 1

 The address of the data memory location to be accessed is determined by adding the value in the specified

general-purpose register (reg1) to the 16-bit displacement value (disp16) contained in the instruction code.

 This addressing mode applies to instructions using the operand format disp16 [reg1].

Figure 4-4. Based Addressing (Type 1)

31 0

reg1

Memory to be manipulated

31 0

Sign extension disp16

+
1516

CHAPTER 4 ADDRESS SPACE

User’s Manual U14559EJ3V1UM 42

(b) Type 2

 The address of the data memory location to be accessed is determined by adding the value in the element

pointer (r30) to the 7- or 8-bit displacement value (disp7, disp8).

 This addressing mode applies to SLD and SST instructions.

Figure 4-5. Based Addressing (Type 2)

 31 0

r30 (element pointer)

Memory to be manipulated

31 0

0 (zero extension) disp8 or disp7

+
78

Remark Byte access: disp7

 Halfword access and word access: disp8

(4) Bit addressing

 This addressing is used to access 1 bit (specified with bit#3 of 3-bit data) among 1 byte of the memory space to

be manipulated by using an operand address which is the sum of the contents of a general-purpose register

(reg1) and a 16-bit displacement (disp16) sign-extended to a word length.

 This addressing mode applies only to bit manipulation instructions.

Figure 4-6. Bit Addressing

31 0

reg1

Memory to be manipulated

31 0

Sign extension disp16

+
1516

n

Remark n: Bit position specified with 3-bit data (bit#3) (n = 0 to 7)

User’s Manual U14559EJ3V1UM 43

CHAPTER 5 INSTRUCTIONS

5.1 Instruction Format

There are two types of instruction formats: 16-bit and 32-bit. The 16-bit format instructions include binary

operation, control, and conditional branch instructions, and the 32-bit format instructions include load/store, jump, and

instructions that handle 16-bit immediate data.

An instruction is actually stored in memory as follows.

• Lower bytes of instruction (including bit 0) → lower address

• Higher bytes of instruction (including bit 15 or bit 31) → higher address

Caution Some instructions have an unused field (RFU). This field is reserved for future expansion and

must be fixed to 0.

(1) reg-reg instruction (Format I)

 A 16-bit instruction format having a 6-bit opcode field and two general-purpose register specification fields.

15 11 10 5 4 0

reg2 opcode reg1

(2) imm-reg instruction (Format II)

 A 16-bit instruction format having a 6-bit opcode field, 5-bit immediate field, and a general-purpose register

specification field.

15 11 10 5 4 0

reg2 opcode imm

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 44

(3) Conditional branch instruction (Format III)

 A 16-bit instruction format having a 4-bit opcode field, 4-bit condition code field, and an 8-bit displacement field.

15 11 10 6 4 0

disp opcode conddisp

37

(4) 16-bit load/store instruction (Format IV)

 A 16-bit instruction format having a 4-bit opcode field, a general-purpose register specification field, and a 7-bit

displacement field (or 6-bit displacement field + 1-bit sub-opcode field).

15 11 10 6 0

reg2 opcode disp

disp/sub-opcode

17

 A 16-bit instruction format having a 7-bit opcode field, a general-purpose register specification field, and a 4-bit

displacement field.

15 11 10 4 0

reg2 opcode disp

3

(5) Jump instruction (Format V)

 A 32-bit instruction format having a 5-bit opcode field, a general-purpose register specification field, and a 22-bit

displacement field.

15 11 10 16

opcode disp 0

0 31

reg2

176 5

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 45

(6) 3-operand instruction (Format VI)

 A 32-bit instruction format having a 6-bit opcode field, two general-purpose register specification fields, and a 16-

bit immediate field.

15 11 10 16

opcode imm

0 31

reg2

45

reg1

(7) 32-bit load/store instruction (Format VII)

 A 32-bit instruction format having a 6-bit opcode field, two general-purpose register specification fields, and a 16-

bit displacement field (or 15-bit displacement field + 1-bit sub-opcode field).

15 11 10 16

opcode disp

0 31

reg2

45

reg1

disp/sub-opcode

17

(8) Bit manipulation instruction (Format VIII)

 A 32-bit instruction format having a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit specification field, a general-

purpose register specification field, and a 16-bit displacement field.

15 11 10 16

opcode disp

0 31

bit #

45

reg1sub

14 13

(9) Extended instruction format 1 (Format IX)

 A 32-bit instruction format having a 6-bit opcode field, 6-bit sub-opcode field, and two general-purpose register

specification fields (one field may be register number field (regID) or condition code field (cond)).

15 11 10 1617

opcode sub-opcode

0 31

reg2

45

reg1/regID/cond RFURFU

27 26 2021

0

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 46

(10) Extended instruction format 2 (Format X)

 A 32-bit instruction format having a 6-bit opcode field and 6-bit sub-opcode field.

15 11 10 1617

opcode sub-opcode

0 31

RFU

45

RFURFU

27 26 202113 12

RFU/sub-opcode

RFU/imm/vector 0

(11) Extended instruction format 3 (Format XI)

 A 32-bit instruction format having a 6-bit opcode field, 6-bit and 1-bit sub-opcode field, and three general-purpose

register specification fields.

15 11 10 16

opcode sub-opcode

0 31

reg2

45

RFUreg3

27 26 2021

0

1718

sub-opcode

reg1

(12) Extended instruction format 4 (Format XII)

 A 32-bit instruction format having a 6-bit opcode field, 4-bit and 1-bit sub-opcode field, 10-bit immediate field, and

two general-purpose register specification fields.

15 11 10 16

opcode sub-opcode

0 31

reg2

45

imm (high)reg3

27 26 22

0

1718

imm (low)

23

sub-opcode

(13) Stack manipulation instruction 1 (Format XIII)

 A 32-bit instruction format having a 5-bit opcode field, 5-bit immediate field, 12-bit register list field, and one

general-purpose register specification field (or 5-bit sub-opcode field).

15 11 10 16

opcode reg2/sub-opcode

0 31

RFU

6 5

list

20

imm

1 21

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 47

5.2 Outline of Instructions

(1) Load instructions

Transfer data from memory to a register. The following instructions (mnemonics) are provided.

(a) LD instructions

• LD.B: Load byte

• LD.BU: Load byte unsigned

• LD.H: Load halfword

• LD.HU: Load halfword unsigned

• LD.W: Load word

(b) SLD instructions

• SLD.B: Short format load byte

• SLD.BU: Short format load byte unsigned

• SLD.H: Short format load halfword

• SLD.HU: Short format load halfword unsigned

• SLD.W: Short format load word

(2) Store instructions

Transfer data from register to a memory. The following instructions (mnemonics) are provided.

(a) ST instructions

• ST.B: Store byte

• ST.H: Store halfword

• ST.W: Store word

(b) SST instructions

• SST.B: Short format store byte

• SST.H: Short format store halfword

• SST.W: Short format store word

(3) Multiply instructions

Execute multiply processing in 1 to 2 clocks with on-chip hardware multiplier. The following instructions

(mnemonics) are provided.

• MUL: Multiply word

• MULH: Multiply halfword

• MULHI: Multiply halfword immediate

• MULU: Multiply word unsigned

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 48

(4) Arithmetic operation instructions

Add, subtract, divide, transfer, or compare data between registers. The following instructions (mnemonics)

are provided.

• ADD: Add

• ADDI: Add immediate

• CMOV: Conditional move

• CMP: Compare

• DIV: Divide word

• DIVH: Divide halfword

• DIVHU: Divide halfword unsigned

• DIVU: Divide word unsigned

• MOV: Move

• MOVEA: Move effective address

• MOVHI: Move high halfword

• SASF: Shift and set flag condition

• SETF: Set flag condition

• SUB: Subtract

• SUBR: Subtract reverse

(5) Saturated operation instructions

Execute saturation addition and subtraction. If the result of the operation exceeds the maximum positive

value (7FFFFFFFH), 7FFFFFFFH is returned. If the result of the operation exceeds the maximum negative

value (80000000H), 80000000H is returned. The following instructions (mnemonics) are provided.

• SATADD: Saturated add

• SATSUB: Saturated subtract

• SATSUBI: Saturated subtract immediate

• SATSUBR: Saturated subtract reverse

(6) Logical operation instructions

These instructions include logical operation and shift instructions. The shift instructions include arithmetic

shift and logical shift instructions. Operands can be shifted by two or more bit positions in one clock cycle by

the on-chip barrel shifter. The following instructions (mnemonics) are provided.

• AND: AND

• ANDI: AND immediate

• BSH: Byte swap halfword

• BSW: Byte swap word

• HSW: Halfword swap word

• NOT: NOT

• OR: OR

• ORI: OR immediate

• SAR: Shift arithmetic right

• SHL: Shift logical left

• SHR: Shift logical right

• SXB: Sign extend byte

• SXH: Sign extend halfword

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 49

• TST: Test

• XOR: Exclusive OR

• XORI: Exclusive OR immediate

• ZXB: Zero extend byte

• ZXH: Zero extend halfword

(7) Branch instructions

These instructions include unconditional branch instructions (JARL, JMP, JR) and a conditional branch

instruction (Bcond) that alters the control depending on the status of flags. Program control can be

transferred to the address specified by the branch instruction. The following instructions (mnemonics) are

provided.

• Bcond (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV, BNZ, BP, BR, BSA, BV,

BZ): Branch on condition code

• JARL: Jump and register link

• JMP: Jump register

• JR: Jump relative

(8) Bit manipulation instructions

Execute a logical operation to bit data in memory. Only the specified bit is affected. The following

instructions (mnemonics) are provided.

• CLR1: Clear bit

• NOT1: Not bit

• SET1: Set bit

• TST1: Test bit

(9) Special instructions

These instructions are instructions not included in the categories of instructions described above. The

following instructions (mnemonics) are provided.

• CALLT: Call with table look up

• CTRET: Return from CALLT

• DI: Disable interrupt

• DISPOSE: Function dispose

• EI: Enable interrupt

• HALT: Halt

• LDSR: Load system register

• NOP: No operation

• PREPARE: Function prepare

• RETI: Return from trap or interrupt

• STSR: Store system register

• SWITCH: Jump with table look up

• TRAP: Trap

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 50

(10) Debug function instructions

These instructions are instructions reserved for the debug function. The following instructions (mnemonics)

are provided.

• DBRET: Return from debug trap

• DBTRAP: Debug trap

Caution Type C products do not support debug function instructions.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 51

5.3 Instruction Set

In this section, the mnemonic of each instruction is described divided into the following items.

• Instruction format: Indicates the description and operand of the instruction (for symbols, see Table 5-1).

• Operation: Indicates the function of the instruction (for symbols, see Table 5-2).

• Format: Indicates the instruction format (see 5.1 Instruction Format).

• Opcode: Indicates the bit field of the instruction opcode (for symbols, see Table 5-3).

• Flag: Indicates the operation of the flag that is altered after executing the instruction.

0 indicates clear (reset), 1 indicates set, and – indicates no change.

• Explanation: Explains the operation of the instruction.

• Remark: Explains the supplementary information of the instruction.

• Caution: Indicates the cautions.

Table 5-1. Instruction Format Conventions

Symbol Meaning

reg1 General-purpose register (used as source register)

reg2 General-purpose register (mainly used as destination register. Some are also used as source

registers.)

reg3 General-purpose register (mainly used as remainder of division results or higher 32 bits of multiply

results)

bit#3 3-bit data for specifying bit number

imm× ×-bit immediate data

disp× ×-bit displacement data

regID System register number

vector 5-bit data for trap vector (00H to1FH) specification

cccc 4-bit data for condition code specification

sp Stack pointer (r3)

ep Element pointer (r30)

list 12 Lists of registers

Table 5-2. Operation Conventions (1/2)

Symbol Meaning

← Assignment

GR [] General-purpose register

SR [] System register

zero-extend (n) Zero-extends n to word

sign-extend (n) Sign-extends n to word

load-memory (a, b) Reads data of size b from address a

store-memory (a, b, c) Writes data b of size c to address a

load-memory-bit (a, b) Reads bit b from address a

store-memory-bit (a, b, c) Writes c to bit b of address a

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 52

Table 5-2. Operation Conventions (2/2)

Symbol Meaning

saturated (n) Performs saturation processing of n.

If n ≥ 7FFFFFFFH as result of calculation, n = 7FFFFFFFH.

If n ≥ 80000000H as result of calculation, n = 80000000H.

result Reflects result on flag

Byte Byte (8 bits)

Halfword Halfword (16 bits)

Word Word (32 bits)

+ Add

– Subtract

|| Bit concatenation

× Multiply

÷ Divide

% Remainder of division results

AND And

OR Or

XOR Exclusive Or

NOT Logical negate

logically shift left by Logical left shift

logically shift right by Logical right shift

arithmetically shift right by Arithmetic right shift

Table 5-3. Opcode Conventions

Symbol Meaning

R 1-bit data of code specifying reg1 or regID

r 1-bit data of code specifying reg2

w 1-bit data of code specifying reg3

d 1-bit data of displacement

I 1-bit data of immediate (indicates higher bits of immediate)

i 1-bit data of immediate

cccc 4-bit data for condition code specification

CCCC 4-bit data for condition code specification of Bcond instruction

bbb 3-bit data for bit number specification

L 1-bit data of code specifying general-purpose register in register list

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 53

<Arithmetic operation instruction>

Add register/immediate

ADD

Add

Instruction format (1) ADD reg1, reg2

 (2) ADD imm5, reg2

Operation (1) GR [reg2] ← GR [reg2] + GR [reg1]

 (2) GR [reg2] ← GR [reg2] + sign-extend (imm5)

Format (1) Format I

 (2) Format II

Opcode 15 0
(1) rrrrr001110RRRRR

 15 0
(2) rrrrr010010iiiii

Flag CY 1 if a carry occurs from MSB; otherwise, 0.

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the result of an operation is negative; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise 0.

 SAT –

Explanation (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2, and stores the result in general-purpose register reg2. The data of general-

purpose register reg1 is not affected.

 (2) Adds 5-bit immediate data, sign-extended to word length, to the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 54

<Arithmetic operation instruction>

Add immediate

ADDI

Add Immediate

Instruction format ADDI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] + sign-extend (imm16)

Format Format VI

Opcode 15 0 31 16
rrrrr110000RRRRR iiiiiiiiiiiiiiii

Flag CY 1 if a carry occurs from MSB; otherwise, 0.

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the result of an operation is negative; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise 0.

 SAT –

Explanation Adds 16-bit immediate data, sign-extended to word length, to the word data of general-purpose

register reg1, and stores the result in general-purpose register reg2. The data of general-

purpose register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 55

<Logical operation instruction>

AND

AND

And

Instruction format AND reg1, reg2

Operation GR [reg2] ← GR [reg2] AND GR [reg1]

Format Format I

Opcode 15 0
rrrrr001010RRRRR

Flag CY –

 OV 0

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise 0.

 SAT –

Explanation ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1, and stores the result in general-purpose register reg2. The data of general-

purpose register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 56

<Logical operation instruction>

AND immediate

ANDI

And Immediate

Instruction format ANDI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] AND zero-extend (imm16)

Format Format VI

Opcode 15 0 31 16
rrrrr110110RRRRR iiiiiiiiiiiiiiii

Flag CY –

 OV 0

 S 0

 Z 1 if the result of an operation is 0; otherwise 0.

 SAT –

Explanation ANDs the word data of general-purpose register reg1 with the value of the 16-bit immediate

data, zero-extended to word length, and stores the result in general-purpose register reg2. The

data of general-purpose register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 57

<Branch instruction>

Branch on condition code with 9-bit displacement

Bcond

Branch on Condition Code

Instruction format Bcond disp9

Operation if conditions are satisfied

 then PC ← PC + sign-extend (disp9)

Format Format III

Opcode 15 0
ddddd1011dddCCCC

 dddddddd is the higher 8 bits of disp9.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Tests each flag of the PSW specified by the instruction. Branches if a specified condition is

satisfied; otherwise, executes the next instruction. The branch destination PC holds the sum of

the current PC value and 9-bit displacement, which is 8-bit immediate shifted 1 bit and sign-

extended to word length.

Remark Bit 0 of the 9-bit displacement is masked by 0. The current PC value used for calculation is the

address of the first byte of this instruction. If the displacement value is 0, therefore, the branch

destination is this instruction itself.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 58

Table 5-4. Bcond Instructions

Instruction Condition Code

(CCCC)

Status of Flag Branch Condition

BGE 1110 (S xor OV) = 0 Greater than or equal signed

BGT 1111 ((S xor OV) or Z) = 0 Greater than signed

BLE 0111 ((S xor OV) or Z) = 1 Less than or equal signed

Signed

integer

BLT 0110 (S xor OV) = 1 Less than signed

BH 1011 (CY or Z) = 0 Higher (Greater than)

BL 0001 CY = 1 Lower (Less than)

BNH 0011 (CY or Z) = 1 Not higher (Less than or equal)

Unsigned

integer

BNL 1001 CY = 0 Not lower (Greater than or equal)

BE 0010 Z = 1 Equal Common

BNE 1010 Z = 0 Not equal

BC 0001 CY = 1 Carry

BN 0100 S = 1 Negative

BNC 1001 CY = 0 No carry

BNV 1000 OV = 0 No overflow

BNZ 1010 Z = 0 Not zero

BP 1100 S = 0 Positive

BR 0101 – Always (unconditional)

BSA 1101 SAT = 1 Saturated

BV 0000 OV = 1 Overflow

Others

BZ 0010 Z = 1 Zero

Caution If executing a conditional branch instruction of a signed integer (BGE, BGT, BLE, or BLT) when

the SAT flag is set to 1 as a result of executing a saturated operation instruction, the branch

condition loses its meaning. In ordinary operations, if an overflow occurs, the S flag is inverted

(0 → 1 or 1 → 0). This is because the result is a negative value if it exceeds the maximum

positive value and it is a positive value if it exceeds the maximum negative value. However,

when a saturated operation instruction is executed, and if the result exceeds the maximum

positive value, the result is saturated with a positive value; if the result exceeds the maximum

negative value, the result is saturated with a negative value. Unlike the ordinary operation,

therefore, the S flag is not inverted even if an overflow occurs. Hence, the S flag is affected

differently when the instruction is a saturated operation, as opposed to an ordinary operation. A

branch condition which is an XOR of the S and OV flags will therefore have no meaning.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 59

<Logical operation instruction>

Byte swap halfword

BSH

Byte Swap Halfword

Instruction format BSH reg2, reg3

Operation GR [reg3] ← GR [reg2] (23:16) || GR [reg2] (31:24) || GR [reg2] (7:0) || GR [reg2] (15:8)

Format Format XII

Opcode 15 0 31 16
rrrrr11111100000 wwwww01101000010

Flag CY 1 if one or more bytes in the lower halfword of the operation result is 0; otherwise 0.

 OV 0

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the lower halfword data of the operation result is 0; otherwise, 0.

 SAT –

Explanation Endian translation.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 60

<Logical operation instruction>

Byte swap word

BSW

Byte Swap Word

Instruction format BSW reg2, reg3

Operation GR [reg3] ← GR [reg2] (7:0) || GR [reg2] (15:8) || GR [reg2] (23:16) || GR [reg2] (31:24)

Format Format XII

Opcode 15 0 31 16
rrrrr11111100000 wwwww01101000000

Flag CY 1 if one or more bytes in the word data of the operation result is 0; otherwise 0.

 OV 0

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the word data of the operation result is 0; otherwise, 0.

 SAT –

Explanation Endian translation.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 61

<Special instruction>

Call with table look up

CALLT

Call with Table Look Up

Instruction format CALLT imm6

Operation CTPC ← PC + 2 (return PC)

 CTPSW ← PSW

 adr ← CTBP + zero-extend (imm6 logically shift left by 1)

 PC ← CTBP + zero-extend (Load-memory (adr, Halfword))

Format Format II

Opcode 15 0

0000001000iiiiii

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Performs processing as follows.

<1> Transfers the restored PC and PSW contents to CTPC and CTPSW.

<2> Adds the CTBP value and the 6-bit immediate data logically shifted left by 1 bit and zero-

extended to word length, to generate a 32-bit table entry address.

<3> Loads the halfword of the address generated in step <2> and zero-extends to word

length.

<4> Adds the data of step <3> and the CTBP value to generate a 32-bit target address.

<5> Branches to the target address generated in step <4>.

Caution If an interrupt is generated during instruction execution, the execution of that instruction may

stop after the end of the read/write cycle. Execution is resumed after returning from the

interrupt.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 62

<Bit manipulation instruction>

Clear bit

CLR1

Clear Bit

Instruction format (1) CLR1 bit#3, disp16 [reg1]

 (2) CLR1 reg2, [reg1]

Operation (1) adr ← GR [reg1] + sign-extend (disp16)

 Z flag ← Not (Load-memory-bit (adr, bit#3))

 Store-memory-bit (adr, bit#3, 0)

 (2) adr ← GR [reg1]

 Z flag ← Not (Load-memory-bit (adr, reg2))

 Store-memory-bit (adr, reg2, 0)

Format (1) Format VIII

 (2) Format IX

Opcode 15 0 31 16
(1) 10bbb111110RRRRR dddddddddddddddd

 15 0 31 16
(2) rrrrr111111RRRRR 0000000011100100

Flag CY –

 OV –

 S –

 Z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1

 SAT –

Explanation (1) Adds the data of general-purpose register reg1 to the 16-bit displacement, sign-extended

to word length, to generate a 32-bit address. Then reads the byte data referenced by the

generated address, clears the bit specified by the 3-bit bit number, and writes back to the

original address.

 (2) Reads the data of general-purpose register reg1 to generate a 32-bit address. Then reads

the byte data referenced by the generated address, clears the bit specified by the data of

the lower 3 bits of reg2, and writes back to the original address.

Remark The Z flag of the PSW indicates whether the specified bit was a 0 or 1 before this instruction

was executed. It does not indicate the content of the specified bit after this instruction has been

executed.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 63

<Arithmetic operation instruction>

Conditional move

CMOV

Conditional Move

Instruction format (1) CMOV cccc, reg1, reg2, reg3

 (2) CMOV cccc, imm5, reg2, reg3

Operation (1) if conditions are satisfied

 then GR [reg3] ← GR [reg1]

 else GR [reg3] ← GR [reg2]

 (2) if conditions are satisfied

 then GR [reg3] ← sign-extend (imm5)

 else GR [reg3] ← GR [reg2]

Format (1) Format XI

 (2) Format XII

Opcode 15 0 31 16
(1) rrrrr111111RRRRR wwwww011001cccc0

 15 0 31 16
(2) rrrrr111111iiiii wwwww011000cccc0

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation (1) The data of general-purpose register reg1 is transferred to general-purpose register reg3 if

the condition specified by condition code “cccc” is satisfied; otherwise, the data of general-

purpose register reg2 is transferred to general-purpose register reg3. One of the codes

shown in Table 5-5 Condition Codes should be specified as the condition code “cccc”.

 (2) The data of 5-bit immediate, sign-extended to word length, is transferred to general-

purpose register reg3 if the condition specified by condition code “cccc” is satisfied;

otherwise, the data of general-purpose register reg2 is transferred to general-purpose

register reg3. One of the codes shown in Table 5-5 Condition Codes should be specified

as the condition code “cccc”.

Remark See SETF instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 64

<Arithmetic operation instruction>

Compare register/immediate (5-bit)

CMP

Compare

Instruction format (1) CMP reg1, reg2

 (2) CMP imm5, reg2

Operation (1) result ← GR [reg2] – GR [reg1]

 (2) result ← GR [reg2] – sign-extend (imm5)

Format (1) Format I

 (2) Format II

Opcode 15 0
(1) rrrrr001111RRRRR

 15 0
(2) rrrrr010011iiiii

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

 OV 1 if overflow occurs; otherwise 0.

 S 1 if the result of the operation is negative; otherwise, 0.

 Z 1 if the result of the operation is 0; otherwise, 0.

 SAT –

Explanation (1) Compares the word data of general-purpose register reg2 with the word data of general-

purpose register reg1, and indicates the result by using the flags of the PSW. To compare,

the contents of general-purpose register reg1 are subtracted from the word data of

general-purpose register reg2. The data of general-purpose registers reg1 and reg2 is not

affected.

 (2) Compares the word data of general-purpose register reg2 with 5-bit immediate data, sign-

extended to word length, and indicates the result by using the flags of the PSW. To

compare, the contents of the sign-extended immediate data are subtracted from the word

data of general-purpose register reg2. The data of general-purpose register reg2 is not

affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 65

<Special instruction>

Return from CALLT

CTRET

Return from CALLT

Instruction format CTRET

Operation PC ← CTPC

 PSW ← CTPSW

Format Format X

Opcode 15 0 31 16
0000011111100000 0000000101000100

Flag CY Value read from CTPSW is restored.

 OV Value read from CTPSW is restored.

 S Value read from CTPSW is restored.

 Z Value read from CTPSW is restored.

 SAT Value read from CTPSW is restored.

Explanation Fetches the restored PC and PSW from the appropriate system register and returns from the

routine called by CALLT instruction. The operations of this instruction are as follows.

 (1) The restored PC and PSW are read from CTPC and CTPSW.

 (2) Once the PC and PSW are restored to the return values, control is transferred to the return

address.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 66

<Debug function instruction>

Return from debug trap

DBRET

Return from debug trap

Instruction format DBRET

Operation PC ← DBPC

 PSW ← DBPSW

Format Format X

Opcode 15 0 31 16
0000011111100000 0000000101000110

Flag CY Value read from DBPSW is restored.

 OV Value read from DBPSW is restored.

 S Value read from DBPSW is restored.

 Z Value read from DBPSW is restored.

 SAT Value read from DBPSW is restored.

Explanation Fetches the restored PC and PSW from the appropriate system register and returns from

debug mode.

Caution (1) Because the DBRET instruction is for debugging, it is essentially used by debug tools.

When a debug tool is using this instruction, therefore, use of it in the application may cause

a malfunction.

 (2) Type C products do not support the DBRET instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 67

<Debug function instruction>

Debug trap

DBTRAP

Debug trap

Instruction format DBTRAP

Operation DBPC ← PC + 2 (restored PC)

DBPSW ← PSW

PSW.NP ← 1

PSW.EP ← 1

PSW.ID ← 1

PC ← 00000060H

Format Format I

Opcode 15 0
1111100001000000

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Saves the contents of the restored PC (address of the instruction following the DBTRAP

instruction) and the PSW to DBPC and DBPSW, respectively, and sets the NP, EP, and ID

flags of the PSW to 1.

 Next, the handler address (00000060H) of the exception trap is set to the PC, and control shifts

to the PC. PSW flags other than NP, EP, and ID flags are unaffected.

 Note that the value saved to DBPC is the address of the instruction following the DBTRAP

instruction.

Caution (1) Because the DBTRAP instruction is for debugging, it is essentially used by debug tools.

When a debug tool is using this instruction, therefore, use of it in the application may cause

a malfunction.

 (2) Type C products do not support the DBTRAP instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 68

<Special instruction>

Disable interrupt

DI

Disable Interrupt

Instruction format DI

Operation PSW.ID ← 1 (Disables maskable interrupt)

Format Format X

Opcode 15 0 31 16
0000011111100000 0000000101100000

Flag CY –

 OV –

 S –

 Z –

 SAT –

 ID 1

Explanation Sets the ID flag of the PSW to 1 to disable the acknowledgment of maskable interrupts during

execution of this instruction.

Remark Interrupts are not sampled during execution of this instruction. The PSW flag actually becomes

valid at the start of the next instruction. But because interrupts are not sampled during

instruction execution, interrupts are immediately disabled. Non-maskable interrupts (NMI) are

not affected by this instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 69

<Special instruction>

Function dispose

DISPOSE

Function Dispose

Instruction format (1) DISPOSE imm5, list12

 (2) DISPOSE imm5, list12, [reg1]

Operation (1) sp ← sp + zero-extend (imm5 logically shift left by 2)

 GR [reg in list12] ← Load-memory (sp, Word)

 sp ← sp + 4

 repeat 2 steps above until all regs in list12 are loaded

 (2) sp ← sp + zero-extend (imm5 logically shift left by 2)

 GR [reg in list12] ← Load-memory (sp, Word)

 sp ← sp + 4

 repeat 2 states above until all regs in list12 are loaded

 PC ← GR [reg1]

Format Format XIII

Opcode 15 0 31 16
(1) 0000011001iiiiiL LLLLLLLLLLL00000

 15 0 31 16
(2) 0000011001iiiiiL LLLLLLLLLLLRRRRR

 RRRRR must not be 00000.

LLLLLLLLLLLL indicates the bit value corresponding to the register list (list12) (for

example, “L” of bit 21 in an opcode indicates the value of bit 21 of list12). list12 is a 32-bit

register list defined as follows.

31 30 29 28 27 26 25 24 23 22 21 20 … 1 0

r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 − r30

Bits 31 to 21 and bit 0 correspond to each bit of the general-purpose registers (r21 to r31).

The register corresponding to the set bit (1) is specified as the manipulation target. For

example, when r20 and r30 are specified, list12 values are as follows (the set values of bits

20 to 1 to which registers do not correspond can be 0 or 1 (don’t care)).

• If the values of all the bits to which registers do not correspond are set to 0: 08000001H

• If the values of all the bits to which registers do not correspond are set to 1: 081FFFFFH

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 70

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation (1) Adds the data of 5-bit immediate imm5, logically shifted left by 2 and zero-extended to

word length, to sp. Then pops (loads data from the address specified by sp and adds 4 to

sp) the general-purpose registers listed in list12. Bit 0 of the address is masked by 0.

 (2) Adds the data of 5-bit immediate imm5, logically shifted left by 2 and zero-extended to

word length, to sp. Then pops (loads data from the address specified by sp and adds 4 to

sp) the general-purpose registers listed in list12, transfers control to the address specified

by general-purpose register reg1. Bit 0 of the address is masked by 0.

Remark The general-purpose registers in list12 are loaded in the downward direction (r31, r30, ... r20).

 The 5-bit immediate imm5 is used to restore a stack frame for auto variables and temporary

data.

 The lower 2 bits of the address specified by sp are always masked by 0 even if misaligned

access is enabled.

 If an interrupt occurs before updating sp, execution is aborted, and the interrupt is serviced.

Upon returning from the interrupt, the execution is restarted from the beginning, with the return

address being the address of this instruction (sp will retain its original value prior to the start of

execution).

Caution If an interrupt is generated during instruction execution, due to manipulation of the stack, the

execution of that instruction may stop after the read/write cycle and register value rewriting are

complete. Execution is resumed after returning from the interrupt.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 71

<Arithmetic operation instruction>

Divide word

DIV

Divide Word

Instruction format DIV reg1, reg2, reg3

Operation GR [reg2] ← GR [reg2] ÷ GR [reg1]

 GR [reg3] ← GR [reg2] % GR [reg1]

Format Format XI

Opcode 15 0 31 16
rrrrr111111RRRRR wwwww01011000000

Flag CY –

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the result of an operation is negative; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation Divides the word data of general-purpose register reg2 by the word data of general-purpose

register reg1, and stores the quotient in general-purpose register reg2, and the remainder in

general-purpose register reg3. If the data is divided by 0, overflow occurs, and the quotient is

undefined. The data of general-purpose register reg1 is not affected.

Remark Overflow occurs when the maximum negative value (80000000H) is divided by –1 (in which

case the quotient is 80000000H) and when data is divided by 0 (in which case the quotient is

undefined).

 If an interrupt occurs while this instruction is being executed, execution is aborted, and the

interrupt is serviced. Upon returning from the interrupt, the execution is restarted from the

beginning, with the return address being the address of this instruction. Also, general-purpose

registers reg1 and reg2 will retain their original values prior to the start of execution.

 If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2

(= reg3).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 72

<Arithmetic operation instruction>

Divide halfword

DIVH

Divide Halfword

Instruction format (1) DIVH reg1, reg2

 (2) DIVH reg1, reg2, reg3

Operation (1) GR [reg2] ← GR [reg2] ÷ GR [reg1]

 (2) GR [reg2] ← GR [reg2] ÷ GR [reg1]

 GR [reg3] ← GR [reg2] % GR [reg1]

Format (1) Format I

 (2) Format XI

Opcode 15 0
(1) rrrrr000010RRRRR

 15 0 31 16
(2) rrrrr111111RRRRR wwwww01010000000

Flag CY –

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the result of an operation is negative; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation (1) Divides the word data of general-purpose register reg2 by the lower halfword data of

general-purpose register reg1, and stores the quotient in general-purpose register reg2. If

the data is divided by 0, overflow occurs, and the quotient is undefined. The data of

general-purpose register reg1 is not affected.

 (2) Divides the word data of general-purpose register reg2 by the lower halfword data of

general-purpose register reg1, and stores the quotient in general-purpose register reg2

and the remainder in general-purpose register reg3. If the data is divided by 0, overflow

occurs, and the quotient is undefined. The data of general-purpose register reg1 is not

affected.

Remark (1) The remainder is not stored. Overflow occurs when the maximum negative value

(80000000H) is divided by –1 (in which case the quotient is 80000000H) and when data is

divided by 0 (in which case the quotient is undefined). If an interrupt occurs while this

instruction is being executed, execution is aborted, and the interrupt is serviced. Upon

returning from the interrupt, the execution is restarted from the beginning, with the return

address being the address of this instruction. Also, general-purpose registers reg1 and

reg2 will retain their original values prior to the start of execution.

 Do not specify r0 as the destination register reg2.

 The higher 16 bits of general-purpose register reg1 are ignored when division is executed.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 73

 (2) Overflow occurs when the maximum negative value (80000000H) is divided by –1 (in

which case the quotient is 80000000H) and when data is divided by 0 (in which case the

quotient is undefined).

 If an interrupt occurs while this instruction is being executed, execution is aborted, and the

interrupt is serviced. Upon returning from the interrupt, the execution is restarted from the

beginning, with the return address being the address of this instruction. Also, general-

purpose registers reg1 and reg2 will retain their original values prior to the start of

execution.

 The higher 16 bits of general-purpose register reg1 are ignored when division is executed.

 If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2

(= reg3).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 74

<Arithmetic operation instruction>

Divide halfword unsigned

DIVHU

Divide Halfword Unsigned

Instruction format DIVHU reg1, reg2, reg3

Operation GR [reg2] ← GR [reg2] ÷ GR [reg1]

 GR [reg3] ← GR [reg2] % GR [reg1]

Format Format XI

Opcode 15 0 31 16

rrrrr111111RRRRR wwwww01010000010

Flag CY –

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1, and stores the quotient in general-purpose register reg2, and the

remainder in general-purpose register reg3. If the data is divided by 0, overflow occurs, and the

quotient is undefined. The data of general-purpose register reg1 is not affected.

Remark Overflow occurs when data is divided by 0 (in which case the quotient is undefined).

 If an interrupt occurs while this instruction is being executed, execution is aborted, and the

interrupt is serviced. Upon returning from the interrupt, the execution is restarted from the

beginning, with the return address being the address of this instruction. Also, general-purpose

registers reg1 and reg2 will retain their original values prior to the start of execution.

 If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2

(= reg3).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 75

<Arithmetic operation instruction>

Divide word unsigned

DIVU

Divide Word Unsigned

Instruction format DIVU reg1, reg2, reg3

Operation GR [reg2] ← GR [reg2] ÷ GR [reg1]

 GR [reg3] ← GR [reg2] % GR [reg1]

Format Format XI

Opcode 15 0 31 16
rrrrr111111RRRRR wwwww01011000010

Flag CY –

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation Divides the word data of general-purpose register reg2 by the word data of general-purpose

register reg1, and stores the quotient in general-purpose register reg2, and the remainder in

general-purpose register reg3. If the data is divided by 0, overflow occurs, and the quotient is

undefined. The data of general-purpose register reg1 is not affected.

Remark Overflow occurs when data is divided by 0 (in which case the quotient is undefined).

 If an interrupt occurs while this instruction is being executed, execution is aborted, and the

interrupt is serviced. Upon returning from the interrupt, the execution is restarted from the

beginning, with the return address being the address of this instruction. Also, general-purpose

registers reg1 and reg2 will retain their original values prior to the start of execution.

 If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2

(= reg3).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 76

<Special instruction>

Enable interrupt

EI

Enable Interrupt

Instruction format EI

Operation PSW.ID ← 0 (enables maskable interrupt)

Format Format X

Opcode 15 0 31 16

1000011111100000 0000000101100000

Flag CY –

 OV –

 S –

 Z –

 SAT –

 ID 0

Explanation Clears the ID flag of the PSW to 0 and enables the acknowledgment of maskable interrupts

beginning at the next instruction.

Remark Interrupts are not sampled during instruction execution.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 77

<Special instruction>

Halt

HALT

Halt

Instruction format HALT

Operation Halts

Format Format X

Opcode 15 0 31 16

0000011111100000 0000000100100000

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Stops the operating clock of the CPU and places the CPU in the HALT mode.

Remark The HALT mode is exited by any of the following three events.

 • Reset input

 • Non-maskable interrupt request (NMI input)

 • Unmasked maskable interrupt request (when ID of PSW = 0)

 If an interrupt is acknowledged in the HALT mode, the address of the following instruction is

stored in EIPC or FEPC.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 78

<Logical operation instruction>

Halfword swap word

HSW

Halfword Swap Word

Instruction format HSW reg2, reg3

Operation GR [reg3] ← GR [reg2] (15:0) || GR [reg2] (31:16)

Format Format XII

Opcode 15 0 31 16
rrrrr11111100000 wwwww01101000100

Flag CY 1 if one or more halfwords in the word data of the operation result is 0; otherwise 0.

 OV 0

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the word data of the operation result is 0; otherwise, 0.

 SAT –

Explanation Endian translation.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 79

<Branch instruction>

Jump and register link

JARL

Jump and Register Link

Instruction format JARL disp22, reg2

Operation GR [reg2] ← PC + 4

 PC ← PC + sign-extend (disp22)

Format Format V

Opcode 15 0 31 16
rrrrr11110dddddd ddddddddddddddd0

 ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Saves the current PC value plus 4 to general-purpose register reg2, adds the current PC value

and 22-bit displacement, sign-extended to word length, and transfers control to the PC. Bit 0 of

the 22-bit displacement is masked by 0.

Remark The current PC value used for calculation is the address of the first byte of this instruction. If

the displacement value is 0, the branch destination is this instruction itself.

 This instruction is equivalent to a call subroutine instruction, and saves the restored PC address

to general-purpose register reg2. The JMP instruction, which is equivalent to a subroutine-

return instruction, can be used to specify the general-purpose register containing the return

address saved during the JARL subroutine-call instruction as reg1, to restore the program

counter.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 80

<Branch instruction>

Jump register

JMP

Jump Register

Instruction format JMP [reg1]

Operation PC ← GR [reg1]

Format Format I

Opcode 15 0
00000000011RRRRR

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Transfers control to the address specified by general-purpose register reg1. Bit 0 of the

address is masked by 0.

Remark When using this instruction as the subroutine-return instruction, specify the general-purpose

register containing the return address saved during the JARL subroutine-call instruction, to

restore the program counter. When using the JARL instruction, which is equivalent to the

subroutine-call instruction, store the PC return address in general-purpose register reg2.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 81

<Branch instruction>

Jump relative

JR

Jump Relative

Instruction format JR disp22

Operation PC ← PC + sign-extend (disp22)

Format Format V

Opcode 15 0 31 16
0000011110dddddd ddddddddddddddd0

 ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds the 22-bit displacement, sign-extended to word length, to the current PC value and stores

the value in the PC, and then transfers control to the PC. Bit 0 of the 22-bit displacement is

masked by 0.

Remark The current PC value used for the calculation is the address of the first byte of this instruction

itself. Therefore, if the displacement value is 0, the jump destination is this instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 82

<Load instruction>

Load byte

LD.B

Load

Instruction format LD.B disp16 [reg1], reg2

Operation adr ← GR [reg1] + sign-extend (disp16)

 GR [reg2] ← sign-extend (Load-memory (adr, Byte))

Format Format VII

Opcode 15 0 31 16
rrrrr111000RRRRR dddddddddddddddd

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to word

length to generate a 32-bit address. Byte data is read from the generated address, sign-

extended to word length, and stored in general-purpose register reg2.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 83

<Load instruction>

Load byte unsigned

LD.BU

Load

Instruction format LD.BU disp16 [reg1], reg2

Operation adr ← GR [reg1] + sign-extend (disp16)

 GR [reg2] ← zero-extend (Load-memory (adr, Byte))

Format Format VII

Opcode 15 0 31 16
rrrrr11110bRRRRR ddddddddddddddd1

 ddddddddddddddd is the higher 15 bits of disp16. b is the bit 0 of disp16.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to word

length to generate a 32-bit address. Byte data is read from the generated address, zero-

extended to word length, and stored in general-purpose register reg2.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 84

<Load instruction>

Load halfword

LD.H

Load

Instruction format LD.H disp16 [reg1], reg2

Operation adr ← GR [reg1] + sign-extend (disp16)

 GR [reg2] ← sign-extend (Load-memory (adr, Halfword))

Format Format VII

Opcode 15 0 31 16
rrrrr111001RRRRR ddddddddddddddd0

 ddddddddddddddd is the higher 15 bits of disp16.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to word

length to generate a 32-bit address. Halfword data is read from the generated address, sign-

extended to word length, and stored in general-purpose register reg2.

Caution The result of adding the data of general-purpose register reg1 and the 16-bit displacement sign-

extended to word length can be of two types depending on the type of data to be accessed

(halfword, word), and the misalign mode setting.

 • Lower bits are masked to 0 and address is generated (when misaligned access is

disabled)

 • Lower bits are not masked and address is generated (when misaligned access is

enabled)

 (when misaligned access is enabled in type D, E, and F products)

 For details on misaligned access, see 3.3 Data Alignment.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 85

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 86

<Load instruction>

Load halfword unsigned

LD.HU

Load

Instruction format LD.HU disp16 [reg1], reg2

Operation adr ← GR [reg1] + sign-extend (disp16)

 GR [reg2] ← zero-extend (Load-memory (adr, Halfword))

Format Format VII

Opcode 15 0 31 16
rrrrr111111RRRRR ddddddddddddddd1

 ddddddddddddddd is the higher 15 bits of disp16.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to word

length to generate a 32-bit address. Halfword data is read from the generated address, zero-

extended to word length, and stored in general-purpose register reg2.

Caution The result of adding the data of general-purpose register reg1 and the 16-bit displacement sign-

extended to word length can be of two types depending on the type of data to be accessed

(halfword, word), and the misalign mode setting.

 • Lower bits are masked to 0 and address is generated (when misaligned access is

disabled)

 • Lower bits are not masked and address is generated (when misaligned access is

enabled)

 (when misaligned access is enabled for the type D, E, and F products)

 For details on misaligned access, see 3.3 Data Alignment.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 87

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 88

<Load instruction>

Load word

LD.W

Load

Instruction format LD.W disp16 [reg1], reg2

Operation adr ← GR [reg1] + sign-extend (disp16)

 GR [reg2] ← Load-memory (adr, Word)

Format Format VII

Opcode 15 0 31 16
rrrrr111001RRRRR ddddddddddddddd1

 ddddddddddddddd is the higher 15 bits of disp16.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds the data of general-purpose register reg1 to a 16-bit displacement sign-extended to word

length to generate a 32-bit address. Word data is read from the generated address, and

stored in general-purpose register reg2.

Caution The result of adding the data of general-purpose register reg1 and the 16-bit displacement sign-

extended to word length can be of two types depending on the type of data to be accessed

(halfword, word), and the misalign mode setting.

 • Lower bits are masked to 0 and address is generated (when misaligned access is

disabled)

 • Lower bits are not masked and address is generated (when misaligned access is

enabled)

 (when misaligned access is enabled for the type D, E, and F products)

 For details on misaligned access, see 3.3 Data Alignment.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 89

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

processed. Upon returning from the interrupt, the execution is restarted from the beginning,

with the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 90

<Special instruction>

Load to system register

LDSR

Load to System Register

Instruction format LDSR reg2, regID

Operation SR [regID] ← GR [reg2]

Format Format IX

Opcode 15 0 31 16
rrrrr111111RRRRR 0000000000100000

 Caution The source register in this instruction is represented by reg2 for convenience

in describing its mnemonic . In the opcode, however, the reg1 field is used

for the source register. Unlike other instructions, therefore, the register

specified in the mnemonic description has a different meaning in the opcode.

rrrrr: regID specification

RRRRR: reg2 specification

Flag CY – (See Remark below.)

 OV – (See Remark below.)

 S – (See Remark below.)

 Z – (See Remark below.)

 SAT – (See Remark below.)

Explanation Loads the word data of general-purpose register reg2 to a system register specified by the

system register number (regID). The data of general-purpose register reg2 is not affected.

Remark If the system register number (regID) is equal to 5 (PSW register), the values of the

corresponding bits of the PSW are set according to the contents of reg2. Also, interrupts are

not sampled when the PSW is being written with a new value. If the ID flag is enabled with this

instruction, interrupt disabling begins at the start of execution, even though the ID flag does not

become valid until the beginning of the next instruction.

Caution The system register number regID is a number which identifies a system register. Accessing

system registers which are reserved or write-prohibited is prohibited and will lead to undefined

results.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 91

<Arithmetic operation instruction>

Move register/immediate (5-bit)/immediate (32-bit)

MOV

Move

Instruction format (1) MOV reg1, reg2

 (2) MOV imm5, reg2

 (3) MOV imm32, reg1

Operation (1) GR [reg2] ← GR [reg1]

 (2) GR [reg2] ← sign-extend (imm5)

 (3) GR [reg1] ← imm32

Format (1) Format I

 (2) Format II

(3) Format VI

Opcode 15 0
(1) rrrrr000000RRRRR

 15 0
(2) rrrrr010000iiiii

 15 0 31 16 47 32
(3) 00000110001RRRRR iiiiiiiiiiiiiiii IIIIIIIIIIIIIIII

 i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.

 I (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation (1) Transfers the word data of general-purpose register reg1 to general-purpose register reg2.

 The data of general-purpose register reg1 is not affected.

 (2) Transfers the value of a 5-bit immediate data, sign-extended to word length, to general-

purpose register reg2.

 Do not specify r0 as the destination register reg2.

 (3) Transfers the value of a 32-bit immediate data to general-purpose register reg1.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 92

<Arithmetic operation instruction>

Move effective address

MOVEA

Move Effective Address

Instruction format MOVEA imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] + sign-extend (imm16)

Format Format VI

Opcode 15 0 31 16

rrrrr110001RRRRR iiiiiiiiiiiiiiii

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-

purpose register reg1, and stores the result in general-purpose register reg2. The data of

general-purpose register reg1 is not affected. The flags are not affected by the addition.

 Do not specify r0 as the destination register reg2.

Remark This instruction calculates a 32-bit address and stores the result without affecting the PSW

flags.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 93

<Arithmetic operation instruction>

Move high halfword

MOVHI

Move High Halfword

Instruction format MOVHI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] + (imm16 II 016)

Format Format VI

Opcode 15 0 31 16
rrrrr110010RRRRR iiiiiiiiiiiiiiii

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds a word data whose higher 16 bits are specified by the 16-bit immediate data and lower 16

bits are 0 to the word data of general-purpose register reg1 and stores the result in general-

purpose register reg2. The data of general-purpose register reg1 is not affected.

 The flags are not affected by the addition.

 Do not specify r0 as the destination register reg2.

Remark This instruction is used to generate the higher 16 bits of a 32-bit address.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 94

<Multiply instruction>

Multiply word by register/immediate (9-bit)

MUL

Multiply Word

Instruction format (1) MUL reg1, reg2, reg3

 (2) MUL imm9, reg2, reg3

Operation (1) GR [reg3] || GR [reg2] ← GR [reg2] × GR [reg1]

 (2) GR [reg3] || GR [reg2] ← GR [reg2] × sign-extend (imm9)

Format (1) Format XI

 (2) Format XII

Opcode 15 0 31 16
(1) rrrrr111111RRRRR wwwww01000100000

 15 0 31 16
(2) rrrrr111111iiiii wwwww01001IIII00

 iiiii is the lower 5 bits of 9-bit immediate data.

 IIII is the higher 4 bits of 9-bit immediate data.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation (1) Multiplies the word data of general-purpose register reg2 by the word data of general-

purpose register reg1, and stores the higher 32 bits of the result (64-bit data) in general-

purpose register reg3 and the lower 32 bits in general-purpose register reg2. The data of

general-purpose register reg1 is not affected.

 (2) Multiplies the word data of general-purpose register reg2 by a 9-bit immediate data, sign-

extended to word length, and stores the higher 32 bits of the result (64-bit data) in general-

purpose registers reg3 and the lower 32 bits in general-purpose register reg2.

Remark If the address of reg2 is the same as the address of reg3, the higher 32 bits of the result are

stored in reg2 (= reg3).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 95

Caution In the “MUL reg1, reg2, reg3” instruction, do not use registers in combinations that satisfy all

the following conditions. If the instruction is executed with all the following conditions satisfied,

the operation is not guaranteed.

 • reg1 = reg3

 • reg1 ≠ reg2

 • reg1 ≠ r0

 • reg3 ≠ r0

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 96

<Multiply instruction>

Multiply halfword by register/immediate (5-bit)

MULH

Multiply Halfword

Instruction format (1) MULH reg1, reg2

 (2) MULH imm5, reg2

Operation (1) GR [reg2] (32) ← GR [reg2] (16) × GR [reg1] (16)

 (2) GR [reg2] ← GR [reg2] × sign-extend (imm5)

Format (1) Format I

 (2) Format II

Opcode 15 0
(1) rrrrr000111RRRRR

 15 0
(2) rrrrr010111iiiii

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation (1) Multiplies the lower halfword data of general-purpose register reg2 by the halfword data of

general-purpose register reg1, and stores the result in general-purpose register reg2 as

word data.

 The data of general-purpose register reg1 is not affected.

 Do not specify r0 as the destination register reg2.

 (2) Multiplies the lower halfword data of general-purpose register reg2 by a 5-bit immediate

data, sign-extended to halfword length, and stores the result in general-purpose register

reg2.

 Do not specify r0 as the destination register reg2.

Remark The higher 16 bits of general-purpose registers reg1 and reg2 are ignored in this operation.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 97

<Multiply instruction>

Multiply halfword by immediate (16-bit)

MULHI

Multiply Halfword Immediate

Instruction format MULHI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] × imm16

Format Format VI

Opcode 15 0 31 16
rrrrr110111RRRRR iiiiiiiiiiiiiiii

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Multiplies the lower halfword data of general-purpose register reg1 by the 16-bit immediate

data, and stores the result in general-purpose register reg2. The data of general-purpose

register reg1 is not affected.

 Do not specify r0 as the destination register reg2.

Remark The higher 16 bits of general-purpose register reg1 are ignored in this operation.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 98

<Multiply instruction>

Multiply word by register/immediate (9-bit)

MULU

Multiply Word Unsigned

Instruction format (1) MULU reg1, reg2, reg3

 (2) MULU imm9, reg2, reg3

Operation (1) GR [reg3] || GR [reg2] ← GR [reg2] × GR [reg1]

 (2) GR [reg3] || GR [reg2] ← GR [reg2] × zero-extend (imm9)

Format (1) Format XI

 (2) Format XII

Opcode 15 0 31 16
(1) rrrrr111111RRRRR wwwww01000100010

 15 0 31 16
(2) rrrrr111111iiiii wwwww01001IIII10

 iiiii is the lower 5 bits of 9-bit immediate data.

 IIII is the higher 4 bits of 9-bit immediate data.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation (1) Multiplies the word data of general-purpose register reg2 by the word data of general-

purpose register reg1, and stores the higher 32 bits of the result (64-bit data) in general-

purpose register reg3 and the lower 32 bits in general-purpose register reg2. The data of

general-purpose register reg1 is not affected.

 (2) Multiplies the word data of general-purpose register reg2 by a 9-bit immediate data, sign-

extended to word length, and stores the higher 32 bits of the result (64-bit data) in general-

purpose registers reg3 and the lower 32 bits in general-purpose register reg2.

Remark If the address of reg2 is the same as the address of reg3, the higher 32 bits of the result are

stored in reg2 (= reg3).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 99

Caution In the “MULU reg1, reg2, reg3” instruction, do not use registers in combinations that satisfy all

the following conditions. If the instruction is executed with all the following conditions satisfied,

the operation is not guaranteed.

 • reg1 = reg3

 • reg1 ≠ reg2

 • reg1 ≠ r0

 • reg3 ≠ r0

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 100

<Special instruction>

No operation

NOP

No Operation

Instruction format NOP

Operation Executes nothing and consumes at least one clock.

Format Format I

Opcode 15 0
0000000000000000

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Executes nothing and consumes at least one clock cycle.

Remark The contents of the PC are incremented by two. The opcode is the same as that of MOV r0, r0.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 101

<Logical operation instruction>

NOT

NOT

Not

Instruction format NOT reg1, reg2

Operation GR [reg2] ← NOT (GR [reg1])

Format Format I

Opcode 15 0
rrrrr000001RRRRR

Flag CY –

 OV 0

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation Logically negates (takes the 1’s complement of) the word data of general-purpose register reg1,

and stores the result in general-purpose register reg2. The data of general-purpose register

reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 102

<Bit manipulation instruction>

NOT bit

NOT1

Not Bit

Instruction format (1) NOT1 bit#3, disp16 [reg1]

 (2) NOT1 reg2, [reg1]

Operation (1) adr ← GR [reg1] + sign-extend (disp16)

 Z flag ← Not (Load-memory-bit (adr, bit#3))

 Store-memory-bit (adr, bit#3, Z flag)

 (2) adr ← GR [reg1]

 Z flag ← Not (Load-memory-bit (adr, reg2))

 Store-memory-bit (adr, reg2, Z flag)

Format (1) Format VIII

 (2) Format IX

Opcode 15 0 31 16
(1) 01bbb111110RRRRR dddddddddddddddd

 15 0 31 16
(2) rrrrr111111RRRRR 0000000011100010

Flag CY –

 OV –

 S –

 Z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1

 SAT –

Explanation (1) Adds the data of general-purpose register reg1 to a 16-bit displacement, sign-extended to

word length to generate a 32-bit address. Then reads the byte data referenced by the

generated address, inverts the bit specified by the 3-bit bit number (0 → 1 or 1 → 0), and

writes back to the original address.

 (2) Reads the data of general-purpose register reg1 to generate a 32-bit address. Then reads

the byte data referenced by the generated address, inverts the bit specified by the data of

lower 3 bits of reg2 (0 → 1 or 1 → 0), and writes back to the original address.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction was

executed, and does not indicate the contents of the specified bit after this instruction has been

executed.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 103

<Logical operation instruction>

OR

OR

Or

Instruction format OR reg1, reg2

Operation GR [reg2] ← GR [reg2] OR GR [reg1]

Format Format I

Opcode 15 0
rrrrr001000RRRRR

Flag CY –

 OV 0

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation ORs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1, and stores the result in general-purpose register reg2. The data of general-

purpose register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 104

<Logical operation instruction>

OR immediate (16-bit)

ORI

Or Immediate

Instruction format ORI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] OR zero-extend (imm16)

Format Format VI

Opcode 15 0 31 16
rrrrr110100RRRRR iiiiiiiiiiiiiiii

Flag CY –

 OV 0

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation ORs the word data of general-purpose register reg1 with the value of the 16-bit immediate data,

zero-extended to word length, and stores the result in general-purpose register reg2. The data

of general-purpose register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 105

<Special instruction>

Function prepare

PREPARE

Stack Frame Generation

Instruction format (1) PREPARE list12, imm5

 (2) PREPARE list12, imm5, sp/immNote

 Note sp/imm is specified by sub-opcode bits 20 and 19.

Operation (1) Store-memory (sp – 4, GR [reg in list12], Word) sp ← sp – 4

 repeat 1 step above until all regs in list12 is stored

 sp ← sp – zero-extend (imm5)

 (2) Store-memory (sp – 4, GR [reg in list12], Word) sp ← sp – 4

 repeat 1 step above until all regs in list12 is stored

 sp ← sp – zero-extend (imm5)

 ep ← sp/imm

Format Format XIII

Opcode 15 0 31 16

(1) 0000011110iiiiiL LLLLLLLLLLL00001

 15 0 31 16 Optional(47 to 32 or 63 to 32)
(2) 0000011110iiiiiL LLLLLLLLLLLff011 imm16 / imm32

In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32, bits

63 to 48 are the higher 16 bits of imm32.

 ff = 00: load sp to ep

 ff = 01: load 16-bit immediate data (bits 47 to 32), sign-extended, to ep

 ff = 10: load 16-bit immediate data (bits 47 to 32), logically shifted left by 16, to ep

 ff = 11: load 32-bit immediate data (bits 63 to 32) to ep

LLLLLLLLLLLL indicates the bit value corresponding to the register list (list12) (for example,

“L” of bit 21 in an opcode indicates the value of bit 21 of list12). list12 is a 32-bit register list

defined as follows.

31 30 29 28 27 26 25 24 23 22 21 20 … 1 0

r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 − r30

Bits 31 to 21 and bit 0 correspond to each bit of the general-purpose registers (r21 to r31). The

register corresponding to the set bit (1) is specified as the manipulation target. For example,

when r20 and r30 are specified, list12 values are as follows (the set values of bits 20 to 1 to

which registers do not correspond can be 0 or 1 (don’t care)).

• If the values of all the bits to which registers do not correspond are set to 0: 08000001H

• If the values of all the bits to which registers do not correspond are set to 1: 081FFFFFH

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 106

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation (1) Pushes (subtracts 4 from sp and stores the data in that address) the general-purpose

registers listed in list12. Then subtracts the data of 5-bit immediate imm5, logically shifted

left by 2 and zero-extended to word length, from sp.

 (2) Pushes (subtracts 4 from sp and stores the data in that address) the general-purpose

registers listed in list12. Then subtracts the data of 5-bit immediate imm5, logically shifted

left by 2 and zero-extended to word length, from sp.

 Next, loads the data specified by the 3rd operand (sp/imm) to ep.

Remark The general-purpose registers in list12 are stored in the upward direction (r20, r21, ... r31).

 The 5-bit immediate imm5 is used to make a stack frame for auto variables and temporary

data.

 The lower 2 bits of the address specified by sp are always masked by 0 even if misaligned

access is enabled.

 If an interrupt occurs before updating sp, execution is aborted, and the interrupt is serviced.

Upon returning from the interrupt, the execution is restarted from the beginning, with the return

address being the address of this instruction (sp and ep will retain their original values prior to

the start of execution).

Caution If an interrupt is generated during instruction execution, due to manipulation of the stack, the

execution of that instruction may stop after the read/write cycle and register value rewriting are

complete.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 107

<Special instruction>

Return from trap or interrupt

RETI

Return from Trap or Interrupt

Instruction format RETI

Operation if PSW.EP = 1

 then PC ← EIPC

 PSW ← EIPSW

 else if PSW.NP = 1

 then PC ← FEPC

 PSW ← FEPSW

 else PC ← EIPC

 PSW ← EIPSW

Format Format X

Opcode 15 0 31 16
0000011111100000 0000000101000000

Flag CY Value read from FEPSW or EIPSW is restored.

 OV Value read from FEPSW or EIPSW is restored.

 S Value read from FEPSW or EIPSW is restored.

 Z Value read from FEPSW or EIPSW is restored.

 SAT Value read from FEPSW or EIPSW is restored.

Explanation This instruction reads the restored PC and PSW from the appropriate system register, and

operation returns from a software exception or interrupt routine. The operations of this

instruction are as follows.

 (1) If the EP flag of the PSW is 1, the restored PC and PSW are read from EIPC and EIPSW,

regardless of the status of the NP flag of the PSW.

 If the EP flag of the PSW is 0 and the NP flag of the PSW is 1, the restored PC and PSW

are read from FEPC and FEPSW.

 If the EP flag of the PSW is 0 and the NP flag of the PSW is 0, the restored PC and PSW

are read from EIPC and EIPSW.

 (2) Once the restored PC and PSW values are set to the PC and PSW, the operation returns

to the address immediately before the trap or interrupt occurred.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 108

Caution When returning from a non-maskable interrupt or software exception routine using the RETI

instruction, the NP and EP flags of the PSW must be set accordingly to restore the PC and

PSW.

 • When returning from a non-maskable interrupt routine using the RETI instruction:

 NP = 1 and EP = 0

 • When returning from a software exception routine using the RETI instruction:

 EP = 1

 Use the LDSR instruction for setting the flags.

 Interrupts are not acknowledged in the latter half of the ID stage during LDSR execution

because of the operation of the interrupt controller.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 109

<Logical operation instruction>

Shift arithmetic right by register/immediate (5-bit)

SAR

Shift Arithmetic Right

Instruction format (1) SAR reg1, reg2

 (2) SAR imm5, reg2

Operation (1) GR [reg2] ← GR [reg2] arithmetically shift right by GR [reg1]

 (2) GR [reg2] ← GR [reg2] arithmetically shift right by zero-extend

Format (1) Format IX

 (2) Format II

Opcode 15 0 31 16
(1) rrrrr111111RRRRR 0000000010100000

 15 0
(2) rrrrr010101iiiii

Flag CY 1 if the bit shifted out last is 1; otherwise, 0.

 However, if the number of shifts is 0, the result is 0.

 OV 0

 S 1 if the result of an operation is negative; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation (1) Arithmetically shifts the word data of general-purpose register reg2 to the right by ‘n’

positions, where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general-

purpose register reg1 (after the shift, the MSB prior to shift execution is copied and set as

the new MSB value), and then writes the result to general-purpose register reg2. If the

number of shifts is 0, general-purpose register reg2 retains the same value prior to

instruction execution. The data of general-purpose register reg1 is not affected.

 (2) Arithmetically shifts the word data of general-purpose register reg2 to the right by ‘n’

positions, where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-

extended to word length (after the shift, the MSB prior to shift execution is copied and set

as the new MSB value), and then writes the result to general-purpose register reg2. If the

number of shifts is 0, general-purpose register reg2 retains the same value prior to

instruction execution.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 110

<Logical operation instruction>

Shift and set flag condition

SASF

Shift and Set Flag Condition

Instruction format SASF cccc, reg2

Operation if conditions are satisfied

 then GR [reg2] ← (GR [reg2] Logically shift left by 1) OR 00000001H

 else GR [reg2] ← (GR [reg2] Logically shift left by 1) OR 00000000H

Format Format IX

Opcode 15 0 31 16
rrrrr1111110cccc 0000001000000000

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation General-purpose register reg2 is logically shifted left by 1, and its LSB is set to 1 if the condition

specified by condition code “cccc” is satisfied; otherwise, general-purpose register reg2 is

logically shifted left by 1, and its LSB is set to 0.

 One of the codes shown in Table 5-5 Condition Codes should be specified as the condition

code “cccc”.

Remark See SETF instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 111

<Saturated operation instruction>

Saturated add register/immediate (5-bit)

SATADD

Saturated Add

Instruction format (1) SATADD reg1, reg2

 (2) SATADD imm5, reg2

Operation (1) GR [reg2] ← saturated (GR [reg2] + GR [reg1])

 (2) GR [reg2] ← saturated (GR [reg2] + sign-extend (imm5))

Format (1) Format I

 (2) Format II

Opcode 15 0
(1) rrrrr000110RRRRR

 15 0
(2) rrrrr010001iiiii

Flag CY 1 if a carry occurs from MSB; otherwise, 0.

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the result of the saturated operation is negative; otherwise, 0.

 Z 1 if the result of the saturated operation is 0; otherwise, 0.

 SAT 1 if OV = 1; otherwise, not affected.

Explanation (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2, and stores the result in general-purpose register reg2. However, if the result

exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the

result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2.

The SAT flag is set to 1. The data of general-purpose register reg1 is not affected.

 Do not specify r0 as the destination register reg2.

 (2) Adds a 5-bit immediate data, sign-extended to word length, to the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2. However, if

the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in

reg2; if the result exceeds the maximum negative value 80000000H, 80000000H is stored

in reg2. The SAT flag is set to 1.

 Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the saturated operation instruction has

been saturated, this flag is set to 1 and is not cleared to 0 even if the result of the subsequent

operation is not saturated.

 Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 112

<Saturated operation instruction>

Saturated subtract

SATSUB

Saturated Subtract

Instruction format SATSUB reg1, reg2

Operation GR [reg2] ← saturated (GR [reg2] – GR [reg1])

Format Format I

Opcode 15 0
rrrrr000101RRRRR

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the result of the saturated operation is negative; otherwise, 0.

 Z 1 if the result of the saturated operation is 0; otherwise, 0.

 SAT 1 if OV = 1; otherwise, not affected.

Explanation Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2. However, if the

result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the

result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The

SAT flag is set to 1. The data of general-purpose register reg1 is not affected.

 Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation

instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of

the subsequent operations is not saturated.

 Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 113

<Saturated operation instruction>

Saturated subtract immediate

SATSUBI

Saturated Subtract Immediate

Instruction format SATSUBI imm16, reg1, reg2

Operation GR [reg2] ← saturated (GR [reg1] – sign-extend (imm16))

Format Format VI

Opcode 15 0 31 16
rrrrr110011RRRRR iiiiiiiiiiiiiiii

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the result of the saturated operation is negative; otherwise, 0.

 Z 1 if the result of the saturated operation is 0; otherwise, 0.

 SAT 1 if OV = 1; otherwise, not affected.

Explanation Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of

general-purpose register reg1, and stores the result in general-purpose register reg2.

However, if the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored

in reg2; if the result exceeds the maximum negative value 80000000H, 80000000H is stored in

reg2. The SAT flag is set to 1. The data of general-purpose register reg1 is not affected.

 Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation

instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of

the subsequent operations is not saturated.

 Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 114

<Saturated operation instruction>

Saturated subtract reverse

SATSUBR

Saturated Subtract Reverse

Instruction format SATSUBR reg1, reg2

Operation GR [reg2] ← saturated (GR [reg1] – GR [reg2])

Format Format I

Opcode 15 0
rrrrr000100RRRRR

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the result of the saturated operation is negative; otherwise, 0.

 Z 1 if the result of the saturated operation is 0; otherwise, 0.

 SAT 1 if OV = 1; otherwise, not affected.

Explanation Subtracts the word data of general-purpose register reg2 from the word data of general-

purpose register reg1, and stores the result in general-purpose register reg2. However, if the

result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the

result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The

SAT flag is set to 1. The data of general-purpose register reg1 is not affected.

 Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation

instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of

the subsequent operations is not saturated.

 Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 115

<Bit manipulation instruction>

Set bit

SET1

Set Bit

Instruction format (1) SET1 bit#3, disp16 [reg1]

 (2) SET1 reg2, [reg1]

Operation (1) adr ← GR [reg1] + sign-extend (disp16)

 Z flag ← Not (Load-memory-bit (adr, bit#3))

 Store-memory-bit (adr, bit#3, 1)

 (2) adr ← GR [reg1]

 Z flag ← Not (Load-memory-bit (adr, reg2))

 Store-memory-bit (adr, reg2, 1)

Format (1) Format VIII

 (2) Format IX

Opcode 15 0 31 16
(1) 00bbb111110RRRRR dddddddddddddddd

 15 0 31 16
(2) rrrrr111111RRRRR 0000000011100000

Flag CY –

 OV –

 S –

 Z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1

 SAT –

Explanation (1) Adds the 16-bit displacement, sign-extended to word length, to the data of general-purpose

register reg1 to generate a 32-bit address. Then reads the byte data referenced by the

generated address, sets the bit specified by the 3-bit bit number to 1, and writes back to

the original address.

 (2) Reads the data of general-purpose register reg1 to generate a 32-bit address. Then reads

the byte data referenced by the generated address, sets the bit specified by the data of

lower 3 bits of reg2 to 1, and writes back to the original address.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction was

executed, and does not indicate the content of the specified bit after this instruction has been

executed.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 116

<Arithmetic operation instruction>

Set flag condition

SETF

Set Flag Condition

Instruction format SETF cccc, reg2

Operation if conditions are satisfied

 then GR [reg2] ← 00000001H

 else GR [reg2] ← 00000000H

Format Format IX

Opcode 15 0 31 16
rrrrr1111110cccc 0000000000000000

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation General-purpose register reg2 is set to 1 if the condition specified by condition code “cccc” is

satisfied; otherwise, 0 is stored in the register. One of the codes shown in Table 5-5 Condition

Codes should be specified as the condition code “cccc”.

Remark Here are some examples of using this instruction.

 (1) Translation of two or more condition clauses

 If A of the statement “if (A)” in C language consists of two or more condition clauses (a1,

a2, a3, and so on), it is usually translated to a sequence of if (a1) then, if (a2) then. The

object code executes a “conditional branch” by checking the result of evaluation equivalent

to an. Since a pipeline processor takes more time to execute “condition judgment” +

“branch” than to execute an ordinary operation, the result of evaluating each condition

clause if (an) is stored in register Ra. By performing a logical operation to Ran after all the

condition clauses have been evaluated, the delay due to the pipeline can be prevented.

 (2) Double-length operation

 To execute a double-length operation such as Add with Carry, the result of the CY flag can

be stored in general-purpose register reg2. Therefore, a carry from the lower bits can be

expressed as a numeric value.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 117

Table 5-5. Condition Codes

Condition Code

(cccc)

Condition Name Condition Expression

0000 V OV = 1

1000 NV OV = 0

0001 C/L CY = 1

1001 NC/NL CY = 0

0010 Z Z = 1

1010 NZ Z = 0

0011 NH (CY or Z) = 1

1011 H (CY or Z) = 0

0100 S/N S = 1

1100 NS/P S = 0

0101 T always (unconditional)

1101 SA SAT = 1

0110 LT (S xor OV) = 1

1110 GE (S xor OV) = 0

0111 LE ((S xor OV) or Z) = 1

1111 GT ((S xor OV) or Z) = 0

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 118

<Logical operation instruction>

Shift logical left by register/immediate (5-bit)

SHL

Shift Logical Left

Instruction format (1) SHL reg1, reg2

 (2) SHL imm5, reg2

Operation (1) GR [reg2] ← GR [reg2] logically shift left by GR [reg1]

 (2) GR [reg2] ← GR [reg2] logically shift left by zero-extend (imm5)

Format (1) Format IX

 (2) Format II

Opcode 15 0 31 16
(1) rrrrr111111RRRRR 0000000011000000

 15 0
(2) rrrrr010110iiiii

Flag CY 1 if the bit shifted out last is 1; otherwise, 0.

 However, if the number of shifts is 0, the result is 0.

 OV 0

 S 1 if the result of an operation is negative; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation (1) Logically shifts the word data of general-purpose register reg2 to the left by ‘n’ positions,

where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general-purpose register

reg1 (0 is shifted to the LSB side), and then writes the result to general-purpose register

reg2. If the number of shifts is 0, general-purpose register reg2 retains the same value

prior to instruction execution. The data of general-purpose register reg1 is not affected.

 (2) Logically shifts the word data of general-purpose register reg2 to the left by ‘n’ positions,

where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to

word length (0 is shifted to the LSB side), and then writes the result to general-purpose

register reg2. If the number of shifts is 0, general-purpose register reg2 retains the value

prior to instruction execution.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 119

<Logical operation instruction>

Shift logical right by register/immediate (5-bit)

SHR

Shift Logical Right

Instruction format (1) SHR reg1, reg2

 (2) SHR imm5, reg2

Operation (1) GR [reg2] ← GR [reg2] logically shift right by GR [reg1]

 (2) GR [reg2] ← GR [reg2] logically shift right by zero-extend (imm5)

Format (1) Format IX

 (2) Format II

Opcode 15 0 31 16

(1) rrrrr111111RRRRR 0000000010000000

 15 0
(2) rrrrr010100iiiii

Flag CY 1 if the bit shifted out last is 1; otherwise, 0.

 However, if the number of shifts is 0, the result is 0.

 OV 0

 S 1 if the result of an operation is negative; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation (1) Logically shifts the word data of general-purpose register reg2 to the right by ‘n’ positions

where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general-purpose register

reg1 (0 is shifted to the MSB side). This instruction then writes the result to general-

purpose register reg2. If the number of shifts is 0, general-purpose register reg2 retains

the same value prior to instruction execution. The data of general-purpose register reg1 is

not affected.

 (2) Logically shifts the word data of general-purpose register reg2 to the right by ‘n’ positions,

where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to

word length (0 is shifted to the MSB side). This instruction then writes the result to

general-purpose register reg2. If the number of shifts is 0, general-purpose register reg2

retains the same value prior to instruction execution.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 120

<Load instruction>

Short format load byte

SLD.B

Load

Instruction format SLD.B disp7 [ep], reg2

Operation adr ← ep + zero-extend (disp7)

 GR [reg2] ← sign-extend (Load-memory (adr, Byte))

Format Format IV

Opcode 15 0
rrrrr0110ddddddd

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds 7-bit displacement, zero-extended to word length, to the element pointer to generate a

32-bit address. Byte data is read from the generated address, sign-extended to word length,

and stored in reg2.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

Caution (1) If an interrupt is generated during instruction execution, the execution of that instruction

may stop after the end of the read/write cycle. In this case, the instruction is re-executed

after returning from the interrupt. Therefore, except in cases when clearly no interrupt is

generated, the LD instruction should be used for accessing I/O, FIFO types, or other

resources whose status is changed by the read cycle (the bus cycle is not re-executed

even if an interrupt is generated while the LD or store instruction is being executed).

 (2) For the restriction on the conflict between the sld instruction and an interrupt request,

refer to APPENDIX A NOTES.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 121

<Load instruction>

Short format load byte unsigned

SLD.BU

Load

Instruction format SLD.BU disp4 [ep], reg2

Operation adr ← ep + zero-extend (disp4)

 GR [reg2] ← zero-extend (Load-memory (adr, Byte))

Format Format IV

Opcode 15 0
rrrrr0000110dddd

 rrrrr must not be 00000.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds 4-bit displacement, zero-extended to word length, to the element pointer to generate a

32-bit address. Byte data is read from the generated address, zero-extended to word length,

and stored in reg2.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

Caution (1) If an interrupt is generated during instruction execution, the execution of that instruction

may stop after the end of the read/write cycle. In this case, the instruction is re-executed

after returning from the interrupt. Therefore, except in cases when clearly no interrupt is

generated, the LD instruction should be used for accessing I/O, FIFO types, or other

resources whose status is changed by the read cycle (the bus cycle is not re-executed

even if an interrupt is generated while the LD or store instruction is being executed).

 (2) For the restriction on the conflict between the sld instruction and an interrupt request,

refer to APPENDIX A NOTES.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 122

<Load instruction>

Short format load halfword

SLD.H

Load

Instruction format SLD.H disp8 [ep], reg2

Operation adr ← ep + zero-extend (disp8)

 GR [reg2] ← sign-extend (Load-memory (adr, Halfword))

Format Format IV

Opcode 15 0
rrrrr1000ddddddd

 ddddddd is the higher 7 bits of disp8.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds 8-bit displacement, zero-extended to word length, to the element pointer to generate a

32-bit address. Halfword data is read from the generated address, sign-extended to word

length, and stored in reg2.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 123

Caution (1) The result of adding the element pointer and the 8-bit displacement zero-extended to word

length can be of two types depending on the type of data to be accessed (halfword, word)

and the misalign mode setting.

 • Lower bits are masked by 0 and address is generated (when misaligned access is

disabled)

 • Lower bits are not masked and address is generated (when misaligned access is

enabled)

 (when misaligned access is enabled in type D, E, and F products)

 For details on misaligned access, see 3.3 Data Alignment.

 Also, if an interrupt is generated during instruction execution, the execution of that

instruction may stop after the end of the read/write cycle. In this case, the instruction is re-

executed after returning from the interrupt. Therefore, except in cases when clearly no

interrupt is generated, the LD instruction should be used for accessing I/O, FIFO types, or

other resources whose status is changed by the read cycle (the bus cycle is not re-

executed even if an interrupt is generated while the LD or store instruction is being

executed).

 (2) For the restriction on the conflict between the sld instruction and an interrupt request,

refer to APPENDIX A NOTES.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 124

<Load instruction>

Short format load halfword unsigned

SLD.HU

Load

Instruction format SLD.HU disp5 [ep], reg2

Operation adr ← ep + zero-extend (disp5)

 GR [reg2] ← zero-extend (Load-memory (adr, Halfword))

Format Format IV

Opcode 15 0

rrrrr0000111dddd

 dddd is the higher 4 bits of disp5. rrrrr must not be 00000.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds 5-bit displacement, zero-extended to word length, to the element pointer to generate a

32-bit address. Halfword data is read from the generated address, zero-extended to word

length, and stored in reg2.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 125

Caution (1) The result of adding the element pointer and the 8-bit displacement zero-extended to word

length can be of two types depending on the type of data to be accessed (halfword, word)

and the misalign mode setting.

 • Lower bits are masked by 0 and address is generated (when misaligned access is

disabled)

 • Lower bits are not masked and address is generated (when misaligned access is

enabled)

 (when misaligned access is enabled in type D, E, and F products)

 For details on misaligned access, see 3.3 Data Alignment.

 Also, if an interrupt is generated during instruction execution, the execution of that

instruction may stop after the end of the read/write cycle. In this case, the instruction is re-

executed after returning from the interrupt. Therefore, except in cases when clearly no

interrupt is generated, the LD instruction should be used for accessing I/O, FIFO types, or

other resources whose status is changed by the read cycle (the bus cycle is not re-

executed even if an interrupt is generated while the LD or store instruction is being

executed).

 (2) For the restriction on the conflict between the sld instruction and an interrupt request,

refer to APPENDIX A NOTES.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 126

<Load instruction>

Short format load word

SLD.W

Load

Instruction format SLD.W disp8 [ep], reg2

Operation adr ← ep + zero-extend (disp8)

 GR [reg2] ← Load-memory (adr, Word)

Format Format IV

Opcode 15 0
rrrrr1010dddddd0

 dddddd is the higher 6 bits of disp8.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds 8-bit displacement, zero-extended to word length, to the element pointer to generate a

32-bit address. Word data is read from the generated address and stored in reg2.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 127

Caution (1) The result of adding the element pointer and the 8-bit displacement zero-extended to word

length can be of two types depending on the type of data to be accessed (halfword, word)

and the misalign mode setting.

 • Lower bits are masked by 0 and address is generated (when misaligned access is

disabled)

 • Lower bits are not masked and address is generated (when misaligned access is

enabled)

 (when misaligned access is enabled in type D, E, and F products)

 For details on misaligned access, see 3.3 Data Alignment.

 Also, if an interrupt is generated during instruction execution, the execution of that

instruction may stop after the end of the read/write cycle. In this case, the instruction is re-

executed after returning from the interrupt. Therefore, except in cases when clearly no

interrupt is generated, the LD instruction should be used for accessing I/O, FIFO types, or

other resources whose status is changed by the read cycle (the bus cycle is not re-

executed even if an interrupt is generated while the LD or store instruction is being

executed).

 (2) For the restriction on the conflict between the sld instruction and an interrupt request,

refer to APPENDIX A NOTES.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 128

<Store instruction>

Short format store byte

SST.B

Store

Instruction format SST.B reg2, disp7 [ep]

Operation adr ← ep + zero-extend (disp7)

 Store-memory (adr, GR [reg2], Byte)

Format Format IV

Opcode 15 0

rrrrr0111ddddddd

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds 7-bit displacement, zero-extended to word length, to the element pointer to generate a

32-bit address, and stores the data of the lowest byte of reg2 in the generated address.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 129

<Store instruction>

Short format store halfword

SST.H

Store

Instruction format SST.H reg2, disp8 [ep]

Operation adr ← ep + zero-extend (disp8)

 Store-memory (adr, GR [reg2], Halfword)

Format Format IV

Opcode 15 0

rrrrr1001ddddddd

 ddddddd is the higher 7 bits of disp8.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds 8-bit displacement, zero-extended to word length, to the element pointer to generate a

32-bit address, and stores the lower halfword data of reg2 in the generated address.

Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word

length can be of two types depending on the type of data to be accessed (halfword, word) and

the misalign mode setting.

 • Lower bits are masked by 0 and address is generated (when misaligned access is

disabled)

 • Lower bits are not masked and address is generated (when misaligned access is

enabled)

 (when misaligned access is enabled in type D, E, and F products)

 For details on misaligned access, see 3.3 Data Alignment.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 130

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 131

<Store instruction>

Short format store word

SST.W

Store

Instruction format SST.W reg2, disp8 [ep]

Operation adr ← ep + zero-extend (disp8)

 Store-memory (adr, GR [reg2], Word)

Format Format IV

Opcode 15 0

rrrrr1010dddddd1

 dddddd is the higher 6 bits of disp8.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds 8-bit displacement, zero-extended to word length, to the element pointer to generate a

32-bit address, and stores the word data of reg2 in the generated address.

Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word

length can be of two types depending on the type of data to be accessed (halfword, word) and

the misalign mode setting.

 • Lower bits are masked by 0 and address is generated (when misaligned access is

disabled)

 • Lower bits are not masked and address is generated (when misaligned access is

enabled)

 (when misaligned access is enabled in type D, E, and F products)

 For details on misaligned access, see 3.3 Data Alignment.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 132

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 133

<Store instruction>

Store byte

ST.B

Store

Instruction format ST.B reg2, disp16 [reg1]

Operation adr ← GR [reg1] + sign-extend (disp16)

 Store-memory (adr, GR [reg2], Byte)

Format Format VII

Opcode 15 0 31 16

rrrrr111010RRRRR dddddddddddddddd

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds 16-bit displacement, sign-extended to word length, to the data of general-purpose

register reg1 to generate a 32-bit address, and stores the lowest byte data of general-purpose

register reg2 in the generated address.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 134

<Store instruction>

Store halfword

ST.H

Store

Instruction format ST.H reg2, disp16 [reg1]

Operation adr ← GR [reg1] + sign-extend (disp16)

 Store-memory (adr, GR [reg2], Halfword)

Format Format VII

Opcode 15 0 31 16

rrrrr111011RRRRR ddddddddddddddd0

 ddddddddddddddd is the higher 15 bits of disp16.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds 16-bit displacement, sign-extended to word length, to the data of general-purpose

register reg1 to generate a 32-bit address, and stores the lower halfword data of general-

purpose register reg2 in the generated address.

Caution The result of adding the data of general-purpose register reg1 and the 16-bit displacement

sign-extended to word length can be of two types depending on the type of data to be

accessed (halfword, word), and the misalign mode setting.

 • Lower bits are masked by 0 and address is generated (when misaligned access is

disabled)

 • Lower bits are not masked and address is generated (when misaligned access is

enabled)

 (when misaligned access is enabled in type D, E, and F products)

 For details on misaligned access, see 3.3 Data Alignment.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 135

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 136

<Store instruction>

Store word

ST.W

Store

Instruction format ST.W reg2, disp16 [reg1]

Operation adr ← GR [reg1] + sign-extend (disp16)

 Store-memory (adr, GR [reg2], Word)

Format Format VII

Opcode 15 0 31 16

rrrrr111011RRRRR ddddddddddddddd1

 ddddddddddddddd is the higher 15 bits of disp16.

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Adds 16-bit displacement, sign-extended to word length, to the data of general-purpose

register reg1 to generate a 32-bit address, and stores the word data of general-purpose

register reg2 in the generated address.

Caution The result of adding the data of general-purpose register reg1 and the 16-bit displacement

sign-extended to word length can be of two types depending on the type of data to be

accessed (halfword, word), and the misalign mode setting.

 • Lower bits are masked by 0 and address is generated (when misaligned access is

disabled)

 • Lower bits are not masked and address is generated (when misaligned access is

enabled)

 (when misaligned access is enabled in type D, E, and F products)

 For details on misaligned access, see 3.3 Data Alignment.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 137

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is

serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with

the return address being the address of this instruction.

 [For type D, E, and F products]

 Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral

I/O, external memory), the bus cycle may be switched (this will not occur if the same resource

is accessed).

 [For type A, B, and C products]

 The bus cycle sequence for accessing the different resources connected to each bus (VFB,

VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if

the same bus is accessed).

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 138

<Special instruction>

Store contents of system register

STSR

Store Contents of System Register

Instruction format STSR regID, reg2

Operation GR [reg2] ← SR [regID]

Format Format IX

Opcode 15 0 31 16
rrrrr111111RRRRR 0000000001000000

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Stores the contents of a system register specified by a system register number (regID) in

general-purpose register reg2. The contents of the system register are not affected.

Caution The system register number regID is a number which identifies a system register. Accessing a

system register which is reserved is prohibited and will lead to undefined results.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 139

<Logical operation instruction>

Subtract

SUB

Subtract

Instruction format SUB reg1, reg2

Operation GR [reg2] ← GR [reg2] – GR [reg1]

Format Format I

Opcode 15 0
rrrrr001101RRRRR

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the result of an operation is negative; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2. The data of

general-purpose register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 140

<Logical operation instruction>

Subtract reverse

SUBR

Subtract Reverse

Instruction format SUBR reg1, reg2

Operation GR [reg2] ← GR [reg1] – GR [reg2]

Format Format I

Opcode 15 0
rrrrr001100RRRRR

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.

 OV 1 if overflow occurs; otherwise, 0.

 S 1 if the result of an operation is negative; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation Subtracts the word data of general-purpose register reg2 from the word data of general-

purpose register reg1, and stores the result in general-purpose register reg2. The data of

general-purpose register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 141

<Special instruction>

Jump with table look up

SWITCH

Jump with Table Look Up

Instruction format SWITCH reg1

Operation adr ← (PC + 2) + (GR [reg1] logically shift left by 1)

 PC ← (PC + 2) + (sign-extend (Load-memory (adr, Halfword))) logically shift left by 1

Format Format I

Opcode 15 0
00000000010RRRRR

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation <1> Adds the table entry address (address following SWITCH instruction) and data of

general-purpose register reg1 logically shifted left by 1, and generates 32-bit table entry

address.

 <2> Loads the halfword data pointed to the address generated in <1>.

 <3> Sign-extends the loaded halfword data to word length, and adds the table entry address

after logically shifting it left by 1 bit (next address following SWITCH instruction) to

generate a 32-bit target address.

 <4> Then jumps to the target address generated in <3>.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 142

<Logical operation instruction>

Sign extend byte

SXB

Sign Extend Byte

Instruction format SXB reg1

Operation GR [reg1] ← sign-extend (GR [reg1] (7:0))

Format Format I

Opcode 15 0

00000000101RRRRR

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Sign-extends the lowest byte of general-purpose register reg1 to word length.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 143

<Logical operation instruction>

Sign extend halfword

SXH

Sign Extend Halfword

Instruction format SXH reg1

Operation GR [reg1] ← sign-extend (GR [reg1] (15:0))

Format Format I

Opcode 15 0
00000000111RRRRR

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Sign-extends the lower halfword of general-purpose register reg1 to word length.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 144

<Special instruction>

Trap

TRAP

Trap

Instruction format TRAP vector

Operation EIPC ← PC + 4 (restored PC)

 EIPSW ← PSW

 ECR.EICC ← exception code (40H to 4FH, 50H to 5FH)

 PSW.EP ← 1

 PSW.ID ← 1

 PC ← 00000040H (vector = 00H to 0FH (exception code: 40H to 4FH))

 00000050H (vector = 10H to 1FH (exception code: 50H to 5FH))

Format Format X

Opcode 15 0 31 16
00000111111iiiii 0000000100000000

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Saves the restored PC and PSW to EIPC and EIPSW, respectively; sets the exception code

(EICC of ECR) and the flags of the PSW (sets the EP and ID flags to 1); jumps to the handler

address corresponding to the trap vector (00H to 1FH) specified by “vector”, and starts

exception processing.

 The flags of the PSW other than the EP and ID flags are not affected.

 The restored PC is the address of the instruction following the TRAP instruction.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 145

<Logical operation instruction>

Test

TST

Test

Instruction format TST reg1, reg2

Operation result ← GR [reg2] AND GR [reg1]

Format Format I

Opcode 15 0
rrrrr001011RRRRR

Flag CY –

 OV 0

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1. The result is not stored, and only the flags are changed. The data of general-

purpose registers reg1 and reg2 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 146

<Bit manipulation instruction>

Test bit

TST1

Test Bit

Instruction format (1) TST1 bit#3, disp16 [reg1]

 (2) TST1 reg2, [reg1]

Operation (1) adr ← GR [reg1] + sign-extend (disp16)

 Z flag ← Not (Load-memory-bit (adr, bit#3))

 (2) adr ← GR [reg1]

 Z flag ← Not (Load-memory-bit (adr, reg2))

Format (1) Format VIII

 (2) Format IX

Opcode 15 0 31 16
(1) 11bbb111110RRRRR dddddddddddddddd

 15 0 31 16
(2) rrrrr111111RRRRR 0000000011100110

Flag CY –

 OV –

 S –

 Z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1

 SAT –

Explanation (1) Adds the data of general-purpose register reg1 to a 16-bit displacement, sign-extended to

word length, to generate a 32-bit address. Performs a test on the bit specified by the 3-bit

bit number, at the byte data location referenced by the generated address. If the specified

bit is 0, the Z flag of the PSW is set to 1; if the bit is 1, the Z flag is cleared to 0. The byte

data, including the specified bit, is not affected.

 (2) Reads the data of general-purpose register reg1 to generate a 32-bit address. Performs a

test on the bit specified by the lower 3 bits of reg2, at the byte data location referenced by

the generated address. If the specified bit is 0, the Z flag of the PSW is set to 1; if the bit is

1, the Z flag is cleared to 0. The byte data, including the specified bit, is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 147

<Logical operation instruction>

Exclusive OR

XOR

Exclusive Or

Instruction format XOR reg1, reg2

Operation GR [reg2] ← GR [reg2] XOR GR [reg1]

Format Format I

Opcode 15 0
rrrrr001001RRRRR

Flag CY –

 OV 0

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation Exclusively ORs the word data of general-purpose register reg2 with the word data of general-

purpose register reg1, and stores the result in general-purpose register reg2. The data of

general-purpose register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 148

<Logical operation instruction>

Exclusive OR immediate (16-bit)

XORI

Exclusive Or Immediate

Instruction format XORI imm16, reg1, reg2

Operation GR [reg2] ← GR [reg1] XOR zero-extend (imm16)

Format Format VI

Opcode 15 0 31 16
rrrrr110101RRRRR iiiiiiiiiiiiiiii

Flag CY –

 OV 0

 S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.

 Z 1 if the result of an operation is 0; otherwise, 0.

 SAT –

Explanation Exclusively ORs the word data of general-purpose register reg1 with a 16-bit immediate data,

zero-extended to word length, and stores the result in general-purpose register reg2. The data

of general-purpose register reg1 is not affected.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 149

<Logical operation instruction>

Zero extend byte

ZXB

Zero Extend Byte

Instruction format ZXB reg1

Operation GR [reg1] ← zero-extend (GR [reg1] (7:0))

Format Format I

Opcode 15 0
00000000100RRRRR

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Zero-extends the lowest byte of general-purpose register reg1 to word length.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 150

<Logical operation instruction>

Zero extend halfword

ZXH

Zero Extend Halfword

Instruction format ZXH reg1

Operation GR [reg1] ← zero-extend (GR [reg1] (15:0))

Format Format I

Opcode 15 0
00000000110RRRRR

Flag CY –

 OV –

 S –

 Z –

 SAT –

Explanation Zero-extends the lower halfword of general-purpose register reg1 to word length.

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 151

5.4 Number of Instruction Execution Clock Cycles

A list of the number of instruction execution clocks when the internal ROM or internal RAM is used is shown below.

The number of instruction execution clock cycles differs depending on the combination of instructions. For details, see

CHAPTER 8 PIPELINE.

Table 5-6 shows the number of instruction execution clock cycles.

Table 5-6. List of Number of Instruction Execution Clock Cycles (1/3)

Number of Execution Clocks Type of

Instruction

Mnemonic Operand Byte

i r l

LD.B disp16 [reg1] , reg2 4 1 1 Note 1

LD.H disp16 [reg1] , reg2 4 1 1 Note 1

LD.W disp16 [reg1] , reg2 4 1 1 Note 1

LD.BU disp16 [reg1] , reg2 4 1 1 Note 1

LD.HU disp16 [reg1] , reg2 4 1 1 Note 1

SLD.B disp7 [ep] , reg2 2 1 1 Note 2

SLD.BU disp4 [ep] , reg2 2 1 1 Note 2

SLD.H disp8 [ep] , reg2 2 1 1 Note 2

SLD.HU disp5 [ep] , reg2 2 1 1 Note 2

Load

instructions

SLD.W disp8 [ep] , reg2 2 1 1 Note 2

ST.B reg2, disp16 [reg1] 4 1 1 1

ST.H reg2, disp16 [reg1] 4 1 1 1

ST.W reg2, disp16 [reg1] 4 1 1 1

SST.B reg2, disp7 [ep] 2 1 1 1

SST.H reg2, disp8 [ep] 2 1 1 1

Store

instructions

SST.W reg2, disp8 [ep] 2 1 1 1

MUL reg1, reg2, reg3 4 1 2Note 3 2

MUL imm9, reg2, reg3 4 1 2Note 3 2

MULH reg1, reg2 2 1 1 2

MULH imm5, reg2 2 1 1 2

MULHI imm16, reg1, reg2 4 1 1 2

MULU reg1, reg2, reg3 4 1 2Note 3 2

Multiply

instructions

MULU imm9, reg2, reg3 4 1 2Note 3 2

ADD reg1, reg2 2 1 1 1

ADD imm5, reg2 2 1 1 1

ADDI imm16, reg1, reg2 4 1 1 1

CMOV cccc, reg1, reg2, reg3 4 1 1 1

CMOV cccc, imm5, reg2, reg3 4 1 1 1

CMP reg1, reg2 2 1 1 1

Arithmetic

operation

instructions

CMP imm5, reg2 2 1 1 1

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 152

Table 5-6. List of Number of Instruction Execution Clock Cycles (2/3)

Number of Execution Clocks Type of

Instruction

Mnemonic Operand Byte

i r l

DIV reg1, reg2, reg3 4 35 35 35

DIVH reg1, reg2 2 35 35 35

DIVH reg1, reg2, reg3 4 35 35 35

DIVHU reg1, reg2, reg3 4 34 34 34

DIVU reg1, reg2, reg3 4 34 34 34

MOV reg1, reg2 2 1 1 1

MOV imm5, reg2 2 1 1 1

MOV imm32, reg1 6 2 2 2

MOVEA imm16, reg1, reg2 4 1 1 1

MOVHI imm16, reg1, reg2 4 1 1 1

SASF cccc, reg2 4 1 1 1

SETF cccc, reg2 4 1 1 1

SUB reg1, reg2 2 1 1 1

Arithmetic

operation

instructions

SUBR reg1, reg2 2 1 1 1

SATADD reg1, reg2 2 1 1 1

SATADD imm5, reg2 2 1 1 1

SATSUB reg1, reg2 2 1 1 1

SATSUBI imm16, reg1, reg2 4 1 1 1

Saturated

operation

instructions

SATSUBR reg1, reg2 2 1 1 1

AND reg1, reg2 2 1 1 1

ANDI imm16, reg1, reg2 4 1 1 1

BSH reg2, reg3 4 1 1 1

BSW reg2, reg3 4 1 1 1

HSW reg2, reg3 4 1 1 1

NOT reg1, reg2 2 1 1 1

OR reg1, reg2 2 1 1 1

ORI imm16, reg1, reg2 4 1 1 1

SAR reg1, reg2 4 1 1 1

SAR imm5, reg2 2 1 1 1

SHL reg1, reg2 4 1 1 1

SHL imm5, reg2 2 1 1 1

SHR reg1, reg2 4 1 1 1

SHR imm5, reg2 2 1 1 1

SXB reg1 2 1 1 1

SXH reg1 2 1 1 1

TST reg1, reg2 2 1 1 1

XOR reg1, reg2 2 1 1 1

XORI imm16, reg1, reg2 4 1 1 1

ZXB reg1 2 1 1 1

Logical

operation

instructions

ZXH reg1 2 1 1 1

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 153

Table 5-6. List of Number of Instruction Execution Clock Cycles (3/3)

Number of Execution Clocks Type of

Instruction

Mnemonic Operand Byte

i r l

disp9 (When condition is satisfied) 2 2Note 4 2Note 4 2Note 4 Bcond

disp9 (When condition is not

satisfied)

2 1 1 1

JARL disp22, reg2 4 2Note 5 2Note 5 2Note 5

JMP [reg1] 2 3Note 5 3Note 5 3Note 5

Branch

instructions

JR disp22 4 2Note 5 2Note 5 2Note 5

CLR1 bit#3, disp16 [reg1] 4 3Note 6 3Note 6 3Note 6

CLR1 reg2, [reg1] 4 3Note 6 3Note 6 3Note 6

NOT1 bit#3, disp16 [reg1] 4 3Note 6 3Note 6 3Note 6

NOT1 reg2, [reg1] 4 3Note 6 3Note 6 3Note 6

SET1 bit#3, disp16 [reg1] 4 3Note 6 3Note 6 3Note 6

SET1 reg2, [reg1] 4 3Note 6 3Note 6 3Note 6

TST1 bit#3, disp16 [reg1] 4 3Note 6 3Note 6 3Note 6

Bit manipulation

instructions

TST1 reg2, [reg1] 4 3Note 6 3Note 6 3Note 6

CALLT imm6 2 4Note 5 4Note 5 4Note 5

CTRET – 4 3Note 5 3Note 5 3Note 5

DI – 4 1 1 1

DISPOSE imm5, list12 4 n+1Note 7 n+1Note 7 n+1Note 7

DISPOSE imm5, list12, [reg1] 4 n+3Note 7 n+3Note 7 n+3Note 7

EI – 4 1 1 1

HALT – 4 1 1 1

LDSR reg2, regID 4 1 1 1

NOP – 2 1 1 1

PREPARE list12, imm5 4 n+1Note 7 n+1Note 7 n+1Note 7

PREPARE list12, imm5, sp 4 n+2Note 7 n+2Note 7 n+2Note 7

PREPARE list12, imm5, imm16 6 n+2Note 7 n+2Note 7 n+2Note 7

PREPARE list12, imm5, imm32 8 n+3Note 7 n+3Note 7 n+3Note 7

RETI – 4 3Note 5 3Note 5 3Note 5

STSR regID, reg2 4 1 1 1

SWITCH reg1 2 5 5 5

Special

instructions

TRAP vector 4 3Note 5 3Note 5 3Note 5

DBRET – 4 3Note 5 3Note 5 3Note 5 Debug function

instructionsNote 8 DBTRAP – 2 3Note 5 3Note 5 3Note 5

Undefined instruction code 4 3 3 3

CHAPTER 5 INSTRUCTIONS

User’s Manual U14559EJ3V1UM 154

Notes 1. Depends on the number of wait states (2 if no wait states).

 2. Depends on the number of wait states (1 if no wait states).

 3. Shortened by 1 clock if reg2 = reg3 (lower 32 bits of results are not written to register) or reg3 = r0

(higher 32 bits of results are not written to register).

 4. [Type D, E, and F products]

 4 when there is an instruction that rewrites the PSW contents immediately before.

 [Type A, B, and C products]

 3 when there is an instruction that rewrites the PSW contents immediately before.

 5. +1 clock for type D products.

 +2 clocks for type E products.

 6. In case of no wait states (3 + number of read access wait states).

 7. n is the total number of cycles to load registers in list12. (Depends on the number of wait states; n is

the number of registers in list12 if no wait states. The operation when n = 0 is the same as when n =

1).

 8. Type C products do not support instructions for the debug function.

Remarks 1. Operand conventions

Symbol Meaning

reg1 General-purpose register (used as source register)

reg2 General-purpose register (mainly used as destination register. Some are also used as

source registers.)

reg3 General-purpose register (mainly used as remainder of division results or higher 32 bits

of multiply results)

bit#3 3-bit data for bit number specification

imm× ×-bit immediate data

disp× ×-bit displacement data

regID System register number

vector 5-bit data for trap vector (00H to 1FH) specification

cccc 4-bit data condition code specification

sp Stack pointer (r3)

ep Element pointer (r30)

list× List of registers (× is a maximum number of registers)

 2. Execution clock conventions

Symbol Meaning

i When other instruction is executed immediately after executing an instruction (issue)

r When the same instruction is repeatedly executed immediately after the instruction has

been executed (repeat)

l When a subsequent instruction uses the result of execution of the preceding instruction

immediately after its execution (latency)

User’s Manual U14559EJ3V1UM 155

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

Interrupts are events that occur independently of program execution and are divided into two types: maskable

interrupts and non-maskable interrupts (NMI). In contrast, exceptions are events whose occurrence is dependent on

program execution and are divided into three types: software exceptions, exception traps, and debug traps.

When an interrupt or exception occurs, control is transferred to a handler whose address is determined by the

source of the interrupt or exception. The source of the interrupt/exception is specified by the exception code that is

stored in the exception cause register (ECR). Each handler analyzes the ECR register and performs appropriate

interrupt servicing or exception processing. The restored PC and restored PSW are written to the status saving

registers (EIPC, EIPSW or FEPC, FEPSW).

To restore execution from interrupt or software exception processing, use the RETI instruction. To restore

execution from an exception trap or debug trap, use the DBRET instruction. Read the restored PC and restored PSW

from the status saving registers, and transfer control to the restored PC.

Table 6-1. Interrupt/Exception Codes

Interrupt/Exception Source

Name Trigger

Classification Exception

Code

Handler

Address

Restored PC

NMI0 input Interrupt 0010H 00000010H next PCNote 2

NMI1 input Interrupt 0020H 00000020H next PCNotes 2, 3

Non-maskable interrupt (NMI)Note 1

NMI2 inputNote 4 Interrupt 0030H 00000030H next PCNotes 2, 3

Maskable interrupt Note 5 Interrupt Note 5 Note 6 next PCNote 2

TRAP0n (n = 0 to FH) TRAP instruction Exception 004nH 00000040H next PC Software exception

TRAP1n (n = 0 to FH) TRAP instruction Exception 005nH 00000050H next PC

Exception trap (ILGOP) Illegal instruction

code

Exception 0060H 00000060H next PCNote 7

Debug trapNote 8 DBTRAP

instructionNote 8

Exception 0060H 00000060H next PC

Notes 1. The implemented non-maskable interrupt sources differ depending on the product.

 2. Except when an interrupt is acknowledged during execution of the one of the instructions listed below

(if an interrupt is acknowledged during instruction execution, execution is stopped, and then resumed

after the completion of interrupt servicing. In this case, the address of the interrupted instruction is the

restored PC.).

 • Load instructions (SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W), divide instructions (DIV, DIVH,

DIVU, DIVHU)

 • PREPARE, DISPOSE instruction (only if an interrupt is generated before the stack pointer is

updated)

 3. The PC cannot be restored by the RETI instruction. Perform a system reset after interrupt servicing.

 4. Acknowledged even if the NP flag of the PSW is set to 1.

 5. Differs depending on the type of interrupt.

 6. The higher 16 bits are 0000H and the lower 16 bits are the same value as the exception code.

 7. The execution address of the illegal instruction is obtained by “Restored PC – 4”.

 8. Not supported in type C products

Remark Restored PC: PC value saved to the EIPC or FEPC when interrupt/exception processing is started

 next PC: PC value at which processing is started after interrupt/exception processing

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U14559EJ3V1UM 156

6.1 Interrupt Servicing

6.1.1 Maskable interrupts

A maskable interrupt can be masked by the interrupt control register of the interrupt controller (INTC).

The INTC issues an interrupt request to the CPU, based on the acknowledged interrupt with the highest priority.

If a maskable interrupt occurs due to interrupt request input (INT input), the CPU performs the following steps, and

transfers control to the handler routine.

(1) Saves restored PC to EIPC.

(2) Saves current PSW to EIPSW.

(3) Writes exception code to lower halfword of ECR (EICC).

(4) Sets ID flag of PSW to 1 and clears EP flag to 0.

(5) Sets handler address for each interrupt to PC and transfers control.

EIPC and EIPSW are used as the status saving registers. INT inputs are held pending in the interrupt controller

(INTC) when one of the following two conditions occur: when the INT input is masked by its interrupt controller, or

when an interrupt service routine is currently being executed (when the NP flag of the PSW is 1 or when the ID flag of

the PSW is 1). Interrupts are enabled by clearing the mask condition or by setting the NP and ID flags of the PSW to

0 with the LDSR instruction, at which point new maskable interrupt servicing is started by the pending INT input.

The EIPC and EIPSW registers must be saved by program to enable multiple interrupt servicing because there is

only one set of EIPC and EIPSW is provided.

The maskable interrupt servicing format is shown below.

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U14559EJ3V1UM 157

Figure 6-1. Maskable Interrupt Servicing Format

Interrupt request input

(INT input)

xxIF = 1
No

Interrupt request?

xxMK = 0
No

Is the interrupt
mask released?

Yes

Yes

No

No

No

Maskable interrupt request Interrupt request pending

PSW.NP = 0

PSW.ID = 0

No

No

Interrupt servicing pending

Yes

Yes

Interrupt servicing

CPU processing

INTC processing

Yes

Yes

Yes

Priority higher than
that of interrupt currently

being serviced?

Priority higher
than that of other interrupt

request?

Highest default
priority of interrupt requests

with the same priority?

EIPC
EIPSW
ECR.EICC
PSW.EP
PSW.ID
PC

Restored PC
PSW
Exception code
0
1
Handler address

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U14559EJ3V1UM 158

6.1.2 Non-maskable interrupts

A non-maskable interrupt cannot be disabled by an instruction and therefore can always be acknowledged. Non-

maskable interrupts are generated by NMI input.

When a non-maskable interrupt is generated, the CPU performs the following steps, and transfers control to the

handler routine.

(1) Saves restored PC to FEPC.

(2) Saves current PSW to FEPSW.

(3) Writes exception code (0010H) to higher halfword of ECR (FECC).

(4) Sets NP and ID flags of PSW to 1 and clears EP flag to 0.

(5) Sets handler address for the non-maskable interrupt to PC and transfers control.

FEPC and FEPSW are used as the status saving registers.

Non-maskable interrupts are held pending in the interrupt controller when another non-maskable interrupt is

currently being executed (when the NP flag of the PSW is 1). Non-maskable interrupts are enabled by setting the NP

flag of the PSW to 0 with the RETI and LDSR instructions, at which point new non-maskable interrupt servicing is

started by the pending non-maskable interrupt request.

In the case of type A, B, or C products, NMI2 servicing is executed regardless of the value of the NP flag only when

NMI2 is generated during the interrupt servicing of NMI0 and NMI1.

The non-maskable interrupt servicing format is shown below.

Figure 6-2. Non-Maskable Interrupt Servicing Format

PSW.NP = 0

FEPC
FEPSW
ECR.FECC
PSW.NP
PSW.EP
PSW.ID
PC

Restored PC
PSW
Exception code
1
0
1
Handler address

No

Yes

NMI input

Interrupt servicing Interrupt request pending

INTC acknowledgment

CPU processing

Non-maskable interrupt request

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U14559EJ3V1UM 159

6.2 Exception Processing

6.2.1 Software exceptions

A software exception is generated when the TRAP instruction is executed and is always acknowledged.

If a software exception occurs, the CPU performs the following steps, and transfers control to the handler routine.

(1) Saves restored PC to EIPC.

(2) Saves current PSW to EIPSW.

(3) Writes exception code to lower 16 bits (EICC) of ECR (interrupt source).

(4) Sets EP and ID flags of PSW to 1.

(5) Sets handler address (00000040H or 00000050H) for software exception to PC and transfers control.

The software exception processing format is shown below.

Figure 6-3. Software Exception Processing Format

EIPC
EIPSW
ECR.EICC
PSW.EP
PSW.ID
PC

→
→
→
→
→
→

Restored PC
PSW
Exception code
1
1
Handler address

TRAP instruction

CPU processing

Exception processing

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U14559EJ3V1UM 160

6.2.2 Exception trap

An exception trap is an exception requested when an instruction is illegally executed. The illegal opcode trap

(ILGOP) is the exception trap in the V850E1 core.

An illegal opcode instruction has an instruction code with an opcode (bits 10 through 5) of 111111B and a sub-

opcode (bits 26 through 23) of 0111B through 1111B and a sub-opcode (bit 16) of 0B. When this kind of illegal

opcode instruction is executed, an exception trap occurs.

Figure 6-4. Illegal Instruction Code

× × × × × × × × × × × × × × ×
0 1 1 1

1 1 1 1
× × × × × × 0

15 13 12 11 10 5 4 0 31 27 26 23 22 21 20 17 16

1 1 1 1 1 1 to

Remark ×: don’t care, : opcode/sub-opcode

If an exception trap occurs, the CPU performs the following steps, and transfers control to the handler routine

(debug monitor routine).

(1) Saves restored PC to DBPC.

(2) Saves current PSW to DBPSW.

(3) Sets NP, EP, and ID flags of PSW to 1.

(4) Sets DM bit of DIR register to 1.

(5) Sets handler address (00000060H) for exception trap to PC and transfers control to debug monitor routine.

The exception trap processing format is shown below.

Figure 6-5. Exception Trap Processing Format

DBPC
DBPSW
PSW.NP
PSW.EP
PSW.ID
PC

→
→
→
→
→
→

Restored PC
PSW
1
1
1
00000060H

Exception trap
(ILGOP) occurs

CPU processing

Exception processing

Caution The operation when executing an instruction not defined as an instruction or illegal instruction is

not guaranteed.

Remark The execution address of the illegal instruction is obtained by “Restored PC – 4”.

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U14559EJ3V1UM 161

6.2.3 Debug trap

A debug trap is an exception generated when the DBTRAP instruction is executed or when a debug function trap

occurs, and is always acknowledged.

If a debug trap occurs, the CPU performs the following steps.

(1) Saves restored PC to DBPC.

(2) Saves current PSW to DBPSW.

(3) Sets NP, EP, and ID flags of PSW to 1.

(4) Sets DM flag of DIR to 1.

(5) Sets handler address (00000060H) for debug trap to PC and transfers control to debug monitor routine.

Caution Type C products do not support a debug trap.

The debug trap processing format is shown below.

Figure 6-6. Debug Trap Processing Format

DBPC
DBPSW
PSW.NP
PSW.EP
PSW.ID
DIR.DM
PC

→
→
→
→
→
→
→

Restored PC
PSW
1
1
1
1
00000060H

DBTRAP instruction

CPU processing

Debug monitor routine processing

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U14559EJ3V1UM 162

6.3 Restoring from Interrupt/Exception Processing

6.3.1 Restoring from interrupt and software exception

All restoration from interrupt servicing and software exceptions is executed by the RETI instruction.

With the RETI instruction, the CPU performs the following steps, and transfers control to the address of the

restored PC.

(1) If the EP flag of the PSW is 0 and the NP flag of the PSW is 1, the restored PC and PSW are read from

FEPC and FEPSW. Otherwise, the restored PC and PSW are read from EIPC and EIPSW.

(2) Control is transferred to the address of the restored PC and PSW.

When execution has returned from each interrupt servicing, the NP and EP flags of the PSW must be set to the

following values by using the LDSR instruction immediately before the RETI instruction, in order to restore the PC and

PSW normally:

• To restore from non-maskable interrupt servicingNote: NP flag of PSW = 1, EP flag = 0

• To restore from maskable interrupt servicing: NP flag of PSW = 0, EP flag = 0

• To restore from exception processing: EP flag of PSW = 1

Note In the case of type A, B, or C products, NMI1 and NMI2 cannot be restored by the RETI instruction.

Execute a system reset after interrupt servicing. NMI2 can be acknowledged even if the NP flag of the

PSW is set to 1.

The restoration from interrupt/exception processing format is shown below.

Figure 6-7. Restoration from Interrupt/Software Exception Processing Format

PSW.EP = 0

PSW.NP = 0

PC
PSW

→
→

→
→

EIPC
EIPSW

No

PC
PSW

FEPC
FEPSW

No

Yes

Yes

<Restore from
software exception>

<Restore from non-maskable interrupt>

<Restore from maskable interrupt>

RETI instruction

Jump to address of
restored PC

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U14559EJ3V1UM 163

6.3.2 Restoring from exception trap and debug trap

Restoration from an exception trap and debug trap is executed by the DBRET instruction.

With the DBRET instruction, the CPU performs the following steps, and transfers control to the address of the

restored PC.

(1) The restored PC and PSW are read from DBPC and DBPSW.

(2) Control is transferred to the address of the restored PC and PSW.

(3) If restoring from exception trap or debug trap, the DM flag of DIR is cleared to 0.

The restoration from exception trap/debug trap processing format is shown below.

Figure 6-8. Restoration from Exception Trap/Debug Trap Processing Format

PC
PSW
DIR.DM

DBPC
DBPSW
0

DBRET instruction

Jump to address of restored PC

164 User’s Manual U14559EJ3V1UM

CHAPTER 7 RESET

7.1 Register Status After Reset

When a low-level signal is input to the reset pin, the system is reset, and program registers and system registers

are set in the status shown in Table 7-1. When the reset signal goes high, the reset status is cleared, and program

execution begins. If necessary, initialize the contents of each register by program control.

Table 7-1. Register Status After Reset

Register Status After Reset (Initial Value)

General-purpose register (r0) 00000000H (Fixed)

General-purpose register (r1 to r31) Undefined

Program registers

Program counter (PC) 00000000H

Interrupt status saving register (EIPC) 0xxxxxxxH

Interrupt status saving register (EIPSW) 00000xxxH

NMI status saving register (FEPC) 0xxxxxxxH

NMI status saving register (FEPSW) 00000xxxH

Exception cause register (ECR) 00000000H

Program status word (PSW) 00000020H

CALLT caller status saving register (CTPC) 0xxxxxxxH

CALLT caller status saving register (CTPSW) 00000xxxH

Exception/debug trap status saving register (DBPC) 0xxxxxxxH

Exception/debug trap status saving register (DBPSW) 00000xxxH

CALLT base pointer (CTBP) 0xxxxxxxH

Debug interface register (DIR) 00000040H

Breakpoint control register 0 (BPC0) 00xxxxx0H

Breakpoint control register 1 (BPC1) 00xxxxx0H

Program ID register (ASID) 000000xxH

Breakpoint address setting register 0 (BPAV0) 0xxxxxxxH

Breakpoint address setting register 1 (BPAV1) 0xxxxxxxH

Breakpoint address mask register 0 (BPAM0) 0xxxxxxxH

Breakpoint address mask register 1 (BPAM1) 0xxxxxxxH

Breakpoint data setting register 0 (BPDV0) Undefined

Breakpoint data setting register 1 (BPDV1) Undefined

Breakpoint data mask register 0 (BPDM0) Undefined

System registers

Breakpoint data mask register 1 (BPDM1) Undefined

Remark x: Undefined

CHAPTER 7 RESET

 165User’s Manual U14559EJ3V1UM

7.2 Starting Up

The CPU begins program execution from address 00000000H after it has been reset.

Immediately after reset, no interrupt requests are acknowledged. To enable interrupts by program, clear the ID flag

of the PSW to 0.

 166 User’s Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

The V850E1 CPU is based on RISC architecture and executes almost all instructions in one clock cycle under

control of a 5-stage pipeline. The instruction execution sequence usually consists of five stages from fetch (IF) to

writeback (WB). The execution time of each stage differs depending on the type of the instruction and the type of the

memory to be accessed. As an example of pipeline operation, Figure 8-1 shows the processing of the CPU when 9

standard instructions are executed in succession.

Figure 8-1. Example of Executing Nine Standard Instructions

IF ID EX MEM WB

<1> <2> <3> <4> <5>

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

<6> <7> <8> <9> <10>

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

<11> <12> <13>

Instruction 1

......................................

............................

......

.................

...

..

..

...

...

Processing CPU performs
simultaneously

Internal system clock

Time flow (state)

Instruction executed every 1 clock cycle

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Instruction 9
End of
instruc-
tion 1

End of
instruc-
tion 9

End of
instruc-
tion 8

End of
instruc-
tion 7

End of
instruc-
tion 6

End of
instruc-
tion 5

End of
instruc-
tion 4

End of
instruc-
tion 3

End of
instruc-
tion 2

IF (instruction fetch): Instruction is fetched and fetch pointer is incremented.

ID (instruction decode): Instruction is decoded, immediate data is generated, and register is read.

EX (execution of ALU, multiplier, and barrel shifter): Decoded instruction is executed.

MEM (memory access): Memory at specified address is accessed.

WB (writeback): Result of execution is written to register.

<1> through <13> in the figure above indicate the states of the CPU. In each state, writeback (WB) of instruction n,

memory access (MEM) of instruction n+1, execution (EX) of instruction n+2, decoding (ID) of instruction n+3, and

fetching (IF) of instruction n+4 are simultaneously performed. It takes five clock cycles to process a standard

instruction, from the IF stage to the WB stage. Because five instructions can be processed at the same time,

however, a standard instruction can be executed in 1 clock on average.

CHAPTER 8 PIPELINE

 167User’s Manual U14559EJ3V1UM

8.1 Features

By optimizing the pipeline, the V850E1 CPU improves the CPI (cycle per instruction) rate over the previous V850

CPU.

The pipeline configuration of the V850E1 CPU is shown in Figure 8-2.

Figure 8-2. Pipeline Configuration

ID EX DF WB

WBMEM
Bcond/SLD

Pipeline
ID

IF

Address calculation stage

Asynchronous WB pipeline

Master pipeline (V850 CPU compatible)

Load, store buffer (1 stage each)

Remark DF (data fetch): Execution data is transferred to the WB stage.

CHAPTER 8 PIPELINE

 168 User’s Manual U14559EJ3V1UM

8.1.1 Non-blocking load/store

As the pipeline does not stop during external memory access, efficient processing is possible.

For example, Figure 8-3 shows a comparison of pipeline operations between the V850 CPU and the V850E1 CPU

when an ADD instruction is executed after the execution of a load instruction for external memory.

Figure 8-3. Non-Blocking Load/Store

(a) Previous version (V850 CPU): Pipeline is stopped until MEM stage is complete

IF ID EX
T1

MEM (external memory)Note

T2 T3
WB

IF ID EX (MEM) WB

IF ID MEM WBEX

Load instruction

ADD instruction

Next instruction

Note The basic bus cycle for the external memory is 3 clocks.

(b) V850E1 CPU: Efficient pipeline processing through use of asynchronous WB pipeline

IF ID EX
T1

M E M (e xtern al m e m ory)Note

T2
WB

IF ID EX WBDF

IF ID EX WBMEM

Load instruction

ADD instruction

Next instruction

Note The basic bus cycle for the external memory of MEMC is 2 clocks.

(1) V850 CPU

The EX stage of the ADD instruction is usually executed in 1 clock. However, a wait time is generated in the

EX stage of the ADD instruction during execution of the MEM stage of the previous load instruction. This is

because the same stage of the 5 instructions on the pipeline cannot be executed in the same internal clock

interval. This also causes a wait time to be generated in the ID stage of the next instruction after the ADD

instruction.

(2) V850E1 CPU

An asynchronous WB pipeline for the instructions that are necessary for the MEM stage is provided in

addition to the master pipeline. The MEM stage of the load instruction is therefore processed by this

asynchronous WB pipeline. Because the ADD instruction is processed by the master pipeline, a wait time is

not generated, making it possible to execute instructions efficiently as shown in Figure 8-3.

CHAPTER 8 PIPELINE

 169User’s Manual U14559EJ3V1UM

8.1.2 2-clock branch

When executing a branch instruction, the branch destination is decided in the ID stage.

In the case of the conventional V850 CPU, the branch destination of when the branch instruction is executed was

decided after execution of the EX stage, but in the case of the V850E1 CPU, due to the addition of an address

calculation stage for branch/SLD instruction, the branch destination is decided in the ID stage. Therefore, it is

possible to fetch the branch destination instruction 1 clock faster than in the conventional V850 CPU.

Figure 8-4 shows a comparison between the V850 CPU and the V850E1 CPU for pipeline operations with branch

instructions.

Figure 8-4. Pipeline Operations with Branch Instructions

(a) Previous version (V850 CPU)

IF ID EX WBBranch instruction

Branch destination
instruction

IF ID EX WBMEM

MEM

Branch destination decided in EX stage

3 clocks

(b) V850E1 CPU

IF ID WB

IF ID EX WBMEM

MEM

Branch destination decided in ID stage

EXBranch instruction

Branch destination
instruction

2 clocks

Remark Type D and E products execute interleave access to the internal flash memory or internal mask ROM.

Therefore, it takes two clocks (three clocks for type E products) to fetch an instruction immediately after

an interrupt has occurred or after a branch destination instruction has been executed. Consequently, it

takes three clocks (four clocks for type E products) to execute the ID stage of the branch destination

instruction.

Example

IF IF ID EX MEM WB

IF IF ID EX MEM WB

IF IF ID

IF IF ID EX MEM WB

IF IF ID EX MEM WBInstruction 1

Instruction 2

Instruction 3

Branch instruction

Branch destination instruction

Interleave
access

3 clocks

CHAPTER 8 PIPELINE

 170 User’s Manual U14559EJ3V1UM

8.1.3 Efficient pipeline processing

Because the V850E1 CPU has an ID stage for branch/SLD instructions in addition to the ID stage on the master

pipeline, it is possible to perform efficient pipeline processing.

Figure 8-5 shows an example of a pipeline operation where the next branch instruction was fetched in the IF stage

of the ADD instruction (instruction fetch from the ROM directly connected to the dedicated bus is performed in 32-bit

units. Both ADD instructions and branch instructions in Figure 8-5 use a 16-bit format instruction).

Figure 8-5. Parallel Execution of Branch Instructions

(a) Previous version (V850 CPU)

IF ID

ID EXIF

EX (MEM) WB

MEM WB

IF ID EX MEM

ADD instruction

Branch instruction

Branch destination instruction
5 clocks

(b) V850E1 CPU

IF ID EX DF WB

MEM WB

IF ID EX MEM

ID

WB

EX

ADD instruction

Branch instruction

Branch destination instruction

3 clocks

IF

(1) V850 CPU

Although the instruction codes up to the next branch instruction are fetched in the IF stage of the ADD

instruction, the ID stage of the ADD instruction and the ID stage of the branch instruction cannot be executed

together within the same clock. Therefore, it takes 5 clocks from the branch instruction fetch to the branch

destination instruction fetch.

(2) V850E1 CPU

Because V850E1 CPU has an ID stage for branch/SLD instructions in addition to the ID stage on the master

pipeline, parallel execution of the ID stage of the ADD instruction and the ID stage of the branch instruction

within the same clock is possible. Therefore, it takes only 3 clocks from branch instruction fetch start to

branch destination instruction completion.

Caution Be aware that the SLD and Bcond instructions are sometimes executed at the same time as

other 16-bit format instructions. For example, if the SLD and NOP instructions are executed

simultaneously, the NOP instruction may keep the delay time from being generated.

CHAPTER 8 PIPELINE

 171User’s Manual U14559EJ3V1UM

8.2 Pipeline Flow During Execution of Instructions

This section explains the pipeline flow during the execution of instructions.

In pipeline processing, the CPU is already processing the next instruction when the memory or I/O write cycle is

generated. As a result, I/O manipulations and interrupt request masking will be reflected later than next instruction is

issued (ID stage).

(1) Type A, B, and C products

When a dedicated interrupt controller (INTC) is connected to the NPB (NEC peripheral bus), maskable

interrupt acknowledgment is disabled from the next instruction because the CPU detects access to the INTC

and performs interrupt request mask processing.

(2) Type D, E, and F products

When interrupt mask manipulation is performed, maskable interrupt acknowledgment is disabled from the

next instruction because the CPU detects access to the internal INTC (ID stage) and performs interrupt

request mask processing.

8.2.1 Load instructions

Caution Due to non-blocking control, there is no guarantee that the bus cycle is complete between the

MEM stages. However, when accessing the peripheral I/O area, blocking control is effected,

making it possible to wait for the end of the bus cycle at the MEM stage.

 For type A, B, and C products, non-blocking control is used for access to the programmable

peripheral I/O area.

(1) LD instructions

[Instructions] LD.B, LD.BU, LD.H, LD.HU, LD.W

[Pipeline] <1> <2> <3> <4> <5> <6>

 LD instruction IF ID EX MEM WB

 Next instruction IF ID EX MEM WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. If an instruction using the

execution result is placed immediately after the LD instruction, a data wait time occurs.

(2) SLD instructions

[Instructions] SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W

[Pipeline] <1> <2> <3> <4> <5> <6>

 SLD instruction IF ID MEM WB

 Next instruction IF ID EX MEM WB

[Description] The pipeline consists of 4 stages, IF, ID, MEM, and WB. If an instruction using the execution

result is placed immediately after the SLD instruction, a data wait time occurs.

CHAPTER 8 PIPELINE

 172 User’s Manual U14559EJ3V1UM

8.2.2 Store instructions

Caution Due to non-blocking control, there is no guarantee that the bus cycle is complete between the

MEM stages. However, when accessing the peripheral I/O area, blocking control is effected,

making it possible to wait for the end of the bus cycle at the MEM stage.

 For the type A, B, and C products, non-blocking control is used for access to the programmable

peripheral I/O area.

[Instructions] ST.B, ST.H, ST.W, SST.B, SST.H, SST.W

 <1> <2> <3> <4> <5> <6>

[Pipeline] Store instruction IF ID EX MEM WB

 Next instruction IF ID EX MEM WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the WB stage, because no data is written to registers.

8.2.3 Multiply instructions

[Instructions] MUL, MULH, MULHI, MULU

[Pipeline] (a) When next instruction is not multiply instruction

 <1> <2> <3> <4> <5> <6>

 Multiply instruction IF ID EX1 EX2 WB

 Next instruction IF ID EX MEM WB

 (b) When next instruction is multiply instruction

 <1> <2> <3> <4> <5> <6>

 Multiply instruction 1 IF ID EX1 EX2 WB

 Multiply instruction 2 IF ID EX1 EX2 WB

[Description] The pipeline consists of 5 stages, IF, ID, EX1, EX2, and WB. The EX stage takes 2 clocks

because it is executed by a multiplier. The EX1 and EX2 stages (different from the normal EX

stage) can operate independently. Therefore, the number of clocks for instruction execution is

always 1 clock, even if several multiply instructions are executed in a row. However, if an

instruction using the execution result is placed immediately after a multiply instruction, a data

wait time occurs.

CHAPTER 8 PIPELINE

 173User’s Manual U14559EJ3V1UM

8.2.4 Arithmetic operation instructions

(1) Instructions other than divide/move word instructions

[Instructions] ADD, ADDI, CMOV, CMP, MOV, MOVEA, MOVHI, SASF, SETF, SUB, SUBR

 <1> <2> <3> <4> <5> <6>

[Pipeline]
Arithmetic operation
instruction IF ID EX DF WB

 Next instruction IF ID EX MEM WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

(2) Move word instruction

[Instructions] MOV imm32

 <1> <2> <3> <4> <5> <6> <7>

[Pipeline]
Arithmetic operation
instruction IF ID EX1 EX2 DF WB

 Next instruction IF – ID EX MEM WB

 –: Idle inserted for wait

[Description] The pipeline consists of 6 stages, IF, ID, EX1, EX2 (normal EX stage), DF, and WB.

(3) Divide instructions

[Instructions] DIV, DIVH, DIVHU, DIVU

[Pipeline] (a) DIV, DIVH instructions

 <1> <2> <3> <4> <35> <36> <37> <38> <39> <40> <41>

 Divide instruction IF ID EX1 EX2 EX33 EX34 EX35 DF WB

 Next instruction IF – – – – ID EX MEM WB

 Next to next instruction IF ID EX MEM WB

 –: Idle inserted for wait

 (b) DIVHU, DIVU instructions

 <1> <2> <3> <4> <35> <36> <37> <38> <39> <40>

 Divide instruction IF ID EX1 EX2 EX33 EX34 DF WB

 Next instruction IF – – – ID EX MEM WB

 Next to next instruction IF ID EX MEM WB

 –: Idle inserted for wait

[Description] The pipeline consists of 39 stages, IF, ID, EX1 to EX35 (normal EX stage), DF, and WB for DIV

and DIVH instructions. The pipeline consists of 38 stages, IF, ID, EX1 to EX34 (normal EX

stage), DF, and WB for DIVHU and DIVU instructions.

[Remark] If an interrupt occurs while a divide instruction is being executed, execution of the instruction is

stopped, and the interrupt is serviced, assuming that the return address is the first address of

that instruction. After interrupt servicing has been completed, the divide instruction is executed

again. In this case, general-purpose registers reg1 and reg2 hold the value before the

instruction was executed.

CHAPTER 8 PIPELINE

 174 User’s Manual U14559EJ3V1UM

8.2.5 Saturated operation instructions

[Instructions] SATADD, SATSUB, SATSUBI, SATSUBR

 <1> <2> <3> <4> <5> <6>

[Pipeline]
Saturated operation
instruction IF ID EX DF WB

 Next instruction IF ID EX MEM WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

8.2.6 Logical operation instructions

[Instructions] AND, ANDI, BSH, BSW, HSW, NOT, OR, ORI, SAR, SHL, SHR, SXB, SXH, TST, XOR, XORI,

ZXB, ZXH

 <1> <2> <3> <4> <5> <6>

[Pipeline]
Logical operation
instruction IF ID EX DF WB

 Next instruction IF ID EX MEM WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

8.2.7 Branch instructions

(1) Conditional branch instructions (except BR instruction)

[Instructions] Bcond instructions (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV,

BNZ, BP, BSA, BV, BZ)

[Pipeline] (a) When the condition is not satisfied

 <1> <2> <3> <4> <5> <6>

Conditional branch
instruction IF ID EX MEM WB

 Next instruction IF ID EX MEM WB

 (b) When the condition is satisfied

 <1> <2> <3> <4> <5> <6> <7>

Conditional branch
instruction IF ID EX MEM WB

 Next instruction (IF)

 Branch destination instruction IF ID EX MEM WB

 (IF): Instruction fetch that is not executed

CHAPTER 8 PIPELINE

 175User’s Manual U14559EJ3V1UM

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the EX, MEM, and WB stages, because the branch destination is decided in the

ID stage.

 (a) When the condition is not satisfied

 The number of execution clocks for the branch instruction is 1.

 (b) When the condition is satisfied

 The number of execution clocks for the branch instruction is 2. The IF stage of the next

instruction of the branch instruction is not executed.

 If an instruction overwriting the contents of the PSW occurs immediately before, the

number of execution clocks is 3 because of flag hazard occurrence.

(2) BR instruction, unconditional branch instructions (except JMP instruction)

[Instructions] BR, JARL, JR

[Pipeline] <1> <2> <3> <4> <5> <6> <7>

BR instruction,
unconditional branch
instruction

IF ID EX MEM WB*

 Next instruction (IF)

 Branch destination instruction IF ID EX MEM WB

 (IF): Instruction fetch that is not executed

 WB*: No operation is performed in the case of the JR and BR instructions

but in the case of the JARL instruction, data is written to the restored

PC.

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the EX, MEM, and WB stages, because the branch destination is decided in the

ID stage. However, in the case of the JARL instruction, data is written to the restored PC in the

WB stage. Also, the IF stage of the next instruction of the branch instruction is not executed.

(3) JMP instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7>

JMP instruction

IF ID EX MEM WB

 Next instruction (IF)

 Branch destination instruction IF ID EX MEM WB

 (IF): Instruction fetch that is not executed

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the EX, MEM, and WB stages, because the branch destination is decided in the

ID stage.

CHAPTER 8 PIPELINE

 176 User’s Manual U14559EJ3V1UM

8.2.8 Bit manipulation instructions

(1) CLR1, NOT1, SET1 instructions

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>

Bit manipulation
instruction IF ID EX1 MEM EX2 MEM WB

 Next instruction IF – – ID EX MEM WB

 Next to next instruction IF ID EX MEM WB

 –: Idle inserted for wait

[Description] The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2 (normal stage), MEM, and WB.

However, no operation is performed in the WB stage, because no data is written to registers.

 In the case of these instructions, the memory access is read-modify-write, the EX stage

requires a total of 2 clocks, and the MEM stage requires a total of 2 cycles.

(2) TST1 instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>

Bit manipulation
instruction IF ID EX1 MEM EX2 MEM WB

 Next instruction IF – – ID EX MEM WB

 Next to next instruction IF ID EX MEM WB

 –: Idle inserted for wait

[Description] The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2 (normal stage), MEM, and WB.

However, no operation is performed in the second MEM and WB stages, because there is no

second memory access and no data is written to registers.

 In all, this instruction requires 2 clocks.

8.2.9 Special instructions

(1) CALLT instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>

 CALLT instruction IF ID MEM EX MEM WB

 Next instruction (IF)

 Branch destination instruction IF ID EX MEM WB

(IF): Instruction fetch that is not executed

[Description] The pipeline consists of 6 stages, IF, ID, MEM, EX, MEM, and WB. However, no operation is

performed in the second MEM and WB stages, because there is no memory access and no

data is written to registers.

CHAPTER 8 PIPELINE

 177User’s Manual U14559EJ3V1UM

(2) CTRET instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7>

 CTRET instruction IF ID EX MEM WB

 Next instruction (IF)

 Branch destination instruction IF ID EX MEM WB

(IF): Instruction fetch that is not executed

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the EX, MEM, and WB stages, because the branch destination is decided in the

ID stage.

(3) DI, EI instructions

 <1> <2> <3> <4> <5> <6>

[Pipeline] DI, EI instruction IF ID EX MEM WB

 Next instruction IF ID EX MEM WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the MEM and WB stages, because memory is not accessed and data is not

written to registers.

[Remark] Both the DI and EI instructions do not sample an interrupt request. An interrupt is sampled as

follows while these instructions are being executed.

 Instruction immediately before IF ID EX MEM WB

 DI, EI instruction IF ID EX MEM WB

 Instruction immediately after IF ID EX MEM WB

Last sampling of
interrupt before
execution of EI or
DI instruction

First sampling of
interrupt after
execution of EI or DI
instruction

CHAPTER 8 PIPELINE

 178 User’s Manual U14559EJ3V1UM

(4) DISPOSE instruction

[Pipeline] (a) When branch is not executed

 <1> <2> <3> <4> <n+2> <n+3> <n+4> <n+5> <n+6> <n+7>

 DISPOSE instruction IF ID EX MEM MEM MEM MEM WB

 Next instruction IF – – – ID EX MEM WB

 Next to next instruction IF ID EX MEM WB

–: Idle inserted for wait

n: Number of registers specified by register list (list12)

 (b) When branch is executed

 <1> <2> <3> <4> <n+2> <n+3> <n+4> <n+5> <n+6> <n+7>

 DISPOSE instruction IF ID EX MEM MEM MEM MEM WB

 Next instruction (IF)

 Branch destination instruction IF ID EX

(IF): Instruction fetch that is not executed

–: Idle inserted for wait

n: Number of registers specified by register list (list12)

[Description] The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM, and

WB. The MEM stage requires n + 1 cycles.

(5) HALT instruction

[Pipeline]

 <1> <2> <3> <4> <5> <6> HALT mode release
HALT
instruction IF ID EX MEM WB

Next instruction IF – – – – – ID EX MEM WB

Next to next instruction

 IF ID EX MEM WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the

MEM and WB stages, because memory is not accessed and no data is written to registers.

Also, for the next instruction, the ID stage is delayed until the HALT mode is released.

(6) LDSR, STSR instructions

 <1> <2> <3> <4> <5> <6>

[Pipeline]
LDSR, STSR
instruction IF ID EX DF WB

 Next instruction IF ID EX MEM WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB. If the STSR instruction using the

EIPC and FEPC system registers is placed immediately after the LDSR instruction setting

these registers, a data wait time occurs.

CHAPTER 8 PIPELINE

 179User’s Manual U14559EJ3V1UM

(7) NOP instruction

 <1> <2> <3> <4> <5> <6>

[Pipeline] NOP instruction IF ID EX MEM WB

 Next instruction IF ID EX MEM WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the EX, MEM, and WB stages, because no operation and no memory access is

executed, and no data is written to registers.

Caution Be aware that the SLD and Bcond instructions are sometimes executed at the same time as

other 16-bit format instructions. For example, if the SLD and NOP instructions are executed

simultaneously, the NOP instruction may keep the delay time from being generated.

(8) PREPARE instruction

[Pipeline] <1> <2> <3> <4> <n+2> <n+3> <n+4> <n+5> <n+6> <n+7>

 PREPARE instruction IF ID EX MEM MEM MEM MEM WB

 Next instruction IF – – – ID EX MEM WB

 Next to next instruction IF ID EX MEM WB

–: Idle inserted for wait

n: Number of registers specified by register list (list12)

[Description] The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM, and

WB. The MEM stage requires n + 1 cycles.

(9) RETI instruction

 <1> <2> <3> <4> <5> <6> <7> <8>

[Pipeline] RETI instruction IF ID1 ID2 EX MEM WB

 Next instruction (IF)

 Next to next instruction (IF)

 Jump destination instruction IF ID EX MEM WB

(IF): Instruction fetch that is not executed

ID1: Register selection

ID2: Read EIPC/FEPC

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is

performed in the MEM and WB stages, because memory is not accessed and no data is written

to registers. The ID stage requires 2 clocks. Also, the IF stages of the next instruction and the

instruction after that are not executed.

CHAPTER 8 PIPELINE

 180 User’s Manual U14559EJ3V1UM

(10) SWITCH instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9> <10>

 SWITCH instruction IF ID EX1 MEM EX2 MEM WB

 Next instruction (IF)

 Branch destination instruction IF ID EX MEM WB

(IF): Instruction fetch that is not executed

[Description] The pipeline consists of 7 stages, IF, ID, EX1 (normal EX stage), MEM, EX2, MEM, and WB.

However, no operation is performed in the second MEM and WB stages, because there is no

memory access and no data is written to registers.

(11) TRAP instruction

 <1> <2> <3> <4> <5> <6> <7> <8>

[Pipeline] TRAP instruction IF ID1 ID2 EX DF WB

 Next instruction (IF)

 Next to next instruction (IF)

 Jump destination instruction IF ID EX MEM WB

(IF): Instruction fetch that is not executed

ID1: Exception code (004nH, 005nH) detection (n = 0 to FH)

ID2: Address generation

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, DF, and WB. The ID stage requires 2

clocks. Also, the IF stages of the next instruction and the instruction after that are not

executed.

CHAPTER 8 PIPELINE

 181User’s Manual U14559EJ3V1UM

8.2.10 Debug function instructions

(1) DBRET instruction

 <1> <2> <3> <4> <5> <6> <7> <8>

[Pipeline] DBRET instruction IF ID1 ID2 EX MEM WB

 Next instruction (IF)

 Next to next instruction (IF)

 Jump destination instruction IF ID EX MEM WB

(IF): Instruction fetch that is not executed

ID1: Register selection

ID2: Read DBPC

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is

performed in the MEM and WB stages, because the memory is not accessed and no data is

written to registers. The ID stage requires 2 clocks. Also, the IF stages of the next instruction

and the instruction after that are not executed.

(2) DBTRAP instruction

 <1> <2> <3> <4> <5> <6> <7> <8>

[Pipeline] DBTRAP instruction IF ID1 ID2 EX DF WB

 Next instruction (IF)

 Next to next instruction (IF)

 Jump destination instruction IF ID EX MEM WB

(IF): Instruction fetch that is not executed

ID1: Exception code (0060H) detection

ID2: Address generation

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. The ID stage requires 2

clocks. Also, the IF stages of the next instruction and the instruction after that are not

executed.

CHAPTER 8 PIPELINE

 182 User’s Manual U14559EJ3V1UM

8.3 Pipeline Disorder

The pipeline consists of 5 stages from IF (Instruction Fetch) to WB (Write Back). Each stage basically requires 1

clock for processing, but the pipeline may become disordered, causing the number of execution clocks to increase.

This section describes the main causes of pipeline disorder.

8.3.1 Alignment hazard

If the branch destination instruction address is not word aligned (A1 = 1, A0 = 0) and is 4 bytes in length, it is

necessary to repeat IF twice in order to align instructions in word units. This is called an alignment hazard.

For example, assume that the instructions a to e are placed from address X0H, and that instruction b consists of 4

bytes, and the other instructions each consist of 2 bytes. In this case, instruction b is placed at X2H (A1 = A0 = 0),

and is not word aligned (A1 = 0, A0 = 0). Therefore, when this instruction b becomes the branch destination

instruction, an alignment hazard occurs. When an alignment hazard occurs, the number of execution clocks of the

branch instruction becomes 4.

Figure 8-6. Alignment Hazard Example

(a) Memory map (b) Pipeline

IF ID EX MEM WB
IF ×

Branch instruction
Next instruction

<1> <2> <3> <4> <5> <6> <7> <8>

IF1 IF2 ID EX MEM WB
IF ID EX MEM WB

<9>

Branch destination instruction (instruction b)

Branch destination's next instruction (instruction c)

Instruc-
tion d

Instruc-
tion e

Instruc-
tion b

Instruc-
tion c

Instruc-
tion a

Instruc-
tion b

X8H

X4H

X0H

32 bits

Address of branch destination
instruction (instruction b)

IF ×: Instruction fetch that is not executed

IF1: First instruction fetch that occurs during alignment hazard. It is a 2-

byte fetch that fetches the 2 bytes of the lower address of instruction

b.

IF2: Second instruction fetch that occurs during alignment hazard. It is

normally a 4-byte fetch that fetches the 2 bytes of the upper address

of instruction b in addition to instruction c (2-byte length).

Alignment hazards can be prevented via the following handling in order to obtain faster instruction execution.

• Use 2-byte branch destination instructions.

• Use 4-byte instructions placed at word boundaries (A1 = 0, A0 = 0) for branch destination instructions.

CHAPTER 8 PIPELINE

 183User’s Manual U14559EJ3V1UM

8.3.2 Referencing execution result of load instruction

For load instructions (LD, SLD), data read in the MEM stage is saved during the WB stage. Therefore, if the

contents of the same register are used by the instruction immediately after the load instruction, it is necessary to delay

the use of the register by this later instruction until the load instruction has finished using that register. This is called a

hazard.

The V850E1 CPU has an interlock function to automatically handle this hazard by delaying the ID stage of the next

instruction.

The V850E1 CPU also has a short path that allows the data read during the MEM stage to be used in the ID stage

of the next instruction. This short path allows data to be read by the load instruction during the MEM stage and used

in the ID stage of the next instruction at the same timing.

As a result of the above, when using the execution result in the instruction following immediately after, the number

of execution clocks of the load instruction is 2.

Figure 8-7. Example of Execution Result of Load Instruction

IF ID EX MEM WB
IF IL ID EX MEM

Load instruction 1
(LD [R4], R6)
Instruction 2 (ADD 2, R6) WB

IF - ID EX MEM
IF ID EX MEM WB

WBInstruction 3
Instruction 4

<1> <2> <3> <4> <5> <6> <7> <8> <9>

IL: Idle inserted for data wait by interlock function

-: Idle inserted for wait

: Short path

As shown in Figure 8-7, when an instruction placed immediately after a load instruction uses the execution result of

the load instruction, a data wait time occurs due to the interlock function, and the execution speed is lowered. This

drop in execution speed can be avoided by placing instructions that use the execution result of a load instruction at

least 2 instructions after the load instruction.

CHAPTER 8 PIPELINE

 184 User’s Manual U14559EJ3V1UM

8.3.3 Referencing execution result of multiply instruction

For multiply instructions (MULH, MULHI), the operation result is saved to the register in the WB stage. Therefore,

if the contents of the same register are used by the instruction immediately after the multiply instruction, it is

necessary to delay the use of the register by this later instruction until the multiply instruction has finished using that

register (occurrence of hazard).

The V850E1 CPU’s interlock function delays the ID stage of the instruction following immediately after. A short

path is also provided that allows the EX2 stage of the multiply instruction and the multiply instruction’s operation result

to be used in the ID stage of the instruction following immediately after at the same timing.

Figure 8-8. Example of Execution Result of Multiply Instruction

IF ID EX1 EX2 WB
IF IL ID EX MEMInstruction 2 (ADD 2, R6) WB

IF - ID EX MEM
IF ID EX MEM WB

WBInstruction 3
Instruction 4

<1> <2> <3> <4> <5> <6>
Multiply instruction 1
(MULH 3, R6)

<7> <8> <9>

IL: Idle inserted for data wait by interlock function

-: Idle inserted for wait

: Short path

As shown in Figure 8-8, when an instruction placed immediately after a multiply instruction uses the execution

result of the multiply instruction, a data wait time occurs due to the interlock function, and the execution speed is

lowered. This drop in execution speed can be avoided by placing instructions that use the execution result of a

multiply instruction at least 2 instructions after the multiply instruction.

CHAPTER 8 PIPELINE

 185User’s Manual U14559EJ3V1UM

8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC

When using the LDSR instruction to set the data of the EIPC and FEPC system registers, and immediately after

referencing the same system registers with the STSR instruction, the use of the system registers for the STSR

instruction is delayed until the setting of the system registers with the LDSR instruction is completed (occurrence of

hazard).

The V850E1 CPU’s interlock function delays the ID stage of the STSR instruction immediately after.

As a result of the above, when using the execution result of the LDSR instruction for EIPC and FEPC for an STSR

instruction following immediately after, the number of execution clocks of the LDSR instruction becomes 3.

Figure 8-9. Example of Referencing Execution Result of LDSR Instruction for EIPC and FEPC

IF ID EX MEM
IF IL IL EX

LDSR instruction
(LDSR R6, 0) Note

STSR instruction
(STSR 0, R7) Note MEM

IF - ID EX MEM
IF ID EX MEM WB

WBNext instruction
Instruction after that

WB
WB
ID

-

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10>

IL: Idle inserted for data wait by interlock function

-: Idle inserted for wait

Note System register 0 used for the LDSR and STSR instructions indicates EIPC.

As shown in Figure 8-9, when an STSR instruction is placed immediately after an LDSR instruction that uses the

operand EIPC or FEPC, and that STSR instruction uses the LDSR instruction execution result, the interlock function

causes a data wait time to occur, and the execution speed is lowered. This drop in execution speed can be avoided

by placing STSR instructions that reference the execution result of the preceding LDSR instruction at least 3

instructions after the LDSR instruction.

8.3.5 Cautions when creating programs

When creating programs, pipeline disorder can be avoided and instruction execution speed can be raised by

observing the following cautions.

• Place instructions that use the execution result of load instructions (LD, SLD) at least 2 instructions after the

load instruction.

• Place instructions that use the execution result of multiply instructions (MULH, MULHI) at least 2 instructions

after the multiply instruction.

• If using the STSR instruction to read the setting results written to the EIPC or FEPC registers with the LDSR

instruction, place the STSR instruction at least 3 instructions after the LDSR instruction.

• For the first branch destination instruction, use a 2-byte instruction, or a 4-byte instruction placed at a word

boundary.

CHAPTER 8 PIPELINE

 186 User’s Manual U14559EJ3V1UM

8.4 Additional Items Related to Pipeline

8.4.1 Harvard architecture

The V850E1 CPU uses Harvard architecture to operate an instruction fetch path from internal ROM and a memory

access path to internal RAM independently. This eliminates path arbitration conflicts between the IF and MEM stages

and allows orderly pipeline operation.

(1) V850E1 CPU (Harvard architecture)

The MEM stage of instruction 1 and the IF stage of instruction 4, as well as the MEM stage of instruction 2 and

the IF stage of instruction 5 can be executed simultaneously with an orderly pipeline operation.

IF ID EX MEM
IF ID EX WB

Instruction 1

Instruction 2
IF EX MEM WB

EX MEM WB
Instruction 3

Instruction 4

WB
MEM

ID

Instruction 5

ID
EX MEM WB

IF
IF ID

<1> <2> <3> <4> <5> <6> <7> <8> <9>

(2) Not V850E1 CPU (other than Harvard architecture)

The MEM stage of instruction 1 and the IF stage of instruction 4, in addition to the MEM stage of instruction 2 and

the IF stage of instruction 5 are in conflict, causing path waiting to occur and slower execution time due to

disorderly pipeline operation.

IF ID EX MEM
IF ID - MEM

Instruction 1

Instruction 2
IF ID - EX

- ID EX
Instruction 3

Instruction 4

WB
EX

-

Instruction 5

IF
IF ID EX

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10>

WB
MEM

MEM
MEM

<11>

WB
WB

WB

-: Idle inserted for wait

CHAPTER 8 PIPELINE

 187User’s Manual U14559EJ3V1UM

8.4.2 Short path

The V850E1 CPU provides on chip a short path that allows the use of the execution result of the preceding

instruction by the following instruction before writeback (WB) is completed for the previous instruction.

Example 1. Execution result of arithmetic operation instruction and logical operation used by instruction

following immediately after

• V850E1 CPU (on-chip short path)

The execution result of the preceding instruction can be used for the ID stage of the instruction

following immediately after as soon as the result is out (EX stage), without having to wait for

writeback to be completed.

IF ID EX MEM WB
IF ID EX MEM WB

ADD 2, R6
MOV R6, R7

<1> <2> <3> <4> <5> <6>

• Not V850E1 CPU (No short path)

The ID stage of the instruction following immediately after is delayed until writeback of the

previous instruction is completed.

IF ID EX WB
IF - - ID EX

ADD 2, R6
MOV R6, R7 MEM WB

<1> <2> <3> <4> <5> <6> <7> <8>

MEM

-: Idle inserted for wait

: Short path

CHAPTER 8 PIPELINE

 188 User’s Manual U14559EJ3V1UM

Example 2. Data read from memory by the load instruction used by instruction following immediately after

• V850E1 CPU (on-chip short path)

The execution result of the preceding instruction can be used for the ID stage of the instruction

following immediately after as soon as the result is out (MEM stage), without having to wait for

writeback to be completed.

IF ID EX MEM WB
IF IL ID EX MEM

LD [R4], R6
ADD 2, R6 WB

ID EX MEM
ID EX MEM WB

WBNext instruction
Instruction after that

<1> <2> <3> <4> <5> <6> <7> <8> <9>

IF -
IF

• Not V850E1 CPU (No short path)

The ID stage of the instruction following immediately after is delayed until writeback of the

previous instruction is completed.

IF ID EX MEM WB
IF - - ID EX

LD [R4], R6
ADD 2, R6 MEM

IF ID EX
IF ID EX MEM

MEMNext instruction
Instruction after that

WB
WB

WB

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10>

IL: Idle inserted for data wait by interlock function

-: Idle inserted for wait

: Short path

189 User’s Manual U14559EJ3V1UM

CHAPTER 9 SHIFTING TO DEBUG MODE

The V850E1 CPU sets the handler address (00000060H) to the program counter (PC) when a debug trap,

exception trap, or debug break occurs, and then shifts to the debug mode.

Moreover, setting single-step operation makes it possible to shift to debug mode each time an instruction executed.

Caution When the V850E1 CPU shifts to the debug mode, the data cache is held, and the data and tags

are not updated. If the external memory of the cacheable area is accessed in the debug mode,

the coherency is corrupted because the data cache is valid only while the external memory is

being accessed. Therefore, to manipulate cacheable area data in a debug monitor routine, clear

the data cache (for write through) or flush and clear (for writeback) before restoring to the user

mode.

9.1 How to Shift to Debug Mode

(1) Debug trap

Execution of the DBTRAP instruction generates a debug trap and shifts the V850E1 CPU to the debug mode

(see 6.2.3 Debug trap).

(2) Exception trap

Invalid execution of instructions generates an exception trap and shifts the V850E1 CPU to the debug mode

(see 6.2.2 Exception trap).

(3) Debug break

The following three types of debug breaks are available.

• Break due to setting breakpoints (2 channels)

• Break due to misalign access exception occurrence

• Break due to alignment error exception occurrence

The following system registers are used to set debug breaks.

• Debug interface register (DIR)

• Breakpoint control registers 0, 1 (BPC0, BPC1)

• Breakpoint address setting registers 0, 1 (BPAV0, BPAV1)

• Breakpoint address mask registers 0, 1 (BPAM0, BPAM1)

• Breakpoint data setting registers 0, 1 (BPDV0, BPDV1)

• Breakpoint data mask registers 0, 1 (BPDM0, BPDM1)

Remark Registers, except for the ASID register, can be read or written only in debug mode (the DIR register

can be read in user mode). Therefore, perform the initial settings of each register and reading/writing

at an arbitrary timing after shifting to debug mode by a debug trap (execution of DBTRAP instruction).

CHAPTER 9 SHIFTING TO DEBUG MODE

190 User’s Manual U14559EJ3V1UM

(a) Break due to setting breakpoints (2 channels)

The V850E1 CPU shifts to the debug mode based on the breakpoint settings (2 channels) validated when

the following break conditions are satisfied. The BPCn register is used to set each condition (n = 0, 1).

Caution While the IE bit of the BPCn register is set to 1, the system does not shift to the debug

mode if the BP ASID bit value and the program ID set to the ASID register do not match;

even if the break conditions match.

Table 9-1. Break Conditions

Type Break Condition BPxxn Register SettingNote 2

 Setting of MD, FE, RE,

WE Bits of BPCn Register

 AddressNote 1

 Data

Break

Timing

BP

AVn

BP

AMn

BP

DVn

BP

DMn

MD FE RE,

WE

Specific instruction

code

<1> <1> √ <0> 0 1 0Note 5 Arbitrary

execution

address Specific instruction

code range

<1> <1> √ √

Arbitrary instruction

code

√ <0> <1> <1> Any

Specific instruction

code

√ <0> √ <0> 0

Specific

execution

address

Specific instruction

code range

√ <0> √ √

Arbitrary instruction

code

√ √ <1> <1> Any

Specific instruction

code

√ √ √ <0> 0

Execution

trap

Specific

execution

address range

Specific instruction

code range

Immediately

before

execution

√ √ √ √

Specific data After

executionNote 3

<1> <1> √ <0> 0 0 0/1Note 6 Arbitrary

access

address Specific data range Immediately

after

execution

<1> <1> √ v

Arbitrary data √ <0> <1> <1> AnyNote 4

Specific data √ <0> √ <0> 0

Specific

access

address
Specific data range

After

executionNote 3

√ <0> √ √

Arbitrary data Immediately

after

execution

√ √ <1> <1> AnyNote 4

Specific data √ √ √ <0> 0

Access

trap

Specific

access

address range

Specific data range

After

executionNote 3

√ √ √ √

CHAPTER 9 SHIFTING TO DEBUG MODE

191 User’s Manual U14559EJ3V1UM

Notes 1. The execution address indicates the address of an instruction fetch, and the access address

indicates the address at which an access occurs in accordance with instruction execution.

 2. Set as follows.

√: Set the break conditions.

<0>: Clear all bits to 0.

<1>: It is not necessary to set the conditions, but set all bits to 1 because the initial value is

undefined (bits 31 to 28 of the BPAVn and BPAMn registers are fixed to 0, and cannot

be set to 1).

 For an execution trap or for an access trap that targets a 64 MB data area, bits 27 and 26 of

the BPAVn and BPAMn registers are ignored. However, set them to 1 because the initial

value is undefined.

 3. Data write: Immediately after execution

 Data read: After several instructions are executed (slip)

 4. When the MD bit is set to 1, match judgment by the data comparator is ignored. Therefore,

the break latency is accelerated by 1 clock (a break occurs at the MEM stage when MD = 0,

and at the EX stage when MD = 1).

 5. Always set to 0 (operation is not guaranteed when set to 1).

 6. Set in accordance with the access type (read only, write only, or read/write)

Cautions 1. The match timing of break conditions differs between an execution trap and an

access trap (at the ID stage for an execution trap, and at the MEM stage for an

access trap). Therefore, even if the sequential break mode is set, the V850E1 CPU

may not operate normally when an execution trap occurs after an access trap.

 2. In the range break mode, set either the execution trap or access trap to channels 0

and 1.

Remarks 1. n = 0, 1

 2. When multiple break conditions are set, the debug mode is entered if at least one of them

is satisfied.

 3. Channels 0 and 1 can be linked to perform the following two operations (however,

simultaneous operations are not possible).

(i) Break by sequential execution (range break mode)

This break is set by setting the SQ bit of the debug interface register (DIR) to 1. The

debug mode is entered only when the break conditions of channels 0 and 1 match in

that order.

(ii) Break by simultaneous execution (range break mode)

This break is set by setting the RE bit of the debug interface register (DIR) to 1. The

debug mode is entered only when the break conditions of channels 0 and 1 match at

the same time.

(b) Break due to misalign access exception occurrence

This break is set by setting the MA bit of the debug interface register (DIR) to 1. The debug mode is

entered when a misalign access occurs during execution of the load and store instructions (independent

of the enable/disable setting of misaligned access to the CPU).

CHAPTER 9 SHIFTING TO DEBUG MODE

192 User’s Manual U14559EJ3V1UM

(c) Break due to alignment error exception occurrence

This break is set by setting the AE bit of the debug interface register (DIR) to 1.

The V850E1 CPU shifts to the debug mode when an alignment error occurs.

An alignment error occurs in the following case.

• When the stack pointer (SP) is forcibly aligned to other than a word boundary during PREPARE or

DISPOSE instruction execution

Remark Misaligned access to the CPU is enabled/disabled via hardware settings (pin input) (in the

V850E1 core, set according to the level input to the IFIMAEN pin).

In debug breaks except for access traps, the address of the instruction that caused the break is saved to

DBPC (because debug mode is entered before instruction execution is complete). Therefore, the instruction

that caused a break is executed after shifting from debug mode to user mode, but an additional debug break

does not occur (ignored).

(4) Single-step operation

The single-step operation is set by setting the SS flag of the PSW to 1, and the debug mode is entered when

each instruction is executed. The single-step operation is set/cleared using the following procedure.

(a) Single-step operation setting procedure

<1> Shift to debug mode via a debug trap (DBTRAP instruction execution).

<2> Set the SE bit of the DIR register to 1 to control the SS flag of the PSW.

<3> Set bit 11 of the DBPSW register to 1 to set the SS flag of the PSW to 1 when shifting to the user

mode.

<4> Transfer the restored PC value to the DBPC register.

<5> Shift to the user mode via the DBRET instruction (the SS flag of the PSW is set to 1 while shifting

and the single-step operation is set).

(b) Single-step operation clearing procedure

<1> When operating in the debug mode, clear bit 11 of the DBPSW register to 0 (this manipulation

clears the SS flag of the PSW to 0 when shifting to the user mode).

<2> Clear the SE bit of the DIR register to 0 (however, if this manipulation is omitted, the SS flag of the

PSW can be set to 1).

<3> Shift to the user mode via the DBRET instruction (the SS flag of the PSW is cleared to 0 while

shifting and the single-step operation is cleared).

CHAPTER 9 SHIFTING TO DEBUG MODE

193 User’s Manual U14559EJ3V1UM

Figure 9-1. Single-Step Operation Execution Flow

DBTRAP instruction execution

User mode

DBRET instruction execution

Debug mode

Single-step
operation clearing

Single-step
operation setting

DBPC
DBPSW
PSW.NP
PSW.EP
PSW.ID
PC

← Restored PC
← PSW
← 1
← 1
← 1
← 00000060H

DBPC
DBPSW
PSW.NP
PSW.EP
PSW.ID
PC

← Restored PC
← PSW
← 1
← 1
← 1
← 00000060H

DIR.SE
DBPSW [11]
DBPC

← 1
← 1
← Restored PC

DBPSW [11]
DIR.SE

← 0
← 0

.

.

.

1 instruction executed

1 instruction executed

1 instruction executed

1 instruction executed

Debug monitor routine

Debug monitor routine

DBRET instruction execution

Remark The SS flag of the PSW is automatically cleared to 0 when an interrupt request is generated in user

mode in a single-step operation. Therefore, the single-step operation is not performed in the interrupt

servicing routine (the SS flag is set to 1 again due to the restore processing from the interrupt

servicing routine (EIPSW → PSW)).

The processing flow may vary depending on the instruction that is executed when an interrupt occurs

(see Figure 9-2).

CHAPTER 9 SHIFTING TO DEBUG MODE

194 User’s Manual U14559EJ3V1UM

Figure 9-2. Processing Flow When Interrupt Request Is Generated During Single-Step Operation

(a) Instruction that does not suspend the

 execution by interrupt request

(b) Instruction that suspends the execution by

 interrupt request

DBPC
DBPSW
PSW.NP
PSW.EP
PSW.ID
PC

← Restored PC
← PSW
← 1
← 1
← 1
← 00000060H

EIPC
EIPSW
PSW.ID
PSW.SS
PC

← Restored PC
← PSW
← 1
← 0
← Handler
 address

DBPC
DBPSW
PSW.NP
PSW.EP
PSW.ID
PC

← Restored PC
← PSW
← 1
← 1
← 1
← 00000060H

PC
PSW

← EIPC
← EIPSW
 (SS = 1)

.

.

.

...

EIPC
EIPSW
PSW.ID
PSW.SS
PC

← Restored PC
← PSW
← 1
← 0
← Handler
 address

DBPC
DBPSW
PSW.NP
PSW.EP
PSW.ID
PC

← Restored PC
← PSW
← 1
← 1
← 1
← 00000060H

DBPC
DBPSW
PSW.NP
PSW.EP
PSW.ID
PC

← Restored PC
← PSW
← 1
← 1
← 1
← 00000060H

PC
PSW

← EIPC
← EIPSW
 (SS = 1)

.

.

.

...

User mode

1 instruction executed
(not suspended)

Interrupt servicing
routine

1 instruction executed
(suspended instruction)

1 instruction executed
(suspended)

Interrupt servicing
routine

1 instruction executed

Interrupt request Interrupt request

Debug mode

Debug monitor routine

Debug monitor routine

Debug monitor routine

User mode Debug mode

Debug monitor routine

Debug monitor routine

Debug monitor routine

Remark For the instructions that suspend the execution by interrupt request (see Table 6-1

Interrupt/Exception Codes), the interrupt servicing may be performed without waiting for the

completion of that instruction execution, and the debug mode may be entered executing no

instruction after restoring from the interrupt servicing routine.

CHAPTER 9 SHIFTING TO DEBUG MODE

195 User’s Manual U14559EJ3V1UM

9.2 Cautions

The set value of the BPDVn register differs in accordance with the address to be accessed in misaligned access or

access by a bit manipulation instruction (n = 0, 1).

In misaligned access, memory access cycles are generated divided into several cycles. In write access, only the

address, data, and access type (halfword/byte) of the divided first cycle are compared as break conditions. Also in

access by a bit manipulation instruction, the set value of the BPDVn register differs in accordance with the address to

be accessed.

The following shows an example of setting break conditions for each access address according to the access size.

Table 9-2. Break Condition Setting Example

TY Bit of BPCn Register BPDVn RegisterNote 2 Access Size

(Sample Data)

Access

AddressNote 1

Bus Cycle

Write Read

BPAVn

Register
Note 1

Write Read

0H W 1, 1 (W) 0H 44332211H

1H B→HW→B 0, 1 (B) 1H xxxx11xxH

2H HW→HW 1, 0 (HW) 2H 2211xxxxH

Word

(44332211H)

3H B→HW→B 0, 1 (B)

1, 1 (W)

3H 11xxxxxxH

44332211H

0H HW 1, 0 (HW) 0H xxxx2211H

1H B→B 0, 1 (B) 1H xxxx11xxH

2211xxxxH 2H HW 1, 0 (HW) 2H

xxxx2211HNote 3

Halfword

(2211H)

3H B→B 0, 1 (B)

1, 0 (HW)

3H 11xxxxxxH

xxxx2211H

0H 0H xxxxxx11H

xxxx11xxH 1H 1H

xxxxxx11HNote 4

xx11xxxxH 2H 2H

xxxxxx11HNote 4

11xxxxxxH

Byte (11H)

3H

B 0, 1 (B)

3H

xxxxxx11HNote 4

xxxxxx11H

0H 0H xxxxxx11H

1H 1H xxxx11xxH

2H 2H xx11xxxxH

Byte (11H）

3H

B 0, 1 (B)

3H 11xxxxxxH

Notes 1. Indicates the value of the lower two bits.

 2. “x” indicates being masked by the BPDMn register.

 3. Valid only during halfword align access.

 4. Valid only during byte align access.

Remarks 1. W: Word data transfer cycle

 HW: Halfword data transfer cycle

 B: Byte data transfer cycle

 2. n = 0, 1

CHAPTER 9 SHIFTING TO DEBUG MODE

196 User’s Manual U14559EJ3V1UM

For example, when write-accessing address 03FFEFF1H of the word data 44332211H, the first memory access

means writing the byte data 11H to address 03FFEFF1H. A setting example when this access is specified as a break

condition of channel 0 is shown below.

• BPAV0 register: 03FFEFF1H

• BPAM0 register: 00000000H

• BPDV0 register: xxxx11xxH (x: don’t care)

• BPDM0 register: FFFF00FFH

• TY bit of BPC0 register: 0, 1 (byte access)

 197User’s Manual U14559EJ3V1UM

APPENDIX A NOTES

A.1 Restriction on Conflict Between sld Instruction and Interrupt request

A.1.1 Description

If a conflict occurs between the decode operation of an instruction in <2> immediately before the sld instruction

following an instruction in <1> and an interrupt request before the instruction in <1> is complete, the execution result

of the instruction in <1> may not be stored in a register.

Instruction <1>

• ld instruction: ld.b, ld.h, ld.w, ld.bu, ld.hu

• sld instruction: sld.b, sld.h, sld.w, sld.bu, sld.hu

• Multiplication instruction: mul, mulh, mulhi, mulu

Instruction <2>

mov reg1, reg2

satadd reg1, reg2

and reg1, reg2

add reg1, reg2

mulh reg1, reg2

not reg1, reg2

satadd imm5, reg2

tst reg1, reg2

add imm5, reg2

shr imm5, reg2

satsubr reg1, reg2

or reg1, reg2

subr reg1, reg2

cmp reg1, reg2

sar imm5, reg2

satsub reg1, reg2

xor reg1, reg2

sub reg1, reg2

cmp imm5, reg2

shl imm5, reg2

<Example>

<i> ld.w [r11], r10 If the decode operation of the mov instruction <ii> immediately before the sld

instruction <iii> and an interrupt request conflict before execution of the ld instruction

<i> is complete, the execution result of instruction <i> may not be stored in a register.

<ii> mov r10, r28

<iii> sld.w 0x28, r10

A.1.2 Countermeasure

When executing the sld instruction immediately after instruction <ii>, avoid the above operation using either of the

following methods.

• Insert a nop instruction immediately before the sld instruction.

• Do not use the same register as the sld instruction destination register in the above instruction <ii> executed

immediately before the sld instruction.

•
•
•

198 User’s Manual U14559EJ3V1UM

APPENDIX B INSTRUCTION LIST

The instruction function list in alphabetical order is shown in Table B-1, and instruction list in format order is shown

in Table B-2.

Table B-1. Instruction Function List (in Alphabetical Order) (1/11)

Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

ADD reg1, reg2 I 0/1 0/1 0/1 0/1 − Add. Adds the word data of reg1 to the word

data of reg2, and stores the result in reg2.

ADD imm5, reg2 II 0/1 0/1 0/1 0/1 − Add. Adds the 5-bit immediate data, sign-

extended to word length, to the word data of

reg2, and stores the result in reg2.

ADDI imm16, reg1, reg2 VI 0/1 0/1 0/1 0/1 − Add Immediate. Adds the 16-bit immediate

data, sign-extended to word length, to the

word data of reg1, and stores the result in

reg2.

AND reg1, reg2 I − 0 0/1 0/1 − And. ANDs the word data of reg2 with the

word data of reg1, and stores the result in

reg2.

ANDI imm16, reg1, reg2 VI − 0 0 0/1 − And. ANDs the word data of reg1 with the 16-

bit immediate data, zero-extended to word

length, and stores the result in reg2.

Bcond disp9 III − − − − − Branch on Condition Code. Tests a condition

flag specified by an instruction. Branches if a

specified condition is satisfied; otherwise,

executes the next instruction. The branch

destination PC holds the sum of the current

PC value and 9-bit displacement which is the

8-bit immediate shifted 1 bit and sign-extended

to word length.

BSH reg2, reg3 XII 0/1 0 0/1 0/1 − Byte Swap Halfword. Performs endian

conversion.

BSW reg2, reg3 XII 0/1 0 0/1 0/1 − Byte Swap Word. Performs endian conversion.

CALLT imm6 II − − − − − Call with Table Look Up. Based on CTBP

contents, updates PC value and transfers

control.

CLR1 bit#3, disp16 [reg1] VIII − − − 0/1 − Clear Bit. Adds the data of reg1 to a 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address. Then clears the bit,

specified by the instruction bit field, of the byte

data referenced by the generated address.

APPENDIX B INSTRUCTION LIST

199 User’s Manual U14559EJ3V1UM

Table B-1. Instruction Function List (in Alphabetical Order) (2/11)

Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

CLR1 reg2 [reg1] IX − − − 0/1 − Clear Bit. First, reads the data of reg1 to

generate a 32-bit address. Then clears the bit,

specified by the data of lower 3 bits of reg2 of

the byte data referenced by the generated

address.

CMOV cccc, reg1, reg2,

reg3

XI − − − − − Conditional Move. reg3 is set to reg1 if a

condition specified by condition code “cccc” is

satisfied; otherwise, set to the data of reg2.

CMOV cccc, imm5, reg2,

reg3

XII − − − − − Conditional Move. reg3 is set to the data of 5-

immediate, sign-extended to word length, if a

condition specified by condition code “cccc” is

satisfied; otherwise, set to the data of reg2.

CMP reg1, reg2 I 0/1 0/1 0/1 0/1 − Compare. Compares the word data of reg2

with the word data of reg1, and indicates the

result by using the PSW flags. To compare,

the contents of reg1 are subtracted from the

word data of reg2.

CMP imm5, reg2 II 0/1 0/1 0/1 0/1 − Compare. Compares the word data of reg2

with the 5-bit immediate data, sign-extended to

word length, and indicates the result by using

the PSW flags. To compare, the contents of

the sign-extended immediate data are

subtracted from the word data of reg2.

CTRET (None) X 0/1 0/1 0/1 0/1 0/1 Restore from CALLT. Restores the restored PC

and PSW from the appropriate system register

and restores from a routine called by CALLT.

DBRETNote (None) X 0/1 0/1 0/1 0/1 0/1 Return from debug trap. Restores the restored

PC and PSW from the appropriate system

register and restores from a debug monitor

routine.

DBTRAPNote (None) I − − − − − Debug trap. Saves the restored PC and PSW

to the appropriate system register and

transfers control by setting the PC to handler

address (00000060H).

DI (None) X − − − − − Disables Interrupt. Sets the ID flag of the PSW

to 1 to disable the acknowledgment of

maskable interrupts from acceptance;

interrupts are immediately disabled at the start

of this instruction execution.

DISPOSE imm5, list12 XIII − − − − − Function Dispose. Adds the data of 5-bit

immediate imm5, logically shifted left by 2 and

zero-extended to word length, to sp. Then pop

(load data from the address specified by sp

and adds 4 to sp) general-purpose registers

listed in list12.

Note Not supported in type C products

APPENDIX B INSTRUCTION LIST

200 User’s Manual U14559EJ3V1UM

Table B-1. Instruction Function List (in Alphabetical Order) (3/11)

Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

DISPOSE imm5, list12, [reg1] XIII − − − − − Function Dispose. Adds the data of 5-bit

immediate imm5, logically shifted left by 2 and

zero-extended to word length, to sp. Then pop

(load data from the address specified by sp

and adds 4 to sp) general-purpose registers

listed in list12, transfers control to the address

specified by reg1.

DIV reg1, reg2, reg3 XI − 0/1 0/1 0/1 − Divide Word. Divides the word data of reg2 by

the word data of reg1, and stores the quotient

in reg2 and the remainder in reg3.

DIVH reg1, reg2 I − 0/1 0/1 0/1 − Divide Halfword. Divides the word data of reg2

by the lower halfword data of reg1, and stores

the quotient in reg2.

DIVH reg1, reg2, reg3 XI − 0/1 0/1 0/1 − Divide Halfword. Divides word data of reg2 by

lower halfword data of reg1, and stores the

quotient in reg2 and the remainder in reg3.

DIVHU reg1, reg2, reg3 XI − 0/1 0/1 0/1 − Divide Halfword Unsigned. Divides word data

of reg2 by lower halfword data of reg1, and

stores the quotient in reg2 and the remainder

in reg3.

DIVU reg1, reg2, reg3 XI − 0/1 0/1 0/1 − Divide Word Unsigned. Divides the word data

of reg2 by the word data of reg1, and stores

the quotient in reg2 and the remainder in reg3.

EI (None) X − − − − − Enable Interrupt. Clears the ID flag of the PSW

to 0 and enables the acknowledgment of

maskable interrupts at the beginning of next

instruction.

HALT (None) X − − − − − Halt. Stops the operating clock of the CPU and

places the CPU in the HALT mode.

HSW reg2, reg3 XII 0/1 0 0/1 0/1 − Halfword Swap Word. Performs endian

conversion.

JARL disp22, reg2 V − − − − − Jump and Register Link. Saves the current PC

value plus 4 to general-purpose register reg2,

adds a 22-bit displacement, sign-extended to

word length, to the current PC value, and

transfers control to the PC. Bit 0 of the 22-bit

displacement is masked to 0.

JMP [reg1] I − − − − − Jump Register. Transfers control to the

address specified by reg1. Bit 0 of the address

is masked to 0.

JR disp22 V − − − − − Jump Relative. Adds a 22-bit displacement,

sign-extended to word length, to the current

PC value, and transfers control to the PC. Bit 0

of the 22-bit displacement is masked to 0.

APPENDIX B INSTRUCTION LIST

201 User’s Manual U14559EJ3V1UM

Table B-1. Instruction Function List (in Alphabetical Order) (4/11)

Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

LD.B disp16 [reg1], reg2 VII − − − − − Byte Load. Adds the data of reg1 to a 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address. Byte data is read

from the generated address, sign-extended to

word length, and then stored in reg2.

LD.BU disp16 [reg1], reg2 VII − − − − − Unsigned Byte Load. Adds the data of reg1

and the 16-bit displacement sign-extended to

word length, and generates a 32-bit address.

Then reads the byte data from the generated

address, zero-extends it to word length, and

stores it in reg2.

LD.H disp16 [reg1], reg2 VII − − − − − Halfword Load. Adds the data of reg1 to a 16-

bit displacement, sign-extended to word

length, to generate a 32-bit address. Halfword

data is read from this 32-bit address with bit 0

masked to 0, sign-extended to word length,

and stored in reg2.

LD.HU disp16 [reg1], reg2 VII − − − − − Unsigned Halfword Load. Adds the data of

reg1 and the 16-bit displacement sign-

extended to word length to generate a 32-bit

address. Reads the halfword data from the

address masking bit 0 of this 32-bit address to

0, zero-extends it to word length, and stores it

in reg2.

LD.W disp16 [reg1], reg2 VII − − − − − Word Load. Adds the data of reg1 to a 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address. Word data is read

from this 32-bit address with bits 0 and 1

masked to 0, and stored in reg2.

LDSR reg2, regID IX − − − − − Load to System Register. Set the word data of

reg2 to a system register specified by regID. If

regID is PSW, the values of the corresponding

bits of reg2 are set to the respective flags of

the PSW.

MOV reg1, reg2 I − − − − − Move. Transfers the word data of reg1 in reg2.

MOV imm5, reg2 II − − − − − Move. Transfers the value of a 5-bit immediate

data, sign-extended to word length, in reg2.

MOV imm32, reg1 VI − − − − − Move. Transfers the 32-bit immediate data in

reg1.

MOVEA imm16, reg1, reg2 VI − − − − − Move Effective Address. Adds a 16-bit

immediate data, sign-extended to word length,

to the word data of reg1, and stores the result

in reg2.

APPENDIX B INSTRUCTION LIST

202 User’s Manual U14559EJ3V1UM

Table B-1. Instruction Function List (in Alphabetical Order) (5/11)

Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

MOVHI imm16, reg1, reg2 VI − − − − − Move High Halfword. Adds word data, in which

the higher 16 bits are defined by the 16-bit

immediate data while the lower 16 bits are set

to 0, to the word data of reg1 and stores the

result in reg2.

MUL reg1, reg2, reg3 XI − − − − − Multiply Word. Multiplies the word data of reg2

by the word data of reg1, and stores the result

in reg2 and reg3.

MUL imm9, reg2, reg3 XII − − − − − Multiply Word. Multiplies the word data of reg2

by the 9-bit immediate data sign-extended to

word length, and stores the result in reg2 and

reg3.

MULH reg1, reg2 I − − − − − Multiply Halfword. Multiplies the lower halfword

data of reg2 by the lower halfword data of

reg1, and stores the result in reg2 as word

data.

MULH imm5, reg2 II − − − − − Multiply Halfword. Multiplies the lower halfword

data of reg2 by a 5-bit immediate data, sign-

extended to halfword length, and stores the

result in reg2 as word data.

MULHI imm16, reg1, reg2 VI − − − − − Multiply Halfword Immediate. Multiplies the

lower halfword data of reg1 by a 16-bit

immediate data, and stores the result in reg2.

MULU reg1, reg2, reg3 XI − − − − − Multiply Word Unsigned. Multiplies the word

data of reg2 by the word data of reg1, and

stores the result in reg2 and reg3.

MULU imm9, reg2, reg3 XII − − − − − Multiply Word Unsigned. Multiplies the word

data of reg2 by the 9-bit immediate data sign-

extended to word length, and store the result

in reg2 and reg3.

NOP (None) I − − − − − No Operation.

NOT reg1, reg2 I − 0 0/1 0/1 − Not. Logically negates (takes 1’s complement

of) the word data of reg1, and stores the result

in reg2.

NOT1 bit#3, disp16 [reg1] VIII − − − 0/1 − Not Bit. First, adds the data of reg1 to a 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address. The bit specified by

the 3-bit bit number is inverted at the byte data

location referenced by the generated address.

NOT1 reg2, [reg1] IX − − − 0/1 − Not Bit. First, reads reg1 to generate a 32-bit

address. The bit specified by the lower 3 bits

of reg2 of the byte data of the generated

address is inverted.

APPENDIX B INSTRUCTION LIST

203 User’s Manual U14559EJ3V1UM

Table B-1. Instruction Function List (in Alphabetical Order) (6/11)

Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

OR reg1, reg2 I − 0 0/1 0/1 − Or. ORs the word data of reg2 with the word

data of reg1, and stores the result in reg2.

ORI imm16, reg1, reg2 VI − 0 0/1 0/1 − Or Immediate. ORs the word data of reg1 with

the 16-bit immediate data, zero-extended to

word length, and stores the result in reg2.

PREPARE list12, imm5 XIII − − − − − Function Prepare. The general-purpose

register displayed in list12 is saved (4 is

subtracted from sp, and the data is stored in

that address). Next, the data is logically shifted

2 bits to the left, and the 5-bit immediate data

zero-extended to word length is subtracted

from sp.

PREPARE list12, imm5,

sp/imm

XIII − − − − − Function Prepare. The general-purpose

register displayed in list12 is saved (4 is

subtracted from sp, and the data is stored in

that address). Next, the data is logically shifted

2 bits to the left, and the 5-bit immediate data

zero-extended to word length is subtracted

from sp. Then, the data specified by the third

operand is loaded to ep.

RETI (None) X 0/1 0/1 0/1 0/1 0/1 Return from Trap or Interrupt. Reads the

restored PC and PSW from the appropriate

system register, and restores from interrupt or

exception processing routine.

SAR reg1, reg2 IX 0/1 0 0/1 0/1 − Shift Arithmetic Right. Arithmetically shifts the

word data of reg2 to the right by ‘n’ positions,

where ‘n’ is specified by the lower 5 bits of

reg1 (the MSB prior to shift execution is copied

and set as the new MSB), and then writes the

result in reg2.

SAR imm5, reg2 II 0/1 0 0/1 0/1 − Shift Arithmetic Right. Arithmetically shifts the

word data of reg2 to the right by ‘n’ positions

specified by the lower 5-bit immediate data,

zero-extended to word length (the MSB prior to

shift execution is copied and set as the new

MSB), and then writes the result in reg2.

SASF cccc, reg2 IX − − − − − Shift and Set Flag Condition. reg2 is logically

shifted left by 1, and its LSB is set to 1 in a

condition specified by condition code “cccc” is

satisfied; otherwise, LSB is set to 0.

APPENDIX B INSTRUCTION LIST

204 User’s Manual U14559EJ3V1UM

Table B-1. Instruction Function List (in Alphabetical Order) (7/11)

Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

SATADD reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturated Add. Adds the word data of reg1 to

the word data of reg2, and stores the result in

reg2. However, if the result exceeds the

maximum positive value, the maximum

positive value is stored in reg2; if the result

exceeds the maximum negative value, the

maximum negative value is stored in reg2. The

SAT flag is set to 1.

SATADD imm5, reg2 II 0/1 0/1 0/1 0/1 0/1 Saturated Add. Adds the 5-bit immediate data,

sign-extended to word length, to the word data

of reg2, and stores the result in reg2.

However, if the result exceeds the maximum

positive value, the maximum positive value is

stored in reg2; if the result exceeds the

maximum negative value, the maximum

negative value is stored in reg2. The SAT flag

is set to 1.

SATSUB reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturated Subtract. Subtracts the word data of

reg1 from the word data of reg2, and stores

the result in reg2. However, if the result

exceeds the maximum positive value, the

maximum positive value is stored in reg2; if the

result exceeds the maximum negative value,

the maximum negative value is stored in reg2.

The SAT flag is set to 1.

SATSUBI imm16, reg1, reg2 VI 0/1 0/1 0/1 0/1 0/1 Saturated Subtract Immediate. Subtracts a 16-

bit immediate data, sign-extended to word

length, from the word data of reg1, and stores

the result in reg2. However, if the result

exceeds the maximum positive value, the

maximum positive value is stored in reg2; if the

result exceeds the maximum negative value,

the maximum negative value is stored in reg2.

The SAT flag is set to 1.

SATSUBR reg1, reg2 I 0/1 0/1 0/1 0/1 0/1 Saturated Subtract Reverse. Subtracts the

word data of reg2 from the word data of reg1,

and stores the result in reg2. However, if the

result exceeds the maximum positive value,

the maximum positive value is stored in reg2; if

the result exceeds the maximum negative

value, the maximum negative value is stored in

reg2. The SAT flag is set to 1.

SET1 bit#3, disp16 [reg1] VIII − − − 0/1 − Set Bit. First, adds a 16-bit displacement, sign-

extended to word length, to the data of reg1 to

generate a 32-bit address. The bits, specified

by the 3-bit bit number, are set at the byte data

location specified by the generated address.

APPENDIX B INSTRUCTION LIST

205 User’s Manual U14559EJ3V1UM

Table B-1. Instruction Function List (in Alphabetical Order) (8/11)

Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

SET1 reg2, [reg1] IX − − − 0/1 − Set Bit. First, reads the data of general-

purpose register reg1 to generate a 32-bit

address. The bit, specified by the data of lower

3 bits of reg2, is set at the byte data location

referenced by the generated address.

SETF cccc, reg2 IX − − − − − Set Flag Condition. The reg2 is set to 1 if a

condition specified by condition code "cccc" is

satisfied; otherwise, a 0 is stored in reg2.

SHL reg1, reg2 IX 0/1 0 0/1 0/1 − Shift Logical Left. Logically shifts the word

data of reg2 to the left by ‘n’ positions (0 is

shifted to the LSB side), where ‘n’ is specified

by the lower 5 bits of reg1, and then writes the

result in reg2.

SHL imm5, reg2 II 0/1 0 0/1 0/1 − Shift Logical Left. Logically shifts the word

data of reg2 to the left by ‘n’ positions (0 is

shifted to the LSB side), where ‘n’ is specified

by a 5-bit immediate data, zero-extended to

word length, and then writes the result in reg2.

SHR reg1, reg2 IX 0/1 0 0/1 0/1 − Shift Logical Right. Logically shifts the word

data of reg2 to the right by ‘n’ positions (0 is

shifted to the MSB side), where ‘n’ is specified

by the lower 5 bits of reg1, and then writes the

result in reg2.

SHR imm5, reg2 II 0/1 0 0/1 0/1 − Shift Logical Right. Logically shifts the word

data of reg2 to the right by ‘n’ positions (0 is

shifted to the MSB side), where ‘n’ is specified

by a 5-bit immediate data, zero-extended to

word length, and then writes the result in reg2.

SLD.B disp7 [ep], reg2 IV − − − − − Byte Load. Adds the 7-bit displacement, zero-

extended to word length, to the element

pointer to generate a 32-bit address. Byte data

is read from the generated address, sign-

extended to word length, and then stored in

reg2.

SLD.BU disp4 [ep], reg2 IV − − − − − Unsigned Byte Load. Adds the 4-bit

displacement, zero-extended to word length, to

the element pointer to generate a 32-bit

address. Byte data is read from the generated

address, zero-extended to word length, and

stored in reg2.

SLD.H disp8 [ep], reg2 IV − − − − − Halfword Load. Adds the 8-bit displacement,

zero-extended to word length, to the element

pointer to generate a 32-bit address. Halfword

data is read from this 32-bit address with bit 0

masked to 0, sign-extended to word length,

and stored in reg2.

APPENDIX B INSTRUCTION LIST

206 User’s Manual U14559EJ3V1UM

Table B-1. Instruction Function List (in Alphabetical Order) (9/11)

Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

SLD.HU disp5 [ep], reg2 IV − − − − − Unsigned Halfword Load. Adds the 5-bit

displacement, zero-extended to word length, to

the element pointer to generate a 32-bit

address. Halfword data is read from this 32-bit

address with bit 0 masked to 0, zero-extended

to word length, and stored in reg2.

SLD.W disp8 [ep], reg2 IV − − − − − Word Load. Adds the 8-bit displacement, zero-

extended to word length, to the element

pointer to generate a 32-bit address. Word

data is read from this 32-bit address with bits 0

and 1 masked to 0, and stored in reg2.

SST.B reg2, disp7 [ep] IV − − − − − Byte Store. Adds the 7-bit displacement, zero-

extended to word length, to the element

pointer to generate a 32-bit address, and

stores the data of the lowest byte of reg2 in the

generated address.

SST.H reg2, disp8 [ep] IV − − − − − Halfword Store. Adds the 8-bit displacement,

zero-extended to word length, to the element

pointer to generate a 32-bit address, and

stores the lower halfword of reg2 in the

generated 32-bit address with bit 0 masked to

0.

SST.W reg2, disp8 [ep] IV − − − − − Word Store. Adds the 8-bit displacement, zero-

extended to word length, to the element

pointer to generate a 32-bit address, and

stores the word data of reg2 in the generated

32-bit address with bits 0 and 1 masked to 0.

ST.B reg2, disp16 [reg1] VII − − − − − Byte Store. Adds the 16-bit displacement,

sign-extended to word length, to the data of

reg1 to generate a 32-bit address, and stores

the lowest byte data of reg2 in the generated

address.

ST.H reg2, disp16 [reg1] VII − − − − − Halfword Store. Adds the 16-bit displacement,

sign-extended to word length, to the data of

reg1 to generate a 32-bit address, and stores

the lower halfword of reg2 in the generated 32-

bit address with bit 0 masked to 0.

ST.W reg2, disp16 [reg1] VII − − − − − Word Store. Adds the 16-bit displacement,

sign-extended to word length, to the data of

reg1 to generate a 32-bit address, and stores

the word data of reg2 in the generated 32-bit

address with bits 0 and 1 masked to 0.

STSR regID, reg2 IX − − − − − Store Contents of System Register. Stores the

contents of a system register specified by

regID in reg2.

APPENDIX B INSTRUCTION LIST

207 User’s Manual U14559EJ3V1UM

Table B-1. Instruction Function List (in Alphabetical Order) (10/11)

Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

SUB reg1, reg2 I 0/1 0/1 0/1 0/1 − Subtract. Subtracts the word data of reg1 from

the word data of reg2, and stores the result in

reg2.

SUBR reg1, reg2 I 0/1 0/1 0/1 0/1 − Subtract Reverse. Subtracts the word data of

reg2 from the word data of reg1, and stores

the result in reg2.

SWITCH reg1 I − − − − − Jump with Table Look Up. Adds the table entry

address (address following SWITCH

instruction) and data of reg1 logically shifted to

the left by 1 bit, and loads the halfword entry

data specified by the table entry address.

Next, logically shifts to the left by 1 bit the

loaded data, and after sign-extending it to

word length, branches to the target address

added to the table entry address (instruction

following SWITCH instruction).

SXB reg1 I − − − − − Sign Extend Byte. Sign-extends the lowermost

byte of reg1 to word length.

SXH reg1 I − − − − − Sign Extend Halfword. Sign-extends lower

halfword of reg1 to word length.

TRAP vector X − − − − − Trap. Saves the restored PC and PSW; sets

the exception code and the flags of the PSW;

jumps to the address of the trap handler

corresponding to the trap vector specified by

vector, and starts exception processing.

TST reg1, reg2 I − 0 0/1 0/1 − Test. ANDs the word data of reg2 with the

word data of reg1. The result is not stored, and

only the flags are changed.

TST1 bit#3, disp16 [reg1] VIII − − − 0/1 − Test Bit. Adds the data of reg1 to a 16-bit

displacement, sign-extended to word length, to

generate a 32-bit address. Performs the test

on the bit, specified by the 3-bit bit number, at

the byte data location referenced by the

generated address. If the specified bit is 0, the

Z flag is set to 1; if the bit is 1, the Z flag is

cleared to 0.

TST1 reg2, [reg1] IX − − − 0/1 − Test Bit. First, reads the data of reg1 to

generate a 32-bit address. If the bits indicated

by the lower 3 bits of reg2 of the byte data of

the generated address are 0, the Z flag is set

to 1, and if they are 1, the Z flag is cleared to

0.

XOR reg1, reg2 I − 0 0/1 0/1 − Exclusive Or. Exclusively ORs the word data

of reg2 with the word data of reg1, and stores

the result in reg2.

APPENDIX B INSTRUCTION LIST

208 User’s Manual U14559EJ3V1UM

Table B-1. Instruction Function List (in Alphabetical Order) (11/11)

Flag Mnemonic Operand Format

CY OV S Z SAT

Instruction Function

XORI imm16, reg1, reg2 VI − 0 0/1 0/1 − Exclusive Or Immediate. Exclusively ORs the

word data of reg1 with a 16-bit immediate

data, zero-extended to word length, and stores

the result in reg2.

ZXB reg1 I − − − − − Zero Extend Byte. Zero-extends to word length

the lowest byte of reg1.

ZXH reg1 I − − − − − Zero Extend Halfword. Zero-extends to word

length the lower halfword of reg1.

APPENDIX B INSTRUCTION LIST

209 User’s Manual U14559EJ3V1UM

Table B-2. Instruction List (in Format Order) (1/3)

Opcode Format

15 0 31 16

Mnemonic Operand

0000000000000000 – NOP –

rrrrr000000RRRRR – MOV reg1, reg2

rrrrr000001RRRRR – NOT reg1, reg2

rrrrr000010RRRRR – DIVH reg1, reg2

00000000010RRRRR – SWITCH reg1

00000000011RRRRR – JMP [reg1]

rrrrr000100RRRRR – SATSUBR reg1, reg2

rrrrr000101RRRRR – SATSUB reg1, reg2

rrrrr000110RRRRR – SATADD reg1, reg2

rrrrr000111RRRRR – MULH reg1, reg2

00000000100RRRRR – ZXB reg1

00000000101RRRRR – SXB reg1

00000000110RRRRR – ZXH reg1

00000000111RRRRR – SXH reg1

rrrrr001000RRRRR – OR reg1, reg2

rrrrr001001RRRRR – XOR reg1, reg2

rrrrr001010RRRRR – AND reg1, reg2

rrrrr001011RRRRR – TST reg1, reg2

rrrrr001100RRRRR – SUBR reg1, reg2

rrrrr001101RRRRR – SUB reg1, reg2

rrrrr001110RRRRR – ADD reg1, reg2

rrrrr001111RRRRR – CMP reg1, reg2

I

1111100001000000 – DBTRAPNote –

rrrrr010000iiiii – MOV imm5, reg2

rrrrr010001iiiii – SATADD imm5, reg2

rrrrr010010iiiii – ADD imm5, reg2

rrrrr010011iiiii – CMP imm5, reg2

0000001000iiiiii – CALLT imm6

rrrrr010100iiiii – SHR imm5, reg2

rrrrr010101iiiii – SAR imm5, reg2

rrrrr010110iiiii – SHL imm5, reg2

II

rrrrr010111iiiii – MULH imm5, reg2

III ddddd1011dddCCCC – Bcond disp9

Note Not supported in type C products

APPENDIX B INSTRUCTION LIST

210 User’s Manual U14559EJ3V1UM

Table B-2. Instruction List (in Format Order) (2/3)

Opcode Format

15 0 31 16

Mnemonic Operand

rrrrr0000110dddd – SLD.BU disp4 [ep], reg2

rrrrr0000111dddd – SLD.HU disp5 [ep], reg2

rrrrr0110ddddddd – SLD.B disp7 [ep], reg2

rrrrr0111ddddddd – SST.B reg2, disp7 [ep]

rrrrr1000ddddddd – SLD.H disp8 [ep], reg2

rrrrr1001ddddddd – SST.H reg2, disp8 [ep]

rrrrr1010dddddd0 – SLD.W disp8 [ep], reg2

IV

rrrrr1010dddddd1 – SST.W reg2, disp8 [ep]

rrrrr11110dddddd ddddddddddddddd0 JARL disp22, reg2 V

0000011110dddddd ddddddddddddddd0 JR disp22

rrrrr110000RRRRR iiiiiiiiiiiiiiii ADDI imm16, reg1, reg2

rrrrr110001RRRRR iiiiiiiiiiiiiiii MOVEA imm16, reg1, reg2

rrrrr110010RRRRR iiiiiiiiiiiiiiii MOVHI imm16, reg1, reg2

rrrrr110011RRRRR iiiiiiiiiiiiiiii SATSUBI imm16, reg1, reg2

00000110001RRRRR Note MOV imm32, reg1

rrrrr110100RRRRR iiiiiiiiiiiiiiii ORI imm16, reg1, reg2

rrrrr110101RRRRR iiiiiiiiiiiiiiii XORI imm16, reg1, reg2

rrrrr110110RRRRR iiiiiiiiiiiiiiii ANDI imm16, reg1, reg2

VI

rrrrr110111RRRRR iiiiiiiiiiiiiiii MULHI imm16, reg1, reg2

rrrrr111000RRRRR dddddddddddddddd LD.B disp16 [reg1], reg2

rrrrr111001RRRRR ddddddddddddddd0 LD.H disp16 [reg1], reg2

rrrrr111001RRRRR ddddddddddddddd1 LD.W disp16 [reg1], reg2

rrrrr111010RRRRR dddddddddddddddd ST.B reg2, disp16 [reg1]

rrrrr111011RRRRR ddddddddddddddd0 ST.H reg2, disp16 [reg1]

rrrrr111011RRRRR ddddddddddddddd1 ST.W reg2, disp16 [reg1]

rrrrr11110bRRRRR ddddddddddddddd1 LD.BU disp16 [reg1], reg2

VII

rrrrr111111RRRRR ddddddddddddddd1 LD.HU disp16 [reg1], reg2

00bbb111110RRRRR dddddddddddddddd SET1 bit#3, disp16 [reg1]

01bbb111110RRRRR dddddddddddddddd NOT1 bit#3, disp16 [reg1]

10bbb111110RRRRR dddddddddddddddd CLR1 bit#3, disp16 [reg1]

VIII

11bbb111110RRRRR dddddddddddddddd TST1 bit#3, disp16 [reg1]

Note 32-bit immediate data. The higher 32 bits (bits 16 to 47) are as follows.

31 47

iiiiiiiiiiiiiiii IIIIIIIIIIIIIIII

APPENDIX B INSTRUCTION LIST

211 User’s Manual U14559EJ3V1UM

Table B-2. Instruction List (in Format Order) (3/3)

Opcode Format

15 0 31 16

Mnemonic Operand

rrrrr1111110cccc 0000000000000000 SETF cccc, reg2

rrrrr111111RRRRR 0000000000100000 LDSR reg2, regID

rrrrr111111RRRRR 0000000001000000 STSR regID, reg2

rrrrr111111RRRRR 0000000010000000 SHR reg1, reg2

rrrrr111111RRRRR 0000000010100000 SAR reg1, reg2

rrrrr111111RRRRR 0000000011000000 SHL reg1, reg2

rrrrr111111RRRRR 0000000011100000 SET1 reg2, [reg1]

rrrrr111111RRRRR 0000000011100010 NOT1 reg2, [reg1]

rrrrr111111RRRRR 0000000011100100 CLR1 reg2, [reg1]

rrrrr111111RRRRR 0000000011100110 TST1 reg2, [reg1]

IX

rrrrr1111110cccc 0000001000000000 SASF cccc, reg2

00000111111iiiii 0000000100000000 TRAP vector

0000011111100000 0000000100100000 HALT –

0000011111100000 0000000101000000 RETI –

0000011111100000 0000000101000100 CTRET –

0000011111100000 0000000101000110 DBRETNote –

0000011111100000 0000000101100000 DI –

X

1000011111100000 0000000101100000 EI –

rrrrr111111RRRRR wwwww01000100000 MUL reg1, reg2, reg3

rrrrr111111RRRRR wwwww01000100010 MULU reg1, reg2, reg3

rrrrr111111RRRRR wwwww01010000000 DIVH reg1, reg2, reg3

rrrrr111111RRRRR wwwww01010000010 DIVHU reg1, reg2, reg3

rrrrr111111RRRRR wwwww01011000000 DIV reg1, reg2, reg3

rrrrr111111RRRRR wwwww01011000010 DIVU reg1, reg2, reg3

XI

rrrrr111111RRRRR wwwww011001cccc0 CMOV cccc, reg1, reg2, reg3

rrrrr111111iiiii wwwww01001IIII00 MUL imm9, reg2, reg3

rrrrr111111iiiii wwwww01001IIII10 MULU imm9, reg2, reg3

rrrrr111111iiiii wwwww011000cccc0 CMOV cccc, imm5, reg2, reg3

rrrrr11111100000 wwwww01101000000 BSW reg2, reg3

rrrrr11111100000 wwwww01101000010 BSH reg2, reg3

XII

rrrrr11111100000 wwwww01101000100 HSW reg2, reg3

0000011001iiiiiL LLLLLLLLLLLRRRRR DISPOSE imm5, list12, [reg1]

0000011001iiiiiL LLLLLLLLLLL00000 DISPOSE imm5, list12

0000011110iiiiiL LLLLLLLLLLL00001 PREPARE list12, imm5

XIII

0000011110iiiiiL LLLLLLLLLLLff011 PREPARE list12, imm5, sp/imm

Note Not supported in type C products

 212 User’s Manual U14559EJ3V1UM

APPENDIX C INSTRUCTION OPCODE MAP

This chapter shows the opcode map for the instruction code shown below.

(1) 16-bit format instruction

15 5 011 10

Sub-opcode (see [b])

4

Opcode
(see [a])

(2) 32-bit format instruction

15 5 011 10 31 162021414 13 12 2627 19 18 17

Sub-opcode (see [h])

Opcode
(see [a])

Sub-opcode
(see [e])

Sub-opcode (see [d], [h])

Sub-opcode
(see [c])

Sub-opcode
(see [f], [g], [i])

Remark Operand convention

Symbol Meaning

R reg1: General-purpose register (used as source register)

r reg2: General-purpose register (mainly used as destination register. Some are also used as

source registers.)

w reg3: General-purpose register (mainly used as remainder of division results or higher 32 bits

of multiply results)

bit#3 3-bit data for bit number specification

imm× ×-bit immediate data

disp× ×-bit displacement data

cccc 4-bit data condition code specification

APPENDIX C INSTRUCTION OPCODE MAP

 213User’s Manual U14559EJ3V1UM

[a] Opcode

Bit Bit Bit Bit Bits 6, 5

10 9 8 7 0,0 0,1 1,0 1,1

Format

0 0 0 0 MOV R, r

NOPNote 1

NOT DIVH

SWITCHNote 2

DBTRAP

UndefinedNote 3

JMPNote 4

SLD.BUNote 5

SLD.HUNote 6

I, IV

0 0 0 1 SATSUBR

ZXBNote 4

SATSUB

SXBNote 4

SATADD R, r

ZXHNote 4

MULH

SXHNote 4

0 0 1 0 OR XOR AND TST

0 0 1 1 SUBR SUB ADD R, r CMP R, r

I

MOV imm5, r SATADD imm5, r 0 1 0 0

CALLTNote 4

ADD imm5, r CMP imm5, r

0 1 0 1 SHR imm5, r SAR imm5, r SHL imm5, r MULH imm5, r

UndefinedNote 4

II

0 1 1 0 SLD.B

0 1 1 1 SST.B

1 0 0 0 SLD.H

1 0 0 1 SST.H

1 0 1 0 SLD.WNote 7

SST.WNote 7

IV

1 0 1 1 Bcond III

MOVHI SATSUBI 1 1 0 0 ADDI MOVEA

MOV imm32, RNote 4 DISPOSENote 4

VI, XIII

1 1 0 1 ORI XORI ANDI MULHI

UndefinedNote 4

VI

1 1 1 0 LD.B LD.HNote 8

LD.WNote 8

ST.B ST.HNote 8

ST.WNote 8

VII

1 1 1 1 JR

JARL

LD.BUNote 10

PREPARENote 11

Bit manipulation 1Note 9 LD.HUNote 10

UndefinedNote 11

Expansion 1Note 12

V, VII,

VIII, XIII

Notes 1. If R (reg1) = r0 and r (reg2) = r0 (instruction without reg1 and reg2)

 2. If R (reg1) ≠ r0 and r (reg2) = r0 (instruction with reg1 and without reg2)

 3. If R (reg1) = r0 and r (reg2) ≠ r0 (instruction without reg1 and with reg2)

 4. If R (reg2) = r0 (instruction without reg2)

 5. If bit 4 = 0 and r (reg2) ≠ r0 (instruction with reg2)

 6. If bit 4 = 1 and r (reg2) ≠ r0 (instruction with reg2)

 7. See [b]

 8. See [c]

 9. See [d]

 10. If bit 16 = 1 and r (reg2) ≠ r0 (instruction with reg2)

 11. If bit 16 = 1 and r (reg2) = r0 (instruction without reg2)

 12. See [e]

Remark Type C products do not support the DBTRAP instruction.

APPENDIX C INSTRUCTION OPCODE MAP

 214 User’s Manual U14559EJ3V1UM

[b] Short format load/store instruction (displacement/sub-opcode)

Bit 0 Bit 10 Bit 9 Bit 8 Bit 7

0 1

0 1 1 0 SLD.B

0 1 1 1 SST.B

1 0 0 0 SLD.H

1 0 0 1 SST.H

1 0 1 0 SLD.W SST.W

[c] Load/store instruction (displacement/sub-opcode)

Bit 16 Bit 6 Bit 5

0 1

0 0 LD.B

0 1 LD.H LD.W

1 0 ST.B

1 1 ST.H ST.W

[d] Bit manipulation instruction 1 (sub-opcode)

Bit 14 Bit 15

0 1

0 SET1 bit#3, disp16 [R] NOT1 bit#3, disp16 [R]

1 CLR1 bit#3, disp16 [R] TST1 bit#3, disp16 [R]

APPENDIX C INSTRUCTION OPCODE MAP

 215User’s Manual U14559EJ3V1UM

[e] Expansion 1 (sub-opcode)

Bits 22, 21 Bit 26 Bit 25 Bit 24 Bit 23

0,0 0,1 1,0 1,1

Format

0 0 0 0 SETF LDSR STSR Undefined

0 0 0 1 SHR SAR SHL Bit manipulation 2Note 1

IX

0 0 1 0 TRAP HALT RETINote 2

CTRETNote 2

DBRETNote 2

Undefined

EINote 3

DINote 3

Undefined

X

0 0 1 1 Undefined Undefined –

0 1 0 0 SASF MUL R, r, w

MULU R, r, wNote 4

MUL imm9, r, w

MULU imm9, r, wNote 4

IX, XI, XII

0 1 0 1 DIVH

DIVHUNote 4

DIV

DIVUNote 4

XI

0 1 1 0 CMOV

cccc, imm5, r, w

CMOV

cccc, R, r, w

BSWNote 5

BSHNote 5

HSWNote 5

Undefined XI, XII

0 1 1 1

1 x x x

Illegal instruction –

Notes 1. See [f]

 2. See [g]

 3. See [h]

 4. If bit 17 = 1

 5. See [i]

Remark Type C products do not support the DBRET instruction.

[f] Bit manipulation instruction 2 (sub-opcode)

Bit 17 Bit 18

0 1

0 SET1 r, [R] NOT1 r, [R]

1 CLR1 r, [R] TST1 r, [R]

[g] Return instruction (sub-opcode)

Bit 17 Bit 18

0 1

0 RETI Undefined

1 CTRET DBRET

APPENDIX C INSTRUCTION OPCODE MAP

 216 User’s Manual U14559EJ3V1UM

[h] PSW operation instruction (sub-opcode)

Bits 13, 12, 11 Bit 15 Bit 14

0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

0 0 DI Undefined

0 1 Undefined

1 0 EI Undefined

1 1 Undefined

[i] Endian conversion instruction (sub-opcode)

Bit 17 Bit 18

0 1

0 BSW BSH

1 HSW Undefined

217 User’s Manual U14559EJ3V1UM

APPENDIX D DIFFERENCES WITH ARCHITECTURE OF V850 CPU

(1/2)

Item V850E1 CPU V850 CPU

BSH reg2, reg3

BSW reg2, reg3

CALLT imm6

CLR1 reg2, [reg1]

CMOV cccc, imm5, reg2, reg3

CMOV cccc, reg1, reg2, reg3

CTRET

DBRETNote

DBTRAPNote

DISPOSE imm5, list12

DISPOSE imm5, list12 [reg1]

DIV reg1, reg2, reg3

DIVH reg1, reg2, reg3

DIVHU reg1, reg2, reg3

DIVU reg1, reg2, reg3

HSW reg2, reg3

LD.BU disp16 [reg1], reg2

LD.HU disp16 [reg1], reg2

MOV imm32, reg1

MUL imm9, reg2, reg3

MUL reg1, reg2, reg3

MULU reg1, reg2, reg3

MULU imm9, reg2, reg3

NOT1 reg2, [reg1]

PREPARE list12, imm5

PREPARE list12, imm5, sp/imm

SASF cccc, reg2

SET1 reg2, [reg1]

SLD.BU disp4 [ep], reg2

SLD.HU disp5 [ep], reg2

SWITCH reg1

SXB reg1

SXH reg1

TST1 reg2, [reg1]

ZXB reg1

Instructions
(including operand)

ZXH reg1

Provided Not provided

Note Not supported in type C products

APPENDIX D DIFFERENCES WITH ARCHITECTURE OF V850 CPU

218 User’s Manual U14559EJ3V0UM

(2/2)

Item V850E1 CPU V850 CPU

Format IV Format is different for some instructions.

Format XI

Format XII

Instruction format

Format XIII

Provided Not provided

Instruction execution clocks Value differs for some instructions.

Program space 64 MB linear 16 MB linear

Valid bits of program counter (PC) Lower 26 bits Lower 24 bits

CALLT execution status saving registers

(CTPC, CTPSW)

Exception/debug trap status saving

registers (DBPC, DBPSW)

CALLT base pointer (CTBP)

Debug interface register (DIR)Note 1

Breakpoint control registers 0 and 1

(BPC0, BPC1)Note 1

Program ID register (ASID)Note 1

Breakpoint address setting registers 0 and

1 (BPAV0, BPAV1)Note 1

Breakpoint address mask registers 0 and

1 (BPAM0, BPAM1)Note 1

Breakpoint data setting registers 0 and 1

(BPDV0, BPDV1)Note 1

Breakpoint data mask registers 0 and 1

(BPDM0, BPDM1)Note 1

Provided Not provided System register

Exception trap status saving registers DBPC, DBPSW EIPC, EIPSW

Illegal instruction code Instruction code areas differ.

Misaligned access enable/disable setting Can be set depending on

product

Cannot be set. (misaligned

access disabled)

3 (type A, B, C products) Input

1 (type D, E, F products)

1

Exception code 0010H, 0020H, 0030H 0010H

Non-maskable interrupt

(NMI)

Handler address 00000010H, 00000020H,

00000030H

00000010H

Debug trapNote 2 Provided Not provided

Pipeline At next instruction, pipeline flow differs.

 • Arithmetic operation instruction

 • Branch instruction

 • Bit manipulation instruction

 • Special instruction (TRAP, RETI)

Notes 1. Used only in type A and B products

 2. Not supported in type C products

 219User’s Manual U14559EJ3V1UM

APPENDIX E INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU

Compared with the instruction codes of the V850 CPU, the instruction codes of the V850E1 CPU are upward

compatible at the object code level. In the case of the V850E1 CPU, instructions that even if executed have no

meaning in the case of the V850 CPU (mainly instructions performing write to the r0 register) are extended as

additional instructions.

The following table shows the V850 CPU instructions corresponding to the instruction codes added in the V850E1

CPU. See the table when switching from products that incorporate the V850 CPU to products that incorporate the

V850E1 CPU.

Table E-1. Instructions Added to V850E1 CPU and V850 CPU Instructions with Same Instruction Code (1/2)

Instructions Added in V850E1 CPU V850 CPU Instructions with Same Instruction

Code as V850E1 CPU

CALLT imm6 MOV imm5, r0 or SATADD imm5, r0

DISPOSE imm5, list12 MOVHI imm16, reg1, r0 or SATSUBI imm16, reg1, r0

DISPOSE imm5, list12 [reg1] MOVHI imm16, reg1, r0 or SATSUBI imm16, reg1, r0

MOV imm32, reg1 MOVEA imm16, reg1, r0

SWITCH reg1 DIVH reg1, r0

SXB reg1 SATSUB reg1, r0

SXH reg1 MULH reg1, r0

ZXB reg1 SATSUBR reg1, r0

ZXH reg1 SATADD reg1, r0

(RFU) MULH imm5, r0

(RFU) MULHI imm16, reg1, r0

BSH reg2, reg3

BSW reg2, reg3

CMOV cccc, imm5, reg2, reg3

CMOV cccc, reg1, reg2, reg3

CTRET

DIV reg1, reg2, reg3

DIVH reg1, reg2, reg3

DIVHU reg1, reg2, reg3

DIVU reg1, reg2, reg3

HSW reg2, reg3

MUL imm9, reg2, reg3

MUL reg1, reg2, reg3

MULU reg1, reg2, reg3

MULU imm9, reg2, reg3

SASF cccc, reg2

Illegal instruction

APPENDIX E INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU

 220 User’s Manual U14559EJ3V0UM

Table E-1. Instructions Added to V850E1 CPU and V850 CPU Instructions with Same Instruction Code (2/2)

Instructions Added in V850E1 CPU V850 CPU Instructions with Same Instruction

Code as V850E1 CPU

CLR1 reg2, [reg1]

DBRETNote

DBTRAPNote

LD.BU disp16 [reg1], reg2

LD.HU disp16 [reg1], reg2

NOT1 reg2, [reg1]

PREPARE list12, imm5

PREPARE list12, imm5, sp/imm

SET1 reg2, [reg1]

SLD.BU disp4 [ep], reg2

SLD.HU disp5 [ep], reg2

TST1 reg2, [reg1]

Undefined

Note Not supported in type C products

221 User’s Manual U14559EJ3V1UM

APPENDIX F INDEX

[Numeral]

16-bit format instruction ... 211
16-bit load/store instruction format 44
2-clock branch ... 169
3-operand instruction format 45
32-bit format instruction ... 211
32-bit load/store instruction format 45

[A]

ADD .. 53
ADDI ... 54
Additional items related to pipeline 186
Address space .. 37
Addressing mode .. 39
Alignment hazard ... 182
AND .. 55
ANDI ... 56
Arithmetic operation instructions 48
Arithmetic operation instructions (pipeline) 173
ASID ... 30

[B]

Based addressing ... 41
Bcond .. 57
Bit .. 34, 35
Bit addressing ... 42
Bit manipulation instruction format 45
Bit manipulation instructions 49
Bit manipulation instructions (pipeline) 176
BPAM0 .. 31
BPAM1 .. 31
BPAV0 .. 31
BPAV1 .. 31
BPC0 .. 29
BPC1 .. 29
BPDM0 .. 32
BPDM1 .. 32
BPDV0 .. 32
BPDV1 .. 32
BR instruction (pipeline) .. 175
Branch instructions ... 49
Branch instructions (pipeline) 174
Breakpoint address mask registers 0 and 1 31
Breakpoint address setting registers 0 and 1 31
Breakpoint control registers 0 and 1 29
Breakpoint data mask registers 0 and 1 32
Breakpoint data setting registers 0 and 1 32
BSH .. 59
BSW .. 60

Byte .. 34

[C]

CALLT .. 61
CALLT base pointer .. 25
CALLT caller status saving registers 23
CALLT instruction (pipeline) 176
Cautions when creating programs 185
CLR1 .. 62
CLR1 instruction (pipeline) 176
CMOV ... 63
CMP ... 64
Conditional branch instruction format 44
CTBP .. 25
CTPC .. 23
CTPSW .. 23
CTRET ... 65
CTRET instruction (pipeline) 177

[D]

Data alignment ... 36
Data format ... 33
Data representation .. 35
Data type .. 33
DBPC ... 24
DBPSW .. 24
DBRET ... 66
DBRET instruction (pipeline) 181
DBTRAP ... 67
DBTRAP instruction (pipeline) 181
Debug function instructions 50
Debug function instructions (pipeline) 181
Debug interface register ... 26
Debug trap .. 161
DI .. 68
DI instruction (pipeline) ... 177
DIR ... 26
DISPOSE ... 69
DISPOSE instruction (pipeline) 178
DIV ... 71
DIVH ... 72
DIVHU .. 74
Divide instructions (pipeline) 173
DIVU ... 75

[E]

ECR .. 20
Efficient pipeline processing 170
EI .. 76

APPENDIX F INDEX

 222 User’s Manual U14559EJ3V1UM

EIPC ..19
EIPSW ..19
EI instruction (pipeline) ..177
Exception cause register ...20
Exception/debug trap status saving registers24
Exception processing ..159
Exception trap ...160
Extended instruction format 145
Extended instruction format 246
Extended instruction format 346
Extended instruction format 446

[F]

FEPC ..20
FEPSW ...20
Format I ...43
Format II ..43
Format III ...44
Format IV ..44
Format V ...44
Format VI ..45
Format VII ...45
Format VIII ..45
Format IX ..45
Format X ...46
Format XI ..46
Format XII ...46
Format XIII ..46

[G]

General-purpose registers16

[H]

Halfword ..34
HALT ...77
HALT instruction (pipeline)178
Harvard architecture ..186
How to shift to debug mode....................................189
HSW ..78

[I]

imm-reg instruction format43
Immediate addressing ...41
Instruction address ..39
Instruction format ..43
Instruction opcode map ...211
Instruction set ..51
Integer ...35
Internal configuration ...15
Interrupt servicing ..156
Interrupt status saving registers19

[J]

JARL ... 79
JMP .. 80
JMP instruction (pipeline) 175
JR ... 81
Jump instruction format .. 44

[L]

LD instructions .. 47
LD instructions (pipeline) 171
LD.B .. 82
LD.BU ... 83
LD.H ... 84
LD.HU ... 86
LD.W ... 88
LDSR .. 90
LDSR instruction (pipeline) 178
Load instructions ... 47
Load instructions (pipeline) 171
Logical operation instructions 48
Logical operation instructions (pipeline) 174

[M]

Maskable interrupt .. 156
Memory map ... 38
MOV ... 91
MOVEA ... 92
Move word instruction (pipeline) 173
MOVHI .. 93
MUL .. 94
MULH ... 96
MULHI .. 97
Multiply instructions .. 47
Multiply instructions (pipeline) 172
MULU ... 98

[N]

NMI status saving registers 20
Non-blocking load/store ... 168
Non-maskable interrupt .. 158
NOP .. 100
NOP instruction (pipeline) 179
NOT .. 101
NOT1 .. 102
NOT1 instruction (pipeline) 176

[O]

Operand address .. 41
OR .. 103
ORI ... 104

APPENDIX F INDEX

 223User’s Manual U14559EJ3V1UM

[P]

PC ... 17
Pipeline ... 166
Pipeline disorder ... 182
Pipeline flow during execution of instructions 171
PREPARE.. 105
PREPARE instruction (pipeline) 179
Program counter .. 17
Program ID register ... 30
Program registers ... 16
Program status word ... 21
PSW .. 21

[R]

r0 to r31 ... 16
reg-reg instruction format .. 43
Register addressing .. 41
Register addressing (register indirect) 40
Register set ... 15
Register status after reset 164
Relative addressing (PC relative) 39
Reset .. 164
Restoring from exception trap and debug trap 163
Restoring from interrupt/exception processing 162
RETI .. 107
RETI instruction (pipeline) 179

[S]

SAR .. 109
SASF .. 110
SATADD ... 111
SATSUB .. 112
SATSUBI ... 113
SATSUBR ... 114
Saturated operation instructions 48
Saturated operation instructions (pipeline) 174
SET1 ... 115
SET1 instruction (pipeline) 176
SETF ... 116
Shifting to debug mode .. 189
SHL ... 118
Short path ... 187
SHR .. 119
SLD.B ... 120
SLD.BU ... 121
SLD.H ... 122
SLD.HU ... 124
SLD.W .. 126
SLD instructions .. 47
SLD instructions (pipeline) 171
Software exception ... 159
Special instructions ... 49
Special instructions (pipeline) 176
SST.B ... 128

SST.H ... 129
SST.W .. 131
SST instructions ... 47
ST.B ... 133
ST.H ... 134
ST.W .. 136
ST instructions .. 47
Stack manipulation instruction format 1 46
Starting up .. 165
Store instructions .. 47
Store instructions (pipeline) 172
STSR .. 138
STSR instruction (pipeline) 178
SUB .. 139
SUBR ... 140
SWITCH ... 141
SWITCH instruction (pipeline) 180
SXB .. 142
SXH .. 143
System registers ... 18

[T]

TRAP .. 144
TRAP instruction (pipeline) 180
TST ... 145
TST1 ... 146
TST1 instruction (pipeline) 176

[U]

Unconditional branch instructions 175
Unsigned integer .. 35

[W]

Word ... 33

[X]

XOR .. 147
XORI ... 148

[Z]

ZXB .. 149
ZXH .. 150

224 User’s Manual U14559EJ3V1UM

APPENDIX G REVISION HISTORY

G.1 Major Revisions in This Edition

Page Description

Throughout Deletion of product names from target devices, addition of product types as target devices

p.16 Modification of description in 2.1 (1) General-purpose registers (r0 to r31)

p.18 Modification of Table 2-2 System Register Numbers

p.24 Modification and addition of description in 2.2.6 Exception/debug trap status saving registers (DBPC,

DBPSW)

p.24 Addition of Table 2-3 Contents Saved to DBPC

p.26 Modification of Figure 2-10 Debug Interface Register (DIR)

p.29 Modification of Figure 2-11 Breakpoint Control Registers 0 and 1 (BPC0, BPC1)

p.30 Addition of description to 2.2.10 Program ID register (ASID)

p.31 Addition of description to 2.2.11 Breakpoint address setting registers 0 and 1 (BPAV0, BPAV1)

p.31 Addition of description to 2.2.12 Breakpoint address mask registers 0 and 1 (BPAM0, BPAM1)

p.32 Addition of description to 2.2.13 Breakpoint data setting registers 0 and 1 (BPDV0, BPDV1)

p.32 Addition of description to 2.2.14 Breakpoint data mask registers 0 and 1 (BPDM0, BPDM1)

p.36 Modification of 3.3 Data Alignment

pp.94, 98 Modification of description and addition of Caution to MUL and MULU in 5.3 Instruction Set

p.120 Addition of Caution (2) to 5.3 Instruction Set SLD.B

p.121 Addition of Caution (2) to 5.3 Instruction Set SLD.BU

p.123 Addition of Caution (2) to 5.3 Instruction Set SLD.H

p.125 Addition of Caution (2) to 5.3 Instruction Set SLD.HU

p.127 Addition of Caution (2) to 5.3 Instruction Set SLD.W

p.144 Correction of operation of TRAP in 5.3 Instruction Set

pp.153, 154 Modification and addition of Notes in Table 5-6 List of Number of Instruction Execution Clock Cycles

p.160 Addition of (4) to 6.2.2 Exception trap

p.161 Addition of description to 6.2.3 Debug trap

p.189 Addition of CHAPTER 9 SHIFTING TO DEBUG MODE

p.197 Addition of APPENDIX A NOTES

p.224 Addition of APPENDIX G REVISION HISTORY

APPENDIX G REVISION HISTORY

225 User’s Manual U14559EJ3V1UM

G.2 History of Revisions up to This Edition

A history of the revisions up to this edition is shown below. “Applied to:” indicates the chapters to which the revision

was applied.

(1/2)

Edition Major Revision from Previous Edition Applied to:

• Addition of following products (under development) to target products

 NB85ET, NU85E, NU85ET, µPD703108, 703114, 70F3114, 703116

• Deletion of following product from target products

 µPD703117

• Change of following products from “under development” to “developed”

 µPD703106, 703107, 70F3107

Throughout

Change of Note in Figure 2-1 Registers

Change of Table 2-2 System Register Numbers

Addition of Note to Figure 2-6 Program Status Word (PSW)

Addition of Note to 2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)

Change of Caution in 2.2.8 Debug interface register (DIR)

Change of Caution in 2.2.9 Breakpoint control registers 0 and 1 (BPC0, BPC1)

Change of Figure 2-11 Breakpoint Control Registers 0 and 1 (BPC0, BPC1)

Change of Caution in 2.2.10 Program ID register (ASID)

Change of Caution in 2.2.11 Breakpoint address setting registers 0 and 1 (BPAV0, BPAV1)

Change of Caution in 2.2.12 Breakpoint address mask registers 0 and 1 (BPAM0, BPAM1)

Change of Caution in 2.2.13 Breakpoint data setting registers 0 and 1 (BPDV0, BPDV1)

Change of Caution in 2.2.14 Breakpoint data mask registers 0 and 1 (BPDM0, BPDM1)

CHAPTER 2

REGISTER SET

Addition of Caution to 5.2 (10) Debug function instructions

Addition of Caution to DBRET in 5.3 Instruction Set

Addition of Caution to DBTRAP in 5.3 Instruction Set

Change and addition of Note in Table 5-6 List of Number of Instruction Execution Clock

Cycles (NB85E, NB85ET, NU85E, and NU85ET)

Change of Note in Table 5-7 List of Number of Instruction Execution Clock Cycles

(V850E/MA1, V850E/MA2, V850E/IA1, and V850E/IA2)

CHAPTER 5

INSTRUCTION

Addition of Note to Table 6-1 Interrupt/Exception Codes

Addition of Caution to 6.2.3 Debug trap

CHAPTER 6

INTERRUPT AND

EXCEPTION

Addition of Remark and Example to 8.1.2 2-clock branch

Addition of Caution to 8.1.3 Efficient pipeline processing

Correction of description in 8.2 (2) V850E/MA1, V850E/MA2, V850E/IA1, V850E/IA2

Correction of description in 8.2.1 (2) SLD instructions

Correction of description in 8.2.3 Multiply instructions

Addition of Remark to 8.2.4 (3) Divide instructions

Correction of description in 8.2.8 (2) TST1 instruction

Addition of Remark to 8.2.9 (3) DI, EI instructions

2nd

Addition of Caution to 8.2.9 (7) NOP instruction

CHAPTER 8

PIPELINE

APPENDIX G REVISION HISTORY

226 User’s Manual U14559EJ3V1UM

(2/2)

Edition Major Revision from Previous Edition Applied to:

Addition of 8.3 Pipeline Disorder

Addition of 8.4 Additional Items Related to Pipeline

CHAPTER 8

PIPELINE

Addition of Note to Table A-1 Instruction Function List (in Alphabetical Order)

Addition of Note to Table A-2 Instruction List (in Format Order)

APPENDIX A

INSTRUCTION

LIST

Correction of Figure in Appendix B (2) 32-bit format instruction

Addition of Remark to Appendix B [a] Opcode

Addition of Remark to Appendix B [e] Expansion 1 (sub-opcode)

APPENDIX B

INSTRUCTION

OPCODE MAP

Addition of Note to Appendix C DIFFERENCES WITH ARCHITECTURE OF V850 CPU APPENDIX C

DIFFERENCES

WITH

ARCHITECTURE

OF V850 CPU

2nd

Addition of Note to Table D-1 Instructions Added to V850E1 CPU and V850 CPU Instructions

with Same Instruction Code

APPENDIX D

INSTRUCTIONS

ADDED FOR

V850E1 CPU

COMPARED WITH

V850 CPU

	COVER
	PREFACE
	CHAPTER 1 GENERAL
	1.1 Features
	1.2 Internal Configuration

	CHAPTER 2 REGISTER SET
	2.1 Program Registers
	2.2 System Registers
	2.2.1 Interrupt status saving registers (EIPC, EIPSW)
	2.2.2 NMI status saving registers (FEPC, FEPSW)
	2.2.3 Exception cause register (ECR)
	2.2.4 Program status word (PSW)
	2.2.5 CALLT caller status saving registers (CTPC, CTPSW)
	2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)
	2.2.7 CALLT base pointer (CTBP)
	2.2.8 Debug interface register (DIR)
	2.2.9 Breakpoint control registers 0 and 1 (BPC0, BPC1)
	2.2.10 Program ID register (ASID)
	2.2.11 Breakpoint address setting registers 0 and 1 (BPAV0, BPAV1)
	2.2.12 Breakpoint address mask registers 0 and 1 (BPAM0, BPAM1)
	2.2.13 Breakpoint data setting registers 0 and 1 (BPDV0, BPDV1)
	2.2.14 Breakpoint data mask registers 0 and 1 (BPDM0, BPDM1)

	CHAPTER 3 DATA TYPES
	3.1 Data Format
	3.2 Data Representation
	3.2.1 Integer
	3.2.2 Unsigned integer
	3.2.3 Bit

	3.3 Data Alignment

	CHAPTER 4 ADDRESS SPACE
	4.1 Memory Map
	4.2 Addressing Mode
	4.2.1 Instruction address
	4.2.2 Operand address

	CHAPTER 5 INSTRUCTIONS
	5.1 Instruction Format
	5.2 Outline of Instructions
	5.3 Instruction Set
	ADD
	ADDI
	AND
	ANDI
	Bcond
	BSH
	BSW
	CALLT
	CLR1
	CMOV
	CMP
	CTRET
	DBRET
	DBTRAP
	DI
	DISPOSE
	DIV
	DIVH
	DIVHU
	DIVU
	EI
	HALT
	HSW
	JARL
	JMP
	JR
	LD.B
	LD.BU
	LD.H
	LD.HU
	LD.W
	LDSR
	MOV
	MOVEA
	MOVHI
	MUL
	MULH
	MULHI
	MULU
	NOP
	NOT
	NOT1
	OR
	ORI
	PREPARE
	RETI
	SAR
	SASF
	SATADD
	SATSUB
	SATSUBI
	SATSUBR
	SET1
	SETF
	SHL
	SHR
	SLD.B
	SLD.BU
	SLD.H
	SLD.HU
	SLD.W
	SST.B
	SST.H
	SST.W
	ST.B
	ST.H
	ST.W
	STSR
	SUB
	SUBR
	SWITCH
	SXB
	SXH
	TRAP
	TST
	TST1
	XOR
	XORI
	ZXB
	ZXH

	5.4 Number of Instruction Execution Clock Cycles

	CHAPTER 6 INTERRUPTS AND EXCEPTIONS
	6.1 Interrupt Servicing
	6.1.1 Maskable interrupts
	6.1.2 Non-maskable interrupts

	6.2 Exception Processing
	6.2.1 Software exceptions
	6.2.2 Exception trap
	6.2.3 Debug trap

	6.3 Restoring from Interrupt/Exception Processing
	6.3.1 Restoring from interrupt and software exception
	6.3.2 Restoring from exception trap and debug trap

	CHAPTER 7 RESET
	7.1 Register Status After Reset
	7.2 Starting Up

	CHAPTER 8 PIPELINE
	8.1 Features
	8.1.1 Non-blocking load/store
	8.1.2 2-clock branch
	8.1.3 Efficient pipeline processing

	8.2 Pipeline Flow During Execution of Instructions
	8.2.1 Load instructions
	8.2.2 Store instructions
	8.2.3 Multiply instructions
	8.2.4 Arithmetic operation instructions
	8.2.5 Saturated operation instructions
	8.2.6 Logical operation instructions
	8.2.7 Branch instructions
	8.2.8 Bit manipulation instructions
	8.2.9 Special instructions
	8.2.10 Debug function instructions

	8.3 Pipeline Disorder
	8.3.1 Alignment hazard
	8.3.2 Referencing execution result of load instruction
	8.3.3 Referencing execution result of multiply instruction
	8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC
	8.3.5 Cautions when creating programs

	8.4 Additional Items Related to Pipeline
	8.4.1 Harvard architecture
	8.4.2 Short path

	CHAPTER 9 SHIFTING TO DEBUG MODE
	9.1 How to Shift to Debug Mode
	9.2 Cautions

	APPENDIX A NOTES before the sld instruction.
	A.1 Restriction on Conflict Between sld Instruction and Interrupt request
	A.1.1 Description
	A.1.2 Countermeasure

	APPENDIX B INSTRUCTION LIST
	APPENDIX C INSTRUCTION OPCODE MAP
	APPENDIX D DIFFERENCES WITH ARCHITECTURE OF V850 CPU
	APPENDIX E INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU
	APPENDIX F INDEX
	APPENDIX G REVISION HISTORY
	G.1 Major Revisions in This Edition
	G.2 History of Revisions up to This Edition

