To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RENESANS
User’'s Manual

V850E1

32-Bit Microprocessor Core

Architecture

Document No. U14559EJ3V1UMOO (3rd edition)
Date Published February 2004 N CP(K)

© NEC Electronics Corporation 1999
Printed in Japan

[MEMO]

2 User's Manual U14559EJ3V1UM

NOTES FOR CMOS DEVICES

@ VOLTAGE APPLICATION WAVEFORM AT INPUT PIN
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the
CMOS device stays in the area between Vi (MAX) and Vit (MIN) due to noise, etc., the device may
malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,
and also in the transition period when the input level passes through the area between Vi. (MAX) and
ViH (MIN).

@ HANDLING OF UNUSED INPUT PINS
Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is
possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to Voo or GND
via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must
be judged separately for each device and according to related specifications governing the device.

@ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as
much as possible, and quickly dissipate it when it has occurred. Environmental control must be
adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that
easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static
container, static shielding bag or conductive material. All test and measurement tools including work
benches and floors should be grounded. The operator should be grounded using a wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for
PW boards with mounted semiconductor devices.

@ STATUS BEFORE INITIALIZATION
Power-on does not necessarily define the initial status of a MOS device. Immediately after the power
source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does
not guarantee output pin levels, /O settings or contents of registers. A device is not initialized until the
reset signal is received. A reset operation must be executed immediately after power-on for devices
with reset functions.

User's Manual U14559EJ3V1UM

These commodities, technology or software, must be exported in accordance
with the export administration regulations of the exporting country.
Diversion contrary to the law of that country is prohibited.

* The information in this document is current as of February, 2004. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.

e No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.

« NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

e Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.

 While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.

 NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-

designated "quality assurance program" for a specific application. The recommended applications of an NEC

Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of

each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.

(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics
(as defined above).

M8E 02.11-1

4 User's Manual U14559EJ3V1UM

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, please contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

- Device availability

« Ordering information

Product release schedule

- Availability of related technical literature

- Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

[GLOBAL SUPPORT]
http://www.necel.com/en/support/support.html

NEC Electronics America, Inc. (U.S.) NEC Electronics (Europe) GmbH NEC Electronics Hong Kong Ltd.

Santa Clara, California Duesseldorf, Germany Hong Kong
Tel: 408-588-6000 Tel: 0211-65030 Tel: 2886-9318
800-366-9782
- Sucursal en Espafia NEC Electronics Hong Kong Ltd.
Madrid, Spain Seoul Branch
Tel: 091-504 27 87 Seoul, Korea

Tel: 02-558-3737
« Succursale Francaise
Vélizy-Villacoublay, France NEC Electronics Shanghai Ltd.
Tel: 01-30-675800 Shanghal, P.R. China
.) Tel: 021-5888-5400
- Filiale Italiana

lel.arg; gzl);s a1 NEC Electronics Taiwan Ltd.
el Dz~ Taipei, Taiwan

- Branch The Netherlands Tel: 02-2719-2377
Eindhoven, The Netherlands

Tel: 040-244 5845 NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore
- Tyskland Filial Tel: 6253-8311

Taeby, Sweden

Tel: 08-63 80 820

= United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133

Jo4.1

User's Manual U14559EJ3V1UM

PREFACE

Target Readers This manual is intended for users who wish to understand the functions of the V850E1
CPU core for designing application systems using the V850E1 CPU core.

Purpose This manual is intended to give users an understanding of the architecture of the
V850E1 CPU core described in the Organization below.

Organization This manual contains the following information.
* Register set
¢ Data types
¢ Instruction format and instruction set
* Interrupts and exceptions
* Pipeline

How to Use This Manual It is assumed that the reader of this manual has general knowledge in the fields of
electrical engineering, logic circuits, and microcontrollers.

To learn about the hardware functions,
— Read Hardware User’s Manual of each product.

To learn about the functions of a specific instruction in detail,
— Read CHAPTER 5 INSTRUCTIONS.

The mark * shows major revised points.

Product Types This manual explains the products divided into types.
Before reading this manual, check the corresponding product type.

Product Type Product Name
Type A NUS85E CPU core
Type B NUSSET CPU core
Type C NBS85E, NB85ET CPU core
Type D V850E/IAL, V850E/IA2, VB50E/MAL, V850E/SV2
Type E V850E/IA3, V850E/IA4, VB50E/MA3
Type F V850E/MA2, V850E/ME2

6 User's Manual U14559EJ3V1UM

Conventions

Data significance:

Active low representation:

Note:
Caution:
Remark:

Numerical representation:

Higher digits on the left and lower digits on the right
xxxB (B is appended to pin or signal name)
Footnote for item marked with Note in the text
Information requiring particular attention
Supplementary information

Binary ... xxxx 0Or xxxxB

Decimal ... xxxx

Hexadecimal ... xxxxH

Prefix indicating the power of 2 (address space, memory capacity):

K (Kilo): 21 =1,024
M (Mega): 2% = 1,024
G (Giga): 2% =1,0243

User's Manual U14559EJ3V1UM

CONTENTS

CHAPTER 1 GENERAL ...ttt ettt e e e s e e et e e e e s e s e e e e e e e s s e e reeeeeas 12
R R T T T PP PT PR 13
1.2 Internal CONFIQUIALIONuuviiiii e e e e e e e e e s et b e e e e e e e s s sanntbeeeeeeeeesanannreneeeas 14

CHAPTER 2 REGISTER SET ...ttt e et ab et a et et et et b b ss s snas 15
2.1 Program REQISTEIS ..ooiiiiiiiiiieiie ittt ettt e e e e s e s e bbbt e e eaa e s e aanbbbbeeeeaaeeeaanbbbeeeeaaeeeaannne 16
2.2 SYSEEM REGISTEIS «.oitiiiiiiiiiei ettt ettt ettt e e ettt e e e sa b et e e e sa kbt e e e s bt et e e s abbe e e e s snbeeeesaabeeeeeane 18

2.2.1 Interrupt status saving registers (EIPC, EIPSW)cooii it 19
2.2.2 NMI status saving registers (FEPC, FEPSW)uuiiiiiiiiiie et 20
2.2.3 Exception cauSe regiSter (ECR)cui i i uiiiiiee ettt iee e e ettt e e e e e et e e e e e e e s et e e e e e e e e e nneeeeaeaaeeaannaeeas 20
2.2.4 Program StatuS WOIA (PSW)cooiiiiiiiiiiie ittt e et e e st e s e e b s 21
2.2.5 CALLT caller status saving registers (CTPC, CTPSW)......cccuiiiiiiei ittt eesirnere e e snnens 23
2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)c..ouiiiiiiiiiiiiieee e 24
2.2.7 CALLT baSe POINLEN (CTBP)eeeiiiiieiiiiiieieee ettt e e e e ettt e e e e e e et e ee e e e e e e antbeeeeaaeaaantbeeeeaaeasannsnneas 25
2.2.8 Debug interface regisSter (DIR)cuiiiiiiieeiiiee ettt e e 26
2.2.9 Breakpoint control registers 0 and 1 (BPCO, BPCL).......cooiiiiiiiiieeiiiiiiiiieee et e e eivnee e 29
2.2.10 Program ID regiSter (ASID)eeeei oottt ettt e e e et e e e e e et e e e e e et e e e e e e e e anbaeeas 30
2.2.11 Breakpoint address setting registers 0 and 1 (BPAVO, BPAVL)........cc.ooiiiiiiiiiiiiieee e 31
2.2.12 Breakpoint address mask registers 0 and 1 (BPAMO, BPAML)ccceviiiiiiiiiiiie e 31
2.2.13 Breakpoint data setting registers 0 and 1 (BPDVO, BPDV1)ccooiiiiiiiieeiiiiiiiiiee et 32
2.2.14 Breakpoint data mask registers 0 and 1 (BPDMO, BPDML)ccoiiiuiiiiiiiiiiiiiiieeee e 32

CHAPTER 3 DAT A T Y PES L.ttt e et e bbbt s s 33
3.1 DAtA FOIMAL.....coieiiiiiiiie e e e e e et a e e e 33
3.2 Data REPIESENTALION ..eeii ittt ettt et e e st b e e e s bb e e e e ebbe e e e s sabreeeeaae 35

I R [11 (=T o 1= TR 35
I U [01T [o T=To [(=T [T OO OO PO PO PP UPUPPUPP 35
0 N = 1| A T TP PO UP PR PPP PP 35
3.3 DAtA ATIGNMENT L.ttt ettt ettt e e st bt e e ek b e e e e e ab b et e e e e be e e e e s br e e e e anbreeeeaae 36

CHAPTER 4 ADDRESS SPACE ...ttt e e e e e e e e e e s e snsreeee s 37
O R V1= o o Y/ 1 - o 38
o o Lo 1 =YX =Y 1 o 1Y, Lo o [O PUSURR 39

o N | £ (0o 1o g = To [0 [=] TSR PP T UTRPPRRT 39
A O o= =T g Lo JF=To [0 [T TP U PSP PRPPPPPO 41

CHAPTER 5 INSTRUGCTIONSottt ettt e s e e e e e e e e st r e e e e e e s s s b re e e e e e e e sannnbreneeeas 43
5.1 INSTIUCTION FOIMAL ... iiiiiiiiiiiiieiiie ettt ettt e e st snr e s e e s e s nnre e s 43
5.2 OULINE OF INSTIUCTIONS ..ottt sr e e b e snr e e s nnn e e e 47
5.3 INSTIUCTION SEL...eiiiiiiiiiii ittt ettt e e ekt e e s st b et e e e sab e e e e e abr e e e e s asbe e e e s anrneeeeane 51

LN] 5 PP TR TOVPTOPROPR 53
AADDI .ottt h e e h e a e e nh bt st a e e bt et ne e 54
AAND Lt E e h b e b b e b e o R et e bt b et b et b e e bt e e R et e nh bt e nbn e e nhn e neenne e 55
AANDI et E ekt ekt ekt R e e b et ke e R et R e £ e R e e e ke e e b et e ke e e be e e b e e e be e e bt e ebeenareas 56

User's Manual U14559EJ3V1UM

SATSUB
SATSUBI
SATSUBR. .. e e e e e e e 114

User's Manual U14559EJ3V1UM 9

SE T 116

] | TP PP PO PP P PPPTPPRPPPPI 118

SH IR 119
S B e 120
SLD . BU 121

S D TP PP PR P PPPPPP PP 122
SL D HU 124

S DV 126
SO T B e 128
1S I I TP T T S TS PTOTU PR U RSP PTPPTURRPRPPN 129

SO T 131

S I = TR 133
ST H 134

Sl IR T PP ST TR PO TP PRV RSP PTPPTURPRPPN 136
ST O R 138

SU B e 139
SU B R 140
YL O T TP PP PP PPPPPP PP 141

SR B 142

S H e e e 143
TRAP 144

LS LI OO PP O PP PP PP O PPTPPPPPRIN 145
TS T L 146
KOR 147
KO R e 148

ZXB .o 149

ZXH oo 150

5.4 Number of Instruction Execution ClOCK CYCIESooiiiiiiiiiiiiiiiiee e 151
CHAPTER 6 INTERRUPTS AND EXCEPTIONScooiiiiiiiiiiiiii s 155
Lo A Y (=T g UT o ST =T VAT a1 o PP PPPPRPROPIP 156
(0 0 R - 1) 1 T o Lo g1 (=T (1] o) PRSPPI 156

6.1.2 NON-MASKADIE INTEITUPLS ...ttt e e e e e et e e e e e e e e sabb e e e e e e e e e nnebeeeas 158

6.2 EXCEPLION PrOCESSING ieitiiiiiiie ettt ettt e e ettt e e e e e e e s abb e e e e e e e e e e aannbbbeeeeaaeesannnne 159
6.2.1 SOMWAIE EXCEPLIONSciiiiieiiie ettt ettt e e et e e e e e sk et e e st e e sab e e e e e bb e e e enreeennnees 159

(SO 2 o (o7 =T o (o T (- o PSP PRRPTS 160

(SIS B D 1= o 18 T I (= o PP PP PPTPT PP 161

6.3 Restoring from Interrupt/EXCeption ProCeSSINGccuuiiiiiiiiiiiiiiiiee it 162
6.3.1 Restoring from interrupt and SOftWare EXCEPLION.......ccueviiiiiiieiiiee e 162

6.3.2 Restoring from exception trap and debug trapcooeeiiiiiiiiiiie e 163

(08 1 el I G A o] Y i 164
7.1 ReQISter StatUS AftEr RESEL....uuiiiii i e e e e s s st rre e e e e e e e s annnnes 164
A S =] o T U o PP TP PPPPRPPTN 165
CHAPTER 8 PIPELINE ..ottt e et e e et e sttt 166
TR R =T 1 1 167

10 User's Manual U14559EJ3V1UM

8.1.1 NON-DIOCKING IOAA/SIONEcoiiiiieee ettt e ettt e e e e e e st e e e e e e s e nnneneeaaeeaannes 168

8.1.2 2-ClOCK DIANCH ...t e et 169

8.1.3 Efficient PIPeliNG PrOCESSINGcciiuiiiiiieeeiiitieet e et e e e e et e e e e e e st a e e aae e s saatbtreeeeeessessraeeaeessanns 170

8.2 Pipeline Flow During Execution of INStrUCLIONSuuviiiiiiiiiiiiiiiiice e 171

S T2 R Mo T- To I 1S3 1 U403 < F PR SOPPPPPRPN 171

8.2.2 SO INSIIUCTIONS ...ttt ettt b et e e st e e e s e e e sk et e e an b bt e e nbbe e e s breeeannreeenan 172

8.2.3 MUIIPIY INSITUCLIONS ...t e e e e et e e e e e e st b e e e e e e e s sntbbaeeeaeeesaastbsaeaaeesannnes 172

8.2.4 ArithmetiC Operation INSIIUCTIONScoiiiiiiiiiii e e e et e e e e e et bb e e e e e e aaaens 173

8.2.5 Saturated OpPeration INSIIUCHIONSoiiiiiiiiiiiiiie ettt e et e e e e e st e ea e e e s aantaeeeeaaaasaannnseeeaaeeaanns 174

8.2.6 Logical OPEration INSIFUCTIONScociitiiiiiieie ettt ettt e s e e es et e e st e e e ebne e e s s e e e e anneeenans 174

8.2.7 BranCh iNSIIUCLIONSoiviiiiiiiiiii ettt ettt et e e b e b e neenere s 174

8.2.8 Bit Manipulation INSIIUCLIONSueiiiiieiiiit et e et e e e e e st b e e e e e e s anebrreeeeeeaanens 176

8.2.9 SPECIAI INSIIUCTIONSttt ee ettt ettt e e e e e ettt e e e e e e e et b e et e e e e e e e ntbeeeeaaeaeaannbseeeeeeesaannnneeaaaeeaannes 176

8.2.10 DebuQg fUNCHION INSITUCTIONS.ci.ttiieiitiie ettt s e e bt e e et e e e e e e s nnre e e e nnreeenan 181

IR T T oY= TN 0] 0 o [T S 182
8.3.1 AlGNMENT NAZAIT ...ttt e e e e e ekttt e e e e e s bbbt e e e e e e e e e nbnnreeaeeeaaae 182

8.3.2 Referencing execution result of I0ad INSrUCLIONooiiiiiiiiii e 183

8.3.3 Referencing execution result of Multiply INStIUCIONcooiiiiiiiii e 184

8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC............cccovviiiiiiiiiiiiieeee e, 185

8.3.5 Cautions When Creating PrOgIAIMSoou ittt e ettt e e e e e e e e e e e sabbb e e e e e e s aabbeneeeeeeaanans 185

8.4 Additional Items Related t0 PiPeliNe ... 186
8.4.1 HArVard @rChItECIUIEcocuiiie ittt ettt e ekt e e st e e et e e e s b e e e e nineeenan 186

S Y o] o o - 11 I PP PPPPPRRN 187
CHAPTER 9 SHIFTING TO DEBUG MODEccottiiiiiiiiiiiiiiii s 189
9.1 How to Shift to Debug MOAEcooiiiiiii 189

S I A OF- 1F | 4 (o] o £ PP PP UUUTPTPPPTP 195
APPENDIX A NOTES ..., 197
A.1 Restriction on Conflict Between sld Instruction and Interrupt requestccccooeeveeennnen. 197
N O R oYY ot o] 1 o] o O PPRPPPRR 197

ALL2 COUNTEIMEASUIEeteteteiiteteteteseeeseseses e ettt ettt st st s et e et e 88888888 ettt sttt ettt se s s e nnnne e 197
APPENDIX B INSTRUCTION LIST ..ttt e e e a e a e e e e e e e e e e e e e e aaaaaaaaaaaaaans 198
APPENDIX C INSTRUCTION OPCODE MAP ... 212
APPENDIX D DIFFERENCES WITH ARCHITECTURE OF V850 CPU.....cooooiiiiiiii, 217
APPENDIX E INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU...... 219
APPENDIX F INDEX ... 221
APPENDIX G REVISION HISTORY ... 224
G.1 Major Revisions iN ThisS EditiONuuuiiiiiiiiiiieee ettt e e e e e e e eeees 224
G.2 History of Revisions up t0 ThisS EditiONocuiiiiiiiiiiiiiiiie et 225

User's Manual U14559EJ3V1UM 11

CHAPTER 1 GENERAL

Real-time control systems are used in a wide range of applications, including:

« office equipment such as HDDs (Hard Disk Drives), PPCs (Plain Paper Copiers), printers, and facsimiles,
« automobile electronics such as engine control systems and ABSs (Antilock Braking Systems), and
« factory automation equipment such as NC (Numerical Control) machine tools and various controllers.

The great majority of these systems conventionally employ 8-bit or 16-bit microcontrollers. However, the
performance level of these microcontrollers has become inadequate in recent years as control operations have risen
in complexity, leading to the development of increasingly complicated instruction sets and hardware design. As a
result, the need has arisen for a new generation of microcontrollers operable at much higher frequencies to achieve an
acceptable level of performance under today’s more demanding requirements.

The V850 Series of microcontrollers was developed to satisfy this need. This series uses RISC architecture that
can provide maximum performance with simpler hardware, allowing users to obtain a performance approximately 15
times higher than that of the existing 78K/Ill Series and 78K/IV Series of CISC single-chip microcontrollers at a lower
total cost.

In addition to the basic instructions of conventional RISC CPUs, the V850 Series is provided with special
instructions such as saturation, bit manipulation, and multiply/divide (executed by a hardware multiplier) instructions,
which are especially suited to digital servo control systems. Moreover, instruction formats are designed for maximum
compiler coding efficiency, allowing the reduction of object code sizes.

The V850E1 CPU is a 32-bit RISC CPU core for ASIC, newly developed as the CPU core central to system LSl in
the current age of system-on-a-chip. This core includes not only the control functions of the V850 CPU, the CPU core
incorporated in the V850 Series, but also supports data processing through its enhanced external bus interface
performance, and the addition of features such as C language switch statement processing, table lookup branching,
stack frame creation/deletion, data conversion, and other high-level language supporting instructions.

In addition, because the instruction codes are upwardly compatible with the V850 CPU at the object code level, the
software resources of systems that incorporate the V850 CPU can be used unchanged.

12 User's Manual U14559EJ3V1UM

CHAPTER 1 GENERAL

1.1 Features

@)

@)

High-performance 32-bit architecture for embedded control

Number of instructions: 83

32-bit general-purpose registers: 32

Load/store instructions in long/short format

3-operand instruction

5-stage pipeline of 1 clock cycle per stage

Hardware interlock on register/flag hazards

Memory space Program space: 64 MB linear
Data space: 4 GB linear

Special instructions

Saturation operation instructions

Bit manipulation instructions

Multiply instructions (On-chip hardware multiplier executing multiplication in 1 clock)
16 bits x 16 bits — 32 bits

32 bits x 32 bits — 32 bits or 64 bits

User's Manual U14559EJ3V1UM

13

CHAPTER 1 GENERAL

1.2 Internal Configuration

The V850E1 CPU executes almost all instructions such as address calculation, arithmetic and logical operation,

and data transfer in one clock by using a 5-stage pipeline.

It contains dedicated hardware such as a multiplier (32 x 32 bhits) and a barrel shifter (32 bits/clock) to execute
complicated instructions at high speeds.

Figure 1-1 shows the internal block diagram.

Figure 1-1. Internal Block Diagram of V850E1 CPU

Instruction
queue

Program
counter

General-purpose
registers

System registers

AN

] Instruction

Multiplier |—
(32x32 - 64)]

—

'\

Barrel
shifter

'\

N
N\

N
Data cache

cache

14

User's Manual U14559EJ3V1UM

CHAPTER 2 REGISTER SET

The registers can be classified into two types: program registers that can be used for general programming, and

system registers that can control the execution environment. All the registers are 32 bits wide.

Figure 2-1. Registers

(@) Program registers (b) System registers
31 0 31 0
r0 (Zero register) EIPC (Interrupt status saving register)
rl (Assembler-reserved register) EIPSW (Interrupt status saving register)
r2
13 (Stack pointer (SP)) FEPC (NMI status saving register)
4 (Global pointer (GP)) FEPSW (NMI status saving register)
r5 (Text pointer (TP)) ']
ECR (Exception cause register)
r6
7 | PSW (Program status word) |
8
9 CTPC (CALLT caller status saving register)
110 CTPSW (CALLT caller status saving register)
ri1]]]
DBPC (Exception/debug trap status saving register)
r12
DBPSW (Exception/debug trap status saving register)
r13
ri4 | CTBP (CALLT base pointer) |
rl5
16 | DIR (Debug interface register) |
r17
BPCO (Breakpoint control register 0)
rl8
BPC1 (Breakpoint control register 1)
r19
r20 ASID (Program ID register)
r21
122 BPAVO (Breakpoint address setting register 0)
123 BPAV1 (Breakpoint address setting register 1) Note
24 BPAMO (Breakpoint address mask register 0)
25 BPAM1 (Breakpoint address mask register 1)
r26
BPDVO (Breakpoint data setting register 0)
r27
BPDV1 (Breakpoint data setting register 1)
r28
” BPDMO (Breakpoint data mask register 0)
r
- BPDM1 (Breakpoint data mask register 1)
r30 (Element pointer (EP))
131 (Link pointer (LP)) Note These registers are reserved for the

debug function. They can only be used in

PC (Program counter)

type A or B products. They cannot be

used in other product types.

User's Manual U14559EJ3V1UM

15

*

CHAPTER 2 REGISTER SET

2.1 Program Registers

The program registers include general-purpose registers (r0 to r31) and a program counter (PC).

Table 2-1. Program Registers

Program Registers Name Function Description
General-purpose r0 Zero register Always holds 0.
registers . . .)
rl Assembler-reserved register | Used as working register for address generation.
r2 Address/data variable register (when the real-time OS to be used is not using r2)
r3 Stack pointer (SP) Used for stack frame generation when function is called.
rd4 Global pointer (GP) Used to access global variable in data area.
r5 Text pointer (TP) Used as register for pointing to start address of text area
(area where program code is placed)
r6 to r29 Address/data variable registers
r30 Element pointer (EP) Used as base pointer for address generation when memory
is accessed.
r31 Link pointer (LP) Used when compiler calls function.
Program counter PC Holds instruction address during program execution.

Remark For detailed descriptions of r1, r3 to r5, and r31 used by an assembler or C compiler, refer to the CA850 (C
Compiler Package) Assembly Language User’s Manual.

(1) General-purpose registers (r0 to r31)

Thirty-two general-purpose registers, r0 to r31, are provided. All these registers can be used for data variables
or address variables.

However, care must be exercised as follows in using the r0 to r5, r30, and r31 registers.

(@ ro,r30

r0 and r30 are implicitly used by instructions.

r0 is a register that always holds 0, and is used for operations using 0 and offset 0 addressing. r30 is

used as a base pointer when accessing memory using the SLD and SST instructions.

(b) r1,r3tor5,r31
rl, r3 to r5, and r31 are implicitly used by the assembler and C compiler.

Before using these registers, therefore, their contents must be saved so that they are not lost.

contents must be restored to the registers after the registers have been used.

(c) r2

r2 is sometimes used by a real-time OS. When the real-time OS to be used is not using r2, r2 can be

used as an address variable register or a data variable register.

16

User's Manual U14559EJ3V1UM

The

CHAPTER 2 REGISTER SET

(2) Program counter (PC)

This register holds an instruction address during program execution. The lower 26 bits of this register are
valid, and bits 31 to 26 are reserved for future function expansion (fixed to 0). If a carry occurs from bit 25 to
bit 26, it is ignored. Bit O is always fixed to 0 so that execution cannot branch to an odd address.

Figure 2-2. Program Counter (PC)

PC

31 26 25
| Initial value

010/0)010]0 (Instruction address during execution) 00000000H

User's Manual U14559EJ3V1UM

17

CHAPTER 2 REGISTER SET

2.2 System Registers

The system registers control the CPU status and hold information on interrupts.
System registers can be read or written by specifying the relevant system register number from the following list
using a system register load/store instruction (LDSR or STSR instruction).

Table 2-2. System Register Numbers

Register Register Name Operand Specifiability
No. LDSR STSR
Instruction | Instruction
0 Interrupt status saving register (EIPC) O O
1 Interrupt status saving register (EIPSW) o O
2 NMI status saving register (FEPC) (©) @)
3 NMI status saving register (FEPSW) ©) @)
4 Exception cause register (ECR) x O
5 Program status word (PSW) o O
6to 15 (Numbers reserved for future function expansion (operation cannot be guaranteed if X x
accessed))
16 CALLT caller status saving register (CTPC) ©) @)
17 CALLT caller status saving register (CTPSW) o O
18 Exception/debug trap status saving register (DBPC) o ot
19 Exception/debug trap status saving register (DBPSW) e} oMt
20 CALLT base pointer (CTBP) ©) @)
21 Debug interface register (DIR) oMt O
22 Breakpoint control registers 0 and 1 (BPCO, BPC1)""*? oMt ot
23 Program ID register (ASID) ©) @)
24 Breakpoint address setting registers 0 and 1 (BPAVO, BPAV1)"*? o't oMt
25 Breakpoint address mask registers 0 and 1 (BPAMO, BPAM1)"*"*? oMt ot
26 Breakpoint data setting registers 0 and 1 (BPDVO, BPDV1)"*? oMt (Ol
27 Breakpoint data mask registers 0 and 1 (BPDMO, BPDM1)"*? oMt ot
281to 31 (Numbers reserved for future function expansion (operation cannot be guaranteed if X x
accessed))

Notes 1. These registers can be accessed only in the debug mode of type A and B products. Accessing these
registers in other product types is prohibited. If they are accessed, the operation is not guaranteed.
2. The actual register to be accessed is specified by the DIR.CS bit.

Caution When returning using the RETI instruction after setting bit 0 of EIPC, FEPC, or CTPC to 1 using
the LDSR instruction and servicing an interrupt, the value of bit 0 is ignored (because bit 0 of the
PC is fixed to 0). Therefore, be sure to set an even number (bit 0 = 0) when setting a value to
EIPC, FEPC, or CTPC.

Remark O: Accessible
x. Inaccessible

18 User's Manual U14559EJ3V1UM

CHAPTER 2 REGISTER SET

2.2.1 Interrupt status saving registers (EIPC, EIPSW)

Two interrupt status saving registers are provided: EIPC and EIPSW.

If a software exception or maskable interrupt occurs, the contents of the program counter (PC) are saved to EIPC,
and the contents of the program status word (PSW) are saved to EIPSW (if a non-maskable interrupt (NMI) occurs,
the contents are saved to the NMI status saving registers (FEPC, FEPSW)).

Except for some instructions, the address of the instruction next to the one being executed when the software
exception or maskable interrupt occurs is saved to EIPC (see Table 6-1 Interrupt/Exception Codes).

The current value of the PSW is saved to EIPSW.

Because only one pair of interrupt status saving registers is provided, the contents of these registers must be
saved by program when multiple interrupt servicing is enabled.

Bits 31 to 26 of EIPC and bits 31 to 12 and 10 to 8 of EIPSW are reserved for future function expansion (fixed to 0).

Figure 2-3. Interrupt Status Saving Registers (EIPC, EIPSW)

31 26 25 0
\ et rrrrrrr-tr-r-tr T T T T T T Initial value
EIPC|0O|0|0|0|0|O
(Contents of PC) OxxXXXXXXH
(x: Undefined)
31 121110 9 8 7 0

T
Initial value
Noe 0| 0 0\ (Contents of PSW) | 00000xxxH

EIPSWOO\OOOOO\OOOO\OOOOOOOOO

(x: Undefined)

Note Contents of SS flag in PSW

User's Manual U14559EJ3V1UM 19

CHAPTER 2 REGISTER SET

2.2.2 NMI status saving registers (FEPC, FEPSW)
Two NMI status saving registers are provided: FEPC and FEPSW.

If a non-maskable interrupt (NMI) occurs, the contents of the program counter (PC) are saved to FEPC, and the

contents of the program status word (PSW) are saved to FEPSW.

Except for some instructions, the address of the instruction next to the one being executed when the NMI occurs is

saved to FEPC (see Table 6-1 Interrupt/Exception Codes).
The current value of the PSW is saved to FEPSW.

Because only one pair of NMI status saving registers is provided, the contents of these registers must be saved by

program when multiple interrupt servicing is enabled.

Bits 31 to 26 of FEPC and bits 31 to 12 and 10 to 8 of FEPSW are reserved for future function expansion (fixed to

0).
Figure 2-4. NMI Status Saving Registers (FEPC, FEPSW)
31 26 25
r 1 1 1 11T 11T 1T 1T T 11T 1T 1T T 1T T 1T T T T 11 Initial val
nitial value
FEPC10/0101070 O\ (Contents of PC) OXXXXXXXH
(x: Undefined)
31 1211109 8 7
1T 1 1 1 1
Initial value
FEPSW|0|0|0 0|0 0\0 0/|0fj0|0|O 0\0 0[0 O\O 0|0 |Ne[O[0]|O (Contents of PSW) 0000GoocH
(x: Undefined)
Note Contents of SS flag in PSW

2.2.3 Exception cause register (ECR)

The exception cause register (ECR) holds the cause information when an exception or interrupt occurs. The ECR
holds an exception code which identifies each interrupt source (see Table 6-1 Interrupt/Exception Codes). Thisis a

read-only register, and therefore no data can be written to it by using the LDSR instruction.

Figure 2-5. Exception Cause Register (ECR)

31 16 15
Il P T T Initial value
ECR FECC EICC 00000000H
Bit Position | Bit Name Function
31t0 16 FECC Exception code of non-maskable interrupt (NMI)
15t00 EICC Exception code of exception or maskable interrupt

20

User's Manual U14559EJ3V1UM

CHAPTER 2 REGISTER SET

2.2.4 Program status word (PSW)

The program status word (PSW) is a collection of flags that indicate the status of the program (result of instruction
execution) and the status of the CPU.

If the contents of the bits in this register are modified by the LDSR instruction, the PSW will assume the new value
immediately after the LDSR instruction has been executed. Setting the ID flag to 1, however, will disable interrupt
requests even while the LDSR instruction is being executed.

Bits 31 to 12 and 10 to 8 are reserved for future function expansion (fixed to 0).

Figure 2-6. Program Status Word (PSW) (1/2)

31 121110 9 8 7 6 5 4 3 2 1 0
S .
F>sw000000000000000000~0~0~S~000NE'Acosz'”'“‘"""a'“e
S P/PIDTI YV 00000020H
Bit Position | Flag Name Function
11 sghoe Operates with single-step execution when this flag is set to 1 (debug trap occurs each time
instruction is executed).
This flag is cleared to 0 when branching to the interrupt servicing routine.
When the SE bit of the DIR register is 0, this flag is not set (fixed to 0).
7 NP Indicates that non-maskable interrupt (NMI) servicing is in progress. This flag is setto 1

when an NMI request is acknowledged, and multiple interrupt servicing is disabled.
0: NMI servicing is not in progress
1: NMI servicing is in progress

6 EP Indicates that exception processing is in progress. This flag is set to 1 when an exception
occurs. Even when this bit is set, interrupt requests can be acknowledged.

0: Exception processing is not in progress

1: Exception processing is in progress

5 D Indicates whether a maskable interrupt request can be acknowledged.
0: Interrupts enabled (EI)
1: Interrupts disabled (DI)

4 SATV® Indicates that an overflow has occurred in a saturated operation and the result is saturated.
This is a cumulative flag. When the result is saturated, the flag is set to 1 and is not cleared
to 0 even if the next result is not saturated. To clear this flag to 0, use the LDSR instruction.
This flag is neither set to 1 nor cleared to 0 by execution of an arithmetic operation
instruction.

0: Not saturated

1: Saturated

3 cY Indicates whether a carry or borrow occurred as a result of the operation.
0: Carry or borrow did not occur
1: Carry or borrow occurred

2 oV Indicates whether overflow occurred as a result of the operation.
0: Overflow did not occur
1. Overflow occurred

Note Can only be used in type A or B products. Cannot be used in other product types.

User's Manual U14559EJ3V1UM 21

CHAPTER 2 REGISTER SET

Figure 2-6. Program Status Word (PSW) (2/2)

Bit Position | Flag Name Function

1 ghote Indicates whether the result of the operation is negative.
0: Result is positive or zero
1: Result is negative

0 Z Indicates whether the result of the operation is zero.
0: Result is not zero
1: Resultis zero

Note In the case of saturate instructions, the SAT, S, and OV flags will be set according to the result of the
operation as shown in the table below. Note that the SAT flag is set to 1 only when the OV flag has
been set to 1 during a saturated operation.

Status of Operation Status of Flag Operation Result of Saturation
Result SAT oV s Processing
Maximum positive 1 1 0 7FFFFFFFH
value is exceeded
Maximum negative 1 1 1 80000000H
value is exceeded
Positive (Not exceeding | Holds the 0 0 Operation result
maximum value) value before
Negative (Not exceeding| operation 1

maximum value)

22 User's Manual U14559EJ3V1UM

CHAPTER 2 REGISTER SET

2.2.5 CALLT caller status saving registers (CTPC, CTPSW)

Two CALLT caller status saving registers are provided: CTPC and CTPSW.

If a CALLT instruction is executed, the contents of the program counter (PC) are saved to CTPC, and the contents

of the program status word (PSW) are saved to CTPSW.

The contents saved to CTPC are the address of the instruction next to the CALLT instruction.
The current value of the PSW is saved to CTPSW.
Bits 31 to 26 of CTPC and bits 31 to 12 and 10 to 8 of CTPSW are reserved for future function expansion (fixed to

0).

Figure 2-7. CALLT Caller Status Saving Registers (CTPC, CTPSW)

31 26 25
[

CTPCOOOO\OO

(Contents of PC)

Initial value
OXXXXXXXH

31

1211109 8 7

(x: Undefined)

CTPSWOOOO\OOO\OOOOO

OOOOO\OOONmeO\O

0

[

1 1 1 1
(Contents of PSW)

Initial value
00000xxxH

Note Contents of SS flag in PSW

(x: Undefined)

User's Manual U14559EJ3V1UM

23

CHAPTER 2 REGISTER SET

2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)
Two exception/debug trap status saving registers are provided: DBPC and DBPSW.
* When an exception trap, debug trap™*, or debug break occurs or during a single-step operation, the contents of the
program counter (PC) are saved to DBPC, and the contents of the program status word (PSW) are saved to DBPSW.

The contents to be saved to DBPC are as follows.

* Table 2-3. Contents to Be Saved to DBPC
Cause for Saving Contents Saved to DBPC
Occurrence of exception trap Address of the instruction next to the instruction that caused an

exception trap

Occurrence of debug trap Address of the instruction next to the instruction that caused a debug
trap
Occurrence of debug break | Execution trap Address of the instruction that caused a break

Misalign access exception

Alignment error exception

Access trap Address of the instruction next to the instruction that caused a break

Single-step operation execution Address of the instruction to be executed next (instruction executed
when restoring from the debug monitor routine)

Remark For details of causes for saving, refer to CHAPTER 9 SHIFTING TO DEBUG MODE.

The current value of the PSW is saved to DBPSW.
* Reading from this register is enabled only in debug mode (DIR.DM bit = 1) (writing to this register is always
enabled). If this register is read in user mode (DM bit = 0), an undefined value is read.
Bits 31 to 26 of DBPC and bits 31 to 12 and 10 to 8 of DBPSW are reserved for future function expansion (fixed to
0).

* Note Type C products do not support a debug trap.

Figure 2-8. Exception/Debug Trap Status Saving Registers (DBPC, DBPSW)

Initial value
DBPC 0~0 0/0/0|0 (Contents of PC) OXXXXXXXH

(x: Undefined)

31 1211109 8 7 0
T T T T 11

ololo Initial value
(Contents of PSW) 00000xxxH

(x: Undefined)

DBPSW 0\0 0/0|0|0 O\O 0 O\O 0 O\O 0 O\O O\O O | Note

Note Contents of SS flag in PSW

24 User's Manual U14559EJ3V1UM

CHAPTER 2 REGISTER SET

2.2.7 CALLT base poainter (CTBP)

The CALLT base pointer (CTBP) is used to specify a table address and to generate a target address (bit O is fixed

to 0).
Bits 31 to 26 are reserved for future function expansion (fixed to 0).

Figure 2-9. CALLT Base Pointer (CTBP)

31 26 25 0
\

0 Initial value
(Base address) OXXXXXXXH

(x: Undefined)

CTBP|0|0|0|0|0O|O

User's Manual U14559EJ3V1UM

25

CHAPTER 2 REGISTER SET

2.2.8 Debug interface register (DIR)
The debug interface register (DIR) controls the debug function and indicates the debug function status.

The values of the bits in this register can be changed by using the LDSR instruction. Changed values become

valid immediately after the execution of this instruction is complete.
This register can only be written in the debug mode (DM bit = 1) (except for bits 3 and 1) but can always be read.
Bits 14 to 8, 6 to 4, 2, and 1 are undefined in the user mode (DM bit = 0).
Bits 31 to 15 and 7 are reserved for future function expansion (fixed to 0).

Caution Use of the debug interface register (DIR) is possible only in type A and B products, not in other

product types.

Figure 2-10. Debug Interface Register (DIR) (1/3)

1514131211109 8 7

o (LTI

3
SIRICIC/M|A|S C |M|A|D |Initial value
OOOOOOOOOOQESEAEEO M \ \

M [00000040H

zZ— |o

Bit Position

Bit Name

Function

14

Notes 1, 2

SQ

Sets sequential break mode (sets a break if a break occurs for channel 0 and channel 1 in that
order).

0: Normal break mode

1: Sequential break mode

13

Notes 1, 2

RE

Sets range break mode (sets a break only when a break occurs for channels 0 and 1
simultaneously).

0: Normal break mode

1: Range break mode

12

Note 2

Cs

Sets break register bank.
0: Select bank 0 register (channel 0 control register)
1: Select bank 1 register (channel 1 control register)

11

CE

Enables/disables COMBO interrupt.
0: COMBO interrupt disabled
1: COMBO interrupt enabled

10

MA

Enables/disables misalign access exception detection.
0: Misalign access exception detection disabled
1: Misalign access exception detection enabled

AE

Enables/disables alignment error exception detection.
0: Alignment error exception detection disabled
1: Alignment error exception detection enabled

Notes 1. Always set either the SQ or RE bit to 1 or clear both bits to 0. If both bits are set to 1, the
operation cannot be guaranteed.

2. While the IN bit is set to 1, writing to the SQ, RE, and CS bits is disabled. When the IN bit is set to

1, each hit is automatically cleared to 0.

26

User's Manual U14559EJ3V1UM

CHAPTER 2 REGISTER SET

Figure 2-10. Debug Interface Register (DIR) (2/3)

Bit Position | Bit Name Function
8 SE Enables/disables writing to SS flag of PSW.
0: Writing to SS flag disabled (SS flag is fixed to 0)
1: Writing to SS flag enabled
6 INMe Set to 1 by debug function reset.
Be sure to clear this bit to 0 after reset (while this bit is set to 1, writing to SQ, RE, and CS bits
is disabled, and T1 and TO bits do not operate).
5 T2 Set to 1 by channel 1 break generation.
Cleared to 0 by setting 0™**,
4 TOY™**2 Set to 1 by channel 0 break generation.
Cleared to 0 by setting 0™**.
3 cMm™e? Set to 1 by shift to COMBO interrupt routine or debug monitor routine 2.
Writing to this bit is disabled.
2 MTet Set to 1 by detection of misalign access exception.
Cleared to 0 by setting 0™**.
1 ATVe! Set to 1 by detection of alignment error exception.
Cleared to 0 by setting 0™**,
0 DM™*? Set to 1 when debug mode is entered. Cleared to 0 when user mode is entered.
Writing to this bit is disabled.

Remark The explanations of the Notes are given on the next page.

User's Manual U14559EJ3V1UM

27

CHAPTER 2 REGISTER SET

Figure 2-10. Debug Interface Register (DIR) (3/3)

Notes 1. The IN, T1, TO, MT, and AT bits are not automatically cleared to O after being set to 1 (they are
cleared to 0 only by the LDSR instruction).
2. While the IN bit is set to 1, the T1 and TO bits do not operate (even if a break occurs, these bits
are not set to 1), and are automatically cleared to 0.
3. The DM and CM bits change as follows.

Debug COMBO Debug
Main monitor interrupt monitor DM CM
routine routine 1 routine routine 2 bit bit
i i E User
| | 0 mode
Debug A\ i i
wap, - : T ° MK
debug 1 Debug
break mode
Maskable/ —» y -
non-maskable
interrupt 0 User
! mode
Debug \ i
trap, i
debug | 1 1 Debug
break mode
\ A e e . &
i User
! 0 mode
\ . i
1 Debug
mode
\i
- - : 0 -1
E 0 User
] i i mode

Notes 4. The T1, TO, MT, and AT bits cannot be arbitrarily set to 1 by a user program.

28

User's Manual U14559EJ3V1UM

CHAPTER 2 REGISTER SET

2.2.9 Breakpoint control registers 0 and 1 (BPCO, BPC1)
Breakpoint control registers 0 and 1 (BPCO, BPC1) indicate the control and status of the debug function.
One or other of these registers is enabled by the setting of the DIR.CS bit.

The values of the bits in these registers can be changed by using the LDSR instruction. Changed values become

valid immediately after execution of this instruction. (If the FE bit is set to 1, the timing at which the changed values

become valid is delayed, but the changes are definitely reflected after the DBRET instruction is executed.)
These registers can only be set in the debug mode (DIR.DM bit = 1). In the user mode (DM bit = 0), bit 0 = 0, and
bits 23 to 15, 11 to 7, and 4 to 1 are undefined.
Bits 31 to 24, 14 to 12, 6, and 5 are reserved for future function expansion (fixed to 0).

Caution Use of breakpoint control registers 0 and 1 (BPCO, BPC1) is possible only in type A and B

products, not in other product types.

Figure 2-11. Breakpoint Control Registers 0 and 1 (BPCO, BPC1) (1/2)

31 24 23 16151413121110 9 8 7 6 5 4 3 2 1 0
T I
| VIV|M T|B|F|W|R|Initial value
BPCO |0 |0 0000\0 BP ASID E0~0 O\TYND ANDOOEEEEEOOXXXXXOH
(x: Undefined)
31 24 23 161514131211109 8 7 6 5 4 3 2 10
T I e
| VIVIM T IB | F|W/|R/| Initial value
BPC1 (0|0 0000\0 BP ASID E0\00 TY DANDOOEEEEEOOXXXXXOH
(x: Undefined)
Bit Position | Bit Name Function
2310 16 BP ASID | Sets the program ID that generates a break (valid only when IE bit = 1).
15 IE Sets the comparison of the BP ASID bit and the program ID set in the ASID register.
0: Not compared
1: Compared
11,10 TY Sets the type of access for which a break is detected.
0,0: Access by all data types
0,1: Byte access (including bit manipulation)
1,0: Halfword access
1,1: Word access
Note that the contents set in this register are ignored in the case of an execution trap.
9 VD Sets the match condition of the data comparator.
0: Break on a match
1: Break on a mismatch
8 VA Sets the match condition of the address comparator.
0: Break on a match
1: Break on a mismatch
7 MD Sets the operation of the data comparator.
0: Break on match of data and condition.
1: Whether data matches (data comparator) is ignored regardless of the setting of the VD bit
or BPDVx and BPDMXx registers

User's Manual U14559EJ3V1UM

29

CHAPTER 2 REGISTER SET

Figure 2-11. Breakpoint Control Registers 0 and 1 (BPCO, BPC1) (2/2)

Bit Position

Bit Name

Function

4

TENutel

Enables/disables trigger output.
0: Trigger output disabled
1: Trigger output enabled (output corresponding trigger before break occurs in channel 0 or 1).

BENutel

Sets whether or not a break in channel O or 1 is reported to the CPU.
0: Not reported.
1: Reported (break).

FE

Enables/disables break/trigger due to instruction execution address match.
0: Break/trigger disabled
1: Break/trigger enabled"*?

WE

Enables/disables break/trigger on data write.
0: Break/trigger disabled
1: Break/trigger enabled""®®

RE

Enables/disables break/trigger on data read.
0: Break/trigger disabled
1: Break/trigger enabled"**

Notes 1. The TE and BE bits can be set only in type B products. In other product types, the TE and BE bits
are fixed to O (however, even when the BE bit is fixed to 0, it reports a break to the CPU).
If the FE bit is set to 1, always clear the WE and RE bits to O.
3. Ifthe WE and RE bits are set to 1, always clear the FE bit to 0.

2.2.10 Program ID register (ASID)
This register sets the ID of the program currently under execution.

The program ID is used when a shift to the debug mode is necessary only in cases such as when a specific
program is being executed to download different programs to the RAM of the same address area. While the BPCn.IE
bit is set to 1, the system does not shift to the debug mode if the program IDs set to the BPCn.BP ASID bit and the

ASID register do not match; even if the break conditions match (n =0, 1).
Bits 31 to 8 are reserved for future function expansion (fixed to 0).

Caution Use of the program ID register (ASID) is possible only in the type A and B products, not in other

product types.

Figure 2-12. Program ID Register (ASID)

31 8 7 0
T T T T T .
AsiD|0|o|o|o|oo/o/o/o/o/o/ojo/ojojojojojojojojo|o]|o ASID Initial value
000000xxH
(x: Undefined)
Bit Position | Flag Name Function
7t00 ASID ID of program currently under execution

30

User's Manual U14559EJ3V1UM

CHAPTER 2 REGISTER SET

2.2.11 Breakpoint address setting registers 0 and 1 (BPAVO, BPAV1)
These registers set the breakpoint addresses to be used by the address comparator.
One or other of these registers is enabled by the setting of the DIR.CS bit.

Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1).
mode (DM bit = 0), an undefined value is read.

When these registers are not used, be sure to set each bit to 1.
Bits 31 to 28 are reserved for future function expansion (fixed to 0).

If read in the user

Caution Use of breakpoint address setting registers 0 and 1 (BPAVO, BPAV1) is possible only in the type
A and B products, not in other type products.

Figure 2-13. Breakpoint Address Setting Registers 0 and 1 (BPAVO, BPAV1)

31 28 27 0
e rrrrtrrrrrr-r-r-r T T T Initial value
BPAVO|0|0| 0|0 (Breakpoint address) OXXXXXXXH
(x: Undefined)

31 28 27 9
e rrrrtrrrrrr-r-r-r T T T Initial value
BPAV1|0|0|0|0 (Breakpoint address) OXXXXXXXH
(x: Undefined)

2.2.12 Breakpoint address mask registers 0 and 1 (BPAMO, BPAM1)
These registers set the bit mask for address comparison (masked by 1).
One or other of these registers is enabled by the setting of the DIR.CS bit.

Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1).
mode (DM bit = 0), an undefined value is read.

When these registers are not used, be sure to set each bit to 1.
Bits 31 to 28 are reserved for future function expansion (fixed to 0).

If read in the user

Caution Use of breakpoint address mask registers 0 and 1 (BPAMO, BPAM1) is possible only in the type A
and B products, not in other product types.

Figure 2-14. Breakpoint Address Mask Registers 0 and 1 (BPAMO, BPAM1)

31 28 27 0
e rrrrrrrrrr-r-rr-rr Tt Initial value
BPAMO| 0|0 0|0 (Breakpoint address mask) OXXXXXXXH
(X: Undefined)

31 28 27 0
e rrrrrrrrrr-r-rr-rr Tt Initial value
BPAM1|0(0|0|0 (Breakpoint address mask) OXXXXXXXH
(x: Undefined)

User's Manual U14559EJ3V1UM 31

CHAPTER 2 REGISTER SET

2.2.13 Breakpoint data setting registers 0 and 1 (BPDVO, BPDV1)
These registers set the breakpoint data to be used by the data comparator.
One or other of these registers is enabled by the setting of the DIR.CS bit.
* Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1). If read in the user

mode (DM bit = 0), an undefined value is read.
When these registers are not used, be sure to set each bit to 1.

* Caution Use of breakpoint data setting registers 0 and 1 (BPDVO, BPDV1) is possible only in the type A
and B products, not in other product types.

Remark Set the instruction code for 16-bit instructions aligned to the LSB. Set the instruction codes for 32-bit

instructions in little endian format.

Figure 2-15. Breakpoint Data Setting Registers 0 and 1 (BPDVO, BPDV1)

31 0
ettt rrrtr -ttt T T T Initial value
BPDVO (Breakpoint data) Undefined
31 0
BPDV1 | - (Ejre;kpo‘int ‘dat‘a) S ndetmes
Undefined

2.2.14 Breakpoint data mask registers 0 and 1 (BPDMO, BPDM1)
These registers set the bit mask for data comparison (masked by 1).
One or other of these registers is enabled by the setting of the DIR.CS bit.
* Writing to/reading from these registers is enabled only in the debug mode (DIR.DM bit = 1). If read in the user
mode (DM bit = 0), an undefined value is read.
When these registers are not used, be sure to set each bit to 1.
* When the data access type that detects breaks is set to the byte access (BPCn.TY bit = 0, 1), set bits 31 to 8 to 1,
and if halfword access (TY bit = 0, 1), set bits 31to 16 to 1 (n =0, 1).

* Caution Use of breakpoint data mask registers 0 and 1 (BPDMO, BPDML1) is possible only in the type A
and B products, not in other product types.

Figure 2-16. Breakpoint Data Mask Registers 0 and 1 (BPDMO, BPDM1)

31 0

e rrrrrrrtrrr-rr-rr Tt Initial value

BPDMO (Breakpoint data mask) Undefined
31 0

[[[o I Initial value

BPDM1 (Breakpoint data mask) Undefined

32 User's Manual U14559EJ3V1UM

CHAPTER 3 DATA TYPES

3.1 Data Format
The following data types are supported (see 3.2 Data Representation).

* Integer (32, 16, 8 bits)
* Unsigned integer (32, 16, 8 hits)
* Bit

Three types of data lengths: word (32 bits), halfword (16 bits), and byte (8 bits) are supported. Byte 0 of any data
is always the least significant byte (this is called little endian) and is shown at the rightmost position in figures
throughout this manual.

The following paragraphs describe the data format where data of fixed length is in memory.

(1) Word
A word is 4-byte (32-bit) contiguous data that starts from any word boundary™™*. Each bit is assigned a number
from O to 31. The LSB (Least Significant Bit) is bit 0 and the MSB (Most Significant Bit) is bit 31. A word is
Note:

specified by its address “A” (with the 2 lowest bits fixed to 0 when misalign access is disabled™*), and occupies 4
bytes, A, A+1, A+2, and A+3.

Note

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword
or word units. See 3.3 Data Alignment.

Data

Nz |X

o nr- |o

A+3 A+2 A+l A Address

User's Manual U14559EJ3V1UM 33

CHAPTER 3 DATA TYPES

(2) Halfword
A halfword is 2-byte (16-bit) contiguous data that starts from any halfword boundary"°. Each bit is assigned a
number from O to 15. The LSB is bit 0 and the MSB is bit 15. A halfword is specified by its address “A” (with the

Note:

lowest bit fixed to 0™°), and occupies 2 bytes, A and A+1.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword
or word units. See 3.3 Data Alignment.

Data

o0z |5

onr- |o

A+1 A Address

(3) Byte
A byte is 8-bit contiguous data that starts from any byte boundary™*. Each bit is assigned a number from 0 to 7.
The LSB is bit 0 and the MSB is bit 7. A byte is specified by its address “A”.

Note

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword
or word units. See 3.3 Data Alignment.

Data

onr- |o

A Address

(4) Bit
A bit is 1-bit data at the nth bit position in 8-bit data that starts from any byte boundary

Note

. A bit is specified by its
address “A” and bit number “n”.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in halfword
or word units. See 3.3 Data Alignment.

7 n 0 Bit number

Byte of address A ... Data

A Address

34 User's Manual U14559EJ3V1UM

CHAPTER 3 DATA TYPES

3.2 Data Representation

3.2.1 Integer

An integer is expressed as a binary number of 2's complement and is 32, 16, or 8 bits long. Regardless of its
length, bit O of an integer is the least significant bit. The higher the bit number, the more significant the bit. Because
2's complement is used, the most significant bit is used as a sign bit.

The integer range of each data length is as follows.

e Word (32 bits): —2,147,483,648 to +2,147,483,647
e Halfword (16 bits): —32,768 to +32,767
o Byte (8 bits): —128 to +127

3.2.2 Unsigned integer

While an integer is data that can take either a positive or a negative value, an unsigned integer is an integer that is
not negative. Like an integer, an unsigned integer is also expressed as 2's complement and is 32, 16, or 8 bits long.
Regardless of its length, bit 0 of an unsigned integer is the least significant bit, and the higher the bit number, the more
significant the bit. However, no sign bit is used.

The unsigned integer range of each data length is as follows.

e Word (32 bits): 0to 4,294,967,295
e Halfword (16 bits): 0 to 65,535
o Byte (8 bits): 0 to 255

3.2.3 Bit

1-bit data that can take a value of O (cleared) or 1 (set) can be handled as bit data. Bit manipulation can be
performed only on 1-byte data in the memory space in the following four ways.

SET1
e CLR1
e NOT1
TST1

User's Manual U14559EJ3V1UM 35

CHAPTER 3 DATA TYPES

* 3.3 Data Alignment

Data must be aligned (boundary aligned) in accordance with the setting of misalign access enable/disable.

Misalign access indicates access to other than a halfword boundary (LSB of the address is 0) when the target data
is in halfword format, and access to other than a word boundary (lower two bits of the address are 0) when the target
data is in word format.

Remark The V850E1 CPU enables/disables misalign access in accordance with the IFIMAEN pin input level.

(1) When misalign access is enabled
Regardless of the data format (byte, halfword, word), data can be allocated to all addresses.
However, when halfword or word data is used, at least one bus cycle occurs and the bus efficiency is
degraded if data is not aligned.

(2) When misalign access is disabled
The lower bit(s) of the address (LSB if halfword data is used, lower two bits if word data is used) are masked
by 0 and accessed. Therefore, if the target data is not aligned correctly, data may be lost or be rounded off.
Therefore, allocate the halfword data to be processed from a halfword boundary, and the word data to be
processed from a word boundary.

Figure 3-1. Example of Data Allocation When Misalign Access Is Disabled

(@) Example of correct data allocation (b) Example of incorrect data allocation

~ Halfword boundary/ ~ Halfword boundary/
XXXXXX07H word boundary XXXXXX07H word boundary
XXXXXX06H W « Halfword boundary XXXXXXO6H « Halfword boundary
XXXXXX05H XXXXXX05H Y
XXXxxx04H « Halfword boundary/ XXXXXx04H « Halfword boundary/
XXXXXX03H HW word boundary XXXXXX03H word boundary
XXXxxx02H « Halfword boundary XXXXXxx02H HW. « Halfword boundary
XXXXXX01H HW XXXXXX01H
XXXXXX00H « Halfword boundary/ XXXXXX00H — Halfword boundary/

word boundary word boundary
Remark W: Word data
HW: Halfword data

36 User's Manual U14559EJ3V1UM

CHAPTER 4 ADDRESS SPACE

The V850E1 CPU supports a 4 GB linear address space. Both memory and I/O are mapped to this address space
(memory-mapped 1/0). The V850E1 CPU (NB85E) outputs 32-bit addresses to the memory and 1/0. The maximum
address is 232-1.

Byte data allocated to each address is defined with bit O as the LSB and bit 7 as the MSB. With regards to
multiple-byte data, the byte with the lowest address value is defined to be the LSB and the byte with the highest
address value is defined to be the MSB (little endian).

Data consisting of 2 bytes is called a halfword, and 4-byte data is called a word.

In this user's manual, data consisting of 2 or more bytes is illustrated as shown below, with the lower address

shown on the right and the higher address on the left.

Word at
address A

Halfword at
address A

Byte at
address A

A+3

A+2

A+l

A+l

Data

Address

Data

Address

Data

Address

User's Manual U14559EJ3V1UM

37

CHAPTER 4 ADDRESS SPACE

4.1 Memory Map

The V850E1 CPU employs a 32-bit architecture and supports a linear address space (data area) of up to 4 GB for
operand addressing (data access).

It supports a linear address space (program area) of up to 64 MB for instruction addressing.

Figure 4-1 shows the memory map.

Figure 4-1. Memory Map

(a) Address space (b) Program area
FFFFFFFFH A BFFFFFFH [peripheral 1/0
3FFFO00H | '€ (4 KB)
3FFEFFFH
RAM area
Data area
(4 GB linear)
External memory, 64 MB
area
04000000H
03FFFFFFH A
Program area ROM area
(64 MB linear)
00000000H vy 0000000H v

38 User's Manual U14559EJ3V1UM

CHAPTER 4 ADDRESS SPACE

4.2 Addressing Mode

The CPU generates two types of addresses: instruction addresses used for instruction fetch and branch
operations; and operand addresses used for data access.

4.2.1 Instruction address

An instruction address is determined by the contents of the program counter (PC), and is automatically
incremented (+2) according to the number of bytes of an instruction to be fetched each time an instruction is executed.
When a branch instruction is executed, the branch destination address is loaded into the PC using one of the following
two addressing modes.

(1) Relative addressing (PC relative)
The signed 9- or 22-bit data of an instruction code (displacement: dispx) is added to the value of the program
counter (PC). At this time, the displacement is treated as 2’s complement data with bits 8 and 21 serving as sign
bits (S).
This addressing is used for the JARL disp22, reg2, JR disp22, and Bcond disp9 instructions.

Figure 4-2. Relative Addressing (1/2)

(@) JARL disp22, reg2 instruction, JR disp22 instruction

31 26 25 0
T T T 1 T T T T T T T T T T T T T T T
00 0O0O0O PC 0
+
31 22 21 0
T T T T 1T T 171 T T T T T T T T T T T T T T T T T T

Sign extension S disp22 0

31 26 25 ¢ 0
T T T 1 T T T T T T T T T T T T T T T

000 O0O0O pPC 0

Memory to be manipulated

User's Manual U14559EJ3V1UM 39

CHAPTER 4 ADDRESS SPACE

Figure 4-2. Relative Addressing (2/2)

(b) Bcond disp9 instruction

31 26 25 0
T ettt rr-rr -ttt

0 000O0O0O PC 0

+

31 9 8 0
ettt rr-rr -ttt T T

Sign extension S disp9 0

31 26 25 ¢ 0
T ettt rr-rr -ttt

0 000O0O0O PC 0

Memory to be manipulated

(2) Register addressing (register indirect)
The contents of a general-purpose register (regl) specified by an instruction are transferred to the program
counter (PC).
This addressing is used for the JMP [regl] instruction.

Figure 4-3. Register Addressing (JMP [regl] Instruction)

31 0
T T T
regl
31 26 25 ¢ 0
T T T
0 00 0O0OO PC 0

Memory to be manipulated

40 User's Manual U14559EJ3V1UM

CHAPTER 4 ADDRESS SPACE

4.2.2 Operand address
When an instruction is executed, the register or memory area to be accessed is specified in one of the following
four addressing modes.

(1) Register addressing
The general-purpose register or system register specified in the general-purpose register specification field is
accessed as operand.
This addressing mode applies to instructions using the operand format regl, reg2, reg3, or reglD.

(2) Immediate addressing
The 5-bit or 16-bit data for manipulation is contained in the instruction code.
This addressing mode applies to instructions using the operand format imm5, imm16, vector, or cccc.

Remark vector: Operand that is 5-bit immediate data for specifying a trap vector (O0H to 1FH), and is used in
the TRAP instruction.
ccec: Operand consisting of 4-bit data used in the CMOV, SASF, and SETF instructions to specify a
condition code. Assigned as part of the instruction code as 5-bit immediate data by
appending 1-bit 0 above the highest bit.

(3) Based addressing
The following two types of based addressing are supported.

(@ Typel
The address of the data memory location to be accessed is determined by adding the value in the specified
general-purpose register (regl) to the 16-bit displacement value (disp16) contained in the instruction code.
This addressing mode applies to instructions using the operand format disp16 [regl].

Figure 4-4. Based Addressing (Type 1)

31 0
e rrrrrrrrrrrrrr Tt
regl
+
31 16 15 0
T ottt

Sign extension disp16

Memory to be manipulated

User's Manual U14559EJ3V1UM 41

CHAPTER 4 ADDRESS SPACE

(b) Type2
The address of the data memory location to be accessed is determined by adding the value in the element
pointer (r30) to the 7- or 8-bit displacement value (disp7, disp8).
This addressing mode applies to SLD and SST instructions.

Figure 4-5. Based Addressing (Type 2)

r30 (element pointer)

+

rrrrrrrrrrrrrrrr T T T T T T T T
0 (zero extension) disp8 or disp7

Memory to be manipulated

Remark Byte access: disp7
Halfword access and word access: disp8

(4) Bit addressing
This addressing is used to access 1 bit (specified with bit#3 of 3-bit data) among 1 byte of the memory space to
be manipulated by using an operand address which is the sum of the contents of a general-purpose register
(regl) and a 16-bit displacement (disp16) sign-extended to a word length.
This addressing mode applies only to bit manipulation instructions.

Figure 4-6. Bit Addressing

31 0
e rrrrrrrrrrrrrr Tt
regl
+
31 16 15 0

T
Sign extension disp16

Memory to be manipulated

n

oy
P

Remark n: Bit position specified with 3-bit data (bit#3) (n = 0to 7)

42 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

5.1 Instruction Format

There are two types of instruction formats: 16-bit and 32-bit. The 16-bit format instructions include binary
operation, control, and conditional branch instructions, and the 32-bit format instructions include load/store, jump, and
instructions that handle 16-bit immediate data.

An instruction is actually stored in memory as follows.

¢ Lower bytes of instruction (including bit 0) — lower address
¢ Higher bytes of instruction (including bit 15 or bit 31) — higher address

Caution Some instructions have an unused field (RFU). This field is reserved for future expansion and
must be fixed to 0.

(1) reg-reg instruction (Format I)
A 16-bit instruction format having a 6-bit opcode field and two general-purpose register specification fields.

(2) imm-reg instruction (Format Il)
A 16-bit instruction format having a 6-bit opcode field, 5-bit immediate field, and a general-purpose register
specification field.

reg2 opcode imm

User's Manual U14559EJ3V1UM 43

CHAPTER 5 INSTRUCTIONS

(3) Conditional branch instruction (Format IIl)
A 16-bit instruction format having a 4-bit opcode field, 4-bit condition code field, and an 8-bit displacement field.

(4) 16-bit load/store instruction (Format 1V)
A 16-bit instruction format having a 4-bit opcode field, a general-purpose register specification field, and a 7-bit
displacement field (or 6-bit displacement field + 1-bit sub-opcode field).

reg2 opcode disp ‘

L disp/sub-opcode

A 16-bit instruction format having a 7-bit opcode field, a general-purpose register specification field, and a 4-bit
displacement field.

reg2 opcode disp

(5) Jump instruction (Format V)
A 32-bit instruction format having a 5-bit opcode field, a general-purpose register specification field, and a 22-bit
displacement field.

44 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

(6) 3-operand instruction (Format VI)
A 32-bit instruction format having a 6-bit opcode field, two general-purpose register specification fields, and a 16-
bit immediate field.

(7) 32-bit load/store instruction (Format VII)
A 32-bit instruction format having a 6-bit opcode field, two general-purpose register specification fields, and a 16-
bit displacement field (or 15-bit displacement field + 1-bit sub-opcode field).

15 1110 5 4 0 31 17 16

reg2 opcode regl disp ‘

disp/sub-opcode J

(8) Bit manipulation instruction (Format VIII)
A 32-bit instruction format having a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit specification field, a general-
purpose register specification field, and a 16-bit displacement field.

151413 1110 5 4 0 31 16
yrrprreerep ey r e et

sub | bit# opcode regl disp

(9) Extended instruction format 1 (Format IX)
A 32-bit instruction format having a 6-bit opcode field, 6-bit sub-opcode field, and two general-purpose register
specification fields (one field may be register number field (regID) or condition code field (cond)).

15 1110 5 4 031 2726 2120 1716
ey ey eyttt

reg2 opcode regl/reglD/cond RFU sub-opcode RFU 0

User's Manual U14559EJ3V1UM 45

CHAPTER 5 INSTRUCTIONS

(10) Extended instruction format 2 (Format X)
A 32-bit instruction format having a 6-bit opcode field and 6-bit sub-opcode field.

15 13121110 5 4 0 31 27 26 21 20 17 16

‘ RFU opcode RFU/imm/vector RFU sub-opcode RFU 0

L

RFU/sub-opcode

(11) Extended instruction format 3 (Format XI)

A 32-bit instruction format having a 6-bit opcode field, 6-bit and 1-bit sub-opcode field, and three general-purpose
register specification fields.

15 1110 5 4 0 31 27 26 2120 181716

reg2 opcode regl reg3 sub-opcode RFU ‘ 0

sub-opcode J

(12) Extended instruction format 4 (Format XII)
A 32-bit instruction format having a 6-bit opcode field, 4-bit and 1-bit sub-opcode field, 10-bit immediate field, and
two general-purpose register specification fields.

15 1110 5 4 0 31 27 26 23 22 18 17 16

reg2 opcode imm (low) reg3 sub-opcode| imm (high) ‘ 0

sub-opcode J

(13) Stack manipulation instruction 1 (Format XIlII)
A 32-bit instruction format having a 5-bit opcode field, 5-bit immediate field, 12-bit register list field, and one
general-purpose register specification field (or 5-bit sub-opcode field).

15 1110 6 5 1 031 2120 16

RFU opcode imm list reg2/sub-opcode

46 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

5.2 Outline of Instructions

(1) Load instructions
Transfer data from memory to a register. The following instructions (mnemonics) are provided.

(@) LD instructions

e LD.B: Load byte

e LD.BU: Load byte unsigned

e LD.H: Load halfword

e LD.HU: Load halfword unsigned
e LD.W: Load word

(b) SLD instructions

e SLD.B: Short format load byte
e SLD.BU: Short format load byte unsigned
e SLD.H: Short format load halfword

e SLD.HU: Short format load halfword unsigned
e SLD.W: Short format load word

(2) Store instructions
Transfer data from register to a memory. The following instructions (mnemonics) are provided.

(&) STinstructions

e ST.B: Store byte
e ST.H: Store halfword
e ST.W: Store word

(b) SST instructions

e SST.B: Short format store byte
e SST.H: Short format store halfword
e SST.W: Short format store word

(3) Multiply instructions
Execute multiply processing in 1 to 2 clocks with on-chip hardware multiplier. The following instructions
(mnemonics) are provided.

e MUL: Multiply word

e MULH: Multiply halfword

e MULHI: Multiply halfword immediate
e MULU: Multiply word unsigned

User's Manual U14559EJ3V1UM 47

CHAPTER 5 INSTRUCTIONS

(4) Arithmetic operation instructions
Add, subtract, divide, transfer, or compare data between registers. The following instructions (mnemonics)
are provided.

e ADD: Add

e ADDI: Add immediate

e CMOV: Conditional move

e CMP: Compare

e DIV: Divide word

e DIVH: Divide halfword

e DIVHU: Divide halfword unsigned
e DIVU: Divide word unsigned

e MOV: Move

e MOVEA: Move effective address

e MOVHI: Move high halfword

e SASF: Shift and set flag condition
e SETF: Set flag condition

e SUB: Subtract

e SUBR: Subtract reverse

(5) Saturated operation instructions
Execute saturation addition and subtraction. If the result of the operation exceeds the maximum positive
value (7TFFFFFFFH), 7FFFFFFFH is returned. If the result of the operation exceeds the maximum negative
value (80000000H), 80000000H is returned. The following instructions (mnemonics) are provided.

e SATADD: Saturated add

e SATSUB: Saturated subtract

e SATSUBI: Saturated subtract immediate
e SATSUBR: Saturated subtract reverse

(6) Logical operation instructions
These instructions include logical operation and shift instructions. The shift instructions include arithmetic
shift and logical shift instructions. Operands can be shifted by two or more bit positions in one clock cycle by
the on-chip barrel shifter. The following instructions (mnemonics) are provided.

e AND: AND

e ANDI: AND immediate

e BSH: Byte swap halfword

e BSW: Byte swap word

o HSW: Halfword swap word
e NOT: NOT

e OR: OR

e ORI OR immediate

e SAR: Shift arithmetic right
e SHL: Shift logical left

e SHR: Shift logical right

e SXB: Sign extend byte

e SXH: Sign extend halfword

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

@)

®)

9)

e TST: Test

e XOR: Exclusive OR

e XORI: Exclusive OR immediate
o ZXB: Zero extend byte

o ZXH: Zero extend halfword

Branch instructions

These instructions include unconditional branch instructions (JARL, JMP, JR) and a conditional branch

instruction (Bcond) that alters the control depending on the status of flags.
transferred to the address specified by the branch instruction.

provided.

Program control can be
The following instructions (mnemonics) are

e Bcond (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV, BNZ, BP, BR, BSA, BV,

Bz): Branch on condition code
e JARL: Jump and register link
o JMP: Jump register
e JR: Jump relative

Bit manipulation instructions

Execute a logical operation to hit data in memory. Only the specified bit is affected.

instructions (mnemonics) are provided.

e CLR1: Clear bit
e NOTL: Not bit
e SETIL: Set bit
e TSTIL: Test bit

Special instructions

These instructions are instructions not included in the categories of instructions described above.

following instructions (mnemonics) are provided.

e CALLT: Call with table look up
o CTRET: Return from CALLT

e DI: Disable interrupt

e DISPOSE: Function dispose

o ELl Enable interrupt

e HALT: Halt

e LDSR: Load system register

e NOP: No operation

e PREPARE: Function prepare

e RETI: Return from trap or interrupt
e STSR: Store system register

e SWITCH: Jump with table look up
e TRAP: Trap

User's Manual U14559EJ3V1UM

The following

The

49

CHAPTER 5 INSTRUCTIONS

50

(10) Debug function instructions
These instructions are instructions reserved for the debug function. The following instructions (mnemonics)
are provided.

e DBRET: Return from debug trap
e DBTRAP: Debug trap

Caution Type C products do not support debug function instructions.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

5.3 Instruction Set

In this section, the mnemonic of each instruction is described divided into the following items.

¢ Instruction format: Indicates the description and operand of the instruction (for symbols, see Table 5-1).

e Operation:
e Format:
e Opcode:
e Flag:

e Explanation:

Indicates the function of the instruction (for symbols, see Table 5-2).

Indicates the instruction format (see 5.1 Instruction Format).

Indicates the bit field of the instruction opcode (for symbols, see Table 5-3).
Indicates the operation of the flag that is altered after executing the instruction.
0 indicates clear (reset), 1 indicates set, and — indicates no change.

Explains the operation of the instruction.

e Remark: Explains the supplementary information of the instruction.
e Caution: Indicates the cautions.
Table 5-1. Instruction Format Conventions
Symbol Meaning
regl General-purpose register (used as source register)
reg2 General-purpose register (mainly used as destination register. Some are also used as source
registers.)
reg3 General-purpose register (mainly used as remainder of division results or higher 32 bits of multiply
results)
bit#3 3-bit data for specifying bit number
immx x-bit immediate data
dispx x-bit displacement data
reglD System register number
vector 5-bit data for trap vector (00H to1FH) specification
ccee 4-bit data for condition code specification
sp Stack pointer (r3)
ep Element pointer (r30)
list 12 Lists of registers
Table 5-2. Operation Conventions (1/2)
Symbol Meaning

“— Assignment
GR[] General-purpose register
SR] System register

zero-extend (n)

Zero-extends n to word

sign-extend (n)

Sign-extends n to word

load-memory (a, b)

Reads data of size b from address a

store-memory (a, b, ¢)

Writes data b of size ¢ to address a

load-memory-bit (a, b)

Reads bit b from address a

store-memory-bit (a, b, ¢)

Writes ¢ to bit b of address a

User's Manual U14559EJ3V1UM

51

CHAPTER 5 INSTRUCTIONS

Table 5-2. Operation Conventions (2/2)

Symbol

Meaning

saturated (n)

Performs saturation processing of n.
If n > 7FFFFFFFH as result of calculation, n = 7FFFFFFFH.
If n > 80000000H as result of calculation, n = 80000000H.

result Reflects result on flag
Byte Byte (8 bits)

Halfword Halfword (16 bits)
Word Word (32 bits)

+ Add

- Subtract

Il Bit concatenation

x Multiply

+ Divide

% Remainder of division results
AND And

OR Or

XOR Exclusive Or

NOT Logical negate

logically shift left by

Logical left shift

logically shift right by

Logical right shift

arithmetically shift right by

Arithmetic right shift

Table 5-3. Opcode Conventions

Symbol Meaning

R 1-bit data of code specifying regl or reglD

r 1-bit data of code specifying reg2

w 1-bit data of code specifying reg3

d 1-bit data of displacement

| 1-bit data of immediate (indicates higher bits of immediate)

i 1-bit data of immediate

ccee 4-bit data for condition code specification

CCccC 4-bit data for condition code specification of Bcond instruction

bbb 3-bit data for bit number specification

L 1-bit data of code specifying general-purpose register in register list
52 User's Manual U14559EJ3VIUM

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

ADD

Add register/immediate

Add

Instruction format

Operation

Format

Opcode

Flag

Explanation

(1) ADD regl, reg2
(2) ADD immb, reg2

(1) GR[reg2?] <« GR [reg2?] + GR [regl]
(2) GR[reg2] « GR [reg2] + sign-extend (immb5)

(1) Format |
(2) Format I

15 0
1) |rrrrr001110RRRRR |

15 0

CYy 1 if a carry occurs from MSB; otherwise, O.
ov 1 if overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.
V4 1 if the result of an operation is 0; otherwise 0.
SAT -

(1) Adds the word data of general-purpose register regl to the word data of general-purpose
register reg2, and stores the result in general-purpose register reg2. The data of general-
purpose register regl is not affected.

(2) Adds 5-bit immediate data, sign-extended to word length, to the word data of general-
purpose register reg2, and stores the result in general-purpose register reg?2.

User's Manual U14559EJ3V1UM 53

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

ADDI

Add immediate

Add Immediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

54

ADDI imm16, regl, reg2

GR [reg2] « GR [regl] + sign-extend (imm16)

Format VI

15 0 31 16

rrrrr110000RRRRR piiiiiaiiiniiiii

CY 1 if a carry occurs from MSB; otherwise, 0.
ov 1 if overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise 0.
SAT -

Adds 16-bit immediate data, sign-extended to word length, to the word data of general-purpose
register regl, and stores the result in general-purpose register reg2. The data of general-
purpose register regl is not affected.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

AND

AND

And

Instruction format

Operation

Format

Opcode

Flag

Explanation

AND regl, reg2

GR [reg2] « GR [reg2] AND GR [regl]

Format |

15 0

rrrrrO0O1010RRRRR

CY -

ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise 0.

SAT -

ANDs the word data of general-purpose register reg2 with the word data of general-purpose
register regl, and stores the result in general-purpose register reg2. The data of general-
purpose register regl is not affected.

User's Manual U14559EJ3V1UM 55

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

ANDI

AND immediate

And Immediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

56

ANDI imm16, regl, reg2

GR [reg2] « GR [regl] AND zero-extend (imm16)

Format VI

15 0 31 16

rrrrr110110RRRRR piiiiiiiiiniiini

CY -
ov 0
S 0
Z 1 if the result of an operation is 0; otherwise 0.
SAT -

ANDs the word data of general-purpose register regl with the value of the 16-bit immediate
data, zero-extended to word length, and stores the result in general-purpose register reg2. The
data of general-purpose register regl is not affected.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Branch instruction>

Branch on condition code with 9-bit displacement

Bcond

Branch on Condition Code

Instruction format Bcond disp9

Operation if conditions are satisfied
then PC « PC + sign-extend (disp9)

Format Format Il
Opcode 15 0
ddddd1011dddCcCcCC

dddddddd is the higher 8 bits of disp9.

Flag CcY -
ov -
S —
ya —
SAT -

Explanation Tests each flag of the PSW specified by the instruction. Branches if a specified condition is
satisfied; otherwise, executes the next instruction. The branch destination PC holds the sum of
the current PC value and 9-bit displacement, which is 8-bit immediate shifted 1 bit and sign-
extended to word length.

Remark Bit 0 of the 9-bit displacement is masked by 0. The current PC value used for calculation is the

address of the first byte of this instruction. If the displacement value is O, therefore, the branch
destination is this instruction itself.

User's Manual U14559EJ3V1UM 57

CHAPTER 5 INSTRUCTIONS

Table 5-4. Bcond Instructions

Instruction Condition Code Status of Flag Branch Condition
(Ccce)
Signed BGE 1110 (SxorOV)=0 Greater than or equal signed
integer BGT 1111 ((SxorOV)orz)=0 Greater than signed
BLE 0111 ((SxorOV)orz)=1 Less than or equal signed
BLT 0110 (SxoroVv)=1 Less than signed
Unsigned BH 1011 (Cyorz)=0 Higher (Greater than)
integer BL 0001 cy=1 Lower (Less than)
BNH 0011 (CYorz)=1 Not higher (Less than or equal)
BNL 1001 Cy=0 Not lower (Greater than or equal)
Common BE 0010 Z=1 Equal
BNE 1010 Z=0 Not equal
Others BC 0001 Cy=1 Carry
BN 0100 S=1 Negative
BNC 1001 Cy=0 No carry
BNV 1000 ov=0 No overflow
BNz 1010 Z=0 Not zero
BP 1100 S=0 Positive
BR 0101 - Always (unconditional)
BSA 1101 SAT=1 Saturated
BV 0000 ov=1 Overflow
Bz 0010 Z=1 Zero
Caution If executing a conditional branch instruction of a signed integer (BGE, BGT, BLE, or BLT) when
the SAT flag is set to 1 as a result of executing a saturated operation instruction, the branch
condition loses its meaning. In ordinary operations, if an overflow occurs, the S flag is inverted
(0> 1o0r1— 0). This is because the result is a negative value if it exceeds the maximum
positive value and it is a positive value if it exceeds the maximum negative value. However,
when a saturated operation instruction is executed, and if the result exceeds the maximum
positive value, the result is saturated with a positive value; if the result exceeds the maximum
negative value, the result is saturated with a negative value. Unlike the ordinary operation,
therefore, the S flag is not inverted even if an overflow occurs. Hence, the S flag is affected
differently when the instruction is a saturated operation, as opposed to an ordinary operation. A
branch condition which is an XOR of the S and OV flags will therefore have no meaning.
58 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

BSH

Byte swap halfword

Byte Swap Halfword

Instruction format

Operation

Format

Opcode

Flag

Explanation

BSH reg2, reg3

GR [reg3] « GR [reg2] (23:16) || GR [reg2?] (31:24) || GR [reg2] (7:0) || GR [reg2] (15:8)

Format Xl

15 0 31 16

rrrrr11111100000 wwwww01101000010

CY 1 if one or more bytes in the lower halfword of the operation result is O; otherwise 0.
ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the lower halfword data of the operation result is 0; otherwise, 0.
SAT -

Endian translation.

User's Manual U14559EJ3V1UM 59

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

Byte swap word

BSW

Byte Swap Word

Instruction format BSW reg2, reg3

Operation GR [reg3] « GR [reg2] (7:0) || GR [reg2] (15:8) || GR [reg2] (23:16) || GR [reg2] (31:24)
Format Format XII
Opcode 15 0 31 16

rrrrr11111100000 wwwww01101000000

Flag CcYy 1 if one or more bytes in the word data of the operation result is 0; otherwise 0.
ov 0
S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the word data of the operation result is O; otherwise, 0.
SAT -
Explanation Endian translation.

60 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Special instruction>

CALLT

Call with table look up

Call with Table Look Up

Instruction format

Operation

Format

Opcode

Flag

Explanation

Caution

CALLT imm6

CTPC « PC + 2 (return PC)

CTPSW « PSW

adr « CTBP + zero-extend (imm6 logically shift left by 1)
PC « CTBP + zero-extend (Load-memory (adr, Halfword))

Format Il

15 0

CcY -
ov -
S -
Z -
SAT -

Performs processing as follows.

<1> Transfers the restored PC and PSW contents to CTPC and CTPSW.

<2> Adds the CTBP value and the 6-bit immediate data logically shifted left by 1 bit and zero-
extended to word length, to generate a 32-bit table entry address.

<3> Loads the halfword of the address generated in step <2> and zero-extends to word
length.

<4> Adds the data of step <3> and the CTBP value to generate a 32-bit target address.

<5> Branches to the target address generated in step <4>.

If an interrupt is generated during instruction execution, the execution of that instruction may

stop after the end of the read/write cycle. Execution is resumed after returning from the
interrupt.

User's Manual U14559EJ3V1UM 61

CHAPTER 5 INSTRUCTIONS

<Bit manipulation instruction>

Clear bit
Clear Bit
Instruction format (1) CLR1 bit#3, displ6 [regl]
(2) CLR1 reg2, [regl]
Operation (1) adr « GR [regl] + sign-extend (disp16)
Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, 0)
(2) adr « GR [regl]
Z flag < Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, 0)
Format (1) Format VIl
(2) Format IX
Opcode 15 0 31 16
(1) | 1000b111110RRRRR | dddddddddddddddd |
15 0 31 16
2 | rrrrr111111RRRRR | 0000000011100100 |
Flag cYy -
ov -
S —
z 1 if bit specified by operands = 0, 0 if bit specified by operands =1
SAT -
Explanation (1) Adds the data of general-purpose register regl to the 16-bit displacement, sign-extended

to word length, to generate a 32-bit address. Then reads the byte data referenced by the
generated address, clears the bit specified by the 3-bit bit number, and writes back to the
original address.

(2) Reads the data of general-purpose register regl to generate a 32-bit address. Then reads
the byte data referenced by the generated address, clears the bit specified by the data of
the lower 3 bits of reg2, and writes back to the original address.

Remark The Z flag of the PSW indicates whether the specified bit was a 0 or 1 before this instruction

was executed. It does not indicate the content of the specified bit after this instruction has been
executed.

62 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

CMOV

Conditional move

Conditional Move

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

(1) CMOV cccc, regl, reg2, reg3
(2) CMOV cccc, immb, reg2, reg3

(1) if conditions are satisfied
then GR [reg3] < GR [regl]
else GR [reg3] « GR [reg2]
(2) if conditions are satisfied
then GR [reg3] « sign-extend (immb5)
else GR [reg3] < GR [reg2]

(1) Format Xl
(2) Format XII

15 0 31 16
1) |rrrrr111111RRRRR |VW\MMM011001ccc00 |

15 0 31 16

CYy -
ov -
S -
z -
SAT -

(1) The data of general-purpose register regl is transferred to general-purpose register reg3 if
the condition specified by condition code “cccc” is satisfied; otherwise, the data of general-
purpose register reg2 is transferred to general-purpose register reg3. One of the codes
shown in Table 5-5 Condition Codes should be specified as the condition code “cccc”.

(2) The data of 5-bit immediate, sign-extended to word length, is transferred to general-
purpose register reg3 if the condition specified by condition code “cccc” is satisfied;
otherwise, the data of general-purpose register reg2 is transferred to general-purpose
register reg3. One of the codes shown in Table 5-5 Condition Codes should be specified
as the condition code “cccc”.

See SETF instruction.

User's Manual U14559EJ3V1UM 63

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

CMP

Compare register/immediate (5-bit)

Compare

Instruction format

Operation

Format

Opcode

Flag

Explanation

64

@)
@)

@)
@)

@
@

CMP regl, reg2
CMP immb5, reg2
result « GR [reg2] — GR [reg1]
result «<— GR [reg2] — sign-extend (immb5)
Format |
Format I
15 0

1) |rrrrr001111RRRRR |

CYy
ov
S

Z
SAT

@)

@)

15 0

1 if a borrow to MSB occurs; otherwise, 0.

1 if overflow occurs; otherwise O.

1 if the result of the operation is negative; otherwise, O.
1 if the result of the operation is 0; otherwise, 0.

Compares the word data of general-purpose register reg2 with the word data of general-
purpose register regl, and indicates the result by using the flags of the PSW. To compare,
the contents of general-purpose register regl are subtracted from the word data of
general-purpose register reg2. The data of general-purpose registers regl and reg2 is not
affected.

Compares the word data of general-purpose register reg2 with 5-bit immediate data, sign-
extended to word length, and indicates the result by using the flags of the PSW. To
compare, the contents of the sign-extended immediate data are subtracted from the word
data of general-purpose register reg2. The data of general-purpose register reg2 is not
affected.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Special instruction>

Return from CALLT

CTRET

Return from CALLT

Instruction format CTRET

Operation PC <« CTPC
PSW « CTPSW

Format Format X

Opcode 15 0 31 16
0000011111100000 0000000101000100

Flag CYy Value read from CTPSW is restored.
ov Value read from CTPSW is restored.
S Value read from CTPSW is restored.
Z Value read from CTPSW is restored.
SAT Value read from CTPSW is restored.

Explanation Fetches the restored PC and PSW from the appropriate system register and returns from the
routine called by CALLT instruction. The operations of this instruction are as follows.

(1) The restored PC and PSW are read from CTPC and CTPSW.

(2) Once the PC and PSW are restored to the return values, control is transferred to the return
address.

User's Manual U14559EJ3V1UM 65

CHAPTER 5 INSTRUCTIONS

<Debug function instruction>

Return from debug trap

DBRET

Return from debug trap

Instruction format DBRET

Operation PC <« DBPC
PSW « DBPSW

Format Format X

Opcode 15 0 31 16
0000011111100000 0000000101000110

Flag CYy Value read from DBPSW is restored.
ov Value read from DBPSW is restored.
S Value read from DBPSW is restored.
Z Value read from DBPSW is restored.
SAT Value read from DBPSW is restored.

Explanation Fetches the restored PC and PSW from the appropriate system register and returns from
debug mode.
Caution (1) Because the DBRET instruction is for debugging, it is essentially used by debug tools.

When a debug tool is using this instruction, therefore, use of it in the application may cause
a malfunction.
(2) Type C products do not support the DBRET instruction.

66 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Debug function instruction>

Debug trap

DBTRAP

Debug trap

Instruction format DBTRAP

Operation DBPC « PC + 2 (restored PC)
DBPSW « PSW
PSW.NP « 1
PSW.EP « 1
PSW.ID « 1
PC « 00000060H

Format Format |

Opcode 15 0
1111100001000000

Flag CYy -
ov -
S —
Z —
SAT -

Explanation Saves the contents of the restored PC (address of the instruction following the DBTRAP
instruction) and the PSW to DBPC and DBPSW, respectively, and sets the NP, EP, and ID
flags of the PSW to 1.
Next, the handler address (00000060H) of the exception trap is set to the PC, and control shifts
to the PC. PSW flags other than NP, EP, and ID flags are unaffected.
Note that the value saved to DBPC is the address of the instruction following the DBTRAP
instruction.

Caution (1) Because the DBTRAP instruction is for debugging, it is essentially used by debug tools.
When a debug tool is using this instruction, therefore, use of it in the application may cause
a malfunction.
(2) Type C products do not support the DBTRAP instruction.

User's Manual U14559EJ3V1UM 67

CHAPTER 5 INSTRUCTIONS

<Special instruction>

Disable interrupt

Dl

Disable Interrupt

Instruction format DI

Operation PSW.ID « 1 (Disables maskable interrupt)
Format Format X
Opcode 15 0 31 16

0000011111100000 | 0000000101100000

Flag CcY -

Explanation Sets the ID flag of the PSW to 1 to disable the acknowledgment of maskable interrupts during
execution of this instruction.

Remark Interrupts are not sampled during execution of this instruction. The PSW flag actually becomes
valid at the start of the next instruction. But because interrupts are not sampled during
instruction execution, interrupts are immediately disabled. Non-maskable interrupts (NMI) are
not affected by this instruction.

68 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Special instruction>

DISPOSE

Function dispose

Function Dispose

Instruction format

Operation

Format

Opcode

@
@

@)

@)

DISPOSE immb, list12
DISPOSE immb, list12, [regl]

Sp « sp + zero-extend (immb5 logically shift left by 2)
GR [reg in list12] < Load-memory (sp, Word)
Sp<«sp+4

repeat 2 steps above until all regs in list12 are loaded
Sp « sp + zero-extend (immb logically shift left by 2)
GR [reg in list12] < Load-memory (sp, Word)
Sp<«sp+4

repeat 2 states above until all regs in list12 are loaded
PC « GR [regl]

Format XillI
15 0 31 16
@) |0000011001iiiiiL | LLLLLLLLLLLOOOOO |

RRRRR must not be 00000.

LLLLLLLLLLLL indicates the bit value corresponding to the register list (list12) (for
example, “L” of bit 21 in an opcode indicates the value of bit 21 of list12). list12 is a 32-bit
register list defined as follows.

31 30 29 28 27 26 25 24 23 22 21 20...1 0

|r24‘r25‘r26‘r27‘r20‘r21‘r22‘r23‘r28‘r29‘r31‘ - ‘r30|

Bits 31 to 21 and bit O correspond to each bit of the general-purpose registers (r21 to r31).
The register corresponding to the set bit (1) is specified as the manipulation target. For
example, when r20 and r30 are specified, list12 values are as follows (the set values of bits
20 to 1 to which registers do not correspond can be 0 or 1 (don't care)).

o If the values of all the bits to which registers do not correspond are set to 0: 08000001H
o If the values of all the bits to which registers do not correspond are set to 1: 081FFFFFH

User's Manual U14559EJ3V1UM 69

CHAPTER 5 INSTRUCTIONS

Flag

Explanation

Remark

Caution

70

CYy -
ov -
S -
Z -
SAT -

(1) Adds the data of 5-bit immediate immb5, logically shifted left by 2 and zero-extended to
word length, to sp. Then pops (loads data from the address specified by sp and adds 4 to
sp) the general-purpose registers listed in list12. Bit O of the address is masked by 0.

(2) Adds the data of 5-bit immediate immb5, logically shifted left by 2 and zero-extended to
word length, to sp. Then pops (loads data from the address specified by sp and adds 4 to
sp) the general-purpose registers listed in list12, transfers control to the address specified
by general-purpose register regl. Bit O of the address is masked by 0.

The general-purpose registers in list12 are loaded in the downward direction (r31, r30, ... r20).
The 5-bit immediate imm5 is used to restore a stack frame for auto variables and temporary
data.

The lower 2 bits of the address specified by sp are always masked by O even if misaligned
access is enabled.

If an interrupt occurs before updating sp, execution is aborted, and the interrupt is serviced.
Upon returning from the interrupt, the execution is restarted from the beginning, with the return
address being the address of this instruction (sp will retain its original value prior to the start of
execution).

If an interrupt is generated during instruction execution, due to manipulation of the stack, the

execution of that instruction may stop after the read/write cycle and register value rewriting are
complete. Execution is resumed after returning from the interrupt.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

Divide word
Divide Word
Instruction format DIV regl, reg2, reg3
Operation GR [reg2] « GR [reg2] + GR [regl]
GR [reg3] « GR [reg2] % GR [regl]
Format Format XI
Opcode 15 0 31 16
rrrrr111111RRRRR wwwww01011000000
Flag CYy -
ov 1 if overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Explanation Divides the word data of general-purpose register reg2 by the word data of general-purpose

register regl, and stores the quotient in general-purpose register reg2, and the remainder in
general-purpose register reg3. If the data is divided by 0, overflow occurs, and the quotient is
undefined. The data of general-purpose register regl is not affected.

Remark Overflow occurs when the maximum negative value (80000000H) is divided by —1 (in which
case the quotient is 80000000H) and when data is divided by 0 (in which case the quotient is
undefined).

If an interrupt occurs while this instruction is being executed, execution is aborted, and the
interrupt is serviced. Upon returning from the interrupt, the execution is restarted from the
beginning, with the return address being the address of this instruction. Also, general-purpose
registers regl and reg2 will retain their original values prior to the start of execution.

If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2
(= reg3).

User's Manual U14559EJ3V1UM 71

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

DIVH

Divide halfword

Divide Halfword

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

72

@)
@)

@
@

@
@

1)

)
cy
ov
S

4
SAT

@)

@)

@)

DIVH regl, reg2
DIVH regl, reg2, reg3

GR [reg2] « GR [reg2] + GR [regl]
GR [reg2] « GR [reg2] + GR [regl]
GR [reg3] « GR [reg2] % GR [regl]

Format |
Format XI
15 0
| rrrrrOO0010RRRRR |
15 0 31 16

| rrrrri11111RRRRR | wwwin01010000000

1 if overflow occurs; otherwise, 0.
1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise, 0.

Divides the word data of general-purpose register reg2 by the lower halfword data of
general-purpose register regl, and stores the quotient in general-purpose register reg2. |If
the data is divided by 0, overflow occurs, and the quotient is undefined. The data of
general-purpose register regl is not affected.

Divides the word data of general-purpose register reg2 by the lower halfword data of
general-purpose register regl, and stores the quotient in general-purpose register reg2
and the remainder in general-purpose register reg3. If the data is divided by 0, overflow
occurs, and the quotient is undefined. The data of general-purpose register regl is not
affected.

The remainder is not stored. Overflow occurs when the maximum negative value
(80000000H) is divided by —1 (in which case the quotient is 80000000H) and when data is
divided by 0 (in which case the quotient is undefined). If an interrupt occurs while this
instruction is being executed, execution is aborted, and the interrupt is serviced. Upon
returning from the interrupt, the execution is restarted from the beginning, with the return
address being the address of this instruction. Also, general-purpose registers regl and
reg2 will retain their original values prior to the start of execution.

Do not specify r0 as the destination register reg2.

The higher 16 bits of general-purpose register regl are ignored when division is executed.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

(2) Overflow occurs when the maximum negative value (80000000H) is divided by —1 (in
which case the quotient is 80000000H) and when data is divided by 0 (in which case the
quotient is undefined).

If an interrupt occurs while this instruction is being executed, execution is aborted, and the
interrupt is serviced. Upon returning from the interrupt, the execution is restarted from the
beginning, with the return address being the address of this instruction. Also, general-
purpose registers regl and reg2 will retain their original values prior to the start of
execution.

The higher 16 bits of general-purpose register regl are ignored when division is executed.
If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2
(= reg3).

User's Manual U14559EJ3V1UM 73

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

DIVHU

Divide halfword unsigned

Divide Halfword Unsigned

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

74

DIVHU regl, reg2, reg3

GR [reg2] « GR [reg2] + GR [regl]
GR [reg3] « GR [reg2] % GR [regl]

Format XI

15 0 31 16

rrrrr111111RRRRR wwwww01010000010

CYy -

ov 1 if overflow occurs; otherwise, 0.

S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
4 1 if the result of an operation is 0; otherwise, 0.

SAT -

Divides the word data of general-purpose register reg2 by the lower halfword data of general-
purpose register regl, and stores the quotient in general-purpose register reg2, and the
remainder in general-purpose register reg3. If the data is divided by 0, overflow occurs, and the
quotient is undefined. The data of general-purpose register regl is not affected.

Overflow occurs when data is divided by 0 (in which case the quotient is undefined).
If an interrupt occurs while this instruction is being executed, execution is aborted, and the
interrupt is serviced. Upon returning from the interrupt, the execution is restarted from the
beginning, with the return address being the address of this instruction. Also, general-purpose
registers regl and reg2 will retain their original values prior to the start of execution.
If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2

(=reg3).

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

Divide word unsigned

DIVU

Divide Word Unsigned

Instruction format DIVU regl, reg2, reg3

Operation GR [reg2] « GR [reg2] + GR [regl]
GR [reg3] « GR [reg2] % GR [regl]

Format Format XI

Opcode 15 0 31 16
rrrrr111111RRRRR wwwww01011000010

Flag CYy -
ov 1 if overflow occurs; otherwise, 0.
S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Explanation Divides the word data of general-purpose register reg2 by the word data of general-purpose

register regl, and stores the quotient in general-purpose register reg2, and the remainder in
general-purpose register reg3. If the data is divided by 0, overflow occurs, and the quotient is
undefined. The data of general-purpose register regl is not affected.

Remark Overflow occurs when data is divided by O (in which case the quotient is undefined).
If an interrupt occurs while this instruction is being executed, execution is aborted, and the
interrupt is serviced. Upon returning from the interrupt, the execution is restarted from the
beginning, with the return address being the address of this instruction. Also, general-purpose
registers regl and reg2 will retain their original values prior to the start of execution.
If the address of reg2 is the same as the address of reg3, the remainder is stored in reg2

(=reg3).

User's Manual U14559EJ3V1UM 75

CHAPTER 5 INSTRUCTIONS

<Special instruction>

El

Enable interrupt

Enable Interrupt

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

76

El

PSW.ID « 0 (enables maskable interrupt)

Format X

15 0 31 16

1000011111100000 | 0000000101100000

CYy -

Clears the ID flag of the PSW to 0 and enables the acknowledgment of maskable interrupts
beginning at the next instruction.

Interrupts are not sampled during instruction execution.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Special instruction>

HALT

Halt

Halt

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

HALT

Halts

Format X

15 0 31 16

0000011111100000 | 0000000100100000

CYy -
ov -
S -
z -
SAT -

Stops the operating clock of the CPU and places the CPU in the HALT mode.
The HALT mode is exited by any of the following three events.

¢ Resetinput

¢ Non-maskable interrupt request (NMI input)

« Unmasked maskable interrupt request (when ID of PSW = 0)

If an interrupt is acknowledged in the HALT mode, the address of the following instruction is
stored in EIPC or FEPC.

User's Manual U14559EJ3V1UM 77

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

Halfword swap word

HSW

Halfword Swap Word

Instruction format HSW reg2, reg3

Operation GR [reg3] « GR [reg2] (15:0) || GR [reg2] (31:16)
Format Format XII
Opcode 15 0 31 16

rrrrr11111100000 wwwww01101000100

Flag CY 1 if one or more halfwords in the word data of the operation result is 0; otherwise 0.
ov o0
S 1 if the MSB of the word data of the operation result is 1; otherwise, 0.
Z 1 if the word data of the operation result is O; otherwise, 0.
SAT -
Explanation Endian translation.

78 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Branch instruction>

Jump and register link

JARL

Jump and Register Link

Instruction format JARL disp22, reg2

Operation GR [reg2] « PC +4
PC « PC + sign-extend (disp22)

Format Format V

Opcode 15 0 31 16
rrrrr11110dddddd | dddddddddddddddo

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CcY -
ov -
S —
ya —
SAT -

Explanation Saves the current PC value plus 4 to general-purpose register reg2, adds the current PC value
and 22-bit displacement, sign-extended to word length, and transfers control to the PC. Bit O of
the 22-bit displacement is masked by 0.

Remark The current PC value used for calculation is the address of the first byte of this instruction. If
the displacement value is O, the branch destination is this instruction itself.
This instruction is equivalent to a call subroutine instruction, and saves the restored PC address
to general-purpose register reg2. The JMP instruction, which is equivalent to a subroutine-
return instruction, can be used to specify the general-purpose register containing the return
address saved during the JARL subroutine-call instruction as regl, to restore the program
counter.

User's Manual U14559EJ3V1UM 79

CHAPTER 5 INSTRUCTIONS

<Branch instruction>

Jump register

JMP

Jump Register

Instruction format JMP [regl]

Operation PC « GR [regl]
Format Format |
Opcode 15 0
00000000011RRRRR
Flag CcY -
ov -
S —
Z —
SAT -
Explanation Transfers control to the address specified by general-purpose register regl. Bit 0 of the

address is masked by 0.

Remark When using this instruction as the subroutine-return instruction, specify the general-purpose
register containing the return address saved during the JARL subroutine-call instruction, to
restore the program counter. When using the JARL instruction, which is equivalent to the
subroutine-call instruction, store the PC return address in general-purpose register reg2.

80 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Branch instruction>

Jump relative

JR

Jump Relative

Instruction format JR disp22

Operation PC « PC + sign-extend (disp22)
Format Format V
Opcode 15 0 31 16

0000011110dddddd | dddddddddddddddO

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CcYy -
ov -
S —
Z —
SAT -

Explanation Adds the 22-bit displacement, sign-extended to word length, to the current PC value and stores
the value in the PC, and then transfers control to the PC. Bit 0 of the 22-bit displacement is

masked by O.

Remark The current PC value used for the calculation is the address of the first byte of this instruction
itself. Therefore, if the displacement value is 0, the jump destination is this instruction.

User's Manual U14559EJ3V1UM 81

CHAPTER 5 INSTRUCTIONS

<Load instruction>

Load byte
Load
Instruction format LD.B disp16 [regl], reg2
Operation adr < GR [regl] + sign-extend (disp16)
GR [reg2] « sign-extend (Load-memory (adr, Byte))
Format Format VII
Opcode 15 0 31 16
rrrrr111000RRRRR | dddddddddddddddd
Flag CYy -
ov -
S —
Z —
SAT -
Explanation Adds the data of general-purpose register regl to a 16-bit displacement sign-extended to word

length to generate a 32-bit address. Byte data is read from the generated address, sign-
extended to word length, and stored in general-purpose register reg?2.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
1/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

82 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Load instruction>

LD.BU

Load byte unsigned

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

LD.BU displ6 [regl], reg2

adr <« GR [regl] + sign-extend (disp16)
GR [reg2] « zero-extend (Load-memory (adr, Byte))

Format VII

15 0 31 16
rrrrr11110bRRRRR | dddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16. b is the bit O of disp16.

CcY -
ov -
S -
Z -
SAT -

Adds the data of general-purpose register regl to a 16-bit displacement sign-extended to word
length to generate a 32-bit address. Byte data is read from the generated address, zero-
extended to word length, and stored in general-purpose register reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
1/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM 83

CHAPTER 5 INSTRUCTIONS

<Load instruction>

LD.H

Load halfword

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Caution

84

LD.H displ6 [regl], reg2

adr < GR [regl] + sign-extend (disp16)
GR [reg2] « sign-extend (Load-memory (adr, Halfword))

Format VII

15 0 31 16
rrrrr111001RRRRR | dddddddddddddddO

ddddddddddddddd is the higher 15 bits of disp16.

CcY -
ov -
S -
Z -
SAT -

Adds the data of general-purpose register regl to a 16-bit displacement sign-extended to word
length to generate a 32-bit address. Halfword data is read from the generated address, sign-
extended to word length, and stored in general-purpose register reg?2.

The result of adding the data of general-purpose register regl and the 16-bit displacement sign-
extended to word length can be of two types depending on the type of data to be accessed
(halfword, word), and the misalign mode setting.

« Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

« Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled in type D, E, and F products)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

Remark

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
1/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM 85

CHAPTER 5 INSTRUCTIONS

<Load instruction>

LD.HU

Load halfword unsigned

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Caution

86

LD.HU disp16 [regl], reg2

adr < GR [regl] + sign-extend (disp16)
GR [reg2] « zero-extend (Load-memory (adr, Halfword))

Format VII

15 0 31 16
rrrrr111111RRRRR | dddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16.

CcY -
ov -
S -
Z -
SAT -

Adds the data of general-purpose register regl to a 16-bit displacement sign-extended to word
length to generate a 32-bit address. Halfword data is read from the generated address, zero-
extended to word length, and stored in general-purpose register reg2.

The result of adding the data of general-purpose register regl and the 16-bit displacement sign-
extended to word length can be of two types depending on the type of data to be accessed
(halfword, word), and the misalign mode setting.

« Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

« Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the type D, E, and F products)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

Remark

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
1/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM 87

CHAPTER 5 INSTRUCTIONS

<Load instruction>

Load word
Load
Instruction format LD.W disp16 [regl], reg2
Operation adr < GR [regl] + sign-extend (disp16)
GR [reg2] <« Load-memory (adr, Word)
Format Format VII
Opcode 15 0 31 16
rrrrr111001RRRRR | dddddddddddddddil
ddddddddddddddd is the higher 15 bits of disp16.
Flag CcY -
oV -
S —
ya —
SAT -
Explanation Adds the data of general-purpose register regl to a 16-bit displacement sign-extended to word

length to generate a 32-bit address. Word data is read from the generated address, and
stored in general-purpose register reg2.

Caution The result of adding the data of general-purpose register regl and the 16-bit displacement sign-
extended to word length can be of two types depending on the type of data to be accessed
(halfword, word), and the misalign mode setting.

« Lower bits are masked to 0 and address is generated (when misaligned access is

disabled)

« Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the type D, E, and F products)

For details on misaligned access, see 3.3 Data Alignment.

88 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

Remark

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
1/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM 89

CHAPTER 5 INSTRUCTIONS

<Special instruction>

LDSR

Load to system register

Load to System Register

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

Caution

90

LDSR reg2, reglD

SR [regID] < GR [reg?]

Format IX

15 0 31 16

rrrrr111111RRRRR | 0000000000100000

Caution The source register in this instruction is represented by reg2 for convenience
in describing its mnemonic . In the opcode, however, the regl field is used
for the source register. Unlike other instructions, therefore, the register
specified in the mnemonic description has a different meaning in the opcode.

rrrrr: reglD specification
RRRRR: reg2 specification

CcY — (See Remark below.)
OV —(See Remark below.)
S — (See Remark below.)
z — (See Remark below.)

SAT —(See Remark below.)

Loads the word data of general-purpose register reg2 to a system register specified by the
system register number (reglD). The data of general-purpose register reg? is not affected.

If the system register number (reglD) is equal to 5 (PSW register), the values of the
corresponding bits of the PSW are set according to the contents of reg2. Also, interrupts are
not sampled when the PSW is being written with a new value. If the ID flag is enabled with this
instruction, interrupt disabling begins at the start of execution, even though the ID flag does not
become valid until the beginning of the next instruction.

The system register number regID is a number which identifies a system register. Accessing

system registers which are reserved or write-prohibited is prohibited and will lead to undefined
results.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

MOV

Move register/immediate (5-bit)/immediate (32-bit)

Move

Instruction format

Operation

Format

Opcode

Flag

Explanation

(1) MOV regl, reg2
(2) MOV immb5, reg2
(3) MOV imm32, regl

(1) GR[reg2] « GR [regl]
(2) GR [reg2] « sign-extend (imm>5)
(3) GR [regl] < imm32

(1) Formatl
(2) Formatll
(3) Format VI

15 0
(2) |rrrrrOOOOOORRRRR |

15 0
2 |rrrrr010000iiiii |

15 0 31 16 47 32
3) |00000110001RRRRR piiiiiininniiiii Irnnnnnnnnni

i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.
1 (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

CYy -
ov -

SAT -

(1) Transfers the word data of general-purpose register regl to general-purpose register reg2.
The data of general-purpose register regl is not affected.

(2) Transfers the value of a 5-bit immediate data, sign-extended to word length, to general-
purpose register reg2.
Do not specify r0 as the destination register reg2.

(3) Transfers the value of a 32-bit immediate data to general-purpose register regl.

User's Manual U14559EJ3V1UM 91

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

Move effective address

MOVEA

Move Effective Address

Instruction format MOVEA imml16, regl, reg2

Operation GR [reg2] « GR [regl] + sign-extend (imm16)
Format Format VI
Opcode 15 0 31 16

rrrrr110001RRRRR INERnnnnnnanniil

Flag CcY -
ov -
S —
Z —
SAT -

Explanation Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-
purpose register regl, and stores the result in general-purpose register reg2. The data of
general-purpose register regl is not affected. The flags are not affected by the addition.

Do not specify r0 as the destination register reg2.

Remark This instruction calculates a 32-bit address and stores the result without affecting the PSW
flags.

92 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

Move high halfword

MOVHI

Move High Halfword

Instruction format MOVHI imm16, regl, reg2

Operation GR [reg2] < GR [regl] + (imm16 Il 016)
Format Format VI
Opcode 15 0 31 16

rrrrr110010RRRRR IIRRnnnnnnanniin

Flag CcY -
ov -
S —
Z —
SAT -

Explanation Adds a word data whose higher 16 bits are specified by the 16-bit inmediate data and lower 16
bits are 0 to the word data of general-purpose register regl and stores the result in general-
purpose register reg2. The data of general-purpose register regl is not affected.

The flags are not affected by the addition.
Do not specify rO as the destination register reg2.

Remark This instruction is used to generate the higher 16 bits of a 32-bit address.

User's Manual U14559EJ3V1UM 93

CHAPTER 5 INSTRUCTIONS

<Multiply instruction>

MUL

Multiply word by register/immediate (9-bit)

Multiply Word

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

94

@)
@)

@
@

@

@

1)

)

CcY
ov
S

Z
SAT

@)

@)

MUL regl, reg2, reg3
MUL imm9, reg2, reg3

GR [reg3] || GR [reg2] < GR [reg2] x GR [regl]
GR [reg3] || GR [reg2] « GR [reg?2] x sign-extend (imm9)

Format XI
Format Xl
15 0 31 16
|rrrrr111111RRRRR |wwwww01000100000 |

15 0 31 16
| rrrrrlllllliiiii | wwwwwO01001111100 |

1111 is the higher 4 bits of 9-bit immediate data.

Multiplies the word data of general-purpose register reg2 by the word data of general-
purpose register regl, and stores the higher 32 bits of the result (64-bit data) in general-
purpose register reg3 and the lower 32 bits in general-purpose register reg2. The data of
general-purpose register regl is not affected.

Multiplies the word data of general-purpose register reg2 by a 9-bit immediate data, sign-
extended to word length, and stores the higher 32 bits of the result (64-bit data) in general-
purpose registers reg3 and the lower 32 bits in general-purpose register reg2.

If the address of reg2 is the same as the address of reg3, the higher 32 bits of the result are
stored in reg2 (= reg3).

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

Caution

In the “MUL regl, reg2, reg3” instruction, do not use registers in combinations that satisfy all
the following conditions. If the instruction is executed with all the following conditions satisfied,

the operation is not guaranteed.

e regl =reg3
e regl #reg2
e regl =10
e reg3 =10

User's Manual U14559EJ3V1UM

95

CHAPTER 5 INSTRUCTIONS

<Multiply instruction>

Multiply halfword by register/immediate (5-bit)

MULH

Multiply Halfword

Instruction format (1) MULH regl, reg2
(2) MULH immb5, reg2

Operation (1) GR[reg2?] (32) « GR [reg2] (16) x GR [reg1] (16)
(2) GR[reg2] « GR [reg2] x sign-extend (imm5)

Format (1) Format |
(2) Format I
Opcode 15 0

1) |rrrrr000111RRRRR |

15 0

Flag CYy -
ov -
S —
Z —
SAT -

Explanation (1) Multiplies the lower halfword data of general-purpose register reg2 by the halfword data of
general-purpose register regl, and stores the result in general-purpose register reg2 as
word data.

The data of general-purpose register reg1l is not affected.
Do not specify r0 as the destination register reg2.

(2) Multiplies the lower halfword data of general-purpose register reg2 by a 5-bit immediate
data, sign-extended to halfword length, and stores the result in general-purpose register
reg2.

Do not specify r0 as the destination register reg2.

Remark The higher 16 bits of general-purpose registers regl and reg2 are ignored in this operation.

96 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Multiply instruction>

MULHI

Multiply halfword by immediate (16-bit)

Multiply Halfword Immediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

MULHI imm16, regl, reg2

GR [reg2] « GR [regl] x imm16

Format VI

15 0 31 16

rrrrr110111RRRRR INRRnnnnnnanniin

SAT -

Multiplies the lower halfword data of general-purpose register regl by the 16-bit immediate
data, and stores the result in general-purpose register reg2. The data of general-purpose
register regl is not affected.

Do not specify r0 as the destination register reg2.

The higher 16 bits of general-purpose register regl are ignored in this operation.

User's Manual U14559EJ3V1UM 97

CHAPTER 5 INSTRUCTIONS

<Multiply instruction>

MULU

Multiply word by register/immediate (9-bit)

Multiply Word Unsigned

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

98

1)
)

@)
)

MULU regl, reg2, reg3
MULU imm9, reg2, reg3

GR [reg3] || GR [reg2] « GR [reg2] x GR [regl]
GR [reg3] || GR [reg2] < GR [reg2] x zero-extend (imm9)

(1) Format XI

(2) Format Xl
15 0 31 16

1) | rrrrr111111RRRRR | wwwww01000100010 |
15 0 31 16

2 | rrrrrllllllaaiii | wwwww01001111110 |
iiiiiis the lower 5 bits of 9-bit immediate data.
1111 is the higher 4 bits of 9-bit immediate data.

CcY -

ov -

S —

Z —

SAT -

(1) Multiplies the word data of general-purpose register reg2 by the word data of general-

)

purpose register regl, and stores the higher 32 bits of the result (64-bit data) in general-
purpose register reg3 and the lower 32 bits in general-purpose register reg2. The data of
general-purpose register regl is not affected.

Multiplies the word data of general-purpose register reg2 by a 9-bit immediate data, sign-
extended to word length, and stores the higher 32 bits of the result (64-bit data) in general-
purpose registers reg3 and the lower 32 bits in general-purpose register reg2.

If the address of reg2 is the same as the address of reg3, the higher 32 bits of the result are
stored in reg2 (= reg3).

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

Caution

In the “MULU regl, reg2, reg3” instruction, do not use registers in combinations that satisfy all
the following conditions. If the instruction is executed with all the following conditions satisfied,
the operation is not guaranteed.

regl =reg3
regl # reg2

regl = r0

reg3 #r0

User's Manual U14559EJ3V1UM 99

CHAPTER 5 INSTRUCTIONS

<Special instruction>

No operation

NOP

No Operation

Instruction format NOP

Operation Executes nothing and consumes at least one clock.
Format Format |
Opcode 15 0

0000000000000000
Flag CY -

ov -

S —

Z —

SAT -
Explanation Executes nothing and consumes at least one clock cycle.
Remark The contents of the PC are incremented by two. The opcode is the same as that of MOV r0, r0.

100 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

NOT

NOT

Not

Instruction format

Operation

Format

Opcode

Flag

Explanation

NOT regl, reg2

GR [reg2] < NOT (GR [regl])

Format |

15 0

rrrrrOO0001RRRRR

CY -

ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, O.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

Logically negates (takes the 1's complement of) the word data of general-purpose register regl,
and stores the result in general-purpose register reg2. The data of general-purpose register
regl is not affected.

User's Manual U14559EJ3V1UM 101

CHAPTER 5 INSTRUCTIONS

<Bit manipulation instruction>

NOT bit
Not Bit
Instruction format (1) NOT1 bit#3, disp16 [regl]
(2) NOT1 reg2, [regl]
Operation (1) adr « GR [regl] + sign-extend (disp16)
Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, Z flag)
(2) adr < GR [regl]
Z flag < Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, Z flag)
Format (1) Format VI
(2) Format IX
Opcode 15 0 31 16
(1) | 01bbb111110RRRRR | dddddddddddddddd |
15 0 31 16
) | rrrrr111111RRRRR | 0000000011100010 |
Flag CY -
ov -
S —
Z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1
SAT -
Explanation (1) Adds the data of general-purpose register regl to a 16-bit displacement, sign-extended to

word length to generate a 32-bit address. Then reads the byte data referenced by the
generated address, inverts the bit specified by the 3-bit bit number (0 - 1 or 1 — 0), and
writes back to the original address.

(2) Reads the data of general-purpose register regl to generate a 32-bit address. Then reads
the byte data referenced by the generated address, inverts the bit specified by the data of
lower 3 bits of reg2 (0 — 1 or 1 — 0), and writes back to the original address.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction was

executed, and does not indicate the contents of the specified bit after this instruction has been
executed.

102 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

OR

OR

Instruction format

Operation

Format

Opcode

Flag

Explanation

OR regl, reg2

GR [reg2] < GR [reg2] OR GR [regl]

Format |

15 0

rrrrrO01000RRRRR

CY -

ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, O.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

ORs the word data of general-purpose register reg2 with the word data of general-purpose
register regl, and stores the result in general-purpose register reg2. The data of general-
purpose register regl is not affected.

User's Manual U14559EJ3V1UM 103

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

ORI

OR immediate (16-bit)

Or Immediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

104

ORI imm16, regl, reg2

GR [reg2] < GR [regl] OR zero-extend (imm16)

Format VI

15 0 31 16

rrrrr110100RRRRR fiiiiiiiiniiiiii

CY -

oV 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, O.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

ORs the word data of general-purpose register regl with the value of the 16-bit immediate data,
zero-extended to word length, and stores the result in general-purpose register reg2. The data
of general-purpose register regl is not affected.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Special instructio

n>

PREPARE

Function prepare

Stack Frame Generation

Instruction format

Operation

Format

Opcode

(1) PREPARE list12, imm5
(2) PREPARE list12, imm5, sp/imm"*

Note sp/imm is specified by sub-opcode bits 20 and 19.

(1) Store-memory (sp — 4, GR [reg in list12], Word) sp<«sp—4
repeat 1 step above until all regs in list12 is stored
Sp « sp — zero-extend (immb5)
(2) Store-memory (sp — 4, GR [reg in list12], Word) sp <« sp—4
repeat 1 step above until all regs in list12 is stored
Sp « sp — zero-extend (immb5)
ep « sp/imm

Format XIllI

15 0 31 16

15 0 31 16 Optional (47 to 32 or 63 to 32)

@ |0000011110d§#iiL | LLLLLLLLLLLFFOLL | imml6 / imm32

In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32, bits
63 to 48 are the higher 16 bits of imm32.

TFf= 00: load sp toep

TF = 01: load 16-bit immediate data (bits 47 to 32), sign-extended, to ep

fFf = 10: load 16-bit immediate data (bits 47 to 32), logically shifted left by 16, to ep
ff= 11: load 32-bitimmediate data (bits 63 to 32) to ep

LLLLLLLLLLLL indicates the bit value corresponding to the register list (list12) (for example,
“L” of bit 21 in an opcode indicates the value of bit 21 of list12). list12 is a 32-hit register list
defined as follows.

31 30 29 28 27 26 25 24 23 22 21 20...1 0

r24 | r25 | r26 | r27 | r20 | r21 | r22 | r23 | r28 | r29 | r31 - r30

Bits 31 to 21 and bit O correspond to each bit of the general-purpose registers (r21 to r31). The
register corresponding to the set bit (1) is specified as the manipulation target. For example,
when r20 and r30 are specified, list12 values are as follows (the set values of bits 20 to 1 to
which registers do not correspond can be 0 or 1 (don't care)).

¢ If the values of all the bits to which registers do not correspond are set to 0: 08000001H
o If the values of all the bits to which registers do not correspond are set to 1: 081FFFFFH

User's Manual U14559EJ3V1UM 105

CHAPTER 5 INSTRUCTIONS

Flag

Explanation

Remark

Caution

106

CY -
ov -
IS -
Z -
SAT -

(1) Pushes (subtracts 4 from sp and stores the data in that address) the general-purpose
registers listed in list12. Then subtracts the data of 5-bit immediate immb5, logically shifted
left by 2 and zero-extended to word length, from sp.

(2) Pushes (subtracts 4 from sp and stores the data in that address) the general-purpose
registers listed in list12. Then subtracts the data of 5-bit immediate immb5, logically shifted
left by 2 and zero-extended to word length, from sp.

Next, loads the data specified by the 3rd operand (sp/imm) to ep.

The general-purpose registers in list12 are stored in the upward direction (r20, r21, ... r31).

The 5-bit immediate imm5 is used to make a stack frame for auto variables and temporary
data.

The lower 2 bits of the address specified by sp are always masked by O even if misaligned
access is enabled.

If an interrupt occurs before updating sp, execution is aborted, and the interrupt is serviced.
Upon returning from the interrupt, the execution is restarted from the beginning, with the return
address being the address of this instruction (sp and ep will retain their original values prior to
the start of execution).

If an interrupt is generated during instruction execution, due to manipulation of the stack, the

execution of that instruction may stop after the read/write cycle and register value rewriting are
complete.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Special instruction>

RETI

Return from trap or interrupt

Return from Trap or Interrupt

Instruction format

Operation

Format

Opcode

Flag

Explanation

RETI

if PSW.EP =1
then PC <« EIPC

PSW <« EIPSW

else ifPSW.NP=1

then PC <« FEPC
PSW « FEPSW
else PC <« EIPC

PSW <« EIPSW
Format X
15 0 31 16
0000011111100000 0000000101000000

CY Value read from FEPSW or EIPSW is restored.
oV Value read from FEPSW or EIPSW is restored.
S Value read from FEPSW or EIPSW is restored.
z Value read from FEPSW or EIPSW is restored.
SAT Value read from FEPSW or EIPSW is restored.

This instruction reads the restored PC and PSW from the appropriate system register, and

operation returns from a software exception or interrupt routine. The operations of this

instruction are as follows.

(1) If the EP flag of the PSW is 1, the restored PC and PSW are read from EIPC and EIPSW,

regardless of the status of the NP flag of the PSW.

If the EP flag of the PSW is 0 and the NP flag of the PSW is 1, the restored PC and PSW
are read from FEPC and FEPSW.
If the EP flag of the PSW is 0 and the NP flag of the PSW is 0, the restored PC and PSW
are read from EIPC and EIPSW.

(2) Once the restored PC and PSW values are set to the PC and PSW, the operation returns
to the address immediately before the trap or interrupt occurred.

User's Manual U14559EJ3V1UM

107

CHAPTER 5 INSTRUCTIONS

Caution When returning from a non-maskable interrupt or software exception routine using the RETI
instruction, the NP and EP flags of the PSW must be set accordingly to restore the PC and
PSW.

* When returning from a non-maskable interrupt routine using the RETI instruction:
NP=1and EP =0

* When returning from a software exception routine using the RETI instruction:
EP=1

Use the LDSR instruction for setting the flags.

Interrupts are not acknowledged in the latter half of the ID stage during LDSR execution
because of the operation of the interrupt controller.

108 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

SAR

Shift arithmetic right by register/immediate (5-bit)

Shift Arithmetic Right

Instruction format

Operation

Format

Opcode

Flag

Explanation

1)
@)

@)
)

1)
)

)

CY
ov
S

z
SAT

@)

)

SAR regl, reg2
SAR immb5, reg2

GR [reg2] < GR [reg?2] arithmetically shift right by GR [reg1]
GR [reg2] « GR [reg2] arithmetically shift right by zero-extend

Format IX
Format Il

15 0 31 16
| rrrrr111111RRRRR | 0000000010100000

15 0

1 if the bit shifted out last is 1; otherwise, 0.

However, if the number of shifts is 0, the result is 0.

0

1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise, 0.

Arithmetically shifts the word data of general-purpose register reg2 to the right by ‘n’
positions, where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general-
purpose register regl (after the shift, the MSB prior to shift execution is copied and set as
the new MSB value), and then writes the result to general-purpose register reg2. If the
number of shifts is 0, general-purpose register reg2 retains the same value prior to
instruction execution. The data of general-purpose register regl is not affected.
Arithmetically shifts the word data of general-purpose register reg2 to the right by ‘n’
positions, where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-
extended to word length (after the shift, the MSB prior to shift execution is copied and set
as the new MSB value), and then writes the result to general-purpose register reg2. If the
number of shifts is 0, general-purpose register reg2 retains the same value prior to
instruction execution.

User's Manual U14559EJ3V1UM 109

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

Shift and set flag condition

SASF

Shift and Set Flag Condition

Instruction format SASF cccc, reg2

Operation if conditions are satisfied
then GR [reg2] « (GR [reg2] Logically shift left by 1) OR 00000001H
else GR [reg2?] < (GR [reg2] Logically shift left by 1) OR 00000000H

Format Format IX

Opcode 15 0 31 16
rrrrr1111110cccc 0000001000000000

Flag CY -
ov -
S —
Z —
SAT -

Explanation General-purpose register reg2 is logically shifted left by 1, and its LSB is set to 1 if the condition
specified by condition code “cccc” is satisfied; otherwise, general-purpose register reg2 is
logically shifted left by 1, and its LSB is set to 0.
One of the codes shown in Table 5-5 Condition Codes should be specified as the condition
code “cccc’.

Remark See SETF instruction.

110 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Saturated operation instruction>

Saturated add register/immediate (5-bit)

SATADD

Saturated Add

Instruction format (1) SATADD regl, reg2
(2) SATADD immb5, reg2

Operation (1) GR [reg2] « saturated (GR [reg2] + GR [regl])
(2) GR [reg2] « saturated (GR [reg2] + sign-extend (immb5))

Format (1) Format |
(2) Formatll
Opcode 15 0

(1) |rrrrr000110RRRRR |

15 0

Flag CY 1 if a carry occurs from MSB; otherwise, 0.
ov 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, O.

SAT 1if OV = 1; otherwise, not affected.

Explanation (1) Adds the word data of general-purpose register regl to the word data of general-purpose
register reg2, and stores the result in general-purpose register reg2. However, if the result
exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the
result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2.
The SAT flag is setto 1. The data of general-purpose register regl is not affected.

Do not specify r0 as the destination register reg2.

(2) Adds a 5-bit immediate data, sign-extended to word length, to the word data of general-
purpose register reg2, and stores the result in general-purpose register reg2. However, if
the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in
reg2; if the result exceeds the maximum negative value 80000000H, 80000000H is stored
in reg2. The SAT flag is set to 1.

Do not specify r0O as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the saturated operation instruction has
been saturated, this flag is set to 1 and is not cleared to 0 even if the result of the subsequent
operation is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

User's Manual U14559EJ3V1UM 111

CHAPTER 5 INSTRUCTIONS

<Saturated operation instruction>

SATSUB

Saturated subtract

Saturated Subtract

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

Caution

112

SATSUB regl, reg2

GR [reg2] « saturated (GR [reg2] — GR [regl])

Format |

15 0

rrrrrOO0101RRRRR

CY 1 if a borrow to MSB occurs; otherwise, 0.

oV 1 if overflow occurs; otherwise, 0.

S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Subtracts the word data of general-purpose register regl from the word data of general-
purpose register reg2, and stores the result in general-purpose register reg2. However, if the
result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the
result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The
SAT flag is set to 1. The data of general-purpose register regl is not affected.

Do not specify r0 as the destination register reg2.

The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of
the subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Saturated operation instruction>

Saturated subtract immediate

SATSUBI

Saturated Subtract Inmediate

Instruction format SATSUBI imm16, regl, reg2

Operation GR [reg2] « saturated (GR [regl] — sign-extend (imm16))
Format Format VI
Opcode 15 0 31 16

rrrrr110011RRRRR fiiiiiiiiniiiiii

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Explanation Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of
general-purpose register regl, and stores the result in general-purpose register reg?2.
However, if the result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored
in reg2; if the result exceeds the maximum negative value 80000000H, 80000000H is stored in
reg2. The SAT flag is setto 1. The data of general-purpose register regl is not affected.
Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of
the subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

User's Manual U14559EJ3V1UM 113

CHAPTER 5 INSTRUCTIONS

<Saturated operation instruction>

Saturated subtract reverse

SATSUBR

Saturated Subtract Reverse

Instruction format SATSUBR regl, reg2

Operation GR [reg2] « saturated (GR [regl] — GR [reg2])
Format Format |
Opcode 15 0
rrrrrOO0100RRRRR
Flag CY 1 if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Explanation Subtracts the word data of general-purpose register reg2 from the word data of general-
purpose register regl, and stores the result in general-purpose register reg2. However, if the
result exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored in reg2; if the
result exceeds the maximum negative value 80000000H, 80000000H is stored in reg2. The
SAT flag is set to 1. The data of general-purpose register regl is not affected.

Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of
the subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

114 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Bit manipulation instruction>

Set bit
Set Bit
Instruction format (1) SET1 bit#3, displ16 [regl]
(2) SET1 reg2, [regl]
Operation (1) adr « GR [regl] + sign-extend (disp16)
Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, 1)
(2) adr < GR [regl]
Z flag < Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, 1)
Format (1) Format VI
(2) Format IX
Opcode 15 0 31 16
(1) | 00bbb111110RRRRR | dddddddddddddddd |
15 0 31 16
) | rrrrr111111RRRRR | 0000000011100000 |
Flag CY -
ov -
S —
Z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1
SAT -
Explanation (1) Adds the 16-bit displacement, sign-extended to word length, to the data of general-purpose

register regl to generate a 32-bit address. Then reads the byte data referenced by the
generated address, sets the bit specified by the 3-bit bit number to 1, and writes back to
the original address.

(2) Reads the data of general-purpose register regl to generate a 32-bit address. Then reads
the byte data referenced by the generated address, sets the bit specified by the data of
lower 3 bits of reg2 to 1, and writes back to the original address.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction was

executed, and does not indicate the content of the specified bit after this instruction has been
executed.

User's Manual U14559EJ3V1UM 115

CHAPTER 5 INSTRUCTIONS

<Arithmetic operation instruction>

SETF

Set flag condition

Set Flag Condition

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

116

SET

F cccc, reg2

if conditions are satisfied

then
else

GR [reg2] < 00000001H
GR [reg2] < 00000000H

Format IX

15

0 31 16

rrrrr1111110cccc | 0000000000000000

CY
ov
S

z
SAT

General-purpose register reg?2 is set to 1 if the condition specified by condition code “cccc” is

satisfied; otherwise, 0 is stored in the register. One of the codes shown in Table 5-5 Condition

Cod

es should be specified as the condition code “cccc”.

Here are some examples of using this instruction.

1)

)

Translation of two or more condition clauses

If A of the statement “if (A)” in C language consists of two or more condition clauses (ai,
az, a3, and so on), it is usually translated to a sequence of if (ai) then, if (a2) then. The
object code executes a “conditional branch” by checking the result of evaluation equivalent
to an. Since a pipeline processor takes more time to execute “condition judgment” +
“branch” than to execute an ordinary operation, the result of evaluating each condition
clause if (an) is stored in register Ra. By performing a logical operation to Ran after all the
condition clauses have been evaluated, the delay due to the pipeline can be prevented.

Double-length operation

To execute a double-length operation such as Add with Carry, the result of the CY flag can
be stored in general-purpose register reg2. Therefore, a carry from the lower bits can be
expressed as a numeric value.

User's Manual U14559EJ3V1UM

CHAPTER 5

INSTRUCTIONS

Table 5-5. Condition Codes

Condition Code

Condition Name

Condition Expression

(ccee)
0000 \% ov=1
1000 NV ov=0
0001 C/L Cy=1
1001 NC/NL CY=0
0010 z Z=1
1010 NZ Z=0
0011 NH (CYorz)=1
1011 H (CYorz)=0
0100 SIN S=1
1100 NS/P S=0
0101 T always (unconditional)
1101 SA SAT=1
0110 LT (S xorOV) =1
1110 GE (S xor OV) =0
0111 LE ((SxoroV)orz)=1
1111 GT ((SxorQV)orz)=0

User's Manual U14559EJ3V1UM

117

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

SHL

Shift logical left by register/immediate (5-bit)

Shift Logical Left

Instruction format

Operation

Format

Opcode

Flag

Explanation

118

1)
)

@)
)

1)
)

)

CY
ov
S

z
SAT

@)

2

SHL regl, reg2
SHL immb5, reg2

GR [reg2] < GR [reg?2] logically shift left by GR [regl]
GR [reg2] « GR [reg2] logically shift left by zero-extend (immb)

Format IX
Format Il

15 0 31 16
| rrrrr111111RRRRR | 0000000011000000

15 0

1 if the bit shifted out last is 1; otherwise, 0.

However, if the number of shifts is O, the result is 0.

0

1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise, 0.

Logically shifts the word data of general-purpose register reg2 to the left by ‘n’ positions,
where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general-purpose register
regl (O is shifted to the LSB side), and then writes the result to general-purpose register
reg2. If the number of shifts is 0, general-purpose register reg2 retains the same value
prior to instruction execution. The data of general-purpose register regl is not affected.
Logically shifts the word data of general-purpose register reg2 to the left by ‘n’ positions,
where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to
word length (0 is shifted to the LSB side), and then writes the result to general-purpose
register reg2. If the number of shifts is 0, general-purpose register reg2 retains the value
prior to instruction execution.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

SHR

Shift logical right by register/immediate (5-bit)

Shift Logical Right

Instruction format

Operation

Format

Opcode

Flag

Explanation

1)
@)

@)
)

1)
)

)

CY
ov
S

z
SAT

@)

)

SHR regl, reg2
SHR immb5, reg2

GR [reg2] < GR [reg?2] logically shift right by GR [reg1]
GR [reg2] « GR [reg2] logically shift right by zero-extend (imm5)

Format IX
Format Il

15 0 31 16
| rrrrr111111RRRRR | 0000000010000000

15 0

1 if the bit shifted out last is 1; otherwise, 0.

However, if the number of shifts is 0, the result is 0.

0

1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise, 0.

Logically shifts the word data of general-purpose register reg2 to the right by ‘n’ positions
where ‘n’ is a value from O to +31, specified by the lower 5 bits of general-purpose register
regl (O is shifted to the MSB side). This instruction then writes the result to general-
purpose register reg2. If the number of shifts is 0, general-purpose register reg2 retains
the same value prior to instruction execution. The data of general-purpose register regl is
not affected.

Logically shifts the word data of general-purpose register reg2 to the right by ‘n’ positions,
where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to
word length (0 is shifted to the MSB side). This instruction then writes the result to
general-purpose register reg2. If the number of shifts is 0, general-purpose register reg2
retains the same value prior to instruction execution.

User's Manual U14559EJ3V1UM 119

CHAPTER 5 INSTRUCTIONS

<Load instruction>

SLD.B

Short format load byte

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

Caution

120

SLD.B disp7 [ep], reg2

adr < ep + zero-extend (disp7)
GR [reg2] « sign-extend (Load-memory (adr, Byte))

Format IV

15 0
rrrrr0110ddddddd

CY -
ov -
S -
Z -
SAT -

Adds 7-bit displacement, zero-extended to word length, to the element pointer to generate a
32-bit address. Byte data is read from the generated address, sign-extended to word length,
and stored in reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

(1) If an interrupt is generated during instruction execution, the execution of that instruction
may stop after the end of the read/write cycle. In this case, the instruction is re-executed
after returning from the interrupt. Therefore, except in cases when clearly no interrupt is
generated, the LD instruction should be used for accessing 1/0, FIFO types, or other
resources whose status is changed by the read cycle (the bus cycle is not re-executed
even if an interrupt is generated while the LD or store instruction is being executed).

(2) For the restriction on the conflict between the sld instruction and an interrupt request,
refer to APPENDIX A NOTES.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Load instruction>

SLD.BU

Short format load byte unsigned

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

Caution

SLD.BU disp4 [ep], reg2

adr < ep + zero-extend (disp4)
GR [reg2] <« zero-extend (Load-memory (adr, Byte))

Format IV

15 0
rrrrr0000110dddd

rrrrr must not be 00000.

CY -
ov -
S -
Z -
SAT -

Adds 4-bit displacement, zero-extended to word length, to the element pointer to generate a
32-bit address. Byte data is read from the generated address, zero-extended to word length,
and stored in reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

(1) If an interrupt is generated during instruction execution, the execution of that instruction
may stop after the end of the read/write cycle. In this case, the instruction is re-executed
after returning from the interrupt. Therefore, except in cases when clearly no interrupt is
generated, the LD instruction should be used for accessing 1/0, FIFO types, or other
resources whose status is changed by the read cycle (the bus cycle is not re-executed
even if an interrupt is generated while the LD or store instruction is being executed).

(2) For the restriction on the conflict between the sld instruction and an interrupt request,
refer to APPENDIX A NOTES.

User's Manual U14559EJ3V1UM 121

CHAPTER 5 INSTRUCTIONS

<Load instruction>

SLD.H

Short format load halfword

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

122

SLD.H disp8 [ep], reg2

adr < ep + zero-extend (disp8)
GR [reg2] « sign-extend (Load-memory (adr, Halfword))

Format IV

15 0
rrrrr1000ddddddd

ddddddd is the higher 7 bits of disp8.

CY -
ov -
IS -
Z -
SAT -

Adds 8-bit displacement, zero-extended to word length, to the element pointer to generate a
32-bit address. Halfword data is read from the generated address, sign-extended to word
length, and stored in reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

Caution)

2

The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (halfword, word)
and the misalign mode setting.

« Lower bits are masked by 0 and address is generated (when misaligned access is
disabled)

e Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled in type D, E, and F products)

For details on misaligned access, see 3.3 Data Alignment.

Also, if an interrupt is generated during instruction execution, the execution of that
instruction may stop after the end of the read/write cycle. In this case, the instruction is re-
executed after returning from the interrupt. Therefore, except in cases when clearly no
interrupt is generated, the LD instruction should be used for accessing I/0, FIFO types, or
other resources whose status is changed by the read cycle (the bus cycle is not re-
executed even if an interrupt is generated while the LD or store instruction is being
executed).

For the restriction on the conflict between the sld instruction and an interrupt request,
refer to APPENDIX A NOTES.

User's Manual U14559EJ3V1UM 123

CHAPTER 5 INSTRUCTIONS

<Load instruction>

SLD.HU

Short format load halfword unsigned

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

124

SLD.HU disp5 [ep], reg2

adr < ep + zero-extend (disp5)
GR [reg2] <« zero-extend (Load-memory (adr, Halfword))

Format IV

15 0
rrrrro000111dddd

dddd is the higher 4 bits of disp5. rrrrr must not be 00000.

CY -
ov -
IS -
Z -
SAT -

Adds 5-bit displacement, zero-extended to word length, to the element pointer to generate a
32-bit address. Halfword data is read from the generated address, zero-extended to word
length, and stored in reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

Caution)

2

The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (halfword, word)
and the misalign mode setting.

« Lower bits are masked by 0 and address is generated (when misaligned access is
disabled)

* Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled in type D, E, and F products)

For details on misaligned access, see 3.3 Data Alignment.

Also, if an interrupt is generated during instruction execution, the execution of that
instruction may stop after the end of the read/write cycle. In this case, the instruction is re-
executed after returning from the interrupt. Therefore, except in cases when clearly no
interrupt is generated, the LD instruction should be used for accessing 1/0, FIFO types, or
other resources whose status is changed by the read cycle (the bus cycle is not re-
executed even if an interrupt is generated while the LD or store instruction is being
executed).

For the restriction on the conflict between the sld instruction and an interrupt request,
refer to APPENDIX A NOTES.

User's Manual U14559EJ3V1UM 125

CHAPTER 5 INSTRUCTIONS

<Load instruction>

SLD.W

Short format load word

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

126

SLD.W disp8 [ep], reg2

adr < ep + zero-extend (disp8)
GR [reg2] < Load-memory (adr, Word)

Format IV

15 0
rrrrr1010ddddddo

dddddd is the higher 6 bits of disp8.

CY -
ov -
IS -
Z -
SAT -

Adds 8-bit displacement, zero-extended to word length, to the element pointer to generate a
32-bit address. Word data is read from the generated address and stored in reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

Caution)

2

The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (halfword, word)
and the misalign mode setting.

« Lower bits are masked by 0 and address is generated (when misaligned access is
disabled)

* Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled in type D, E, and F products)

For details on misaligned access, see 3.3 Data Alignment.

Also, if an interrupt is generated during instruction execution, the execution of that
instruction may stop after the end of the read/write cycle. In this case, the instruction is re-
executed after returning from the interrupt. Therefore, except in cases when clearly no
interrupt is generated, the LD instruction should be used for accessing 1/0, FIFO types, or
other resources whose status is changed by the read cycle (the bus cycle is not re-
executed even if an interrupt is generated while the LD or store instruction is being
executed).

For the restriction on the conflict between the sld instruction and an interrupt request,
refer to APPENDIX A NOTES.

User's Manual U14559EJ3V1UM 127

CHAPTER 5 INSTRUCTIONS

<Store instruction>

SST.B

Short format store byte

Store

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

128

SST.B reg2, disp7 [ep]

adr < ep + zero-extend (disp7)
Store-memory (adr, GR [reg2], Byte)

Format IV

15 0
rrrrrOlliddddddd

cy -
ov -
S -
Z -
SAT -

Adds 7-bit displacement, zero-extended to word length, to the element pointer to generate a
32-bit address, and stores the data of the lowest byte of reg2 in the generated address.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Store instruction>

Short format store halfword

SST.H

Store
Instruction format SST.H reg2, disp8 [ep]
Operation adr < ep + zero-extend (disp8)
Store-memory (adr, GR [reg2], Halfword)
Format Format IV
Opcode 15 0
rrrrr1001ddddddd
ddddddd is the higher 7 bits of disp8.
Flag cYy -
ov -
S —
Z —
SAT -
Explanation Adds 8-bit displacement, zero-extended to word length, to the element pointer to generate a
32-bit address, and stores the lower halfword data of reg2 in the generated address.
Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word

length can be of two types depending on the type of data to be accessed (halfword, word) and
the misalign mode setting.

« Lower bits are masked by 0 and address is generated (when misaligned access is
disabled)

« Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled in type D, E, and F products)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ3V1UM 129

CHAPTER 5 INSTRUCTIONS

Remark

130

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Store instruction>

Short format store word

SST.W

Store
Instruction format ~ SST.W reg2, disp8 [ep]
Operation adr < ep + zero-extend (disp8)
Store-memory (adr, GR [reg2], Word)
Format Format IV
Opcode 15 0
rrrrr1010ddddddl
dddddd is the higher 6 bits of disp8.
Flag cYy -
ov -
S —
Z —
SAT -
Explanation Adds 8-bit displacement, zero-extended to word length, to the element pointer to generate a
32-bit address, and stores the word data of reg2 in the generated address.
Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word

length can be of two types depending on the type of data to be accessed (halfword, word) and
the misalign mode setting.

e Lower bits are masked by 0 and address is generated (when misaligned access is
disabled)

« Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled in type D, E, and F products)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ3V1UM 131

CHAPTER 5 INSTRUCTIONS

Remark

132

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Store instruction>

Store byte
Store
Instruction format ST.B reg2, disp16 [regl]
Operation adr « GR [regl] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Byte)
Format Format VII
Opcode 15 0 31 16
rrrrr111010RRRRR | dddddddddddddddd
Flag cYy -
ov -
S —
Z —
SAT -
Explanation Adds 16-bit displacement, sign-extended to word length, to the data of general-purpose

register regl to generate a 32-bit address, and stores the lowest byte data of general-purpose
register reg2 in the generated address.

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM 133

CHAPTER 5 INSTRUCTIONS

<Store instruction>

Store halfword

ST.H

Store

Instruction format ST.H reg2, disp16 [regl]
Operation adr « GR [regl] + sign-extend (disp16)

Store-memory (adr, GR [reg2], Halfword)
Format Format VII
Opcode 15 0 31 16

rrrrr111011RRRRR | dddddddddddddddO

ddddddddddddddd is the higher 15 bits of disp16.
Flag cYy -

ov -

S —

Z —

SAT -
Explanation Adds 16-bit displacement, sign-extended to word length, to the data of general-purpose

register regl to generate a 32-bit address, and stores the lower halfword data of general-
purpose register reg2 in the generated address.

Caution The result of adding the data of general-purpose register regl and the 16-bit displacement
sign-extended to word length can be of two types depending on the type of data to be
accessed (halfword, word), and the misalign mode setting.

* Lower bits are masked by O and address is generated (when misaligned access is
disabled)

e Lower hits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled in type D, E, and F products)

For details on misaligned access, see 3.3 Data Alignment.

134 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM 135

CHAPTER 5 INSTRUCTIONS

<Store instruction>

Store word
Store
Instruction format ~ ST.W reg2, disp16 [regl]
Operation adr « GR [regl] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Word)
Format Format VII
Opcode 15 0 31 16
rrrrr111011RRRRR | dddddddddddddddl
ddddddddddddddd is the higher 15 bits of disp16.
Flag cYy -
ov -
S —
Z —
SAT -
Explanation Adds 16-bit displacement, sign-extended to word length, to the data of general-purpose

register regl to generate a 32-bit address, and stores the word data of general-purpose
register reg2 in the generated address.

Caution The result of adding the data of general-purpose register regl and the 16-bit displacement
sign-extended to word length can be of two types depending on the type of data to be
accessed (halfword, word), and the misalign mode setting.

* Lower bits are masked by 0 and address is generated (when misaligned access is
disabled)

e Lower bhits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled in type D, E, and F products)

For details on misaligned access, see 3.3 Data Alignment.

136 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

Remark If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
serviced. Upon returning from the interrupt, the execution is restarted from the beginning, with
the return address being the address of this instruction.

[For type D, E, and F products]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0O, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For type A, B, and C products]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ3V1UM 137

CHAPTER 5 INSTRUCTIONS

<Special instruction>

Store contents of system register

STSR

Store Contents of System Register

Instruction format STSR regID, reg2

Operation GR [reg2] < SR [regID]
Format Format IX
Opcode 15 0 31 16

rrrrr111111RRRRR | 0000000001000000

Flag CY -
ov -
S —
Z —
SAT -

Explanation Stores the contents of a system register specified by a system register number (regiD) in
general-purpose register reg2. The contents of the system register are not affected.

Caution The system register number reglD is a number which identifies a system register. Accessing a
system register which is reserved is prohibited and will lead to undefined results.

138 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

Subtract
Subtract
Instruction format SUB regl, reg2
Operation GR [reg2] < GR [reg2] — GR [regl]
Format Format |
Opcode 15 0
rrrrrO01101RRRRR
Flag CY 1 if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Explanation Subtracts the word data of general-purpose register regl from the word data of general-

purpose register reg2, and stores the result in general-purpose register reg2. The data of
general-purpose register regl is not affected.

User's Manual U14559EJ3V1UM 139

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

Subtract reverse

SUBR

Subtract Reverse

Instruction format SUBR reg1l, reg2

Operation GR [reg2] < GR [regl] — GR [reg2]
Format Format |
Opcode 15 0
rrrrrO01100RRRRR
Flag CY 1 if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Explanation Subtracts the word data of general-purpose register reg2 from the word data of general-

purpose register regl, and stores the result in general-purpose register reg2. The data of
general-purpose register regl is not affected.

140 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Special instruction>

Jump with table look up

SWITCH

Jump with Table Look Up

Instruction format SWITCH regl

Operation adr «— (PC + 2) + (GR [reg1] logically shift left by 1)
PC « (PC + 2) + (sign-extend (Load-memory (adr, Halfword))) logically shift left by 1

Format Format |
Opcode 15 0
00000000010RRRRR
Flag CY -
ov -
S —
Z —
SAT -
Explanation <1> Adds the table entry address (address following SWITCH instruction) and data of
general-purpose register regl logically shifted left by 1, and generates 32-bit table entry
address.

<2> Loads the halfword data pointed to the address generated in <1>.

<3> Sign-extends the loaded halfword data to word length, and adds the table entry address
after logically shifting it left by 1 bit (next address following SWITCH instruction) to
generate a 32-bit target address.

<4> Then jumps to the target address generated in <3>.

User's Manual U14559EJ3V1UM 141

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

Sign extend byte

SXB

Sign Extend Byte

Instruction format SXB regl

Operation GR [regl] « sign-extend (GR [regl] (7:0))
Format Format |
Opcode 15 0
00000000101RRRRR
Flag CY -
ov -
S —
Z —
SAT -
Explanation Sign-extends the lowest byte of general-purpose register regl to word length.

142 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

Sign extend halfword

SXH

Sign Extend Halfword

Instruction format SXH regl

Operation GR [regl] « sign-extend (GR [regl] (15:0))
Format Format |
Opcode 15 0
00000000111RRRRR
Flag CY -
ov -
S —
Z —
SAT -
Explanation Sign-extends the lower halfword of general-purpose register regl to word length.

User's Manual U14559EJ3V1UM 143

CHAPTER 5 INSTRUCTIONS

<Special instruction>

TRAP

Trap

Trap

Instruction format

* QOperation

Format

Opcode

Flag

Explanation

144

TRAP vector

EIPC « PC + 4 (restored PC)

EIPSW « PSW

ECR.EICC « exception code (40H to 4FH, 50H to 5FH)

PSW.EP « 1

PSW.ID « 1

PC « 00000040H (vector = 00H to OFH (exception code: 40H to 4FH))
00000050H (vector = 10H to 1FH (exception code: 50H to 5FH))

Format X

15 0 31 16

00000111111iiiii 0000000100000000

CY -
ov -
IS -
Z -
SAT -

Saves the restored PC and PSW to EIPC and EIPSW, respectively; sets the exception code
(EICC of ECR) and the flags of the PSW (sets the EP and ID flags to 1); jumps to the handler
address corresponding to the trap vector (00H to 1FH) specified by “vector”, and starts
exception processing.

The flags of the PSW other than the EP and ID flags are not affected.

The restored PC is the address of the instruction following the TRAP instruction.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

TST

Test

Test

Instruction format

Operation

Format

Opcode

Flag

Explanation

TST regl, reg2

result < GR [reg2] AND GR [regl]

Format |

15 0

rrrrrO01011RRRRR

CY -

ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, O.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

ANDs the word data of general-purpose register reg2 with the word data of general-purpose
register regl. The result is not stored, and only the flags are changed. The data of general-
purpose registers regl and reg2 is not affected.

User's Manual U14559EJ3V1UM 145

CHAPTER 5 INSTRUCTIONS

<Bit manipulation instruction>

TST1

Test bit

Test Bit

Instruction format

Operation

Format

Opcode

Flag

Explanation

146

(1) TST1 bit#3, displ6 [regl]
(2) TSTL1 reg2, [regl]

(1) adr « GR [regl] + sign-extend (disp16)

Z flag < Not (Load-memory-bit (adr, bit#3))
(2) adr « GR [regl]

Z flag < Not (Load-memory-bit (adr, reg2))

(1) Format VI
(2) Format IX

15 0 31 16
(1) | 11bbb111110RRRRR | dddddddddddddddd |

15 0 31 16
2 |rrrrr111111RRRRR |0000000011100110 |

CcY -
ov -
S —
z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1
SAT -

(1) Adds the data of general-purpose register regl to a 16-bit displacement, sign-extended to
word length, to generate a 32-bit address. Performs a test on the bit specified by the 3-bit
bit number, at the byte data location referenced by the generated address. If the specified
bit is 0, the Z flag of the PSW is set to 1; if the bit is 1, the Z flag is cleared to 0. The byte
data, including the specified bit, is not affected.

(2) Reads the data of general-purpose register regl to generate a 32-bit address. Performs a
test on the bit specified by the lower 3 bits of reg2, at the byte data location referenced by
the generated address. If the specified bit is 0, the Z flag of the PSW is set to 1; if the bit is
1, the Z flag is cleared to 0. The byte data, including the specified bit, is not affected.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

XOR

Exclusive OR

Exclusive Or

Instruction format

Operation

Format

Opcode

Flag

Explanation

XOR regl, reg2

GR [reg2] < GR [reg2] XOR GR [regl]

Format |

15 0

rrrrrO01001RRRRR

CY -

ov 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, O.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

Exclusively ORs the word data of general-purpose register reg2 with the word data of general-
purpose register regl, and stores the result in general-purpose register reg2. The data of
general-purpose register regl is not affected.

User's Manual U14559EJ3V1UM 147

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

XORI

Exclusive OR immediate (16-bit)

Exclusive Or Immediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

148

XORI imm16, regl, reg2

GR [reg2] < GR [regl] XOR zero-extend (imm16)

Format VI

15 0 31 16

rrrrr110101RRRRR fiiiiiiiiniiiiii

CY -

oV 0

S 1 if the MSB of the word data of the operation result is 1; otherwise, O.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

Exclusively ORs the word data of general-purpose register regl with a 16-bit immediate data,
zero-extended to word length, and stores the result in general-purpose register reg2. The data
of general-purpose register regl is not affected.

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

Zero extend byte

ZXB

Zero Extend Byte

Instruction format ZXB regl

Operation GR [regl] <« zero-extend (GR [regl] (7:0))
Format Format |
Opcode 15 0
00000000100RRRRR
Flag CY -
ov -
S —
Z —
SAT -
Explanation Zero-extends the lowest byte of general-purpose register regl to word length.

User's Manual U14559EJ3V1UM 149

CHAPTER 5 INSTRUCTIONS

<Logical operation instruction>

Zero extend halfword

ZXH

Zero Extend Halfword

Instruction format ZXH regl

Operation GR [regl] <« zero-extend (GR [regl] (15:0))
Format Format |
Opcode 15 0
00000000110RRRRR
Flag CY -
ov -
S —
Z —
SAT -
Explanation Zero-extends the lower halfword of general-purpose register regl to word length.

150 User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

5.4 Number of Instruction Execution Clock Cycles

A list of the number of instruction execution clocks when the internal ROM or internal RAM is used is shown below.

The number of instruction execution clock cycles differs depending on the combination of instructions. For details, see

CHAPTER 8 PIPELINE.

Table 5-6 shows the number of instruction execution clock cycles.

Table 5-6. List of Number of Instruction Execution Clock Cycles (1/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i ; |
Load LD.B disp16 [regl], reg2 4 1 1 Note 1
instructions LD.H disp16 [regl] , reg2 4 1 1 Note 1

LD.W disp16 [regl], reg2 4 1 1 Note 1
LD.BU disp16 [regl], reg2 4 1 1 Note 1
LD.HU disp16 [regl], reg2 4 1 1 Note 1
SLD.B disp7 [ep] , reg2 2 1 1 Note 2
SLD.BU disp4 [ep] , reg2 2 1 1 Note 2
SLD.H disp8 [ep] , reg2 2 1 1 Note 2
SLD.HU disp5 [ep] , reg2 2 1 1 Note 2
SLD.W disp8 [ep] , reg2 2 1 1 Note 2
Store ST.B reg2, disp16 [regl] 4 1 1 1
instructions ST.H reg2, disp16 [regl] 4 1 1 1
ST.W reg2, disp16 [regl] 4 1 1 1
SST.B reg2, disp7 [ep] 2 1 1 1
SST.H reg2, disp8 [ep] 2 1 1 1
SST.W reg2, disp8 [ep] 2 1 1 1
Multiply MUL regl, reg2, reg3 4 1 A 2
instructions MUL immo, reg2, reg3 4 1 PG 2
MULH regl, reg2 2 1 1 2
MULH immb5, reg2 2 1 1 2
MULHI imm16, regl, reg2 4 1 1 2
MULU regl, reg2, reg3 4 1 one? 2
MULU imm9, reg2, reg3 4 1 A 2
Arithmetic ADD regl, reg2 2 1 1 1
operation ADD imms, reg2 2 1 1 1
instructions ADDI imm16, regl, reg2 4 1 1 1
CMOV cccc, regl, reg2, reg3 4 1 1 1
CMOoV ccee, immb, reg2, reg3 4 1 1 1
CMP regl, reg2 2 1 1 1
CMP immb5, reg2 2 1 1 1
User's Manual U14559EJ3V1UM 151

CHAPTER 5

INSTRUCTIONS

Table 5-6. List of Number of Instruction Execution Clock Cycles (2/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i ; |
Arithmetic DIV regl, reg2, reg3 4 35 35 35
operation DIVH regl, reg2 2 35 35 35
nstruetions DIVH regl, reg2, reg3 4 35 35 35
DIVHU regl, reg2, reg3 4 34 34 34
DIVU regl, reg2, reg3 4 34 34 34
MOV regl, reg2 2 1 1 1
MOV imm5, reg2 2 1 1 1
MOV imm32, regl 6 2 2 2
MOVEA imm16, regl, reg2 4 1 1 1
MOVHI imm16, regl, reg2 4 1 1 1
SASF cccc, reg2 4 1 1 1
SETF cccc, reg2 4 1 1 1
SUB regl, reg2 2 1 1 1
SUBR regl, reg2 2 1 1 1
Saturated SATADD regl, reg2 2 1 1 1
operation SATADD imms, reg2 2 1 1 1
nstructions SATSUB regl, reg2 2 1 1 1
SATSUBI imm16, regl, reg2 4 1 1 1
SATSUBR regl, reg2 2 1 1 1
Logical AND regl, reg2 2 1 1 1
operation ANDI imm16, regl, reg2 4 1 1 1
nstruetions BSH reg2, reg3 4 1 1 1
BSW reg2, reg3 4 1 1 1
HSW reg2, reg3 4 1 1 1
NOT regl, reg2 2 1 1 1
OR regl, reg2 2 1 1 1
ORI imm16, regl, reg2 4 1 1 1
SAR regl, reg2 4 1 1 1
SAR immb5, reg2 2 1 1 1
SHL regl, reg2 4 1 1 1
SHL imm5, reg2 2 1 1 1
SHR regl, reg2 4 1 1 1
SHR immb5, reg2 2 1 1 1
SXB regl 2 1 1 1
SXH regl 2 1 1 1
TST regl, reg2 2 1 1 1
XOR regl, reg2 2 1 1 1
XORI imm16, regl, reg2 4 1 1 1
ZXB regl 2 1 1 1
ZXH regl 2 1 1 1

152

User's Manual U14559EJ3V1UM

CHAPTER 5 INSTRUCTIONS

Table 5-6. List of Number of Instruction Execution Clock Cycles (3/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i ; |
Branch Bcond disp9 (When condition is satisfied) | 2 2nes 2nes A
instructions disp9 (When condition is not 2 1 1 1
satisfied)
JARL disp22, reg2 4 s 2nees 2nees
IMP [regl] 2 3hoes 3hwoes 3hes
JR disp22 4 2neres 2neres A
Bit manipulation | CLR1 bit#3, disp16 [regl] 4 3horee 3horee 3hees
instructions CLR1 reg2, [regl] 4 3wes 3wes ghes
NOT1 bit#3, disp16 [regl] 4 3hees 3hees e
NOT1 reg2, [regl] 4 3hes 3hes 3hoes
SET1 bit#3, disp16 [regl] 4 3heee 3heee 3wee
SET1 reg2, [regl] 4 3hoes 3hoee 3hoes
TST1 bit#3, disp16 [regl] 4 3hees 3hees e
TST1 reg2, [regl] 4 3hes 3hes 3hoes
Special CALLT imm6 2 ghores ghores gheres
instructions CTRET _ 4 ghotes ghotes gNotes
DI - 4 1 1 1
DISPOSE immb5, list12 4 n+1"e7 n+1"e7 n+1"’
DISPOSE immb5, list12, [regl] 4 n+3"e’ n+3"e’ n+3"e’
El - 4 1 1 1
HALT - 4 1 1 1
LDSR reg2, reglD 4 1 1 1
NOP - 2 1 1 1
PREPARE list12, imm5 4 n+1™e" | ope1eT | nerte?
PREPARE list12, imm5, sp 4 n+2"e’ n+2"’ n+2"’
PREPARE list12, imm5, imm16 6 n+2"e’ n+2"e’ n+2"e’
PREPARE list12, imm5, imm32 8 n+3"’ n+3"e’ n+3""’
RETI B 4 otes otes gotes
STSR reglD, reg2 4 1 1 1
SWITCH regl 2 5 5 5
TRAP vector 4 3hoes 3hoes 3hoes
Debug function DBRET - 4 3hoes 3hoes 3hes
instructions™**® DBTRAP _ 2 Qetes Qetes otes
Undefined instruction code 4 3 3 3
User's Manual U14559EJ3V1UM 153

CHAPTER 5 INSTRUCTIONS

Notes 1. Depends on the number of wait states (2 if no wait states).

2. Depends on the number of wait states (1 if no wait states).

3. Shortened by 1 clock if reg2 = reg3 (lower 32 bits of results are not written to register) or reg3 = r0
(higher 32 bits of results are not written to register).

4. [Type D, E, and F products]
4 when there is an instruction that rewrites the PSW contents immediately before.
[Type A, B, and C products]
3 when there is an instruction that rewrites the PSW contents immediately before.

5. +1 clock for type D products.
+2 clocks for type E products.

6. In case of no wait states (3 + number of read access wait states).

7. nis the total number of cycles to load registers in list12. (Depends on the number of wait states; n is
the number of registers in list12 if no wait states. The operation when n = 0 is the same as when n =
1).

8. Type C products do not support instructions for the debug function.

Remarks 1. Operand conventions

Symbol Meaning
regl General-purpose register (used as source register)
reg2 General-purpose register (mainly used as destination register. Some are also used as

source registers.)

reg3 General-purpose register (mainly used as remainder of division results or higher 32 bits
of multiply results)

bit#3 3-bit data for bit number specification

immx x-bit immediate data

dispx x-bit displacement data

regiD System register number

vector 5-bit data for trap vector (O0OH to 1FH) specification
ccee 4-bit data condition code specification

sp Stack pointer (r3)

ep Element pointer (r30)

listx List of registers (x is a maximum number of registers)

2. Execution clock conventions

Symbol Meaning

i When other instruction is executed immediately after executing an instruction (issue)

r When the same instruction is repeatedly executed immediately after the instruction has
been executed (repeat)

When a subsequent instruction uses the result of execution of the preceding instruction
immediately after its execution (latency)

154 User's Manual U14559EJ3V1UM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

Interrupts are events that occur independently of program execution and are divided into two types: maskable
interrupts and non-maskable interrupts (NMI). In contrast, exceptions are events whose occurrence is dependent on
program execution and are divided into three types: software exceptions, exception traps, and debug traps.

When an interrupt or exception occurs, control is transferred to a handler whose address is determined by the
source of the interrupt or exception. The source of the interrupt/exception is specified by the exception code that is
stored in the exception cause register (ECR). Each handler analyzes the ECR register and performs appropriate
interrupt servicing or exception processing. The restored PC and restored PSW are written to the status saving
registers (EIPC, EIPSW or FEPC, FEPSW).

To restore execution from interrupt or software exception processing, use the RETI instruction. To restore
execution from an exception trap or debug trap, use the DBRET instruction. Read the restored PC and restored PSW
from the status saving registers, and transfer control to the restored PC.

Table 6-1. Interrupt/Exception Codes

Interrupt/Exception Source Classification | Exception Handler Restored PC
Name Trigger Code Address
Non-maskable interrupt (NMI)"¢* NMIO input Interrupt 0010H 00000010H | next PC"°?
NMI1 input Interrupt 0020H 00000020H [next PC™**??
NMI2 input*©* Interrupt 0030H 00000030H | next PC"**?
Maskable interrupt Note 5 Interrupt Note 5 Note 6 next PC*?
Software exception | TRAPOn (n =0to FH) [TRAP instruction Exception 004nH 00000040H next PC
TRAP1n (n=0to FH) [TRAP instruction Exception 005nH 00000050H next PC
Exception trap (ILGOP) lllegal instruction Exception 0060H 00000060H next PC"’
code
Debug trap"*® DBTRAP Exception 0060H 00000060H next PC
instruction"**

Notes 1. The implemented non-maskable interrupt sources differ depending on the product.
2. Except when an interrupt is acknowledged during execution of the one of the instructions listed below
(if an interrupt is acknowledged during instruction execution, execution is stopped, and then resumed
after the completion of interrupt servicing. In this case, the address of the interrupted instruction is the
restored PC.).
e Load instructions (SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W), divide instructions (DIV, DIVH,
DIVU, DIVHU)
e PREPARE, DISPOSE instruction (only if an interrupt is generated before the stack pointer is
updated)
The PC cannot be restored by the RET]I instruction. Perform a system reset after interrupt servicing.
Acknowledged even if the NP flag of the PSW is set to 1.
Differs depending on the type of interrupt.
The higher 16 bits are 0000H and the lower 16 bits are the same value as the exception code.
The execution address of the illegal instruction is obtained by “Restored PC — 4”.
Not supported in type C products

© N oA~ ®

Remark Restored PC: PC value saved to the EIPC or FEPC when interrupt/exception processing is started
next PC: PC value at which processing is started after interrupt/exception processing

User's Manual U14559EJ3V1UM 155

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.1 Interrupt Servicing

6.1.1 Maskable interrupts

A maskable interrupt can be masked by the interrupt control register of the interrupt controller (INTC).

The INTC issues an interrupt request to the CPU, based on the acknowledged interrupt with the highest priority.

If a maskable interrupt occurs due to interrupt request input (INT input), the CPU performs the following steps, and
transfers control to the handler routine.

(1) Saves restored PC to EIPC.

(2) Saves current PSW to EIPSW.

(3) Writes exception code to lower halfword of ECR (EICC).

(4) Sets ID flag of PSW to 1 and clears EP flag to 0.

(5) Sets handler address for each interrupt to PC and transfers control.

EIPC and EIPSW are used as the status saving registers. INT inputs are held pending in the interrupt controller
(INTC) when one of the following two conditions occur: when the INT input is masked by its interrupt controller, or
when an interrupt service routine is currently being executed (when the NP flag of the PSW is 1 or when the ID flag of
the PSW is 1). Interrupts are enabled by clearing the mask condition or by setting the NP and ID flags of the PSW to
0 with the LDSR instruction, at which point new maskable interrupt servicing is started by the pending INT input.

The EIPC and EIPSW registers must be saved by program to enable multiple interrupt servicing because there is
only one set of EIPC and EIPSW is provided.

The maskable interrupt servicing format is shown below.

156 User's Manual U14559EJ3V1UM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

Figure 6-1. Maskable Interrupt Servicing Format

INTC processing

CPU processing

- Interrupt request input
(INT input)

Interrupt request?

No

Is the interrupt
mask released?

Priority higher than No

that of interrupt currently
being serviced?

Priority higher No

than that of other interrupt
request?

ighest default

priority of interrupt requests No

with the same priority?

- CMaskabIe interrupt request)

C Interrupt request pending)

EIPC -«— Restored PC
EIPSW -— PSW
ECR.EICC -— Exception code
PSW.EP =20

PSW.ID =1

PC -— Handler address

(Interrupt servicing) Clnterrupt servicing pending)

User's Manual U14559EJ3V1UM

157

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.1.2 Non-maskable interrupts
A non-maskable interrupt cannot be disabled by an instruction and therefore can always be acknowledged. Non-

mas

kable interrupts are generated by NMI input.

When a non-maskable interrupt is generated, the CPU performs the following steps, and transfers control to the

handler routine.

F

(1) Saves restored PC to FEPC.

(2) Saves current PSW to FEPSW.

(3) Writes exception code (0010H) to higher halfword of ECR (FECC).

(4) Sets NP and ID flags of PSW to 1 and clears EP flag to 0.

(5) Sets handler address for the non-maskable interrupt to PC and transfers control.

EPC and FEPSW are used as the status saving registers.

Non-maskable interrupts are held pending in the interrupt controller when another non-maskable interrupt is
currently being executed (when the NP flag of the PSW is 1). Non-maskable interrupts are enabled by setting the NP

flag
start

of the PSW to 0 with the RETI and LDSR instructions, at which point new non-maskable interrupt servicing is
ed by the pending non-maskable interrupt request.

* In the case of type A, B, or C products, NMI2 servicing is executed regardless of the value of the NP flag only when

NMI2 is generated during the interrupt servicing of NMIO and NMI1.
The non-maskable interrupt servicing format is shown below.

Figure 6-2. Non-Maskable Interrupt Servicing Format

— (NMI input)

_4 Non-maskable interrupt request

INTC acknowledgment

CPU processing

No
PSW.NP =0

Yes

FEPC -«— Restored PC
FEPSW -— PSW
ECR.FECC --— Exception code
PSW.NP =1

PSW.EP =—0

PSW.ID -1

PC ~— Handler address

(Interrupt servicing) C Interrupt request pending)

158

User's Manual U14559EJ3V1UM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.2 Exception Processing

6.2.1 Software exceptions
A software exception is generated when the TRAP instruction is executed and is always acknowledged.
If a software exception occurs, the CPU performs the following steps, and transfers control to the handler routine.

(1) Saves restored PC to EIPC.

(2) Saves current PSW to EIPSW.

(3) Writes exception code to lower 16 bits (EICC) of ECR (interrupt source).

(4) Sets EP and ID flags of PSW to 1.

(5) Sets handler address (00000040H or 00000050H) for software exception to PC and transfers control.

The software exception processing format is shown below.

Figure 6-3. Software Exception Processing Format

I (TRAP instruction)

CPU processing

EIPC < Restored PC
EIPSW < PSW

ECR.EICC < Exception code
PSW.EP <= 1

PSW.ID <~ 1

PC < Handler address

C Exception processing)

User's Manual U14559EJ3V1UM 159

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.2.2 Exception trap

An exception trap is an exception requested when an instruction is illegally executed. The illegal opcode trap
(ILGOP) is the exception trap in the VB50EL1 core.

An illegal opcode instruction has an instruction code with an opcode (bits 10 through 5) of 111111B and a sub-
opcode (bits 26 through 23) of 0111B through 1111B and a sub-opcode (bit 16) of OB. When this kind of illegal
opcode instruction is executed, an exception trap occurs.

Figure 6-4. lllegal Instruction Code

15 13 12 11 10 5 4 0 31 27 26 23 22 21 20 17 16
T T T T T 1 T T T (R B T 1 T T 1
011 1
X X x|x x|1 1 1 1 1 1|x x x x xX|[Xx X x X X to x X|x x x x|O0
111 1

Remark x: don'tcare, []: opcode/sub-opcode

If an exception trap occurs, the CPU performs the following steps, and transfers control to the handler routine
(debug monitor routine).

@)
@)
®)
(4)
®)

Saves restored PC to DBPC.

Saves current PSW to DBPSW.

Sets NP, EP, and ID flags of PSW to 1.

Sets DM bit of DIR register to 1.

Sets handler address (00000060H) for exception trap to PC and transfers control to debug monitor routine.

The exception trap processing format is shown below.

Figure 6-5. Exception Trap Processing Format

. Exception trap
(ILGOP) occurs

CPU processing

DBPC < Restored PC
DBPSW < PSW
PSW.NP -1

PSW.EP <1

PSW.ID -1

PC < 00000060H

(Exception processing)

Caution The operation when executing an instruction not defined as an instruction or illegal instruction is

not guaranteed.

Remark The execution address of the illegal instruction is obtained by “Restored PC — 4.

160

User's Manual U14559EJ3V1UM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.2.3 Debug trap

A debug trap is an exception generated when the DBTRAP instruction is executed or when a debug function trap
occurs, and is always acknowledged.

If a debug trap occurs, the CPU performs the following steps.

(1) Saves restored PC to DBPC.

(2) Saves current PSW to DBPSW.

(3) Sets NP, EP, and ID flags of PSW to 1.

(4) Sets DM flag of DIR to 1.

(5) Sets handler address (00000060H) for debug trap to PC and transfers control to debug monitor routine.
Caution Type C products do not support a debug trap.

The debug trap processing format is shown below.

Figure 6-6. Debug Trap Processing Format

T (DBTRAP instruction)

CPU processing

DBPC < Restored PC
DBPSW < PSW
PSW.NP -1

PSW.EP <1

PSW.ID -1

DIR.DM -1

PC < 00000060H

CDebug monitor routine processing)

User's Manual U14559EJ3V1UM 161

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.3 Restoring from Interrupt/Exception Processing

6.3.1 Restoring from interrupt and software exception

All restoration from interrupt servicing and software exceptions is executed by the RETI instruction.

With the RETI instruction, the CPU performs the following steps, and transfers control to the address of the
restored PC.

(1) If the EP flag of the PSW is 0 and the NP flag of the PSW is 1, the restored PC and PSW are read from
FEPC and FEPSW. Otherwise, the restored PC and PSW are read from EIPC and EIPSW.
(2) Control is transferred to the address of the restored PC and PSW.

When execution has returned from each interrupt servicing, the NP and EP flags of the PSW must be set to the
following values by using the LDSR instruction immediately before the RETI instruction, in order to restore the PC and
PSW normally:

e To restore from non-maskable interrupt servicing"*: NP flag of PSW =1, EP flag =0

e To restore from maskable interrupt servicing: NP flag of PSW =0, EP flag = 0

e To restore from exception processing: EP flag of PSW =1

Note In the case of type A, B, or C products, NMI1 and NMI2 cannot be restored by the RETI instruction.
Execute a system reset after interrupt servicing. NMI2 can be acknowledged even if the NP flag of the
PSW is setto 1.

The restoration from interrupt/exception processing format is shown below.

Figure 6-7. Restoration from Interrupt/Software Exception Processing Format

(RET]I instruction >

<Restore from
software exception> No

No <Restore from non-maskable interrupt>

Yes
» <Restore from maskable interrupt>

PC <~ EIPC PC < FEPC
PSW < EIPSW PSW <= FEPSW

-
-

Jump to address of
restored PC

162 User's Manual U14559EJ3V1UM

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

6.3.2 Restoring from exception trap and debug trap

Restoration from an exception trap and debug trap is executed by the DBRET instruction.

With the DBRET instruction, the CPU performs the following steps, and transfers control to the address of the
restored PC.

(1) The restored PC and PSW are read from DBPC and DBPSW.
(2) Control is transferred to the address of the restored PC and PSW.
(3) If restoring from exception trap or debug trap, the DM flag of DIR is cleared to 0.

The restoration from exception trap/debug trap processing format is shown below.

Figure 6-8. Restoration from Exception Trap/Debug Trap Processing Format

(DBRET instruction)

PC -— DBPC
PSW -— DBPSW
DIR.DM -—0

(Jump to address of restored PC)

User's Manual U14559EJ3V1UM 163

CHAPTER 7 RESET

7.1 Register Status After Reset
When a low-level signal is input to the reset pin, the system is reset, and program registers and system registers
are set in the status shown in Table 7-1. When the reset signal goes high, the reset status is cleared, and program

execution begins. If necessary, initialize the contents of each register by program control.

Table 7-1. Register Status After Reset

Register Status After Reset (Initial Value)
Program registers General-purpose register (r0) 00000000H (Fixed)
General-purpose register (rl to r31) Undefined
Program counter (PC) 00000000H
System registers Interrupt status saving register (EIPC) OXXXXXXXH
Interrupt status saving register (EIPSW) 00000xxxH
NMI status saving register (FEPC) OXXXXXXXH
NMI status saving register (FEPSW) 00000xxxH
Exception cause register (ECR) 00000000H
Program status word (PSW) 00000020H
CALLT caller status saving register (CTPC) OXXXXXXXH
CALLT caller status saving register (CTPSW) 00000xxxH
Exception/debug trap status saving register (DBPC) OXXXXXXXH
Exception/debug trap status saving register (DBPSW) 00000xxxH
CALLT base pointer (CTBP) OXXXXXXXH
Debug interface register (DIR) 00000040H
Breakpoint control register 0 (BPCO) 00xxxxx0H
Breakpoint control register 1 (BPC1) 00xxxxx0H
Program ID register (ASID) 000000xxH
Breakpoint address setting register 0 (BPAV0) OXXXXXXXH
Breakpoint address setting register 1 (BPAV1) OXXXXXXXH
Breakpoint address mask register 0 (BPAMO) OXXXXXXXH
Breakpoint address mask register 1 (BPAM1) OXXXXXXXH
Breakpoint data setting register 0 (BPDVO0) Undefined
Breakpoint data setting register 1 (BPDV1) Undefined
Breakpoint data mask register 0 (BPDMO) Undefined
Breakpoint data mask register 1 (BPDM1) Undefined

Remark x: Undefined

164 User's Manual U14559EJ3V1UM

CHAPTER 7 RESET

7.2 Starting Up

The CPU begins program execution from address 00000000H after it has been reset.
Immediately after reset, no interrupt requests are acknowledged. To enable interrupts by program, clear the ID flag
of the PSW to 0.

User's Manual U14559EJ3V1UM 165

CHAPTER 8 PIPELINE

The V850E1 CPU is based on RISC architecture and executes almost all instructions in one clock cycle under
control of a 5-stage pipeline. The instruction execution sequence usually consists of five stages from fetch (IF) to
writeback (WB). The execution time of each stage differs depending on the type of the instruction and the type of the
memory to be accessed. As an example of pipeline operation, Figure 8-1 shows the processing of the CPU when 9
standard instructions are executed in succession.

Figure 8-1. Example of Executing Nine Standard Instructions

[
L

Time flow (state)

imernal systemotock [L[1L L L LML L LML L LML LT

Processing CPU performs
simultaneously <I> 1 <2> 1 <3> | <4> | <5> | <6> | <7> | <8> | <9> {<10>i<11>1<12><13>
Instruction 1 IF ID | EX |MEM| WB | | | i i i i i
Instruction 2 IF ID EX |[MEM| WB
Instruction 3cccoeveiieininenne IF ID EX |MEM| WB
INSIUCHION 4 «eveeeeeeeeeeeeeeeee e IF 1D EX |MEM| WB
INSEIUCHON5 veveerreeiieiieeie e et IF 1D EX |MEM| WB
INSEIUCHION 6 +vrevrrneiiiiieeeiiee e eeeee e e e e s e eaan IF ID EX |MEM| WB
INSEIUCION 7 oo :: IF ID EX |[MEM| WB
INSTIUCTION 8 ++vvvererrrrireriieiiiiiiiieiieneeceeeee el [TSTPRR IF ID EX |[MEM| WB
Y INSEIUCHON O vt e froeereenne SR RS IF ID EX |[MEM| WB
1
1End of 1End of |End of |Endof !Endof !Endof !Endof !Endof !End of
:instruc-iinstruc- instruc- jinstruc- |instruc- | instruc- | instruc- | instruc- |instruc-
Ition1l Ition2 1tion3 ition4 tion5 tion6 ition7 tion8 ition 9
Instruction executed every 1 clock cycle
IF (instruction fetch): Instruction is fetched and fetch pointer is incremented.
ID (instruction decode): Instruction is decoded, immediate data is generated, and register is read.
EX (execution of ALU, multiplier, and barrel shifter): Decoded instruction is executed.
MEM (memory access): Memory at specified address is accessed.
WB (writeback): Result of execution is written to register.

<1> through <13> in the figure above indicate the states of the CPU. In each state, writeback (WB) of instruction n,
memory access (MEM) of instruction n+1, execution (EX) of instruction n+2, decoding (ID) of instruction n+3, and
fetching (IF) of instruction n+4 are simultaneously performed. It takes five clock cycles to process a standard
instruction, from the IF stage to the WB stage. Because five instructions can be processed at the same time,
however, a standard instruction can be executed in 1 clock on average.

166 User's Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

8.1 Features

By optimizing the pipeline, the V850E1 CPU improves the CPI (cycle per instruction) rate over the previous V850

CPU.
The pipeline configuration of the V850E1 CPU is shown in Figure 8-2.

Figure 8-2. Pipeline Configuration

Master pipeline (V850 CPU compatible)

ID EX DF WB

Asynchronous WB pipeline

Bcond/SLD
Pipeline S MEM WB
ID)

Address calculation stage Load, store buffer (1 stage each)

Remark DF (data fetch): Execution data is transferred to the WB stage.

User's Manual U14559EJ3V1UM

167

CHAPTER 8 PIPELINE

8.1.1 Non-blocking load/store

As the pipeline does not stop during external memory access, efficient processing is possible.

For example, Figure 8-3 shows a comparison of pipeline operations between the V850 CPU and the V850E1 CPU
when an ADD instruction is executed after the execution of a load instruction for external memory.

Figure 8-3. Non-Blocking Load/Store

(@) Previous version (V850 CPU): Pipeline is stopped until MEM stage is complete

Load instructi I D Ex MEM (external memory)"** WB
oad instruction T | T2 ‘ T3
ADD instruction IF ID EX (MEM) WB
Next instruction IF ID EX MEM WB

Note The basic bus cycle for the external memory is 3 clocks.

(b) VB50E1 CPU: Efficient pipeline processing through use of asynchronous WB pipeline

I D Ex MEM (external memory)"** WB

Load instructi

oad instruction n | T2

ADD instruction IF ID EX DF WB

Next instruction IF 1D EX MEM WB

Note The basic bus cycle for the external memory of MEMC is 2 clocks.

(1) v850 CPU
The EX stage of the ADD instruction is usually executed in 1 clock. However, a wait time is generated in the
EX stage of the ADD instruction during execution of the MEM stage of the previous load instruction. This is
because the same stage of the 5 instructions on the pipeline cannot be executed in the same internal clock
interval. This also causes a wait time to be generated in the ID stage of the next instruction after the ADD
instruction.

(2) V850E1 CPU
An asynchronous WB pipeline for the instructions that are necessary for the MEM stage is provided in
addition to the master pipeline. The MEM stage of the load instruction is therefore processed by this
asynchronous WB pipeline. Because the ADD instruction is processed by the master pipeline, a wait time is
not generated, making it possible to execute instructions efficiently as shown in Figure 8-3.

168 User's Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

8.1.2 2-clock branch

When executing a branch instruction, the branch destination is decided in the ID stage.

In the case of the conventional V850 CPU, the branch destination of when the branch instruction is executed was
decided after execution of the EX stage, but in the case of the V850E1 CPU, due to the addition of an address
calculation stage for branch/SLD instruction, the branch destination is decided in the ID stage. Therefore, it is
possible to fetch the branch destination instruction 1 clock faster than in the conventional V850 CPU.

Figure 8-4 shows a comparison between the V850 CPU and the V850E1 CPU for pipeline operations with branch
instructions.

Figure 8-4. Pipeline Operations with Branch Instructions

(@) Previous version (V850 CPU)

*‘Branch destination decided in EX stage

Branch instruction | I ID EX | MEM | wB |
Branch destination IF ID EX MEM WB
instruction

3 clocks |

(b) V850E1 CPU

*‘Branch destination decided in ID stage

Branch instruction IF ID EX | MEM | wB |
Branch destination IF ID EX MEM WB
instruction

2 clocks |

Remark Type D and E products execute interleave access to the internal flash memory or internal mask ROM.
Therefore, it takes two clocks (three clocks for type E products) to fetch an instruction immediately after
an interrupt has occurred or after a branch destination instruction has been executed. Consequently, it
takes three clocks (four clocks for type E products) to execute the ID stage of the branch destination

instruction.
Example
Interleave
access
1
Instruction 1 IF IF ID EX MEM WwB
Instruction 2 IF IF ID EX MEM WB
Instruction 3 IF IF ID EX MEM wB |
Branch instruction IF IF ID
Branch destination instruction IF ‘ IF ‘ ID ‘ EX ‘MEM‘ WB|
3 clocks

User's Manual U14559EJ3V1UM 169

CHAPTER 8 PIPELINE

8.1

pip

.3 Efficient pipeline processing

Because the V850E1 CPU has an ID stage for branch/SLD instructions in addition to the ID stage on the master
eline, it is possible to perform efficient pipeline processing.

Figure 8-5 shows an example of a pipeline operation where the next branch instruction was fetched in the IF stage

of the ADD instruction (instruction fetch from the ROM directly connected to the dedicated bus is performed in 32-bit
units. Both ADD instructions and branch instructions in Figure 8-5 use a 16-bit format instruction).

Figure 8-5. Parallel Execution of Branch Instructions

(a) Previous version (V850 CPU)

ADD instruction IF ID EX (MEM) WB

Branch instruction i IF ID EX MEM WB |

Branch destination instruction IF 1D EX MEM
| 5 clocks
i =

(b) V850E1 CPU

ADD instruction IF ID EX DF WB

Branch instruction

r.l
S
m
<
<
m
E<
=
®

Branch destination instruction IF ID EX MEM WB

| 3 clocks

170

(1) v850CPU
Although the instruction codes up to the next branch instruction are fetched in the IF stage of the ADD
instruction, the ID stage of the ADD instruction and the ID stage of the branch instruction cannot be executed

together within the same clock. Therefore, it takes 5 clocks from the branch instruction fetch to the branch
destination instruction fetch.

(2) V850E1 CPU
Because V850E1 CPU has an ID stage for branch/SLD instructions in addition to the ID stage on the master
pipeline, parallel execution of the ID stage of the ADD instruction and the ID stage of the branch instruction
within the same clock is possible. Therefore, it takes only 3 clocks from branch instruction fetch start to
branch destination instruction completion.

Caution Be aware that the SLD and Bcond instructions are sometimes executed at the same time as

other 16-bit format instructions. For example, if the SLD and NOP instructions are executed
simultaneously, the NOP instruction may keep the delay time from being generated.

User’'s Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

8.2 Pipeline Flow During Execution of Instructions

This section explains the pipeline flow during the execution of instructions.

In pipeline processing, the CPU is already processing the next instruction when the memory or I/O write cycle is
generated. As a result, I/O manipulations and interrupt request masking will be reflected later than next instruction is
issued (ID stage).

(1) Type A, B, and C products
When a dedicated interrupt controller (INTC) is connected to the NPB (NEC peripheral bus), maskable
interrupt acknowledgment is disabled from the next instruction because the CPU detects access to the INTC
and performs interrupt request mask processing.

(2) Type D, E, and F products
When interrupt mask manipulation is performed, maskable interrupt acknowledgment is disabled from the
next instruction because the CPU detects access to the internal INTC (ID stage) and performs interrupt
request mask processing.

8.2.1 Load instructions
Caution Due to non-blocking control, there is no guarantee that the bus cycle is complete between the
MEM stages. However, when accessing the peripheral 1/O area, blocking control is effected,
making it possible to wait for the end of the bus cycle at the MEM stage.
For type A, B, and C products, non-blocking control is used for access to the programmable
peripheral I/O area.

(1) LD instructions

[Instructions] LD.B, LD.BU, LD.H, LD.HU, LD.W

[Pipeline] <l1> <2> <3> <4> <5> <6>
LD instruction IF 1D EX MEM |WB
Next instruction IF 1D EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. If an instruction using the
execution result is placed immediately after the LD instruction, a data wait time occurs.

(2) SLD instructions

[Instructions] SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W

[P|pe||ne] <1> <2> <3> <4> <5> <6>
SLD instruction IF 1D MEM |WB
Next instruction IF ID EX MEM |WB |
[Description] The pipeline consists of 4 stages, IF, ID, MEM, and WB. If an instruction using the execution

result is placed immediately after the SLD instruction, a data wait time occurs.

User's Manual U14559EJ3V1UM 171

CHAPTER 8 PIPELINE

8.2.2 Store instructions

Caution Due to non-blocking control, there is no guarantee that the bus cycle is complete between the

MEM stages.

However, when accessing the peripheral 1/O area, blocking control is effected,

making it possible to wait for the end of the bus cycle at the MEM stage.

For the type A, B, and C products, non-blocking control is used for access to the programmable

peripheral I/O area.

[Instructions]

[Pipeline]

[Description]

ST.B, ST.H, ST.W, SST.B, SST.H, SST.W

<1> <2> <3> <4> <5> <6>
-TT _I
Store instruction IF 1D EX MEM |wB !
Next instruction IF ID EX MEM |WB

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the WB stage, because no data is written to registers.

8.2.3 Multiply instructions

172

[Instructions]

[Pipeline]

[Description]

MUL, MULH, MULHI, MULU

(&) When next instruction is not multiply instruction

Multiply instruction

Next instruction

(b) When next instruction is multiply instruction

Multiply instruction 1

Multiply instruction 2

<l1> <2> <3> <4> <5> <6>
IF 1D EX1 JEX2 JWB
IF ID EX MEM |WB
<l1> <2> <3> <4> <5> <6>
IF 1D EX1 JEX2 |WB
IF ID EX1 [EX2 |WB |

The pipeline consists of 5 stages, IF, ID, EX1, EX2, and WB. The EX stage takes 2 clocks
because it is executed by a multiplier. The EX1 and EX2 stages (different from the normal EX
stage) can operate independently. Therefore, the number of clocks for instruction execution is

always 1 clock, even if several multiply instructions are executed in a row. However, if an

instruction using the execution result is placed immediately after a multiply instruction, a data

wait time occurs.

User’'s Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

8.2.4 Arithmetic operation instructions

(1) Instructions other than divide/move word instructions

[Instructions]

L Arithmetic operation
[Pipeline] instruction

Next instruction
[Description]

(2) Move word instruction

<1> <2> <3> <4> <5> <6>
1D EX DF WB
IF ID EX MEM |WB

The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

[Instructions] MOV imm32
<1> <2> <3> <4> <5> <6> <7>
. . Arithmetic operation
[Pipeline] instruction ID EX1 |EX2 |DF WB
Next instruction IF = ID EX MEM |WB

—: Idle inserted for wait

[Description]
(3) Divide instructions

[Instructions]

DIV, DIVH, DIVHU, DIVU

ADD, ADDI, CMOV, CMP, MOV, MOVEA, MOVHI, SASF, SETF, SUB, SUBR

The pipeline consists of 6 stages, IF, ID, EX1, EX2 (normal EX stage), DF, and WB.

[Pipeline] (@) DIV, DIVH instructions
<1> <2> <3> <4> S(<35> <36> <37> <38> <39> <40> <41>
?
Divide instruction IF 1D EX1 JEX2 S(EX33 JEX34 JEX35 | DF WB
/7
Next instruction IF - - S(- - ID EX [MEM |WB
)
Next to next instruction IF 1D EX MEM |WB
—: ldle inserted for wait
(b) DIVHU, DIVU instructions
<1> <2> <3> <4> S(<35> <36> <37> <38> <39> <40>
)
Divide instruction IF 1D EX1 JEX2 S(EX33 |EX34 |DF |WB
/
Next instruction IF — — S(— 1D EX MEM |WB
?
Next to next instruction IF ID EX MEM |WB

—: Idle inserted for wait

[Description]

The pipeline consists of 39 stages, IF, ID, EX1 to EX35 (normal EX stage), DF, and WB for DIV

and DIVH instructions. The pipeline consists of 38 stages, IF, ID, EX1 to EX34 (normal EX
stage), DF, and WB for DIVHU and DIVU instructions.

[Remark]

If an interrupt occurs while a divide instruction is being executed, execution of the instruction is

stopped, and the interrupt is serviced, assuming that the return address is the first address of
that instruction. After interrupt servicing has been completed, the divide instruction is executed
again. In this case, general-purpose registers regl and reg2 hold the value before the

instruction was executed.

User's Manual U14559EJ3V1UM

173

CHAPTER 8 PIPELINE

8.2.5 Saturated operation instructions

[Instructions] SATADD, SATSUB, SATSUBI, SATSUBR

<1> <2> <3> <4> <5> <6>

L Saturated operation
[Pipeline] instruction IF ID EX DF WB

Next instruction IF 1D EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

8.2.6 Logical operation instructions

[Instructions] AND, ANDI, BSH, BSW, HSW, NOT, OR, ORI, SAR, SHL, SHR, SXB, SXH, TST, XOR, XORI,
ZXB, ZXH

<1> <2> <3> <4> <5> <6>

. . Logical operation
[Pipeline] instruction IF ID EX DF WB
Next instruction IF ID EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.
8.2.7 Branch instructions
(1) Conditional branch instructions (except BR instruction)

[Instructions] Bcond instructions (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV,
BNZ, BP, BSA, BV, BZ)

[Pipeline] (&) When the condition is not satisfied
<l1> <2> <3> <4> <5> <6>

Conditional branch N -
instruction IF 1D EX ‘{MEM WB
Next instruction IF ID | EX | MEM |WB |

(b) When the condition is satisfied
<1> <2> <3> <4> <5> <6> <7>

Conditional branch N i

instruction IF 1D EX MEM ,WB

Next instruction (IF)

Branch destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed

174 User's Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the EX, MEM, and WB stages, because the branch destination is decided in the
ID stage.

(&) When the condition is not satisfied
The number of execution clocks for the branch instruction is 1.

(b) When the condition is satisfied
The number of execution clocks for the branch instruction is 2. The IF stage of the next
instruction of the branch instruction is not executed.
If an instruction overwriting the contents of the PSW occurs immediately before, the
number of execution clocks is 3 because of flag hazard occurrence.

(2) BRinstruction, unconditional branch instructions (except JMP instruction)

[Instructions] BR, JARL, JR

[Pipeline] <l1> <2> <3> <4> <5> <6> <7>
BR instruction, T T [1
unconditional branch IF 1D EX 'MEM 'WB* !
instruction I T S
Next instruction (IF)
Branch destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed

WB*: No operation is performed in the case of the JR and BR instructions
but in the case of the JARL instruction, data is written to the restored
PC.

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the EX, MEM, and WB stages, because the branch destination is decided in the
ID stage. However, in the case of the JARL instruction, data is written to the restored PC in the
WB stage. Also, the IF stage of the next instruction of the branch instruction is not executed.

(3) JMP instruction

[Pipeline] <l1> <2> <3> <4> <5> <6> <7>
JMP instruction N
IF 1D EX_ _,MEM ,WB ,
Next instruction (IF)
Branch destination instruction IF | ID | EX | MEM |WB |

(IF): Instruction fetch that is not executed

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the EX, MEM, and WB stages, because the branch destination is decided in the
ID stage.

User's Manual U14559EJ3V1UM 175

CHAPTER 8 PIPELINE

8.2.8 Bit manipulation instructions

(1) CLR1, NOT1, SET1 instructions

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>
Bit manipulation -
instruction IF 1D EX1 MEM |EX2 MEM |WB
Next instruction IF — — 1D EX MEM |WB
Next to next instruction IF ID EX MEM |WB

—: ldle inserted for wait

[Description] The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2 (normal stage), MEM, and WB.
However, no operation is performed in the WB stage, because no data is written to registers.
In the case of these instructions, the memory access is read-modify-write, the EX stage
requires a total of 2 clocks, and the MEM stage requires a total of 2 cycles.

(2) TST1 instruction

[Pipeline] <l1> <2> <3> <4> <5> <6> <7> <8> <9>
Bit manipulation T
instruction IF 1D EX1 MEM JEX2 MEM WB
Next instruction IF — — 1D EX MEM |WB
Next to next instruction IF 1D EX MEM |WB

—: ldle inserted for wait

[Description] The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2 (normal stage), MEM, and WB.
However, no operation is performed in the second MEM and WB stages, because there is no
second memory access and no data is written to registers.

In all, this instruction requires 2 clocks.

8.2.9 Special instructions

(1) CALLT instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>
TTTATTTTA |
CALLT instruction IF 1D MEM IEX IM_E_M_ awe 1
Next instruction (IF)
Branch destination instruction |IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed

[Description] The pipeline consists of 6 stages, IF, ID, MEM, EX, MEM, and WB. However, no operation is

performed in the second MEM and WB stages, because there is no memory access and no
data is written to registers.

176 User's Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

(2) CTRET instruction

[Pipeline] <> <2> _<§>_ » _<A}>_ . f5_>_ _ <K6> <7>
cTRETinstructon |IF_ JiD JEX_ _ iMEM iwB .
Next instruction (IF)
Branch destination instruction IF ||D |EX |MEM |WB |

(IF): Instruction fetch that is not executed

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the EX, MEM, and WB stages, because the branch destination is decided in the
ID stage.

(3) DI, Elinstructions

<1> <2> <3> <4> <5> <6>

____I _____ 1
[Pipeline] DI, El instruction IF ID EX MEM 'WB !
Next instruction IF ID EX IMEM WB
[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the MEM and WB stages, because memory is not accessed and data is not
written to registers.

[Remark] Both the DI and El instructions do not sample an interrupt request. An interrupt is sampled as
follows while these instructions are being executed.

Instruction immediately before | IF 1D EX MEM |WB _l
=== i |
DI, El instruction IF ID EX |MEM iwB |
Instruction immediately after IF ID EX | MEM |WB |
Last sampling of First sampling of
interrupt before interrupt after
execution of El or execution of El or DI
DI instruction instruction

User's Manual U14559EJ3V1UM 177

CHAPTER 8 PIPELINE

(4) DISPOSE instruction

[Pipeline] (@) When branch is not executed
<1> <2> <3> <4> S(<n+2> <n+3> <n+4> <n+5> <n+6> <n+7>
?
DISPOSE instruction |IF 1D EX MEM 55 MEM |MEM |MEM |JWB
Next instruction IF = — 55 - 1D EX MEM |WB
Next to next instruction IF ID EX MEM |WB

—: Idle inserted for wait
n: Number of registers specified by register list (list12)

(b) When branch is executed

<l1> <2> <3> <4> <n+2> <n+3> <n+4> <n+5> <n+6> <n+7>

§$
DISPOSE instruction |IF 1D EX IMEM I S(|MEM IMEM IMEM IWB I
?
Next instruction (IF)
Branch destination instruction | IF | ID | EX

(IF): Instruction fetch that is not executed
- Idle inserted for wait
n: Number of registers specified by register list (list12)

[Description] The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM, and
WB. The MEM stage requires n + 1 cycles.

(5) HALT instruction

[Pipeline]
<> <2> <3 <4> <5> <6> HALT mode release
HALT TTTTN T,
instruction |IF 1D EX MEM 'WB ! S !
)
Next instruction IF = = |— |— | S s |— ID EX MEM |WB
Next to next instruction IF ID EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the
MEM and WB stages, because memory is not accessed and no data is written to registers.
Also, for the next instruction, the ID stage is delayed until the HALT mode is released.

(6) LDSR, STSR instructions

<1> <2> <3> <4> <5> <6>

. . LDSR, STSR
[Pipeline] instruction IF ID EX DF WB
Next instruction IF ID EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB. If the STSR instruction using the
EIPC and FEPC system registers is placed immediately after the LDSR instruction setting
these registers, a data wait time occurs.

178 User's Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

(7) NOP instruction

[Pipeline] NOP instruction IF ID EX MEM \WB .
Next instruction IF ID | EX | MEM |WB |
[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the EX, MEM, and WB stages, because no operation and no memory access is

executed, and no data is written to registers.
Caution Be aware that the SLD and Bcond instructions are sometimes executed at the same time as

other 16-bit format instructions. For example, if the SLD and NOP instructions are executed
simultaneously, the NOP instruction may keep the delay time from being generated.

(8) PREPARE instruction

[Pipeling] <1> <2> <3> <4> S(<n+2> <n+3> <n+4> <n+5> <n+6> <n+7>
/
PREPARE instruction | IF 1D EX MEM S S MEM |MEM |MEM |WB
Next instruction IF — — S s — ID EX MEM |WB
Next to next instruction IF ID EX MEM |WB
—: Idle inserted for wait
n: Number of registers specified by register list (list12)
[Description] The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM, and

WB. The MEM stage requires n + 1 cycles.

(9) RETI instruction

<l1> <2> <3> <4> <5> <6> <7> <8>

i

[Pipeline] RETI instruction IF ID1__|ID2 |EX MEM 1WB .
Next instruction (IF)
Next to next instruction (IF)
Jump destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed
ID1: Register selection
ID2: Read EIPC/FEPC

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is
performed in the MEM and WB stages, because memory is not accessed and no data is written
to registers. The ID stage requires 2 clocks. Also, the IF stages of the next instruction and the

instruction after that are not executed.

User's Manual U14559EJ3V1UM 179

CHAPTER 8 PIPELINE

(10) SWITCH instruction

[Pipeline] <1> <2> <3> <4> <5>) f§>_ _ _f7_>_) <8> <9> <10>
SWITCH instruction |IF 1D EX1 IMEM IEX2 |M_IEM_ _: WB _:
Next instruction (IF)
Branch destination instruction |IF ||D |EX |MEM |WB |

(IF): Instruction fetch that is not executed

[Description] The pipeline consists of 7 stages, IF, ID, EX1 (normal EX stage), MEM, EX2, MEM, and WB.
However, no operation is performed in the second MEM and WB stages, because there is no
memory access and no data is written to registers.

(11) TRAP instruction

<1> <2> <3> <4> <5> <6> <7> <8>

[Pipeline] TRAP instruction IF ID1 ID2 IEX IDF |WB |
Next instruction (IF)
Next to next instruction (IF)
Jump destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed

ID1: Exception code (004nH, 005nH) detection (n = 0 to FH)
ID2: Address generation

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, DF, and WB. The ID stage requires 2

clocks. Also, the IF stages of the next instruction and the instruction after that are not
executed.

180 User's Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

8.2.10 Debug function instructions

(1) DBRET instruction

<1> <2> <3> <4> <5> <6> <7> <8>

e Tl
[Pipeline] DBRET instruction | IF ID1__|ID2 |EX MEM ,WB_
Next instruction (IF)
Next to next instruction (IF)
Jump destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed
ID1: Register selection
ID2: Read DBPC

The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is
performed in the MEM and WB stages, because the memory is not accessed and no data is
written to registers. The ID stage requires 2 clocks. Also, the IF stages of the next instruction

[Description]

and the instruction after that are not executed.

(2) DBTRAP instruction

<1> <2> <3> <4> <5> <6> <7> <8>

[Pipeline] DBTRAP instruction |IE ID1 ID2 |EX |DF |WB |
Next instruction (IF)
Next to next instruction (IF)
Jump destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed
ID1: Exception code (0060H) detection
ID2: Address generation

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. The ID stage requires 2
clocks. Also, the IF stages of the next instruction and the instruction after that are not

executed.

User's Manual U14559EJ3V1UM 181

CHAPTER 8 PIPELINE

8.3 Pipeline Disorder

The pipeline consists of 5 stages from IF (Instruction Fetch) to WB (Write Back). Each stage basically requires 1
clock for processing, but the pipeline may become disordered, causing the number of execution clocks to increase.
This section describes the main causes of pipeline disorder.

8.3.1 Alignment hazard

If the branch destination instruction address is not word aligned (A1 = 1, A0 = 0) and is 4 bytes in length, it is
necessary to repeat IF twice in order to align instructions in word units. This is called an alignment hazard.

For example, assume that the instructions a to e are placed from address XOH, and that instruction b consists of 4
bytes, and the other instructions each consist of 2 bytes. In this case, instruction b is placed at X2H (A1 = A0 = 0),
and is not word aligned (A1 = 0, A0 = 0). Therefore, when this instruction b becomes the branch destination
instruction, an alignment hazard occurs. When an alignment hazard occurs, the number of execution clocks of the
branch instruction becomes 4.

Figure 8-6. Alignment Hazard Example

(@) Memory map (b) Pipeline
~+— 32 bits — <1> <2> <3> <4> <5> <6> <7> <8> <9>
Instruc- | Instruc- Branch instruction [IF ID EX ME-I\/_I-:_\-N_B_ ------- :
XgH |tiond Jtione Next instruction IF x
Instruc- | Instruc- Branch destination instruction (instruction b) |IF1 |IF2 ID EX MEM |WB
X4H [tionb _Jtion ¢ Branch destination's next instruction (instruction c) IF ID EX MEM [WB

Instruc- | Instruc-
XOH |tiona |tion b

IF x: Instruction fetch that is not executed
IF1: First instruction fetch that occurs during alignment hazard. Itis a 2-
Q‘éﬂ{,e;isoﬂf(?giﬂﬁﬂt%isg?a‘"’“ byte fetch that fetches the 2 bytes of the lower address of instruction
b.

IF2: Second instruction fetch that occurs during alignment hazard. It is
normally a 4-byte fetch that fetches the 2 bytes of the upper address

of instruction b in addition to instruction ¢ (2-byte length).

Alignment hazards can be prevented via the following handling in order to obtain faster instruction execution.

o Use 2-byte branch destination instructions.
o Use 4-byte instructions placed at word boundaries (A1 = 0, A0 = 0) for branch destination instructions.

182 User's Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

8.3.2 Referencing execution result of load instruction

For load instructions (LD, SLD), data read in the MEM stage is saved during the WB stage. Therefore, if the
contents of the same register are used by the instruction immediately after the load instruction, it is necessary to delay
the use of the register by this later instruction until the load instruction has finished using that register. This is called a
hazard.

The V850E1 CPU has an interlock function to automatically handle this hazard by delaying the ID stage of the next
instruction.

The V850E1 CPU also has a short path that allows the data read during the MEM stage to be used in the ID stage
of the next instruction. This short path allows data to be read by the load instruction during the MEM stage and used
in the ID stage of the next instruction at the same timing.

As a result of the above, when using the execution result in the instruction following immediately after, the number
of execution clocks of the load instruction is 2.

Figure 8-7. Example of Execution Result of Load Instruction

<1> <2> <3> <4> <5> <6> <7> <8> <9>
Load instruction 1
(LD [R4], R6) | IF ID EX MEM, |wB
Instruction 2 (ADD 2, R6) IF 1L D ¥ |EX MEM [WB
Instruction 3 IF - 1D EX MEM |WB
Instruction 4 IF ID EX MEM |WB

IL: Idle inserted for data wait by interlock function
-:Idle inserted for wait
Short path

As shown in Figure 8-7, when an instruction placed immediately after a load instruction uses the execution result of
the load instruction, a data wait time occurs due to the interlock function, and the execution speed is lowered. This
drop in execution speed can be avoided by placing instructions that use the execution result of a load instruction at
least 2 instructions after the load instruction.

User's Manual U14559EJ3V1UM 183

CHAPTER 8 PIPELINE

8.3.3 Referencing execution result of multiply instruction

For multiply instructions (MULH, MULHI), the operation result is saved to the register in the WB stage. Therefore,
if the contents of the same register are used by the instruction immediately after the multiply instruction, it is
necessary to delay the use of the register by this later instruction until the multiply instruction has finished using that
register (occurrence of hazard).

The V850E1 CPU's interlock function delays the ID stage of the instruction following immediately after. A short
path is also provided that allows the EX2 stage of the multiply instruction and the multiply instruction’s operation result
to be used in the ID stage of the instruction following immediately after at the same timing.

Figure 8-8. Example of Execution Result of Multiply Instruction

<1> <2> <3> <4> <5> <6> <7> <8> <9>
Multiply instruction 1
(MULH 3, R6) | D [Ext [Ex2 | |wB
Instruction 2 (ADD 2, R6) IF IL D V¥ |EX MEM |WB
Instruction 3 IF - ID EX MEM |WB
Instruction 4 IF ID EX MEM |(WB

IL: Idle inserted for data wait by interlock function
-: Idle inserted for wait
Short path

As shown in Figure 8-8, when an instruction placed immediately after a multiply instruction uses the execution
result of the multiply instruction, a data wait time occurs due to the interlock function, and the execution speed is
lowered. This drop in execution speed can be avoided by placing instructions that use the execution result of a
multiply instruction at least 2 instructions after the multiply instruction.

184 User's Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC

When using the LDSR instruction to set the data of the EIPC and FEPC system registers, and immediately after
referencing the same system registers with the STSR instruction, the use of the system registers for the STSR
instruction is delayed until the setting of the system registers with the LDSR instruction is completed (occurrence of
hazard).

The V850E1 CPU's interlock function delays the ID stage of the STSR instruction immediately after.

As a result of the above, when using the execution result of the LDSR instruction for EIPC and FEPC for an STSR
instruction following immediately after, the number of execution clocks of the LDSR instruction becomes 3.

Figure 8-9. Example of Referencing Execution Result of LDSR Instruction for EIPC and FEPC

. . <1> <2> <3> <4> <5> <6> <7> <8> <9> <10>
LDSR instruction
(LDSR R6, 0) Nete | |F ID EX __|MEM [wB
(SSTTSSRR'g?ﬂ;“f)“,?OEL IF IL IL D |EX |MEM |wB
Next instruction IF - - ID EX MEM [wB
Instruction after that IF 1D EX MEM |[WB

IL: Idle inserted for data wait by interlock function

- Idle inserted for wait

Note System register 0 used for the LDSR and STSR instructions indicates EIPC.

As shown in Figure 8-9, when an STSR instruction is placed immediately after an LDSR instruction that uses the
operand EIPC or FEPC, and that STSR instruction uses the LDSR instruction execution result, the interlock function
causes a data wait time to occur, and the execution speed is lowered. This drop in execution speed can be avoided
by placing STSR instructions that reference the execution result of the preceding LDSR instruction at least 3
instructions after the LDSR instruction.

8.3.5 Cautions when creating programs
When creating programs, pipeline disorder can be avoided and instruction execution speed can be raised by
observing the following cautions.

e Place instructions that use the execution result of load instructions (LD, SLD) at least 2 instructions after the
load instruction.

e Place instructions that use the execution result of multiply instructions (MULH, MULHI) at least 2 instructions
after the multiply instruction.

o If using the STSR instruction to read the setting results written to the EIPC or FEPC registers with the LDSR
instruction, place the STSR instruction at least 3 instructions after the LDSR instruction.

e For the first branch destination instruction, use a 2-byte instruction, or a 4-byte instruction placed at a word
boundary.

User's Manual U14559EJ3V1UM 185

CHAPTER 8 PIPELINE

8.4 Additional Items Related to Pipeline

8.4.1 Harvard architecture
The V850E1 CPU uses Harvard architecture to operate an instruction fetch path from internal ROM and a memory

access path to internal RAM independently. This eliminates path arbitration conflicts between the IF and MEM stages
and allows orderly pipeline operation.

(1) V850E1 CPU (Harvard architecture)
The MEM stage of instruction 1 and the IF stage of instruction 4, as well as the MEM stage of instruction 2 and
the IF stage of instruction 5 can be executed simultaneously with an orderly pipeline operation.

<1> <2> <3> <4> <5> <6> <7> <8> <9>
Instruction 1 IF ID EX MEM |WB
Instruction 2 IF ID EX MEM |WB
Instruction 3 IF ID EX MEM |WB
Instruction 4 IF 1D EX MEM |WB
Instruction 5 IF 1D EX MEM |WB

(2) Not VB50E1 CPU (other than Harvard architecture)
The MEM stage of instruction 1 and the IF stage of instruction 4, in addition to the MEM stage of instruction 2 and

the IF stage of instruction 5 are in conflict, causing path waiting to occur and slower execution time due to
disorderly pipeline operation.

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10> <11>
Instruction 1 IF ID EX MEM |WB
Instruction 2 IF 1D - EX MEM |WB
Instruction 3 IF - ID - EX MEM |WB
Instruction 4 IF - 1D EX MEM |WB
Instruction 5 IF ID EX MEM |WB

-. Idle inserted for wait

186 User's Manual U14559EJ3V1UM

CHAPTER 8 PIPELINE

8.4.2 Short path
The V850E1 CPU provides on chip a short path that allows the use of the execution result of the preceding
instruction by the following instruction before writeback (WB) is completed for the previous instruction.

Example 1. Execution result of arithmetic operation instruction and logical operation used by instruction
following immediately after

e V850E1 CPU (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruction
following immediately after as soon as the result is out (EX stage), without having to wait for
writeback to be completed.

<1> <2> <3> <4> <5> <6>
ADD 2, R6 IF ID EX | [MEM |WB
MOV R6, R7 IF DV |EX MEM |WB

e Not V850E1 CPU (No short path)
The ID stage of the instruction following immediately after is delayed until writeback of the
previous instruction is completed.

<1> <2> <3> <4> <5> <6> <7> <8>

ADD 2, R6 IF ID EX |[MEM |wB
MOV R6, R7 IF - - ID EX |MEM |ws |

-: Idle inserted for wait
Short path

User's Manual U14559EJ3V1UM 187

CHAPTER 8 PIPELINE

Example 2. Data read from memory by the load instruction used by instruction following immediately after
e V850E1 CPU (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruction
following immediately after as soon as the result is out (MEM stage), without having to wait for
writeback to be completed.
<1> <2> <3> <4> <5> <6> <7> <8> <9>
LD [R4], R6 IF ID EX MEM | |WB
ADD 2, R6 IF IL D V|ex MEM |WB
Next instruction IF - ID EX MEM |WB
Instruction after that IF ID EX MEM |WB
e Not V850E1 CPU (No short path)
The ID stage of the instruction following immediately after is delayed until writeback of the
previous instruction is completed.
<1> <2> <3> <4> <5> <6> <7> <8> <9> <10>
LD [R4], R6 IF 1D EX MEM [WB
ADD 2, R6 IF - - ID EX MEM [(WB
Next instruction IF ID EX MEM |WB
Instruction after that IF ID EX MEM |WB

IL: Idle inserted for data wait by interlock function

-: Idle inserted for wait
Short path

188

User’'s Manual U14559EJ3V1UM

CHAPTER 9 SHIFTING TO DEBUG MODE

The VB50E1 CPU sets the handler address (00000060H) to the program counter (PC) when a debug trap,
exception trap, or debug break occurs, and then shifts to the debug mode.
Moreover, setting single-step operation makes it possible to shift to debug mode each time an instruction executed.

Caution When the V850E1 CPU shifts to the debug mode, the data cache is held, and the data and tags
are not updated. If the external memory of the cacheable area is accessed in the debug mode,
the coherency is corrupted because the data cache is valid only while the external memory is
being accessed. Therefore, to manipulate cacheable area data in a debug monitor routine, clear
the data cache (for write through) or flush and clear (for writeback) before restoring to the user
mode.

9.1 How to Shift to Debug Mode

(1) Debug trap
Execution of the DBTRAP instruction generates a debug trap and shifts the V850E1 CPU to the debug mode
(see 6.2.3 Debug trap).

(2) Exception trap
Invalid execution of instructions generates an exception trap and shifts the V850E1 CPU to the debug mode
(see 6.2.2 Exception trap).

(3) Debug break
The following three types of debug breaks are available.

e Break due to setting breakpoints (2 channels)
e Break due to misalign access exception occurrence
e Break due to alignment error exception occurrence

The following system registers are used to set debug breaks.

e Debug interface register (DIR)

e Breakpoint control registers 0, 1 (BPCO, BPC1)

e Breakpoint address setting registers 0, 1 (BPAVO, BPAV1)
e Breakpoint address mask registers 0, 1 (BPAMO, BPAM1)
e Breakpoint data setting registers 0, 1 (BPDVO, BPDV1)

e Breakpoint data mask registers 0, 1 (BPDMO, BPDM1)

Remark Registers, except for the ASID register, can be read or written only in debug mode (the DIR register

can be read in user mode). Therefore, perform the initial settings of each register and reading/writing
at an arbitrary timing after shifting to debug mode by a debug trap (execution of DBTRAP instruction).

User's Manual U14559EJ3V1UM 189

CHAPTER 9 SHIFTING TO DEBUG MODE

(a) Break due to setting breakpoints (2 channels)
The V850E1 CPU shifts to the debug mode based on the breakpoint settings (2 channels) validated when
the following break conditions are satisfied. The BPCn register is used to set each condition (n =0, 1).
Caution While the IE bit of the BPCn register is set to 1, the system does not shift to the debug
mode if the BP ASID bit value and the program ID set to the ASID register do not match;
even if the break conditions match.
Table 9-1. Break Conditions
Type Break Condition Break BPxxn Register Setting"™*? Setting of MD, FE, RE,
Timing WE Bits of BPCn Register
Address™** Data BP | BP | BP | BP | MD FE RE,
AVn | AMn | DVn | DMn WE
Execution | Arbitrary Specific instruction Immediately | <1> | <1> | V¥ | <0> |0 ove®
trap execution code before
address Specific instruction execution <> | <> | N
code range
Specific Arbitrary instruction N <0> | <1> | <1> |Any
execution code
address Specific instruction v l<os!| v | <0s o
code
Specific instruction N <0> N N
code range
Specific Arbitrary instruction N N <1> | <1> |Any
execution code
address range | specific instruction N N v | <o> o
code
Specific instruction N N N N
code range
Access Arbitrary Specific data After <1> | <1> v <0> [0 0/1"°®
trap access execution"**
address Specific data range Immediately | <1> | <1> v \Y
after
execution
Specific Arbitrary data After v <0> | <1> | <1> [Any™**
5 Note 3
access Specific data execution v o| <o | N | <0> |0
address
Specific data range v <0> v \/
Specific Arbitrary data Immediately | «/ <1> | <1> [Any™**
access after
address range execution
Specific data After <0> |0
5 Note 3
Specific data range execution N
190 User's Manual U14559EJ3V1UM

CHAPTER 9 SHIFTING TO DEBUG MODE

Notes 1. The execution address indicates the address of an instruction fetch, and the access address
indicates the address at which an access occurs in accordance with instruction execution.

2. Set as follows.

\: Set the break conditions.

<0>: Clear all bits to 0.

<1>: It is not necessary to set the conditions, but set all bits to 1 because the initial value is
undefined (bits 31 to 28 of the BPAVn and BPAMn registers are fixed to 0, and cannot
be setto 1).

For an execution trap or for an access trap that targets a 64 MB data area, bits 27 and 26 of

the BPAVn and BPAMN registers are ignored. However, set them to 1 because the initial

value is undefined.

3. Data write: Immediately after execution
Data read: After several instructions are executed (slip)

4. When the MD bit is set to 1, match judgment by the data comparator is ignored. Therefore,
the break latency is accelerated by 1 clock (a break occurs at the MEM stage when MD = 0,
and at the EX stage when MD = 1).

5. Always set to 0 (operation is not guaranteed when set to 1).

6. Setin accordance with the access type (read only, write only, or read/write)

Cautions 1. The match timing of break conditions differs between an execution trap and an
access trap (at the ID stage for an execution trap, and at the MEM stage for an
access trap). Therefore, even if the sequential break mode is set, the V850E1 CPU
may not operate normally when an execution trap occurs after an access trap.

2. In the range break mode, set either the execution trap or access trap to channels 0
and 1.
Remarks 1.n=0,1
. When multiple break conditions are set, the debug mode is entered if at least one of them

N

is satisfied.
3. Channels 0 and 1 can be linked to perform the following two operations (however,
simultaneous operations are not possible).

(i) Break by sequential execution (range break mode)
This break is set by setting the SQ bit of the debug interface register (DIR) to 1. The
debug mode is entered only when the break conditions of channels 0 and 1 match in
that order.

(ii) Break by simultaneous execution (range break mode)
This break is set by setting the RE bit of the debug interface register (DIR) to 1. The
debug mode is entered only when the break conditions of channels 0 and 1 match at
the same time.

(b) Break due to misalign access exception occurrence
This break is set by setting the MA bit of the debug interface register (DIR) to 1. The debug mode is
entered when a misalign access occurs during execution of the load and store instructions (independent
of the enable/disable setting of misaligned access to the CPU).

User's Manual U14559EJ3V1UM 191

CHAPTER 9 SHIFTING TO DEBUG MODE

192

(4)

(c) Break dueto alignment error exception occurrence
This break is set by setting the AE bit of the debug interface register (DIR) to 1.
The V850E1 CPU shifts to the debug mode when an alignment error occurs.

An alignment error occurs in the following case.

e When the stack pointer (SP) is forcibly aligned to other than a word boundary during PREPARE or
DISPOSE instruction execution

Remark Misaligned access to the CPU is enabled/disabled via hardware settings (pin input) (in the

V850EL1 core, set according to the level input to the IFIMAEN pin).

In debug breaks except for access traps, the address of the instruction that caused the break is saved to
DBPC (because debug mode is entered before instruction execution is complete). Therefore, the instruction
that caused a break is executed after shifting from debug mode to user mode, but an additional debug break
does not occur (ignored).

Single-step operation
The single-step operation is set by setting the SS flag of the PSW to 1, and the debug mode is entered when
each instruction is executed. The single-step operation is set/cleared using the following procedure.

(a) Single-step operation setting procedure

<1>
<2>

<3>

<4>
<5>

Shift to debug mode via a debug trap (DBTRAP instruction execution).

Set the SE bit of the DIR register to 1 to control the SS flag of the PSW.

Set bit 11 of the DBPSW register to 1 to set the SS flag of the PSW to 1 when shifting to the user
mode.

Transfer the restored PC value to the DBPC register.

Shift to the user mode via the DBRET instruction (the SS flag of the PSW is set to 1 while shifting
and the single-step operation is set).

(b) Single-step operation clearing procedure

<1>

<2>

<3>

When operating in the debug mode, clear bit 11 of the DBPSW register to 0 (this manipulation
clears the SS flag of the PSW to 0 when shifting to the user mode).

Clear the SE bit of the DIR register to 0 (however, if this manipulation is omitted, the SS flag of the
PSW can be set to 1).

Shift to the user mode via the DBRET instruction (the SS flag of the PSW is cleared to 0 while
shifting and the single-step operation is cleared).

User's Manual U14559EJ3V1UM

CHAPTER 9 SHIFTING TO DEBUG MODE

Figure 9-1. Single-Step Operation Execution Flow

User mode Debug mode

DBTRAP instruction execution
\

|

DIR.SE <1

DBPSW [11] « 1

DBPC ~ Restored PC
\

| DBRET instruction execution
T

Single-step
operation setting

1 instruction executed |
I

DBPC ~ Restored PC
DBPSW ~ PSW
PSWNP ~ 1
PSW.EP ~ 1
PSW.D 1
PC ~ 00000060H

\

|
[Debug monitor routine
|

\
1 instruction executed |
!
DBPC ~ Restored PC
DBPSW ~ PSW
PSWNP ~ 1
PSW.EP ~ 1
PSW.ID ~1
PC ~ 00000060H
\

|
Debug monitor routine

|
DBPSW [11] ~ O
DIR.SE -0

Single-step
operation clearing

l
| DBRET instruction execution
]

[
[1instruction executed |
\
| 1 instruction executed |

l

Remark The SS flag of the PSW is automatically cleared to O when an interrupt request is generated in user

mode in a single-step operation. Therefore, the single-step operation is not performed in the interrupt
servicing routine (the SS flag is set to 1 again due to the restore processing from the interrupt
servicing routine (EIPSW — PSW)).

The processing flow may vary depending on the instruction that is executed when an interrupt occurs
(see Figure 9-2).

User's Manual U14559EJ3V1UM 193

CHAPTER 9 SHIFTING TO DEBUG MODE

Figure 9-2. Processing Flow When Interrupt Request Is Generated During Single-Step Operation

() Instruction that does not suspend the (b) Instruction that suspends the execution by

execution by interrupt request interrupt request

User mode Debug mode User mode Debug mode

Interrupt request

Interrupt request

N

Debug monitor routine

Debug monitor routine

1 instruction executed
(not suspended)

1 instruction executed
(suspended)

EIPC ~ Restored PC
EIPSW ~ PSW

DBPC - Restored PC
DBPSW ~ PSW

PSW.NP 1 PSW.ID -1
PSW.EP « 1 PSW.SS « 0
PSW.ID -1 PC — Handler
PC « 00000060H address
\ \
‘ Interrupt servicing
Debug monitor routine rout:ne
\ ‘ PC < EIPC
EIPC - Restored PC PSW « %ézslfvl)
EIPSW ~ PSW ‘
PSW.ID 1
PSW.SS - 0 DBPC — Restored PC
PC ~ Handler DBPSW ~ PSW
address PSW.NP ~ 1
I PSW.EP ~ 1
Interrupt servicing PSW.ID -1
routine ~ 00000060H
\ \
I
PC ~ EIPC . .
PSW ~ EIPSW Debug monitor routine
(Ss=1)

] I
1 instruction executed

(suspended instruction)
I

1 instruction executed

DBPC — Restored PC
DBPSW ~ PSW

DBPC — Restored PC
DBPSW « PSW

PSW.NP — 1 PSW.NP i
PSW.EP -~ 1 E:w.rbp - :
PSW.ID ~ 1 . -
PC ~ 00000060H PC ~ 00000060H

[‘ ‘ |

Debug monitor routine Debug monitor routine
! T
! f

J

‘| Pc

Remark For the instructions that suspend the execution by interrupt request (see Table 6-1
Interrupt/Exception Codes), the interrupt servicing may be performed without waiting for the
completion of that instruction execution, and the debug mode may be entered executing no

instruction after restoring from the interrupt servicing routine.

194 User's Manual U14559EJ3V1UM

CHAPTER 9 SHIFTING TO DEBUG MODE

9.2 Cautions

The set value of the BPDVn register differs in accordance with the address to be accessed in misaligned access or

access by a bit manipulation instruction (n = 0, 1).

In misaligned access, memory access cycles are generated divided into several cycles. In write access, only the
address, data, and access type (halfword/byte) of the divided first cycle are compared as break conditions. Also in
access by a bit manipulation instruction, the set value of the BPDVn register differs in accordance with the address to

be accessed.

The following shows an example of setting break conditions for each access address according to the access size.

Table 9-2. Break Condition Setting Example

Access Size Access Bus Cycle TY Bit of BPCn Register BPAVNn BPDVn Register"”*?
(Sample Data) Address™** Write Read ReN(_L:j;‘ieslter Write Read
Word OH W 1,1 (W) 1,1(W) OH 44332211H 44332211H
(44332211H) 1H B>HW—B | 0,1 (B) 1H 3ooxxL1xxH
2H HW—-HW 1, 0 (HW) 2H 2211xxxxH
3H B—>HW—B 0,1 (B) 3H L1IxXxXxxxxXH
Halfword OH HW 1,0 (HW) 1,0 (HW) OH XXxx2211H | xxxx2211H
(2211H) 1H BB 0,1(B) 1H 3oL 1xxH
2H HW 1, 0 (HW) 2H 2211xxxxH
XXXx2211H""*?
3H B—B 0,1(B) 3H 1IxXXXXXXH
Byte (11H) OH B 0,1 (B) OH XXXXXX11H XXXXXX11H
1H 1H XXXX11xxH
XXXXXXLTH"
2H 2H XXLIXXXXH
XXXXXXLTH" "
3H 3H L1IxXxxxxXH
XXXXXXLTH"
Byte (11H) OH B 0,1(B) OH XXXXXX11H
1H 1H XXXX11xxH
2H 2H XX1IxXxXXxH
3H 3H L12IxxxxxxH

Notes 1. Indicates the value of the lower two bits.
2. “X"indicates being masked by the BPDMn register.
3. Valid only during halfword align access.
4. Valid only during byte align access.

Remarks 1. W: Word data transfer cycle
HW: Halfword data transfer cycle
B: Byte data transfer cycle
2. n=0,1

User's Manual U14559EJ3V1UM

195

CHAPTER 9 SHIFTING TO DEBUG MODE

For example, when write-accessing address 03FFEFF1H of the word data 44332211H, the first memory access
means writing the byte data 11H to address 03FFEFF1H. A setting example when this access is specified as a break
condition of channel 0 is shown below.

e BPAVO register: O03FFEFF1H
e BPAMO register: 00000000H
e BPDVO register: xxxx11xxH (x: don’t care)
e BPDMO register: FFFFOOFFH

TY bit of BPCO register: 0, 1 (byte access)

196 User's Manual U14559EJ3V1UM

APPENDIX A NOTES

A.1 Restriction on Conflict Between sld Instruction and Interrupt request

A.1.1 Description

If a conflict occurs between the decode operation of an instruction in <2> immediately before the sld instruction
following an instruction in <1> and an interrupt request before the instruction in <1> is complete, the execution result
of the instruction in <1> may not be stored in a register.

Instruction <1>
¢ |d instruction: Id.b, Id.h, Id.w, Id.bu, Id.hu
e sld instruction: sld.b, sld.h, sld.w, sld.bu, sld.hu
e Multiplication instruction: mul, mulh, mulhi, mulu

Instruction <2>

mov regl, reg2 not regl, reg2 satsubr regl, reg2 satsub regl, reg2
satadd regl, reg2 satadd immb5, reg2 or regl, reg2 xor regl, reg2
and regl, reg2 tst regl, reg2 subr regl, reg2 sub regl, reg2
add regl, reg2 add immb5, reg2 cmp regl, reg2 cmp immb5, reg2
mulh regl, reg2 shr immb5, reg2 sar immb5, reg2 shl immb5, reg2
<Example>
<i> Idw [rl1], r10 If the decode operation of the mov instruction <ii> immediately before the sid
g instruction <iii> and an interrupt request conflict before execution of the Id instruction
: <i> is complete, the execution result of instruction <i> may not be stored in a register.

<ii> mov rl0, r28
<iii> sld.w 0x28, r10

A.1.2 Countermeasure
When executing the sld instruction immediately after instruction <ii>, avoid the above operation using either of the
following methods.

¢ Insert a nop instruction immediately before the sld instruction.

¢ Do not use the same register as the sld instruction destination register in the above instruction <ii> executed
immediately before the sld instruction.

User's Manual U14559EJ3V1UM 197

APPENDIX B

INSTRUCTION LIST

The instruction function list in alphabetical order is shown in Table B-1, and instruction list in format order is shown

in Table B-2.

Table B-1. Instruction Function List (in Alphabetical Order) (1/11)

Mnemonic

Operand

Format

Flag

CcY

ov

S

SAT

Instruction Function

ADD

regl, reg2

0/1

0/1

0/1

0/1

Add. Adds the word data of reg1l to the word
data of reg2, and stores the result in reg2.

ADD

immb5, reg2

0/1

0/1

0/1

0/1

Add. Adds the 5-bit immediate data, sign-
extended to word length, to the word data of
reg2, and stores the result in reg2.

ADDI

imm16, regl, reg2

\i

0/1

0/1

0/1

0/1

Add Immediate. Adds the 16-bit immediate
data, sign-extended to word length, to the
word data of regl, and stores the result in
reg2.

AND

regl, reg2

0/1

0/1

And. ANDs the word data of reg2 with the
word data of regl, and stores the result in
reg2.

ANDI

imm16, regl, reg2

\i

0/1

And. ANDs the word data of regl with the 16-
bit immediate data, zero-extended to word
length, and stores the result in reg2.

Bcond

disp9

Branch on Condition Code. Tests a condition
flag specified by an instruction. Branches if a
specified condition is satisfied; otherwise,
executes the next instruction. The branch
destination PC holds the sum of the current
PC value and 9-bit displacement which is the
8-bit immediate shifted 1 bit and sign-extended
to word length.

BSH

reg2, reg3

Xl

0/1

0/1

0/1

Byte Swap Halfword. Performs endian
conversion.

BSW

reg2, reg3

Xl

0/1

0/1

0/1

Byte Swap Word. Performs endian conversion.

CALLT

imm6

Call with Table Look Up. Based on CTBP
contents, updates PC value and transfers
control.

CLR1

bit#3, disp16 [regl]

Vill

0/1

Clear Bit. Adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Then clears the bit,
specified by the instruction bit field, of the byte
data referenced by the generated address.

198

User's Manual U14559EJ3V1UM

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (2/11)

Mnemonic Operand Format

Flag

CYy

ov

S

SAT

Instruction Function

CLR1 reg2 [regl] IX

0/1

Clear Bit. First, reads the data of reg1l to
generate a 32-bit address. Then clears the bit,
specified by the data of lower 3 bits of reg2 of
the byte data referenced by the generated
address.

CMoV cccce, regl, reg2, Xl

reg3

Conditional Move. reg3 is set to regl if a
condition specified by condition code “cccc” is
satisfied; otherwise, set to the data of reg2.

CMOV ccee, immb, reg2, Xl

reg3

Conditional Move. reg3 is set to the data of 5-
immediate, sign-extended to word length, if a
condition specified by condition code “cccc” is
satisfied; otherwise, set to the data of reg2.

CMP regl, reg2 |

0/1

0/1

0/1

0/1

Compare. Compares the word data of reg2
with the word data of regl, and indicates the
result by using the PSW flags. To compare,
the contents of regl are subtracted from the
word data of reg2.

CMP immb5, reg2 Il

0/1

0/1

0/1

0/1

Compare. Compares the word data of reg2
with the 5-bit immediate data, sign-extended to
word length, and indicates the result by using
the PSW flags. To compare, the contents of
the sign-extended immediate data are
subtracted from the word data of reg2.

CTRET (None) X

0/1

0/1

0/1

0/1

0/1

Restore from CALLT. Restores the restored PC
and PSW from the appropriate system register
and restores from a routine called by CALLT.

DBRET™* (None) X

0/1

0/1

0/1

0/1

0/1

Return from debug trap. Restores the restored
PC and PSW from the appropriate system
register and restores from a debug monitor
routine.

DBTRAP™® | (None) [

Debug trap. Saves the restored PC and PSW
to the appropriate system register and
transfers control by setting the PC to handler
address (00000060H).

DI (None) X

Disables Interrupt. Sets the ID flag of the PSW
to 1 to disable the acknowledgment of
maskable interrupts from acceptance;
interrupts are immediately disabled at the start
of this instruction execution.

DISPOSE immb5, list12 XMl

Function Dispose. Adds the data of 5-bit
immediate immb5, logically shifted left by 2 and
zero-extended to word length, to sp. Then pop
(load data from the address specified by sp
and adds 4 to sp) general-purpose registers
listed in list12.

Note Not supported in type C products

User's Manual U14559EJ3V1UM

199

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (3/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

DISPOSE

immb, list12, [regl]

Xl

Function Dispose. Adds the data of 5-bit
immediate immb5, logically shifted left by 2 and
zero-extended to word length, to sp. Then pop
(load data from the address specified by sp
and adds 4 to sp) general-purpose registers
listed in list12, transfers control to the address
specified by reg1.

DIv

regl, reg2, reg3

Xl

0/1

0/1

0/1

Divide Word. Divides the word data of reg2 by
the word data of regl, and stores the quotient
in reg2 and the remainder in reg3.

DIVH

regl, reg2

0/1

0/1

0/1

Divide Halfword. Divides the word data of reg2
by the lower halfword data of regl, and stores
the quotient in reg2.

DIVH

regl, reg2, reg3

Xl

0/1

0/1

0/1

Divide Halfword. Divides word data of reg2 by
lower halfword data of regl, and stores the
quotient in reg2 and the remainder in reg3.

DIVHU

regl, reg2, reg3

Xl

0/1

0/1

0/1

Divide Halfword Unsigned. Divides word data
of reg2 by lower halfword data of reg1, and
stores the quotient in reg2 and the remainder
in reg3.

DIVU

regl, reg2, reg3

Xl

0/1

0/1

0/1

Divide Word Unsigned. Divides the word data
of reg2 by the word data of regl, and stores
the quotient in reg2 and the remainder in reg3.

El

(None)

Enable Interrupt. Clears the ID flag of the PSW
to 0 and enables the acknowledgment of
maskable interrupts at the beginning of next
instruction.

HALT

(None)

Halt. Stops the operating clock of the CPU and
places the CPU in the HALT mode.

HSW

reg2, reg3

Xl

0/1

0/1

0/1

Halfword Swap Word. Performs endian
conversion.

JARL

disp22, reg2

Jump and Register Link. Saves the current PC
value plus 4 to general-purpose register reg2,
adds a 22-bit displacement, sign-extended to
word length, to the current PC value, and
transfers control to the PC. Bit O of the 22-bit
displacement is masked to 0.

JMP

[regl]

Jump Register. Transfers control to the
address specified by regl. Bit 0 of the address
is masked to 0.

JR

disp22

Jump Relative. Adds a 22-bit displacement,
sign-extended to word length, to the current
PC value, and transfers control to the PC. Bit 0
of the 22-bit displacement is masked to 0.

200

User's Manual U14559EJ3V1UM

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (4/11)

Mnemonic

Operand

Format

Flag

Cy | ov S

SAT

Instruction Function

LD.B

disp16 [regl], reg2

\i

Byte Load. Adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Byte data is read
from the generated address, sign-extended to
word length, and then stored in reg2.

LD.BU

disp16 [regl], reg2

i

Unsigned Byte Load. Adds the data of regl
and the 16-bit displacement sign-extended to
word length, and generates a 32-bit address.
Then reads the byte data from the generated
address, zero-extends it to word length, and
stores it in reg2.

LD.H

disp16 [regl], reg2

Wi

Halfword Load. Adds the data of regl to a 16-
bit displacement, sign-extended to word
length, to generate a 32-bit address. Halfword
data is read from this 32-bit address with bit 0
masked to 0, sign-extended to word length,
and stored in reg2.

LD.HU

disp16 [regl], reg2

Wi

Unsigned Halfword Load. Adds the data of
regl and the 16-bit displacement sign-
extended to word length to generate a 32-bit
address. Reads the halfword data from the
address masking bit 0 of this 32-bit address to
0, zero-extends it to word length, and stores it
in reg2.

LD.W

disp16 [regl], reg2

i

Word Load. Adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Word data is read
from this 32-bit address with bits 0 and 1
masked to 0, and stored in reg2.

LDSR

reg2, reglD

Load to System Register. Set the word data of
reg2 to a system register specified by regID. If
regID is PSW, the values of the corresponding
bits of reg2 are set to the respective flags of
the PSW.

MOV

regl, reg2

Move. Transfers the word data of regl in reg2.

MOV

immb5, reg2

Move. Transfers the value of a 5-bit immediate
data, sign-extended to word length, in reg2.

MOV

imm32, regl

VI

Move. Transfers the 32-bit immediate data in
regl.

MOVEA

imm16, regl, reg2

VI

Move Effective Address. Adds a 16-bit
immediate data, sign-extended to word length,
to the word data of regl, and stores the result
in reg2.

User's Manual U14559EJ3V1UM

201

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (5/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

MOVHI

imm16, regl, reg2

VI

Move High Halfword. Adds word data, in which
the higher 16 bits are defined by the 16-bit
immediate data while the lower 16 bits are set
to 0, to the word data of regl and stores the
result in reg2.

MUL

regl, reg2, reg3

Xl

Multiply Word. Multiplies the word data of reg2
by the word data of regl, and stores the result
in reg2 and reg3.

MUL

imm9, reg2, reg3

Xl

Multiply Word. Multiplies the word data of reg2
by the 9-bit immediate data sign-extended to
word length, and stores the result in reg2 and
reg3.

MULH

regl, reg2

Multiply Halfword. Multiplies the lower halfword
data of reg2 by the lower halfword data of
regl, and stores the result in reg2 as word
data.

MULH

immb5, reg2

Multiply Halfword. Multiplies the lower halfword
data of reg2 by a 5-bit immediate data, sign-
extended to halfword length, and stores the
result in reg2 as word data.

MULHI

imm16, regl, reg2

\i

Multiply Halfword Immediate. Multiplies the
lower halfword data of regl by a 16-bit
immediate data, and stores the result in reg2.

MULU

regl, reg2, reg3

Xl

Multiply Word Unsigned. Multiplies the word
data of reg2 by the word data of regl, and
stores the result in reg2 and reg3.

MULU

imm9, reg2, reg3

Xl

Multiply Word Unsigned. Multiplies the word
data of reg2 by the 9-bit immediate data sign-
extended to word length, and store the result
in reg2 and reg3.

NOP

(None)

No Operation.

NOT

regl, reg2

0/1

0/1

Not. Logically negates (takes 1's complement
of) the word data of reg1, and stores the result
in reg2.

NOT1

bit#3, disp16 [regl]

VI

0/1

Not Bit. First, adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. The bit specified by
the 3-bit bit number is inverted at the byte data
location referenced by the generated address.

NOT1

reg2, [regl]

0/1

Not Bit. First, reads regl to generate a 32-bit
address. The bit specified by the lower 3 bits
of reg2 of the byte data of the generated
address is inverted.

202

User's Manual U14559EJ3V1UM

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (6/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

OR

regl, reg2

0/1

0/1

Or. ORs the word data of reg2 with the word
data of regl, and stores the result in reg2.

ORI

imm16, regl, reg2

\i

0/1

0/1

Or Immediate. ORs the word data of regl with
the 16-bit immediate data, zero-extended to
word length, and stores the result in reg2.

PREPARE

list12, imm5

XMl

Function Prepare. The general-purpose
register displayed in list12 is saved (4 is
subtracted from sp, and the data is stored in
that address). Next, the data is logically shifted
2 bits to the left, and the 5-bit immediate data
zero-extended to word length is subtracted
from sp.

PREPARE

list12, immb5,
sp/imm

Xl

Function Prepare. The general-purpose
register displayed in list12 is saved (4 is
subtracted from sp, and the data is stored in
that address). Next, the data is logically shifted
2 bits to the left, and the 5-bit immediate data
zero-extended to word length is subtracted
from sp. Then, the data specified by the third
operand is loaded to ep.

RETI

(None)

0/1

0/1

0/1

0/1

0/1

Return from Trap or Interrupt. Reads the
restored PC and PSW from the appropriate
system register, and restores from interrupt or
exception processing routine.

SAR

regl, reg2

0/1

0/1

0/1

Shift Arithmetic Right. Arithmetically shifts the
word data of reg2 to the right by ‘n’ positions,
where ‘n’ is specified by the lower 5 bits of
regl (the MSB prior to shift execution is copied
and set as the new MSB), and then writes the
result in reg2.

SAR

imm5, reg2

0/1

0/1

0/1

Shift Arithmetic Right. Arithmetically shifts the
word data of reg2 to the right by ‘n’ positions
specified by the lower 5-bit immediate data,
zero-extended to word length (the MSB prior to
shift execution is copied and set as the new
MSB), and then writes the result in reg2.

SASF

cccce, reg2

Shift and Set Flag Condition. reg?2 is logically
shifted left by 1, and its LSB is setto 1 in a
condition specified by condition code “cccc” is
satisfied; otherwise, LSB is set to 0.

User's Manual U14559EJ3V1UM

203

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (7/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

SATADD

regl, reg2

0/1

0/1

0/1

0/1

0/1

Saturated Add. Adds the word data of regl to
the word data of reg2, and stores the result in
reg2. However, if the result exceeds the
maximum positive value, the maximum
positive value is stored in reg2; if the result
exceeds the maximum negative value, the
maximum negative value is stored in reg2. The
SAT flag is set to 1.

SATADD

immb5, reg2

0/1

0/1

0/1

0/1

0/1

Saturated Add. Adds the 5-bit immediate data,
sign-extended to word length, to the word data
of reg2, and stores the result in reg2.
However, if the result exceeds the maximum
positive value, the maximum positive value is
stored in reg?2; if the result exceeds the
maximum negative value, the maximum
negative value is stored in reg2. The SAT flag
is setto 1.

SATSUB

regl, reg2

0/1

0/1

0/1

0/1

0/1

Saturated Subtract. Subtracts the word data of
regl from the word data of reg2, and stores
the result in reg2. However, if the result
exceeds the maximum positive value, the
maximum positive value is stored in reg2; if the
result exceeds the maximum negative value,
the maximum negative value is stored in reg2.
The SAT flag is set to 1.

SATSUBI

imm16, regl, reg2

\

0/1

0/1

0/1

0/1

0/1

Saturated Subtract Immediate. Subtracts a 16-
bit immediate data, sign-extended to word
length, from the word data of reg1, and stores
the result in reg2. However, if the result
exceeds the maximum positive value, the
maximum positive value is stored in reg2; if the
result exceeds the maximum negative value,
the maximum negative value is stored in reg2.
The SAT flag is set to 1.

SATSUBR

regl, reg2

0/1

0/1

0/1

0/1

0/1

Saturated Subtract Reverse. Subtracts the
word data of reg2 from the word data of reg1l,
and stores the result in reg2. However, if the
result exceeds the maximum positive value,
the maximum positive value is stored in reg2; if
the result exceeds the maximum negative
value, the maximum negative value is stored in
reg2. The SAT flag is set to 1.

SET1

bit#3, disp16 [regl]

Vi

0/1

Set Bit. First, adds a 16-bit displacement, sign-
extended to word length, to the data of reg1l to
generate a 32-bit address. The bits, specified
by the 3-bit bit number, are set at the byte data
location specified by the generated address.

204

User's Manual U14559EJ3V1UM

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (8/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

SET1

reg2, [regl]

0/1

Set Bit. First, reads the data of general-
purpose register regl to generate a 32-bit
address. The bit, specified by the data of lower
3 bits of reg2, is set at the byte data location
referenced by the generated address.

SETF

cccce, reg2

Set Flag Condition. The reg2 is setto 1 if a
condition specified by condition code "cccc" is
satisfied; otherwise, a 0 is stored in reg2.

SHL

regl, reg2

0/1

0/1

0/1

Shift Logical Left. Logically shifts the word
data of reg?2 to the left by ‘n’ positions (0 is
shifted to the LSB side), where ‘n’ is specified
by the lower 5 bits of regl, and then writes the
result in reg2.

SHL

immb5, reg2

0/1

0/1

0/1

Shift Logical Left. Logically shifts the word
data of reg2 to the left by ‘n’ positions (0 is
shifted to the LSB side), where ‘n’ is specified
by a 5-bit immediate data, zero-extended to
word length, and then writes the result in reg2.

SHR

regl, reg2

0/1

0/1

0/1

Shift Logical Right. Logically shifts the word
data of reg2 to the right by ‘n’ positions (0 is
shifted to the MSB side), where ‘n’ is specified
by the lower 5 bits of regl, and then writes the
result in reg2.

SHR

immb5, reg2

0/1

0/1

0/1

Shift Logical Right. Logically shifts the word
data of reg2 to the right by ‘n’ positions (0 is
shifted to the MSB side), where ‘n’ is specified
by a 5-bit immediate data, zero-extended to
word length, and then writes the result in reg2.

SLD.B

disp7 [ep], reg2

Byte Load. Adds the 7-bit displacement, zero-
extended to word length, to the element
pointer to generate a 32-bit address. Byte data
is read from the generated address, sign-
extended to word length, and then stored in
reg2.

SLD.BU

disp4 [ep], reg2

Unsigned Byte Load. Adds the 4-bit
displacement, zero-extended to word length, to
the element pointer to generate a 32-bit
address. Byte data is read from the generated
address, zero-extended to word length, and
stored in reg2.

SLD.H

disp8 [ep], reg2

Halfword Load. Adds the 8-bit displacement,
zero-extended to word length, to the element
pointer to generate a 32-bit address. Halfword
data is read from this 32-bit address with bit 0
masked to 0, sign-extended to word length,
and stored in reg2.

User's Manual U14559EJ3V1UM

205

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (9/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

SLD.HU

disp5 [ep], reg2

Unsigned Halfword Load. Adds the 5-bit
displacement, zero-extended to word length, to
the element pointer to generate a 32-bit
address. Halfword data is read from this 32-bit
address with bit 0 masked to O, zero-extended
to word length, and stored in reg2.

SLD.W

disp8 [ep], reg2

Word Load. Adds the 8-bit displacement, zero-
extended to word length, to the element
pointer to generate a 32-bit address. Word
data is read from this 32-bit address with bits 0
and 1 masked to 0, and stored in reg2.

SST.B

reg2, disp7 [ep]

Byte Store. Adds the 7-bit displacement, zero-
extended to word length, to the element
pointer to generate a 32-bit address, and
stores the data of the lowest byte of reg2 in the
generated address.

SST.H

reg2, disp8 [ep]

Halfword Store. Adds the 8-bit displacement,
zero-extended to word length, to the element
pointer to generate a 32-bit address, and
stores the lower halfword of reg2 in the
generated 32-bit address with bit 0 masked to
0.

SST.W

reg2, disp8 [ep]

Word Store. Adds the 8-bit displacement, zero-
extended to word length, to the element
pointer to generate a 32-bit address, and
stores the word data of reg2 in the generated
32-bit address with bits 0 and 1 masked to 0.

ST.B

reg2, disp16 [regl]

Vil

Byte Store. Adds the 16-bit displacement,
sign-extended to word length, to the data of
regl to generate a 32-bit address, and stores
the lowest byte data of reg2 in the generated
address.

ST.H

reg2, disp16 [regl]

Wi

Halfword Store. Adds the 16-bit displacement,
sign-extended to word length, to the data of
regl to generate a 32-bit address, and stores
the lower halfword of reg2 in the generated 32-
bit address with bit 0 masked to 0.

ST.W

reg2, disp16 [regl]

Wi

Word Store. Adds the 16-bit displacement,
sign-extended to word length, to the data of
regl to generate a 32-bit address, and stores
the word data of reg2 in the generated 32-bit
address with bits 0 and 1 masked to 0.

STSR

reglD, reg2

Store Contents of System Register. Stores the
contents of a system register specified by
regID in reg2.

206

User's Manual U14559EJ3V1UM

APPENDIX B

INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (10/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

SuUB

regl, reg2

0/1

0/1

0/1

0/1

Subtract. Subtracts the word data of regl from
the word data of reg2, and stores the result in
reg2.

SUBR

regl, reg2

0/1

0/1

0/1

0/1

Subtract Reverse. Subtracts the word data of
reg2 from the word data of regl, and stores
the result in reg2.

SWITCH

regl

Jump with Table Look Up. Adds the table entry
address (address following SWITCH
instruction) and data of reg1l logically shifted to
the left by 1 bit, and loads the halfword entry
data specified by the table entry address.

Next, logically shifts to the left by 1 bit the
loaded data, and after sign-extending it to
word length, branches to the target address
added to the table entry address (instruction
following SWITCH instruction).

SXB

regl

Sign Extend Byte. Sign-extends the lowermost
byte of regl to word length.

SXH

regl

Sign Extend Halfword. Sign-extends lower
halfword of reg1 to word length.

TRAP

vector

Trap. Saves the restored PC and PSW; sets
the exception code and the flags of the PSW;
jumps to the address of the trap handler
corresponding to the trap vector specified by
vector, and starts exception processing.

TST

regl, reg2

0/1

0/1

Test. ANDs the word data of reg2 with the
word data of regl. The result is not stored, and
only the flags are changed.

TST1

bit#3, disp16 [regl]

Vi

0/1

Test Bit. Adds the data of regl to a 16-bit
displacement, sign-extended to word length, to
generate a 32-bit address. Performs the test
on the bit, specified by the 3-bit bit number, at
the byte data location referenced by the
generated address. If the specified bit is 0, the
Z flag is set to 1; if the bit is 1, the Z flag is
cleared to 0.

TST1

reg2, [regl]

0/1

Test Bit. First, reads the data of regl to
generate a 32-bit address. If the bits indicated
by the lower 3 bits of reg2 of the byte data of
the generated address are 0, the Z flag is set
to 1, and if they are 1, the Z flag is cleared to
0.

XOR

regl, reg2

0/1

0/1

Exclusive Or. Exclusively ORs the word data
of reg2 with the word data of regl, and stores
the result in reg2.

User's Manual

U14559EJ3V1UM

207

APPENDIX B INSTRUCTION LIST

Table B-1. Instruction Function List (in Alphabetical Order) (11/11)

Mnemonic Operand Format Flag Instruction Function
CcY ov S z SAT

XORI imm16, regl, reg2 \ - 0 0/1 | 0/1 - Exclusive Or Immediate. Exclusively ORs the
word data of reg1l with a 16-bit immediate
data, zero-extended to word length, and stores
the result in reg2.

ZXB regl | - - - - - Zero Extend Byte. Zero-extends to word length
the lowest byte of regl.

ZXH regl | - - - - - Zero Extend Halfword. Zero-extends to word
length the lower halfword of regl.

208 User's Manual U14559EJ3V1UM

APPENDIX B

INSTRUCTION LIST

Table B-2. Instruction List (in Format Order) (1/3)

Format Opcode Mnemonic Operand

15 0|31 16

I 00000000000O0OOOOO - NOP -
rrrrrOO0O00OORRRRR - MOV regl, reg2
rrrrrOO0O001RRRRR - NOT regl, reg2
rrrrrOO0O010RRRRR - DIVH regl, reg2
OOOOOOOO010RRRRR - SWITCH regl
OO0OOOOO00011RRRRR - IMP [regl]
rrrrrO0O0100RRRRR - SATSUBR regl, reg2
rrrrrO0O0101RRRRR - SATSUB regl, reg2
rrrrrO0O0110RRRRR - SATADD regl, reg2
rrrrrO00111RRRRR - MULH regl, reg2
OO0OOOOO00100RRRRR - ZXB regl
OO0OOO000101RRRRR - SXB regl
OO0OOOOO00110RRRRR - ZXH regl
OO0OOOO000111RRRRR - SXH regl
rrrrrO0O1000RRRRR - OR regl, reg2
rrrrrO0O01001RRRRR - XOR regl, reg2
rrrrrO01010RRRRR - AND regl, reg2
rrrrrO01011RRRRR - TST regl, reg2
rrrrrO0O01100RRRRR - SUBR regl, reg2
rrrrrO01101RRRRR - SuUB regl, reg2
rrrrrO01110RRRRR - ADD regl, reg2
rrrrrO01111RRRRR - CMP regl, reg2
1111100001000000 - DBTRAP™* -

I rrrrrO10000iidiii - MOV immb5, reg2
rrrrrO10001iidiii - SATADD imm5, reg2
rrrrrO10010iidiii - ADD imm5, reg2
rrrrrO10011iidiii - CMP immb5, reg2
0000001000FTiHii - CALLT imm6
rrrrrO10100iidiii - SHR immb5, reg2
rrrrrO10101iidiii - SAR immb5, reg2
rrrrrO10110iidiii - SHL immb5, reg2
rrrrrO10111iidiii - MULH immb5, reg2

11} dddddl1l01llidddCCcCC - Bcond disp9

Note Not supported in type C products

User's Manual U14559EJ3V1UM

209

APPENDIX B

INSTRUCTION LIST

Table B-2. Instruction List (in Format Order) (2/3)

Format Opcode Mnemonic Operand

15 0] 31 16

v rrrrr0000110dddd - SLD.BU disp4 [ep], reg2
rrrrr0000111dddd - SLD.HU disp5 [ep], reg2
rrrrr0110ddddddd - SLD.B disp7 [ep], reg2
rrrrrOll1lddddddd - SST.B reg2, disp7 [ep]
rrrrr1000ddddddd - SLD.H disp8 [ep], reg2
rrrrr1001ddddddd - SST.H reg2, disp8 [ep]
rrrrr1010ddddddoO - SLD.W disp8 [ep], reg2
rrrrr1010ddddddil - SST.W reg2, disp8 [ep]

Y, rrrrr11110dddddd | dddddddddddddddO |JARL disp22, reg2
0000011110dddddd | dddddddddddddddO |Jr disp22

Vi rrrrr110000RRRRR | iiddiiniiniiniii [ADDI imm16, regl, reg2
rrrrr110001RRRRR | iidniiniiiiiniii [MOVEA imm16, regl, reg2
rrrrr110010RRRRR | iiddidiiiniiniil [MOVHI imm16, regl, reg2
rrrrr110011RRRRR [iiddiiiniiiiiniii [SATSUBI imm16, regl, reg2
O0O000110001RRRRR Note MOV imm32, regl
rrrrr110100RRRRR | iiddidiiiniiiiiil |ORI imm16, regl, reg2
rrrrr110101RRRRR [EidiEdiiididiiidiiii [XORI imm16, regl, reg2
rrrrr110110RRRRR | iiddidiiiiniiiiiil [ANDI imm16, regl, reg2
rrrrr110111RRRRR | Eid R iR EIRITNEIT |MULHI imm16, regl, reg2

Vil rrrrr111000RRRRR | dddddddddddddddd |LD.B disp16 [regl], reg2
rrrrr111001RRRRR | dddddddddddddddO (LD.H disp16 [regl], reg2
rrrrr111001RRRRR | dddddddddddddddl |Lb.w disp16 [regl], reg2
rrrrr111010RRRRR | dddddddddddddddd |sT.B reg2, disp16 [regl]
rrrrr111011RRRRR | dddddddddddddddO [ST.H reg2, disp16 [regl]
rrrrr111011RRRRR | dddddddddddddddl |sT.w reg2, disp16 [regl]
rrrrr11110bRRRRR | dddddddddddddddl |LD.BU disp16 [regl], reg2
rrrrr111111RRRRR | dddddddddddddddl |LD.HU disp16 [regl], reg2

VI OObbb111110RRRRR | dddddddddddddddd [seT1 bit#3, disp16 [regl]
01bbb111110RRRRR | dddddddddddddddd |NOT1 bit#3, disp16 [regl]
10bbb111110RRRRR | dddddddddddddddd |cLR1 bit#3, disp16 [regl]
11bbb111110RRRRR | dddddddddddddddd |TsT1 bit#3, disp16 [regl]

Note 32-bit immediate data. The higher 32 bits (bits 16 to 47) are as follows.

a7

210

User's Manual U14559EJ3V1UM

APPENDIX B

INSTRUCTION LIST

Table B-2. Instruction List (in Format Order) (3/3)

Format Opcode Mnemonic Operand
15 0|31 16

IX rrrrr1111110cccc | 0000000000000000 |[SETF cccec, reg2
rrrrr111111RRRRR | 0000000000100000 |LDSR reg2, reglD
rrrrr111111RRRRR | 0000000001000000 |STSR regID, reg2
rrrrr111111RRRRR [0000000010000000 |SHR regl, reg2
rrrrr111111RRRRR | 0000000010100000 |SAR regl, reg2
rrrrr111111RRRRR | 0000000011000000 |SHL regl, reg2
rrrrr111111RRRRR | 0000000011100000 |SET1 reg2, [regl]
rrrrr111111RRRRR | 0000000011100010 |NOT1 reg2, [regl]
rrrrr111111RRRRR | 0000000011100100 |CLR1 reg2, [regl]
rrrrr111111RRRRR | 0000000011100110 |TST1 reg2, [regl]
rrrrr1111110cccc | 0000001000000000 |SASF cccec, reg2

X 00000111111iiiii | 0000000100000000 |TRAP vector
0000011111100000 | 00O00000100100000 |HALT -
0000011111100000 | 0000000101000000 |RETI -
0000011111100000 | 00O00000101000100 |CTRET -
0000011111100000 | 0000000101000110 |DBRET"* -
0000011111100000 | 0000000101100000 |DI -
1000011111100000 [0000000101100000 |EI -

Xl rrrrr111111RRRRR [wwwww01000100000 |MUL regl, reg2, reg3
rrrrr111111RRRRR [wwwww01000100010 |MULU regl, reg2, reg3
rrrrr111111RRRRR [wwwww01010000000 |DIVH regl, reg2, reg3
rrrrr111111RRRRR [wwwww01010000010 |DIVHU regl, reg2, reg3
rrrrr111111RRRRR [wwwww01011000000 |DIV regl, reg2, reg3
rrrrr111111RRRRR [wwwww01011000010 |DIVU regl, reg2, reg3
rrrrr111111RRRRR [wwwww011001ccccO |CcMOoV cccee, reg1, reg2, reg3

Xl rrrrr111123i0iii | wwwwwO01001111100 [MUL imm9, reg2, reg3
rrrrr111123i0iid | wwwww0100121011110 |MULU imm9, reg2, reg3
rrrrr111111idiii | wwwww011000ccccO |CMOV ccec, immb5, reg2, reg3
rrrrr11111100000 [wwwww01101000000 |BSwW reg2, reg3
rrrrr11111100000 [wwwww01101000010 |BSH reg2, reg3
rrrrr11111100000 [wwwww01101000100 [HSW reg2, reg3

Xl 0000011001iiiiiL [LLLLLLLLLLLRRRRR [DISPOSE immb5, list12, [reg1]
0000011001iiiiiL [LLLLLLLLLLLOOOOO |DISPOSE imm5, list12
00000112110 diiiL | LLLLLLLLLLLOOOO1 |PREPARE list12, imm5
00000112110 iiiiL | LLLLLLLLLLLFFOLl1l |PREPARE list12, imm5, sp/imm

Note Not supported in type C products

User's Manual U14559EJ3V1UM

211

APPENDIX C INSTRUCTION OPCODE MAP

This chapter shows the opcode map for the instruction code shown below.

(1) 16-bit format instruction

15 11 10 5 4 0

T T T T T
Opcode

(see [a])

—

Sub-opcode (see [b])

(2) 32-bit format instruction

15 14 13 12 11 10 5 4 0 31 27 26 21 20 19 18 17 16
\ T T T T T T T T T T T \
Opcode Sub-opcode
| | (see [a]) (see [e]) | |
Sub-opcode (see [h]) LSub—opcode
Sub-opcode (see [d], [h]) (see [c])
Sub-opcode

(see [f], [g], [)

Remark Operand convention

Symbol Meaning
R regl: General-purpose register (used as source register)
r reg2: General-purpose register (mainly used as destination register. Some are also used as

source registers.)

w reg3: General-purpose register (mainly used as remainder of division results or higher 32 bits
of multiply results)

bit#3 3-bit data for bit number specification
immx x-bit immediate data

dispx x-bit displacement data

ccee 4-bit data condition code specification

212 User's Manual U14559EJ3V1UM

APPENDI

X C

INSTRUCTION OPCODE MAP

[a] Opcode
Bit Bit Bit Bit Bits 6, 5 Format
10 9 8 7 0,0 0,1 1,0 1,1
0 0 0 0 MOV R, r NOT DIVH JMpeet I, IV
NOPNDlEl SWITCHNO[GZ SLD-BuN0|E5
DBTRAP SLD.HU™"*®
Undefined"®
0 0 0 1 SATSUBR SATSUB SATADD R, MULH |
ZXBNme4 SXBND(EA ZXHNme4 SXHNOle4
0 0 1 0 OR XOR AND TST
0 0 1 1 SUBR SUB ADD R, CMP R, r
0 1 0 0 MOV immb5, r SATADD immb5, r ADD immb5, r CMP imm5, r 1]
CALLT"™"*
0 1 0 1 SHR immb5, r SAR imm5, r SHL imm5, r MULH immb5, r
Undefined"**
0 1 1 0 SLD.B v
0 1 1 1 SST.B
1 0 0 0 SLD.H
1 0 0 1 SST.H
1 0 1 0 SLD.W™*’
SST.We?
1 0 1 1 Bcond 1l
1 1 0 0 ADDI MOVEA MOVHI lSATSUBI VI, Xl
MOV imm32, R DISPOSE™"*
1 1 0 1 ORI XORI ANDI MULHI VI
Undefined"**
1 1 1 0 LD.B LD.H"*® ST.B ST.HY*® VI
LD-WNOIGE ST_WNO‘ES
1 1 1 1 |JR Bit manipulation 1"**°°| LD.HU""** V, VII,
JARL Undefined"** VI, X1
LD.BU""* Expansion 1"°*
PREPARE""*"
Notes 1. If R (regl) =r0 and r (reg2) = r0 (instruction without reg1l and reg2)
2. If R (regl) = r0 and r (reg2) = r0 (instruction with regl and without reg2)
3. IfR (regl) =r0 and r (reg2) = r0 (instruction without reg1 and with reg2)
4. If R (reg2) = r0 (instruction without reg2)
5. Ifbit4 =0 and r (reg2) # r0 (instruction with reg2)
6. Ifbit4 =1 andr (reg2) = r0 (instruction with reg2)
7. See [b]
8. See|c]
9. See[d]

10. If bit 16 = 1 and r (reg2) = r0O (instruction with reg2)
11. If bit 16 = 1 and r (reg2) = r0 (instruction without reg2)
12. See [€]

Remark Type C products do not support the DBTRAP instruction.

User's Manual U14559EJ3V1UM

213

APPENDIX C

INSTRUCTION OPCODE MAP

[b] Short format load/store instruction (displacement/sub-opcode)

Bit10| Bit9 | Bit8 | Bit7 Bit 0
1
0 1 1 0 SLD.B
0 1 1 1 SST.B
1 0 0 0 SLD.H
1 0 0 1 SST.H
1 0 1 0 SLD.W SST.W

[c] Load/store instruction (displacement/sub-opcode)

Bit 6 Bit 5 Bit 16
1
0 0 LD.B
0 1 LD.H LD.W
1 0 ST.B
1 1 ST.H ST.W

[d] Bit manipulation instruction 1 (sub-opcode)

Bit 15 Bit 14
0 1
0 SET1 bit#3, disp16 [R] NOT1 bit#3, disp16 [R]
1 CLR1 bit#3, disp16 [R] TST1 bit#3, disp16 [R]

214

User's Manual U14559EJ3V1UM

APPENDIX C

INSTRUCTION OPCODE MAP

[e] Expansion 1 (sub-opcode)

Bit 26 | Bit 25 | Bit 24 | Bit 23 Bits 22, 21 Format
0,0 0,1 1,0 1,1
0 0 0 0 SETF LDSR STSR Undefined IX
0 0 0 1 |SHR SAR SHL Bit manipulation 2"
0 0 1 0 TRAP HALT RETI"*? EI"*? X
CTRETNDlEZ DIND(E3
DBRET""*? Undefined
Undefined
0 0 1 1 Undefined Undefined -
0 1 0 0 SASF MUL R, 1, w MUL imm9, r, w IX, XI, XII
MULU R, r, w"** MULU imm9, r, w"*
0 1 0 1 DIVH DIV Xl
DIVHUNmeA DlquD(e4
0 1 1 0 CMOV CMOV BSW"**® Undefined X1, X1
ccec, immb5, r, w ccee, R, 1w BSH"*®
stNmES
0 1 1 1 lllegal instruction -
1 X X X
Notes 1. See [f]
2. See|9g]
3. See[h]
4. Ifbitl7=1
5. Seei]
Remark Type C products do not support the DBRET instruction.

[f] Bit manipulation instruction 2 (sub-opcode)

Bit 18 Bit 17
0 1
0 SET1 1, [R] NOT1 1, [R]
CLR1 1, [R] TST1 1, [R]
[g] Return instruction (sub-opcode)
Bit 18 Bit 17
0 1
0 RETI Undefined
CTRET DBRET

User's Manual U14559EJ3V1UM

215

APPENDIX C

INSTRUCTION OPCODE MAP

[h] PSW operation instruction (sub-opcode)

Bit 15 Bit 14 Bits 13, 12, 11
0,0,0 0,0,1 0,1,0 0,11 1,0,0 10,1 1,1,0 1,11
0 0 DI Undefined
0 1 Undefined
1 0 El Undefined
1 1 Undefined

[i] Endian conversion instruction (sub-opcode)

Bit 18 Bit 17
0 1
0 BSW BSH
1 HSW Undefined

216

User's Manual U14559EJ3V1UM

APPENDIX D DIFFERENCES WITH ARCHITECTURE OF V850 CPU

(1/2)

Item

V850E1 CPU

V850 CPU

Instructions
(including operand)

BSH reg2, reg3

BSW reg2, reg3

CALLT imm6

CLR1 reg2, [regl]

CMOV cccc, immb5, reg2, reg3

CMOV cccec, regl, reg2, reg3

CTRET

DBRET™*

DBTRAP™*

DISPOSE immb5, list12

DISPOSE immb5, list12 [regl]

DIV regl, reg2, reg3

DIVH regl, reg2, reg3

DIVHU reg1, reg2, reg3

DIVU regl, reg2, reg3

HSW reg2, reg3

LD.BU disp16 [regl], reg2

LD.HU disp16 [regl], reg2

MOV imm32, regl

MUL imm9, reg2, reg3

MUL reg1, reg2, reg3

MULU reg1l, reg2, reg3

MULU imm9, reg2, reg3

NOT1 reg2, [regl]

PREPARE list12, imm5

PREPARE list12, imm5, sp/imm

SASF cccc, reg2

SET1 reg2, [regl]

SLD.BU disp4 [ep], reg2

SLD.HU disp5 [ep], reg2

SWITCH regl

SXB regl

SXH regl

TST1 reg2, [regl]

ZXB regl

ZXH regl

Provided

Not provided

Note Not supported in type C products

User's Manual U14559EJ3V1UM

217

APPENDIX D DIFFERENCES WITH ARCHITECTURE OF V850 CPU

(212)
Item V850E1 CPU V850 CPU
Instruction format Format IV Format is different for some instructions.
Format Xl Provided Not provided
Format Xl
Format XiIl

Instruction execution clocks

Value differs for some instructions.

Program space

64 MB linear

16 MB linear

Valid bits of program counter (PC)

Lower 26 bits

Lower 24 bits

System register

CALLT execution status saving registers
(CTPC, CTPSW)

Exception/debug trap status saving
registers (DBPC, DBPSW)

CALLT base pointer (CTBP)

Note 1

Debug interface register (DIR)

Breakpoint control registers 0 and 1
(BPCO, BPC1)"**

Note 1

Program ID register (ASID)

Breakpoint address setting registers 0 and

1 (BPAVO, BPAV1)™"*

Breakpoint address mask registers 0 and
1 (BPAMO, BPAM1)"**

Breakpoint data setting registers 0 and 1
(BPDVO, BPDV1)"**

Breakpoint data mask registers 0 and 1
(BPDMO, BPDM1)™**

Provided

Not provided

Exception trap status saving registers

DBPC, DBPSW

EIPC, EIPSW

lllegal instruction code

Instruction code areas differ.

Misaligned access enable/disable setting

Can be set depending on
product

Cannot be set. (misaligned
access disabled)

* | Non-maskable interrupt Input 3 (type A, B, C products) 1
% | (Nmi) 1 (type D, E, F products)
Exception code 0010H, 0020H, 0030H 0010H
Handler address 00000010H, 00000020H, 00000010H
00000030H
Debug trap™*? Provided Not provided
Pipeline At next instruction, pipeline flow differs.

o Arithmetic operation instruction

e Branch instruction

* Bit manipulation instruction
e Special instruction (TRAP, RETI)

* Notes 1.

Used only in type A and B products

* 2. Not supported in type C products

218

User's Manual U14559EJ3VOUM

APPENDIX E INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU

Compared with the instruction codes of the V850 CPU, the instruction codes of the V850E1 CPU are upward
compatible at the object code level. In the case of the VB50E1 CPU, instructions that even if executed have no

meaning in the case of the V850 CPU (mainly instructions performing write to the rO register) are extended as

additional instructions.

The following table shows the V850 CPU instructions corresponding to the instruction codes added in the V850E1
CPU. See the table when switching from products that incorporate the V850 CPU to products that incorporate the

V850E1 CPU.

Table E-1. Instructions Added to V850E1 CPU and V850 CPU Instructions with Same Instruction Code (1/2)

Instructions Added in VB50E1 CPU

V850 CPU Instructions with Same Instruction

Code as V850E1 CPU

CALLT immé6

MOV immb5, r0 or SATADD imm5, rO

DISPOSE immb5, list12

MOVHI imm16, regl, r0 or SATSUBI imm16, regl, rO

DISPOSE immb5, list12 [regl]

MOVHI imm16, regl, rO or SATSUBI imm16, regl, rO

MOV imm32, regl

MOVEA imm16, regl, rO

SWITCH regl DIVH regl, r0

SXB regl SATSUB reg1, r0

SXH regl MULH regl, rO

ZXB regl SATSUBR regl, r0
ZXH regl SATADD regl, rO
(RFU) MULH imm5, r0

(RFU) MULHI imm16, regl, r0

BSH reg2, reg3

BSW reg2, reg3

CMOV cccc, immb5, reg2, reg3

CMOV ccce, regl, reg2, reg3

CTRET

DIV regl, reg2, reg3

DIVH regl, reg2, reg3

DIVHU regl, reg2, reg3

DIVU regl, reg2, reg3

HSW reg2, reg3

MUL imm9, reg2, reg3

MUL regl, reg2, reg3

MULU regl, reg2, reg3

MULU imm9, reg2, reg3

SASF cccc, reg2

lllegal instruction

User's Manual U14559EJ3V1UM

219

APPENDIX E INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU

Table E-1. Instructions Added to V850E1 CPU and V850 CPU Instructions with Same Instruction Code (2/2)

Instructions Added in VB50E1 CPU V850 CPU Instructions with Same Instruction
Code as V850E1 CPU

CLR1 reg2, [regl] Undefined

DBRET™*

DBTRAP"™*®

LD.BU disp16 [regl], reg2

LD.HU disp16 [regl], reg2

NOT1 reg2, [regl]

PREPARE list12, imm5

PREPARE list12, imm5, sp/imm

SET1 reg2, [regl]

SLD.BU disp4 [ep], reg2

SLD.HU disp5 [ep], reg2

TST1reg2, [regl]

* Note Not supported in type C products

220 User's Manual U14559EJ3VOUM

APPENDIX F

[Numeral]

16-bit format inStructionccooeeeeieiiiiiiiiieicieeennns 211
16-bit load/store instruction formatcccceeeevnnnn. 44
2-clockbranchcccccc . 169
3-operand instruction formatcccceiieeeeiiinns 45
32-bit format iNStruCtioneevvvvvvevevvereveeeeenennns 211
32-bit load/store instruction formatcccevvveeenens 45
[A]

ADD o 53
ADDI e 54
Additional items related to pipelinecc........ 186
AdAreSS SPACE ..vvvvviieeiiiiiiiiie et

Addressing mode
Alignment hazard
AND

ANDI

Arithmetic operation instructions

Arithmetic operation instructions (pipeline) 173
ASID s 30
[B]

Based addressingcccccccveiieeeiiiiiiiiiee e 41
BCONA ... 57
Bt i 34,35
Bit addresSsingccovvvveeeiiiiiie e 42
Bit manipulation instruction formatcccvee.... 45
Bit manipulation instructionsccccccceeeeviiiineennn. 49
Bit manipulation instructions (pipeline) 176
BPAMO ...t 31
BPAMIL ... 31
BPAVO .o 31
BPAVL i 31
BPCO ittt 29
BPCL it 29
BPDMO ...uiiiiiiiiiiiii e 32
BPDML ... 32
BPDVO ...uiiiiiiiiii e 32
BPDVL .o 32
BR instruction (pipelin€)ccccevviiivieieeeiiiiieee, 175
Branch inStructionscccceeevviiee i 49
Branch instructions (pipeling)cccccceeeeviiiivinnn.n. 174
Breakpoint address mask registers0and 1 31
Breakpoint address setting registers Oand 1 31
Breakpoint control registers 0 and 1ccoeee... 29
Breakpoint data mask registers0and 1 32
Breakpoint data setting registers0Oand 1 32
BSH o 59

INDEX

BYLE oottt 34
[C]

CALLT it 61
CALLT base pointerccccveveeeeiiiiiiieeieeeeeiireeean 25
CALLT caller status saving registersc....... 23
CALLT instruction (pipeling)cccccvvveveeeiiinnnnn. 176
Cautions when creating programsc..cc.ocuvee. 185
CLRL e 62
CLR1 instruction (pipeling)c.ccceevvvvveeeeeiiinnnn. 176
CMOV e 63
CMIP 64
Conditional branch instruction format 44
T BP e 25
CTPC ..o 23
CTPSW .23
CTRET ... 65
CTRET instruction (pipeline) 177
(D]

Data alignmentcccccveeieeeiiiiiieieee e

Data format
Data representation

Data tYPE vvverereeriiieiie ettt
DBPC oottt
DBPSW oottt n e
DBRET oottt
DBRET instruction (pipelin€)ccccccovvvveieeennns 181
DBTRAP oo 67
DBTRAP instruction (pipelin€)cccoecvveveeennns 181
Debug function instructionsccccccevvcviiieneennns 50
Debug function instructions (pipeline) 181
Debug interface registerccccovvvveeeiiiiiiiiieneeenns 26
Debug trap ...occvvvieiee e 161
Dl et 68
DI instruction (pipelin€)ccccviviieiiiiiiiiiieeeees 177
DIR 26
DISPOSE ...ccviiiiiieiie ettt 69
DISPOSE instruction (pipelin€)ccccccvveveeennns 178
DIV s 71
DIVH e 72
DIVHU oo 74
Divide instructions (pipeling)ccccccevvvvieieeennnns 173
DIVU e 75
(E]

ECR ot 20
Efficient pipeline processing 170
Bl 76

User's Manual U14559EJ3V1UM 221

APPENDIX F INDEX

EIPSW
El instruction (pIipeling)ccovveveeeiiiiiiiieee e,
Exception cause register
Exception/debug trap status saving registers
EXCeption ProCeSSINgccoeeeveviiviereeeiiiiiiieeeeeeeeans
Exception trapccoceveeeeeiiinnnns

Extended instruction format 1
Extended instruction format 2
Extended instruction format 3
Extended instruction format 4

[F]

FEPC oot 20
FEPSW .ttt 20
Format |ooooviiiii, 43
Format Ilooovvviiiiiiiiii 43
Format ... 44
FOrmat IV ... 44
FOrmat V .. 44
FOrmat VI ..o 45
FOrmat VIl ..o 45
FOrmat VI ..o 45
FOrmat IX ..o 45
Format X ...ooooviiiiiii, 46
Format Xl ...ooooviiiiiiii, 46
Format Xl ...ooooviiiiiii, 46
Format X ..o, 46
[C]

HALT instruction (pipeline)
Harvard architecture
How to shift to debug mode
HSW o,

1

imm-reg instruction formatcccccoevviiiienie e, 43
Immediate addresSingcccccvvvreeeeeeiiiiiiiieeee e 41
INStruction addressccccovvvveeiiiiee i 39
Instruction formatccccoviiiiiiiee 43
Instruction opcode MapPccccvvveveeeeiiiiiiiieneeeeenns 211
INSEIUCHION S ..vviiiiiiiiciiie e 51
INTEQET oo, 35
Internal configurationcccocccvvieiieeiiiiiiieeee e 15
INterrupt SErVICINGcccvvvvevieeiieiiies e 156
Interrupt status saving registerscccevcveeeeeiiinnns 19

IMP 80

JR 81

LDSR instruction (pipeling)ccccccvvveveeeeiiininnnnn.
Load INSLrUCLIONSccocvvviiiiiie it
Load instructions (pipeling)

Logical operation instructions
Logical operation instructions (pipeline) 174

(M]

Maskable interrupt

Memory mapcccceeee..

MOV

MOVEA

Move word instruction (pipeline)

MOWVHI L.oiiiiiiiiiiiiiiiiii bbb ererererenees
MUL o
MULH e
MULHI e
Multiply iNStructionscccccveeeviiiiiieiee e 47
Multiply instructions (pipelin€)ccoccveeeeeiininnnn. 172
MULU o 98
[N]

NMI status saving registerscccccvveeevirciveeneeennn 20
Non-blocking load/storecccccoevvviveveeeceeciinenn. 168
Non-maskable interruptcccccoevviieieee e, 158
NOP et 100
NOP instruction (pipeling)ccccoevvvveveeeeiiiiinennn. 179
[N 101

222 User's Manual U14559EJ3V1UM

APPENDIX F INDEX

[P]

P 17
Pipelingoevieeieii e 166
Pipeline disordercccoccvvevieeiiiiiiiene e 182
Pipeline flow during execution of instructions 171
PREPARE ...t 105
PREPARE instruction (pipeline)ccccccoecvvvvnennn. 179
Program COUNEETccueeeiiiieeiiiiee e 17
Program ID registerccccvvieeeeeiiiciiiieee e 30
Program registersccccoveveiniieeiniiieenieee e 16
Program status Wordccccceeeeeiiiiiiiiene e 21
P SOV e 21
[R]

FOTO I3L e
reg-reg instruction formatcccoeiiiiiinie i
Register addressingccccvveeeeeiiiiiiiienee e
Register addressing (register indirect)

Register Setoovvivieiieiiiiiiiiee e

Register status after resetcc........

Relative addressing (PC relative)

RESEL .o
Restoring from exception trap and debug trap 163
Restoring from interrupt/exception processing 162
RETI oo

RETI instruction (pipeling)ccccvvvveveeeiiiiiniennnn. 179
[S]

SAR 109
SASF o 110
SATADD oo, 111
SATSUB .o 112
SATSUBI oo 113
SATSUBR oo 114
Saturated operation instructionscccccceeeeinnns 48
Saturated operation instructions (pipeline) 174
SETL oo, 115
SET1 instruction (pipelin€)cccccceovvviivievieeiiinen, 176
SETF o, 116
Shifting to debug modeccccceeeiiiiiiiiin 189
SHL o 118
Short patheeeeeiiii 187
SHR o, 119
SLD.B oo, 120
SLD.BU oo 121
SLD.H o, 122
SLD.HU o 124
SLD.W o, 126
SLD INSEIUCHIONSeveeeiiiieeeiieee e 47
SLD instructions (pipeling)cccccceviivierieeiiinnnnn. 171
Software exceptioncccccvvvevieeiiiiiiiiee e 159
Special INSIUCLIONSoovveeiiiiiiiieee e 49
Special instructions (pipeling)ccccccveveeeiiiiinnnns 176
SST . B 128

Stack manipulation instruction format 1 .
StArtiNg UP .vvveeeeeeieiiiieeee e .. 165
Store instructions

Store instructions (pipeline) 172

STSR oo 138
STSR instruction (pipeline) 178
SUB ettt 139
SUBR i 140
SWITCH e 141
SWITCH instruction (pipeline)ccoccevveeiiinnnee. 180
SXB o ———————— 142
SXH i ————————— 143
SYSIEM FEQISIEIS ..vvvviiiiiiiiiiiieee e 18
[T]
TRAP 144
TRAP instruction (pipeling)cccccceeviiiiiiieneeennnns 180
T ST 145
TSTL oo, 146
TST1 instruction (pipeling)ccccvevveeiiiiiiiiiieees 176
(U]
Unconditional branch instructionscc.oceee.. 175
Unsigned iNtegercoocviiieiiee i 35
(W]
WOT e 33
147
148
(2]
ZXB e 149
ZXH o 150

User's Manual U14559EJ3V1UM 223

APPENDIX G REVISION HISTORY

G.1 Major Revisions in This Edition

Page Description
Throughout Deletion of product names from target devices, addition of product types as target devices
p.16 Modification of description in 2.1 (1) General-purpose registers (r0 to r31)
p.18 Modification of Table 2-2 System Register Numbers
p.24 Modification and addition of description in 2.2.6 Exception/debug trap status saving registers (DBPC,
DBPSW)
p.24 Addition of Table 2-3 Contents Saved to DBPC
p.26 Modification of Figure 2-10 Debug Interface Register (DIR)
p.29 Modification of Figure 2-11 Breakpoint Control Registers 0 and 1 (BPCO, BPC1)
p.30 Addition of description to 2.2.10 Program ID register (ASID)
p.31 Addition of description to 2.2.11 Breakpoint address setting registers 0 and 1 (BPAVO, BPAV1)
p.31 Addition of description to 2.2.12 Breakpoint address mask registers 0 and 1 (BPAMO, BPAM1)
p.32 Addition of description to 2.2.13 Breakpoint data setting registers 0 and 1 (BPDVO, BPDV1)
p.32 Addition of description to 2.2.14 Breakpoint data mask registers 0 and 1 (BPDMO, BPDM1)
p.36 Modification of 3.3 Data Alignment
pp.94, 98 Modification of description and addition of Caution to MUL and MULU in 5.3 Instruction Set
p.120 Addition of Caution (2) to 5.3 Instruction Set SLD.B
p.121 Addition of Caution (2) to 5.3 Instruction Set SLD.BU
p.123 Addition of Caution (2) to 5.3 Instruction Set SLD.H
p.125 Addition of Caution (2) to 5.3 Instruction Set SLD.HU
p.127 Addition of Caution (2) to 5.3 Instruction Set SLD.W
p.144 Correction of operation of TRAP in 5.3 Instruction Set
pp.153, 154 Modification and addition of Notes in Table 5-6 List of Number of Instruction Execution Clock Cycles
p.160 Addition of (4) to 6.2.2 Exception trap
p.161 Addition of description to 6.2.3 Debug trap
p.189 Addition of CHAPTER 9 SHIFTING TO DEBUG MODE
p.197 Addition of APPENDIX A NOTES
p.224 Addition of APPENDIX G REVISION HISTORY

224

User's Manual U14559EJ3V1UM

APPENDIX G REVISION HISTORY

G.2 History of Revisions up to This Edition

A history of the revisions up to this edition is shown below. “Applied to:” indicates the chapters to which the revision

was applied.
(1/2)
Edition Major Revision from Previous Edition Applied to:
2nd ¢ Addition of following products (under development) to target products Throughout

NB85ET, NU85E, NUS5SET, 4PD703108, 703114, 70F3114, 703116

¢ Deletion of following product from target products
4PD703117

e Change of following products from “under development” to “developed”
#PD703106, 703107, 70F3107

CHAPTER 2

Change of Note in Figure 2-1 Registers

Change of Table 2-2 System Register Numbers

Addition of Note to Figure 2-6 Program Status Word (PSW)

Addition of Note to 2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)

Change of Caution in 2.2.8 Debug interface register (DIR)

Change of Caution in 2.2.9 Breakpoint control registers 0 and 1 (BPCO, BPC1)

Change of Figure 2-11 Breakpoint Control Registers 0 and 1 (BPCO, BPC1)

Change of Caution in 2.2.10 Program ID register (ASID)

Change of Caution in 2.2.11 Breakpoint address setting registers 0 and 1 (BPAVO, BPAV1)

Change of Caution in 2.2.12 Breakpoint address mask registers 0 and 1 (BPAMO, BPAM1)

Change of Caution in 2.2.13 Breakpoint data setting registers 0 and 1 (BPDV0, BPDV1)

Change of Caution in 2.2.14 Breakpoint data mask registers 0 and 1 (BPDMO, BPDM1)

REGISTER SET

Addition of Caution to 5.2 (10) Debug function instructions CHAPTER 5
INSTRUCTION

Addition of Caution to DBRET in 5.3 Instruction Set STRUCTIO

Addition of Caution to DBTRAP in 5.3 Instruction Set

Change and addition of Note in Table 5-6 List of Number of Instruction Execution Clock

Cycles (NB85E, NB85ET, NU85SE, and NU85ET)

Change of Note in Table 5-7 List of Number of Instruction Execution Clock Cycles

(V850E/MA1, VB50E/MA2, VB50E/IA1, and V850E/IA2)

Addition of Note to Table 6-1 Interrupt/Exception Codes CHAPTER 6

. . INTERRUPT AND

Addition of Caution to 6.2.3 Debug trap
EXCEPTION

Addition of Remark and Example to 8.1.2 2-clock branch CHAPTER 8
PIPELINE

Addition of Caution to 8.1.3 Efficient pipeline processing

Correction of description in 8.2 (2) V850E/MA1, VB50E/MA2, VB50E/IA1, VB50E/IA2

Correction of description in 8.2.1 (2) SLD instructions

Correction of description in 8.2.3 Multiply instructions

Addition of Remark to 8.2.4 (3) Divide instructions

Correction of description in 8.2.8 (2) TST1 instruction

Addition of Remark to 8.2.9 (3) DI, El instructions

Addition of Caution to 8.2.9 (7) NOP instruction

User's Manual U14559EJ3V1UM

225

APPENDIX G REVISION HISTORY

(2/12)
Edition Major Revision from Previous Edition Applied to:
2nd | Addition of 8.3 Pipeline Disorder CHAPTER 8
Addition of 8.4 Additional Iltems Related to Pipeline PIPELINE
Addition of Note to Table A-1 Instruction Function List (in Alphabetical Order) APPENDIX A
Addition of Note to Table A-2 Instruction List (in Format Order) :_I\IISS_:RUCTION
Correction of Figure in Appendix B (2) 32-bit format instruction APPENDIX B
Addition of Remark to Appendix B [a] Opcode I(IJ\IEJSSEE(Z':
Addition of Remark to Appendix B [e] Expansion 1 (sub-opcode)
APPENDIX C

Addition of Note to Appendix C DIFFERENCES WITH ARCHITECTURE OF V850 CPU

DIFFERENCES
WITH
ARCHITECTURE
OF V850 CPU

Addition of Note to Table D-1 Instructions Added to V850E1 CPU and V850 CPU Instructions
with Same Instruction Code

APPENDIX D
INSTRUCTIONS
ADDED FOR
V850E1 CPU
COMPARED WITH
V850 CPU

226

User's Manual U14559EJ3V1UM

	COVER
	PREFACE
	CHAPTER 1 GENERAL
	1.1 Features
	1.2 Internal Configuration

	CHAPTER 2 REGISTER SET
	2.1 Program Registers
	2.2 System Registers
	2.2.1 Interrupt status saving registers (EIPC, EIPSW)
	2.2.2 NMI status saving registers (FEPC, FEPSW)
	2.2.3 Exception cause register (ECR)
	2.2.4 Program status word (PSW)
	2.2.5 CALLT caller status saving registers (CTPC, CTPSW)
	2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)
	2.2.7 CALLT base pointer (CTBP)
	2.2.8 Debug interface register (DIR)
	2.2.9 Breakpoint control registers 0 and 1 (BPC0, BPC1)
	2.2.10 Program ID register (ASID)
	2.2.11 Breakpoint address setting registers 0 and 1 (BPAV0, BPAV1)
	2.2.12 Breakpoint address mask registers 0 and 1 (BPAM0, BPAM1)
	2.2.13 Breakpoint data setting registers 0 and 1 (BPDV0, BPDV1)
	2.2.14 Breakpoint data mask registers 0 and 1 (BPDM0, BPDM1)

	CHAPTER 3 DATA TYPES
	3.1 Data Format
	3.2 Data Representation
	3.2.1 Integer
	3.2.2 Unsigned integer
	3.2.3 Bit

	3.3 Data Alignment

	CHAPTER 4 ADDRESS SPACE
	4.1 Memory Map
	4.2 Addressing Mode
	4.2.1 Instruction address
	4.2.2 Operand address

	CHAPTER 5 INSTRUCTIONS
	5.1 Instruction Format
	5.2 Outline of Instructions
	5.3 Instruction Set
	ADD
	ADDI
	AND
	ANDI
	Bcond
	BSH
	BSW
	CALLT
	CLR1
	CMOV
	CMP
	CTRET
	DBRET
	DBTRAP
	DI
	DISPOSE
	DIV
	DIVH
	DIVHU
	DIVU
	EI
	HALT
	HSW
	JARL
	JMP
	JR
	LD.B
	LD.BU
	LD.H
	LD.HU
	LD.W
	LDSR
	MOV
	MOVEA
	MOVHI
	MUL
	MULH
	MULHI
	MULU
	NOP
	NOT
	NOT1
	OR
	ORI
	PREPARE
	RETI
	SAR
	SASF
	SATADD
	SATSUB
	SATSUBI
	SATSUBR
	SET1
	SETF
	SHL
	SHR
	SLD.B
	SLD.BU
	SLD.H
	SLD.HU
	SLD.W
	SST.B
	SST.H
	SST.W
	ST.B
	ST.H
	ST.W
	STSR
	SUB
	SUBR
	SWITCH
	SXB
	SXH
	TRAP
	TST
	TST1
	XOR
	XORI
	ZXB
	ZXH

	5.4 Number of Instruction Execution Clock Cycles

	CHAPTER 6 INTERRUPTS AND EXCEPTIONS
	6.1 Interrupt Servicing
	6.1.1 Maskable interrupts
	6.1.2 Non-maskable interrupts

	6.2 Exception Processing
	6.2.1 Software exceptions
	6.2.2 Exception trap
	6.2.3 Debug trap

	6.3 Restoring from Interrupt/Exception Processing
	6.3.1 Restoring from interrupt and software exception
	6.3.2 Restoring from exception trap and debug trap

	CHAPTER 7 RESET
	7.1 Register Status After Reset
	7.2 Starting Up

	CHAPTER 8 PIPELINE
	8.1 Features
	8.1.1 Non-blocking load/store
	8.1.2 2-clock branch
	8.1.3 Efficient pipeline processing

	8.2 Pipeline Flow During Execution of Instructions
	8.2.1 Load instructions
	8.2.2 Store instructions
	8.2.3 Multiply instructions
	8.2.4 Arithmetic operation instructions
	8.2.5 Saturated operation instructions
	8.2.6 Logical operation instructions
	8.2.7 Branch instructions
	8.2.8 Bit manipulation instructions
	8.2.9 Special instructions
	8.2.10 Debug function instructions

	8.3 Pipeline Disorder
	8.3.1 Alignment hazard
	8.3.2 Referencing execution result of load instruction
	8.3.3 Referencing execution result of multiply instruction
	8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC
	8.3.5 Cautions when creating programs

	8.4 Additional Items Related to Pipeline
	8.4.1 Harvard architecture
	8.4.2 Short path

	CHAPTER 9 SHIFTING TO DEBUG MODE
	9.1 How to Shift to Debug Mode
	9.2 Cautions

	APPENDIX A NOTES before the sld instruction.
	A.1 Restriction on Conflict Between sld Instruction and Interrupt request
	A.1.1 Description
	A.1.2 Countermeasure

	APPENDIX B INSTRUCTION LIST
	APPENDIX C INSTRUCTION OPCODE MAP
	APPENDIX D DIFFERENCES WITH ARCHITECTURE OF V850 CPU
	APPENDIX E INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU
	APPENDIX F INDEX
	APPENDIX G REVISION HISTORY
	G.1 Major Revisions in This Edition
	G.2 History of Revisions up to This Edition

