

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

Printed in Japan
©

V830 Family TM

32-Bit Microprocessor

Architecture

Document No. U12496EJ4V0UMJ1 (4th edition)
Date Published August 2000 J CP(K)

1995

2 User’s Manual U12496EJ4V0UM00

[MEMO]

3User’s Manual U12496EJ4V0UM00

SUMMARY OF CONTENTS

CHAPTER 1 INTRODUCTION... 17

CHAPTER 2 REGISTER SETS ... 21

CHAPTER 3 DATA SETS... 31

CHAPTER 4 ADDRESS SPACE.. 33

CHAPTER 5 INSTRUCTIONS ... 37

CHAPTER 6 INTERRUPTS AND EXCEPTIONS .. 115

CHAPTER 7 INTERNAL MEMORY ... 121

CHAPTER 8 RESET .. 129

CHAPTER 9 PIPELINE .. 131

APPENDIX A INSTRUCTION SUMMARY .. 145

APPENDIX B OPERATION CODE MAP ... 159

APPENDIX C INDEX ... 163

4 User’s Manual U12496EJ4V0UM00

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

V830, V830 Family, V831, V832, V810, and V810 Family are trademarks of NEC Corporation.

UNIX is a registered trademark licensed by X/Open Company Limited in the US and other countries.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/

or other countries.

TRON stands for The Realtime Operating system Nucleus.

ITRON stands for Industrial TRON.

5User’s Manual U12496EJ4V0UM00

M8E 00. 4

The information in this document is current as of June, 1999. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).

•

•

•

•

•

•

6 User’s Manual U12496EJ4V0UM00

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, pIease contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Madrid Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP Brasil
Tel: 55-11-6462-6810
Fax: 55-11-6462-6829

J00.7

7User’s Manual U12496EJ4V0UM00

Major Revision in This Edition

Page Description

p. 27 Section 2.2.6 has been modified.

p. 111 Table 5-4 has been modified.

p. 115 A note has been added to Table 6-1 .

p. 120 Section 6.4.1 has been added.

p. 127 Section 7.2.2 has been modified.

The mark * shows major revised points.

8 User’s Manual U12496EJ4V0UM00

[MEMO]

9User’s Manual U12496EJ4V0UM00

PREFACE

Intended readers This manual is intended for those users who wish to become familiar with the

functions of the V830 Family, and those involved in the design of systems based

on the V830 Family.

• The V830 Family products

• V830TM: µPD705100

• V831TM: µPD705101

• V832TM: µPD705102

Purpose The purpose of this manual is to assist users in understanding the architecture

of the V830 Family, i.e., the topics listed in “Configuration” below.

Configuration This manual covers the following:

• Register set

• Data set

• Address space

• Instructions

• Interrupts and exceptions

• Internal memory

• Reset

• Pipeline

How to use this manual Readers of this manual are assumed to have a general knowledge of electronics,

logic circuits, and microcomputers.

For an explanation of the hardware functions

→ Read the User's Manual - Hardware of each device.

For an explanation of the instructions

→ Read Chapter 5 .

For an explanation of the electrical characteristics

→ Read the Data Sheet of each device.

To gain an overall understanding of the functions provided by the V830 Family

→ Read this manual in its entirety.

Legend Significance of a data representation : Left high, right low

Representation of active low : XXX (bar above a pin or signal name)

Memory map address : Top upper, bottom lower

Note : Explanation of Note that appears in text

10 User’s Manual U12496EJ4V0UM00

Caution : Point to which the user must pay par-

ticular attention

Remark : Supplementary explanation of the con-

tents of the text

Numeric representations : XXXX or XXXXB for a binary number

XXXX for a decimal number

XXXXH for a hexadecimal number

Prefixes indicating powers of two (address space, memory capacity):

K (kilo) : 210 = 1024

M (mega) : 220 = 10242

G (giga) : 230 = 10243

Related documents Some related documents may be preliminary editions; if so, however, this is not

indicated in this manual.

• Documents for the V830 Family

Product name Data sheet User's manual

Alias name Product Hardware Architecture

V830 µPD705100 U11483E U10064E This manual

V831 µPD705101 U12979E U12273E

V832 µPD705102 U13675E U13577E

• Documents for V830 Family development tools (User's manual)

Document name Document No.

CA830 (C Compiler) Operation (UNIXTM-based) U11013E

Operation (WindowsTM-based) U11068E

Assembly Language U11014E

C U11010E

Project Manager U11991E

RX830 (Real-Time OS) ITRON1 Fundamental U11730E

Installation U11731E

Fundamental U13152E

Installation U13151E

µITRON
Ver 3.0

11User’s Manual U12496EJ4V0UM00

CONTENTS

CHAPTER 1 INTRODUCTION ... 17

1.1 OVERVIEW .. 17

1.2 FEATURES .. 17

1.3 INTERNAL CONFIGURATION OF THE CPU .. 18

CHAPTER 2 REGISTER SETS .. 21

2.1 PROGRAM REGISTER SET .. 21

2.1.1 General-Purpose Register Set .. 21

2.1.2 Program Counter (PC) ... 22

2.2 SYSTEM REGISTER SET .. 23

2.2.1 Program Status Word (PSW) .. 23

2.2.2 Exception/Interrupt Status Save Registers (EIPC and EIPSW)............... 25

2.2.3 NMI/Double Exception Status Save Registers (FEPC and FEPSW) 26

2.2.4 Fatal Exception Status Save Registers (DPC and DPSW) 26

2.2.5 Exception Cause Register (ECR) .. 27

2.2.6 Processor ID Register (PIR) .. 27

2.2.7 Task Control Word (TKCW) ... 27

2.2.8 Hardware Configuration Control Word (HCCW) 28

2.3 SYSTEM REGISTER NUMBERS ... 29

CHAPTER 3 DATA SETS .. 31

3.1 DATA TYPES... 31

3.1.1 Integers ... 32

3.1.2 Unsigned Integers .. 32

3.2 DATA ALIGNMENT ... 32

CHAPTER 4 ADDRESS SPACE .. 33

4.1 ADDRESSING MODE ... 35

4.1.1 Instruction Addresses .. 35

4.1.2 Operand Addresses ... 36

CHAPTER 5 INSTRUCTIONS .. 37

5.1 INSTRUCTION FORMAT .. 37

5.2 OUTLINE OF INSTRUCTIONS... 39

5.3 INSTRUCTION SET .. 43

5.4 INSTRUCTION EXECUTION CYCLES .. 109

*

12 User’s Manual U12496EJ4V0UM00

*

CHAPTER 6 INTERRUPTS AND EXCEPTIONS .. 115

6.1 INTERRUPT HANDLING .. 116

6.1.1 Maskable Interrupts .. 116

6.1.2 Nonmaskable Interrupts ... 117

6.2 EXCEPTION HANDLING .. 118

6.3 RETURN FROM EXCEPTION/INTERRUPT .. 119

6.3.1 Return from Exception/Interrupt .. 119

6.3.2 Return from Fatal Exception Handling Routine .. 119

6.4 PRIORITIES OF INTERRUPTS AND EXCEPTIONS .. 120

6.4.1 Priorities of Maskable Interrupts .. 120

CHAPTER 7 INTERNAL MEMORY ... 121

7.1 BUILT-IN CACHE .. 121

7.1.1 Instruction Cache ... 121

7.1.2 Instruction Cache Tag Retrieval .. 122

7.1.3 Data Cache ... 124

7.1.4 Data Cache Tag Retrieval ... 125

7.1.5 Cache Memory Control Register ... 126

7.2 BUILT-IN RAM ... 127

7.2.1 Instruction RAM .. 127

7.2.2 Instruction RAM Retrieval (V830 and V831).. 127

7.2.3 Data RAM ... 128

CHAPTER 8 RESET ... 129

8.1 INITIALIZATION .. 129

8.2 START-UP ... 130

CHAPTER 9 PIPELINE .. 131

9.1 OUTLINE OF OPERATION... 131

9.2 PIPELINE FLOW WHEN EACH INSTRUCTION IS EXECUTED 132

9.2.1 Load Instructions .. 132

9.2.2 Store Instructions ... 132

9.2.3 Block Transfer Instructions .. 133

9.2.4 I/O Instructions ... 134

9.2.5 Arithmetic Operation Instructions (Other Than the Multiply and Divide

Instructions) .. 135

9.2.6 Multiply Instructions ... 135

9.2.7 Divide Instructions .. 135

9.2.8 Multiply/Sum-of-Products Instructions ... 136

9.2.9 Signal-Processing Operation Instructions ... 136

*

13User’s Manual U12496EJ4V0UM00

9.2.10 Logical Operation Instructions ... 137

9.2.11 Shift Operation Instructions ... 137

9.2.12 Branch/Jump Instructions .. 138

9.2.13 Jump and Link Instruction .. 138

9.2.14 High-Speed Branch Instructions .. 139

9.2.15 Special Instructions .. 139

9.2.16 Address Traps and Interrupts .. 141

9.3 DISRUPTIONS IN PIPELINE OPERATION ... 142

9.3.1 Structure Hazard (1) .. 142

9.3.2 Structure Hazard (2) .. 142

9.3.3 Register Forwarding ... 143

9.3.4 Instruction Code Hazard .. 143

9.3.5 Flag Hazard .. 144

APPENDIX A INSTRUCTION SUMMARY .. 145

A.1 TYPES OF INSTRUCTIONS... 145

A.1.1 Instructions Shared with V810TM ... 145

A.1.2 Instructions Unique to V810 .. 147

A.2 INSTRUCTIONS (LISTED ALPHABETICALLY) .. 149

APPENDIX B OPERATION CODE MAP .. 159

APPENDIX C INDEX .. 163

14 User’s Manual U12496EJ4V0UM00

LIST OF FIGURES

Figure No. Title Page

1-1. Internal Configuration .. 18

2-1. Program Registers .. 22

2-2. System Registers .. 23

4-1. Memory Map .. 33

7-1. Built-In Cache Configuration ... 121

7-2. Instruction Cache Configuration ... 122

7-3. Data Cache Configuration .. 124

9-1. Example of Executing Nine Standard Instructions Successively 131

15User’s Manual U12496EJ4V0UM00

LIST OF TABLES

Table No. Title Page

5-1. Conditional Branch Instructions (ABcond Instructions) ... 46

5-2. Conditional Branch Instructions (Bcond Instructions) ... 52

5-3. Condition Codes .. 96

5-4. Instruction Execution Cycles .. 111

6-1. Exception/Interrupt Source Codes ... 115

8-1. Conditions of Registers after Reset ... 129

16 User’s Manual U12496EJ4V0UM00

[MEMO]

17User’s Manual U12496EJ4V0UM00

CHAPTER 1 INTRODUCTION

The V830 Family, offered by NEC for built-in control applications, consists of RISC microprocessors having

the V830 as their CPU core.

1.1 OVERVIEW

The V830 Family consists of high-performance 32-bit RISC microprocessors. The V830 Family can perform

the data processing demanded by multimedia devices in only a few cycles. Besides a high interrupt

responsibility and an optimized pipeline structure, a sum-of-products instruction, double-word shift instruction,

and high-speed branch instruction using branch predication have been added to support multimedia functions.

Furthermore, by inheriting the V810 FamilyTM basic instruction set at the object level, V810 Family software

can be used as is.

The V830 Family offers high performance for applications which require high-speed data processing, such

as image processing, game machines, car navigation, high-performance TVs, color facsimile machines,

Internet and intranet devices, office automation equipment, etc.

1.2 FEATURES

• Number of instructions: 102

• Minimum number of instruction execution cycles: 1

• General-purpose registers: 32 bits x 32

• Instruction set: V810 basic instruction set

Sum-of-products operation (32 bits x 32 bits + (upper/lower) 32 bits): 1-3 cycles

Saturatable arithmetic operation (with a saturation detection function)

Double-word shift (64-bit data shift): 1-2 cycles

High-speed branch

Block transfer instruction

• Memory space

Memory space, I/O space: 4G-byte linear address

• Internal memory

Instruction cache (direct mapping): 4K bytes

Data cache (direct mapping/write-through): 4K bytes

Instruction RAM: 4K bytes

Data RAM: 4K bytes

• Power control

• Stop mode

• Sleep mode

• CMOS structure

18

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

1.3 INTERNAL CONFIGURATION OF THE CPU

Figure 1-1 shows the internal configuration of a V830 Family microprocessor.

Figure 1-1. Internal Configuration

(1) CPU core

Executes the processing of the majority of instructions, including address calculation, arithmetic and logic

operations, and data transfer within one cycle, by means of 5-stage pipeline control.

Dedicated hardware, such as an adder with a sum-of-products function (32 bits x 32 bits + (upper/lower)

32 bits) and barrel shifter (capable of 64-bit data shift) are built in to enable the high-speed processing

of complicated instructions.

(2) Bus interface

Activates a required bus cycle according to the physical address acquired by the CPU. The bus interface

unit supports both 32-bit bus mode, in which the external data bus has a 32-bit configuration, and 16-bit

bus mode, in which it has a 16-bit configuration. It outputs appropriate control signals according to the

mode set when a bus cycle is activated.

(3) Interrupt controller

Handles received hardware interrupt requests (nonmaskable and maskable interrupt requests) . The

handler for maskable interrupts can be placed in the built-in instruction RAM.

Interrupt controller

V830 CPU core

Barrel shifter

Instruction cache (4K)

System registers (11)

32-bit multiplier
(with sum-of-products

operation function)

General-purpose registers
32 bits × 32

Instruction RAM (4K)

Data cache (4K)

Data RAM (4K)

Write buffer
(4 stages)

B
us

 in
te

rf
ac

e
un

it

19

CHAPTER 1 INTRODUCTION

User’s Manual U12496EJ4V0UM00

(4) Write buffer

Stores data write (up to four data items) when the CPU performs write to external hardware. When data

is written into the write buffer, the CPU no longer has to wait for the end of the bus cycle and can continue

processing.

(5) Internal memory

16K-byte memory. This memory consists of four 4K-byte blocks, an instruction cache, data cache,

instruction RAM, and data RAM. The instruction RAM uses direct mapping, while the data cache uses

direct mapping/write-through.

20

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

[MEMO]

21User’s Manual U12496EJ4V0UM00

CHAPTER 2 REGISTER SETS

2.1 PROGRAM REGISTER SET

The V830 Family has two types of register sets: general-purpose register sets which can be used by

programmers, and system register sets which control the execution environment. The width of all registers

is 32 bits.

2.1.1 General-Purpose Register Set

(1) General-purpose registers

The V830 Family has 32 general-purpose registers, r0-r31, which can be used either as data registers

or address registers. Note, however, that r0, r30, and r31 contain values that are fixed by hardware or

which are used implicitly by instructions.

(a) Hardware-dependent registers

Hardware-dependent registers contain values that are fixed by hardware or which are used implicitly

by instructions.

r0 : Zero register

Always contains 0.

r30 : Register reserved for operation

Serves as an auxiliary register which stores the result of a multiplication or division

instruction.

r31 : Link pointer

The JAL instruction stores the return address in this register.

Remark The initial values of r1 to r31 are indefinite.

(b) Software-reserved registers

These registers are used by assemblers and compilers. To use them as registers for variables, first

save their contents to guard against data loss or damage. When their use is no longer required restore

the saved contents.

r1 : Assembler-reserved register

Serves as a working register for creating 32 bits of immediate data. It is used implicitly when

the assembler calculates an effective address.

r2 : Handler stack pointer

Reserved as the stack pointer for a handler.

r3 : Stack pointer

Reserved for stack frame creation when a function is called.

r4 : Global pointer

Used when accessing a global variable in a data area.

r5 : Text pointer

Points to the beginning of a text area.

22

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

2.1.2 Program Counter (PC)

The program counter (PC) is a register which holds the first address of the instruction being executed. Bit

0 of the program counter is fixed to 0, but is forcibly masked to 0 upon a branch to a point other than a halfword

boundary (bit 0 of the address is 0).

Upon reset, the program counter is initialized to FFFFFFF0H.

Figure 2-1. Program Registers

r0 : Zero register

r1 : Assembler-reserved register

r2 : Handler stack pointer

r3 : Stack pointer

r4 : Global pointer

r5 : Text pointer

r6

r29

r30: Register reserved for operation

r31: Link pointer

PC

23

CHAPTER 2 REGISTER SETS

User’s Manual U12496EJ4V0UM00

2.2 SYSTEM REGISTER SET

System registers are used to control the processor state, save exception/interruption information, and

manage tasks. The V830 Family has eleven 32-bit system registers. These registers can be accessed using

special instructions (LDSR and STSR instructions).

Figure 2-2. System Registers

#0

#1

#2

#3

#4

#5

#6

#7

#16

#17

#31

EIPC

EIPSW

FEPC

FEPSW

ECR

PSW

PIR

TKCW

DPC

DPSW

HCCW

Remark The system register number is preceded by #.

2.2.1 Program Status Word (PSW)

The program status word is a set of flags indicating the program status (results of instruction execution)

and the processor status. If the LDSR instruction is used to modify the fields in this register, the modification

will become effective immediately after the LDSR instruction is executed.

The initial value is 00008000H.

24

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

PSW (#5)
31

RFU

9 4 3 2 1 0

ZS
O
V

S
A
T

C
YRFU

D
P

I
D

R
F
U

E
P

N
P

I
0

I
1

I
2

I
3

20 19 18 17 16 13 12 11 101415

Bit position Field name Meaning

31-20 RFU Reserved (fixed to 0)

19-16 I3-I0 Interrupt Level
Level of maskable interrupt enabled

15 NP NMI Pending
Indicates that an NMI is being handled. When an NMI is accepted, the NP bit
is set to mask NMIs so that multiple interrupts will be disabled.

NP = 0: NMI processing not in progress
NP = 1: NMI processing in progress

14 EP Exception Pending
Indicates that an exception, trap, or interrupt is being handled. When an
exception event occurs, this bit is set to mask interrupts.

EP = 0: Exception, trap, or interrupt handling is not in progress.
EP = 1: Exception, trap, or interrupt handling is in progress.

13 RFU Reserved (must be fixed to 0)

12 ID Interrupt Disable
Indicates whether the V830 is ready to accept an external interrupt.

ID = 0: Interrupts are enabled.
ID = 1: Interrupts are disabled.

11 DP Debug Pending
Indicates that a fatal exception is being handled.

DP = 1: Fatal exception handling is in progress.
DP = 0: Fatal exception handling is not in progress.

10 SAT Saturate Flag
Indicates whether overflow has occurred during a saturatable arithmetic
operation. The SAT bit is held until it is cleared.

SAT = 1: Overflow has occurred
SAT = 0: No overflow has occurred

9-4 RFU Reserved (must be fixed to 0)

3 CY Carry
Indicates whether a carry occurred during an arithmetic operation.

CY = 0: No carry occurred.
CY = 1: A carry occurred.

2 OV Overflow
Indicates whether an overflow occurred during an arithmetic operation.

OV = 0: No overflow occurred.
OV = 1: Overflow occurred.

1 S Sign
Indicates whether the result of an operation is negative.

S = 0: The result of the operation is positive or zero.
S = 1: The result of the operation is negative.

25

CHAPTER 2 REGISTER SETS

User’s Manual U12496EJ4V0UM00

Bit position Field name Meaning

0 Z Zero
Indicates whether the result of an operation is zero.

Z = 0: The result of the operation is other than zero.
Z = 1: The result of the operation is zero.

Remark RFU stands for Reserved for Future Use.

2.2.2 Exception/Interrupt Status Save Registers (EIPC and EIPSW)

EIPC and EIPSW are registers in which the contents of the PC and PSW will be saved when an exception

or maskable interrupt occurs — EIPC for PC and EIPSW for PSW. There is only one pair of EIPC and EIPSW.

If, therefore, it is necessary to enable multiple exceptions or multiple interrupts, the software designer must

ensure that EIPC and EIPSW will be saved.

Bit 0 of EIPC and bits 31-20, 13, and 9-4 of EIPSW are fixed to 0. If an exception occurs when the EP

bit of PSW is set (indicating that a double exception has occurred), the PC and PSW are not saved in EIPC

and EIPSW, instead being saved in FEPC and FEPSW.

The initial values are indefinite.

EIPSW (#1)
31

RFU

20 19 18 17 16 15 14 4 3 2 1 0

ZS
O
V

S
A
T

C
YRFU

D
P

I
D

R
F
U

E
P

N
P

I
0

I
1

I
2

I
3

EIPC (#0)
31

PC

0

0

913 12 11 10

Remark RFU stands for Reserved for Future Use.

26

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

2.2.3 NMI/Double Exception Status Save Registers (FEPC and FEPSW)

When an NMI or double exception (exception that occurs when the EP bit of the PSW is 1) occurs, the PC

and PSW are saved in these registers — FEPC for PC and FEPSW for PSW. Since saving to FEPC and

FEPSW indicates a serious problem, prompt action is needed.

Bit 0 of FEPC and bits 31-20, 13, and 9-4 of FEPSW are fixed to 0.

The initial values are indefinite.

FEPSW (#3)
31

RFU

20 19 18 17 16 15 14 13 4 3 2 1 0

ZS
O
V

S
A
T

C
YRFU

D
P

I
D

R
F
U

E
P

N
P

I
0

I
1

I
2

I
3

FEPC (#2)
31

PC

0

0

912 11 10

Remark RFU stands for Reserved for Future Use.

2.2.4 Fatal Exception Status Save Registers (DPC and DPSW)

When a fatal exception (exception that occurs when the NP bit of the PSW is set to 1) occurs, the PC and

PSW are saved in these registers — DPC in PC and DPSW in PSW. Since saving to DPC and DPSW indicates

a serious problem, prompt action is needed.

Bit 0 of DPC and bits 31-20, 13, and 9-4 of DPSW are fixed to 0.

The initial values are indefinite.

DPSW (#17)
31

RFU

20 19 18 17 16 15 14 13 4 3 2 1 0

ZS
O
V

S
A
T

C
YRFU

D
P

I
D

R
F
U

E
P

N
P

I
0

I
1

I
2

I
3

DPC (#16)
31

PC

0

0

912 11 10

Remark RFU stands for Reserved for Future Use.

27

CHAPTER 2 REGISTER SETS

User’s Manual U12496EJ4V0UM00

2.2.5 Exception Cause Register (ECR)

When an exception, maskable interrupt, or NMI occurs, its cause is stored in this register. The value held

in ECR is coded for each cause of exception (see Chapter 6).

ECR is read-only. It is impossible to write data in ECR using the LDSR instruction.

The initial value is 0000FFF0H.

ECR (#4)
31

FECC

16 15

EICC

0

Bit position Field name Meaning

31-16 FECC Exception code of NMI or double exception

15-0 EICC Exception code of exception or interrupt

2.2.6 Processor ID Register (PIR)

This register identifies the CPU type. Its value is shown below.

(1) V830: 00008300H

(2) V831: 00008301H

(3) V832: 00008302H

PIR is read-only. It is impossible to write data in PIR using the LDSR instruction.

The value of the register is fixed.

2.2.7 Task Control Word (TKCW)

This register is provided for task control. It is read-only. It is impossible to write data in TKCW using the

LDSR instruction. It is currently not used, but is provided to ensure that compatibility is maintained.

The value is fixed to 000000E0H.

TKCW (#7)
31

RFU

9 8 7 6 5 4 3 2 1 0

RD
R
D
I

F
P
T

F
U
T

F
V
T

F
Z
T

F
I
T

O
T
M

Remark RFU stands for Reserved for Future Use.

*

PIR(#6)
(1) V830

31 12 11 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

"8"

8 716 1520 1924 2328 27

0 0 1 1 0 0 0 0 0 0 0 0

"3" "0"

(2) V831

31 12 11 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

"8"

8 716 1520 1924 2328 27

0 0 1 1 0 0 0 0 0 0 0 1

"3" "1"

(3) V832

31 12 11 4 3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

"8"

8 716 1520 1924 2328 27

0 0 1 1 0 0 0 0 0 0 1 0

"3" "2"

28

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

2.2.8 Hardware Configuration Control Word (HCCW)

This register specifies the maskable interrupt handler address.

The initial value is 00000000H.

I
H
A

1 0

RFU

HCCW (#31)
31

Bit position Field name Meaning

31-1 RFU Reserved (must be fixed to 0)

0 IHA Interrupt Handler Address
Indicates the address of the maskable interrupt handler.

IHA = 1: FE0000n0H (built-in instruction RAM)
IHA = 0: FFFFFEn0H (external memory)

n: Interrupt level

Remark RFU stands for Reserved for Future Use.

29

CHAPTER 2 REGISTER SETS

User’s Manual U12496EJ4V0UM00

2.3 SYSTEM REGISTER NUMBERS

For inputs from and outputs to the system registers, system register numbers are specified in the LDSR

and STSR instructions, as follows:

Whether to allow operand specification
No. System register

LDSR STSR

0 EIPC : Exception/Interrupt PC

1 EIPSW : Exception/Interrupt PSW

2 FEPC : Fatal Error PC

3 FEPSW : Fatal Error PSW

4 ECR : Exception Cause Register —

5 PSW : Program Status Word

6 PIR : Processor ID Register —

7 TKCW : Task Control Word —

8-15 Reserved

16 DPC : Debug PC

17 DPSW : Debug PSW

18-30 Reserved

31 HCCW : Hardware Configuration Control Word

— : Inhibited (inaccessible)

: Allowed (accessible)

30

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

[MEMO]

31User’s Manual U12496EJ4V0UM00

CHAPTER 3 DATA SETS

3.1 DATA TYPES

The V830 Family supports three data types: byte (8 bits), halfword (16 bits), and word (32 bits). Data of

these types must be aligned with byte, halfword, or word boundaries, respectively. Addressing is based on

little endian.

(1) Byte data

One byte of data consists of eight consecutive bits, each of which is named. Bit 0 is the LSB (Least

Significant Bit) while bit 7 is the MSB (Most Significant Bit). This data can be placed at any address.

(2) Halfword data

One halfword of data consists of 16 consecutive bits, each of which is named. Bit 0 is the LSB, while

bit 15 is the MSB. Halfword data must be aligned with halfword boundaries (in address areas such that

bit 0 of the address of the segment containing bit 0 is 0).

(3) Word data

One word of data consists of 32 consecutive bits, each of which is named. Bit 0 is the LSB and bit 31

is the MSB. Word data must be aligned with word boundaries (in address areas such that bits 0 and 1

of the address of the segment containing bit 0 are 0).

15 8 7 0

AA + 1

A = 2n (where n is a positive integer)

Address

31 16 15 0

AA + 2A + 3 A + 1Address

A = 4n (where n is a positive integer)

7 0

MSB LSB

AAddress

32

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

3.1.1 Integers

In the V830 Family, integers are represented by twos complements. They are expressed by bytes,

halfwords, or words. Digit ordering for integers is as follows: Bit 0 is handled as the least significant bit,

regardless of the data length. Larger bit numbers correspond to higher orders.

Data length Range (in decimal notation)

Byte (8 bits) –128 to +127

Halfword (16 bits) –32,768 to +32,767

Word (32 bits) –2,147,483,648 to +2,147,483,647

3.1.2 Unsigned Integers

Unsigned integers are of a data type for which the most significant bit is not handled as a sign bit, but all

bits represent a positive integer. Data of this data type is represented by a binary number and has a size

of a byte, halfword, or word. Digit ordering for unsigned integers is as follows: Bit 0 is handled as the least

significant bit, regardless of the data length. Larger bit numbers correspond to higher orders.

Data length Range (in decimal notation)

Byte (8 bits) 0 to 255

Halfword (16 bits) 0 to 65,535

Word (32 bits) 0 to 4,294,967,295

3.2 DATA ALIGNMENT

The V830 Family requires that data be aligned with appropriate boundaries: word boundaries for word data,

halfword boundaries for halfword data, and byte boundaries for byte data. If a data alignment error is delected,

the data address is automatically changed to an accessible address. It is impossible to predict whether this

address change will lead to correct or incorrect data access. This change is made as follows:

Data size Method

Byte data —

Halfword data Bit 0 is masked to 0.

Word data Bits 0 and 1 are masked to 0.

33User’s Manual U12496EJ4V0UM00

CHAPTER 4 ADDRESS SPACE

The V830 Family supports 4G-byte linear address spaces for both the memory space and I/O space. It

assigns 32-bit addresses to the memory space. The maximum address is 232 - 1. It also assigns 32-bit

addresses to the I/O space.

Figure 4-1 shows a memory map for the V830 Family.

Figure 4-1. Memory Map

Byte data aligned with each address is defined such that bits 0 and 7 are the LSB and MSB, respectively.

If data consists of multiple bytes, it is defined such that the byte data at the low-order address contains the

LSB and that at the high-order address contains the MSB (little-endian ordering), unless specified otherwise.

Memory space I/O space

Internal I/O area

External I/O area

External I/O area

External I/O area

Built-in instruction RAM

Cachable area

Cachable area

Uncachable area (V830)
DCU reserved area
(other than V830)

Uncachable area

Cachable area

Built-in data RAM

FFFFFFFFH

FE000FFFH

FE000000H

C0000000H

BFFFFFFFH

80000000H

7FFFFFFFH

60000000H

5FFFFFFFH

40000000H

3FFFFFFFH

00001000H

00000FFFH

00000000H

34

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

According to V830 Family terminology, data arranged in two-byte format is called halfword data, while that

arranged in four-byte format is called word data. For data consisting of multiple bytes, the low-order address

on the right and the high-order address on the left, as indicated below.

7 0

A

15 8 7 0

A + 1 A

31 24 23 16 15 8 7 0

A + 3 A + 2 A A + 1

Byte at address A Data

Address

Data

Address

Data

Address

Halfword at address A

Word at address A

35

CHAPTER 4 ADDRESS SPACE

User’s Manual U12496EJ4V0UM00

4.1 ADDRESSING MODE

The V830 Family generates two types of addresses, as follows:

• Instruction addresses (used by instructions involving branching)

• Operand addresses (used by instructions which access data)

4.1.1 Instruction Addresses

The instruction address is determined by the contents of the program counter (PC). Each time an instruction

is executed, it is automatically incremented by 2 or 4, depending on the number of bytes constituting the

instruction being fetched. When a branch instruction is executed, the branch address is set in the PC by the

following addressing mode:

(1) Relative addressing (to PC)

The signed 9 or 26 bits (displacement, or disp) of data contained in the operation code are added to the

program counter (PC). For this addition, the displacement is handled as twos complement data. Bit 8

or 25 is the sign bit, respectively.

The JR, JAL, Bcond, and ABcond instructions use this addressing.

Addressing for Bcond and ABcond instructions

Sign extension

PC

31

0

0

S

9 8 0

0

31

31

PC 0

0

disp9

+

Addressing for JR and JAL instructions

Sign extension

0

0

0

0

0

0

PC

PC

31

31

31

S

26 25

disp26

+

36

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

(2) Register addressing (via register)

The contents of the general-purpose register (r0-r31) designated in the instruction are transferred to the

program counter (PC).

The JMP instruction uses this addressing.

31 0

0

0PC

31

Register m

4.1.2 Operand Addresses

(1) Register addressing

In this addressing mode, the general-purpose register designated in the general-purpose register

designation field is accessed as an operand. This addressing is used by instructions whose operand

format is reg1 or reg2.

(2) Immediate addressing

In this addressing mode, the 5 or 16 bits of data constituting the operation code are handled as an operand.

This addressing is used by those instructions whose operand format is imm5 or imm16.

(3) Based addressing

In this addressing mode, when the memory area containing the operand is accessed, its address is

determined from the sum of the contents of the general-purpose register designated by the address

designation code and the 16-bit displacement in the instruction. This addressing is used by those

instructions having an operand format of disp16[reg1].

0

0

disp16

reg1

16 15

31

31

Sign extension

37User’s Manual U12496EJ4V0UM00

CHAPTER 5 INSTRUCTIONS

5.1 INSTRUCTION FORMAT

The V830 Family uses two instruction formats: 16-bit and 32-bit. The 16-bit instructions include binary

operation, control, and conditional branch instructions, while the 32-bit instructions include load/store and

I/O operation instructions, instructions for handling 16 bits of immediate data, and jump-and-link instructions.

Some instructions contain unused fields, which must be fixed to 0, which are provided for future use. When

an instruction is actually loaded into memory, its configuration is as follows:

• Low-order part of each instruction format (including bit 0) → Low-order address

• High-order part of each instruction format (including bit 15 or 31) → High-order address

(1) reg-reg instruction format [FORMAT I]

This instruction format has a six-bit operation code field and two general-purpose register designation

fields for operand specification, giving a total length of 16 bits.

(2) imm-reg instruction format [FORMAT II]

This instruction format has a six-bit operation code field, a five-bit immediate data field, and a general-

purpose register designation field, giving a total length of 16 bits.

(3) Conditional branch instruction format [FORMAT III]

This instruction format has a three-bit operation code field, a four-bit condition code field, a nine-bit branch

displacement field (bit 0 is handled as 0 and need not be specified), and a one-bit sub-operation code,

giving a total length of 16 bits.

reg1

04 59 1015

opcode reg2

15 13 12 9 8 1 0
s = 0 : Bcond
s = 1 : ABcond

s : sub-opcode

opcode cond disp9 s

imm5

04 59 1015

opcode reg2

38

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

(4) Medium-distance jump instruction format [FORMAT IV]

This instruction format has a six-bit operation code field and a 26-bit displacement field (the lowest-order

bit must be 0), giving a total length of 32 bits.

 (5) Three-operand instruction format [FORMAT V]

This instruction format has a six-bit operation code field, two general-purpose register designation fields,

and a 16-bit immediate data field, giving a total length of 32 bits.

(6) Load/store instruction format [FORMAT VI]

This instruction format has a six-bit operation code field, two general-purpose register designation fields,

and a 16-bit displacement field, giving a total length of 32 bits.

(7) Extended instruction format [FORMAT VII]

This instruction format has a six-bit operation code field, two general-purpose register designation fields,

and a six-bit sub-operation code field, giving a total length of 32 bits.

(8) Three-register operand instruction format [FORMAT VIII]

This instruction format has a six-bit operation code field, three general-purpose register designation fields,

and a six-bit sub-operation code field, giving a total length of 32 bits.

(9) No-operand instruction format [FORMAT IX]

This instruction format has a six-bit operation code field and a one-bit sub-operation code field, giving a

total length of 16 bits.

15

disp26

16

0

10 9 0 31

opcode

15

imm16

1610 9 0 31

opcode

5 4

reg2 reg1

15

disp16

1610 9 0 31

opcode

5 4

reg2 reg1

15

RFU

1610 9 0 31

opcode

5 4

reg2 reg1 sub-opcode

26 25

15

RFU

1610 9 0 31

opcode

5 4

reg2 reg1 sub-opcode

26 25

reg3

21 20

15

RFU

s : sub-opcode

s

10 9 1 0

opcode

39

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

5.2 OUTLINE OF INSTRUCTIONS

(1) Load/store instructions: For data transfer between memory and register

Mnemonic Meaning

LD.B Load Byte

LD.H Load Halfword

LD.W Load Word

ST.B Store Byte

ST.H Store Halfword

ST.W Store Word

BILD Block Instruction Load to built-in instruction RAM

BIST Block Instruction Store from built-in instruction RAM

BDLD Block Data Load to built-in data RAM

BDST Block Data Store from built-in data RAM

(2) I/O instructions: For data transfer between I/O and registers

Mnemonic Meaning

IN.B Input Byte from port

IN.H Input Halfword from port

IN.W Input Word from port

OUT.B Output Byte to port

OUT.H Output Halfword to port

OUT.W Output Word to port

40

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

(3) Arithmetic operation instructions: For addition, subtraction, multiplication, division, data comparison,

and register-to-register data transfer

Mnemonic Meaning

MOV Move data

MOVHI Move with addition of High-order Immediate data

ADD Add

ADDI Add Immediate data

MOVEA Move with Addition

SUB Subtract

MUL Multiply (signed)

MULU Multiply Unsigned

DIV Divide (signed)

DIVU Divide Unsigned

CMP Compare

SETF Set Flag condition

MIN3 Minimum on 3 operands

MAX3 Maximum on 3 operands

(4) Sum-of-products/saturatable operation instructions

Mnemonic Meaning

MUL3 Multiply on 3 operands

MAC3 Multiply and Accumulate on 3 operands

MULI Multiply on Immediate and register data

MACI Multiply and Accumulate on Immediate and register data

MULT3 Multiply with Truncation on 3 operands

MACT3 Multiply and Accumulate with Truncation on 3 operands

SATADD3 Saturatable Addition on 3 operands

SATSUB3 Saturatable Subtraction on 3 operands

41

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

(5) Logical operation instructions

Mnemonic Meaning

OR OR (disjunction)

ORI OR of Immediate data and register data

AND AND (conjunction)

ANDI AND of Immediate data and register data

XOR Exclusive OR

XORI Exclusive OR of Immediate and register data

NOT NOT (ones compliment)

SHL Shift Logical to the Left

SHR Shift Logical to the Right

SAR Shift Arithmetic to the Right

SHLD3 Shift to the Left of Double word on 3 operands

SHRD3 Shift to the Right of Double word on 3 operands

(6) Branch instructions: Unconditional branch instruction, conditional branch instructions which change

control according to the setting of a flag, and high-speed (advanced) branch

instructions which make use of branch history

Mnemonic Meaning

JMP Jump unconditional (via register)

JR Jump Relative to PC, unconditional

JAL Jump and Link

ABGT Advanced Branch on Greater than signed
BGT Branch on Greater than signed

ABGE Advanced Branch on Greater than or Equal signed
BGE Branch on Greater than or Equal signed

ABLT Advanced Branch on Less than signed
BLT Branch on Less than signed

ABLE Advanced Branch on Less than or Equal signed
BLE Branch on Less than or Equal signed

ABH Advanced Branch on Higher
BH Branch on Higher

ABNL Advanced Branch on Not Lower
BNL Branch on Not Lower

ABL Advanced Branch on Lower
BL Branch on Lower

ABNH Advanced Branch on Not Higher
BNH Branch on Not Higher

42

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Mnemonic Meaning

ABE Advanced Branch on Equal
BE Branch on Equal

ABNE Advanced Branch on Not Equal
BNE Branch on Not Equal

ABV Advanced Branch on Overflow
BV Branch on Overflow

ABNV Advanced Branch on No Overflow
BNV Branch on No Overflow

ABN Advanced Branch on Negative
BN Branch on Negative

ABP Advanced Branch on Positive
BP Branch on Positive

ABC Advanced Branch on Carry
BC Branch on Carry

ABNC Advanced Branch on No Carry
BNC Branch on No Carry

ABZ Advanced Branch on Zero
BZ Branch on Zero

ABNZ Advanced Branch on Not Zero
BNZ Branch on Not Zero

ABR Advanced Branch Always (unconditional)
BR Branch Always (unconditional)

NOP Not Always (no branching)

(7) Special instructions: Instructions other than those in (1) to (6) above

Mnemonic Meaning

LDSR Load to System Register

STSR Store contents of System Register

TRAP Software Trap

RETI Return from Trap or Interrupt

CAXI Compare and Exchange Interlocked

HALT Halt

BRKRET Break Return from fatal exception

EI Enable maskable Interrupt

DI Disable maskable Interrupt

STBY Standby

43

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

5.3 INSTRUCTION SET

Format of explanations of each instruction

Instruction mnemonic Meaning

[Syntax] Explains how to write the instruction, together with the required operands. The

following abbreviations are used in the explanations of operands:

Abbreviation Meaning

reg1 General-purpose register (used as a source register)

reg2 General-purpose register (used mainly as a destination
register, but with some instructions, as a source register)

reg3 General-purpose register (used mainly as a destination
register, but with some instructions, as a source register)

immx x bits of immediate data

dispx x-bit displacement

regID System register number

vector adr Trap handler address corresponding to trap vector

[Operation] Explains the function of the instruction. The following abbreviations are used:

Abbreviation Meaning

← Assignment

II Bit concatenation

GR[x] General-purpose register x

SR[x] System register x

sign-extend (x) Value x is subjected to sign extension to the length of
one word.

zero-extend (x) Value x is subjected to zero extension to the length of
one word.

Load-Memory (x, y) Data of size y is read from address x.

Store-Memory (x, y, z) Data y is written to address x with size z.

Input-Port (x, y) Data of size y is read from port address x.

Output-Port (x, y, z) Data y is written to port address x with size z.

adr Unsigned 32-bit address

44

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

[Format] Identifies an instruction format by its number.

[Operation code] Gives the operation code of an instruction by showing the bit pattern in the operation

code field.

[Flags] Explains how each flag operates.

Abbreviation Meaning

— No change

0 Change to 0

1 Change to 1

[Instruction] Briefly explains the function of the instruction.

[Description] Explains the operation of the instruction in detail.

[Supplement] Gives a supplementary explanation.

[Exception] Explains exceptions which could occur when the instruction is executed.

45

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

ABcond Advanced Branch on condition

[Syntax] ABcond disp9

[Operation] if conditions are satisfied

then PC ← PC + sign-extend(disp9)

[Format] Format III

[Operation code]

The $$$$ field indicates the condition (see Table 5-1).

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] ABcond - Advanced branch on condition according to a code having a 9-bit

displacement

[Description] The condition flag specified in the instruction is tested. If the condition is satisfied,

the instruction sets the PC to the sum of the current PC value and the 9 bits sign-

extended to a word, transfers control according to the resulting PC value, and leaves

a branch history.

High-speed branching is assured when an instruction with a branch history is

executed. However, since only one branch history can be held, the only instruction

carrying a branch history is the ABcond instruction executed last.

Bit 0 of the 9-bit displacement is masked to 0. Since the current PC value used for

calculation is the start address of the ABcond instruction itself, the branch destination

will be the instruction itself if the displacement is 0.

[Supplement] The branch history is erased if one of the following conditions is satisfied:

• Reset

• Execution of BILD instruction (instruction transfer from external memory to built-

in instruction RAM)

• Rewriting of IRAMR register (built-in instruction RAM change)

• Clearing of instruction cache

• Rewriting of instruction cache tag

15

disp9 1

9 8 1 0

100$$$$

46

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Pay careful attention to the following when loading a program:

• Because the program is loaded into built-in instruction RAM only by the BILD

instruction, the branch history is automatically erased.

• When the program is loaded into the cachable area, the branch history is erased

by clearing the instruction cache (setting the ICC bit of the cache memory control

register (CMCR) to 1).

• When the program is loaded into the uncachable area, erase the previous branch

history by executing the ABR instruction. If the user does not erase it, an incorrect

branch occurs when the previous branch history points to the program area which

was rewritten.

[Exception] None

Table 5-1. Conditional Branch Instructions (ABcond Instructions)

Instruction Bits 12-9 Status of condition flag Branch condition

Integer ABGT 1111 ((S xor OV) or Z) = 0 Greater than signed

ABGE 1110 (S xor OV) = 0 Greater than or equal signed

ABLT 0110 (S xor OV) = 1 Less than signed

ABLE 0111 ((S xor OV) or Z) = 1 Less than or equal signed

Unsigned integer ABH 1011 (CY or Z) = 0 Higher (Greater than)

ABNL 1001 CY = 0 Not lower (Greater than or equal)

ABL 0001 CY = 1 Lower (Less than)

ABNH 0011 (CY or Z) = 1 Not higher (Less than or equal)

Common ABE 0010 Z = 1 Equal

ABNE 1010 Z = 0 Not equal

Other ABV 0000 OV = 1 Overflow

ABNV 1000 OV = 0 No overflow

ABN 0100 S = 1 Negative

ABP 1100 S = 0 Positive

ABC 0001 CY = 1 Carry

ABNC 1001 CY = 0 No carry

ABZ 0010 Z = 1 Zero

ABNZ 1010 Z = 0 Not zero

ABR 0101 — Always (unconditional)

47

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

ADD Add

[Syntax] (1) ADD reg1, reg2

(2) ADD imm5, reg2

[Operation] (1) GR[reg2] ← GR[reg2] + GR[reg1]

(2) GR[reg2] ← GR[reg2] + sign-extend(imm5)

[Format] (1) Format I

(2) Format II

[Operation code] (1)
15 10 9 5 4 0

000001 reg2 reg1

(2)
15 10 9 5 4 0

imm5010001 reg2

[Flags] CY : Assumes 1 if there is a carry from the MSB. Otherwise, assumes 0.

OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] (1) ADD - Add the contents of registers

(2) ADD - Add the contents of a register and immediate data (5 bits)

[Description] (1) The instruction adds the word in reg1 to the word in reg2 and stores the sum

in reg2. The contents of reg1 remain unchanged.

(2) The instruction adds the 5 bits of immediate data, sign-extended to a word, to

the word in reg2 then stores the sum in reg2.

[Exception] None

48

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

ADDI Add Immediate data

[Syntax] ADDI imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] + sign-extend(imm16)

[Format] Format V

[Operation code]
15 10 9 5 4 0 31 16

101001 reg2 reg1 imm16

[Flags] CY : Assumes 1 if there is a carry from the MSB. Otherwise, assumes 0.

OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] ADDI - Add the contents of a register and immediate data (16 bits)

[Description] The instruction adds the 16 bits of immediate data, sign-extended to a word, to the

word in reg1 then stores the sum in reg2. The contents of reg1 remain as is.

[Exception] None

49

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

AND AND (conjunction)

[Syntax] AND reg1, reg2

[Operation] GR[reg2] ← GR[reg2] AND GR[reg1]

[Format] Format I

[Operation code]
15 10 9 5 4 0

001101 reg2 reg1

[Flags] CY : —

OV : 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] AND - AND of registers

[Description] The instruction ANDs the words in reg1 and reg2 then stores the result in reg2. The

contents of reg1 remain as is.

[Exception] None

50

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

ANDI AND of Immediate data and register data

[Syntax] ANDI imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] AND zero-extend(imm16)

[Format] Format V

[Operation code]
15 10 9 5 4 0

101101 reg2 reg1

0 31

imm16

[Flags] CY : —

OV : 0

S : 0

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] ANDI - AND contents of a register and immediate data (16 bits)

[Description] The instruction ANDs the 16 bits of immediate data, zero-extended to a word, and

the word in reg1 then stores the result in reg2. The contents of reg1 remain as is.

[Exception] None

51

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

Bcond Branch on condition

[Syntax] Bcond disp9

[Operation] if condition are satisfied

then PC ← PC + (sign-extend)disp9

[Format] Format III

[Operation code]
15 9 8 1 0

0100$$$$ disp9

The $$$$ field indicates the condition (see Table 5-2).

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] Bcond - Branch on condition according to a code having a 9-bit displacement

[Description] The condition flag specified in the instruction is tested. If the condition is satisfied,

the instruction sets the PC to the sum of the current PC value and the 9-bit

displacement, sign-extended to a word, then transfers control according to the

resulting PC value. Bit 0 of the 9-bit displacement is masked to 0. Since the current

PC value used for calculation is the start address of the Bcond instruction itself, the

branch destination will be the instruction itself if the displacement is 0.

[Exception] None

52

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Table 5-2. Conditional Branch Instructions (Bcond Instructions)

Instruction Bits 12-9 Status of condition flag Branch condition

Integer BGT 1111 ((S xor OV) or Z) = 0 Greater than signed

BGE 1110 (S xor OV) = 0 Greater than or equal signed

BLT 0110 (S xor OV) = 1 Less than signed

BLE 0111 ((S xor OV) or Z) = 1 Less than or equal signed

Unsigned integer BH 1011 (CY or Z) = 0 Higher (Greater than)

BNL 1001 CY = 0 Not lower (Greater than or equal)

BL 0001 CY = 1 Lower (Less than)

BNH 0011 (CY or Z) = 1 Not higher (Less than or equal)

Common BE 0010 Z = 1 Equal

BNE 1010 Z = 0 Not equal

Other BV 0000 OV = 1 Overflow

BNV 1000 OV = 0 No overflow

BN 0100 S = 1 Negative

BP 1100 S = 0 Positive

BC 0001 CY = 1 Carry

BNC 1001 CY = 0 No carry

BZ 0010 Z = 1 Zero

BNZ 1010 Z = 0 Not zero

BR 0101 — Always (unconditional)

NOP 1101 — Not Always (no branch)

53

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

BDLD Block Data Load to built-in data RAM

[Syntax] BDLD [reg1], [reg2]

[Operation] Store-internal-data-Memory(GR[reg2], Load-Memory(GR[reg1], 16 bytes), 16 bytes)

[Format] Format VII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] BDLD - Block data load to internal memory

[Description] The instruction transfers four words (16 bytes) of data from external memory to built-

in data RAM. In the instruction, reg1 indicates the external memory address, while

reg2 indicates the built-in data RAM offset address.

Bits 0-3 of reg1 and reg2 (addresses) must be 0.

[Exception] None

15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 100001 RFU

54

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

BDST Block Data Store from built-in data RAM

[Syntax] BDST [reg2], [reg1]

[Operation] Store-Memory(GR[reg1], Load-internal-data-Memory(GR[reg2], 16 bytes), 16 bytes)

[Format] Format VII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] BDST - Block data store from internal data memory to external memory

[Description] The instruction transfers four words (16 bytes) of data from built-in data RAM to

external memory. In the instruction, reg2 indicates the built-in data RAM offset

address, while reg1 indicates the external memory address.

Bits 0-3 of reg1 and reg2 (addresses) must be 0.

[Exception] None

15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 100011 RFU

55

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

BILD Block Instruction Load to built-in instruction RAM

[Syntax] BILD [reg1], [reg2]

[Operation] Store-internal-instruction-Memory(GR[reg2], Load-Memory(GR[reg1], 16 bytes), 16

bytes)

[Format] Format VII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] BILD - Block instruction load to internal memory

[Description] The instruction transfers four words (16 bytes) of data from external memory to built-

in instruction RAM. In the instruction, reg1 indicates the external memory address,

while reg2 indicates the built-in instruction RAM offset address.

Bits 0-3 of reg1 and reg2 (addresses) must be 0.

[Supplement] When the BILD instruction is executed, the branch history for the ABcond instruction

(high-speed branching) is erased.

[Exception] None

15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 100000 RFU

56

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

BIST Block Instruction Store from built-in instruction RAM

[Syntax] BIST [reg2], [reg1]

[Operation] Store-Memory(GR[reg1], Load-internal-instruction-Memory(GR[reg2], 16 bytes), 16

bytes)

[Format] Format VII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] BIST - Block instruction store from internal instruction memory to external memory

[Description] The instruction transfers four words (16 bytes) of data from built-in instruction RAM

to external memory. In the instruction, reg2 indicates the built-in instruction RAM

offset address, while reg1 indicates the external memory address.

Bits 0-3 of reg1 and reg2 (addresses) must be 0.

[Exception] None

15 10 9 5 4 0 31 26 25 16

111110 reg2 reg1 100010 RFU

57

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

BRKRET Break Return from fatal exception

[Syntax] BRKRET

[Operation] PC ← DPC

PSW ← DPSW

[Format] Format IX

[Operation code]
15 10 9 1 0

1011001 RFU

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] BRKRET - Break return

[Description] The instruction effects a return from a fatal exception by fetching the PC and PSW

from the DPC and DPSW system registers.

When the instruction is executed, the return PC and PSW are retrieved from the DPC

and DPSW. The retrieved return PC and PSW are set in the PC and PSW so that

program execution will jump to the PC.

[Supplement] Use this instruction only when processing is needed for a return from a fatal

exception.

[Exception] None

58

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

CAXI Compare And Exchange Interlocked

[Syntax] CAXI disp16[reg1], reg2

[Operation] locked

adr ← GR[reg1] + (sign-extend)disp16

tmp ← Load-Memory(adr,Word)

if GR[reg2] = tmp(comparison;result ← GR[reg2] - tmp)

then Store-Memory(adr, GR[30], Word)

GR[reg2] ← tmp

else Store-Memory(adr, tmp, Word)

GR[reg2] ← tmp

unlocked

[Format] Format VI

[Operation code]

[Flags] CY : Assumes 1 if comparison involves a borrow from the MSB. Otherwise, as-

sumes 0.

OV : Assumes 1 if comparison has encountered overflow. Otherwise, assumes 0.

S : Assumes 1 if the comparison result is negative. Otherwise, assumes 0.

Z : Assumes 1 if the comparison result is zero. Otherwise, assumes 0.

[Instruction] CAXI - Compare and exchange interlocked

[Description] The instruction synchronizes the processors of a multi-processor system. The data

specified by disp16[reg1] is used for synchronization (a lock word, for example).

The condition prior to the execution of the instruction is as follows:

Newly set lock word GR[30]

Previously read lock word GR[reg2]

Lock word The lock word is the word at the address
specified by GR[reg1] + (sign-extend)disp16.
Bits 0 and 1 of the address are masked to 0.

15 10 9 5 4

disp16111010 reg2

0 31 16

reg1

59

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

In this condition, the CAXI instruction performs the following:

(1) Locks the bus to prevent access by other processors.

(2) Fetches the lock word.

(3) Compares the lock word with the previously read lock word and sets the flags

such that they reflect the result of the comparison.

(4) If the new and old lock words match, it indicates that the conditions under which

the previous access was made are still effective (no lock due to access by a

program running on another processor).

Since execution of the CAXI instruction changes the condition, the instruction

sets the lock word in GR[30] (new lock word).

(5) If the new and old lock words do not match, it indicates that the conditions under

which the previous access was made are no longer effective (lock due to access

by a program running on another processor). Therefore, the instruction sets the

lock word in GR[reg2] to determine the condition assumed by the lock word.

(6) Unlocks the bus.

[Exception] None

60

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

CMP Compare

[Syntax] (1) CMP reg1, reg2

(2) CMP imm5, reg2

[Operation] (1) result ← GR[reg2] - GR[reg1]

(2) result ← GR[reg2] - sign-extend(imm5)

[Format] (1) Format I

(2) Format II

[Operation code] (1)

(2)

[Flags] CY : Assumes 1 if there is a borrow from the MSB. Otherwise, assumes 0.

OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if the result is negative. Otherwise, assumes 0.

Z : Assumes 1 if the result is zero. Otherwise, assumes 0.

[Instruction] (1) CMP - Compare registers

(2) CMP - Compare register and immediate data (5 bits)

[Description] (1) The instruction compares the words in reg2 and reg1 and sets the condition flag

according to the result. This comparison involves subtracting the contents of

reg1 from those of reg2. The contents of reg1 and reg2 remain as is.

(2) The instruction compares the word in reg2 with the five bits of immediate data,

sign-extended to a word, and sets the condition flag according to the result. This

comparison involves subtracting the five bits of immediate data, sign-extended

to a word, from the word in reg2. The contents of reg2 remain as is.

[Exception] None

15 10 9 5 4

000011 reg2

0

reg1

15 10 9 5 4 0

010011 reg2 imm5

61

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

DI Disable maskable Interrupt

[Syntax] DI

[Operation] Sets the ID bit in the PSW to disable maskable interrupts.

[Format] Format II

[Operation code]
15 10 9 0

011110 RFU

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] DI - Disable interrupts

[Description] The instruction disables maskable interrupts by setting the ID bit in the PSW to 1.

This has the same effect as when the LDSR instruction is used to set the PSW ID

bit to 1.

[Supplement] The DI instruction cannot disable nonmaskable interrupts. To disable nonmaskable

interrupts, use the LDSR instruction to rewrite the PSW.

[Exception] None

62

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

DIV Divide (signed)

[Syntax] DIV reg1, reg2

[Operation] GR[30] ← GR[reg2] MOD GR[reg1](signed)

GR[reg2] ← GR[reg2] ÷ GR[reg1](signed)

[Format] Format I

[Operation code]

[Flags] CY : —

OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] DIV - Divide

[Description] The instruction divides the word in reg2 by the word in reg1 (signed operands) and

stores the quotient in reg2 and the remainder in r30. This division is conducted such

that the sign of the remainder matches the sign of the dividend. The contents of reg1

remain as is. If r30 is designated as reg2, the quotient is stored in r30. Overflow

occurs when the negative maximum (80000000H) is divided by -1 (FFFFFFFFH).

In this case, reg2 contains the negative maximum and r30 contains 0.

[Exception] Division-by-zero exception

[Caution] If the word in reg1 is 0, a division-by-zero exception occurs, causing a trap to the

exception handler. In this case, the contents of reg2, r30, and the flags remain as

is.

15 10 9 5 4 0

001001 reg2 reg1

63

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

DIVU Divide Unsigned

[Syntax] DIVU reg1, reg2

[Operation] GR[30] ← GR[reg2] MOD GR[reg1](unsigned)

GR[reg2] ← GR[reg2] ÷ GR[reg1](unsigned)

[Format] Format I

[Operation code]

[Flags] CY : —

OV : 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] DIVU - Divide unsigned value

[Description] The instruction divides the word in reg2 by the word in reg1 (unsigned operands)

and stores the quotient in reg2 and the remainder in r30. The contents of reg1 remain

as is. If r30 is designated as reg2, the quotient is stored in r30. The flags are set

as if the results were signed data.

[Exception] Division-by-zero exception

[Caution] If the word in reg1 is 0, a division-by-zero exception occurs, causing a trap to the

exception handler. In this case, the contents of reg2, r30, and the flags remain as

is.

15 10 9 5 4 0

001011 reg2 reg1

64

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

EI Enable maskable Interrupt

[Syntax] EI

[Operation] Clears the ID bit in the PSW to enable maskable interrupts.

[Format] Format II

[Operation code]
15 10 9 0

010110 RFU

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] EI - Enable interrupts

[Description] The instruction enables maskable interrupts by resetting the ID bit in the PSW to 0.

This produces the same effect as when the LDSR instruction is used to reset the PSW

ID bit to 0.

[Supplement] The EI instruction cannot enable nonmaskable interrupts. To enable nonmaskable

interrupts, use the LDSR instruction to rewrite the PSW.

[Exception] None

65

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

HALT Halt

[Syntax] HALT

[Operation] Stops program execution.

[Format] Format IX

[Operation code]
15 10 9 1 0

011010 RFU 0

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] HALT - Halt

[Description] The instruction stops the CPU and places it in sleep mode.

[Exception] None

66

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

IN Input from port

[Syntax] (1) IN.B disp16[reg1], reg2

(2) IN.H disp16[reg1], reg2

(3) IN.W disp16[reg1], reg2

[Operation] (1) adr ← GR[reg1] + (sign-extend)disp16

 zero-extend
GR[reg2] ← Input-Port(adr, Byte)

(2) adr ← GR[reg1] + (sign-extend)disp16

 zero-extend
GR[reg2] ← Input-Port(adr, Halfword)

(3) adr ← GR[reg1] + (sign-extend)disp16

GR[reg2] ← Input-Port(adr, Word)

[Format] Format VI

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] (1) IN.B - Input byte from port

(2) IN.H - Input halfword from port

(3) IN.W - Input word from port

[Description] (1) The instruction adds the data in reg1 and the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit port address. It reads a byte of data

from the resulting port address, zero-extends the read byte to a word, then stores

the result in reg2.

(2) The instruction adds the data in reg1 and the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit port address. It reads a halfword of

data from the resulting port address, zero-extends the read halfword to a word,

then stores the result in reg2. Bit 0 of the unsigned 32-bit address is masked

to 0.

15 10 9 5 4

1110∗$ reg2

160 31

reg1 disp16

(∗$: 00 = (1), 01 = (2), 11 = (3))

67

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

(3) The instruction adds the data in reg1 and the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit port address. It reads a word of data

from the resulting port address then stores the word in reg2. Bits 0 and 1 of the

unsigned 32-bit address are masked to 0.

[Exception] None

68

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

JAL Jump and Link

[Syntax] JAL disp26

[Operation] GR[31] ← PC + 4

PC ← PC + (sign-extend)disp26

[Format] Format IV

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] JAL - Jump and link

[Description] The instruction adds 4 to the current PC, saves the sum in r31, adds the 26-bit

displacement, sign-extended to a word, to the current PC, sets the sum in the PC,

then transfers control according to the newly set PC. The lowest-order bit of the 26-

bit displacement is masked to 0. Since the current PC value used for calculation

is the start address of the JAL instruction itself, the branch destination will be the

instruction itself if the displacement is 0.

[Exception] None

15 10 9 17 16

101011 0

0 31

disp26

69

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

JMP Jump unconditional (via register)

[Syntax] JMP [reg1]

[Operation] PC ← GR[reg1]

[Format] Format I

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] JMP - Jump to register-specified address

[Description] The instruction transfers control to the address specified by reg1. Bit 0 of the address

is masked to 0.

[Exception] None

15 10 9

000110

05 4

reg1—

70

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

JR Jump Relative to PC, unconditional

[Syntax] JR disp26

[Operation] PC ← PC + (sign-extend)disp26

[Format] Format IV

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] JR - Jump to relative address

[Description] The instruction sets the PC to the sum of the current PC and the 26-bit displacement,

sign-extended to a word, then transfers control according to the newly set PC. Bit

0 of the 26-bit displacement is masked to 0.

Since the current PC value used for calculation is the start address of the JR

instruction itself, the branch destination will be the instruction itself if the displace-

ment is 0.

[Exception] None

15 10 9

101010 0

0 31

disp26

17 16

71

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

LD Load

[Syntax] (1) LD.B disp16[reg1], reg2

(2) LD.H disp16[reg1], reg2

(3) LD.W disp16[reg1], reg2

[Operation] (1) adr ← GR[reg1] + (sign-extend)disp16

sign-extend

GR[reg2] ← Load-Memory(adr, Byte)

(2) adr ← GR[reg1] + (sign-extend)disp16

sign-extend

GR[reg2] ← Load-Memory(adr, Halfword)

(3) adr ← GR[reg1] + (sign-extend)disp16

GR[reg2] ← Load-Memory(adr, Word)

[Format] Format VI

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] (1) LD.B - Load byte

(2) LD.H - Load halfword

(3) LD.W - Load word

[Description] (1) The instruction adds the data in reg1 and the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit address. It reads a byte of data from

the resulting address, sign-extends the read byte to a word, then stores the result

in reg2.

(2) The instruction adds the data in reg1 and the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit address. It reads a halfword of data

from the resulting address, sign-extends the read halfword to a word, then stores

the result in reg2. Bit 0 of the unsigned 32-bit address is masked to 0.

15 10 9

1100∗$

160 31

disp16

5 4

reg2 reg1

(∗$: 00 = (1), 01 = (2), 11 = (3))

72

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

(3) The instruction adds the data in reg1 and the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit address. It reads a word of data from

the resulting address then stores the word in reg2. Bits 0 and 1 of the unsigned

32-bit address are masked to 0.

[Exception] None

73

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

LDSR Load to System Register

[Syntax] LDSR reg2, regID

[Operation] SR[regID] ← GR[reg2]

[Format] Format II

[Operation code]

[Flags] CY : — (See Supplement)

OV : — (See Supplement)

S : — (See Supplement)

Z : — (See Supplement)

[Instruction] LDSR - Load to system register

[Description] The instruction loads the word contained in reg2 to the system register designated

by the system register number (regID). The contents of reg2 remain as is. System

register numbers uniquely identify system registers. If the LDSR instruction is

executed on a reserved system register or write-disabled system register, the

operation of the instruction will be unpredictable.

[Exception] None

[Supplement] If the specified system register number (regID) is 5 (PSW), each flag assumes the

value of the corresponding bit in reg2.

15 10 9

011100

05 4

reg2 regID

74

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Multiply and Accumulate on 3 operands (saturatableMAC3
operation on signed 32-bit operands)

[Syntax] MAC3 reg1, reg2, reg3

[Operation] GR[reg3] ← saturate(GR[reg3] + GR[reg2] x GR[reg1])

[Format] Format VIII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] MAC3 - Multiply and accumulate

[Description] The instruction multiplies the word in reg1 by that in reg2 as signed 32-bit integers,

and adds the product to the data in reg3 as signed integers. If the sum falls outside

the range of signed 32-bit integers that can be represented, it is regarded as causing

an overflow (the low-order 32 bits of the 64 bits of the product are valid).

[If no overflow has occurred:]

The sum is stored into reg3.

[If an overflow has occurred:]

The SAT flag is set to 1. If the sum is positive, the positive maximum

(7FFFFFFFH) is stored into reg3; if the sum is negative, the negative maximum

(80000000H) is stored into reg3.

The contents of reg1 and reg2 remain as is.

[Supplement] A timing restriction is imposed on MAC3 instruction input operand reg3. If an

instruction to update reg3 is not issued within three cycles before the issue of the

MAC3 instruction, the MAC3 instruction will begin after a one-cycle halt (stall).

The flags (CY, OV, S, and Z) do not change. The SAT flag is cumulative, meaning

that once the result of a saturatable operation instruction is saturated, the flag is set

to 1 and is not reset to 0 even if the result of a subsequent operation instruction is

not saturated. To reset the SAT flag, use the LDSR instruction to rewrite the PSW.

[Exception] None

15 10 9

111110

165 4

reg2 reg1

0 31 26 25 21 20

011101 RFU reg3

75

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

MACI Multiply and Accumulate on Immediate and register data

[Syntax] MACI imm16, reg1, reg2

[Operation] GR[reg2] ← saturate(GR[reg2] + GR[reg1] x sign-extend(imm16))

[Format] Format V

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] MACI - Multiply and accumulate immediate and register data

[Description] The instruction multiplies the word in reg1 by the immediate data (16 bits, sign-

extended to 32 bits) as signed integers then adds together the product and the data

in reg2 as signed integers. If the sum falls outside the range of signed 32-bit integers

that can be represented, it is regarded as causing an overflow (the low-order 32 bits

of the 64 bits of the product are valid).

[If no overflow has occurred:]

The sum is stored into reg2.

[If an overflow has occurred:]

The SAT flag is set to 1. If the sum is positive, the positive maximum

(7FFFFFFFH) is stored into reg2; if the sum is negative, the negative maximum

(80000000H) is stored into reg2.

The contents of reg1 remain as is.

[Supplement] The flags (CY, OV, S, and Z) do not change. The SAT flag is cumulative, meaning

that once the result of a saturatable operation instruction is saturated, the flag is set

to 1 and is not reset to 0 even if the result of a subsequent operation instruction is

not saturated. To reset the SAT flag, use the LDSR instruction to rewrite the PSW.

[Exception] None

15 10 9

110110

165 4

reg2 reg1

0 31

imm16

76

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Multiply and Accumulate with Truncation on 3 operandsMACT3
(saturatable operation on signed 32-bit operands)

[Syntax] MACT3 reg1, reg2, reg3

[Operation] GR[reg3] ← saturate(GR[reg3] + high-order-32-bits(GR[reg2] x GR[reg1]))

[Format] Format VIII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] MACT3 - Multiply and accumulate with truncation

[Description] The instruction multiplies the word in reg1 by that in reg2 as signed integers,

truncates the 64-bit product to discard the low-order 32 bits, then adds the high-order

32 bits of the product to the data in reg3 as signed integers.

[If no overflow has occurred:]

The sum is stored into reg3.

[If an overflow has occurred:]

The SAT flag is set to 1. If the sum is positive, the positive maximum

(7FFFFFFFH) is stored into reg3; if the sum is negative, the negative maximum

(80000000H) is stored into reg3.

The contents of reg1 and reg2 remain as is.

[Supplement] A timing restriction is imposed on the MACT3 instruction input operand reg3. If an

instruction to update reg3 is not issued within three cycles before the issue of the

MACT3 instruction, the MACT3 instruction will begin after a one-cycle halt (stall).

The flags (CY, OV, S, and Z) do not change. The SAT flag is cumulative, meaning

that once the result of a saturatable operation instruction is saturated, the flag is set

to 1 and is not reset to 0 even if the result of a subsequent operation instruction is

not saturated. To reset the SAT flag, use the LDSR instruction to rewrite the PSW.

[Exception] None

15 10 9

111110

165 4

reg2 reg1

0 31

RFU

26 25 21 20

011100 reg3

77

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

MAX3 Maximum on 3 operands

[Syntax] MAX3 reg1, reg2, reg3

[Operation] GR[reg3] ← max(GR[reg2],GR[reg1])

[Format] Format VIII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] MAX3 - Maximum

[Description] The instruction compares the words in reg1 and reg2 as signed integers and stores

the larger value into reg3. The contents of reg1 and reg2 remain as is.

[Exception] None

15 10 9

111110

165 4

reg2 reg1

0 31

RFU

26 25 21 20

010011 reg3

78

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

MIN3 Minimum on 3 operands

[Syntax] MIN3 reg1, reg2, reg3

[Operation] GR[reg3] ← min(GR[reg2], GR[reg1])

[Format] Format VIII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] MIN3 - Minimum

[Description] The instruction compares the words in reg1 and reg2 as signed integers and stores

the smaller value into reg3. The contents of reg1 and reg2 remain as is.

[Exception] None

15 10 9

111110

165 4

reg2 reg1

0 31

RFU

26 25 21 20

reg3010010

79

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

MOV Move data

[Syntax] (1) MOV reg1, reg2

(2) MOV imm5, reg2

[Operation] (1) GR[reg2] ← GR[reg1]

(2) GR[reg2] ← sign-extend(imm5)

[Format] (1) Format I

(2) Format II

[Operation code] (1)

(2)

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] (1) MOV - Move register data

(2) MOV - Move immediate data (5 bits)

[Description] (1) The instruction copies the word in reg1 to reg2. The contents of reg1 remain as

is.

(2) The instruction copies and transfers the 5 bits of immediate data, sign-extended

to a word, to reg2.

[Exception] None

15 10 9

000000

5 4

reg2 reg1

0

15 10 9

010000

5 4

reg2 imm5

0

80

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

MOVEA Move with Addition

[Syntax] MOVEA imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] + sign-extend(imm16)

[Format] Format V

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] MOVEA - Move with addition of 16-bit immediate data

[Description] The instruction adds the word in reg1 to the 16 bits of immediate data, sign-extended

to a word, then stores the sum into reg2. The contents of reg1 remain as is. The

flags do not change.

[Exception] None

0 31

reg1

15 10 9

101000

5 4

reg2 imm16

16

81

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

MOVHI Move with addition of High-order Immediate data

[Syntax] MOVHI imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] + (imm16 II 016)

[Format] Format V

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] MOVHI - Move with high-order immediate data addition

[Description] The instruction adds the word in reg1 to a word consisting of the high-order 16 bits

of immediate data and the low-order 16 bits of 0 then stores the sum into reg2. The

contents of reg1 remain as is. The flags do not change.

[Exception] None

15 10 9 5 4 0 31 16

101111 reg2 reg1 imm16

82

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

MUL Multiply (signed)

[Syntax] MUL reg1, reg2

[Operation] result ← GR[reg2] x GR[reg1] (signed)

GR[30] ← result (high-order 32 bits)

GR[reg2] ← result (low-order 32 bits)

[Format] Format I

[Operation code]

[Flags] CY : —

OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] MUL - Multiply

[Description] The instruction multiplies the word in reg1 by that in reg2 as signed data and stores

the high-order 32 bits of the result (double word) in r30 and the low-order 32 bits in

reg2. The contents of reg1 remain as is. If r30 is designated as reg2, the low-order

32 bits of the result are stored in r30. Overflow occurs when the double-word result

is not equal to the low-order 32 bits, sign-extended to a double word.

[Exception] None

reg1

15 10 9

001000

5 4

reg2

0

83

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

MUL3 Multiply on 3 operands (saturatable operation on signed 32-bit operands)

[Syntax] MUL3 reg1, reg2, reg3

[Operation] GR[reg3] ← saturate(GR[reg2] x GR[reg1])

[Format] Format VIII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] MUL3 - Multiplication on 3 operands

[Description] The instruction multiplies the word in reg1 by that in reg2 as signed 32-bit integers.

If the product falls outside the range of signed 32-bit integers that can be represented,

it is regarded as causing an overflow (the low-order 32 bits of the 64 bits of the product

are valid).

[If no overflow has occurred:]

The product is stored into reg3.

[If an overflow has occurred:]

The SAT flag is set to 1. If the product is positive, the positive maximum

(7FFFFFFFH) is stored into reg3; if the product is negative, the negative

maximum (80000000H) is stored into reg3.

The contents of reg1 and reg2 remain as is.

[Supplement] The flags (CY, OV, S, and Z) do not change. The SAT flag is cumulative, meaning

that once the result of a saturatable operation instruction is saturated, the flag is set

to 1 and is not reset to 0 even if the result of a subsequent operation instruction is

not saturated. To reset the SAT flag, use the LDSR instruction to rewrite the PSW.

[Exception] None

reg1

15 10 9

111110

5 4

reg2

160 31 26 25 21 20

011111 RFU reg3

84

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Multiply on Immediate and register dataMULI
 (saturatable operation on signed 32-bit operands)

[Syntax] MULI imm16, reg1, reg2

[Operation] GR[reg2] ← saturate(GR[reg1] x sign-extend(imm16))

[Format] Format V

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] MULI - Multiplication involving immediate data

[Description] The instruction multiplies the word in reg1 by the 16 bits of immediate data (sign-

extended to 32 bits) as signed integers. If the product fulls outside the range of

signed 32-bit integers that can be represented, it is regarded as causing an overflow

(the low-order 32 bits of the 64 bits of the product are valid).

[If no overflow has occurred:]

The product is stored into reg2.

[If an overflow has occurred:]

The SAT flag is set to 1. If the product is positive, the positive maximum

(7FFFFFFFH) is stored into reg2; if the product is negative, the negative

maximum (80000000H) is stored into reg2.

The contents of reg1 remain as is.

[Supplement] The flags (CY, OV, S, and Z) do not change. The SAT flag is cumulative, meaning

that once the result of a saturatable operation instruction is saturated, the flag is set

to 1 and is not reset to 0 even it the result of a subsequent operation instruction is

not saturated. To reset the SAT flag, use the LDSR instruction to rewrite the PSW.

[Exception] None

reg1

15 10 9

110010

5 4

reg2

160 31

imm16

85

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

Multiply with Truncation on 3 operandsMULT3
(operation on signed 32-bit operands)

[Syntax] MULT3 reg1, reg2, reg3

[Operation] GR[reg3] ← high-order-32-bits(GR[reg2] x GR[reg1])

[Format] Format VIII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] MULT3 - Multiplication on 3 operands with truncation

[Description] The instruction multiplies the word in reg1 by that in reg2 as signed integers,

truncates the 64-bit product to discard the low-order into 32 bits, and stores only the

high-order 32 bits into reg3. The contents of reg1 and reg2 remain as is.

[Exception] None

reg1

15 10 9

111110

5 4

reg2

160 31 26 25 21 20

011110 RFU reg3

86

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

MULU Multiply Unsigned

[Syntax] MULU reg1, reg2

[Operation] result ← GR[reg2] x GR[reg1] (unsigned)

GR[30] ← result (high-order 32 bits)

GR[reg2] ← result (low-order 32 bits)

[Format] Format I

[Operation code]

[Flags] CY : —

OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] MULU - Multiply unsigned values

[Description] The instruction multiplies the word in reg1 by that in reg2 as unsigned data and stores

the high-order 32 bits of the result (double word) into r30 and the low-order 32 bits

into reg2. The contents of reg1 remain as is. If r30 is designated as reg2, the low-

order 32 bits of the result are stored into r30. The flags are set as if the result were

signed data. Overflow occurs when the double-word result is not equal to the low-

order 32 bits, zero-extended to a double word.

[Exception] None

reg1

15 10 9

001010

5 4

reg2

0

87

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

NOT Not (ones compliment)

[Syntax] NOT reg1, reg2

[Operation] GR[reg2] ← NOT(GR[reg1])

[Format] Format I

[Operation code]

[Flags] CY : —

OV : 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise assumes 0.

[Instruction] NOT - NOT

[Description] The instruction takes the NOT (ones complement) of the word in reg1 and stores the

result into reg2. The contents of reg1 remain as is.

[Exception] None

reg1

15 10 9

001111

5 4

reg2

0

88

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

OR OR (disjunction)

[Syntax] OR reg1, reg2

[Operation] GR[reg2] ← GR[reg2] OR GR[reg1]

[Format] Format I

[Operation code]

[Flags] CY : —

OV : 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] OR - OR

[Description] The instruction ORs the words in reg1 and reg2 and stores the result into reg2. The

contents of reg1 remain as is.

[Exception] None

reg1

15 10 9

001100

5 4

reg2

0

89

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

ORI OR of Immediate data and register data

[Syntax] ORI imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] OR zero-extend(imm16)

[Format] Format V

[Operation code]

[Flags] CY : —

OV : 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] ORI - OR of immediate data and register (16 bits)

[Description] The instruction ORs the word in reg1 and the 16 bits of immediate data, zero-

extended to a word, and stores the result into reg2. The contents of reg1 remain

as is.

[Exception] None

reg1

15 10 9

101100

5 4

reg2

16

imm16

0 31

90

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

OUT Output to port

[Syntax] (1) OUT.B reg2, disp16[reg1]

(2) OUT.H reg2, disp16[reg1]

(3) OUT.W reg2, disp16[reg1]

[Operation] (1) adr ← GR[reg1] + (sign-extend)disp16

Output-Port(adr, GR[reg2], Byte)

(2) adr ← GR[reg1] + (sign-extend)disp16

Output-Port(adr, GR[reg2], Halfword)

(3) adr ← GR[reg1] + (sign-extend)disp16

Output-Port(adr, GR[reg2], Word)

[Format] Format VI

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] (1) OUT.B - Output byte to port

(2) OUT.H - Output halfword to port

(3) OUT.W - Output word to port

[Description] (1) The instruction adds the data in reg1 and the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit port address. It outputs the low-order

one byte of data in reg2 to the resulting port address.

(2) The instruction adds the data in reg1 and the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit port address. It outputs the low-order

two bytes of data in reg2 to the resulting port address. Bit 0 of the unsigned 32-

bit address is masked to 0.

(3) The instruction adds the data in reg1 and the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit port address. It outputs the word in reg2

to the resulting port address. Bits 0 and 1 of the unsigned 32-bit address are

masked to 0.

[Exception] None

reg1

15 10 9

1111∗$

5 4

reg2

16

disp16

0 31

(∗$: 00 = (1), 01 = (2), 11 = (3))

91

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

RETI Return from Trap or Interrupt

[Syntax] RETI

[Operation] if PSW.NP = 1

then PC ← FEPC

PSW ← FEPSW

else PC ← EIPC

PSW ← EIPSW

[Format] Format IX

[Operation code] 0

15 10 9

011001

1 0

RFU

[Flags] CY : Will contain the read value.

OV : Will contain the read value.

S : Will contain the read value.

Z : Will contain the read value.

[Instruction] RETI - Return from trap or interrupt

[Description] The instruction takes the return PC and PSW out of the system registers to enable

return from a trap or interrupt routine. Its operation is as follows:

(1) The instruction retrieves the return PC and PSW from FEPC and FEPSW if the

PSW NP flag is set to 1, or from EIPC and EIPSW if the NP flag is set to 0.

(2) The instruction sets the retrieved return PC and PSW in the PC and PSW,

causing a jump to the PC.

[Exception] None

92

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

SAR Shift Arithmetic to the Right

[Syntax] (1) SAR reg1, reg2

(2) SAR imm5, reg2

[Operation] (1) GR[reg2] ← GR[reg2] arithmetically shift right by GR[reg1]

(2) GR[reg2] ← GR[reg2] arithmetically shift right by zero-extend(imm5)

[Format] (1) Format I

(2) Format II

[Operation code] (1)

(2)

[Flags] CY : Assumes 1 if the last shift-out bit is 1. Otherwise, assumes 0. If the amount

of the shift is 0, the CY flag is set to 0.

OV : 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] (1) SAR - Shift arithmetic right by amount specified by register

(2) SAR - Shift arithmetic right by amount specified by immediate data (5 bits)

[Description] (1) The instruction arithmetically shifts the word in reg2 to the right (copies the MSB

value at each position to the MSB in sequence) by the amount specified by the

low-order five bits in reg1, then writes the result into reg2. If the amount is 0,

the reg2 value is not changed by the shift. The amount may be 0 to +31, being

represented by five bits.

(2) The instruction arithmetically shifts the word in reg2 to the right (copies the MSB

value at each position to the MSB in sequence) by the amount specified by the

five bits of immediate data, zero-extended to a word, and writes the result into

reg2. If the amount is 0, the reg2 value is not changed by the shift. The amount

may be 0 to +31.

[Exception] None

015 10 9

000111

5 4

reg2 reg1

015 10 9

010111

5 4

reg2 imm5

93

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

SATADD3 Saturatable Addition on 3 operands

[Syntax] SATADD3 reg1, reg2, reg3

[Operation] GR[reg3] ← saturate(GR[reg2] + GR[reg1])

[Format] Format VIII

[Operation code]

[Flags] CY : Assumes 1 if there is a carry from the MSB. Otherwise, assumes 0.

OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if GR[reg3] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg3] is zero. Otherwise, assumes 0.

[Instruction] SATADD3 - Saturatable addition on 3 operands

[Description] The instruction adds together the words in reg1 and reg2 as signed integers.

[If no overflow has occurred:]

The sum is stored into reg3.

[If an overflow has occurred:]

The SAT flag is set to 1. If the sum is positive, the positive maximum

(7FFFFFFFH) is stored into reg3; if the sum is negative, the negative maximum

(80000000H) is stored into reg3.

The contents of reg1 and reg2 remain as is.

[Supplement] The SAT flag is cumulative, meaning that once the result of a saturatable operation

instruction is saturated, the flag is set to 1 and is not reset to 0 even if the result of

a subsequent operation instruction is not saturated. To reset the SAT flag to 0, use

the LDSR instruction to rewrite the PSW. If the result of an operation performed by

this instruction is saturated, the flags do not indicate the magnitudes of the reg1 and

reg2 values. This means that the ABGT, ABGE, ABLT, ABLE, BGT, BGE, BLT, and

BLE instructions do not assure normal branching. Instead, therefore, use the ABE,

ABNE, ABN, ABP, BE, BNE, BN, or BP instruction.

[Exception] None

1615 10 9

111110

5 4

reg2 reg1

0 31 26 25 21 20

reg3010000 RFU

94

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

SATSUB3 Saturatable Subtraction on 3 operands

[Syntax] SATSUB3 reg1, reg2, reg3

[Operation] GR[reg3] ← saturate(GR[reg2] - GR[reg1])

[Format] Format VIII

[Operation code]

[Flags] CY : Assumes 1 if there is a carry from the MSB. Otherwise, assumes 0.

OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if GR[reg3] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg3] is zero. Otherwise, assumes 0.

[Instruction] SATSUB3 - Saturatable subtraction on 3 operands

[Description] The instruction subtracts the word in reg1 from that in reg2 as signed integers.

[If no overflow has occurred:]

The difference is stored into reg3.

[If an overflow has occurred:]

The SAT flag is set to 1. If the difference is positive, the positive maximum

(7FFFFFFFH) is stored into reg3; if the difference is negative, the negative

maximum (80000000H) is stored into reg3.

The contents of reg1 and reg2 remain as is.

[Supplement] The SAT flag is cumulative, meaning that once the result of a saturatable operation

instruction is saturated, the flag is set to 1 and is not reset to 0 even if the result of

a subsequent operation instruction is not saturated. To reset the SAT flag to 0, use

the LDSR instruction to rewrite the PSW. If the result of the operation performed

by this instruction is saturated, the flags do not indicate the magnitudes of the reg1

and reg2 values. This means that the ABGT, ABGE, ABLT, ABLE, BGT, BGE, BLT,

and BLE instructions do not assure normal branching. Instead, therefore, use the

ABE, ABNE, ABN, ABP, BE, BNE, BN, or BP instruction.

[Exception] None

1615 10 9

111110

5 4

reg2 reg1

0 31 26 25 21 20

reg3010001 RFU

95

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

SETF Set Flag condition

[Syntax] SETF imm5,reg2

[Operation] if conditions are satisfied

then GR[reg2] ← 00000001H

else GR[reg2] ← 00000000H

[Format] Format II

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] SETF - Set flag condition

[Description] If the condition specified by the low-order four of the five bits of the immediate data

is satisfied, the instruction writes 1 into reg2; otherwise, it writes 0 into reg2. The

low-order four of the five bits of immediate data indicate one of the condition codes

listed in Table 5-3. The high-order one bit is ignored.

[Exception] None

15 10 9

010010

5 4

reg2 imm5

0

96

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Table 5-3. Condition Codes

Condition code Name Conditional expression

0000 V OV = 1

1000 NV OV = 0

0001 C/L CY = 1

1001 NC/NL CY = 0

0010 Z Z = 1

1010 NZ Z = 0

0011 NH (CY or Z) = 1

1011 H (CY or Z) = 0

0100 S/N S = 1

1100 NS/P S = 0

0101 T always 1

1101 F always 0

0110 LT (S xor OV) = 1

1110 GE (S xor OV) = 0

0111 LE ((S xor OV) or Z) = 1

1111 GT ((S xor OV) or Z) = 0

97

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

SHL Shift Logical to the Left

[Syntax] (1) SHL reg1, reg2

(2) SHL imm5, reg2

[Operation] (1) GR[reg2] ← GR[reg2] logically shift left by GR[reg1]

(2) GR[reg2] ← GR[reg2] logically shift left by zero-extend(imm5)

[Format] (1) Format I

(2) Format II

[Operation code] (1)

(2)

[Flags] CY : Assumes 1 if the last shift-out bit is 1. Otherwise, assumes 0. If the amount

of the shift is 0, the CY flag is 0.

OV : 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] (1) SHL - Shift logical left by amount specified by register

(2) SHL - Shift logical left by amount specified by immediate data (5 bits)

[Description] (1) The instruction logically shifts the word in reg2 to the left (puts 0 on the LSB) by

the amount specified by the low-order five bits in reg1, then writes the result into

reg2. If the amount is 0, the reg2 value is not changed by the shift. The amount

may be 0 to +31, being represented by five bits.

(2) The instruction logically shifts the word in reg2 to the left (puts 0 on the LSB) by

the amount specified by the five bits of immediate data, zero-extended to a word,

and writes the result into reg2. If the amount is 0, the reg2 value is not changed

by the shift. The amount may be 0 to +31.

[Exception] None

15 10 9

000100

5 4

reg2 reg1

0

15 10 9

010100

5 4

reg2 imm5

0

98

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

SHLD3 Shift to the Left of Double word on 3 operands

[Syntax] SHLD3 reg1, reg2, reg3

[Operation] GR[reg3] ← (GR[reg3], GR[reg2]) << reg1

[Format] Format VIII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] SHLD3 - Shift left double word

[Description] The instruction logically shifts the 64 bits of data obtained by concatenating reg3

(high order) and reg2 (low order) to the left by the amount specified by the low-order

five bits in reg1, then outputs the high-order 32 bits of the result into reg3. If reg1

is 0, the reg3 data remains as is. The high-order 27 bits in reg1 are ignored. The

contents of reg1 and reg2 remain as is.

[Supplement] A timing restriction is imposed on SHLD3 instruction input operand reg3. If an

instruction to update reg3 is not issued within three cycles before the issue of the

SHLD3 instruction, the SHLD3 instruction will begin after a one-cycle halt (stall).

[Exception] None

15 10 9

111110

5 4

reg2 reg1

160 31 26 25 21 20

011000 RFU reg3

99

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

SHR Shift Logical to the Right

[Syntax] (1) SHR reg1, reg2

(2) SHR imm5, reg2

[Operation] (1) GR[reg2] ← GR[reg2] logically shift right by GR[reg1]

(2) GR[reg2] ← GR[reg2] logically shift right by zero-extend(imm5)

[Format] (1) Format I

(2) Format II

[Operation code] (1)

(2)

[Flags] CY : Assumes 1 if the last shift-out bit is 1. Otherwise, assumes 0. If the amount

of the shift is 0, the CY flag is 0.

OV : 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] (1) SHR - Shift logical right by amount specified by register

(2) SHR - Shift logical right by amount specified by immediate data (5 bits)

[Description] (1) The instruction logically shifts the word in reg2 to the right (puts 0 on the MSB)

by the amount specified by the low-order five bits in reg1, then writes the result

into reg2. If the amount is 0, the reg2 value is not changed by the shift. The

amount may be 0 to +31, being represented by five bits.

(2) The instruction logically shifts the word in reg2 to the right (puts 0 on the MSB)

by the amount specified by the five bits of immediate data, zero-extended to a

word, and writes the result into reg2. If the amount is 0, the reg2 value is not

changed by the shift. The amount may be 0 to +31.

[Exception] None

15 10 9

000101

5 4

reg2 reg1

0

15 10 9

010101

5 4

reg2 imm5

0

100

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

SHRD3 Shift to the Right of Double word on 3 operands

[Syntax] SHRD3 reg1, reg2, reg3

[Operation] GR[reg3] ← (GR[reg3], GR[reg2]) >> reg1

[Format] Format VIII

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] SHRD3 - Shift right double word

[Description] The instruction logically shifts the 64 bits of data obtained by concatenating reg3

(high order) and reg2 (low order) to the right by the amount specified by the low-order

five bits in reg1, then outputs the low-order 32 bits of the result into reg3. If reg1

is 0, the reg2 data is stored into reg3. The high-order 27 bits in reg1 are ignored.

The contents of reg1 and reg2 remain as is.

[Supplement] A timing restriction is imposed on SHRD3 instruction input operand reg3. If an

instruction to update reg3 is not issued within three cycles before the issue of the

SHRD3 instruction, the SHRD3 instruction will begin after a one-cycle halt (stall).

[Exception] None

15 10 9

111110

5 4

reg2 reg1

160 31 26 25 21 20

011001 RFU reg3

101

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

ST Store

[Syntax] (1) ST.B reg2, disp16[reg1]

(2) ST.H reg2, disp16[reg1]

(3) ST.W reg2, disp16[reg1]

[Operation] (1) adr ← GR[reg1] + (sign-extend)disp16

Store-Memory(adr, GR[reg2], Byte)

(2) adr ← GR[reg1] + (sign-extend)disp16

Store-Memory(adr, GR[reg2], Halfword)

(3) adr ← GR[reg1] + (sign-extend)disp16

Store-Memory(adr, GR[reg2], Word)

[Format] Format VI

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] (1) ST.B - Store byte

(2) ST.H - Store halfword

(3) ST.W - Store word

[Description] (1) The instruction adds the data in reg1 to the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit address. It stores the low-order one

byte of reg2 data at the resulting address.

(2) The instruction adds the data in reg1 to the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit address. It stores the low-order two

bytes of reg2 data at the resulting address. Bit 0 of the unsigned 32-bit address

is masked to 0.

(3) The instruction adds the data in reg1 to the 16-bit displacement, sign-extended

to a word, to produce an unsigned 32-bit address. It stores the word from reg2

at the resulting address. Bits 0 and 1 of the unsigned 32-bit address are masked

to 0.

[Exception] None

15 10 9

1101∗$

5 4

reg2 reg1

160 31

disp16

(∗$: 00 = (1), 01 = (2), 11 = (3))

102

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

STBY Standby

[Syntax] STBY

[Operation] Stop

[Format] Format IX

[Operation code]
15 10 9

011010 RFU 1

1 0

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] STBY - Standby

[Description] The instruction stops the CPU and places the system in stop mode.

[Exception] None

103

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

STSR Store contents of System Register

[Syntax] STSR regID, reg2

[Operation] GR[reg2] ← SR[regID]

[Format] Format II

[Operation code]

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] STSR - Store contents of system register

[Description] The instruction writes the contents of the system register identified by the system

register number (regID) into reg2. There is no influence on the system register.

System register numbers uniquely identify system registers. If the STSR instruction

is executed on a reserved system register, however, the operation of the instruction

will be unpredictable.

[Exception] None

15 10 9

011010 regID

05 4

reg2

104

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

SUB Subtract

[Syntax] SUB reg1, reg2

[Operation] GR[reg2] ← GR[reg2] - GR[reg1]

[Format] Format I

[Operation code]

[Flags] CY : Assumes 1 if there is a borrow from the MSB. Otherwise, assumes 0.

OV : Assumes 1 if overflow has occurred. Otherwise, assumes 0.

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] SUB - Subtract

[Description] The instruction subtracts the word in reg1 from that in reg2 and stores the difference

into reg2. The contents of reg1 remain as is.

[Exception] None

15 10 9

000010 reg1

05 4

reg2

105

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

TRAP Software Trap

[Syntax] TRAP vector

[Operation] if PSW.NP = 1

then fatal exception (MACHINE FAULT)

else if PSW.EP = 1

then FEPC ← return PC

FEPSW ← PSW

ECR.FECC ← exception code

PSW.NP ← 1

PSW.ID ← 1

PC ← <NMI handler address>

else EIPC ← return PC

EIPSW ← PSW

ECR.EICC ← exception code

PSW.EP ← 1

PSW.ID ← 1

PC ← <vector adr>

[Format] Format II

[Operation code]
15 10 9

011000

0

vector

[Flags] CY : —

OV : —

S : —

Z : —

[Instruction] TRAP - Trap

[Description] If the PSW NP flag is set to 1, it indicates a fatal exception. The processor performs

fatal exception handling.

If the PSW NP flag is set to 0 and the EP flag to 1, it indicates a double exception.

In this case, the instruction saves the return PC and PSW into FEPC and FEPSW

and sets the exception code (FECC in the ECR) and the PSW flags (the NP and ID

flags). Program execution then jumps to the NMI handler address to begin exception

handling. There is no influence on the condition flags.

If both the PSW NP and EP flags are set to 0, the instruction saves the return PC

and PSW into EIPC and EIPSW and sets the exception code (EICC in the ECR) and

the PSW flags (the EP and ID flags). Program execution then jumps to the trap

handler address corresponding to the trap vector (0-31) identified by vector to begin

exception handling. There is no influence on the condition flags.

106

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

The return PC gives the address of the instruction subsequent to the TRAP

instruction.

[Exception] None

107

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

XOR Exclusive OR

[Syntax] XOR reg1, reg2

[Operation] GR[reg2] ← GR[reg2] XOR GR[reg1]

[Format] Format I

[Operation code]

[Flags] CY : —

OV : 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] XOR - Exclusive OR

[Description] The instruction takes the exclusive OR of the words in reg1 and reg2 and stores the

result into reg2. The contents of reg1 remain as is.

[Exception] None

15 10 9

001110

0

reg2

5 4

reg1

108

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

XORI Exclusive OR of Immediate and register data

[Syntax] XORI imm16, reg1, reg2

[Operation] GR[reg2] ← GR[reg1] XOR zero-extend(imm16)

[Format] Format V

[Operation code]

[Flags] CY : —

OV : 0

S : Assumes 1 if GR[reg2] is negative. Otherwise, assumes 0.

Z : Assumes 1 if GR[reg2] is zero. Otherwise, assumes 0.

[Instruction] XORI - Exclusive OR of immediate data (16 bits) and register data

[Description] The instruction takes the exclusive OR of the word in reg1 and the 16 bits of

immediate data, zero-extended to a word, and stores the result into reg2. The

contents of reg1 remain as is.

[Exception] None

15 10 9

101110

16

reg2

5 4

imm16reg1

0 31

109

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

5.4 INSTRUCTION EXECUTION CYCLES

This section lists the execution cycles for each instruction. The number of actual execution cycles will fall

between the repeat and the latency.

(1) Latency

The latency is defined as the period between an instruction beginning to run and its ending.

[Example 1] LD instruction

The latency of the LD instruction is 2. This instruction is executed in two cycles for the EX

and DF stages.

[Example 2] MUL instruction

The latency of the MUL instruction is 4. This instruction is executed in four cycles for the

EX, DF, and WB stages.

Remark For details of the pipeline flow, see Chapter 9 .

(2) Repeat

The repeat is defined as the period between the current instruction beginning to run and the subsequent

instruction becoming ready to run when the current and subsequent instructions use the same arithmetic/

logic unit. Instructions begin to run as soon as they receive their required operands.

[Example 1] LD instruction

The repeat of the LD instruction is 1. This instruction uses the EX stage in one cycle.

Therefore, the subsequent instruction can use the EX stage one cycle after it is used by

the LD instruction.

IF RF EX DF WBLD.W 0 [r11] , r10

Load data is determined at this point.

RF EXIF EX DF WBMUL r1, r2

The operation result is determined at this point.

IF RF EX DF WB

IF RF EX DF WB

IF

LD.W 0 [r11] , r10

LD.W 0 [r12] , r10

MOV r1, r2 RF EX DF WB

110

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

[Example 2] MUL instruction

The repeat of the MUL instruction is 2. This instruction uses the EX stage in two cycles.

Therefore, the subsequent instruction can use the EX stage two cycles after it is used by

the MUL instruction. That is, the subsequent instruction cannot always use the EX stage

without a wait.

Remark For details of the pipeline flow, see Chapter 9 .

(3) Latency - repeat (difference between the latency and repeat)

The difference between the latency and repeat indicates the pipelined stage in which the operation result

is output.

When the difference is 0: The operation result is output in the EX stage.

When the difference is 1: The operation result is output in the DF stage.

When the difference is 2: The operation result is output in the WB stage.

The meanings of the abbreviations and other quantities used in Table 5-4 are as follows:

<1>: Data cache hit or internal RAM access

<2>: Data cache miss

<3>: External RAM (uncachable area) access

B: Number of clock cycles for burst bus cycle execution (external clock)

S: Number of clock cycles for single bus cycle execution (external clock)

n : Frequency ratio between internal and external clocks (n = 2 or n = 3)

s : Wait time for synchronization with external clock

s = 0 or 1 if n = 2.

s = 0, 1, or 2 if n = 3

IF RF EX EX DF

IF – RF EX EX DF WB

WB

IF

MUL r1, r2

MUL r3, r4

MOV r5, r6 – – RF EX EX DF WB

111

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

Table 5-4. Instruction Execution Cycles (1/3)

Instruction
Mnemonic Operand length Latency Repeat

in bytes

Load/store LD.B disp16[reg1], reg2 4 <1> 2 <1> 1

LD.H disp16[reg1], reg2 4 <2> n x B + 10 + sNote 1 <2> n x B + 9 + s

LD.W disp16[reg1], reg2 4 <3> n x S + 9 + sNote 1 <3> n x S + 8 + s

ST.B reg2, disp16[reg1] 4 <1> 3 1

ST.H reg2, disp16[reg1] 4 <2> n x S + 5 + sNote 1

ST.W reg2, disp16[reg1] 4 <3> n x S + 5 + sNote 1

BILD [reg1], [reg2] 4 n x B + 10 + sNote 1 n x B + 10 + s

BIST [reg2], [reg1] 4 n x B + 7 + sNote 1 n x (B – 1) + 10 + s

BDLD [reg1], [reg2] 4 n x B + 10 + sNote 1 n x B + 10 + s

BDST [reg2], [reg1] 4 n x B + 7 + sNote 1 n x (B – 1) + 10 + s

Input/output IN.B disp16[reg1], reg2 4 n x S + 10 + sNote 1 n x S + 9 + s

IN.H disp16[reg1], reg2 4

IN.W disp16[reg1], reg2 4

OUT.B reg2, disp16[reg1] 4 n x S + 6 + sNote 1 n x S + 9 + s

OUT.H reg2, disp16[reg1] 4

OUT.W reg2, disp16[reg1] 4

Arithmetic MOV reg1, reg2 2 1 1
operation

imm5, reg2

MOVHI imm16, reg1, reg2 4 1 1

ADD reg1, reg2 2 1 1

imm5, reg2

ADDI imm16, reg1, reg2 4 1 1

MOVEA imm16, reg1, reg2 4 1 1

SUB reg1, reg2 2 1 1

MUL reg1, reg2 2 4Note 2 2

MULU reg1, reg2 2 4Note 2 2

DIV reg1, reg2 2 37 37

DIVU reg1, reg2 2 35 35

CMP reg1, reg2 2 1 1

imm5, reg2

SETF imm5, reg2 2 2 1

MIN3 reg1, reg2, reg3 4 2 1

MAX3 reg1, reg2, reg3 4 2 1

Notes 1. A write bus cycle may be added because the write buffer is emptied for execution.

2. The flag requires three latency cycles. If the next instruction references the flag (as in the case

of a conditional branch instruction), a flag hazard will result.

*

112

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Table 5-4. Instruction Execution Cycles (2/3)

Instruction
Mnemonic Operand length Latency Repeat

in bytes

Sum-of- MUL3 reg1, reg2, reg3 4 3 1

products/ MAC3 reg1, reg2, reg3 4 3Note 1 1Note 1

saturatable
MULI imm16, reg1, reg2 4 3 1

operation
MACI imm16, reg1, reg2 4 3 1

MULT3 reg1, reg2, reg3 4 3 1

MACT3 reg1, reg2, reg3 4 3Note 1 1Note 1

SATADD3 reg1, reg2, reg3 4 2 1

SATSUB3 reg1, reg2, reg3 4 2 1

Logical OR reg1, reg2 2 1Note 2 1
operation

ORI imm16, reg1, reg2 4 1Note 2 1

AND reg1, reg2 2 1Note 2 1

ANDI imm16, reg1, reg2 4 1Note 2 1

XOR reg1, reg2 2 1Note 2 1

XORI imm16, reg1, reg2 4 1Note 2 1

NOT reg1, reg2 2 1Note 2 1

SHL reg1, reg2 2 2Note 2 1

imm5, reg2

SHR reg1, reg2 2 2Note 2 1

imm5, reg2

SAR reg1, reg2 2 2Note 2 1

imm5, reg2

SHLD3 reg1, reg2, reg3 4 2Note 1 1Note 1

SHRD3 reg1, reg2, reg3 4 2Note 1 1Note 1

Notes 1. A one-cycle halt occurs unless an instruction which acts on reg3 as its destination is executed

up to three cycles before the issue of this instruction.

2. The flag requires two latency cycles. If the next instruction references the flag (as in the case

of a conditional branch instruction), a flag hazard will result.

113

CHAPTER 5 INSTRUCTIONS

User’s Manual U12496EJ4V0UM00

Table 5-4. Instruction Execution Cycles (3/3)

Instruction
Mnemonic Operand length Latency Repeat

in bytes

Branch JMP [reg1] 2 3Note 1 3

JR disp26 4 3Note 1 3

JAL disp26 4 3Note 1 3

Bcond disp9 2 3 (taken)Note 1 3 (taken)

1 (not taken)Note 2 1 (not taken)

ABcond disp9 2 1 (History available)Note 1 1 (History available)

3 (History unavailable) 3 (History unavailable)

Special LDSR reg2, regID 2 5 5

STSR regID, reg2 2 5 2

TRAP vector 2 5 5

RETI — 2 5Note 1 5

CAXI disp16[reg1], reg2 4 n x S + 18 + sNote 3 n x S + 18 + s

HALT — 2 5Note 3 —

STBY — 2 5Note 3 —

BRKRET — 2 5Note 1 5

EI — 2 4 4

DI — 2 4 4

Notes 1. If the branch address is not a multiple of 4 and a 32-bit instruction exists at the branch address,

a one-cycle halt occurs.

2. If the instruction next to the high-speed (advanced) branch (ABcond) instruction is 32 bits long

and its address is not a multiple of 4, a one-cycle halt will occur when program execution exits

from the loop.

3. Since the execution is preceded by the emptying of the write buffer, a write bus cycle could be

added.

114

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

[MEMO]

115User’s Manual U12496EJ4V0UM00

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

Interrupts are events occur independently of program execution. They are classified into maskable and

nonmaskable interrupts. In contrast, exceptions are events which are directly related to program execution.

Interrupts and exceptions do not differ greatly in their control flow, but interrupts are assigned higher handling

priorities than exceptions. Fatal exceptions, however, are assigned higher priorities than interrupts.

Under the V830 Family architecture, the following interrupts and exceptions may occur. When an exception,

maskable interrupt, or nonmaskable interrupt occurs, control is passed to a handler at an address which is

predetermined a given cause. The cause of an exception can be identified by means of the exception code

stored in the ECR (Exception Cause Register). The pertinent handler analyzes the contents of the ECR so

that it can handle the exception or interrupt appropriately.

Table 6-1. Exception/Interrupt Source Codes

Category Exception Interrupt Handler Return PC
Exception/interrupt code request addressNote1

ECRNote 1 name

Reset Interrupt FFF0H RESET FFFFFFF0H Indefinite

Fatal exception Exception — FAULT FFFFFFE0H Current PC

NMI Interrupt FFD0H NMI FFFFFFD0H Next PC

Double exception Exception Note 2 NMI FFFFFFD0H Current PC

TRAP instruction (parameter 0x1n) Exception FFBnH TRAP1n FFFFFFB0H Next PC

TRAP instruction (parameter 0x0n) Exception FFAnH TRAP0n FFFFFFA0H Next PC

Invalid operation code Exception FF90H I_OPC FFFFFF90H Current PC

Division by zero Exception FF80H DIV0 FFFFFF80H Current PC

HWCC.IHA = 0 Interrupt FEn0H INT0n FFFFFEn0H Next PC

HWCC.IHA = 1 INT1n FE0000n0H

Notes 1 . Level n is represented by a hexadecimal number (n = 0-F).

2. Exception code of the exception which caused the double exception

3. V831 and V832 contain an interrupt controller. They allocate internal and external interrupt

sources to INT0n and INT1n. Refer to Chapter 4 in the User's Manual - Hardware of each

product for more information.

*

 Note 3
Interrupt level n (n = 0-15)

116

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

6.1 INTERRUPT HANDLING

6.1.1 Maskable Interrupts

When a maskable interrupt occurs, the processor performs the following processing and passes control

to the handler routine. It uses EIPC and EIPSW as status save registers.

Maskable interrupts are masked according to the OR of the NP, EP, and ID bits of the PSW. In addition,

if interrupt level n indicated by INTV0-INTV3 is lower than the PSW-permitted interrupt level indicated by

PSW bits I0-I3 (n < I0-I3), the interrupt is not accepted. It is therefore impossible to inhibit interrupts at the

highest level (n = 15) by assigning a permitted interrupt level.

PSW. NP

PSW. EP

PSW. ID

1

1

1

n < PSW. I

EIPC Return PC
EIPSW
ECR. EICC Exception code
PSW. EP 1
PSW. ID 1
PSW. I0-I3 PSW.I + 1
(15 if PSW.I = 15)

PSW

Maskable interrupt

Level n

Ignored

Ignored

Ignored

IgnoredInterrupt level

Jump to handler address

n ≥ PSW. I

0

0

0

<1> Save the return PC in EIPC.

<2> Save the current PSW in EIPSW.

<3> Write the exception code into the low-order 16 bits (EICC) of the ECR.

<4> Set the PSW EP bit.

<5> Set the PSW ID bit.

<6> Set the accepted interrupt level n plus 1 (n + 1) in the PSW I (I0-I3) field. If the accepted interrupt

level is the highest (n = 15), 15 is set.

<7> Jump to the handler address.

117

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U12496EJ4V0UM00

6.1.2 Nonmaskable Interrupts

If a nonmaskable interrupt caused by the NMI input occurs, the processor performs the following processing

and passes control to the handler routine. It uses FEPC and FEPSW as status save registers. If a

nonmaskable interrupt request is issued while a nonmaskable interrupt is being handled (the PSW NP bit is

1), the request is held within the processor (if a nonmaskable interrupt request is issued during the period

of internal processing for clearing the latch immediately after the beginning of nonmaskable interrupt handling,

the request is not held with the latch within the processor). The processor detects a nonmaskable interrupt

at the falling edge of the NMI input. Therefore, when issuing a nonmaskable interrupt request, deactivate

then reactivate the NMI input.

1
PSW. NP

FEPC Return PC
FEPSW PSW
ECR. FECC Exception

code
PSW. NP 1

PSW. ID 1

0

Nonmaskable interrupt

The interrupt request is held
within the processor. When
the NP bit becomes 0, the
processor begins handling of
the interrupt.

Jump to handler address

<1> Save the return PC in FEPC.

<2> Save the current PSW in FEPSW.

<3> Write the exception code into the high-order 16 bits (FECC) of the ECR.

<4> Set the PSW NP bit.

<5> Set the PSW ID bit.

<6> Jump to the handler address (FFFFFFD0H).

118

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

6.2 EXCEPTION HANDLING

When an exception occurs, the processor performs the following processing and passes control to the

handler routine.

1

0

0

1

PSW. NP

PSW. EP

EIPC Return PC
EIPSW
ECR. EICC Exception

code
PSW. EP 1
PSW. ID 1

FEPC Return PC
FEPSW
ECR. FECC Exception

code
PSW. NP 1
PSW. ID 1

DPC Return PC
DPSW
PSW. DP
PSW. NP
PSW. EP
PSW. ID

PSW PSW PSW
1
1
1
1

Exception
occurrence

Fatal exception

Double exception

Jump to handler address Jump to handler address Jump to handler address

<1> If the PSW NP bit has already been set, go to <8>.

<2> If the PSW EP bit has already been set, go to <9>.

<3> Save the return PC in EIPC.

<4> Save the current PSW in EIPSW.

<5> Write the exception code into the low-order 16 bits (EICC) of the ECR.

<6> Set the EP and ID bits of the PSW.

<7> Jump to the handler address.

<8> Fatal exception handling

(a) Save the return PC in DPC.

(b) Save the current PSW in DPSW.

(c) Set the DP, NP, EP, and ID bits of the PSW.

(d) Jump to the handler address (FFFFFFE0H).

<9> Double exception handling

(a) Save the return PC in FEPC.

(b) Save the current PSW in FEPSW.

(c) Write the exception code into the high-order 16 bits (FECC) of the ECR.

(d) Set the NP and ID bits of the PSW.

(e) Jump to the handler address (FFFFFFD0H).

119

CHAPTER 6 INTERRUPTS AND EXCEPTIONS

User’s Manual U12496EJ4V0UM00

6.3 RETURN FROM EXCEPTION/INTERRUPT

6.3.1 Return from Exception/Interrupt

The RETI instruction is used for return from any exception and interrupt events other than fatal exceptions.

PSW. NP

PC EIPC
PSW EIPSW

PC FEPC
PSW FEPSW

0

1

RETI instruction

Double exception

Jump to PC Jump to PC

<1> Read the return PC and PSW from FEPC and FEPSW when the PSW NP bit is 1 or from EIPC and

EIPSW when the PSW NP bit is 0.

<2> Restore the return PC and PSW and jump to the PC.

6.3.2 Return from Fatal Exception Handling Routine

The BRKRET instruction is used for return from fatal exception handling.

PC DPC
PSW DPSW

BRKRET
 instruction

Jump to PC

<1> Read the return PC and PSW from DPC and DPSW.

<2> Restore the return PC and PSW and jump to the PC.

120

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

6.4 PRIORITIES OF INTERRUPTS AND EXCEPTIONS

The priorities assigned to interrupts and exceptions are given below. If multiple interrupts and/or exceptions

occur at the same time, they are handled according to their priorities.

RESET NMI INT Trap Invalid operation Division by zero
instruction code exception exception

RESET ∗ ∗ ∗ ∗ ∗

NMI x ← ← ← ←

INT x ↑ ← ← ←

Trap instruction x ↑ ↑ — —

Invalid operation code exception x ↑ ↑ — —

Division by zero exception x ↑ ↑ — —

∗ : The event on the left overrides that at the top.

x : The event on the left is overridden by that at the top.

— : The events on the left and at the top do not occur at that time.

← : The event on the left is assigned a higher priority than that at the top.

 ↑ : The event at the top is assigned a higher priority than that on the left.

6.4.1 Priorities of Maskable Interrupts

V831 and V832 incorporate an interrupt controller to control multiple interrupt sources, according to their

priorities. Refer to Chapter 4 in the User's Manual - Hardware of each product for more information.

*

121User’s Manual U12496EJ4V0UM00

CHAPTER 7 INTERNAL MEMORY

This chapter describes the functions of the built-in cache memory and RAM devices, as well as their retrieval

function.

7.1 BUILT-IN CACHE

The V830 Family has a 4K-byte x 4 internal memory, consisting of four blocks (instruction cache, data cache,

instruction RAM, and data RAM). The V830 Family allows any of these internal memory blocks to be accessed

in one cycle.

Figure 7-1. Built-In Cache Configuration

Instruction bus
V830 CPU

core
Instruction cache

Decoder Instruction RAM

Execution unit

Data cache

External memory

Data bus
Data RAM

Caution Data cannot be written into the instruction cache or instruction RAM.

A instruction cannot be written into the data cache or data RAM.

7.1.1 Instruction Cache

The instruction cache memory consists of 128 32-byte blocks, having a total capacity of 4K bytes. Each

block consists of two sub-blocks (16-byte), and has a tag and two valid bits, namely, IV1 (for the high-order

16 bytes of each 32-byte block) and IV0 (for the low-order 16 bytes). These valid bits indicate whether the

contents of each sub-block are valid or invalid. If a cache error occurs, the memory is refilled in units of sub-

blocks.

Those instructions that can be cached in the instruction cache are limited to an instruction string fetched

from a cachable area. No instructions in the built-in instruction RAM are cached, however.

122

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Figure 7-2. Instruction Cache Configuration

31 12 11 5 4 3 2 1 0

TAG INDEX

ICTAG
I
V
1

I
V
0

Tag part Data part (32 bytes)

16 bytes 16 bytes

7 bits

Retrieval of block
indicated by INDEX

20 bits
20 bits

32 bits

Instruction data

Comparator

Hit

31 12 1110

7.1.2 Instruction Cache Tag Retrieval

The V830 Family can retrieve the tags of those instructions cached in the instruction cache. The V830

Family recognizes an instruction string that has been cached by generating the addresses of the cached

instructions from the tags.

The ICTR registers are used for tag retrieval. There are 128 ICTR registers. These ICTR registers are

mapped in the I/O space (FA000000H-FA000FFFH). Numbers ICTR0 to ICTR127 are assigned to the

registers, each of which is mapped to an address where bits 4 to 0 are 0s. These numbers also correspond

to the block numbers of the cache.

123

CHAPTER 7 INTERNAL MEMORY

User’s Manual U12496EJ4V0UM00

(1) Instruction cache tag register

The instruction cache tag registers are used to retrieve the tags of the instructions cached in the instruction

cache. To access these registers, use the IN.W or OUT.W instruction.

31

1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1211

INDEX

5 4

X X X X X

0

ICTR addressing method (FA000XXXH)

X: Don't care

Bit position Field name Meaning

11-5 INDEX Index

Specifies the address of a built-in cache tag.

0

RFU
I
V
0

I
V
1

121110 931

ICTAG

ICTR contents

Bit position Field name Meaning

31-12 ICTAG Instruction Cache Tag

Tag of a block specified by the index of the instruction cache.

11 IV1 Instruction Cache Valid Bit

Indicates that the high-order sub-block specified by the index is valid.

IV1 = 0: Invalid

IV1 = 1: Valid (The sub-block matches the contents of the external
memory specified by ICTAG.)

10 IV0 Instruction Cache Valid Bit

Indicates that the low-order sub-block specified by the index is valid.

IV0 = 0: Invalid

IV0 = 1: Valid (The sub-block matches the contents of the external
memory specified by ICTAG.)

9-0 RFU Reserved field (must be fixed to 0)

(2) Reading cache tags

The V830 Family reads a register, ICTRn, for an instruction cache block to be retrieved. Bits 31 to 12

of the data thus read indicate a tag, while bits 11 and 10 correspond to the valid bits of the related sub-

blocks.

To read register ICTRn, use the IN.W instruction.

RFU

 0 121110 9
I
V
1

I
V
0

ICTAG

31

Data read from ICTR

124

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

(3) Writing cache tags

The V830 Family writes data, with a specified cache tag and valid bits, to ICTRn for the instruction cache

block to be retrieved. This operation enables modification of the cache tag. The branch history (with instruction

ABcond) of the written block is then erased.

To write in a cache tag, use OUT.W instruction.

31 12 11 10 9 0

ICTAG RFU
I
V
1

I
V
0

Data to be written to ICTR

7.1.3 Data Cache

The data cache memory consists of 256 16-byte blocks, having a capacity of 4K bytes. Each block has

a tag and valid bits. The valid bits indicate whether the contents of each block are valid or invalid. If a cache

error occurs, the memory is refilled in units of blocks. The memory is refilled only when the V830 Family makes

a cache error while reading data (write-through mode). Memory is not refilled when writing data.

Also, the data to be cached in the data cache is limited to that data in a cachable area. Data in data RAM

or uncachable area is not cached.

Figure 7-3. Data Cache Configuration

31 12 11 4 3 2 0

TAG INDEX

DCTAG

31 12 11

D
V

Tag part Data part

16 bytes

Retrieval of block
indicated by INDEX

20 bits
32 bits

Comparator Data

Hit

20 bits

8 bits

125

CHAPTER 7 INTERNAL MEMORY

User’s Manual U12496EJ4V0UM00

7.1.4 Data Cache Tag Retrieval

The V830 Family can retrieve the tags of data cached in the data cache. The V830 Family generates the

addresses of the cached data from these tags to locate the cached data.

The DCTR registers are used for tag retrieval. There are 256 DCTR registers, which are mapped to the

I/O space (F2000000H-F2000FFFH). Numbers DCTR0 to DCTR255 are assigned to these registers, which

are each mapped to an address where bits 3 to 0 are 0s. These numbers also correspond to the block numbers

of the cache.

(1) Data cache tag registers

These registers are used for data cache tag retrieval.

To retrieve tags, use the IN.W or OUT.W instruction.

Bit position Field name Meaning

11-4 INDEX Index

Specifies the address of a built-in data cache tag.

31

DCTAG

12 11 10
D
 V RFU

0
DCTR contents

Bit position Field name Meaning

31-12 DCTAG Data Cache Tag

Tag of a block specified by the index of the data cache.

11 DV Data Cache Valid Bit

Indicates that the block specified by the index is valid.

DV = 0: Invalid

DV = 1: Valid (The block matches the contents of the external
memory specified by DCTAG.)

10-0 RFU Reserved field (must be fixed to 0)

034

XXXX
INDEX

1211

0000000001 1 1 1 0

0 1 0 0 0 0

31

X:Don't care

DCTR addressing method (F2000XXXH)

126

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

(2) Reading cache tags

The V830 Family reads the register, DCTRn, for the data cache block to be retrieved. Bits 31 to 12 of the

read data indicate the tag, while bit 11 corresponds to the valid bit.

To read DCTRn, use the IN.W instruction.

31

DCTAG

12 11 10
D
 V RFU

0
Data read from DCTR

(3) Writing cache tags

The V830 Family writes data with a specified cache tag and valid bits to the register, DCTRn, for the data

cache block to be retrieved. This operation enables modification of the cache tag.

To write data to DCTRn, use the OUT.W instruction.

31

DCTAG

12 1110
D
V RFU

0
Data to be written to DCTR

7.1.5 Cache Memory Control Register

The cache memory control register is used for cache clear control. This is a write-only register. If an attempt

is made to read from this register, 0 will be read.

To access this register, use the OUT.W instruction.

CMCR (FFFFFFF4H)
31

RFU

2 1 0
D
C
C

I
C
C

Bit position Field name Meaning

31-2 RFU Reserved field (must be fixed to 0)

1 DCC Data Cache Clear

If this bit is set to 1, the data cache is cleared.

After the data is transferred to external memory by the external bus

master (DMA), clear the data cache before accessing the data. When

the DMA destination is the uncachable area, the data cache need not

be cleared.

0 ICC Instruction Cache Clear

If this bit is set to 1, the instruction cache is cleared.

After the program is transferred to external memory, clear the instruction

cache before executing the program. Clear the branch history, too.

127

CHAPTER 7 INTERNAL MEMORY

User’s Manual U12496EJ4V0UM00

7.2 BUILT-IN RAM

7.2.1 Instruction RAM

The built-in instruction RAM is allocated to addresses FE000000H to FE000FFFH in the memory space.

An instruction can be fetched from this space in one cycle. If an instruction string is stored into the built-in

instruction RAM, instruction fetching can be effected without accessing external memory. The BILD and BIST

instructions are used to transfer instructions between external memory and built-in instruction RAM.

Also, the built-in instruction RAM cannot be accessed with instructions LD or ST. If instructions LD or ST

are used to access the RAM, the operation cannot be guaranteed.

7.2.2 Instruction RAM Retrieval (V830 and V831)

V830 and V831 support a function for accessing instructions stored in instruction RAM. This function

enables instructions to be read from or written to RAM, albeit at low speed.

Instruction RAM can be referenced from addresses FE000000H to FE000FFFH of the I/O space. If,

however, an instruction is written into this space, the branch history of the written part is erased.

Caution V832 cannot use the instruction RAM retrieval function to read from or write to the

instruction RAM by IN.W and OUT.W instructions. Use the BILD and BIST instructions to

access the instruction RAM in four-word units by software for other than instruction

fetches.

(1) Instruction RAM registers

The instruction RAM registers are used to read the contents of instruction RAM.

To access these registers, use the IN.W or OUT.W instruction.

0

1211

OFFSET

2

X

1 0

X0000000000001111111

31
IRAMR addressing method (FE000XXXH)

Bit position Field name Meaning

11-2 OFFSET Offset

Specifies an address in built-in instruction RAM.

031

IRAMD

IRAMR contents

Bit position Field name Meaning

31-0 IRAMD Instruction RAM Data

The Contents of built-in instruction RAM

*

128

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

(2) Instruction RAM retrieval

Using an IN.W instruction, read the desired instruction from the corresponding address in instruction RAM.

(3) Writing to instruction RAM

Using an OUT.W instruction, write the desired instruction to the corresponding address in instruction RAM.

7.2.3 Data RAM

The built-in data RAM is allocated to addresses 00000000H to 00000FFFH. Data loading/storing can be

effected from/to this space in one cycle. Data transfer between external memory and built-in RAM can be

performed at high speed by using a BDLD or BDST instruction.

Also, an instruction cannot be fetched from internal data RAM. If an instruction is fetched from internal

data RAM, operation cannot be guaranteed.

Caution External memory at the addresses assigned to the built-in RAM area cannot be used.

129User’s Manual U12496EJ4V0UM00

CHAPTER 8 RESET

The system is reset when the RESET input goes low. The on-chip hardware is initialized.

8.1 INITIALIZATION

When the RESET input goes low, the system is reset to cause the system registers and internal registers

to assume the conditions listed in Table 8-1.

When the RESET input goes high, the system is released from the reset state and starts program execution.

The registers must be set appropriately by software.

Table 8-1. Conditions of Registers after Reset

Register Abbreviation Condition after reset

System registers Program counter PC FFFFFFF0H

Exception/interrupt status save registers EIPC Unpredictable

EIPSW Unpredictable

NMI/double exception status save registers FEPC Unpredictable

FEPSW Unpredictable

Exception cause register ECR 0000FFF0H

Program status word PSW 00008000H

Processor ID register PIR 00008300H

Task control word TKCW 000000E0H

Debug exception status save register DPC Unpredictable

DPSW Unpredictable

Hardware configuration control word HCCW 00000000H

Internal registers PLL control registerNote PLLCR 0000000XH

Cache memory control register CMCR 00000000H

Instruction cache tag register ICTR XXXXX000H

Data cache tag register DCTR XXXXX000H

Instruction RAM register IRAMR Unpredictable

Note The condition after reset varies depending on CMODE.

130

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

8.2 START-UP

When the V830 Family is reset, it starts program execution at FFFFFFF0H. Immediately after a reset, the

processor cannot accept interrupt requests. Before an interrupt can be used, the NP bit of the program status

word (PSW) must be set to 0.

Caution For the V830, no instructions must be located at FFFFFFFBH and after.

131User’s Manual U12496EJ4V0UM00

CHAPTER 9 PIPELINE

The V830 Family, the design of which is based on the RISC architecture, executes most instructions within

one clock, by means of 5-stage pipeline control.

The processor has a 5-stage pipeline structure.

The pipelined stages are listed below:

IF (instruction fetch) : Fetches an instruction and increments the fetch pointer.

RF (register fetch) : Decodes an instruction, creates immediate data, and reads registers.

EX (execute) : Executes a decoded instruction.

DF (data fetch) : Generates operation flags and read memory (cache).

WB (write back) : Writes the execution result into the register files and memory (cache).

9.1 OUTLINE OF OPERATION

The instruction execution procedure of the V830 Family consists of five stages from fetch to write back.

The execution time of each stage differs according to the type of instruction and the type of memory to be

accessed.

As an example of pipeline operation, Figure 9-1 illustrates the CPU processing that is performed when nine

standard instructions are successively executed.

Figure 9-1. Example of Executing Nine Standard Instructions Successively

<1> to <13> indicate CPU states. In each state, write-back for instruction n, memory access for instruction

n + 1, execution for instruction n + 2, decode for instruction n + 3, and fetch for instruction n + 4 are performed

concurrently. The processing of a standard instruction requires five clocks from fetch to write-back. The V830

Family can execute a standard instruction in an average of one clock because it can concurrently process

five instructions.

Time flow (states)

One internal clock cycle

Processing performed concurrently by the CPU

Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5
Instruction 6
Instruction 7
Instruction 8
Instruction 9

<1> <2> <3> <4> <5> <6> <7> <8> <9> <13><10> <11> <12>
IF RF

IF
EX
RF
IF

DF
EX
RF
IF

WB
DF
EX
RF
IF

WB
DF
EX
RF
IF

WB
DF
EX
RF
IF

WB
DF
EX
RF
IF

WB
DF
EX
RF
IF

WB
DF
EX
RF

WB
DF
EX

WB
DF WB

End of
instruc-
tion 1

End of
instruc-
tion 2

End of
instruc-
tion 3

End of
instruc-
tion 4

End of
instruc-
tion 5

End of
instruc-
tion 6

End of
instruc-
tion 8

End of
instruc-
tion 7

End of
instruc-
tion 9

An instruction is executed in each clock.

132

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

9.2 PIPELINE FLOW WHEN EACH INSTRUCTION IS EXECUTED

This section explains the pipeline flow when each instruction is executed.

For the pipeline used for the explanation, the frequency ratio of the internal block to the external block is

assumed to be 2 to 1.

In the explanation, waits for the write buffer and waits to synchronize the internal block with the external

block are not considered. The pipeline may be placed in the wait state due to the frequency of access to the

external bus or some combinations of instructions. Check the pipeline operation of a specific program using

a simulator.

9.2.1 Load Instructions

[Related instructions] LD.B, LD.H, and LD.W

[Pipeline] The basic flow of a load instruction is shown below:

[Explanation] The address is calculated in the EX stage. Load data is read from the data cache

or memory in the DF stage. In the DF stage, data cache hit/miss is also determined.

9.2.2 Store Instructions

[Related instructions] ST.B, ST.H, and ST.W

[Pipeline] The basic flow of a store instruction is shown below:

[Explanation] The address is calculated in the EX stage. Data cache hit/miss is determined in the

DF stage. Data is stored into the data cache or memory in the WB stage.

<1> <2> <3> <4> <5> <6>

IFLoad instruction RF EX DF WB

IFNext instruction RF EX DF WB

<1> <2> <3> <4> <5> <6>

IFStore instruction RF EX DF WB

IFNext instruction RF EX DF WB

133

CHAPTER 9 PIPELINE

User’s Manual U12496EJ4V0UM00

9.2.3 Block Transfer Instructions

(1) BILD and BDLD

[Pipeline] The basic flow of a block transfer instruction is shown below:

[Explanation] In EX stage <14>, data read in Tb1 is written into the built-in RAM.

In EX stage <16>, data read in Tb2 is written into the built-in RAM.

In EX stage <18>, data read in Tb3 is written into the built-in RAM.

In EX stage <20>, data read in Tb4 is written into the built-in RAM.

The pipeline hold state is released three clocks after the end of the last bus cycle

(Tb4) in which data is fetched from the external bus.

(2) BIST and BDST

[Pipeline] The basic flow of a block transfer instruction is shown below:

[Explanation] The pipeline hold state is released three clocks after the beginning of the last bus

cycle (Tb4) in which data is output to the external bus.

Block transfer
instruction
Next instruction

External bus

To establish synchronization with the bus clock,
there may be another delay of one or two cycles.

IF EXRF EX EXEX EX EXEX EX EXEX EX EXEX EX EXEX

Ta Tb1 Tb2 Tb3 Tb4

EX EXEX EX WBDF

–IF – –– – –– – –– – –– – –– – –– RF DFEX

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10><11> <12><13><14><15> <16><17> <18><19><20><21><22> <23> <24>

Block transfer
instruction
Next instruction

External bus

To establish synchronization with the bus clock,
there may be another delay of one or two cycles.

IF EXRF EX EXEX EX EXEX EX EXEX EX EXEX EX EXEX

Ta Tb1 Tb2 Tb3 Tb4

EX EXEX DF WB

–IF – –– – –– – –– – –– – –– – RF– EX WBDF

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10><11> <12><13><14><15> <16><17> <18><19><20><21><22> <23> <24>

134

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

9.2.4 I/O Instructions

(1) Input instructions

[Related instructions] IN.B, IN.H, and IN.W

[Pipeline] The basic flow of an input instruction is shown below:

[Explanation] The pipeline is held until data is fetched from the external bus.

The pipeline hold state is released two clocks after the end of the bus cycle in which

data is fetched from the external bus.

In the DF stage, data read from the external bus is fetched. In the WB stage, the

register files are written.

(2) Output instructions

[Related instructions] OUT.B, OUT.H, and OUT.W

[Pipeline] The basic flow of an output instruction is shown below:

[Explanation] The pipeline hold state is released two clocks after the end of the bus cycle in which

data is output to the external bus.

RFIF EXEX EXEX EXEX EXEX EXEX

Ta Ts

EXEX DF WBEX

–IF –– –– –– –– –– RF– DF WBEX

To establish synchronization with the bus clock,
there may be another delay of one or two cycles.

Input instruction

Next instruction

External bus

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10><11><12><13> <14><15><16> <17>

RFIF EXEX EXEX EXEX EXEX EXEX

Ta Ts

EXEX DF WBEX

–IF –– –– –– –– –– RF– DF WBEX

To establish synchronization with the bus clock,
there may be another delay of one or two cycles.

Output instruction

Next instruction

External bus

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10><11><12><13> <14><15><16> <17>

135

CHAPTER 9 PIPELINE

User’s Manual U12496EJ4V0UM00

9.2.5 Arithmetic Operation Instructions (Other Than the Multiply and Divide Instructions)

[Related instructions] ADD, SUB, ADDI, CMP, MOV, MOVHI, and MOVEA

[Pipeline] The basic flow of an arithmetic operation instruction (other than a multiply/divide

instruction) is shown below:

[Explanation] The operation result is obtained in the EX stage. The flags are also generated in

the EX stage (for other than MOV, MOVHI, and MOVEA).

The register files are written in the WB stage (for other than CMP).

9.2.6 Multiply Instructions

[Related instructions] MUL and MULU

[Pipeline] The basic flow of a multiply instruction is shown below:

[Explanation] When the operation result is output, it is divided into the high- and low-order words.

In the DF stage, the high-order word is output and written into the register.

The flags are also generated in the DF stage. In the WB stage, the low-order word

is output and written into the register.

9.2.7 Divide Instructions

(1) DIV

[Pipeline] The basic flow of the DIV instruction is shown below:

[Explanation] The DIV instruction stops processing of the next instruction until the 36th cycle

(<38>) of the EX stage. In the 37th cycle (<39>) of the EX stage, the next instruction

processing restarts from the RF stage.

The remainder is output in the 35th cycle (<37>) of the EX stage and is written in

the 37th cycle (<39>) of the EX stage. The quotient is output in the 37th cycle (<39>)

of the EX stage and is written in the WB stage. The flags are generated in the DF

stage.

IF
Arithmetic operation
instruction RF EX DF WB

IFNext instruction RF EX DF WB

<1> <2> <3> <4> <5> <6>

IFMultiply instruction RF EX EX DF WB

IF – RF EX DF WBNext instruction

<1> <2> <3> <4> <5> <6> <7>

IFDIV instruction RF EX EX EX EX EX DF WB

IF – –– RF EX DF WBNext instruction

<1> <2> <3> <4> <37> <38> <39> <40> <41> <42>

136

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

(2) DIVU

[Pipeline] The basic flow of the DIVU instruction is shown below:

[Explanation] The DIVU instruction stops processing of the next instruction until the 34th cycle

(<36>) of the EX stage. In the 35th cycle (<37>) of the EX stage, the next instruction

processing restarts from the RF stage.

The remainder is output in the 34th cycle (<36>) of the EX stage and is written in

the DF stage. The quotient is output in the 35th cycle (<37>) of the EX stage and

is written in the WB stage. The flags are generated in the DF stage.

9.2.8 Multiply/Sum-of-Products Instructions

[Related instructions] MUL3, MULI, MULT3, MAC3, MACI, and MACT3

[Pipeline] The basic flow of a multiply/sum-of-products instruction is shown below:

[Explanation] The operation result is generated in the WB stage.

In the RF stage, the register files specified for the first and second operands are

read. If the value of the third operand is not forwarded, a structure hazard (2) occurs.

For details, see Section 9.3 .

9.2.9 Signal-Processing Operation Instructions

[Related instructions] SATADD3, SATSUB3, MIN3, and MAX3

[Pipeline] The basic flow of a signal-processing operation instruction is shown below:

[Explanation] The flags are generated in the EX stage. The MIN3 and MAX3 instructions generate

no flags, however. The operation result is obtained in the DF stage.

IFDIVU instruction RF EX EX EX EX EX DF WB

IF – –– RF EX DF WBNext instruction

<1> <2> <3> <4> <35> <36> <37> <38> <39> <40>

IF
Multiply/sum-of-products
instruction RF EX DF WB

IFNext instruction RF EX DF WB

<1> <2> <3> <4> <5> <6>

IF
Signal-processing
operation instruction RF EX DF WB

IFNext instruction RF EX DF WB

<1> <2> <3> <4> <5> <6>

137

CHAPTER 9 PIPELINE

User’s Manual U12496EJ4V0UM00

9.2.10 Logical Operation Instructions

[Related instructions] OR, AND, XOR, NOT, ORI, ANDI, and XORI

[Pipeline] The basic flow of a logical operation instruction is shown below:

[Explanation] The operation result is generated in the EX stage. The flags are generated in the

DF stage.

9.2.11 Shift Operation Instructions

[Related instructions] SHL, SHR, SAR, SHLD3, and SHRD3

[Pipeline] The basic flow of a shift operation instruction is shown below:

[Explanation] The flags and operation result are generated in the DF stage. The SHLD3 and

SHRD3 instructions generate no flags, however.

IF
Logical operation
instruction RF EX DF WB

IFNext instruction RF EX DF WB

<1> <2> <3> <4> <5> <6>

IF
Shift operation
instruction RF EX DF WB

IFNext instruction RF EX DF WB

<1> <2> <3> <4> <5> <6>

138

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

9.2.12 Branch/Jump Instructions

[Related instructions] Bcond instructions (BGT, BGE, BLT, BLE, BH, BNL, BL, BNH, BE, BNE, BV, BNV,

BN, BP, BC, BNC, BZ, BNZ, BR, and NOP), JMP, and JR

[Pipeline] The basic flow of a branch/jump instruction is shown below:

(a) When the branch condition of a jump or Bcond instruction is satisfied

(b) When the branch condition of a Bcond instruction is not satisfied

[Explanation] (a) When the branch condition of a jump or Bcond instruction is satisfied

In the EX stage, the branch address is stored in the PC and a branch is made.

(b) When the branch condition of a Bcond instruction is not satisfied

In the EX stage, it is determined that the branch condition is not satisfied, and

the subsequent instructions are executed as specified.

9.2.13 Jump and Link Instruction

[Related instruction] JAL

[Pipeline] The basic flow of the JAL instruction is shown below:

[Explanation] In the first cycle of the EX stage, the branch address is stored into the PC. In the

second cycle of the EX stage, the link PC is calculated. In the WB stage, the value

is written into r31.

IFBranch/jump instruction RF EX DF WB

IFNext instruction 1

Next instruction 2

Branch destination instruction

RF These instructions are
invalidated due to a branch.IF

IF RF EX DF WB

<1> <2> <3> <4> <5> <6>

IFBcond instruction RF EX DF WB

IFNext instruction 1

Next instruction 2

RF EX DF WB

IF RF EX DF WB

<1> <2> <3> <4> <5> <6> <7>

IFJAL instruction RF EX EX DF WB

IFNext instruction

Branch destination instruction

– Held.

IF RF EX DF WB

<1> <2> <3> <4> <5> <6> <7> <8>

139

CHAPTER 9 PIPELINE

User’s Manual U12496EJ4V0UM00

9.2.14 High-Speed Branch Instructions

[Related instructions] ABcond instructions (ABGT, ABGE, ABLT, ABLE, ABH, ABNL, ABL, ABNH, ABE,

ABNE, ABV, ABNV, ABN, ABP, ABC, ABNC, ABZ, ABNZ, and ABR)

[Pipeline] The basic flow of an ABcond instruction is shown below:

[Explanation] When the condition is satisfied and it is determined that a branch is to be made in

the EX stage of the ABcond instruction, for the first branch, the ABcond instruction

operates in the same way as an ordinary branch instruction. This is because no

branch history has been created. In the WB stage, the addresses of the ABcond

and branch destination instructions are written into the branch history. When the

second or subsequent branch is to be made for the ABcond instruction (the branch

history is not cleared) and the branch history address and PC value match, the

address of the branch destination instruction stored in the branch history is set as

the next PC value of the ABcond instruction.

9.2.15 Special Instructions

(1) LDSR

[Pipeline] The basic flow of the LDSR instruction is shown below:

[Explanation] The new value of the system register is used for the next and subsequent

instructions. The next instruction is held until the 4th cycle (<6>) of the EX stage.

No flag hazard occurs regardless of whether a conditional branch instruction

immediately follows the LDSR instruction.

IFABcond instruction RF EX DF WB

Next instruction 1 IF RF These instructions are
invalidated due to a branch.

Execution of the branch destination
instruction is continued.

Next instruction 2 IF

Branch destination instruction a IF RF EX DF WB

Branch destination instruction b IF RF EX DF WB

ABcond instruction IF RF EX DF WB

Branch destination instruction a IF RF EX DF WB

ABcond address

ABcond address
Match

H
is

to
ry

H
is

to
ry

Address of branch desti-
nation instruction a

Address of branch desti-
nation instruction a

<1> <2> <3> <4> <5>

IFLDSR instruction RF EX EX EX

Next instruction IF – – – – RF EX DF WB

EX EX DF WB

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10>

140

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

(2) STSR

[Pipeline] The basic flow of the STSR instruction is shown below:

[Explanation] In the first cycle of the EX stage (<3>), the system register (EIPC, EIPSW, FEPC,

FEPSW, PPC, or PPSW) is read. In the WB stage, the system register (ECR, PSW,

PIR, TKCW, or HCCW) is read. If the result of the STSR instruction is used

immediately after execution of the instruction, a register hazard occurs because the

register file is written in the WB stage. For details, see Section 9.3 .

(3) TRAP

[Pipeline] The basic flow of the TRAP instruction is shown below:

[Explanation] A branch is made after the end of the WB stage for the TRAP instruction to confirm

that no exception occurs in an instruction preceding the TRAP instruction before the

branch is made.

(4) RETI and BRKRET

[Pipeline] The basic flow of the RETI or BRKRET instruction is shown below:

[Explanation] The return address is set in the PC and a branch is taken in the 3rd cycle (<5>) of

the EX stage. The next instruction is held until the 2nd cycle (<4>) of the EX stage.

IFSTSR instruction RF EX EX DF WB

Next instruction IF – RF EX DF WB

<1> <2> <3> <4> <5> <6> <7>

IFTRAP instruction RF EX DF WB

Next instruction 1 IF RF EX DF

IF RF EX

IF RF

IF

IF

Next instruction 2

Next instruction 3

Next instruction 4

Branch destination instruction RF EX DF WB

Held due to a branch.

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10>

IF
RETI or BRKRET
instruction RF EX EX EX DB WB

Next instruction 1 IF – – RF

IF

IF

Next instruction 2

Return destination instruction RF EX DF WB

Held due to a branch.

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10>

141

CHAPTER 9 PIPELINE

User’s Manual U12496EJ4V0UM00

(5) CAXI

[Pipeline] The basic flow of the CAXI instruction is shown below:

[Explanation] The pipeline hold state is released two cycles (<13>) after the first bus cycle in which

data is output to the external bus.

In the cycle of the EX stage immediately after the hold state is released (<14>), data

read from the external bus is fetched. In the next cycle of the EX stage (<15>), the

old data is compared with the read data. In the following cycle of the EX stage

(<16>), the comparison result is stored.

9.2.16 Address Traps and Interrupts

[Related handling] Interrupt, invalid code exception, and division-by-zero exception

[Pipeline] The basic flow of interrupt/exception handling is shown below:

[Explanation] If an interrupt occurs during the execution of instruction 1, processing up to the WB

stage for instruction 1 is performed. Then, control is passed to interrupt handling.

If an exception occurs during the execution of instruction 1, processing up to the

WB stage of instruction 1 in which the exception occurs is also performed. Then,

control is passed to exception handling.

IF RF EX DF WB

The internal hold state is released.

CAXI instruction
IF – – – – – – – – –

Ta Ts Ta Ts

– – – – – – – – – – – – – RF EX DF WBNext instruction

External bus

To establish synchronization with the bus clock,
there may be another delay of one or two cycles.

To establish synchronization with the bus clock,
there may be another delay of one or two cycles.

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10><11><12><13><14><15><16><17><18><19><20><21><22><23><24><25><26><27><28>

An interrupt or exception occurs
during the execution of instruction 1.IFInstruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

RF EX DF WB

IF RF EX DF

IF RF EX

IF RF

IF

IFBranch destination instruction RF EX DF WB

Held due to a branch.

<1> <2> <3> <4> <5>

142

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

9.3 DISRUPTIONS IN PIPELINE OPERATION

9.3.1 Structure Hazard (1)

[Related processing] A structure hazard (1) occurs if the subsequent instruction may access the same

hardware component simultaneously.

[Sample program] ST.W r3, 200 [r2]

LD.W 100 [r1] , r4

[Pipeline]

[Explanation] To prevent a malfunction caused by simultaneous access to the same hardware

component by the subsequent instruction, execution of the subsequent instruction

is held to shift the execution timing.

During the execution of the store instruction (ST.W) in the sample program, the built-

in data RAM and data cache are accessed in the WB stage. During the execution

of the subsequent load instruction (LD.W), the built-in data RAM and data cache

are accessed in the DF stage. If these instructions are executed as is, they will use

the same bus in the same cycle. To shift the timing, the hazard function holds the

LD.W instruction for one cycle.

9.3.2 Structure Hazard (2)

[Related processing] A structure hazard (2) occurs if the value of the third operand is not forwarded from

the previous instruction during the execution of MAC3, MACT3, SHLD3, or SHRD3.

[Pipeline]

[Explanation] In the first cycle of the RF stage (<2>) for the target instruction, the first and second

operands are read, but the third operand is not read. Therefore, if register forwarding

is not to be performed for the third operand, the RF stage occurs again and the third

operand is read. To perform this operation, the next instruction is held. When the

EX stage for the previous instruction is executed, the RF stage for the next

instruction is executed (<4>).

IFST.W RF EX DF WB

LD.W IF RF – EX DF WB

A structure hazard is detected.

<1> <2> <3> <4> <5> <6> <7>

IFTarget instruction RF RF EX DF

Next instruction IF – RF EX DF WB

WB

<1> <2> <3> <4> <5> <6> <7>

143

CHAPTER 9 PIPELINE

User’s Manual U12496EJ4V0UM00

9.3.3 Register Forwarding

[Related processing] Register forwarding occurs if the subsequent instruction uses the operation result

before the WB stage in which the register files are written.

[Sample program] MOV r8, r5

SHR #1, r4

ADD r2, r3

MAC3 r5, r4, r3

[Pipeline]

[Explanation] The operation result to be used by the subsequent instruction is transferred from

the EX, DF, and WB stages to the EX stage for the subsequent instruction

(forwarding or bypass function). In the sample program, the operation result (r5)

of the MOV instruction is forwarded to MAC3 (WB for MOV to EX for MAC3), the

operation result (r4) of the SHR instruction is forwarded to MAC3 (DF for SHR to

EX for MAC3), and the operation result (r3) of the ADD instruction is forwarded to

MAC3 (EX for ADD to EX for MAC3). This function allows the subsequent instruction

to start execution without waiting for the end of the WB stage for the previous

instruction.

9.3.4 Instruction Code Hazard

[Related processing] An instruction code hazard occurs if a branch is made to a 32-bit instruction across

a word boundary (branch due to a branch/jump instruction or interrupt).

[Pipeline]

[Explanation] The CPU fetches an instruction from the instruction cache or RAM word by word.

Therefore, for a 32-bit instruction across a word boundary which is executed

immediately after a branch, only the first half of code can be fetched in the first cycle

of the IF stage. The second cycle of the IF stage is activated to fetch the latter half

of the code, and the IF stage for the next instruction is awaited until the code for

the previous instruction has been fetched.

IFMOV RF EX DF WB

SHR IF RF EX DF WB

ADD IF RF EX DF WB

MAC3 IF RF EX DF WB

<1> <2> <3> <4> <5> <6> <7> <8>

IFTarget instruction IF RF EX DF

Next instruction IF RF EX DF WB

WB

<1> <2> <3> <4> <5> <6> <7>

144

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

9.3.5 Flag Hazard

[Related processing] A flag hazard occurs during the execution of a conditional branch or SETF instruction

following an instruction which generates the flags in the DF or subsequent stage

(DF stage for a logical operation instruction; WB stage for a multiply instruction).

[Sample program] AND #1, r3

BNZ skip

[Pipeline]

[Explanation] Execution of the subsequent instruction is held until flag forwarding because the

flags are not generated in the EX stage.

IFAND RF EX DF WB

BNZ IF RF – EX DF WB

A flag hazard is detected.

<1> <2> <3> <4> <5> <6> <7>

145User’s Manual U12496EJ4V0UM00

APPENDIX A INSTRUCTION SUMMARY

A.1 TYPES OF INSTRUCTIONS

A.1.1 Instructions Shared with V810 TM

Load/store LD.B Load Byte

LD.H Load Halfword

LD.W Load Word

ST.B Store Byte

ST.H Store Halfword

ST.W Store Word

Arithmetic operation MOV Move data
on integers

MOVHI Move with addition of High-order Immediate data

ADD Add

ADDI Add Immediate data

MOVEA More with Addition

SUB Subtract

MUL Multiply (signed)

MULU Multiply Unsigned

DIV Divide (signed)

DIVU Divide Unsigned

CMP Compare

SETF Ser Flag condition

Logical operation OR OR (disjunction)

ORI OR of Immediate data and register data

AND AND (conjunction)

ANDI AND of Immediate data and register data

XOR Exclusive OR

XORI Exclusive OR of Immediate and register data

NOT NOT (ones compliment)

SHL Shift Logical to the Left

SHR Shift Logical to the Right

SAR Shift Arithmetic to the Right

146

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Input/output IN.B Input Byte from port

IN.H Input Halfword from port

IN.W Input Word from port

OUT.B Output Byte to port

OUT.H Output Halfword to port

OUT.W Output Word to port

Program control JMP Jump unconditional (via register)

JR Jump Relative to PC, unconditional

JAL Jump and Link

BGT Branch on Greater than signed

BGE Branch on Greater than or Equal signed

BLT Branch on Less than signed

BLE Branch on Less than or Equal signed

BH Branch on Higher

BNH Branch on Not Higher

BL Branch on Lower

BNL Branch on Not Lower

BE Branch on Equal

BNE Branch on Not Equal

BV Branch on Overflow

BNV Branch on No Overflow

BN Branch on Negative

BP Branch on Positive

BC Branch on Carry

BNC Branch on No Carry

BZ Branch on Zero

BNZ Branch on Not Zero

BR Branch Always

NOP Not always

Special LDSR Load to System Register

STSR Store contents of System Register

TRAP Software Trap

RETI Return from Trap or Interrupt

CAXI Compare and Exchange Interlocked

HALT Halt

147

APPENDIX A INSTRUCTION SUMMARY

User’s Manual U12496EJ4V0UM00

A.1.2 Instructions Unique to V810

Operation BILD Block Instruction Load to built-in instruction RAM

on internal memory
BDLD Block Data Load to built-in data RAM

BIST Block Instruction Store from built-in instruction RAM

BDST Block Data Store from built-in data RAM

V830 control EI Enable maskable Interrupt

DI Disable maskable Interrupt

STBY Standby

BRKRET Break Return from fatal exception

Instructions for MUL3 Multiply on 3 operands
multimedia features

MAC3 Multiply and Accumulate on 3 operands

MULI Multiply on Immediate and register data

MACI Multiply and Accumulate on immediate and register data

MULT3 Multiply with Truncation on 3 operands

MACT3 Multiply and Accumulate with Truncation on 3 operands

SATADD3 Saturatable Addition on 3 operands

SATSUB3 Saturatable Subtraction on 3 operands

MIN3 Minimum on 3 operands

MAX3 Maximum on 3 operands

SHLD3 Shift to the Left of Double word on 3 operands

SHRD3 Shift to the Right of Double word on 3 operands

ABGT Advanced Branch on Greater than signed

ABGE Advanced Branch on Greater than or Equal signed

ABLT Advanced Branch on Less than signed

ABLE Advanced Branch on Less than or Equal signed

ABH Advanced Branch on Higher

ABNH Advanced Branch on Not Higher

ABL Advanced Branch on Lower

ABNL Advanced Branch on Not Lower

ABE Advanced Branch on Equal

ABNE Advanced Branch on Not Equal

ABV Advanced Branch on Overflow

ABNV Advanced Branch on No Overflow

ABN Advanced Branch on Negative

ABP Advanced Branch on Positive

148

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Instructions for ABC Advanced Branch on Carry
multimedia features

ABNC Advanced Branch on No Carry

ABZ Advanced Branch on Zero

ABNZ Advanced Branch on Not Zero

ABR Advanced Branch Always

149

APPENDIX A INSTRUCTION SUMMARY

User’s Manual U12496EJ4V0UM00

A.2 INSTRUCTIONS (LISTED ALPHABETICALLY)

The instructions are listed below in alphabetic order of their mnemonics.

General-purpose register (used as a source register)

General-purpose register (used mainly as a destination register,
but in some instructions, used as a source register)

General-purpose register (used mainly as a destination register,
but in some instructions, used as a source register)

x bits of immediate data

x-bit displacement

System register number

Trap handler address corresponding to trap vector

Explanation of list format

Instruction Operand(s) Function Page

Instruction
mnemonic

Instruction
format : Does not change.

: Changes.
: Becomes 0.
: Becomes 1.

Identifies the page
containing explanation
in Section 5.3.

Abbreviations of operands

Format CY OV S Z

∗∗∗∗

—
∗
0
1

Ireg1, reg2ADD

Abbreviation Meaning

reg1

reg2

reg3

immx

dispx

regID

vector adr

Indicates how each flag changes.

150

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Instruction Operand(s) Format CY OV S Z Function Page

ABC disp9 III — — — — High-speed conditional branch (if Carry) 45
relative to PC.

ABE disp9 III — — — — High-speed conditional branch (if Equal)
relative to PC.

ABGE disp9 III — — — — High-speed conditional branch (if Greater
than or Equal) relative to PC.

ABGT disp9 III — — — — High-speed conditional branch (if Greater
than) relative to PC.

ABH disp9 III — — — — High-speed conditional branch (if Higher)
relative to PC.

ABL disp9 III — — — — High-speed conditional branch (if Lower)
relative to PC.

ABLE disp9 III — — — — High-speed conditional branch (if Less
than or Equal) relative to PC.

ABLT disp9 III — — — — High-speed conditional branch (if Less
than) relative to PC.

ABN disp9 III — — — — High-speed conditional branch (if Negative)
relative to PC.

ABNC disp9 III — — — — High-speed conditional branch (if Not
Carry) relative to PC.

ABNE disp9 III — — — — High-speed conditional branch (if Not
Equal) relative to PC.

ABNH disp9 III — — — — High-speed conditional branch (if Not
Higher) relative to PC.

ABNL disp9 III — — — — High-speed conditional branch (if Not
Lower) relative to PC.

ABNV disp9 III — — — — High-speed conditional branch (if Not
Overflow) relative to PC.

ABNZ disp9 III — — — — High-speed conditional branch (if Not Zero)
relative to PC.

ABP disp9 III — — — — High-speed conditional branch (if Positive)
relative to PC.

ABR disp9 III — — — — High-speed unconditional branch (Always)
relative to PC.

ABV disp9 III — — — — High-speed conditional branch (if Overflow)
relative to PC.

ABZ disp9 III — — — — High-speed conditional branch (if Zero)
relative to PC.

ADD reg1, reg2 I ∗ ∗ ∗ ∗ Addition. reg1 is added to reg2 and 47
the sum is written into reg2.

imm5, reg2 II ∗ ∗ ∗ ∗ Addition. imm5, sign-extended to a word,
is added to reg2 and the sum is written
into reg2.

151

APPENDIX A INSTRUCTION SUMMARY

User’s Manual U12496EJ4V0UM00

Instruction Operand(s) Format CY OV S Z Function Page

ADDI imm16, V ∗ ∗ ∗ ∗ Addition. imm16, sign-extended to a word, 48
reg1, reg2 is added to reg1, and the sum is written

into reg2.

AND reg1, reg2 I — 0 ∗ ∗ AND. reg2 and reg1 are ANDed and 49
the result is written into reg2.

ANDI imm16, V — 0 0 ∗ AND. reg1 is ANDed with imm16, 50
reg1, reg2 zero-extended to a word, and result is

written into reg2.

BC disp9 III — — — — Conditional branch (if Carry) relative to 51
PC.

BDLD [reg1], [reg2] VII — — — — Block transfer. 4 words of data are 53
transferred from external memory to
built-in data RAM.

BDST [reg2], [reg1] VII — — — — Block transfer. 4 words of data are 54
transferred from built-in data RAM to
external memory.

BE disp9 III — — — — Conditional branch (if Equal) relative to 51
PC.

BGE disp9 III — — — — Conditional branch (if Greater than or
Equal) relative to PC.

BGT disp9 III — — — — Conditional branch (if Greater than)
relative to PC.

BH disp9 III — — — — Conditional branch (if Higher) relative to
PC.

BILD [reg1], [reg2] VII — — — — Block transfer. 4 words of data are 55
transferred from external memory to
built-in instruction RAM.

BIST [reg2], [reg1] VII — — — — Block transfer. 4 words of data are 56
transferred from built-in instruction RAM
to external memory.

BL disp9 III — — — — Conditional branch (if Lower) relative to 51
PC.

BLE disp9 III — — — — Conditional branch (if Less than or Equal)
relative to PC.

BLT disp9 III — — — — Conditional branch (if Less than) relative
to PC.

BN disp9 III — — — — Conditional branch (if Negative) relative
to PC.

BNC disp9 III — — — — Conditional branch (if Not Carry) relative
to PC.

BNE disp9 III — — — — Conditional branch (if Not Equal) relative
to PC.

BNH disp9 III — — — — Conditional branch (if Not Higher) relative
to PC.

152

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Instruction Operand(s) Format CY OV S Z Function Page

BNL disp9 III — — — — Conditional branch (if Not Lower) relative 51
to PC.

BNV disp9 III — — — — Conditional branch (if Not Overflow)
relative to PC.

BNZ disp9 III — — — — Conditional branch (if Not Zero) relative
to PC.

BP disp9 III — — — — Conditional branch (if Positive) relative
to PC.

BR disp9 III — — — — Unconditional branch (Always) relative
to PC.

BRKRET IX — — — — Return from fatal exception handling 57

BV disp9 III — — — — Conditional branch (if Overflow) relative 51
to PC.

BZ disp9 III — — — — Conditional branch (if Zero) relative to PC.

CAXI disp16 VI ∗ ∗ ∗ ∗ Inter-processor synchronization in multi- 58
[reg1], reg2 processor system.

CMP reg1, reg2 I ∗ ∗ ∗ ∗ Comparison. reg2 is compared with reg1 60
sign-extended to a word and the condition
flag is set according to the result.
The comparison involves subtracting reg1
from reg2.

imm5,reg2 II ∗ ∗ ∗ ∗ Comparison. reg2 is compared with imm5
sign-extended to a word and the condition
flag is set according to the result.
The comparison involves subtracting imm5,
sign-extended to a word, from reg2.

DI II — — — — Disable interrupt. Maskable interrupts are 61
disabled. DI instruction cannot disable
nonmaskable interrupts.

DIV reg1, reg2 I — ∗ ∗ ∗ Division of signed operands. reg2 is 62
divided by reg1 (signed operands).
The quotient is stored in reg2 and the
remainder in r30. The division is
performed so that the sign of the
remainder will match that of the dividend.

DIVU reg1, reg2 I — 0 ∗ ∗ Division of unsigned operands. reg2 is 63
divided by reg1 (unsigned operands). The
quotient is stored in reg2 and the
remainder in r30. The division is
performed so that the sign of the
remainder will match that of the dividend.

EI II — — — — Enable interrupt. Maskable interrupts are 64
enabled. The EI instruction cannot enable
nonmaskable interrupts.

HALT IX — — — — Processor halt. The processor is placed 65
in sleep mode.

153

APPENDIX A INSTRUCTION SUMMARY

User’s Manual U12496EJ4V0UM00

Instruction Operand(s) Format CY OV S Z Function Page

IN.B disp16 VI — — — — Port input. disp16, sign-extended to a 66
[reg1], reg2 word, is added to reg1 to produce an

unsigned 32-bit port address. A byte of
data is read from the resulting port
address, zero-extended to a word, then
stored in reg2.

IN.H disp16 VI — — — — Port input. disp16, sign-extended to a
[reg1], reg2 word, is added to reg1 to produce an

unsigned 32-bit port address. A halfword
of data is read from the produced port
address, zero-extended to a word, and
stored in reg2. Bit 0 of the unsigned
32-bit port address is masked to 0.

IN.W disp16 VI — — — — Port input. disp16, sign-extended to a
[reg1], reg2 word, is added to reg1 to produce an

unsigned 32-bit port address. A word of
data is read from the resulting port address,
then written into reg2. Bits 0 and 1 of the
unsigned 32-bit port address are masked
to 0.

JAL disp26 IV — — — — Jump and link. The sum of the current PC 68
and 4 is written into r31. disp26, sign-
extended to a word, is added to the PC
and the sum is set to the PC for control
transfer. Bit 0 of disp26 is masked.

JMP [reg1] I — — — — Indirect unconditional branch via register. 69
Control is passed to the address
designated by reg1. Bit 0 of the address
is masked to 0.

JR disp26 IV — — — — Unconditional branch. disp26, sign- 70
extended to a word, is added to the
current PC and control is passed to the
address specified by that sum. Bit 0 of
disp26 is masked to 0.

LD.B disp16 VI — — — — Byte load. disp16, sign-extended to a 71
[reg1], reg2 word, is added to reg1 to produce an

unsigned 32-bit address. A byte of data
is read from the produced address, sign-
extended to a word, then written into reg2.

LD.H disp16 VI — — — — Halfword load. disp16, sign-extended to a
[reg1], reg2 word, is added to reg1 to produce an

unsigned 32-bit address. A halfword of
data is read from the produced address,
sign-extended to a word, then written into
reg2. Bit 0 of the unsigned 32-bit address
is masked to 0.

LD.W disp16 VI — — — — Word load. disp16, sign-extended to a
[reg1], reg2 word, is added to reg1 to produce an

unsigned 32-bit address. A word of data
is read from the produced address, then
written into reg2. Bits 0 and 1 of the
unsigned 32-bit address are masked to 0.

154

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Instruction Operand(s) Format CY OV S Z Function Page

LDSR reg2, regID II ∗ ∗ ∗ ∗ Load into system register. The contents 73
of reg2 are set in the system register
identified by the system register number
(regID).

MAC3 reg1, reg2, VIII — — — — Saturatable operation on signed 32-bit 74
reg3 operands. reg1 and reg2 are multiplied

together as signed integers and the
product is added to reg3.

[If no overflow has occurred:]
The result is stored in reg3.

[If an overflow has occurred:]
The SAT flag is set. If the result is
positive, the positive maximum is
written into reg3; if the result is
negative, the negative maximum is
written into reg3.

MACI imm16, V — — — — Saturatable operation on signed 32-bit 75
reg1, reg2 operands. reg1 and imm16, sign-extended

to 32 bits, are multiplied together as signed
integers and the product is added to reg2
as a signed integer.

[If no overflow has occurred:]
The result is written into reg2.

[If an overflow has occurred:]
The SAT flag is set. If the result is
positive, the positive maximum is
written into reg2; if the result is
negative, the negative maximum is
written into reg2.

MACT3 reg1, reg2, VIII — — — — Saturatable operation on signed 32-bit 76
reg3 operands. reg1 and reg2 are multiplied

together as signed integers and the high-
order 32 bits of the product are added to
reg3 as signed integers.

[If no overflow has occurred:]
The result is written into reg3.

[If an overflow has occurred:]
The SAT flag is set. If the result is
positive, the positive maximum is
written into reg3; if the result is
negative, the negative maximum is
written into reg3.

MAX3 reg1, reg2, VIII — — — — Maximum. reg2 and reg1 are compared as 77
reg3 signed integers. The larger value is written

into reg3.

MIN3 reg1, reg2, VIII — — — — Minimum. reg2 and reg1 are compared as 78
reg3 signed integers. The smaller value is

written into reg3.

155

APPENDIX A INSTRUCTION SUMMARY

User’s Manual U12496EJ4V0UM00

Instruction Operand(s) Format CY OV S Z Function Page

MOV reg1, reg2 I — — — — Data transfer. reg1 is copied to reg2 for 79
data transfer.

imm5, reg2 II — — — — Data transfer. imm5, sign-extended to a
word, is copied into reg2 for data transfer.

MOVEA imm16, V — — — — Addition. The high-order 16 bits (imm16), 80
reg1, reg2 sign-extended to a word, are added to

reg1 and the sum is written into reg2.

MOVHI imm16, V — — — — Addition. A word consisting of the high-order 81
reg1, reg2 16 bits (imm16) and low-order 16 bits (0) is

added to reg1 and the sum is written into
reg2.

MUL reg1, reg2 I — ∗ ∗ ∗ Multiplication of signed operands. reg2 82
and reg1 are multiplied together as signed
values. The high-order 32 bits of the
product (double word) are written into r30
and low-order 32 bits are written into reg2.

MUL3 reg1, reg2, VIII — — — — Multiplication of signed 32-bit operands. 83

reg3 reg2 and reg1 are multiplied together as
signed integers. The high-order 32 bits of
the product are written into reg3.

MULI imm16, V — — — — Saturatable multiplication of signed 32-bit 84
reg1, reg2 operands. reg1 and imm16, sign-extended

to 32 bits, are multiplied together as
signed integers.

[If no overflow has occurred:]
The result is written into reg2.

[If an overflow has occurred:]
The SAT flag is set. If the result is
positive, the positive maximum is
written into reg2; if the result is
negative, the negative maximum is
written into reg2.

MULT3 reg1, reg2, VIII — — — — Saturatable multiplication of signed 32-bit 85
reg3 operands. reg1 and reg2 are multiplied

together as signed integers. The high-
order 32 bits of the product are written
into reg3.

MULU reg1, reg2 I — ∗ ∗ ∗ Multiplication of unsigned operands. reg1 86
and reg2 are multiplied together as
unsigned values. The high-order 32 bits
of the product (double word) are written
into r30 and the low-order 32 bits are
written into reg2.

NOP III — — — — No operation. 51

NOT reg1, reg2 I — 0 ∗ ∗ NOT. The NOT (ones complement) of 87
reg1 is taken and written into reg2.

OR reg1, reg2 I — 0 ∗ ∗ OR. The OR of reg2 and reg1 is taken and 88
written into reg2.

156

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Instruction Operand(s) Format CY OV S Z Function Page

ORI imm16, V — 0 ∗ ∗ OR. The OR of reg1 and imm16, zero- 89
reg1, reg2 extended to a word, is taken and written

into reg2.

OUT.B reg2, VI — — — — Port output. disp16, sign-extended to a 90
disp16[reg1] word, is added to reg1 to produce an

unsigned 32-bit port address. The low-
order one byte of the data in reg2 is
output to the resulting port address.

OUT.H reg2, VI — — — — Port output. disp16, sign-extended to a
disp16[reg1] word, is added to reg1 to produce an

unsigned 32-bit port address. The low-
order two bytes of the data in reg2 are
output to the resulting port address. Bit 0
of the unsigned 32-bit port address is
masked to 0.

OUT.W reg2, VI — — — — Port output. disp16, sign-extended to a
disp16[reg1] word, is added to reg1 to produce an

unsigned 32-bit port address. The word of
data in reg2 is output to the produced port
address. Bits 0 and 1 of the unsigned 32-bit
port address are masked to 0.

RETI IX ∗ ∗ ∗ ∗ Return from trap/interrupt handling routine. 91
The return PC and PSW are read from the
system registers so that program execution
will return from the trap or interrupt handling
routine.

SAR reg1, reg2 I ∗ 0 ∗ ∗ Arithmetic right shift. reg2 is arithmetically 92
shifted to the right by the displacement
specified by the low-order five bits of reg1
(MSB value is copied to the MSB in
sequence). The result is written into reg2.

imm5, reg2 II ∗ 0 ∗ ∗ Arithmetic right shift. reg2 is arithmetically
shifted to the right by the displacement
specified by imm5, zero-extended to a
word. The result is written into reg2.

SATADD3 reg1, reg2, VIII ∗ ∗ ∗ ∗ Saturatable addition. reg1 and reg2 are 93
reg3 added together as signed integers.

[If no overflow has occurred:]
The result is written into reg3.

[If an overflow has occurred:]
The SAT flag is set. If the result is
positive, the positive maximum is
written into reg3; if the result is
negative, the negative maximum is
written into reg3.

157

APPENDIX A INSTRUCTION SUMMARY

User’s Manual U12496EJ4V0UM00

 Instruction Operand(s) Format CY OV S Z Function Page

SATSUB3 reg1, reg2, VIII ∗ ∗ ∗ ∗ Saturatable subtraction. reg1 is 94
reg3 subtracted from reg2 as signed integers.

[If no overflow has occurred:]
The result is written into reg3.

[If an overflow has occurred:]
The SAT flag is set. If the result is
positive, the positive maximum is
written into reg3; if the result is
negative, the negative maximum is
written into reg3.

SETF imm5, reg2 II — — — — Set flag condition. reg2 is set to 1 if the 95
condition specified by the low-order four
bits of imm5 matches the condition flag;
otherwise it is set to 0.

SHL reg1, reg2 I ∗ 0 ∗ ∗ Logical left shift. reg2 is logically shifted 97
to the left (0 is put on the LSB) by the
displacement specified by the low-order
five bits of reg1. The result is written into
reg2.

imm5, reg2 II ∗ 0 ∗ ∗ Logical left shift. reg2 is logically shifted
to the left by the displacement specified
by imm5, zero-extended to a word. The
result is written into reg2.

SHLD3 reg1, reg2, VIII — — — — Left shift of concatenation. The 64 bits 98
reg3 consisting of reg3 (high order) and reg2

(low order) are logically shifted to the left
by the displacement specified by the
low-order five bits of reg1. The high-
order 32 bits of the result are written into
reg3.

SHR reg1, reg2 I ∗ 0 ∗ ∗ Logical right shift. reg2 is logically 99
shifted to the right by the displacement
specified by the low-order five bits of reg1
(0 is put on the MSB). The result is
written into reg2.

imm5, reg2 II ∗ 0 ∗ ∗ Logical right shift. reg2 is logically shifted
to the right by the displacement specified
by imm5, zero-extended to a word. The
result is written into reg2.

SHRD3 reg1, reg2, VIII — — — — Right shift of concatenation. The 64 bits 100
reg3 consisting of reg3 (high order) and reg2

(low order) are logically shifted to the right
by the displacement specified by the low-
order five bits of reg1. The low-order 32
bits of the result are written into reg3.

158

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Instruction Operand(s) Format CY OV S Z Function Page

ST.B reg2, VI — — — — Byte store. disp16, sign-extended to a 101
disp16[reg1] word, is added to reg1 to produce an

unsigned 32-bit address. The low-order
one byte of data in reg2 is stored at the
resulting address.

ST.H reg2, VI — — — — Halfword store. disp16, sign-extended to
disp16[reg1] a word, is added to reg1 to produce an

unsigned 32-bit address. The low-order
two bytes of the data in reg2 are stored at
the resulting address. Bit 0 of the
unsigned 32-bit address is masked to 0.

ST.W reg2, VI — — — — Word store. disp16, sign-extended to a
disp16[reg1] word, is added to reg1 to produce an

unsigned 32-bit address. The word of data
in reg2 is stored at the resulting address.
Bits 0 and 1 of the unsigned 32-bit address
are masked to 0.

STBY IX — — — — Processor stop. The processor is placed 102
in stop mode.

STSR regID, reg2 II — — — — System register store. The contents of the 103
system register identified by the system
register number (regID) are set in reg2.

SUB reg1, reg2 I ∗ ∗ ∗ ∗ Subtraction. reg1 is subtracted from reg2. 104
The difference is written into reg2.

TRAP vector II — — — — Software trap. The return PC and PSW 105
are saved in the system registers:

PSW.EP = 1 → Save in FEPC, FEPSW
PSW.EP = 0 → Save in EIPC, EIPSW

The exception code is set in the ECR:
PSW.EP = 1 → Set in FECC
PSW.EP = 0 → Set in EICC

PSW flags are set:
PSW.EP = 1 → Set NP and ID
PSW.EP = 0 → Set EP and ID

Program execution jumps to the trap
handler address corresponding to the trap
vector (0-31) specified by vector and
begins exception handling.

XOR reg1, reg2 I — 0 ∗ ∗ Exclusive OR. The exclusive OR of reg2 107
and reg1 is taken and written into reg2.

XORI imm16, V — 0 ∗ ∗ Exclusive OR. The exclusive OR of reg1 108
reg1, reg2 and imm16, zero-extended to a word, is

taken and written into reg2.

159User’s Manual U12496EJ4V0UM00

APPENDIX B OPERATION CODE MAP

Operation code map

Bits 15-10 Instruction syntax Format Sub-operation code

000000 MOV reg1, reg2 I

000001 ADD reg1, reg2 I

000010 SUB reg1, reg2 I

000011 CMP reg1, reg2 I

000100 SHL reg1, reg2 I

000101 SHR reg1, reg2 I

000110 JMP [reg1] I

000111 SAR reg1, reg2 I

001000 MUL reg1, reg2 I

001001 DIV reg1, reg2 I

001010 MULU reg1, reg2 I

001011 DIVU reg1, reg2 I

001100 OR reg1, reg2 I

001101 AND reg1, reg2 I

001110 XOR reg1, reg2 I

001111 NOT reg1, reg2 I

010000 MOV imm5, reg2 II

010001 ADD imm5, reg2 II

010010 SETF imm5, reg2 II

010011 CMP imm5, reg2 II

010100 SHL imm5, reg2 II

010101 SHR imm5, reg2 II

010110 EI II

010111 SAR imm5, reg2 II

011000 TRAP vector II

011001 RETI IX 0

011001 BRKRET IX 1

011010 HALT IX 0

011010 STBY IX 1

011100 LDSR reg2, regID II

011101 STSR regID, reg2 II

011110 DI II

160

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

Bits 15-10 Instruction syntax Format Sub-operation code

100XXX Bcond III 0

100XXX ABcond III 1

101000 MOVEA imm16, reg1, reg2 V

101001 ADDI imm16, reg1, reg2 V

101010 JR disp26 IV

101011 JAL disp26 IV

101100 ORI imm16, reg1, reg2 V

101101 ANDI imm16, reg1, reg2 V

101110 XORI imm16, reg1, reg2 V

101111 MOVHI imm16, reg1, reg2 V

110000 LD.B disp16[reg1], reg2 VI

110001 LD.H disp16[reg1], reg2 VI

110010 MULI imm16, reg1, reg2 V

110011 LD.W disp16[reg1], reg2 VI

110100 ST.B reg2, disp16[reg1] VI

110101 ST.H reg2, disp16[reg1] VI

110110 MACI imm16, reg1, reg2 V

110111 ST.W reg2, disp16[reg1] VI

111000 IN.B disp16[reg1], reg2 VI

111001 IN.H disp16[reg1], reg2 VI

111010 CAXI disp16[reg1], reg2 VI

111011 IN.W disp16[reg1], reg2 VI

111100 OUT.B reg2, disp16[reg1] VI

111101 OUT.H reg2, disp16[reg1] VI

111110 Special VII/VIII

111111 OUT.W reg2, disp16[reg1] VI

161

APPENDIX B OPERATION CODE MAP

User’s Manual U12496EJ4V0UM00

Operation code field

 Bits
 12-10

000 001 010 011 100 101 110 111
Bits
15-13

000 MOV ADD SUB CMP SHL SHR JMP SAR

001 MUL DIV MULU DIVU OR AND XOR NOT

010 MOV ADD SETF CMP SHL SHR EI SAR

011 TRAP RETI HALT LDSR STSR DI
BRKRET STBY

100 Bcond/ABcond

101 MOVEA ADDI JR JAL ORI ANDI XORI MOVHI

110 LD.B LD.H MULI LD.W ST.B ST.H MACI ST.W

111 IN.B IN.H CAXI IN.W OUT.B OUT.H Special OUT.W

Conditional branch (Bcond/ABcond) condition code field

Bits
11-9

000 001 010 011 100 101 110 111
Bit
12

0 BV BC/BL BZ/BE BNH BN BR BLT BLE

1 BNV BNC/BNL BNZ/BNE BH BP NOP BGE BGT

Special operation code field

Bits
28-26

000 001 010 011 100 101 110 111
Bits
31-29

000

001

010 SATADD3 SATSUB3 MIN3 MAX3

011 SHLD3 SHRD3 MACT3 MAC3 MULT3 MUL3

100 BILD BDLD BIST BDST

101

110

111

162

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

[MEMO]

163User’s Manual U12496EJ4V0UM00

[A]

ABC .. 46

ABcond..45, 113

ABE ... 46

ABGE .. 46

ABGT .. 46

ABH ... 46

ABL ... 46

ABLE ... 46

ABLT.. 46

ABN ... 46

ABNC .. 46

ABNE .. 46

ABNH .. 46

ABNL ... 46

ABNV .. 46

ABNZ... 46

ABP ... 46

ABR ... 46

ABV ... 46

ABZ ... 46

ADD...47, 111

ADDI..48, 111

address space ... 33

addressing for Bcond and ABcond instructions 35

addressing for JR and JAL instructions 35

addressing mode... 35

adr ... 43

AND...49, 112

ANDI..50, 112

arithmetic operation instructions 40

assembler-reserved register 21

[B]

based addressing .. 36

BC ... 52

Bcond ..51, 113

BDLD...53, 111

BDST...54, 111

BE ... 52

BGE... 52

BGT ... 52

BH ... 52

BILD ..55, 111

BIST ..56, 111

BL .. 52

BLE ... 52

BLT .. 52

BN ... 52

BNC... 52

BNE ... 52

BNH... 52

BNL ... 52

BNV ... 52

BNZ ... 52

BP ... 52

BR ... 52

branch instructions .. 41

BRKRET..57, 113

built-in cache ... 121

built-in RAM... 127

bus interface .. 18

BV ... 52

byte data ...31, 33

BZ.. 52

[C]

cache memory control register 126

CAXI ..58, 113

CMCR ... 126

CMP ..60, 111

conditional branch instruction format 37

CPU core ... 18

CY ... 24

[D]

data alignment ... 32

data cache... 124

data cache tag registers 125

data cache tag retrieval 125

data RAM .. 128

APPENDIX C INDEX

164

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

data sets.. 31

data types.. 31

DCTR .. 125

debug exception status save register 129

DF ... 131

DI ...61, 113

dispx .. 43

DIV ..62, 111

division by zero ... 115

division by zero exception 120

DIVU..63, 111

double exception ... 115

DP ... 24

DPC... 26

DPSW ... 26

[E]

ECR... 27

EI ...64, 113

EICC.. 27

EIPC .. 25

EIPSW... 25

EP ... 24

EX ... 131

exception cause register (ECR) 27

exception handling .. 118

exception/interrupt source codes 115

exception/interrupt status save registers

(EIPC and EIPSW) .. 25

extended instruction format 38

[F]

fatal exception ... 115

fatal exception status save registers

(DPC and DPSW) ... 26

FECC .. 27

FEPC... 26

FEPSW ... 26

FIT ... 27

format of explanations of each instruction 43

FPT ... 27

FUT ... 27

FVT ... 27

FZT.. 27

[G]

general-purpose register set 21

global pointer ... 21

GR[x] ... 43

[H]

halfword data ...31, 34

HALT ...65, 113

handler stack pointer ... 21

hardware configuration control word (HCCW) 28

hardware-dependent registers 21

HCCW ... 28

[I]

I/O instructions .. 39

I3-I0 ... 24

ICTR .. 123

ID... 24

IF ... 131

IHA .. 28

imm-reg instruction format 37

immediate addressing ... 36

immx.. 43

IN... 66

IN.B ...66, 111

IN.H ...66, 111

IN.W ..66, 111

initialization.. 129

Input-Port (x, y) ... 43

instruction addresses .. 35

instruction cache ... 121

instruction cache tag register 123

instruction cache tag retrieval 122

instruction execution cycles 109

instruction format ... 37

instruction mnemonic .. 43

instruction RAM ... 127

instruction RAM registers 127

instruction RAM retrieval 127

instruction set .. 43

instructions .. 37

INT .. 120

integers ... 32

internal memory .. 19

165

APPENDIX C INDEX

User’s Manual U12496EJ4V0UM00

internal registers ... 129

interrupt controller ... 18

interrupt handling .. 116

interrupt level n .. 115

interrupts and exceptions 115

invalid operation code ... 115

invalid operation code exception 120

IRAMR... 127

[J]

JAL ..68, 113

JMP ...69, 113

JR ..70, 113

[L]

latency ... 109

LD.. 71

LD.B ..71, 111

LD.H ..71, 111

LD.W ...71, 111

LDSR...73, 113

link pointer ... 21

Load-Memory (x, y) ... 43

load/store instruction format 38

load/store instructions ... 39

logical operation instructions 41

[M]

MAC3 ..74, 112

MACI ...75, 112

MACT3 ..76, 112

maskable interrupts ... 116

MAX3 ..77, 111

medium-distance jump instruction format 38

MIN3..78, 111

MOV ..79, 111

MOVEA ...80, 111

MOVHI...81, 111

MUL...82, 111

MUL3...83, 112

MULI..84, 112

MULT3 ...85, 112

MULU ..86, 111

[N]

NMI.. 115, 120

NMI/double exception status save registers 26

no-operand instruction format 38

nonmaskable interrupts 117

NOP .. 52

NOT ...87, 112

NP ... 24

[O]

operand addresses ... 36

OR ...88, 112

ORI ..89, 112

OTM .. 27

OUT... 90

OUT.B..90, 111

OUT.H ...90, 111

OUT.W...90, 111

outline of instructions .. 39

Output-Port (x, y, z) ... 43

OV ... 24

[P]

PC ... 22

pipeline .. 131

PIR .. 27

PLL control register ... 129

PLLCR... 129

priorities of interrupts and exceptions 120

priorities of maskable interrupts 120

processor ID register (PIR) 27

program counter (PC) ... 22

program registers .. 22

program register set .. 21

program status word (PSW) 23

PSW .. 23

[R]

RD ... 27

RDI .. 27

reg-reg instruction format 37

reg1 ... 43

reg2 ... 43

reg3 ... 43

regID ... 43

166

V830 FAMILYTM USER'S MANUAL

User’s Manual U12496EJ4V0UM00

register addressing.. 36

register addressing (via register) 36

register reserved for operation 21

register sets ... 21

relative addressing (to PC) 35

repeat .. 109

RESET .. 120

reset .. 129

RETI ..91, 113

return from exception/interrupt 119

return from fatal exception handling routine 119

RF ... 131

RFU ... 24

[S]

S .. 24

SAR ...92, 112

SAT.. 24

SATADD3 ..93, 112

SATSUB3 ..94, 112

SETF ...95, 111

SHL ...97, 112

SHLD3...98, 112

SHR...99, 112

SHRD3 ..100, 112

sign-extend (x) .. 43

software-reserved registers 21

special instructions .. 42

SR[x] ... 43

ST.. 101

ST.B.. 101, 111

ST.H ..101, 111

ST.W..101, 111

stack pointer .. 21

start-up .. 130

STBY .. 102, 113

Store-Memory (x, y, z) ... 43

STSR.. 103, 113

SUB .. 104, 111

sum-of-products/saturatable operation

instructions .. 40

system register numbers 29

system registers ..23, 129

system register set .. 23

[T]

task control word (TKCW) 27

text pointer .. 21

three-operand instruction format 38

three-register operand instruction format 38

TKCW.. 27

TRAP.. 105, 113

trap instruction... 120

[U]

unsigned integers .. 32

[V]

vector adr .. 43

[W]

WB .. 131

word data ..31, 34

write buffer .. 19

[X]

XOR ..107, 112

XORI .. 108, 112

[Z]

Z .. 25

zero register .. 21

zero-extend (x) .. 43

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6462-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-435-9608

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 00.6

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	Major Revision in This Edition
	PREFACE
	CHAPTER 1 INTRODUCTION
	1.1 OVERVIEW
	1.2 FEATURES
	1.3 INTERNAL CONFIGURATION OF THE CPU

	CHAPTER 2 REGISTER SETS
	2.1 PROGRAM REGISTER SET
	2.1.1 General-Purpose Register Set
	2.1.2 Program Counter (PC)

	2.2 SYSTEM REGISTER SET
	2.2.1 Program Status Word (PSW)
	2.2.2 Exception/Interrupt Status Save Registers (EIPC and EIPSW)
	2.2.3 NMI/Double Exception Status Save Registers (FEPC and FEPSW)
	2.2.4 Fatal Exception Status Save Registers (DPC and DPSW)
	2.2.5 Exception Cause Register (ECR)
	2.2.6 Processor ID Register (PIR)
	2.2.7 Task Control Word (TKCW)
	2.2.8 Hardware Configuration Control Word (HCCW)

	2.3 SYSTEM REGISTER NUMBERS

	CHAPTER 3 DATA SETS
	3.1 DATA TYPES
	3.1.1 Integers
	3.1.2 Unsigned Integers

	3.2 DATA ALIGNMENT

	CHAPTER 4 ADDRESS SPACE
	4.1 ADDRESSING MODE
	4.1.1 Instruction Addresses
	4.1.2 Operand Addresses

	CHAPTER 5 INSTRUCTIONS
	5.1 INSTRUCTION FORMAT
	5.2 OUTLINE OF INSTRUCTIONS
	5.3 INSTRUCTION SET
	5.4 INSTRUCTION EXECUTION CYCLES

	CHAPTER 6 INTERRUPTS AND EXCEPTIONS
	6.1 INTERRUPT HANDLING
	6.1.1 Maskable Interrupts
	6.1.2 Nonmaskable Interrupts

	6.2 EXCEPTION HANDLING
	6.3 RETURN FROM EXCEPTION/INTERRUPT
	6.3.1 Return from Exception/Interrupt
	6.3.2 Return from Fatal Exception Handling Routine

	6.4 PRIORITIES OF INTERRUPTS AND EXCEPTIONS
	6.4.1 Priorities of Maskable Interrupts

	CHAPTER 7 INTERNAL MEMORY
	7.1 BUILT-IN CACHE
	7.1.1 Instruction Cache
	7.1.2 Instruction Cache Tag Retrieval
	7.1.3 Data Cache
	7.1.4 Data Cache Tag Retrieval
	7.1.5 Cache Memory Control Register

	7.2 BUILT-IN RAM
	7.2.1 Instruction RAM
	7.2.2 Instruction RAM Retrieval (V830 and V831)
	7.2.3 Data RAM

	CHAPTER 8 RESET
	8.1 INITIALIZATION
	8.2 START-UP

	CHAPTER 9 PIPELINE
	9.1 OUTLINE OF OPERATION
	9.2 PIPELINE FLOW WHEN EACH INSTRUCTION IS EXECUTED
	9.2.1 Load Instructions
	9.2.2 Store Instructions
	9.2.3 Block Transfer Instructions
	9.2.4 I/O Instructions
	9.2.5 Arithmetic Operation Instructions (Other Than the Multiply and Divide Instructions)
	9.2.6 Multiply Instructions
	9.2.7 Divide Instructions
	9.2.8 Multiply/Sum-of-Products Instructions
	9.2.9 Signal-Processing Operation Instructions
	9.2.10 Logical Operation Instructions
	9.2.11 Shift Operation Instructions
	9.2.12 Branch/Jump Instructions
	9.2.13 Jump and Link Instruction
	9.2.14 High-Speed Branch Instructions
	9.2.15 Special Instructions
	9.2.16 Address Traps and Interrupts

	9.3 DISRUPTIONS IN PIPELINE OPERATION
	9.3.1 Structure Hazard (1)
	9.3.2 Structure Hazard (2)
	9.3.3 Register Forwarding
	9.3.4 Instruction Code Hazard
	9.3.5 Flag Hazard

	APPENDIX A INSTRUCTION SUMMARY
	A.1 TYPES OF INSTRUCTIONS
	A.1.1 Instructions Shared with V810 TM
	A.1.2 Instructions Unique to V810

	A.2 INSTRUCTIONS (LISTED ALPHABETICALLY)

	APPENDIX B OPERATION CODE MAP
	APPENDIX C INDEX

