

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

µPD754202

Document No. U11132EJ2V1UM00 (2nd edition)
Date Published April 2003 N CP (K)

Printed in Japan

User’s Manual

4-bit Single-Chip Microcontrollers

c

EEPROM is a trademark of NEC Electronics Corporation.

MS-DOS is a trademark of Microsoft Corporation.

IBM DOS, PC/AT and PC DOS are trademarks of IBM Corporation.

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

These commodities, technology or software, must be exported in accordance
with the export administration regulations of the exporting country.
Diversion contrary to the law of that country is prohibited.

The information in this document is current as of March, 2003. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.
 "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its

majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as

defined above).

•

•

•

•

•

•

M8E 02. 11-1

Regional Information

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics America, Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China
Tel: 021-6841-1138
Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311
Fax: 6250-3583

J02.11

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 01
Fax: 0211-65 03 327

• Sucursal en España
Madrid, Spain
Tel: 091-504 27 87
Fax: 091-504 28 60

Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

• Succursale Française

• Filiale Italiana
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

• Tyskland Filial
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

• United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, pIease contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

Major Revisions in This Version

Page Contents

p. 261 APPENDIX A FUNCTIONS OF µPD754202 AND 75F4264 added

p. 263 Device file names in APPENDIX B DEVELOPMENT TOOLS changed

p. 277 APPENDIX F REVISION HISTORY added

The mark shows major revised points.

INTRODUCTION

Readers This manual is intended for engineers who understand the functions of the µPD754202

4-bit single-chip microcontroller and wish to design application systems using any of

the microcontroller.

Purpose This manual describes the hardware functions of the µPD754202 organized in the

following manner.

Organization This manual contains the following information:

• General

• Pin Functions

• Features of Architecture and Memory Map

• Internal CPU Functions

• Peripheral Hardware Functions

• Interrupt Functions and Test Functions

• Standby Functions

• Reset Function

• Mask Options

• Instruction Set

How to read this manual It is assumed that the readers of this manual possess general knowledge about

electronics, logic circuits, and microcomputers.

• To check the functions of an instruction whose mnemonic is known,

→ Refer to APPENDIX D INSTRUCTION INDEX.

• To check the functions of a specific internal circuit,

→ Refer to APPENDIX E HARDWARE INDEX .

• To understand the overall functions of the µPD754202,

→ Read this manual in the order of the Table of Contents.

Legend Data significance : Left: higher, right: lower

Active low : ××× (top bar over signal or pin name)

Address of memory map : Top: low, Bottom: high

Note : Point to note

Caution : Important information

Remark : Supplement

Numeric notation : Binary ... ×××× or ××××B

Decimal ... ××××
Hexadecimal ... ××××H

Related documents Some documents are preliminary editions but they are not so specified in the following tables.

Documents related to devices

Document Number

Japanese English

µPD754202 User’s Manual U11132J U11132E
(this manual)

µPD754202 Data Sheet U12181J U12181E

75XL Series Selection Guide U10453J U10453E

Documents related to development tools

Document Number

Japanese English

Hardware IE-75000-R/IE-75001-R User’s Manual EEU-846 EEU-1416

IE-75300-R-EM User’s Manual U11354J U11354E

EP-754144GS-R User’s Manual U10695J U10695E

Software RA75X Assembler Package Operation EEU-731 EEU-1346

User’s Manual Language EEU-730 EEU-1363

Other documents

Document Number

Japanese English

IC Package Manual C10943X

Semiconductor Device Mounting Technology Manual C10535J C10535E

Quality Grades of NEC’s Semiconductor Devices C11531J C11531E

Reliability and Quality Control of NEC’s Semiconductor C10983J C10983E
Devices

Electrostatic Discharge (ESD) Test MEM-539 —

Quality Assurance Guide to Semiconductor Devices C11893J MEI-1202

Microcomputer-Related Products Guide - by third parties U11416J —

Caution These related documents are subject to change without notice. Be sure to use the latest edition

of the documents when you design your system.

Document Name

Document Name

Document Name

[MEMO]

– i –

TABLE OF CONTENTS

CHAPTER 1 GENERAL .. 1
1.1 Functional Outline .. 2
1.2 Ordering Information .. 2
1.3 Block Diagram ... 3
1.4 Pin Configuration (Top View) ... 4

CHAPTER 2 PIN FUNCTIONS .. 5
2.1 Pin Functions .. 5
2.2 Description of Pin Functions ... 7

2.2.1 P30-P33 (PORT3), P60-P63 (PORT6), P80 (PORT8) .. 7

2.2.2 P70-P73 (PORT7) ... 7

2.2.3 PTO0-PTO2 ... 7

2.2.4 INT0 ... 8

2.2.5 KR4-KR7.. 8

2.2.6 KRREN .. 8

2.2.7 X1 and X2 .. 8

2.2.8 RESET ... 9

2.2.9 IC ... 9

2.2.10 VDD ... 9

2.2.11 VSS .. 9

2.3 I/O Circuits of Respective Pins .. 10
2.4 Processing of Unused Pins ... 11

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP .. 13
3.1 Bank Configuration of Data Memory and Addressing Mode .. 13

3.1.1 Bank configuration of data memory ... 13

3.1.2 Addressing mode of data memory ... 15

3.2 Bank Configuration of General-Purpose Registers ... 26
3.3 Memory-Mapped I/O.. 31

CHAPTER 4 INTERNAL CPU FUNCTION ... 41
4.1 Function to Select MkI and MkII Modes .. 41

4.1.1 Difference between MkI and MkII modes .. 41

4.1.2 Setting stack bank select register (SBS) ... 42

4.2 Program Counter (PC) .. 43
4.3 Program Memory (ROM) ... 44
4.4 Data Memory (RAM) .. 46

4.4.1 Configuration of data memory ... 46

4.4.2 Specifying bank of data memory ... 47

4.5 General-Purpose Register .. 50
4.6 Accumulator .. 51
4.7 Stack Pointer (SP) and Stack Bank Select Register (SBS) ... 51
4.8 Program Status Word (PSW) .. 55
4.9 Bank Select Register (BS) .. 59

– ii –

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION ... 61
5.1 Digital I/O Por t ... 61

5.1.1 Types, features, and configurations of digital I/O ports .. 62

5.1.2 Setting I/O mode .. 66

5.1.3 Digital I/O port manipulation instruction ... 68

5.1.4 Operation of digital I/O port ... 70

5.1.5 Connecting pull-up resistor .. 72

5.1.6 I/O timing of digital I/O port .. 73

5.2 Clock Generation Circui t .. 75
5.2.1 Configuration of clock generation circuit .. 75

5.2.2 Function and operation of clock generation circuit .. 76

5.2.3 Setting CPU clock .. 82

5.3 Basic Interval Timer/ Watchdog Timer ... 84
5.3.1 Configuration of basic interval timer/watchdog timer ... 84

5.3.2 Basic interval timer mode register (BTM) .. 85

5.3.3 Watchdog timer enable flag (WDTM) .. 87

5.3.4 Operation as basic interval timer ... 88

5.3.5 Operation as watchdog timer ... 89

5.3.6 Other functions .. 91

5.4 Timer Counte r ... 92
5.4.1 Configuration of timer counter ... 92

5.4.2 Operation in 8-bit timer counter mode ... 104

5.4.3 Operation in PWM pulse generator mode (PWM mode) ... 113

5.4.4 Operation in 16-bit timer counter mode ... 119

5.4.5 Operation in carrier generator mode (CG mode) ... 127

5.4.6 Notes on using timer counter ... 140

5.5 Bit Sequential Buffe r .. 147

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS... 149
6.1 Configuration of Interrupt Control Circui t .. 149
6.2 Types of Interrupt Sources and Vector Table .. 151
6.3 Hardware Controlling Interrupt Functio n .. 153
6.4 Interrupt Sequenc e ... 160
6.5 Nesting Control of Interrupt s ... 161
6.6 Service of Interrupts Sharing Vecto r Addres s ... 163
6.7 Machine Cycles until Interrupt Servicin g ... 165
6.8 Effective Usage of Interrupt s ... 167
6.9 Application of Interrup t .. 167
6.10 Test Functio n ... 175

6.10.1 Types of test sources ... 175

6.10.2 Hardware controlling test function ... 175

CHAPTER 7 STANDBY FUNCTION ... 179
7.1 Setting of and Operating Status in Standby Mod e .. 180
7.2 Releasing Standby Mod e ... 182
7.3 Operatio n After Release of Standby Mod e ... 186
7.4 Application of Standby Mod e .. 186

– iii –

CHAPTER 8 RESET FUNCTION .. 191
8.1 Configuration and Operation of Reset Function.. 191
8.2 Watchdog Flag (WDF), Key Return Flag (KRF) ... 195

CHAPTER 9 MASK OPTION .. 197
9.1 Pin Mask Option .. 197

9.1.1 P70/KR4-P73/KR7 mask option .. 197

9.1.2 RESET pin mask option ... 197

9.2 Oscillation Stabilization Wait Time Mask Option.. 197

CHAPTER 10 INSTRUCTION SET ... 199
10.1 Unique Instructions .. 199

10.1.1 GETI instruction ... 199

10.1.2 Bit manipulation instruction .. 200

10.1.3 String-effect instruction .. 200

10.1.4 Base number adjustment instruction ... 201

10.1.5 Skip instruction and number of machine cycles required for skipping 202

10.2 Instruction Set and Operation ... 202
10.3 Op Code of Each Instruction ... 212
10.4 Instruction Function and Application ... 218

10.4.1 Transfer instructions ... 219

10.4.2 Table reference instruction ... 227

10.4.3 Bit transfer instruction .. 231

10.4.4 Operation instruction ... 232

10.4.5 Accumulator manipulation instruction .. 239

10.4.6 Increment/decrement instruction ... 240

10.4.7 Compare instruction .. 241

10.4.8 Carry flag manipulation instruction .. 242

10.4.9 Memory bit manipulation instruction .. 243

10.4.10 Branch instruction .. 246

10.4.11 Subroutine/stack control instruction ... 250

10.4.12 Interrupt control instruction .. 255

10.4.13 Input/output instruction .. 256

10.4.14 CPU control instruction .. 257

10.4.15 Special instruction ... 258

APPENDIX A FUNCTIONS OF µPD754202 AND 75F4264 ... 261

APPENDIX B DEVELOPMENT TOOLS .. 263

APPENDIX C ORDERING MASK ROM .. 267

APPENDIX D INSTRUCTION INDEX .. 269
D.1 Instruction Index (by function) .. 269
D.2 Instruction Index (alphabetical order) ... 272

APPENDIX E HARDWARE INDEX ... 275

APPENDIX F REVISION HISTORY ... 277

– iv –

LIST OF FIGURES (1/3)

Fig. No. Title Page

3-1 Selecting MBE = 0 Mode and MBE = 1 Mode .. 14

3-2 Data Memory Configuration and Addressing Range for Each Addressing Mode............... 16

3-3 Updating Address of Static RAM .. 20

3-4 Example of Using Register Banks .. 27

3-5 Configuration of General-Purpose Registers (in 4-bit processing) 29

3-6 Configuration of General-Purpose Registers (in 8-bit processing) 30

3-7 I/O Map ... 33

4-1 Format of Stack Bank Select Register .. 42

4-2 Configuration of Program Counter .. 43

4-3 Program Memory Map .. 45

4-4 Data Memory Map .. 48

4-5 Configuration of General-Purpose Register ...

4-6 Configuration of Register Pair .. 50

4-7 Accumulator .. 51

4-8 Stack Pointer and Stack Bank Selection Register Configuration .. 52

4-9 Data Saved to Stack Memory (MkI Mode) .. 53

4-10 Data Restored from Stack Memory (MkI Mode) ... 53

4-11 Data Saved to Stack Memory (MkII Mode) ... 54

4-12 Data Restored from Stack Memory (MkII Mode) .. 54

4-13 Configuration of Program Status Word ... 55

4-14 Configuration of Bank Select Registe ... 59

5-1 Data Memory Address of Digital Port ... 61

5-2 P3n Configuration (n = 0 to 2) .. 63

5-3 P33 Configuration ... 63

5-4 P6n Configuration (n = 0, 2, 3) ... 64

5-5 P61 Configuration ... 64

5-6 P7n Configuration (n = 0-3) .. 65

5-7 P80 Configuration ... 65

5-8 Format of Each Port Mode Register ... 67

5-9 Format of Pull-up Resistor Specification Register .. 72

5-10 I/O Timing of Digital I/O Port ... 73

5-11 ON Timing of Internal Pull-up Resistor Connected via Software .. 74

5-12 Clock Generator Block Diagram ... 75

5-13 Processor Clock Control Register Format .. 78

5-14 Crystal/Ceramic Oscillation External Circuit ... 79

5-15 Incorrect Example of Connecting Resonator .. 80

5-16 CPU Clock Switching Example ... 83

5-17 Block Diagram of Basic Interval Timer/Watchdog Timer ... 84

5-18 Format of Basic Interval Timer Mode Register ... 86

5-19 Format of Watchdog Timer Enable Flag (WDTM) .. 87

5-20 Block Diagram of Timer Counter (Channel 0) ... 93

5-21 Block Diagram of Timer Counter (Channel 1) ... 94

– v –

LIST OF FIGURES (2/3)

Fig. No. Title Page

5-22 Block Diagram of Timer Counter (Channel 2) ... 95

5-23 Format of Timer Counter Mode Register (Channel 0) .. 97

5-24 Format of Timer Counter Mode Register (Channel 1) .. 98

5-25 Format of Timer Counter Mode Register (Channel 2) .. 100

5-26 Format of Timer Counter Output Enable Flag .. 102

5-27 Format of Timer Counter Control Register ... 103

5-28 Setting of Timer Counter Mode Register .. 105

5-29 Setting of Timer Counter Control Register .. 108

5-30 Setting of Timer Counter Output Enable Flag ... 108

5-31 Configuration When Timer Counter Operates .. 111

5-32 Count Operation Timing.. 111

5-33 Setting of Timer Counter Mode Register .. 114

5-34 Setting of Timer Counter Control Register ... 115

5-35 PWM Pulse Generator Operating Configuration .. 117

5-36 PWM Pulse Generator Operating Timing ... 117

5-37 Setting of Timer Counter Mode Registers .. 120

5-38 Setting of Timer Counter Control Register ... 121

5-39 Configuration When Timer Counter Operates .. 124

5-40 Timing of Count Operation ... 125

5-41 Setting of Timer Counter Mode Register .. 128

5-42 Setting of Timer Counter Output Enable Flag ... 129

5-43 Setting of Timer Counter Control Register ... 129

5-44 Configuration in Carrier Generator Mode ... 132

5-45 Carrier Generator Operation Timing ... 133

5-46 Format of Bit Sequential Buffer .. 147

6-1 Block Diagram of Interrupt Control Circuit .. 150

6-2 Interrupt Vector Table .. 152

6-3 Interrupt Priority Select Register .. 155

6-4 Configuration of INT0 ... 157

6-5 I/O Timing of Noise Rejection Circuit .. 157

6-6 Format of INT0 Edge Detection Mode Register (IM0) .. 158

6-7 Interrupt Service Sequence .. 160

6-8 Nesting of Interrupt with High Priority ... 161

6-9 Interrupt Nesting by Changing Interrupt Status Flag .. 162

6-10 KR4-KR7 Block Diagram .. 176

6-11 Format of INT2 Edge Detection Mode Register (IM2) .. 177

7-1 Releasing Standby Mode ... 182

7-2 Wait Time after Releasing STOP Mode .. 184

7-3 STOP Mode Release by Key Return Reset or RESET Input ... 185

– vi –

LIST OF FIGURES (3/3)

Fig. No. Title Page

8-1 Configuration of Reset Circuit ... 191

8-2 Reset Operation by RESET Signal ... 192

8-3 WDF Operation in Generating Each Signal .. 195

8-4 KRF Operation in Generating Each Signal ... 196

– vii –

LIST OF TABLES

Table. No. Title Page

2-1 Pin Functions of Digital I/O Ports .. 5

2-2 Function List of Non-port Pins .. 6

2-3 List of Recommended Connection of Unused Pins .. 11

3-1 Addressing Modes .. 17

3-2 Register Bank Selected by RBE and RBS ... 26

3-3 Example of Using Different Register Banks for Normal Routine and Interrupt Routine 26

3-4 Addressing Modes Applicable to Peripheral Hardware Unit Manipulation 31

4-1 Differences between MkI and MkII Modes ... 41

4-2 Stack Area Selected by SBS .. 51

4-3 PSW Flags Saved/Restored to/from Stack ... 55

4-4 Carry Flag Manipulation Instruction .. 56

4-5 Contents of Interrupt Status Flags .. 57

4-6 MBE, MBS, and Memory Bank Selected .. 59

4-7 RBE, RBS, and Register Bank Selected .. 60

5-1 Types and Features of Digital Ports .. 62

5-2 I/O Pin Manipulation Instructions .. 69

5-3 Operation When I/O Port Is Manipulated .. 71

5-4 Specifying Connection of Pull-up Resistor ... 72

5-5 Maximum Time Required for CPU Clock Switching.. 82

5-6 Mode List .. 92

5-7 Resolution and Longest Set Time (In 8-bit Timer Counter Mode) 109

5-8 Resolution and Longest Set Time (16-bit timer counter mode) .. 122

6-1 Types of Interrupt Sources ... 151

6-2 Signals Setting Interrupt Request Flags ... 154

6-3 IST1 and IST0 and Interrupt Servicing Status .. 159

6-4 Identifying Interrupt Sharing Vector Address .. 163

6-5 Types of Test Sources ... 175

6-6 Test Request Flag Setting Signals .. 175

6-7 KR4-KR7 Pins, KRREN Pin and Test Function .. 177

7-1 Operation States in Standby Mode ... 180

7-2 Selecting Wait Time by BTM ... 184

8-1 Status of Each Hardware Unit after Reset .. 193

8-2 Reset Operation by RESET Signal ... 195

9-1 Selection of Mask Options .. 197

10-1 Types of Bit Manipulation Addressing Modes and Specification Range 200

– viii –

[MEMO]

1

CHAPTER 1 GENERAL

The µPD754202 is a 4-bit single-chip microcontroller in the NEC 75XL series, the successor to the 75X series that

boasts a wealth of variations.

The µPD754202 has extended CPU functions compared to the 75X series, enabling high-speed and low voltage

(1.8 V) operation.

This model is available in a small plastic shrink SOP (300 mil, 0.65-mm pitch).

The features of the µPD754202 are as follows:

• Low-voltage operation: VDD = 1.8 to 6.0 V

• Variable instruction execution time useful for high-speed operation and power saving

0.95 µs, 1.91 µs, 3.81 µs, 15.3 µs (at 4.19 MHz)

0.67 µs, 1.33 µs, 2.67 µs, 10.7 µs (at 6.0 MHz)

• Four timer channels

• Key return reset function for key-less entry

• Small package (20-pin plastic shrink SOP (300 mil, 0.65-mm pitch))

Application Fields

• Automotive appliance such as key-less entry

CHAPTER 1 GENERAL

2

1.1 Functional Outline

Item Functions

Instruction execution time • 0.95, 1.91, 3.81, 15.3 µs (at 4.19 MHz)

• 0.67, 1.33, 2.67, 10.7 µs (at 6.0 MHz)

On-chip Mask ROM 2048 × 8 bits (0000H-0FFFH)

memory RAM 128 × 4 bits (000H-07FH)

System clock oscillator Crystal/ceramic oscillator

General-purpose register • 4-bit operation: 8 × 4 banks

• 8-bit operation: 4 × 4 banks

Input/output CMOS input 4 Pull-up resistor can be incorporated by mask option

port CMOS input/output 9 On-chip pull-up resistor can be specified by software

Total 13

Timer 4 channels

• 8-bit timer counter

(can be used as 16-bit timer counter) : 3 channels

• Basic interval/watchdog timer : 1 channel

Bit sequential buffer 16 bits

Vectored interrupt External: 1, Internal: 4

Test input External: 1 (Key return reset function provided)

Standby function STOP/HALT mode

Operating ambient temperature TA = –40 to +85 °C

Operating supply voltage VDD = 1.8 to 6.0 V

Package • 20-pin plastic SOP (300 mil, 1.27-mm pitch)

• 20-pin plastic shrink SOP (300 mil, 0.65-mm pitch)

1.2 Ordering Information

Part Number Package

µPD754202GS-×××-BA5 20-pin plastic SOP (300 mil, 1.27-mm pitch)

µPD754202GS-×××-GJG 20-pin plastic shrink SOP (300 mil, 0.65-mm pitch)

Remark ××× indicates a ROM code number.

CHAPTER 1 GENERAL

3

1.3 Block Diagram

BASIC INTERVAL
TIMER/WATCHDOG
TIMER

8-BIT TIMER
COUNTER #0

8-BIT
TIMER
COUNTER
#1

8-BIT
TIMER
COUNTER
#2

CASCADED
16-BIT
TIMER
COUNTER

INTERRUPT
CONTROL

INTBT RESET

INTT0 TOUT

INTT1

INTT2

PTO0/P30

PTO1/P31

PTO2/P32

INT0/P61

KRREN

KR4/P70-
KR7/P73

ALU

PROGRAM COUNTER

PROGRAM MEMORY
(ROM)

2048 × 8 BITS

DECODE
AND

CONTROL

CY

SP (8)

SBS

BANK

GENERAL REG.

DATA MEMORY
(RAM)

128 × 4 BITS

PORT3 4

PORT6 4

PORT7 4

PORT8

BIT SEQ. BUFFER (16)

P30-P33

P60-P63

P70-P73

P80

CLOCK
DIVIDER

SYSTEM CLOCK
GENERATOR

STANDBY
CONTROL

fX/2N

X1 X2

Φ
CPU CLOCK

IC VDD VSS RESET

4

CHAPTER 1 GENERAL

4

1.4 Pin Configuration (Top View)

• 20-pin Plastic SOP (300 mil, 1.27 mm-pitch)

µPD754202GS-×××-BA5

• 20-pin Plastic Shrink SOP (300 mil, 0.65 mm-pitch)

µPD754202GS-×××-GJG

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

RESET

X1

X2

VSS

IC

VDD

P60

P61/INT0

P62

P63

KRREN

P80

P30/PTO0

P31/PTO1

P32/PTO2

P33

P70/KR4

P71/KR5

P72/KR6

P73/KR7

Pin Name

P30-P33 : Port 3

P60-P63 : Port 6

P70-P73 : Port 7

P80 : Port 8

KR4-KR7 : Key Return 4-7

INT0 : External Vectored Interrupt 0

PTO0-PTO2 : Programmable Timer Ouput 0-2

KRREN : Key Return Reset Enable

X1, X2 : System Clock (Crystal/Ceramic)

IC : Internally Connected.

RESET : Reset

VSS : Ground

VDD : Positive Power Supply

IC: Internally Connected (Directly connect to VDD)

5

CHAPTER 2 PIN FUNCTIONS

2.1 Pin Functions

Table 2-1 Pin Functions of Digital I/O Ports

Pin Name I/O
Shared

Function
8-bit

After Reset
I/O Circuit

with I/O TYPE Note

P30 I/O PTO0 × Input E-B

P31 PTO1

P32 PTO2

P33 –

P60 I/O – × Input F -A

P61 INT0

P62 –

P63 –

P70 Input KR4 × Input B -A

P71 KR5

P72 KR6

P73 KR7

P80 I/O – × Input F -A

Note Circled characters indicate the Schmitt-trigger input.

Programmable 4-bit input/output port

(PORT3).

This port can be specified input/output bit-

wise.

On-chip pull-up resistor can be specified by

software in 4-bit units.

Programmable 4-bit input/output port (PORT6).

This port can be specified input/output bit-

wise.

On-chip pull-up resistor can be specified by

software in 4-bit units.

P61/INT0 can select noise rejection circuit.

4-bit input port (PORT7).

Pull-up resistor can be incorporated (mask

option).

1-bit input/output port (PORT8).

On-chip pull-up resistor can be specified by

software.

CHAPTER 2 PIN FUNCTIONS

6

Table 2-2 Function List of Non-port Pins

Pin Name I/O
Shared

Function After Reset
I/O Circuit

with TYPENote

PTO0 Output P30 Timer counter output pins Input E-B

PTO1 P31

PTO2 P32

INT0 Input P61 Edge-detected vectored inter- Noise rejection Input F -A

rupt input (edge to be detected circuit/asynch

is selectable) selectable

Noise rejection circuit selectable.

KR4-KR7 Input P70-P73 Falling edge-detected testable input Input B -A

KRREN Input – Key return reset enable pin Input B

When KRREN is at a high level in the STOP

mode, a reset signal is generated at the rising

edge of KRn.

X1 Input – – –

X2 –

RESET Input – System reset input pin (low-level active) – B -A

IC – – Internally Connected. Connect directly to VDD – –

VDD – – Positive supply pin – –

VSS – – Ground potential – –

Note Circled characters indicate the Schmitt trigger input.

Connect crystal/ceramic oscillator for system
clock oscillation. Input external clock to X1 and
its complement to X2.

CHAPTER 2 PIN FUNCTIONS

7

2.2 Description of Pin Functions

2.2.1 P30-P33 (PORT3) ... I/Os shared with PTO0-PTO2

P60-P63 (PORT6) ... I/Os shared with INT0

P80 (PORT8) ... I/O

4-bit I/O ports with output latch (ports 3 and 6) and 1-bit I/O port with output latch (port 8).

Ports 3 and 6 also have the following functions, in addition to the I/O port function.

• Port 3 : Timer counter output (PTO0-PTO2)

• Port 6 : Vectored interrupt input (INT0)

Selection of I/O modes of ports 3 and 6 is set by the port mode register group A (PMGA), and that of port 8 is set

by the port mode register group C (PMGC). Ports 3 and 6 can be set in 1-bit unit.

Furthermore, connection of internal pull-up resistors is specifiable by software for ports 3, 6 and 8. This is specified

by manipulation of the pull-up resistor specification registers (POGA and POGB). Ports 3 and 6 are specified in 4-

bit units. Port 8 is specified in 1-bit unit.

I/O for ports 3 and 6 is possible in 4-bit units or in 1-bit unit. Manipulation in 8-bit units is not possible.

Generation of RESET signal sets input mode.

2.2.2 P70-P73 (PORT7) ... inputs shared with KR4 to KR7

4-bit input port.

Port 7 also has a key interrupt input (KR4-KR7) function besides the input port function.

Each pin is always set to input irrespective of the operation of shared pins. These pins have Schmitt-triggered

input to prevent misoperation due to noise.

Internal pull-up resistors can be specifiable by mask option in 1-bit unit for port 7.

2.2.3 PTO0-PTO2 ... outputs shared with port 3

These are the output pins of timer counters 0 through 2, and output square wave pulses. To output the signal

of a timer counter, clear the output latch of the corresponding pin of port 2 to “0”. Then, set the bit corresponding

to port 3 of the port mode register group A (PMGA) to “1” to set the output mode.

The outputs of TOUT F/F are cleared to “0” by the timer start instruction.

For details, refer to 5.4.2 (3) Timer counter operation (at 8-bit) .

CHAPTER 2 PIN FUNCTIONS

8

2.2.4 INT0 ... input shared with port 6

This pin inputs interrupt signal detected by the edge. INT0 can select a noise rejection circuit. The edge to be

detected can be specified by using the edge detection mode register (IM0).

(1) INT0 (bits 0 and 1 of IM0)

(a) Active at rising edge

(b) Active at falling edge

(c) Active at both rising and falling edges

(d) External interrupt signal input disabled

INT4 is an asynchronous input pin and the interrupt is acknowledged whenever a high-level signal is input

to this pin for a fixed time, regardless of the operating clock of the CPU. A noise rejection circuit can be specified

by software, and the sampling clock that rejects noise can be changed in two steps. The width of the signal

that is acknowledged differs depending on the CPU operating clock.

When the RESET signal is asserted, IM0 is cleared to “0”, and the rising edge is selected as the active edge.

INT0 can be used to release the STOP and HALT modes. However, when the noise rejection circuit is selected,

INT0 cannot be used to release the STOP and HALT modes.

INT0 is a Schmitt trigger input pin.

2.2.5 KR4-KR7 ... inputs shared with port 7

These are key interrupt input pins. KR4 through KR7 are parallel falling edge-detected interrupt input pins.

The interrupt source can be specified to KR4 through KR7 by using the edge detection mode register (IM2).

When the RESET signal is asserted, these pins serve as port 7 pin and set in input mode.

2.2.6 KRREN

This is a key return reset function selection pin. It is always set to input.

When the KRREN pin is high and it is in STOP mode, a falling input on pins KR4/P70-KR7/P73 generates a system

reset. At this time, STOP mode is released.

When the KRREN pin is low, pins KR4/P70-KR7/P73 function as normal input pins or release standby.

2.2.7 X1 and X2

These pins connect a crystal/ceramic oscillator for system clock oscillation.

An external clock can also be input to these pins.

(a) Ceramic/crystal oscillation (b) External clock

Crystal resonator
or

ceramic resonator

VSS

X1

X2

(4.194304 MHz TYP.)

µ PD754202

ExternaI
clock

PD754202µ

X1

X2

CHAPTER 2 PIN FUNCTIONS

9

2.2.8 RESET

This pin inputs a low-active reset signal.

The RESET signal is an asynchronous input signal and is asserted when a signal with a specific low-level width

is input to this pin regardless of the operating clock. The RESET signal takes precedence over all the other operations.

This pin can not only be used to initialize and start the CPU, but also to release the STOP and HALT modes.

The RESET pin is a Schmitt trigger input pin.

Internal pull-up resistors can be specified by mask option.

2.2.9 IC

The IC (Internally Connected) pin sets a test mode in which the µPD754202 is tested before shipment. Usually,

you should directly connect the IC pin to the VDD pin with as short a wiring length as possible.

If a voltage difference is generated between the IC and VDD pins because the wiring length between the IC and

VDD pins is too long, or because an external noise is superimposed on the IC pin, your program may not be correctly

executed.

• Directly connect the IC pin to the VDD pin.

VDD

VDDIC

Keep short as
much as possible.

2.2.10 VDD

Positive power supply pin.

2.2.11 VSS

GND.

CHAPTER 2 PIN FUNCTIONS

10

2.3 I/O Circuits of Respective Pins

The following diagrams show the I/O circuits of the respective pins of the µPD754202. Note that in these diagrams

the I/O circuits have been slightly simplified.

TYPE A

TYPE B

TYPE D

TYPE E-B

TYPE B-A TYPE F-A

VDD

IN
P-ch

N-ch

data

output
disable

N-ch

P-ch

IN

OUT

VDD

P-ch

output
disable

data

P.U.R.
enable

Type D

Type A

IN/OUT

VDD

P.U.R (Mask Option)

IN

VDD

P.U.R.

P.U.R.
enable P-ch

IN/OUT
Type D

Type B

output
disable

data

P.U.R. : Pull-Up Resistor

P.U.R. : Pull-Up Resistor

P.U.R. : Pull-Up Resistor

Schmitt trigger input having hysteresis characteristic.

CMOS specification input buffer.
Push-pull output that can be placed in output
high-impedance (both P-ch, N-ch off).

P.U.R.

VDD

CHAPTER 2 PIN FUNCTIONS

11

2.4 Processing of Unused Pins

Table 2-3 List of Recommended Connection of Unused Pins

Pin Recommended Connecting Method

P30/PTO0 Input state : Independently connect to VSS or VDD via a resistor.

P31/PTO1 Output state: Leave open.

P32/PTO2

P33

P60

P61/INT0

P62

P63

P70/KR4 Independently connect to VDD via a resistor.

P71/KR5

P72/KR6

P73/KR7

P80 Input state : Independently connect to VSS or VDD via a resistor.

Output state: Leave open.

KRREN When this pin is connected to VDD, internal reset signal is gener-

ated at the falling edge of the KRn pin in the STOP mode.

When this pin is connected to VSS, internal reset signal is not

generated even if the falling edge of KRn pin is detected in the

STOP mode.

IC Connect directly to VDD.

12

[MEMO]

13

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

The 75XL architecture employed for the µPD754202 has the following features:

• Internal RAM: 4K words × 4 bits MAX. (12-bit address)

• Expansibility of peripheral hardware

To realize these superb features, the following techniques have been employed:

(1) Bank configuration of data memory

(2) Bank configuration of general-purpose registers

(3) Memory mapped I/O

This chapter describes these features.

3.1 Bank Configuration of Data Memory and Addressing Mode

3.1.1 Bank configuration of data memory

The µPD754202 is provided with a static RAM at the addresses 000H through 07FH of memory bank 0 of the data

memory space. Peripheral hardware units (such as I/O ports and timers) are allocated to addresses F80H through

FFFH of memory bank 15.

The µPD754202 employs a memory bank configuration that directly or indirectly specifies the lower 8 bits of an

address by an instruction and the higher 4 bits of the address by a memory bank, to address the data memory space

of 12-bit address (4K words × 4 bits).

To specify a memory bank (MB), the following hardware units are provided:

• Memory bank enable flag (MBE)

• Memory bank select register (MBS)

MBS is a register that selects a memory bank. Memory banks 0 and 15 can be set. MBE is a flag that enables

or disables the memory bank selected by MBS. When MBE is 0, the specified memory bank (MB) is fixed, regardless

of MBS, as shown in Fig. 3-1. When MBE is 1, however, a memory bank is selected according to the setting of MBS.

To address the data memory space, MBE is usually set to 1 and the data memory of the memory bank specified

by MBS is manipulated. By selecting a mode of MBE = 0 or a mode of MBE = 1 for each processing of the program,

programming can be efficiently carried out.

Adapted Program Processing Effect

MBE = 0 mode • Interrupt service Saving/restoring MBS unnecessary

• Processing repeating internal hardware Changing MBS unnecessary
manipulation and stack RAM manipulation

• Subroutine processing Saving/restoring MBS unnecessary

MBE = 1 mode • Normal program processing

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

14

Fig. 3-1 Selecting MBE = 0 Mode and MBE = 1 Mode

Internal hardware
and static RAM
manipulation
repeated.

; MBE = 0 by vector table

<Main program>

SET 1 MBE

CLR 1 MBE

MBE
= 1

MBE
= 0

SET 1 MBE

MBE
= 1

<Subroutine>

CLR1 MBE

RET

RETI

MBE = �0

(Interrupt service)

MBE = �0

Remark Solid line: MBE = 1, dotted line: MBE = 0

Because MBE is automatically saved or restored during subroutine processing, it can be changed even while

subroutine processing is being executed. MBE can also be saved or restored automatically during interrupt service,

so that MBE during interrupt service can be specified as soon as the interrupt service is started, by setting the interrupt

vector table. This feature is useful for high-speed interrupt service.

To change MBS by using subroutine processing or interrupt service, save or restore it to stack by using the PUSH

or POP instruction.

MBE is set by using the SET1 or CLR1 instruction. Use the SEL instruction to set MBS.

Examples 1. To clear MBE and fix memory bank

CLR1 MBE ; MBE ← 0
2. To select the memory bank 15

SET1 MBE ; MBE ← 1

SEL MB15 ; MBS ← 15

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

15

3.1.2 Addressing mode of data memory

The 75XL architecture employed for the µPD754202 provides the seven types of addressing modes as shown in

Table 3-1. This means that the data memory space can be efficiently addressed by the bit length of the data to be

processed and that programming can be carried out efficiently.

(1) 1-bit direct addressing (mem.bit)

This mode is used to directly address each bit of the entire data memory space by using the operand of an

instruction.

The memory bank (MB) to be specified is fixed to 0 in the mode of MBE = 0 if the address specified by the

operand ranges from 00H to 7FH, and to 15 if the address specified by the operand is 80H to FFH. In the

mode of MBE = 0, therefore, both the data area of addresses 000H through 07FH and the peripheral hardware

area of F80H through FFFH can be addressed.

In the mode of MBE = 1, MB = MBS.

This addressing mode can be used with four instructions: bit set and the two reset (SET1 and CLR1)

instructions, and the two bit test instructions (SKT and SKF).

Example To set FLAG1, reset FLAG2, and test whether FLAG3 is 0

FLAG1 EQU 03FH.1 ; Bit 1 of address 3FH

FLAG2 EQU 057H.2 ; Bit 2 of address 57H

FLAG3 EQU 077H.0 ; Bit 0 of address 77H

SET1 MBE ; MBE ← 1

SEL MB0 ; MBS ← 0

SET1 FLAG1 ; FLAG1 ← 1

CLR1 FLAG2 ; FLAG2 ← 0

SKF FLAG3 ; FLAG3 = 0?

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

16

Fig. 3-2 Data Memory Configuration and Addressing Range for Each Addressing Mode

000H

01FH
020H

07FH

0FFH

F80H

FB0H

FBFH
FC0H

FF0H

FFFH

General-
purpose
register area

Data area (SRAM)

Peripheral
hardware area

(memory bank 15)

Not
contained

Addressing mode
mem

mem. bit
@HL

@H+mem. bit
@DE
@DL

Stack
addressing fmem. bit pmem. @L

Memory bank enable flag MBE = 0 MBE = 1 MBE = 0 MBE = 1 – – – –

MBS =
15

MBS =
15

MBS = 0 MBS = 0 SBS = 0

Memory bank 0

Remark – : don’t care

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

17

Table 3-1 Addressing Modes

Addressing Mode Representation Specified Address

1-bit direct addressing mem.bit Bit specified bit at address specified by MB and mem

• When MBE = 0

When mem = 00H-7FH : MB = 0

When mem = 80H-FFH : MB = 15

• When MBE = 1 : MB = MBS

4-bit direct addressing mem Address specified by MB and mem.

• When MBE = 0

When mem = 00H-7FH : MB = 0

When mem = 80H-FFH : MB = 15

• When MBE = 1 : MB = MBS

8-bit direct addressing Address specified by MB and mem (mem is even address)

• When MBE = 0

When mem = 00H-7FH : MB = 0

When mem = 80H-FFH : MB = 15

• When MBE = 1 : MB = MBS

4-bit register indirect @HL Address specified by MB and HL.

addressing Where, MB = MBE MBS

@HL+ Address specified by MB and HL. However, MB = MBE MBS.

@HL– HL+ automatically increments L register after addressing.

HL– automatically decrements L register after addressing.

@DE Address specified by DE in memory bank 0

@DL Address specified by DL in memory bank 0

8-bit register indirect @HL Address specified by MB and HL (contents of L register are even

addressing number)

Where, MB = MBE MBS

Bit manipulation fmem.bit Bit specified by bit at address specified by fmem

addressing fmem = FB0H-FBFH (interrupt-related hardware)

FF0H-FFFH (I/O port)

pmem.@L Bit specified by lower 2 bits of L register at address specified by

higher 10 bits of pmem and lower 2 bits of L register.

Where, pmem = FC0H-FFFH

@H+mem.bit Bit specified by bit at address specified by MB, H, and lower 4 bits

of mem.

Where, MB = MBE MBS

Stack addressing — Address specified by SP in memory bank 0

 .

.

.

.

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

18

(2) 4-bit direct addressing (mem)

This addressing mode is used to directly address the entire memory space in 4-bit units by using the operand

of an instruction.

Like the 1-bit direct addressing mode, the area that can be addressed is fixed to the data area of addresses

000H through 07FH and the peripheral hardware area of F80H through FFFH in the mode of MBE = 0. In

the mode of MBE = 1, MB = MBS.

This addressing mode is applicable to the MOV, XCH, INCS, IN, and OUT instructions.

(3) 8-bit direct addressing (mem)

This addressing mode is used to directly address the entire data memory space in 8-bit units by using the

operand of an instruction.

The address that can be specified by the operand is an even address. The 4-bit data of the address specified

by the operand and the 4-bit data of the the address higher than the specified address are used in pairs and

processed in 8-bit units by the 8-bit accumulator (XA register pair).

The memory bank that is addressed is the same as that addressed in the 4-bit direct addressing mode.

This addressing mode is applicable to the MOV, XCH, IN, and OUT instructions.

(4) 4-bit register indirect addressing (@rpa)

This addressing mode is used to indirectly address the data memory space in 4-bit units by using a data pointer

(a pair of general-purpose registers) specified by the operand of an instruction.

As the data pointer, three register pairs can be specified: HL that can address the entire data memory space

by using MBE and MBS, and DE and DL that always address memory bank 0, regardless of the specification

by MBE and MBS. The user selects a register pair depending on the data memory bank to be used in order

to carry out programming efficiently.

When the HL register pair is specified, auto-increment/auto-decrement mode is used, which increments or

decrements the L register by one at the same time the instruction is executed, resulting in reducing the number

of program steps.

Example To transfer data 50H through 57H to addresses 60H through 67H

DATA1 EQU 57H

DATA2 EQU 67H

SET1 MBE

SEL MB0

MOV D, #DATA1 SHR4

MOV HL, #DATA2 AND 0FFH ; HL ← 17H

LOOP : MOV A, @DL ; A ← (DL)

XCH A, @HL ; A ← (HL)

DECS L ; L ← L – 1

BR LOOP

The addressing mode that uses register pair HL as the data pointer is widely used to transfer, operate, compare,

and input/output data. The addressing mode using register pair DE or DL is used with the MOV and XCH instructions.

By using this addressing mode in combination with the increment/decrement instruction of a general-purpose

register or a register pair, the addresses of the data memory can be updated as shown in Fig. 3-3.

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

19

Examples 1. To compare data 50H through 57H with data 60H through 67H

DATA1 EQU 57H

DATA2 EQU 67H

SET1 MBE

SEL MB0

MOV D, #DATA1 SHR 4

MOV HL, #DATA2 AND 0FFH

LOOP : MOV A, @DL

SKE A, @HL ; A = (HL)?

BR NO ; NO

DECS L ; YES, L ← L – 1

BR LOOP

2. To clear data memory of 004H through 07FH

CLR1 RBE

CLR1 MBE

MOV XA, #00H

MOV HL, #04H

LOOP : MOV @HL, A ; (HL) ← A

INCS L ; L ← L+1

BR LOOP

INCS H ; H ← H+1

NOP

SKE H, #08H

BR LOOP

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

20

Fig. 3-3 Updating Address of Static RAM

0XH

FXH

@DL
4-bit

transfer

DECS D

INCS D

DECS L INCS L

@HL 4-bit
manipulation

8-bit
manipuIation

DECS H

INCS H

DECS L INCS L

Auto
decrement

Auto
increment

DECS HL INCS HL

Direct addressing
bit manipulation

4-bit transfer
8-bit transfer

DECS D

INCS D

DECS E INCS E

DECS DE INCS DE

@H+mem.
bit

manipulation

DECS H

INCS H

@DE
4-bit

transfer

X0H XFH

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

21

(5) 8-bit register indirect addressing (@HL)

This addressing mode is used to indirectly address the entire data memory space in 8-bit units by using a data

pointer (HL register pair).

In this addressing mode, data is processed in 8-bit units, that is, the 4-bit data at an address specified by the

data pointer with bit 0 (bit 0 of the L register) cleared to 0 and the 4-bit data at the address higher are used

in pairs and processed with the data of the 8-bit accumulator (XA register).

The memory bank is specified in the same manner as when the HL register is specified in the 4-bit register

indirect addressing mode, by using MBE and MBS. This addressing mode is applicable to the MOV, XCH,

and SKE instructions.

Examples 1. To compare whether the count register (T0) value of timer counter 0 is equal to the data at addresses

30H and 31H

DATA EQU 30H

CLR1 MBE

MOV HL, #DATA

MOV XA, T0 ; XA ← count register 0

SKE XA, @HL ; XA = (HL)?

2. To clear data memory at 004H through 07FH

CLR1 RBE

CLR1 MBE

MOV XA, #00H

MOV HL, #04H

LOOP : MOV @HL, XA ; (HL) ← XA

INCS L

INCS L

BR LOOP

INCS H

NOP

SKE H, #08H

BR LOOP

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

22

(6) Bit manipulation addressing

This addressing mode is used to manipulate the entire memory space in bit units (such as Boolean processing

and bit transfer).

While the 1-bit direct addressing mode can be only used with the instructions that set, reset, or test a bit, this

addressing mode can be used in various ways such as Boolean processing by the AND1, OR1, and XOR1

instructions, and test and reset by the SKTCLR instruction.

Bit manipulation addressing can be implemented in the following three ways, which can be selected depending

on the data memory address to be used.

(a) Specific address bit direct addressing (fmem.bit)

This addressing mode is to manipulate the hardware units that use bit manipulation especially often, such

as I/O ports and interrupt-related flags, regardless of the setting of the memory bank. Therefore, the data

memory addresses to which this addressing mode is applicable are FF0H through FFFH, to which the

I/O ports are mapped, and FB0H through FBFH, to which the interrupt-related hardware units are mapped.

The hardware units in these two data memory areas can be manipulated in bit units at any time in the

direct addressing mode, regardless of the setting of MBS and MBE.

Examples 1. To test timer 0 interrupt request flag (IRQT0) and, if it is set, clear the flag and reset P63

SKTCLR IRQT0 ; IRQT0 = 1?

BR NO ; NO

CLR1 PORT6.3 ; YES

2. To reset P63 if both P30 and P71 pins are 1

P30

P71
P63

(i) SET1 CY ; CY ← 1

AND1 CY, PORT3.0 ; CY P30

AND1 CY, PORT7.1 ; CY P71

SKT CY ; CY = 1?

BR SETP

CLR1 PORT6.3 ; P63 ← 0
•
•
•

SETP : SET1 PORT6.3 ; P63 ← 1
•
•
•

(ii) SKT PORT3.0 ; P30 = 1?

BR SETP

SKT PORT7.1 ; P71 = 1?

BR SETP

CLR1 PORT6.3 ; P63 ← 0
•
•
•

SETP: SET1 PORT6.3 ; P63 ← 1

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

23

(b) Specific address bit register indirect addressing (pmem, @L)

This addressing mode is to indirectly specify and successively manipulate the bits of the peripheral

hardware units such as I/O ports. The data memory addresses to which this addressing mode can be

applied are FC0H through FFFH.

This addressing mode specifies the higher 10 bits of a 12-bit data memory address directly by using an

operand, and the lower 2 bits by using the L register.

This addressing mode can also be used independently of the setting of MBE and MBS.

Example To output pulses to the respective bits of port 6

P60

P61

P63

P62

LOOP2 : MOV L, #0

LOOP1 : SET1 PORT6.@L; Bits of port 6 (L1-0) ← 1

CLR1 PORT6.@L; Bits of port 6 (L1-0) ← 0

INCS L

SKE L, #4H

BR LOOP1

BR LOOP2

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

24

(c) Special 1-bit direct addressing (@H+mem.bit)

This addressing mode enables bit manipulation in the entire memory space.

The higher 4 bits of the data memory address of the memory bank specified by MBE and MBS are indirectly

specified by the H register, and the lower 4 bits and the bit address are directly specified by the operand.

This addressing mode can be used to manipulate the respective bits of the entire data memory area in

various ways.

Example To reset bit 2 (FLAG3) at address 32H if both bits 3 (FLAG1) at address 30H and bit 0 (FLAG2) at

address 31H are 0 or 1

FLAG1

FLAG2
FLAG3

FLAG1 EQU 30H.3

FLAG2 EQU 31H.0

FLAG3 EQU 32H.2

SEL MB0

MOV H, #FLAG1 SHR 6

CLR1 CY ; CY ← 0

OR1 CY, @H+FLAG1 ; CY ← CY FLAG1

XOR1 CY, @H+FLAG2 ; CY ← CY FLAG2

SET1 @H+FLAG3 ; FLAG3 ← 1

SKT CY ; CY = 1?

CLR1 @H+FLAG3 ; FLAG3 ← 0

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

25

(7) Stack addressing

This addressing mode is used to save or restore data when interrupt service or subroutine processing is

executed.

The address of data memory bank 0 pointed to by the stack pointer (8 bits) is specified in this addressing mode.

In addition to being used during interrupt service or subroutine processing, this addressing is also used to save

or restore register contents by using the PUSH or POP instruction.

Examples 1. To save or restore register contents during subroutine processing

SUB : PUSH XA

PUSH HL

PUSH BS ; Saves MBS and RBE
•
•
•

POP BS

POP HL

POP XA

RET

2. To transfer contents of register pair HL to register pair DE

PUSH HL

POP DE ; DE ← HL

3. To branch to address specified by registers [XABC]

PUSH BC

PUSH XA

RET ; To branch address XABC

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

26

3.2 Bank Configuration of General-Purpose Registers

The µPD754202 is provided with four register banks with each bank consisting of eight general-purpose registers:

X, A, B, C, D, E, H, and L. The general-purpose register area consisting of these registers is mapped to the addresses

00H through 1FH of memory bank 0 (refer to Fig. 3-5 Configuration of General-Purpose Registers (in 4-bit

processing)). To specify a general-purpose register bank, a register bank enable flag (RBE) and a register bank

select register (RBS) are provided. RBS selects a register bank, and RBE determines whether the register bank

selected by RBS is valid or not. The register bank (RB) that is enabled when an instruction is executed is as follows:

RB = RBE • RBS

Table 3-2 Register Bank Selected by RBE and RBS

RBS

3 2 1 0

0 0 0 × × Fixed to bank 0

1 0 0 0 0 Bank 0 selected

0 1 Bank 1 selected

1 0 Bank 2 selected

1 1 Bank 3 selected

Remark × = don’t care

RBE is automatically saved or restored during subroutine processing and therefore can be set while subroutine

processing is under execution. When interrupt service is executed, RBE is automatically saved or restored, and RBE

can be set during interrupt service depending on the setting of the interrupt vector table as soon as the interrupt service

is started. Consequently, if different register banks are used for normal processing and interrupt service as shown

in Table 3-3, it is not necessary to save or restore general-purpose registers when an interrupt is serviced, and only

RBS needs to be saved or restored if two interrupts are nested. This means that the interrupt service speed can be

increased.

Table 3-3 Example of Using Different Register Banks for Normal Routine and Interrupt Routine

Normal processing Uses register banks 2 or 3 with RBE = 1

Single interrupt service Uses register bank 0 with RBE = 0

Nesting of two interrupts Uses register bank 1 with RBE = 1
(at this time, RBS must be saved or restored)

Nesting of three or more Registers must be saved or restored by PUSH or POP instructions
interrupts

RBE Register Bank

Fixed to 0

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

27

Fig. 3-4 Example of Using Register Banks

If RBS is to be changed in the course of subroutine processing or interrupt service, it must be saved or restored

by using the PUSH or POP instruction.

RBE is set by using the SET1 or CLR1 instruction. RBS is set by using the SEL instruction.

Example SET1 RBE ; RBE ← 1

CLR1 RBE ; RBE ← 0

SEL RB0 ; RBS ← 0

SEL RB3 ; RBS ← 3

The general-purpose register area provided to the µPD754202 can be used not only as 4-bit registers but also

as 8-bit register pairs. This feature allows the µPD754202 to provide transfer, operation, comparison, and increment/

decrement instructions comparable to those of 8-bit microcontrollers and allows you to program using mainly only

general-purpose registers.

<Main program>

<Single interrupt> <Nesting of two
 interrupts> ; RBE = 1

<Nesting of three
 interrupts> ; RBE = 0; RBE = 0

 in vector table in vector table in vector table

PUSH BS
SEL RB1

PUSH rp

RB = 2
RB = 0

RB = 1 RB = 0

RETI POP BS
RETI

POP rp
RETI

SET1 RBE

SEL RB2

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

28

(1) To use as 4-bit registers

When the general-purpose register area is used as a 4-bit register area, a total of eight general-purpose

registers, X, A, B, C, D, E, H, and L, specified by RBE and RBS can be used as shown in Fig. 3-5. Of these

registers, A plays a central role in transferring, operating, and comparing 4-bit data as a 4-bit accumulator.

The other registers can transfer, compare, and increment or decrement data with the accumulator.

(2) To use as 8-bit registers

When the general-purpose register area is used as an 8-bit register area, a total of eight 8-bit register pairs

can be used as shown in Fig. 3-6: register pairs XA, BC, DE, and HL of a register bank specified by RBE and

RBS, and register pairs XA’, BC’, DE’, and HL’ of the register bank whose bit 0 is complemented in respect

to the register bank (RB). Of these register pairs, XA serves as an 8-bit accumulator, playing the central role

in transferring, operating, and comparing 8-bit data. The other register pairs can transfer, compare, and

increment or decrement data with the accumulator. The HL register pair is mainly used as a data pointer.

The DE and DL register pairs are also used as auxiliary data pointers.

Examples 1. INCS HL ; Skips if HL ← HL + 1, HL=00H

ADDS XA, BC ; Skips if XA ← XA + BC and carry occurs

SUBC DE’, XA ; DE’ ← DE’ – XA – CY

MOV XA, XA’ ; XA ← XA’

MOVT XA, @PCDE ; XA ← (PC10–8 + DE) ROM, table reference

SKE XA, BC ; Skips if XA = BC

2. To test whether the value of the count register (T0) of timer counter is greater than the value

of register pair BC’ and, if not, wait until it becomes greater

CLR1 MBE

NO : MOV XA, T0 ; Reads count register

SUBS XA, BC’ ; XA ≥ BC’?

BR YES ; YES

BR NO ; NO

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

29

Fig. 3-5 Configuration of General-Purpose Registers (in 4-bit processing)

X

H

D

B

X

H

D

B

X

H

D

B

X

H

D

B

01H

03H

05H

07H

09H

0BH

0DH

0FH

11H

13H

15H

17H

19H

1BH

1DH

1FH

A

L

E

C

A

L

E

C

A

L

E

C

A

L

E

C

00H

02H

04H

06H

08H

0AH

0CH

0EH

10H

12H

14H

16H

18H

1AH

1CH

1EH

Register bank 1
(RBE RBS = 1)

Register bank 0
(RBE RBS = 0)

Register bank 2
(RBE RBS = 2)

Register bank 3
(RBE RBS = 3)

.

.

.

.

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

30

Fig. 3-6 Configuration of General-Purpose Registers (in 8-bit processing)

XA

HL

DE

BC

XA'

HL'

DE'

BC'

00H

02H

04H

06H

08H

0AH

0CH

0EH

When
RBE RBS = 0

XA

HL

DE

BC

XA'

HL'

DE'

BC'

10H

12H

14H

16H

18H

1AH

1CH

1EH

When
RBE RBS = 2

XA'

HL'

DE'

BC'

XA

HL

DE

BC

00H

02H

04H

06H

08H

0AH

0CH

0EH

When
RBE RBS = 1

XA'

HL'

DE'

BC'

XA

HL

DE

BC

10H

12H

14H

16H

18H

1AH

1CH

1EH

When
RBE RBS = 3

.

. .

.

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

31

3.3 Memory-Mapped I/O

The µPD754202 employs memory-mapped I/O that maps peripheral hardware units such as I/O ports and timers

to addresses F80H through FFFH on the data memory space, as shown in Fig. 3-2. Therefore, no special instructions

to control the peripheral hardware units are provided, and all the hardware units are controlled by using memory

manipulation instructions. (Some mnemonics that make the program easy to read are provided for hardware control.)

To manipulate peripheral hardware units, the addressing modes shown in Table 3-4 can be used.

Table 3-4 Addressing Modes Applicable to Peripheral Hardware Unit Manipulation

Applicable Addressing Mode Hardware Units

Bit manipulation Specified in direct addressing mode mem.bit with All hardware units that can be
MBE = 0 or (MBE = 1, MBS = 15) manipulated in 1-bit units

Specified in direct addressing mode fmem.bit regardless IST1, IST0, MBE, RBE

of setting of MBE and MBS IE×××, IRQ×××, PORTn.×

Specified in indirect addressing mode pmem.@L BSBn.×
regardless of setting of MBE and MBS PORTn.×

4-bit manipulation Specifies in direct addressing mode mem with MBE=0 All hardware units that can be
or (MBE = 1, MBS = 15) manipulated in 4-bit units

Specified in register indirect addressing @HL with
(MBE = 1, MBS = 15)

8-bit manipulation Specified in direct addressing mem with MBE = 0 or All hardware units that can be
(MBE = 1, MBS = 15), where mem is even number. manipulated in 8-bit units

Specified in register indirect addressing @HL with
MBE = 1, MBS = 15, where contents of L register
are even number

Example CLR1 MBE ; MBE = 0

SET1 TM0. 3 ; Starts timer 0

EI IE0 ; Enables INT0

DI IET1 ; Disables INTT1

SKTCLR IRQ2 ; Tests and clears INT2 request flag

SET1 PORT3, @L ; Sets port 3

IN A, PORT6 ; A ← port 6

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

32

Fig. 3-7 shows the I/O map of the µPD754202.

The meanings of the symbols shown in this figure are as follows:

• Symbol Name indicating the address of an internal hardware unit

It can be written in operands of instructions

• R/W Indicates whether a hardware unit in question can be read or written

R/W : Read/write

R : Read only

W : Write only

• Number of bits that can be manipulated Indicates the bit units in which a hardware unit in question can be

manipulated

: Can be manipulated in specified units (1, 4, or 8 bits)

: Only some bits can be manipulated. For the bits that can be

manipulated, refer to Remark.

– : Cannot be manipulated in specified units (1, 4, or 8 bits).

• Bit manipulation addressing Indicates a bit manipulation addressing mode that can be used to

manipulate a hardware unit in question in 1-bit units

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

33

Fig. 3-7 I/O Map (1/8)

Hardware name (symbol)
Number of bits that

Bit
Address R/W

can be manipulated
manipulation Remarks

b3 b2 b1 b0 1-bit 4-bit 8-bit
addressing

F80H Stack pointer (SP) R/W – – – Bit 0 is fixed to 0.

F82H Register bank selection register (RBS) – – Note 1
Bank selection register (BS) R

F83H Memory bank selection register (MBS) –

F84H Stack bank selection register (SBS) R/W – – –

F85H Basic interval timer mode register (BTM) W – mem.bit Bit manipulation can be performed only on bit 3.

F86H Basic interval timer (BT) R – – –

F88H Modulo register for setting timer counter 2 R/W – – –
high-level period (TMOD2H)

F8AH Unmounted

F8BH WDTMNote 2 – – – W – – mem.bit

F8CH Unmounted
to

F8FH

Notes 1. The manipulation is possible separately with RBS and MBS in the 4-bit manipulation. The manipulation

is possible with BS in the 8-bit manipulation. Write data into MBS and RBS with the SEL MBn (n =

0 or 15) and SEL RBn (n = 0-3) instructions.

2. WDTM: Watchdog Timer Enable flag (W); Cannot be cleared, once set, by an instruction.

..

..

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

34

Fig. 3-7 I/O Map (2/8)

Hardware name (symbol)
Number of bits that

Bit
Address R/W

can be manipulated
manipulation Remarks

b3 b2 b1 b0 1-bit 4-bit 8-bit
addressing

F90H Timer counter 2 mode register (TM2) R/W (W) – – Bit manipulation can be performed only on bit 3

– – –

F92H TOE2 REMC NRZB NRZ R/W – Bit 3 can be written only
Timer counter 2 control register (TC2)

0 – – – – – Only 0 can be written on bit 3

F94H Timer counter 2 count register (T2) R – – –

F96H Timer counter 2 modulo register (TMOD2) R/W – – –

F98H Unmounted
to

F9FH

..

..

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

35

Fig. 3-7 I/O Map (3/8)

Hardware name (symbol)
Number of bits that

Bit
Address R/W

can be manipulated
manipulation Remarks

b3 b2 b1 b0 1-bit 4-bit 8-bit
addressing

FA0H Timer counter 0 mode register (TM0) R/W (W) – mem.bit Bit manipulation can be performed only on bit 3

– – –

FA2H TOE0Note 1 – – – W – – mem.bit

FA3H Unmounted

FA4H Timer counter 0 count register (T0) R – – –

FA6H Timer counter 0 modulo register (TMOD0) R/W – – –

FA8H Timer counter 1 mode register (TM1) R/W (W) – mem.bit Bit manipulation can be performed only on bit 3

– – –

FAAH TOE1Note 2 – – – W – – mem.bit

FABH Unmounted

FACH Timer counter 1 count register (T1) R – – –

FAEH Timer counter 1 modulo register (TMOD1) R/W – – –

Notes 1. TOE0: Timer counter output enable flag (channel 0) (W)

2. TOE1: Timer counter output enable flag (channel 1) (W)

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

36

..

..

..

..

..

..

Bit manipulation can be performed by
reserved word only.

..

Fig. 3-7 I/O Map (4/8)

Hardware name (symbol)
Number of bits that

Bit
Address R/W

can be manipulated
manipulation Remarks

b3 b2 b1 b0 1-bit 4-bit 8-bit
addressing

FB0H IST1 IST0 MBE RBE R/W (R/W) (R/W) (R) fmem.bit R only possible as 8-bit manipulation.
Program status word (PSW)

Note 2 –

FB2H Interrupt priority selection register (IPS) R/W – – Note 3

FB3H Processor clock control register (PCC) R/W – – Note 4

FB4H INT0 edge detection mode register (IM0) R/W – – –

FB5H Unmounted

FB6H INT2 edge detection mode register (IM2)Note 5 R/W – – –

FB7H Unmounted

FB8H R/W – fmem.bit

FB9H Unmounted
to

FBBH

FBCH R/W – fmem.bit Bit manipulation can be performed by
reserved word only.

FBDH R/W –

FBEH R/W –

FBFH R/W –

Remarks 1. IE××× is an interrupt enable flag.

2. IRQ××× is an interrupt request flag.

Notes 1. These are not registered as reserved words.

2. Use CY manipulation instruction to write to CY.

3. IME (bit 3) can only be manipulated by an EI/DI instruction.

4. PCC3 (bit 3) and PCC2 (bit 2) can be manipulated by a STOP/HALT instruction.

5. This register specifies the falling edge of KRn pin as the set signal of interrupt request flag (IRQ2).

This register is initialized to 00H after reset. Therefore, write 01H to set the falling edge of KRn pin

to IRQ2.

CYNote 1 SK2Note 1 SK1Note 1 SK0Note 1

INTA register (INTA)
– – IEBT IRQBT

INTE register (INTE)
IET1 IRQT1 IET0 IRQT0

INTF register (INTF)
IET2 IRQT2 – –

INTG register (INTG)
– – IE0 IRQ0

INTH register (INTH)
– – IE2 IRQ2

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

37

Fig. 3-7 I/O Map (5/8)

Hardware name (symbol)
Number of bits that

Bit
Address R/W

can be manipulated
manipulation Remarks

b3 b2 b1 b0 1-bit 4-bit 8-bit
addressing

FC0H Bit sequential buffer 0 (BSB0) R/W mem.bit

FC1H Bit sequential buffer 1 (BSB1) R/W pmem.@L

FC2H Bit sequential buffer 2 (BSB2) R/W

FC3H Bit sequential buffer 3 (BSB3) R/W

FC4H Unmounted

FC5H

FC6H
Reset detection flag register (RDF)

R/W – mem.bit Manipulation can be performed only on bits 2 and 3.
KRF WDF – –

FC7H Unmounted
to

FCFH

..

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

38

..

..

..

..

Fig. 3-7 I/O Map (6/8)

Hardware name (symbol)
Number of bits that

Bit
Address R/W

can be manipulated
manipulation Remarks

b3 b2 b1 b0 1-bit 4-bit 8-bit
addressing

FD0H Unmounted
to

FDBH

FDCH PO3Note – – – R/W – – – A write to an unmounted area is invalid, and
Pull-up resistor specification register group A (POGA) a read value is undefined.

– PO6Note – –

FDEH – – – PO8Note
R/W – – –

Pull-up resistor specification register group B (POGB)

– – – –

Note These are not registered as reserved words.

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

39

..

..

..

..

Fig. 3-7 I/O Map (7/8)

Hardware name (symbol)
Number of bits that

Bit
Address R/W

can be manipulated
manipulation Remarks

b3 b2 b1 b0 1-bit 4-bit 8-bit
addressing

FE0H Unmounted
to

FE7H

FE8E PM33 PM32 PM31 PM30 R/W – –
Port mode register group A (PMGA)

PM63Note PM62Note PM61Note PM60Note

FEAH Unmounted
to

FEDH

FEEH – – – PM8Note
R/W – – – A write to an unmounted area is invalid, and

Port mode register group C (PMGC) a read value is undefined.

– – – –

Note These are not registered as reserved words. However, bit manipulation is possible by specifying as follows:

0FE9.0-0FE9.3

CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP

40

Fig. 3-7 I/O Map (8/8)

Hardware name (symbol)
Number of bits that

Bit
Address R/W

can be manipulated
manipulation Remarks

b3 b2 b1 b0 1-bit 4-bit 8-bit
addressing

FF0H Unmounted
to

FF2H

FF3H Port 3 (PORT3) R/W –
fmem.bit

pmem.@L

FF4H Unmounted

FF5H

FF6H Port 6 (PORT6) R/W – fmem.bit
pmem.@L

FF7HNote 1 R –

FF8H R/W – A write to an unmounted area is invalid, and
a read value is undefined.

FF9H Unmounted
to

FFFH

Notes 1. KR4-KR7 can only be read bit-wise. At 4-bit parallel input, PORT7 is used for specification.

2. These are not registered as reserved words.

..

..

Port 7 (PORT7)
KR7 KR6 KR5 KR4

Port 8 (PORT8)
– – – P80Note 2

41

CHAPTER 4 INTERNAL CPU FUNCTION

4.1 Function to Select MkI and MkII Modes

4.1.1 Difference between MkI and MkII modes

The CPU of the µPD754202 has two modes to be selected: MkI and MkII modes. These modes can be selected

by using the bit 3 of the stack bank select register (SBS).

• MkI mode : In this mode, the µPD754144 is upward-compatible with the 75X series.

This mode can be used with the CPU in the 75XL series having a ROM capacity of up to 16K

bytes.

• MkII mode : In this mode, the µPD754144 is not compatible with the 75X series.

This mode can be used with all the CPUs in the 75XL series, including the models having a ROM

capacity of 16K bytes or higher.

Table 4-1 Differences between MkI and MkII Modes

MkI Mode MkII Mode

Number of stack bytes of 2 bytes 3 bytes

subroutine instruction

BRA !addr1 instruction Not provided Provided

CALLA !addr1 instruction

CALL !addr instruction 3 machine cycles 4 machine cycles

CALLF !faddr instruction 2 machine cycles 3 machine cycles

Caution The Mk II mode supports a program area which exceeds 16K bytes in the 75X and 75XL series.

This mode enhances the software compatibility with products which have more than 16K bytes.

When the Mk II mode is selected, the number of stack bytes (usable area) used in execution of

a subroutine call instruction increases by 1 per stack compared to the Mk I mode. Furthermore,

when a CALL !addr, or CALLF !faddr instruction is used, each instruction takes another machine

cycle. Therefore, when more importance is attached to RAM utilization or throughput than

software compatibility, use the Mk I mode.

CHAPTER 4 INTERNAL CPU FUNCTION

42

4.1.2 Setting stack bank select register (SBS)

The MkI mode or MkII mode is selected by using the stack bank select register (SBS). Fig. 4-1 shows the format

of this register.

The stack bank select register is set by using a 4-bit memory manipulation instruction. To use the MkI mode, be

sure to initialize the stack bank select register to 1000B at the beginning of the program. To use the MkII mode, initialize

the register to 0000B.

Fig. 4-1 Format of Stack Bank Select Register

3 2Address 1 0

0 Memory bank 0

SBSSBS0F84H SBS1SBS3 SBS2

Symbol

Specifies stack area

0

Other than above, setting prohibited

0 Be sure to set bit 2 to 0.

0 Mkll mode

Selects mode

1 Mkl mode

Caution The SBS.3 bit is set to “1” after the RESET signal has been asserted. Therefore, the CPU operates

in the MkI mode. To use the instructions in the MkII mode, clear SBS.3 to “0” to set the MkII mode.

CHAPTER 4 INTERNAL CPU FUNCTION

43

4.2 Program Counter (PC) ··· 11 bits

This is a binary counter that holds an address of the program memory.

Fig. 4-2 Configuration of Program Counter

The value of the program counter (PC) is usually automatically incremented by the number of bytes of an instruction

each time that instruction has been executed.

When a branch instruction (BR, BRA, or BRCB) is executed, immediate data indicating the branch destination

address or the contents of a register pair are loaded to all or some bits of the PC.

When a subroutine call instruction (CALL, CALLA, or CALLF) is executed or when a vectored interrupt occurs,

the contents of the PC (a return address already incremented to fetch the next instruction) are saved to the stack

memory (data memory specified by the stack pointer). Then, the jump destination address is loaded to the PC.

When the return instruction (RET, RETS, or RETI) instruction is executed, the contents of the stack memory are

set to the PC.

 When the RESET signal is asserted, the contents of the program counter (PC) are initialized to the contents of

address 0000H and 0001H of the program memory, and the program can be started from any address according to

the contents.

PC10-8 ← (0000H)2-0, PC7-0 ← (0001H)7-0

PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

CHAPTER 4 INTERNAL CPU FUNCTION

44

4.3 Program Memory (ROM) ··· 2048 × 8 bits

The program memory stores a program, interrupt vector table, the reference table of the GETI instruction, and table

data.

The program memory is addressed by the program counter. The table data can be referenced by using a table

reference instruction (MOVT).

Fig. 4-3 shows address ranges in which execution can be branched by a branch or subroutine call instruction. A

relative branch instruction (BR $addr1 instruction) can branch execution to an address of [contents of PC –15 to –

1 or +2 to +16], regardless of the block boundary.

The address range of the program memory of each model is 0000H-07FFH, and among then, special functions

are assigned to the following addresses. All the addresses other than 0000H and 0001H can be usually used as

program memory addresses.

• Addresses 0000H and 0001H

These addresses store a start address from which program execution is to be started when the RESET signal

is asserted, and a vector table to which the set values of RBE and MBE are written. Program execution can

be reset and started from any address.

• Addresses 0002H through 000DH

These addresses store start addresses from which program execution is to be started when a vector interrupt

occurs, and a vector table to which the set values of RBE and MBE are written. Interrupt service can be started

from any address.

• Addresses 0020H-007FH

These addresses constitute a table area that can be referenced by the GETI instructionNote .

Note The GETI instruction implements any 2- or 3-byte instruction, or two 1-byte instructions with 1 byte. It is

used to decrease the number of program steps (refer to 10.1.1 GETI instruction).

CHAPTER 4 INTERNAL CPU FUNCTION

45

Fig. 4-3 Program Memory Map

Note Can be used only at MKII mode.

Remark In addition to the above, a branch can be made to an address with the lower 8-bits only of the PC changed

by means of a BR PCDE or BR PCXA instruction.

7 6 0

MBE RBE Internal reset start address (higher 3 bits)

Internal reset start address (lower 8 bits)

MBE RBE INTBT start address (higher 3 bits)

INTBT start address (lower 8 bits)

MBE RBE INT0 start address (higher 3 bits)

INT0 start address (lower 8 bits)

MBE RBE INTT0 start address (higher 3 bits)

INTT0 start address (lower 8 bits)

MBE RBE INTT1/INTT2 start address (higher 3 bits)

INTT1/INTT2 start address (lower 8 bits)

GET instruction reference table

0000H

0001H

0002H

0003H

0004H

0005H

0006H

0007H

0008H

0009H

000AH

000BH

000CH

000DH

0020H

007FH
0080H

0FFFH

CALLF !faddr instruction
entry address

Branch address of
BR !addr

BRCB !caddr
BR BCDE
BR BCXA

BRA !addr 1Note
CALL !addr

CALLA !addr 1Note
instructions

GETI Branch/call
Addresses

BR $addr instruction
relative branch address
(–15 to –1, +2 to +16)

Address 5 4

0 0

3

0

0 0 0

0 0 0

0 0 0

0 0 0

CHAPTER 4 INTERNAL CPU FUNCTION

46

4.4 Data Memory (RAM) ... 128 words × 4 bits

The data memory consists of data areas and a peripheral hardware area as shown in Fig. 4-4.

The data memory consists the following banks with each bank made up of 256 words × 4 bits:

• Memory bank 0 (data areas)

• Memory bank 15 (peripheral hardware area)

4.4.1 Configuration of data memory

(1) Data area

A data area consists of a static RAM and is used to store data, and as a stack memory when a subroutine

or interrupt is executed. The contents of this area can be retained for a long time by battery backup even

when the CPU is halted in standby mode. The data area is manipulated by using memory manipulation

instructions.

Static RAM is mapped to memory bank 0 in units of 128 words × 4 bits only. Although bank 0 is mapped as

a data area, it can also be used as a general-purpose register area (000H through 01FH) and as a stack area

(000H through 07FH).

One address of the static RAM consists of 4 bits. However, it can be manipulated in 8-bit units by using an

8-bit memory manipulation instruction or in 1-bit units by using a bit manipulation instruction. To use an 8-

bit manipulation instruction, specify an even address.

• General-purpose register area

This area can be manipulated by using a general-purpose register manipulation instruction or memory

manipulation instruction. Up to eight 4-bit registers can be used. The registers not used by the program

can be used as part of the data area or stack area.

• Stack area

The stack area is set by an instruction and is used as a saving area when a subroutine or interrupt service

is executed.

(2) Peripheral hardware area

The peripheral hardware area is mapped to addresses F80H through FFFH of memory bank 15.

This area is manipulated by using a memory manipulation instruction, in the same manner as the static RAM.

Note, however, that the bit units in which the peripheral hardware units can be manipulated differ depending

on the address. The addresses to which no peripheral hardware unit is allocated cannot be accessed because

these addresses are not provided to the data memory.

CHAPTER 4 INTERNAL CPU FUNCTION

47

4.4.2 Specifying bank of data memory

A memory bank is specified by a 4-bit memory bank select register (MBS) when bank specification is enabled by

setting a memory bank enable flag (MBE) to 1 (MBS = 0 or 15). When bank specification is disabled (MBS = 0), bank

0 or 15 is automatically specified depending on the addressing mode selected at that time. The addresses in the

bank are specified by 8-bit immediate data or a register pair.

For the details of memory bank selection and addressing, refer to 3.1 Bank Configuration of Data Memory and

Addressing Mode .

For how to use a specific area of the data memory, refer to the following:

• General-purpose register area 4.5 General-Purpose Register

• Stack area 4.7 Stack Pointer (SP) and Stack Bank Select Register (SBS)

• Peripheral hardware area CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

CHAPTER 4 INTERNAL CPU FUNCTION

48

Fig. 4-4 Data Memory Map

000H

01FH
020H

07FH
080H

0FFH

F80H

FFFH

128 × 4

Not incorporated

128 × 4
(96 × 4)

(32 × 4)

0

15

General-purpose
register area

Stack areaData area
static RAM (128 × 4)

Peripheral hardware area

Data memory Memory bank

CHAPTER 4 INTERNAL CPU FUNCTION

49

The contents of the data memory are undefined at reset. Therefore, they must be initialized at the beginning of

program execution (RAM clear). Otherwise, unexpected bugs may occur.

Example To clear RAM at addresses 000H through 07FH

SET1 MBE

SEL MB0

MOV XA, #00H

MOV HL, #04H

RAMC0 : MOV @HL, A ; Clears 004H-07FHNote

INCS L ; L ← L+1

BR RAMC0

INCS H ; H ← H+1

NOP

SKE H, #08H

BR RAMC0

Note Data memory addresses 000H through 003H are not cleared because they are used as general-purpose

register pairs XA and HL.

CHAPTER 4 INTERNAL CPU FUNCTION

50

03

B

03

C

03

D

03

E

03

H

03

L

03

X

03

A

One bank

000H

001H

002H

003H

004H

005H

006H

007H

008H

00FH
010H

017H
018H

.

.

.

.

.

01FH

Same configura-
tion as bank 0

Same configura-
tion as bank 0

Same configura-
tion as bank 0

Register bank 0

Register bank 1

Register bank 2

Register bank 3

03
Address Data memory

A register

X register

L register

H register

E register

D register

C register

B register

.

.

.

.

.

.

.

.

.

4.5 General-Purpose Register ... 8 × 4 bits × 4 banks

General-purpose registers are mapped to the specific addresses of the data memory. Four banks of registers,

with each bank consisting of eight 4-bit registers (B, C, D, E, H, L, X, and A), are available.

The register bank (RB) that becomes valid when an instruction is executed is determined by the following

expression:

RB = RBE RBS (RBS = 0-3)

Each general-purpose register is manipulated in 4-bit units. Moreover, two registers can be used in pairs, such

as BC, DE, HL, and XA, and manipulated in 8-bit units. Register pairs DE, HL, and DL are also used as data pointers.

When registers are manipulated in 8-bit units, the register pairs of the register bank (RB) with bit 0 inverted (0

↔ 1, 2 ↔ 3), BC’, DE’, HL’, and XA’, can also be used in addition to BC, DE, HL, and XA (refer to 3.2 Bank

Configuration of General-Purpose Registers).

The general-purpose register are can be addressed and accessed as an ordinary RAM area, regardless of whether

the registers in this area are used or not.

Fig. 4-5 Configuration of General-Purpose Register Fig. 4-6 Configuration of Register Pair

.

CHAPTER 4 INTERNAL CPU FUNCTION

51

4.6 Accumulator

With the µPD754202, the A register or XA register pair functions as an accumulator. The A register plays a central

role in 4-bit data processing, while the XA register pair is used for 8-bit data processing.

When a bit manipulation instruction is used, the carry flag (CY) is used as a bit accumulator.

Fig. 4-7 Accumulator

CY Bit accumulator

A 4-Bit accumulator

A 8-Bit accumulatorX

4.7 Stack Pointer (SP) and Stack Bank Select Register (SBS)

The µPD754202 uses a static RAM as the stack memory (LIFO). The stack pointer (SP) is an 8-bit register that

holds information on the first address of the stack area.

The stack area consists of addresses 000H through 07FH of memory bank 0. Memory bank is specified by 2-

bit SBS (refer to Table 4-2).

Table 4-2 Stack Area Selected by SBS

SBS

SBS1 SBS2

0 0 Memory bank 0

Other than above, setting prohibited

The value of SP is decremented before data is written (saved) to the stack area, and is incremented after data

has been read (restored) from the stack memory.

The data saved or restored to or from the stack are as shown in Figs. 4-9 through 4-12.

The initial values of SP and SBS are respectively set by an 8-bit memory manipulation instruction and 4-bit memory

manipulation instruction, to determine the stack area. The values of SP and SBS can also be read.

Stack Area

-
-

-
-

-
-

CHAPTER 4 INTERNAL CPU FUNCTION

52

When 00H is set to SP as the initial value, the memory bank 0 is used as the stack area, starting from the highest

address (07FH).

The stack area can be used only in the memory bank 0 specified by SBS. If stack operation is performed from

address 000H onwards, the stack pointer will direct unmounted area 0FFH. Therefore, be careful not to allow the

stack pointer to exceed 000H.

The contents of SP become undefined, and SBS become 1000B when the RESET signal is asserted. Therefore,

be sure to initialize these to the desired values at the beginning of the program.

Fig. 4-8 Stack Pointer and Stack Bank Selection Register Configuration

SP7 SP6 SP5 SP4 SP3 SP2 SP1 0

SBS3 SBS2 SBS1 SBS0

Fix to 0

000H

07FH

080H

0FFH

Memory Bank 0

Unmounted

SP

If the stack pointer exceeds
00H, it will point to the
unmounted area 00FH, and
therefore attention should be
paid to the depth of the stack to
ensure that the stack pointer
does not exceed 00H.

F80H

Address

SP

Symbol

F84H SBS

Mk I/Mk II mode switching

Example of SP initialization

To set the stack area in memory bank 0, and perform stack operations from address 07FH.

SEL MB15 ; Or CLR1 MBE

MOV A, #0

MOV SBS, A ; Specify memory bank 0 as stack area

MOV XA, #80H

MOV SP, XA ; SP ← 80H (stack operations from 7FH)

CHAPTER 4 INTERNAL CPU FUNCTION

53

Fig. 4-9 Data Saved to Stack Memory (MkI Mode)

Stack

SP – 1

SP

PUSH instruction

Stack

PC10-PC8

PC3-PC0

PC7-PC4

CALL, CALLF instruction

Stack

Interrupt

SP – 2

SP – 1

SP

SP – 3

PC10-PC8

PC3-PC0

PC7-PC4

SP – 2

SP – 1

SP

SP – 3

SP – 4

SP – 5MBE RBE 0 0 MBE RBE 0 0

CY SK2

MBE RBE

SK1 SK0

IST0IST1
PSW

SP – 2 Register pair, low

Register pair, high

SP – 4 SP – 6

Fig. 4-10 Data Restored from Stack Memory (MkI Mode)

Stack

SP + 1

SP + 2

POP instruction

Stack

PC10-PC8

PC3-PC0

PC7-PC4

RET, RETS instruction

Stack

RETI instruction

SP + 2

SP + 3

SP + 4

SP + 1

PC10-PC8

PC3-PC0

PC7-PC4

SP + 4

SP + 5

SP + 6

SP + 3

SP + 2

SP + 1MBE RBE 0 0 MBE RBE 0 0

CY SK2

MBE RBE

SK1 SK0

IST0IST1
PSW

SP Register pair, low

Register pair, high

SP SP

CHAPTER 4 INTERNAL CPU FUNCTION

54

Fig. 4-11 Data Saved to Stack Memory (MkII Mode)

Stack

SP – 1

SP

PUSH instruction

Stack

PC10-PC8

PC3-PC0

PC7-PC4

CALL, CALLA, CALLF instruction

Stack

Interrupt

SP – 4

SP – 3

SP – 2

SP – 5

PC10-PC8

PC3-PC0

PC7-PC4

SP – 2

SP – 1

SP

SP – 3

SP – 4

SP – 50 0 0 0 0 0 0 0

CY SK2

MBE RBE

SK1 SK0

IST0IST1
PSW

SP – 2 Register pair, low

Register pair, high

SP – 6 SP – 6

* *

MBE RBE

* *

**
Note

SP – 1

SP

Fig. 4-12 Data Restored from Stack Memory (MkII Mode)

Note The contents of PSW other than MBE and RBE are not saved or restored.

Remark *: Undefined

Stack

SP + 1

SP + 2

POP instruction

Stack

PC10-PC8

PC3-PC0

PC7-PC4

RET, RETS instruction

Stack

RETI instruction

SP + 2

SP + 3

SP + 4

SP + 1

PC10-PC8

PC3-PC0

PC7-PC4

SP + 4

SP + 5

SP + 6

SP + 3

SP + 2

SP + 10 0 0 0 0 0 0 0

CY SK2

MBE RBE

SK1 SK0

IST0IST1
PSW

SP Register pair, low

Register pair, high

SP SP

* *

MBE RBE

* *

**
Note

SP + 5

SP + 6

CHAPTER 4 INTERNAL CPU FUNCTION

55

4.8 Program Status Word (PSW) ... 8 bits

The program status word (PSW) consists of flags closely related to the operations of the processor.

PSW is mapped to addresses FB0H and FB1H of the data memory space, and the 4 bits of address FB0H can

be manipulated by using a memory manipulation instruction.

Fig. 4-13 Configuration of Program Status Word

RBEMBEIST0IST1(SK0)Note(SK1)Note(SK2)Note(CY)Note

Cannot be
manipulated

Can be
manipulated

FB0HFB1H

Can be manipulated
by dedicated instruction

Symbol

PSW

Address

FB0H

Note Not reserved as a reserved word.

Table 4-3 PSW Flags Saved/Restored to/from Stack

Flag Saved or Restored

Save When CALL, CALLA, or CALLF instruction is executed MBE and RBE are saved

When hardware interrupt occurs All PSW bits are saved

Restore When RET or RETS instruction is executed MBE and RBE are restored

When RETI instruction is executed All PSW bits are restored

(1) Carry flag (CY)

The carry flag records the occurrence of an overflow or underflow when an operation instruction with carry

(ADDC or SUBC) is executed.

The carry flag also functions as a bit accumulator and can store the result of a Boolean operation performed

between a specified bit address and data memory.

The carry flag is manipulated by using a dedicated instruction and is independent of the other PSW bits.

The carry flag becomes undefined when the RESET signal is asserted.

CHAPTER 4 INTERNAL CPU FUNCTION

56

Table 4-4 Carry Flag Manipulation Instruction

Instruction (Mnemonic) Operation and Processing of Carry Flag

Carry flag manipulation SET1 CY Sets CY to 1

instruction CLR1 CY Clears CY to 0

NOT1 CY Inverts content of CY

SKT CY Skips if content of CY is 1

Bit transfer instruction MOV1 mem*.bit, CY Transfers content of CY to specified bit

MOV1 CY, mem*.bit Transfers content of specified bit to CY

Bit Boolean instruction AND1 CY, mem*.bit Takes ANDs, ORs, or XORs content of specified bit

OR1 CY, mem*.bit with content of CY and sets result to CY

XOR1 CY, mem*.bit

Interrupt service At interrupt execution Saved to stack memory in parallel with other PSW

bits in 8-bit units

RETI Restored from stack memory with other PSW bits

Remark mem*.bit indicates the following three bit manipulation addressing modes:

• fmem.bit

• pmem.@L

• @H+mem.bit

Example To AND bit 3 at address 3FH with P33 and output result to P60

MOV H, #3H ; Sets higher 4 bits of address to H register

MOV1 CY, @H+0FH.3 ; CY ← bit 3 of 3FH

AND1 CY, PORT3.3 ; CY ← CY P33

MOV1 PORT6.0, CY ; P60 ← CY

(2) Skip flags (SK2, SK1, and SK0)

The skip flags record the skip status, and are automatically set or reset when the CPU executes an instruction.

These flags cannot be manipulated directly by the user as operands.

- -

CHAPTER 4 INTERNAL CPU FUNCTION

57

(3) Interrupt status flags (IST1 and IST0)

The interrupt status flags record the status of the processing under execution (for details, refer to Table 6-3 IST,

IST0, and Interrupt Service).

Table 4-5 Contents of Interrupt Status Flags

IST1 IST0 Status of Processing being Executed Processing and Interrupt Control

0 0 Status 0 Normal program is being executed.
All interrupts can be acknowledged

0 1 Status 1 Interrupt with lower or higher priority is serviced.
Only an interrupt with higher priority can be acknowledged

1 0 Status 2 Interrupt with higher priority is serviced.
All interrupts are disabled from being acknowledged

1 1 — Setting prohibited

The interrupt priority control circuit (refer to Fig. 6-1 Block Diagram of Interrupt Control Circuit) identifies the

contents of these flags and controls the nesting of interrupts.

The contents of IST1 and 0 are saved to the stack along with the other bits of PSW when an interrupt is

acknowledged, and the status is automatically updated by one. When the RETI instruction is executed, the values

before the interrupt was acknowledged are restored to the interrupt status flags.

These flags can be manipulated by using a memory manipulation instruction, and the processing status under

execution can be changed by program.

Caution To manipulate these flags, be sure to execute the DI instruction to disable the interrupts before

manipulation. After manipulation, execute the EI instruction to enable the interrupts.

(4) Memory bank enable flag (MBE)

This flag specifies the address information generation mode of the higher 4 bits of the 12 bits of a data memory

address.

MBE can be set or reset at any time by using a bit manipulation instruction, regardless of the setting of the

memory bank.

When this flag is set to “1”, the data memory address space is expanded, and the entire data memory space

can be addressed.

When MBE is reset to “0”, the data memory address space is fixed, regardless of MBS (refer to Fig. 3-2

Configuration of Data Memory and Addressing Ranges of Respective Addressing Modes).

When the RESET signal is asserted, the content of bit 7 of program memory address 0 is set. Also, MBE

is automatically initialized.

When a vectored interrupt is serviced, the bit 7 of the corresponding vector address table is set. Also, the

status of MBE when the interrupt is serviced is automatically set.

Usually, MBE is reset to 0 for interrupt service, and the static RAM in memory bank 0 is used.

CHAPTER 4 INTERNAL CPU FUNCTION

58

(5) Register bank enable flag (RBE)

This flag specifies whether the register bank of the general-purpose registers is expanded or not.

RBE can be set or reset at any time by using a bit manipulation instruction, regardless of the setting of the

memory bank.

When this flag is set to “1”, one of four general-purpose register banks 0 to 3 can be selected depending on

the contents of the register bank select register (RBS).

When RBE is reset to “0”, register bank 0 is always selected, regardless of the contents of the register bank

select register (RBS).

When the RESET signal is asserted, the content of bit 6 of program memory address 0 is set to RBE, and

RBE is automatically initialized.

When a vectored interrupt occurs, the content of bit 6 of the corresponding vector address table is set to RBE.

Also, the status of RBE when the interrupt is serviced is automatically set. Usually, RBE is reset to 0 during

interrupt service. Register bank 0 is selected for 4-bit processing, and register banks 0 and 1 are selected

for 8-bit processing.

CHAPTER 4 INTERNAL CPU FUNCTION

59

4.9 Bank Select Register (BS)

The bank select register (BS) consists of a register bank select register (RBS) and a memory bank select register

(MBS) which specify the register bank and the memory bank to be used, respectively.

RBS and MBS are set by the SEL RBn and SEL MBn instructions, respectively.

BS can be saved to or restored from the stack area in 8-bit units by the PUSH BS or POP BS instruction.

Fig. 4-14 Configuration of Bank Select Registe

RBS0RBS100MBS0MBS1MBS2MBS3

F82HF83H Symbol

BS

Address

F82H

(1) Memory bank select register (MBS)

The memory bank select register is a 4-bit register that records the higher 4 bits of a 12-bit data memory

address. This register specifies the memory bank to be accessed. With the µPD754202, however, only banks

0 and 15 can be specified.

MBS is set by the SEL MBn instruction (n = 0 or 15).

The address range specified by MBE and MBS is as shown in Fig. 3-2.

When the RESET signal is asserted, MBS is initialized to “0”.

Table 4-6 MBE, MBS, and Memory Bank Selected

MBE MBS Memory Bank

3 2 1 0

0 × × × × Fixed to memory bank 0

1 0 0 0 0 Selects memory bank 0

1 1 1 1 Selects memory bank 15

Other than above Setting prohibited

× = don’t care

CHAPTER 4 INTERNAL CPU FUNCTION

60

RBE Register Bank

Fixed to 0

(2) Register bank select register (RBS)

The register bank select register specifies a register bank to be used as general-purpose registers. It can

select bank 0 to 3.

RBS is set by the SEL RBn instruction (n = 0-3).

When the RESET signal is asserted, RBS is initialized to “0”.

Table 4-7 RBE, RBS, and Register Bank Selected

RBS

3 2 1 0

0 0 0 × × Fixed to bank 0

1 0 0 0 0 Selects bank 0

0 1 Selects bank 1

1 0 Selects bank 2

1 1 Selects bank 3

× = don’t care

61

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

5.1 Digital I/O Port

The µPD754202 uses memory mapped I/O, and all the I/O ports are mapped to the data memory space.

Fig. 5-1 Data Memory Address of Digital Port

FF0H

FF1H

FF2H

FF3H

FF4H

FF5H

FF6H

FF7H

FF8H

P33

P63

P73

–

Address 3

P32

P62

P72

–

2

P31

P61

P71

–

1

P30

P60

P70

P80

0

PORT3

PORT6

PORT7

PORT8

—

—

—

—

—

Table 5-2 lists the instructions that manipulate the I/O ports. Ports 3 and 6 can be manipulated in 4-I/O and

1-bits. They are used for various control operations.

Examples 1. To test the status of P73 and outputs different values to port 3 depending on the result

SKT PORT7.3 ; Skips if bit 3 of port 7 is 1

MOV XA, #8H ; XA ← 8H

MOV XA, #4H ; XA ← 4H

SEL MB15 ; or CLR1 MBE

OUT PORT3, A ; Port 3 ← A

2. SET1 PORT6.@L ; Sets the bits of port 6 specified by the L register to “1”

String effect

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

62

5.1.1 Types, features, and configurations of digital I/O ports

Table 5-1 shows the types of digital I/O ports.

Figs. 5-2 through 5-7 show the configuration of each port.

Table 5-1 Types and Features of Digital Ports

Port (symbol) Function Operation and Features Remarks

PORT3 4-bit I/O Can be set to input or output mode in 1-bit unit. Also used for PTO0-PTO2

pins.

PORT6 Also used for INT0 pins.

PORT7 4-bit input 4-bit input only port Also used for KR4-KR7 pins.

On-chip pull-up resistor can be specified by mask option

bit-wise.

PORT8 1-bit I/O Can be set to input or output mode in 1-bit unit. –

P61 is shared with an external vectored interrupt input pin and can select a noise rejection circuit (for details, refer

to 6.3 Hardware Controlling Interrupt Function).

When the RESET signal is asserted, the output latches of ports 3, 6, and 8 are cleared to 0, the output buffers

are turned off, and the ports are set in the input mode.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

63

Fig. 5-2 P3n Configuration (n = 0 to 2)

Input buffer

M
P

X

Output latch

PM3n

PTOn

Output buffer

Input buffer

POGA bit 3
VDD

Pull-up resistor

P-ch

P3n/PTOn

In
te

rn
al

 b
us

Fig. 5-3 P33 Configuration

Input buffer

M
P

X

Output latch

PM33

Output buffer

Input buffer

POGA bit 3
VDD

Pull-up resistor

P-ch

P33

In
te

rn
al

 b
us

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

64

Fig. 5-4 P6n Configuration (n = 0, 2, 3)

Input buffer

M
P

X

Output latch

PM6n

Output buffer

POGA bit 6 VDD

Pull-up resistor

P-ch

P6n

Input buffer having
hysteresis characteristic

In
te

rn
al

 b
us

Fig. 5-5 P61 Configuration

Internal bus

Output latch

PM61

Output buffer

POGA bit 6 VDD

Pull-up resistor

P-ch

P61/INT0

Input buffer having
hysteresis characteristic

INT0

In
te

rn
al

 b
us

M
P

X

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

65

Fig. 5-6 P7n Configuration (n = 0-3)

Input buffer

Output latch

PM8

Output buffer

POGB bit 0
VDD

Pull-up resistor

P-ch

P80

Port mode register group C bit 0

In
te

rn
al

 b
us

M
P

X

Input buffer having
hysteresis characerstics

Fig. 5-7 P80 Configuration

One-shot pulse generation circuit

Key return reset

VDD

Pull-up resistor
 (mask option)

P70/KR4

P71/KR5

P72/KR6

P73/KR7

Interrupt control

Falling edge detection circuit
In

te
na

l
bu

s

Input buffer

Input buffer having
hysteresis
characteristics

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

66

5.1.2 Setting I/O mode

The input or output mode of each I/O port is set by the corresponding port mode register as shown in Fig. 5-8.

Ports 3 and 6 can be set in the input or output mode in 1-bit units by using port mode register group A (PMGA). Port

8 is set by using port mode register group C (PMGC) in the input or output mode.

Each port is set in the input mode when the corresponding port mode register bit is “0” and in the output mode

when the corresponding register bit is “1”.

When a port is set in the output mode by the corresponding port mode register, the contents of the output latch

are output to the output pin(s). Before setting the output mode, therefore, the necessary value must be written to

the output latch.

Port mode register groups A and C are set by using an 8-bit memory manipulation instruction.

When the RESET signal is asserted, all the bits of each port mode register are cleared to 0, the output buffer is

turned off, and the corresponding port is set in the input mode.

Example To use P30, 31, 62, and 63 as input pins and P32, 33, 60, and 61 as output pins

CLR1 MBE ; or SEL MB15

MOV XA, #3CH

MOV PMGA, XA

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

67

Fig. 5-8 Format of Each Port Mode Register

Specification

0 Input mode (output buffer off)

1 Output mode (output buffer on)

Port mode register group A

7 6 5 4 3 2 1 0

PM30PM31PM33 PM32PM60PM61PM62PM63

Address

PMGAFE8H

Symbol

Sets P30 in input or output mode

Sets P31 in input or output mode

Sets P32 in input or output mode

Sets P33 in input or output mode

Sets P60 in input or output mode

Sets P61 in input or output mode

Sets P62 in input or output mode

Sets P63 in input or output mode

Port mode register group C

7 6 5 4 3 2 1 0

PM8–– –––––

Address

PMGCFEEH

Symbol

Sets port 8 (P80) in input or output mode

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

68

5.1.3 Digital I/O port manipulation instruction

Because all the I/O ports of the µPD754202 are mapped to the data memory space, they can be manipulated by

using data memory manipulation instructions. Table 5-2 shows these data memory manipulation instructions which

are considered to be especially useful for manipulating the I/O pins and their range of applications.

(1) Bit manipulation instruction

Because the specific address bit direct addressing (fmem.bit) and specific address bit register indirect

addressing (pmem.@L) are applicable to digital I/O ports 3, 6, and 8, the bits of these ports can be manipulated

regardless of the specifications by MBE and MBS.

Example To OR P30 and P61 and set P80 in output mode

MOV1 CY, PORT3.0 ; CY ← P30

OR1 CY, PORT6.1 ; CY ← CY P61

MOV1 PORT8.0, CY ; P80 ← CY

(2) 4-bit manipulation instruction

In addition to the IN and OUT instructions, all the 4-bit memory manipulation instructions such as MOV, XCH,

ADDS, and INCS can be used to manipulate the ports in 4-bit units. Before executing these instructions,

however, memory bank 15 must be selected.

Examples 1. To output the contents of the accumulator to port 3

SET1 MBE

SEL MB15 ; or CLR1 MBE

OUT PORT3, A

2. To add the value of the accumulator to the data output to port 6

SET1 MBE

SEL MB15

MOV HL, #PORT6

ADDS A, @HL ; A ← A+PORT6

NOP

MOV @HL, A ; PORT6 ← A

3. To test whether the data of port 3 is greater than the value of the accumulator

SET1 MBE

SEL MB15

MOV HL, #PORT3

SUBS A, @HL ; A<PORT3

BR NO ; NO

; YES

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

69

Table 5-2 I/O Pin Manipulation Instructions

PORT PORT3 PORT6 PORT7 PORT8

Instruction

IN A, PORTnNote 1

IN XA, PORTnNote 1 –

OUT PORTn, ANote 1 –

OUT PORTn, XANote 1 –

MOV A, PORTnNote 1

MOV XA, PORTnNote 1 –

MOV PORTn, ANote 1

MOV PORTn, XANote 1 –

XCH A, PORTnNote 1

XCH XA, PORTnNote 1 –

MOV1 CY, PORTn. bit

MOV1 CY, PORTn. @LNote 2

MOV1 PORTn. bit, CY –

MOV1 PORTn. @L, CYNote 2 –

INCS PORTnNote 1

SET1 PORTn. bit

SET1 PORTn. @LNote 2

CLR1 PORTn. bit

CLR1 PORTn. @LNote 2

SKT PORTn. bit

SKT PORTn. @LNote 2

SKF PORTn. bit

SKTCLR PORTn. bit

SKTCLR PORTn. @LNote 2

SKF PORTn. @LNote 2

AND1 CY, PORTn. bit

AND1 CY, PORTn. @LNote 2

OR1 CY, PORTn. bit

OR1 CY, PORTn. @LNote 2

XOR1 CY, PORTn. bit

XOR1 CY, PORTn. @LNote 2

Notes 1. Must be MBE = 0 or (MBE = 1, MBS = 15) before execution.

2. The lower 2 bits and the bit addresses of the address must be indirectly specified by the L register.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

70

5.1.4 Operation of digital I/O port

The operations of each port and port pin when a data memory manipulation instruction is executed to manipulate

a digital I/O port differ depending on whether the port is set in the input or output mode (refer to Table 5-3). This

is because, as can be seen from the configuration of the I/O port, the data of each pin is loaded to the internal bus

in the input mode, and the data of the output latch is loaded to the internal bus in the output mode.

(1) Operation in input mode

When a test instruction such as SKT, a bit input instruction such as MOV1, or an instruction that loads port

data to the internal bus in 4-bit units, such as IN, MOV, operation, or comparison instruction, is executed, the

data of each pin is manipulated.

When an instruction that transfers the contents of the accumulator in 4-bit units, such as OUT or MOV, is

executed, the data of the accumulator is latched to the output latch. The output buffer remains off.

When the XCH instruction is executed, the data of each pin is input to the accumulator, and the data of the

accumulator is latched to the output latch. The output buffer remains off.

When the INCS instruction is executed, the data (4 bits) of each pin incremented by one (+1) is latched to

the output latch. The output buffer remains off.

When an instruction that rewrites the data memory contents in 1-bit units, such as SET1, CLR1, MOV1, or

SKTCLR, is executed, the contents of the output latch of the specified bit can be rewritten as specified by the

instruction, but the contents of the output latches of the other bits are undefined.

(2) Operation in output mode

When a test instruction, bit input instruction, or an instruction in 4-bit units that loads port data to the internal

bus is executed, the contents of the output latch are manipulated.

When an instruction that transfers the contents of the accumulator in 4-bit units is executed, the data of the

output latch is rewritten and at the same time output from the port pins.

When the XCH instruction is executed, the contents of the output latch are transferred to the accumulator.

The contents of the accumulator are latched to the output latches of the specified port and output from the

port pins.

When the INCS instruction is executed, the contents of the output latches of the specified port are incremented

by 1 and output from the port pins.

When a bit output instruction is executed, the specified bit of the output latch is rewritten and output from the

pin.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

71

Table 5-3 Operation When I/O Port Is Manipulated

Operation of Port and Pin

Input mode Output mode

SKT <1> Tests pin data Test output latch data

SKF <1>

MOV1 CY, <1> Transfers pin data to CY Transfers output latch data to CY

AND1 CY, <1> Performs operation between pin data and CY Performs operation between output latch data

OR1 CY, <1> and CY

XOR1 CY, <1>

IN A, PORTn Transfers pin data to accumulator Transfers output latch data to accumulator

MOV A, PORTn

MOV A, @HL

MOV XA, @HL

ADDS A, @HL Performs operation between pin data and Performs operation between output latch data

ADDC A, @HL accumulator and accumulator

SUBS A, @HL

SUBC A, @HL

AND A, @HL

OR A, @HL

XOR A, @HL

SKE A, @HL Compares pin data with accumulator Compares output latch data with accumulator

SKE XA, @HL

OUT PORTn, A Transfers accumulator data to output latch Transfers accumulator data to output latch and

MOV PORTn, A (output buffer remains off) outputs data from pins

MOV @HL, A

MOV @HL, XA

XCH A, PORTn Transfers pin data to accumulator and accumulator Exchanges data between output latch and

XCH A, @HL data to output latch (output buffer remains off) accumulator

XCH XA, @HL

INCS PORT Increments pin data by 1 and latches it to output Increments output latch contents by 1

INCS @HL latch

SET1 <1> Rewrites output latch contents of specified bit as Changes status of output pin as specified by

CLR1 <1> specified by instruction. However, output latch instruction

MOV1 <1> , CY contents of other bits are undefined

SKTCLR <1>

Remark <1> : Indicates two addressing modes: PORTn, bit and PORTn.@L.

Instruction Executed

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

72

5.1.5 Connecting pull-up resistor

Each port pin of the µPD754202 can be connected with a pull-up resistor. Some pins can be connected with a

pull-up resistor via software and the others can be connected by mask option.

Table 5-4 shows how to specify the connection of the pull-up resistor to each port pin. The pull-up resistor is

connected via software in the format shown in Fig. 5-9.

The pull-up resistor can be connected only to the pins of ports 3, 6, and 8 in the input mode. When the pins are

set in the output mode, the pull-up resistor cannot be connected regardless of the setting of POGA, POGB.

Table 5-4 Specifying Connection of Pull-up Resistor

Port (Pin Name) Specifying Connection of Pull-up Resistor Specified Bit

Port 3 (P30-P33) Connection of pull-up resistor specified in 4-bit POGA.3

Port 6 (P60-P63) units via software POGA.6

Port 7 (P70-P73) Connection of pull-up resistor specified in 1-bit —
unit by mask option

Port 8 (P80-P83) Connection of pull-up resistor specified in 1-bit POGB.0
unit via software

Fig. 5-9 Format of Pull-up Resistor Specification Register

Specification

0 Does not connect pull-up resistor

1 Connects pull-up resistor

Pull-up resistor specification register group A

7 6 5 4 3 2 1 0

––PO3 –––PO6–

Address

POGAFDCH

Symbol

Port 3 (P30-P33)

Port 6 (P60-P63)

Pull-up resistor specification register group B

7 6 5 4 3 2 1 0

PO8–– –––––

Address

POGBFDEH

Symbol

Port 8 (P80)

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

73

5.1.6 I/O timing of digital I/O port

Fig. 5-10 shows the timing at which data is output to the output latch and the timing at which the pin data or the

data of the output latch is loaded to the internal bus.

Fig. 5-11 shows the ON timing when an on-chip pull-up resistor connection is specified via software.

Fig. 5-10 I/O Timing of Digital I/O Port

(a) When data is loaded by 1-machine cycle instruction

Instruction
execution

Manipulation
instruction

1 machine cycle

Input timing

Φ0 Φ1 Φ2 Φ3

(b) When data is loaded by 2-machine cycle instruction

Instruction
execution

Input timing

2 machine cycles

Manipulation instruction

Φ0 Φ1 Φ2 Φ3

(c) When data is latched by 1-machine cycle instruction

Instruction
execution

Manipulation
instruction

Φ3 Φ0 Φ1

Output latch
(output pin)

(d) When data is latched by 2-machine cycle instruction

Instruction
execution

Φ0 Φ1

Output latch
(output pin)

Manipulation instruction

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

74

Fig. 5-11 ON Timing of Internal Pull-up Resistor Connected via Software

Instruction
execution

Pull-up
resistor
specification
register

Internal pull-up resistor setting instruction

2 machine cycles

Φ0 Φ1

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

75

5.2 Clock Generation Circuit

The clock generation circuit supplies various clocks to the CPU and peripheral hardware units and controls the

operation mode of the CPU.

5.2.1 Configuration of clock generation circuit

Fig. 5-12 shows the configuration of the clock generation circuit.

Fig. 5-12 Clock Generator Block Diagram

X1

X2

System
clock

oscillator

Oscillation stops

1/2 1/4 1/16

fX

Divider

1/4 Φ

HALT F/F

S

R Q

S

R

Q

STOP F/F

PCC0

PCC1

PCC2

PCC3

PCC2,
PCC3
clear

HALTNote

STOPNote

Wait release signal from BT

PCC

4

· Basic interval timer (BT)
· Timer counter
· INT0 noise eliminator

1/1 to 1/4096

· CPU
· INT0 noise
 eliminator

Divider

S
el

ec
to

r

In
te

rn
al

 b
us

Reset signal
(selectable by mask option)
Standby release signal from
interrupt control circuit

Note Instruction execution

Remarks 1. fX: System clock frequency

2. Φ = CPU clock

3. PCC: Processor Clock Control Register

4. One clock cycle (tCY) of the CPU clock is equal to one machine cycle of the instruction.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

76

5.2.2 Function and operation of clock generation circuit

The clock generation circuit generates the following types of clocks and controls the operation mode of the CPU

in the standby mode:

• System clock fX

• CPU clock Φ
• Clock to peripheral hardware

The operation of the clock generation circuit is determined by the processor clock control register (PCC) as follows:

(a) When the RESET signal is asserted, the slowest mode of the system clockNote 1 is selected (PCC = 0).

(b) The CPU clock can be changed in four stepsNote 2 by PCC.

(c) Two standby modes, STOP and HALT, can be used.

(d) The system clock is divided and supplied to the peripheral hardware units.

Notes 1. 15.3 µs at 4.19 MHz, 10.7 µs at 6.0 MHz

2. 0.95, 1.91, 3.81, 15.3 µs at 4.19 MHz, 0.67, 1.33, 6.67, 10.7 µs at 6.0 MHz

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

77

(1) Processor clock control register (PCC)

PCC is a 4-bit register that selects the CPU clock Φ with the lower 2 bits and controls the CPU operation mode

with the higher 2 bits (refer to Fig. 5-13).

When either bit 3 or 2 of this register is set to “1”, the standby mode is set. When the standby mode has been

released by the standby release signal, both the bits are automatically cleared and the normal operation mode

is set (for details, refer to CHAPTER 7 STANDBY FUNCTION).

The lower 2 bits of PCC are set by a 4-bit memory manipulation instruction (clear the higher 2 bits to “0”).

Bits 3 and 2 are set to “1” by the STOP and HALT instructions, respectively.

The STOP and HALT instructions can always be executed regardless of the contents of MBE.

Examples 1. To set the fastest mode of machine cycleNote 1

SEL MB15

MOV A, #0011B

MOV PCC, A

2. To set the machine cycle to 1.33 µs (fX = 6.0 MHz)Note 2

SEL MB15

MOV A, #0010B

MOV PCC, A

3. To set STOP mode (be sure to write NOP instruction after STOP and HALT instructions)

STOP

NOP

PCC is cleared to “0” when the RESET signal is asserted.

Notes 1. 0.67 µs (fX = 6.0 MHz), or 0.95 µs (fX = 4.19 MHz)

2. 1.91 µs (fX = 4.19 MHz)

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

78

Fig. 5-13 Processor Clock Control Register Format

PCC3

3 2 1 0

FB3H

Address

PCC

Symbol

PCC2 PCC1 PCC0

CPU operating mode control bits

PCC3 PCC2 Operating mode

0 0 Normal operating mode

0 1 HALT mode

1 0 STOP mode

1 1 Setting prohibited

CPU clock selection bits

(fX = 6.0 MHz)

PCC1 PCC0 CPU clock frequency 1 machine cycle

0 0 Φ = fX/64 (93.8 kHz) 10.7 µs

0 1 Φ = fX/16 (375 kHz) 2.67 µs

1 0 Φ = fX/8 (750 kHz) 1.33 µs

1 1 Φ = fX/4 (1.5 MHz) 0.67 µs

(fX = 4.19 MHz)

PCC1 PCC0 CPU clock frequency 1 machine cycle

0 0 Φ = fX/64 (65.5 kHz) 15.3 µs

0 1 Φ = fX/16 (262 kHz) 3.81 µs

1 0 Φ = fX/8 (524 kHz) 1.91 µs

1 1 Φ = fX/4 (1.05 MHz) 0.95 µs

Remark fX: System clock oscillation frequency

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

79

(2) System clock oscillator

The system clock oscillator oscillates by means of crystal or ceramic resonator connected to the X1 and

X2 pins. (6.0 MHz or 4.19 MHz TYP.)

External clock can also be input.

Fig. 5-14 Crystal/Ceramic Oscillation External Circuit

(i) Crystal/ceramic oscillation (ii) External clock

Cautions 1. When the STOP mode is set, the X2 pin is internally pulled up to V DD with a resistor

of 50 k Ω (TYP.).

2. Wire the portion enclosed by the dotted line in Fig. 5-14 as follows to prevent adverse

influence by wiring capacitance when using the system clock oscillation circuits.

• Keep the wiring length as short as possible.

• Do not cross the wiring with any other signal lines.

• Do not route the wiring in the vicinity of any line through which a high alternating

current is flowing.

• Always keep the potential at the connecting point of the capacitor of the oscillation

circuit at the same level as V SS.

Do not connect the wiring to a ground pattern through which a high current is

flowing.

• Do not extract signals from the oscillation circuit.

Fig. 5-15 shows incorrect examples of connecting the resonator.

X1

X2
VSS

Crystal or ceramic
resonator

 PD754202µ

X1

X2

External
clock

 PD754202µ

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

80

Fig. 5-15 Incorrect Example of Connecting Resonator (1/2)

(a) Wiring length too long (b) Crossed signal line

µ PD754202

X1 X2 VSS

µ PD754202

X1 X2 VSS

PORTn
(n = 3, 6-8)

(c) High alternating current close to (d) Current flowing through power line of

signal line oscillation circuit

(potential at points A, B, and C changes)

µPD754202

X1 X2 VSS

High
current

µPD754202

X1 X2 VSS

PORTn
(n = 3, 6-8)

VDD

A C

High current

B

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

81

Fig. 5-15 Incorrect Example of Connecting Resonator (2/2)

(e) Signal extracted

(3) Divider circuit

The divider circuit divide the output of the system clock oscillator circuit to create various clock signals.

µ PD754202

X1 X2 VSS

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

82

5.2.3 Setting CPU clock

(1) Time required to select CPU clock

The CPU clock can be selected by using the lower 2 bits of PCC. The processor does not operate with the

selected clock, however, immediately after data has been written to the registers, for the duration of specific

machine cycles. To stop oscillation of the system clock, therefore, execute the STOP instruction after a specific

time has elapsed.

Table 5-5 Maximum Time Required for CPU Clock Switching

Set Value before Switching Set Value after Switching

PCC1 PCC0 PCC1 PCC0 PCC1 PCC0 PCC1 PCC0 PCC1 PCC0

0 0 0 1 1 0 1 1

0 0 1 machine cycle 1 machine cycle 1 machine cycle

0 1 4 machine cycles 4 machine cycles 4 machine cycles

1 0 8 machine cycles 8 machine cycles 8 machine cycles

1 1 16 machine cycles 16 machine cycles 16 machine cycles

Caution The value of f X changes depending on such conditions as the ambient temperature of the

resonators, and variations in load capacitance performance.

Particularly when f X is higher than the nominal value, the machine cycle in the table becomes

bigger than the machine cycle obtained by the nominal value. Therefore, when setting the wait

time required for switching the CPU clock, set it longer than the machine cycle obtained by the

fX nominal value.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

83

(2) CPU clock switching procedure

The switching procedure of CPU clock is explained according to Fig. 5-16.

Fig. 5-16 CPU Clock Switching Example

<1> Wait timeNote 1 to secure the oscillation stabilization time in response to RESET signal generation.

<2> The CPU starts operating at the lowest system clock speedNote 2 .

<3> The PCC is rewritten and the device operates at maximum speed after the elapse of sufficient time

for the VDD pin voltage to increase to a level which allows maximum speed operation.

<4> Interruption of the commercial power is detected by means of interrupt input, etc., and the STOP mode

is entered.

<5> Wait timeNote 3 to secure the oscillation stabilization time after restoration of commercial power is

detected by means of an interrupt, etc., and the device is released from the STOP mode.

<6> Operates normally.

Notes 1. The wait time can be selected by mask option.

Can be selected from 215/fX = 7.81 ms or 217/fX = 31.3 ms at 4.19 MHz, and from 215/fX =

5.46 ms or 217/fX = 21.8 ms at 6.0 MHz.

2. 15.3 µs at 4.19 MHz and 10.7 µs at 6.0 MHz

3. The wait time can be selected from the followings by BTM.

220/fX, 217/fX, 215/fX, 213/fX

CPU clock

<1> Wait Note 1

<5> Wait Note 3

<2> Lowest speed
 of system clock Note 2

<3> 0.67 s <4> STOP mode <6> 0.67 s

Internal reset operation
(fx = 6.0 MHz)

fX fX fX

µ µ

On

Off

Commercial power supply

VDD pin voltage

RESET signal

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

84

5.3 Basic Interval Timer/Watchdog Timer

The µPD754202 has an 8-bit basic interval timer/watchdog timer that has the following functions:

(a) Interval timer operation to generate reference time interrupt

(b) Watchdog timer operation to detect program hang-up and reset CPU

(c) To select and count wait time when standby mode is released

(d) To read count value

5.3.1 Configuration of basic interval timer/watchdog timer

Fig. 5-17 shows the configuration of the basic interval timer/watchdog timer.

Fig. 5-17 Block Diagram of Basic Interval Timer/Watchdog Timer

fx/25

fx/27

fx/29

fx/212

MPX

From clock
generation circuit

BTM3 BTM2 BTM1 BTM0

3

4

Basic interval timer
(8-bit divider circuit)

Internal bus

8

BTM

SET1Note 2 1

WDTM

BT

BT interrupt
request flag

Clear

Wait release signal
when standby
mode is releasedNote 1

Clear

Internal
reset signal

SET1Note 2

Set

Vectored
interrupt
request signalIRQBT

Notes 1. It is possible to select the wait time after the release of standby mode.

Refer to CHAPTER 7 STANDBY FUNCTION and CHAPTER 8 RESET FUNCTION, for details.

2. Execution of the instruction.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

85

5.3.2 Basic interval timer mode register (BTM)

BTM is a 4-bit register that controls the operation of the basic interval timer (BT).

This register is set by a 4-bit memory manipulation instruction.

Bit 3 of BT can be manipulated by a bit manipulation instruction.

Example To set interrupt generation interval of the µPD754202 to 1.37 ms (at 6.0 MHz)Note

SEL MB15 ; or CLR1 MBE

CLR1 WDTM

MOV A, #1111B

MOV BTM,A ; BTM ← 1111B

Note It is 1.95 ms when operating at 4.19 MHz.

When bit 3 of this register is set to “1”, the contents of BT are cleared, and at the same time, the basic interval

timer/watchdog timer interrupt request flag (IRQBT) is cleared (the basic interval timer/watchdog timer is started).

When the RESET signal is asserted, the contents of this register are cleared to “0”, and the generation interval

time of the interrupt request signal is set to the longest value.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

86

Fig. 5-18 Format of Basic Interval Timer Mode Register

3 2 1 0

BTM0BTM1BTM2BTM3

Address

BTMF85H

Symbol

fX = 6.0 MHz

Specifies input clock

fX/212 (1.46 kHz)

0 fX/29 (11.7 kHz)1

1 fX/27 (46.9 kHz)0

1 fX/25 (188 kHz)1

Others Setting prohibited

Interrupt interval time (wait time
when standby mode is released)

fX = 4.19 MHz

Basic interval timer/watchdog timer start control bit

When "1" is written to this bit, the basic interval timer/watchdog timer is started (counter
and interrupt request flag are cleared). When the timer starts operating, this bit is
automatically reset to "0".

1

1

1

0 0 0 220/fX (175 ms)

217/fX (21.8 ms)

215/fX (5.46 ms)

213/fX (1.37 ms)

–

Specifies input clock

fX/212 (1.02 kHz)

0 fX/29 (8.19 kHz)1

1 fX/27 (32.768 kHz)0

1 fX/25 (131 kHz)1

Others Setting prohibited

Interrupt interval time (wait time
when standby mode is released)

1

1

1

0 0 0 220/fX (250 ms)

217/fX (31.3 ms)

215/fX (7.81 ms)

213/fX (1.95 ms)

–

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

87

5.3.3 Watchdog timer enable flag (WDTM)

WDTM is a flag that enables assertion of the reset signal when a overflow occurs.

This flag is set by a bit manipulation instruction. Once this flag has been set, it cannot be cleared by an instruction.

Example To set watchdog timer function

SEL MB15 ; or CLR1 MBE

SET1 WDTM
•
•
•

SET1 BTM.3 ; Sets bit 3 of BTM to “1”

The content of this flag is cleared to 0 when the RESET signal is asserted.

Fig. 5-19 Format of Watchdog Timer Enable Flag (WDTM)

WDTM

0
BT mode
Sets IRQBT when basic interval timer (BT) overflows

Address

F8BH.3

1
WT mode
Asserts internal reset signal when basic interval timer
(BT) overflows

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

88

5.3.4 Operation as basic interval timer

When WDTM is reset to “0”, the interrupt request flag (IRQBT) is set by the overflow of the basic interval timer

(BT), and the basic interval timer/watchdog timer operates as the basic interval timer. BT is always incremented by

the clock supplied by the clock generation circuit and its counting operation cannot be stopped.

Four time intervals at which the interrupt occurs can be selected by BTM (Refer to Fig. 5-18).

By setting bit 3 of BTM to “1”, BT and IRQBT can be cleared (command to start the interval timer).

The count value of BT can be read by using an 8-bit manipulation instruction. No data can be written to BT.

Start the timer operation as follows (<1> and <2> may be performed simultaneously):

<1> Set interval time to BTM.

<2> Set bit 3 of BTM to “1”.

Example To generate interrupt at intervals of 1.37 ms (at 6.0 MHz)Note

SET1 MBE

SEL MB15

MOV A, #1111B

MOV BTM, A ; Sets time and starts

EI ; Enables interrupt

EI IEBT ; Enables BT interrupt

Note It is 1.95 ms when operating at 4.19 MHz.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

89

5.3.5 Operation as watchdog timer

The basic interval timer/watchdog timer operates as a watchdog timer that asserts the internal reset signal when

an overflow occurs in the basic interval timer (BT), if WDTM is set to “1”. However, if the overflow occurs during the

oscillation wait time that elapses after the STOP instruction has been released, the reset signal is not asserted. (Once

WDTM has been set to “1”, it cannot be cleared by any means other than reset.) BT is always incremented by the

clock supplied from the clock generation circuit, and its count operation cannot be stopped.

In the watchdog timer mode, a program hang-up is detected by using the interval time at which BT overflows. As

this interval time, four values can be selected by using bits 2 through 0 of BTM (Refer to Fig. 5-18). Select the interval

time best-suited to detecting any hang-up that may occur in you system. Set an interval time, divide the program

into several modules that can be executed within the set interval time, and execute an instruction that clears BT at

the end of each module. If this instruction that clears BT is not executed within the set interval time (in other words,

if a module of the program is not normally executed, i.e., if a hang-up occurs), BT overflows, the internal reset signal

is asserted, and the program is terminated forcibly. Consequently, asserting of the internal reset signal indicates

occurrence and detection of a program hang-up.

Set the watchdog timer as follows (<1> and <2> may be performed simultaneously):

<1> Set interval time to BTM.

<2> Set bit 3 of BTM to “1”.

<3> Set WDTM to “1”.

<4> After setting <1> through <3> above, set bit 3 of BTM to “1” within the interval time.

Initial setting

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

90

Example To use the µPD754202 as a watchdog timer with a time interval of 5.46 ms (at 6.0 MHz).Note

Divide the program into several modules, each of which is completed within the set time of BTM (5.46

ms), and clear BT at the end of each module. If a hang-up occurs, BT is not cleared within the set

time. As a result, BT overflows, and the internal reset signal is asserted.

Initial setting:
SET1

SEL

MOV

MOV

SET1 . . .

MBE

MB15

A, #1101B

BTM, A

WDTM

; Sets time and starts

; Enables watchdog timer

(After that, set bit 3 of BTM to “1” every 5.46 ms.)

Module 1:
SET1

SEL

SET1

MBE

MB15

BTM.3

Processing completed
within 5.46 ms

Module 2:
SET1

SEL

SET1

MBE

MB15

BTM.3

Processing completed
within 5.46 ms

 . . .

Note It is 7.81 ms when operating at 4.19 MHz.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

91

5.3.6 Other functions

The basic interval timer/watchdog timer has the following functions, regardless of the operations as the basic

interval timer or watchdog timer:

<1> Selects and counts wait time after standby mode has been released

<2> Reads count value

(1) Selecting and counting wait time after STOP mode has been released

When the STOP mode has been released, a wait time elapses during which the operation of the CPU is stopped

until the basic interval timer (BT) overflows, so that oscillation of the system clock becomes stabilized.

The wait time that elapses after the RESET signal has been asserted is fixed by the mask option. When the

STOP mode is released by an interrupt, however, the wait time can be selected by BTM. The wait time in

this case is the same as the interval time shown in Fig. 5-18. Set BTM before setting the STOP mode (for

details, refer to CHAPTER 7 STANDBY FUNCTION).

Example To set a wait time of 5.46 ms that elapses when the STOP mode has been released by an interrupt

(at 6.0 MHz)Note

SET1 MBE

SEL MB15

MOV A, #1101B

MOV BTM, A ; Sets time

STOP ; Sets STOP mode

NOP

Note It is 7.81 ms when operating at 4.19 MHz.

(2) Reading count value

The count value of the basic interval timer (BT) can be read by using an 8-bit manipulation instruction. No

data can be written to the basic interval timer.

Caution To read the count value of BT, execute the read instruction two times to prevent undefined

data from being read while the count value is updated. Compare the two read values. If the

values are similar, take the latter value as the result. If the two values are completely

different, redo from the beginning.

Example To read count value of BT

SET1 MBE

SEL MB15

MOV HL, #BT ; Sets address of BT to HL

LOOP: MOV XA, @HL ; Reads first time

MOV BC, XA

MOV XA, @HL ; Reads second time

SKE XA, BC

BR LOOP

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

92

5.4 Timer Counter

The µPD754202 incorporates three timers. Timer counter has the following functions.

(a) Programmable interval timer operation

(b) Square wave output of any frequency to PTO0-PTO2 pins

(c) Count value read function

The timer can operate in the following four modes as set by the mode register.

Table 5-6 Mode List

Mode
Channel Channel 0 Channel 1 Channel 2 TM11 TM10 TM21 TM20 Refer to

8-bit timer counter mode 0 0 0 0 5.4.2

PWM pulse generator mode × × 0 0 0 1 5.4.3

16-bit timer counter mode × 1 0 1 0 5.4.4

Carrier generator mode × 0 0 1 1 5.4.5

Remark ×: Corresponding function is not available.

5.4.1 Configuration of timer counter

Its configuration is shown in Figs. 5-20 through 5-22.

C
H

A
P

T
E

R
 5 P

E
R

IP
H

E
R

A
L H

A
R

D
W

A
R

E
 F

U
N

C
T

IO
N

93

Fig. 5-20 Block Diagram of Timer Counter (Channel 0)

Note Execution of the instruction

Caution When setting TM0, be sure to set bits 0 and 1 to 0.

– TM06TM05TM04TM03TM02 00

TM0
8

Internal bus

88

Modulo register (8)

MPX
From clock
generation

circuit

SET1Note

TMOD0

8

Comparator (8)

8

Count regjster (8)

T0

CP

Clear

Timer operation starts

TOUT
F/F

Reset

Coinci-
dence

T0 enable
flag

TOE0

P30
output latch

PORT3.0

Port 3
I/O mode

Bit 0 of PMGA

P30/PTO0

Output buffer

INTT0
lRQT0
set signal

IRQT0 c]ear
signal

RESET

fX/24

fX/26

fX/28

fX/210

C
H

A
P

T
E

R
 5 P

E
R

IP
H

E
R

A
L H

A
R

D
W

A
R

E
 F

U
N

C
T

IO
N

94 Fig. 5-21 Block Diagram of Timer Counter (Channel 1)

8

Internal bus

TM16– TM15 TM14 TM13 TM12 TM11 TM10

TM1

Timer counter (channel 2) output

From clock
generation circuit

MPX

Decoder

8

Modulo register (8)

8

TMOD1

Comparator (8)

8

Count register (8)

T1

CP
Clear

Reset

IRQT1 clear
signal

RESET

Selector

INT1
lRQT1
set signal

Timer counter (channel 2) comparator
(in 16-bit timer counter mode)

Timer counter (channel 2) coincidence signal
(in 16-bit timer counter mode)

Timer counter (channel 2)
reload signal

T1 enable
 flag

TOE1

P31
output latch

PORT3.1

Port 2
l/O mode

Bit 1 of PMGA

P31/PTO1

Output buffer

Coincidence

Timer operation starts

16-bit timer counter mode

TOUT
F/F

SET1Note

fX/25

fX/26

fX/28

fX/210

fX/212

Note Execution of the instruction

C
H

A
P

T
E

R
 5 P

E
R

IP
H

E
R

A
L H

A
R

D
W

A
R

E
 F

U
N

C
T

IO
N

95

Fig. 5-22 Block Diagram of Timer Counter (Channel 2)

8

Internal bus

– TM26TM25TM24TM23TM22TM21TM20

From clock
generation circuit MPX

Decoder

8

High-level period setting
modulo register (8)

8

8

Modulo register (8)

8

MPX (8)
8

Comparator (8)

Count register (8)

8

TOUT
F/F

Clear

IRQT2 c]ear signal

INTT2(lRQT2 set signal)

TMOD2H TMOD2

RESET

8

0 – – – TOE2REMCNRZB NRZ

TC2

S
el

ec
to

r

S
el

ec
to

r

P32
output
latch

PORT3.2
Port 3

l/O mode

P32/PTO2

Timer counter
(channel 1) clock input

Bit 2 of PMGA

16-bit timer counter mode

Timer operation starts

Timer counter (channel 1)
coincidence signal
(in 16-bit timer counter mode)

Timer counter
(channel 1) clear signal
(in 16-bit timer
counter mode)

Timer counter (channel 1)
coincidence signal
(in carrier generator mode)

Coincidence

Reset

Re-
load

Overflow

Carrier generator mode

Output buffer

TM2

CP

fX/2
fX/24

fX/26

fX/28

fX/210

fX

SET1Note

Note Execution of the instruction

Caution When setting TC2, be sure to set bit 7 to 0.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

96

(1) Timer counter mode registers (TM0, TM1, TM2)

A timer counter mode register (TMn) is an 8-bit register that controls the corresponding timer counter. Figs.

5-23 through 5-25 show the formats of the various mode registers.

The timer counter mode register is set by an 8-bit memory manipulation instruction.

Bit 3 of this register is a timer start bit and can be manipulated in 1-bit units independently of the other bits.

This bit is automatically reset to “0” when the timer starts operating.

All the bits of the timer counter mode register are cleared to “0” when the RESET signal is asserted.

Examples 1. To start timer in interval timer mode of CP = 5.86 kHz (at 6.0 MHz)Note

SEL MB15 ; or CLR1 MBE

MOV XA, #01001100B

MOV TMn, XA ; TMn ← 4CH

2. To restart timer according to setting of timer counter mode register

SEL MB15 ; or CLR1 MBE

SET1 TMn.3 ; TMn.bit3 ← 1

Note CP = 4.10 kHz when operating at 4.19 MHz.

Remark n = 0-2

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

97

Fig. 5-23 Format of Timer Counter Mode Register (Channel 0)

7 6 5 4 3 2 1 0

fX = 6.0 MHz

0Note0NoteTM03 TM02TM04TM05TM06–

Address

TM0FA0H

Symbol

Count pulse (CP) select bit

TM06 Count pulse (CP)TM05

1 fX/210 (5.86 kHz)0

fX/28 (23.4 kHz)01

11

1 fX/24 (375 kHz)1

Setting prohibited

fX/26 (93.8 kHz)

Others

TM04

0

1

0

1

fX = 4.19 MHz

TM06 Count pulse (CP)TM05

1 fX/210 (4.10 kHz)0

fX/28 (16.4 kHz)01

11

1 fX/24 (262 kHz)1

Setting prohibited

fX/26 (65.5 kHz)

Others

TM04

0

1

0

1

TM03
Clears counter and IRQT0 flag when "1" is written. Starts count operation
if bit 2 is set to "1".

Timer start command bit

Operation mode

TM02

0

1

Stops (count value retained)

Count operation

Count operation

Note When setting TM0, be sure to set bits 0 and 1 to 0.

Caution After a reset, all bits of TM0 become "0", therefore when operating the timer it is necessary to

set the count pulse value first. Moreover, when any value other than the above is written to CP,

the count pulse set becomes 0 and TM0 does not operate as a timer.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

98

Fig. 5-24 Format of Timer Counter Mode Register (Channel 1) (1/2)

7 6 5 4 3 2 1 0

fX = 6.0 MHz

TM10TM11TM13 TM12TM14TM15TM16–

Address

TM1FA8H

Symbol

Count pulse (CP) select bit

TM16 Count pulse (CP)TM15

0 Overflow of timer counter (channel 2)1

fX/25 (188 kHz)10

01

1 fX/210 (5.86 kHz)0

fX/28 (23.4 kHz)

fX/212 (1.46 kHz)

TM14

0

1

0

1

1 1 0

fX/26 (93.8 kHz)1 1 1

fX = 4.19 MHz

TM16 Count pulse (CP)TM15

0 Overflow of timer counter (channel 2)1

fX/25 (131 kHz)10

01

1 fX/210 (4.10 kHz)0

fX/28 (16.4 kHz)

fX/212 (1.02 kHz)

TM14

0

1

0

1

1 1 0

fX/26 (65.5 kHz)1 1 1

Setting prohibitedOthers

Setting prohibitedOthers

TM13
Clears counter and IRQT1 flag when "1" is written. Starts count operation
if bit 2 is set to "1".

Timer start command bit

Operation mode

TM12

0

1

Stops (count value retained)

Count operation

Count operation

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

99

Fig. 5-24 Format of Timer Counter Mode Register (Channel 1) (2/2)

Operation mode select bit

TM11

0

1

8-bit timer counter modeNote

16-bit timer counter mode

ModeTM10

0

0

Others Setting prohibited

Note This mode is used as a carrier generator mode when used in

combination with TM20, TM21 (=11) of timer counter mode

register (channel 2).

Caution After a reset, all bits of TM1 become “0”, therefore when operating the timer it is necessary to

set the count pulse value first. Moreover, when any value setting prohibited is set, the count pulse

set becomes 0 and TM0 does not operate as a timer.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

100

Fig. 5-25 Format of Timer Counter Mode Register (Channel 2) (1/2)

7 6 5 4 3 2 1 0

fX = 6.0 MHz

TM20TM21TM23 TM22TM24TM25TM26–

Address

TM2F90H

Symbol

Count pulse (CP) select bit

TM26 Count pulse (CP)TM25

0 fX/2 (3.0 MHz)1

fX (6.0 MHz)10

01

1 fX/28 (23.4 kHz)0

fX/26 (93.8 kHz)

fX/210 (5.86 kHz)

TM24

0

1

0

1

1 1 0

fX/24 (375 kHz)1 1 1

fX = 4.19 MHz

TM26 Count pulse (CP)TM25

0 fX/2 (2.10 MHz)1

fX (4.19 MHz)10

01

1 fX/28 (16.4 kHz)0

fX/26 (65.5 kHz)

fX/210 (4.10 kHz)

TM24

0

1

0

1

1 1 0

fX/24 (262 kHz)1 1 1

Setting prohibitedOthers

Setting prohibitedOthers

TM23
Clears counter and IRQT2 flag when "1" is written. Starts count operation
if bit 2 is set to "1".

Timer start command bit

Operation mode

TM22

0

1

Stops (count value retained)

Count operation

Count operation

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

101

Fig. 5-25 Format of Timer Counter Mode Register (Channel 2) (2/2)

Operation mode select bit

TM21

0

0

8-bit timer counter mode

PWM pulse generator mode

ModeTM20

0

1

1

1

16-bit timer counter mode

Carrier generator mode

0

1

Caution After a reset, all bits of TM2 become “0”, therefore when operating the timer it is necessary to

set the count pulse value first. Moreover, when any value setting prohibited is set, the count pulse

set becomes 0 and TM0 does not operate as a timer.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

102

(2) Timer counter output enable flags (TOE0, TOE1)

Timer counter output enable flags TOE0 and TOE1 enable or disable output to the PTO0 and PTO1 pins in

the timer out F/F (TOUT F/F) status.

The timer out F/F is inverted by a coincidence signal from the comparator. When bit 3 (timer start command

bit) of timer counter mode register TM0 or TM1 is set to “1”, the timer out F/F is cleared to “0”.

TOE0, TOE1, and timer out F/F are cleared to “0” when the RESET signal is asserted.

Fig. 5-26 Format of Timer Counter Output Enable Flag

TOE0

Address

FA2H Channel 0

TOE1FAAH Channel 1

0 Disabled

1 Enabled

Timer counter output enable flag (W)

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

103

(3) Timer counter control register (TC2)

The timer counter control register (TC2) is an 8-bit register that controls the timer counter (channel 2). Fig.

5-27 shows the format of this register.

This register controls timer output enable carrier generator mode used in combination with the timer counter

(channel 1).

TC2 is set by an 8- or 4-bit manipulation instruction and bit manipulation instruction.

All the bits of TC2 are cleared to 0 when the internal reset signal is asserted.

Fig. 5-27 Format of Timer Counter Control Register

7 6 5 4 3 2 1 0

NRZNRZBTOE2 REMC–––0Note

Address

TC2F92H

Symbol

No return zero flag

NRZ

0

1

Outputs low level to PTO2 pin

Outputs carrier pulse to PTO2 pin

No return zero data

Timer counter output enable flag

TOE2

0

1

Disabled (low level output)

Enabled

Timer output

Remote controller output control flag

REMC

0

1

Outputs carrier pulse to PTO2 pin when NRZ = 1

Outputs high level to PTO2 pin when NRZ = 1

Remote controller output

No return zero buffer flag

NRZB
Area to store no return zero data to be output next.
Transferred to NRZ when interrupt of timer counter (channel 1)
occurs

Note When setting TC2, be sure to set bit 7 to 0.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

104

5.4.2 Operation in 8-bit timer counter mode

In this mode, a timer counter is used as an 8-bit timer counter. In this case, the timer counter operates as an 8-

bit programmable interval timer or counter.

(1) Register setting

In the 8-bit timer counter mode, the following four registers are used:

• Timer counter mode register (TMn)

• Timer counter control register (TC2)Note

• Timer counter count register (Tn)

• Timer counter modulo register (TMODn)

Note Channels 0 and 1 of the timer counter use the timer counter output enable flags (TOE0 and TOE1).

(a) Timer counter mode register (TMn)

In the 8-bit timer counter mode, set TMn as shown in Fig. 5-28 (for the format of TMn, refer to Figs. 5-

23 through 5-25).

TMn is manipulated by an 8-bit manipulation instruction. Bit 3 is a timer start command bit which can

be manipulated in 1-bit units. This bit is automatically cleared to 0 when the timer starts operating.

TMn is cleared to 00H when the internal reset signal is asserted.

Remark n = 0-2

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

105

Fig. 5-28 Setting of Timer Counter Mode Register (1/3)

(a) Timer counter (channel 0)

7 6 5 4 3 2 1 0

Count pulse (CP) select bit

0Note0NoteTM03 TM02TM04TM05TM06–

Address

TM0FA0H

Symbol

TM06 Count pulse (CP)TM05

1 fX/2100

fX/2801

11

1 fX/241

Setting prohibited

fX/26

Others

TM04

0

1

0

1

TM03
Clears counter and IRQT0 flag when "1" is written. Starts count operation
if bit 2 is set to "1".

Timer start command bit

Operation mode

TM02

0

1

Stops (count value retained)

Count operation

Count operation

Note When setting TM0 be sure to set bits 0 and 1 to 0.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

106

Fig. 5-28 Setting of Timer Counter Mode Register (2/3)

(b) Timer counter (channel 1)

7 6 5 4 3 2 1 0

TM10TM11TM13 TM12TM14TM15TM16–

Address

TM1FA8H

Symbol

TM13
Clears counter and IRQT1 flag when "1" is written. Starts count operation
if bit 2 is set to "1".

Timer start command bit

Operation mode

TM12

0

1

Stops (count value retained)

Count operation

Count operation

Count pulse (CP) select bit

TM16 Count pulse (CP)TM15

0 Overflow of timer counter (channel 2)1

fX/2510

01

1 fX/2100

fX/28

fX/212

TM14

0

1

0

1

1 1 0

fX/261 1 1

Operation mode select bit

TM11

0 8-bit timer counter mode

ModeTM10

0

Setting prohibitedOthers

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

107

Fig. 5-28 Setting of Timer Counter Mode Register (3/3)

(c) Timer counter (channel 2)

7 6 5 4 3 2 1 0

TM20TM21TM23 TM22TM24TM25TM26–

Address

TM2F90H

Symbol

TM23
Clears counter and IRQT2 flag when "1" is written. Starts count operation
if bit 2 is set to "1".

Timer start command bit

Operation mode

TM22

0

1

Stops (count value retained)

Count operation

Count operation

Count pulse (CP) select bit

TM26 Count pulse (CP)TM25

0 fX/21

fX10

01

1 fX/280

fX/26

fX/210

TM24

0

1

0

1

1 1 0

fX/241 1 1

Operation mode select bit

TM21

0 8-bit timer counter mode

ModeTM20

0

Setting prohibitedOthers

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

108

(b) Timer counter control register (TC2)

In the 8-bit timer counter mode, set TC2 as shown in Fig. 5-29 (for the format of TC2, refer to Fig. 5-27

Format of Timer Counter Control Register).

TC2 is manipulated by an 8- or 4-bit, or bit manipulation instruction.

The value of TC2 is cleared to 00H when the internal reset signal is asserted.

The flags shown in a solid line in the figure below are used in the 8-bit timer counter mode.

Do not use the flags shown by a dotted line in the figure below in the 8-bit timer counter mode (clear these

flags to 0).

Fig. 5-29 Setting of Timer Counter Control Register

7 6 5 4 3 2 1 0

NRZNRZBTOE2 REMC–––0 TC2

Symbol

Timer counter output enable flag

TOE2

0

1

Disabled (low level output)

Enabled

Timer output

Fig. 5-30 Setting of Timer Counter Output Enable Flag

TOE0

Address

FA2H Channel 0

TOE1FAAH Channel 1

0 Disabled (low level output)

1 Enabled

Timer counter output enable flag (W)

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

109

(2) Time setting of timer counter

[Timer set time] (cycle) is calculated by dividing the [contents of modulo register + 1] by the [count pulse (CP)

frequency] selected by the mode register.

T (sec) = = (n+1) (resolution)

where,

T (sec) : timer set time (seconds)

fCP (Hz) : CP frequency (Hz)

n : contents of modulo register (n ≠ 0)

Once the timer has been set, interrupt request flag IRQTn is set at the set time interval of the timer.

Table 5-7 shows the resolution of each count pulse of the timer counter and the longest set time (time when FFH

is set to the modulo register).

Table 5-7 Resolution and Longest Set Time (In 8-bit Timer Counter Mode) (1/2)

(TM10 = 0, TM11 = 0, TM20 = 0, TM21 = 0)

(a) 8-bit timer counter (channel 0)

Mode Register At 6.0-MHz Operation At 4.19-MHz Operation

TM06 TM05 TM04 Resolution Longest set time Resolution Longest set time

1 0 0 171 µs 43.7 ms 244 µs 62.5 ms

1 0 1 42.7 µs 10.9 ms 61.0 µs 15.6 ms

1 1 0 10.7 µs 2.73 ms 15.3 µs 3.91 ms

1 1 1 2.67 µs 683 µs 3.81 µs 977 µs

(b) 8-bit timer counter (channel 1)

Mode Register At 6.0-MHz Operation At 4.19-MHz Operation

TM16 TM15 TM14 Resolution Longest set time Resolution Longest set time

0 1 1 5.33 µs 1.37 ms 7.63 µs 1.95 ms

1 0 0 683 µs 175 ms 977 µs 260 ms

1 0 1 171 µs 43.7 ms 244 µs 62.5 ms

1 1 0 42.7 µs 10.9 ms 61.0 µs 15.6 ms

1 1 1 10.7 µs 2.73 ms 15.3 µs 3.91 ms

n + 1
fCP

.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

110

Table 5-7 Resolution and Longest Set Time (In 8-bit Timer Counter Mode) (2/2)

(TM10 = 0, TM11 = 0, TM20 = 0, TM21 = 0)

(c) 8-bit timer counter (channel 2)

Mode Register At 6.0-MHz Operation At 4.19-MHz Operation

TM26 TM25 TM24 Resolution Longest set time Resolution Longest set time

0 1 0 333 ns 85.3 µs 477 ns 122 µs

0 1 1 167 ns 42.7 µs 238 ns 61.0 µs

1 0 0 171 µs 43.7 ms 244 µs 62.5 ms

1 0 1 42.7 µs 10.9 ms 61.0 µs 15.6 ms

1 1 0 10.7 µs 2.73 ms 15.3 µs 3.91 ms

1 1 1 2.67 µs 683 ms 3.81 µs 977 µs

(3) Timer counter operation (at 8-bit)

The timer counter operates as follows.

Fig. 5-31 shows the configuration when the timer counter operates.

<1> The count pulse (CP) is selected by the timer counter mode register (TMn) and is input to the timer

counter count register (Tn).

<2> The contents of Tn are compared with those of the timer counter modulo register (TMODn). When the

contents of these registers coincide, a coincidence signal is generated, and the interrupt request flag

(IRQTn) is set. At the same time, the timer out flip/flop (TOUT F/F) is inverted.

Fig. 5-32 shows the timing of the timer counter operation.

The timer/event counter operation is usually started in the following procedure:

<1> Set the number of counts to TMODn.

<2> Sets the operation mode, count pulse, and start command to TMn.

Caution Set a value other than 00H to the timer counter modulo register (TMODn).

To use the timer counter output pin (PTOn), set the P3n pin as follows:

<1> Clear the output latch of P3n.

<2> Set port 3 in the output mode.

<3> Disconnect the on-chip pull-up resistor from port 3.

<4> Set the timer internal counter output enable flag (TOEn) to 1.

 Remark n = 0-2

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

111

Fig. 5-31 Configuration When Timer Counter Operates

MPX
In

te
rn

al
 c

lo
ck

Timer counter modulo register (TMODn)

Comparator

Timer counter count register (Tn)CP

TOUT F/F PTOn
Coincidence

Clear

INTTn
(lRQTn set signal)

Fig. 5-32 Count Operation Timing

Count pulse (CP)

Timer counter modulo
register (TMODn)

Timer counter count
register (Tn)

TOUT F/F

0 1 2 m–1 m 0 1 2 m–1 m 0 1 2 3 4

m

Coincidence Coincidence

Reset

Timer start command

Remark m: Set value of the timer counter modulo register

n = 0-2

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

112

244 µs
50 ms

(4) Application of 8-bit timer counter mode

As an interval timer that generates an interrupt at 50-ms intervals

• Set the higher 4 bits of the timer counter mode register (TMn) to 0100B, and select 62.5 msNote as

the longest set time.

• Set the lower 4 bits of TMn to 1100B.

• The set value of the timer counter modulo register (TMODn) is as follows:

= 205 CDH

<Program example>

SEL MB15 ; or CLR1 MBE

MOV XA, #0CCH

MOV TMODn, XA ; Sets modulo

MOV XA, #01001100B

MOV TMn, XA ; Sets mode and starts timer

EI ; Enables interrupt

EI IETn ; Enables timer interrupt

Note This example applies to the operation at fX = 4.19 MHz. At fX = 6.0 MHz, the longest set time and the interval

time are different while the settings are the same.

Remark n = 0-2

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

113

5.4.3 Operation in PWM pulse generator mode (PWM mode)

In this mode, the timer counter (channel 2) is used as a PWM pulse generator.

The timer counter operates as an 8-bit PWM pulse generator.

When the timer counter (channel 2) is used as a PWM pulse generator, the timer counters (channel 0 and 1) can

be used as 8-bit timer counter.

(1) Register setting

In the PWM mode, the following five registers are used:

• Timer counter mode register (TM2)

• Timer counter control register (TC2)

• Timer counter count register (T2)

• Timer counter high-level period setting modulo register (TMOD2H)

• Timer counter modulo register (TMOD2)

(a) Timer counter mode register (TM2)

In the PWM mode, set TM2 as shown in Fig. 5-33 (for the format of TM2, refer to Fig. 5-25 Format of

Timer Counter Mode Register (Channel 2)).

TM2 is manipulated by an 8-bit manipulation instruction. Bit 3 is a timer start command bit which can

be manipulated in 1-bit units and is automatically cleared to 0 when the timer starts operating.

TM2 is also cleared to 00H when the internal reset signal is asserted.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

114

Fig. 5-33 Setting of Timer Counter Mode Register

7 6 5 4 3 2 1 0

TM20TM21TM23 TM22TM24TM25TM26–

Address

TM2F90H

Symbol

TM23
Clears counter and IRQT2 flag when "1" is written. Starts count operation
if bit 2 is set to "1".

Timer start command bit

Operation mode

TM22

0

1

Stops (count value retained)

Count operation

Count operation

Count pulse (CP) select bit

TM26 Count pulse (CP)TM25

0 1

10

01

1 0

TM24

0

1

0

1

1 1 0

1 1 1

Operation mode select bit

TM21

0 PWM pulse generator mode

ModeTM20

1

fX/2

fX

fX/28

fX/26

fX/210

fX/24

Others Setting prohibited

Remark When the timer counter (channel 2) is used as the PWM pulse generator mode, set 0 to the operation

mode select bit TM10 and TM11 of the time counter (channel 1).

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

115

(b) Timer counter control register (TC2)

In the PWM mode, set TC2 as shown in Fig. 5-34 (for the format of TC2, refer to Fig. 5-27 Format of

Timer Counter Control Register) .

TC2 is manipulated by an 8-, 4-, or bit manipulation instruction.

TC2 is cleared to 00H when the internal reset signal is asserted.

The flags shown by a solid line in the figure below are used in the PWM mode.

Do not use the flags shown by a dotted line in the PWM mode (set these flags to 0).

Fig. 5-34 Setting of Timer Counter Control Register

7 6 5 4 3 2 1 0

NRZNRZBTOE2 REMC–––0 TC2

Symbol

Timer counter output enable flag

TOE2

0

1

Disabled (low level output)

Enabled

Timer output

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

116

(2) PWM pulse generator operation

The timer counter (channel 2) in PWM pulse generator mode has two registers, a high-level period setting

timer counter modulo register (TMOD2H) and a low-level period setting timer counter modulo register

(TMOD2). Fig. 5-35 shows the PWM pulse generator configuration.

Each modulo register inverts its signal when the time set to each elapses. Therefore, pulses output from the

PTO0 pin can be set arbitrarily for each modulo register.

The PWM pulse generator operates as follows. It repeats <2> and <3> generating pulses until operation stops.

<1> A count pulse (CP) is selected by the timer counter mode register (TM2), and is input to the timer counter

count register (T2).

<2> The contents of T2 are compared with those of the high-level period setting timer counter modulo

register (TMOD2H). If the contents of the two registers coincide, a coincidence signal is generated,

and the timer output flip-flop (TOUT F/F) is inverted.

The count compare modulo register is switched to the low-level period setting timer counter modulo

register (TMOD2).

<3> The contents of T2 are compared with those of the timer counter modulo register (TMOD2). When the

contents of the two registers coincide, a coincidence signal is generated, and an interrupt request flag

(IRQT2) is set. At the same time, TOUT F/F is inverted. Then the count compare modulo register is

switched to the high-level period setting timer counter modulo register (TMOD2H).

<4> The operations <2> and <3> are alternately repeated, and pulse wave form is generated.

Fig. 5-36 shows the timing of the PWM pulse generator operation.

The PWM pulse generator operation is usually started in the following procedure:

<1> Set the number of counts of high-level width to TMOD2H.

<2> Sets the number of low-level width to TMOD2.

<3> Set an operation mode, count pulse, and start command to TM2.

Caution Set a value other than 00H to the timer counter modulo register (TMOD2) and high-level

period setting timer counter modulo register (TMOD2H).

To use the timer counter output pin (PTO2), set the P32 pin as follows:

<1> Clear the output latch of P32.

<2> Set port 3 in the output mode.

<3> Disconnect the pull-up resistor from port 3.

<4> Set the timer counter output enable flag (TOE2) to 1.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

117

Fig. 5-35 PWM Pulse Generator Operating Configuration

Timer counter (channel 2)

High level period setting
timer counter modulo
register (TMOD2H)

Timer counter (Channel 2)
modulo register (TMOD2)

MPX

Comparator

INTT2
Note

Internal
clock

CP

TOUT F/F PTO2

Timer counter count
register (T2) Clear

MPX

fX
fX/2

fX/24
fX/26
fX/28

fX/210

Note This is IRQT2 set signal. It is only set when TMOD2 matches with T2.

Fig. 5-36 PWM Pulse Generator Operating Timing

Timer counter (channel 2) operation and carrier clock

(Modulo register H (TMOD2H) = 1, modulo register (TMOD2) = k)

Count pulse
(CP)

Timer counter count
register (T2)

TOUT F/F Set

Timer start command

0 1 2 i–1 1 0 1 2 k–1 k 0 1 2 3

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

118

(3) Application of PWM mode

To output a pulse with a frequency of 38.0 kHz (cycle of 26.3 µs) and a duty factor of 1/3 to the PTO2 pin

• Set the higher 4 bits of the timer counter mode register (TM2) to 0011B and select 61.0 µsNote as the longest

set time.

• Set the lower 4 bits of TM2 to 1101B, and select the PWM mode and count operation, and issue the timer

start command.

• Set the timer counter output enable flag (TOE2) to “1” to enable timer output.

• Set the high-level period setting timer counter modulo register (TMOD2H) as follows:

–1 = 36.8 – 1 36 = 24H

• The set value of the timer counter modulo register (TMOD2) is as follows:

–1 = 73.7 – 1 73 = 49H

<Program example>

SEL MB15 ; or CLR1 MBE

SET1 TOE2 ; Enables timer output

MOV XA, #024H

MOV TMOD2H, XA ; Sets modulo (high-level period)

MOV XA, #49H

MOV TMOD2, XA ; Sets modulo (low-level period)

MOV XA, #00111101B

MOV TM2, XA ; Sets mode and starts timer

Note This example applies to the operation at fX = 4.19 MHz. At fX = 6.0 MHz, the cycles are different while the

settings are the same.

1 26.3 µs

3 238 ns

2 26.3 µs

3 238 ns

.

.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

119

5.4.4 Operation in 16-bit timer counter mode

In this mode, two timer counter channels, 1 and 2, are used in combination to implement 16-bit programmable

interval timer or event timer operation.

(1) Register setting

In the 16-bit timer counter mode, the following seven registers are used:

• Timer counter mode registers TM1 and TM2

• Timer counter control register TC2Note

• Timer count registers T1 and T2

• Timer count modulo registers TMOD1 and TMO2

Note Timer counter channel 1 uses the timer counter output enable flag (TOE1).

(a) Timer counter mode registers (TM1 and TM2)

In the 16-bit timer counter mode, TM1 and TM2 are set as shown in Fig. 5-37 (for the formats of TM1

and TM2, refer to Fig. 5-24 Format of Timer Counter Mode Register (Channel 1) and Fig. 5-25 Format

of Timer Counter Mode Register (Channel 2)).

TM1 and TM2 are manipulated by an 8-bit manipulation instruction. Bit 3 of these registers is a timer start

command bit that can be manipulated in 1-bit units and is automatically cleared to 0 when the timer starts

operating.

TM1 and TM2 are cleared to 00H when the internal reset signal is asserted.

The flags shown by a solid line in Fig. 5-36 are used in the 16-bit timer counter mode.

Do not use the flags shown by a dotted line in the 16-bit timer counter mode (clear these flags to 0).

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

120

Fig. 5-37 Setting of Timer Counter Mode Registers

TM20TM21TM23 TM22TM24TM25TM26– TM2F90H

TM23
Clears counter and IRQTn flag when "1" is written. Starts count operation
if bit 2 is set to "1".

Timer start command bit

Operation mode

TM22

0

1

Stops (count value retained)

Count operation

Count operation

Count pulse (CP) select bit

TMn6 TM1TMn5

0 Overflow of count register (T2)1

fX2510

01

1 fX/2100

fX/28

fX/212

TMn4

0

1

0

1

1 1 0

fX/261 1 1

Operation mode select bit

TM21

1 16-bit timer counter mode

ModeTM20

0

7 6 5 4 3 2 1 0

TM10TM11TM13 TM12TM14TM15TM16–

Address

TM1FA8H

Symbol

TM2

fX/2

fX

fX/28

fX/26

fX/210

fX/24

TM11

1

TM10

0

Setting prohibitedOthers

Remark n = 1, 2

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

121

(b) Timer counter control register (TC2)

In the 16-bit timer counter mode, set TC2 as shown in Fig. 5-38 (for the format of TC2, refer to Fig. 5-

27 Format of Timer Counter Control Register).

TC2 is manipulated by an 8-, 4-, or bit manipulation instruction.

TC2 is cleared to 00H when the internal reset signal is asserted.

The flags shown by a solid line in Fig. 5-38 are used in the 16-bit timer counter mode.

Do not use the flags shown by a dotted line in the 16-bit timer counter mode (clear these flags to 0).

Fig. 5-38 Setting of Timer Counter Control Register

7 6 5 4 3 2 1 0

NRZNRZBTOE2 REMC–––0 TC2

Symbol

Timer counter output enable flag

TOE2

0

1

Disabled (low level output)

Enabled

Timer Output

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

122

(2) Time setting of timer counter

[Timer set time] (cycle) is calculated by dividing the [contents of modulo register + 1] by the [count pulse (CP)

frequency] selected by the mode register.

T (sec) = = (n + 1) (resolution)

where,

T (sec) : timer set time (seconds)

fCP (Hz) : CP frequency (Hz)

n : contents of modulo register (n ≠ 0)

Once the timer has been set, interrupt request flag IRQT2 is set at the set time interval of the timer.

Table 5-8 shows the resolution of each count pulse of the timer counter and the longest set time (time when FFH

is set to the modulo registers 1 and 2).

Table 5-8 Resolution and Longest Set Time (16-bit timer counter mode)

(TM10 = 0, TM11 = 1, TM20 = 0, TM21 = 1)

Mode Register At 6.0-MHz Operation At 4.19-MHz Operation

TM26 TM25 TM24 Resolution Longest Set Time Resolution Longest Set Time

0 1 0 333 ns 21.8 ms 477 ns 31.3 ms

0 1 1 167 ns 10.9 ms 238 ns 15.6 ms

1 0 0 171 µs 11.2 s 244 µs 16.0 s

1 0 1 42.7 µs 2.80 s 61.0 µs 4.0 s

1 1 0 10.7 µs 699 ms 15.3 µs 1.0 s

1 1 1 2.67 µs 175 ms 3.81 µs 250 ms

n + 1

fCP

 .

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

123

(3) Timer counter operation (at 16-bit)

The timer counter operates as follows.

Fig. 5-39 shows the configuration when the timer counter operates.

<1> The count pulse (CP) is selected by the timer counter mode registers TM1 and TM2 and is input to timer

counter count register T2. The overflow of T2 is input to timer counter count register T1.

<2> The contents of T1 are compared with those of timer counter modulo register TMOD1. When the contents

of these registers coincide, a coincidence signal is generated.

<3> The contents of T2 are compared with those of timer counter modulo register TMOD2. When the contents

of these registers coincide, a coincidence signal is generated.

<4> If the coincidence signals in <2> and <3> overlap, interrupt request flag IRQT2 is set. At the same time,

timer out flip-flop TOUT F/F is inverted.

Fig. 5-40 shows the operation timing of the timer counter operation.

The timer counter operation is usually started by the following procedure:

<1> Set the higher 8 bits of the number of counts 16 bits wide to TMOD1.

<2> Set the lower 8 bits of the number of counts 16 bits wide to TMOD2.

<3> Set the count pulse to TM1.

<4> Set the operation mode, count pulse, and start command to TM2.

Caution Set a value other than 00H to the timer counter modulo register TMOD2.

Also, set “0” to IET1.

To use timer counter output pin PTO2, set the P32 pin as follows:

<1> Clear the output latch of P32.

<2> Set port 3 in the output mode.

<3> Disconnect the internal pull-up resistor from port 3.

<4> Set timer counter output enable flag TOE2 to 1.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

124

Fig. 5-39 Configuration When Timer Counter Operates

Other
internal
clock is
ignored

MPX

Timer counter modulo register
(TMOD1)

Comparator

Timer counter count register
(T1)

CP

Match

Clear

T2 overflow

MPX

CP

Timer counter modulo register
(TMOD2)

Comparator

Timer counter count register
(T2)

Clear

TOUT F/F

INTT2
(IRQT2 set signal)

PTO2Internal
clock

fX/25

fX/26

fX/28

fX/210

fX/212

fX

fX/2

fX/24

fX/26

fX/28

fX/210

Match

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

125

Fig. 5-40 Timing of Count Operation

Count pulse (CP)

Timer counter
modulo register

(TMOD2)

Timer counter
count register

(T2)

Timer counter
count register

(T1)

TOUT F/F

0 1 2 n 255 0 1 n–1 n 0 1 2

n

Set

Timer start command

2

Timer counter
modulo register

(TMOD1)
m

0 m–1 m 0

Coincidence

Coincidence

Remark m: Set value of the timer counter modulo register (TMOD1)

n : Set value of the timer counter modulo register (TMOD2)

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

126

(4) Application of 16-bit timer counter mode

As an interval timer that generates an interrupt at 5-sec intervals

• Set the higher 4 bits of the timer counter mode register (TM1) to 0010B, and select the overflow of

timer counter count register (T2).

• Set the higher 4 bits of TM2 to 0100B and select 16.0 secNote as the longest set time.

• Set the lower 4 bits of TM1 to 0010B and select the 16-bit timer counter mode.

• Set the lower 4 bits of TM2 to 1110B, select the 16-bit timer counter mode and count operation. Then,

issue the timer start command.

• The set values of the timer counter modulo registers (TMOD1 and TMOD2) are as follows:

 = 20491.8 – 1 500BH

<Program example>

SEL MB15 ; or CLR1 MBE

MOV XA, #050H

MOV TMOD1, XA ; Sets modulo (higher 8 bits)

MOV XA, #00B

MOV TMOD2, XA ; Sets modulo (lower 8 bits)

MOV XA, #00100010B

MOV TM1, XA ; Sets mode

MOV XA, #01001110B

MOV TM2, XA ; Sets mode and starts timer

DI IET1 ; Disables timer (channel 1) interrupt

EI ; Enables interrupts

EI IET2 ; Enables timer (channel 2) interrupt

Note This example applies to the operation at fX = 4.19 MHz. At fX = 6.0 MHz, the longest set time and interval

time are different while the settings are the same.

5 sec

244 µs

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

127

5.4.5 Operation in carrier generator mode (CG mode)

In the PWM mode, timer counter channels 1 and 2 operate in combination to implement an 8-bit carrier generator

operation.

When using CG mode, use it in combination with channel 1 and channel 2 of timer counter.

Timer counter channel 1 generates a remote controller signal.

Timer counter channel 2 generates a carrier clock.

(1) Register setting

In the CG mode, the following eight registers are used:

• Timer counter mode registers TM1 and TM2

• Timer counter control register TC2Note

• Timer counter count registers T1 and T2

• Timer counter modulo registers TMOD1 and TMOD2

• Timer counter high-level period setting modulo register TMOD2H

Note Timer counter channel 1 uses the timer counter output enable flag (TOE1).

(a) Timer counter mode registers (TM1 and TM2)

In the CG mode, set TM1 and TM2 as shown in Fig. 5-41 (for the formats of TM1 and TM2, refer to

Fig. 5-24 Format of Timer Counter Mode Register (Channel 1) and Fig. 5-25 Format of Timer

Counter Mode Register (Channel 2)).

TM1 and TM2 are manipulated by an 8-bit manipulation instruction. Bit 3 of TM1 and TM2 is timer start

command bit which can be manipulated in 1-bit units and is automatically cleared to 0 when the timer

starts operating.

TM1 and TM2 are also cleared to 00H when the internal reset signal is asserted.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

128

Fig. 5-41 Setting of Timer Counter Mode Register

TM20TM21TM23 TM22TM24TM25TM26– TM2F90H

TMn3
Clears counter and IRQTn flag when "1" is written. Starts count operation
if bit 2 is set to "1".

Timer start command bit

Operation mode

TMn2

0

1

Stops (count value retained)

Count operation

Count operation

Count pulse (CP) select bit

TMn6 TM1TMn5

0 Carrier clock input1

fX/2510

01

1 fX/2100

fX/28

fX/212

TMn4

0

1

0

1

1 1 0

fX/261 1 1

Operation mode select bit

TM21

1 Carrier generator mode

ModeTM20

1

7 6 5 4 3 2 1 0

TM10TM11TM13 TM12TM14TM15TM16–

Address

TM1FA8H

Symbol

TM2

fX/2

fX

fX/28

fX/26

fX/210

fX/24

TM11

0

TM10

0

Setting prohibitedOthers

Remark n = 1, 2

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

129

(b) Timer counter control register (TC2)

In the CG mode, set the timer counter output enable flag (TOE1) and TC2 as shown in Figs. 5-42 and

5-43 (for the format of TC2, refer to Fig. 5-27 Format of Timer Counter Control Register).

TOE1 is manipulated by a bit manipulation instruction. TC2 is manipulated by an 8-, 4-, or bit manipulation

instruction.

TOE1 and TC2 are cleared to 00H when the internal reset signal is asserted.

The flags shown by a solid line in the figure below are used in the CG mode.

Do not use the flags shown by a dotted line in the CG mode (clear these flags to 0).

Fig. 5-42 Setting of Timer Counter Output Enable Flag

Address

TOE1FAAH

0 Disabled

1 Enabled

Timer counter output enable flag (W)

Fig. 5-43 Setting of Timer Counter Control Register

–0

NRZB
Area to store no return zero data to be output next. Transferred to NRZ
when timer counter (channel 1) interrupt occurs

No return zero buffer flag

No return zero flag

NRZ

0

1

Outputs low level to PTO2 pin (Carrier clock stopped)

Outputs carrier pulse to PTO2 pin

No return zero data

Remote controller output control flag

REMC

0

1

Outputs carrier pulse to PTO2 pin when NRZ = 1

Outputs high level to PTO2 pin when NRZ = 1

NRZNRZBTOE2 REMC–– TC2

Symbol

Remote controller output

67 013 245

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

130

(2) Carrier generator operation

The carrier generator operation is performed as follows. Fig. 5-44 shows the configuration of the timer counter

in the carrier generator mode.

(a) Timer counter (channel 1) operation

The timer counter (channel 1) in carrier generator mode determines the time required to output the carrier

clock generated by the timer counter (channel 2) to the PTO2 pin, and the time to stop the output.

Moreover, the overflow time of the timer counter (channel 1) determines the interval of loading from the

no return zero buffer flag (NRZB) of the timer counter (channel 2) to the no return zero flag (NRZ).

<1> A count pulse (CP) is selected by the timer counter mode register (TM1), and is input to the timer

counter count register (T1).

<2> The contents of T1 are compared with those of the timer counter modulo register (TMOD1). When

the contents of the two registers coincide, an interrupt request flag (IRQT1) is set. At the same time,

the timer out flip-flop (TOUT F/F) is inverted, and generates reload signal from NRZB to NRZ.

(b) Timer counter (channel 2) operation

The timer counter (channel 2) in carrier generator mode generates the carrier clock to be output to the

PTO2 pin.

Moreover, according to an overflow signal of the timer counter (channel 1), it reloads from the no return

zero buffer flag (NRZB) to the no return zero flag (NRZ).

NRZ determines whether the carrier clock generated should be output to the PTO2 pin or not.

Operation of the timer counter (channel 2) is carried out according to the following procedure. The timer

counter repeats <2> and <3> generating carrier waves until operation stops.

<1> A count pulse (CP) is selected by the timer counter mode register (TM2), and is input to the timer

counter count register (T2).

<2> The contents of T2 are compared with those of the high-level period setting timer counter modulo

register (TMOD2H). If the contents of the two registers coincide, a coincidence signal is generated,

and the timer output flip-flop (TOUT F/F) is inverted. At the same time, the count comparison timer

counter modulo register is switched to the low-level period setting timer counter modulo register

(TMOD2).

<3> The contents of T2 are compared with those of the timer counter modulo register (TMOD2). When

the contents of the two registers coincide, a coincidence signal is generated, and an interrupt request

flag (IRQT2) is set. At the same time, TOUT F/F is inverted and the count comparison timer counter

modulo register is switched to the high-level period setting timer counter modulo register (TMOD2H).

<4> The operations <2> and <3> are repeated.

<5> The no return zero data is reloaded from NRZB to NRZ when timer counter channel 1 generates

an interrupt.

<6> A carrier clock or high level is output when NRZ is set to 1 by the remote controller output flag

(REMC). When NRZ = 0, a low level is output.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

131

Fig. 5-45 shows the timing of the carrier generator operation.

The carrier generator operation is usually started by the following procedure:

<1> Set the number of high-level width of the carrier clock to TMOD2H.

<2> Set the number of low-level width of the carrier clock to TMOD2.

<3> Set the output waveform to REMC.

<4> Set the operation mode, count pulse, and start command to TM2.

<5> Set the number of counts of NRZ switching timing to TMOD1.

<6> Set the operation mode, count pulse, and start command to TM1.

<7> Set the no return zero data to be output next to NRZB before timer counter channel 1 generates

an interrupt.

Caution Set a value other than 00H to the timer counter modulo registers (TMOD1, TMOD2, and

TMOD2H).

To use the timer counter output pin (PTO1), set the P31 pin as follows:

<1> Clear the output latch of P31.

<2> Set port 3 in the output mode.

<3> Disconnect the internal pull-up resistor from port 3.

<4> Set the timer counter output enable flag (TOE1) to 1.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

132

Fig. 5-44 Configuration in Carrier Generator Mode

Other
internal
clock is
ignored

MPX

Timer counter modulo register
(TMOD1)

Comparator

Timer counter count register (T1)
CP

Clear

TOUT F/F PTO1

PTO2

Carrier clock

NRZB NRZ

High-level period setting timer counter
modulo register (TMOD2H)

Timer counter modulo register
(TMOD2)

MPX

Comparator

Timer counter count register (T2)
Clear

TOUT F/F

INTT2
(IRQT2 set signal)

INTT1
(IRQT1 set signal)

Reload

CP

MPX
Internal
clock

Match

Match

fX/25
fX/26
fX/28

fX/210
fX/212

fX
fX/2

fX/24
fX/26
fX/28

fX/210

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

133

Fig. 5-45 Carrier Generator Operation Timing

<1> Timer (channel 2) operation and carrier clock

(Modulo register H (TMOD2H) = i, Modulo register (TMOD2) = k)

Count pulse
(CP)

Timer counter
count register (T2)

Carrier clock

0k 1 2 i–1 i 0 1 2 k–1 k 0 1 2 3

<2> Carrier clock, timer (channel 1), NRZB, NRZ, and PTO2 pin

(Modulo register (TMOD1) = n, Timer (channel 1) count pulse = Carrier clock)

No return zero
buffer flag

(NRZB)

Timer counter
count register (T1)

Carrier clock

No return
zero flag

(NRZ)

PTO2 pin

0n 1 2 n–1 n 0 1 2 n–1 n 0 1 2 3

1 0 1 0

1010

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

134

Remark If a timer (channel 1) interrupt is generated when the PTO2 pin is low and the carrier

clock is high (NRZ = 0, carrier clock = high level), the carrier is output to the PTO2 pin

from the pulse after the carrier clock.

If a timer (channel 1) interrupt is generated when the PTO2 pin is high and the carrier

clock is high (NRZ = 1, carrier clock = high level), the PTO2 pin does not become low

until the end of the carrier clock being output.

This processing is performed to keep the width of the high-level pulse output from the

PTO2 pin constant regardless of the NRZ switching timing (see figure below).

Carrier clock

No return zero flag (NRZ)

PTO2 pin

PTO2 does not go high even if NRZ is
set to "1" until the next carrier clock
goes high.

PTO2 does not go low even if NRZ is
reset to "0" until the next carrier clock
goes high.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

135

(3) Application of CG mode

To use the timer counter as a carrier generator for remote controller signal transmission

The examples shown below apply to the operation at fX = 4.19 MHz. At fX = 6.0 MHz, the cycles and signal

output periods are different while the settings are the same.

<1> To generate a carrier clock with a frequency of 38.0 kHz (cycle of 26.3 µs) and a duty factor of 1/3

• Set the higher 4 bits of the timer counter mode register (TM2) to 0011B and select 61.0 µs as the

longest set time.

• Set the lower 4 bits of TM2 to 1111B, and select the CG mode and count operation. Then, issue

the timer start command.

• Set the timer counter output enable flag (TOE2) to “1” to enable timer output.

• Set the high-level period setting timer counter modulo register (TMOD2H) as follows:

 – 1 = 36.8 – 1 36 = 24H

• The set value of the timer counter modulo register (TMOD2) is as follows:

 – 1 = 73.7 – 1 73 = 49H

<Program example>

SEL MB15 ; or CLR1 MBE

MOV XA, #024H

MOV TMOD2H, XA ; Sets modulo (high-level period)

MOV XA, #49H

MOV TMOD2, XA ; Sets modulo (low-level period)

MOV XA, #00111111B

MOV TM2, XA ; Sets mode and starts timer

1 26.3 µs

3 238 ns

2 26.3 µs

3 238 ns

.

.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

136

4.5 ms

61 µs

9 ms

61 µs

<2> To output a leader code with a 9-ms period to output a carrier clock and a 4.5-ms period to output a

low level (Refer to the figure below.)

• Set the higher 4 bits of the timer counter mode register (TM1) to 0110B and select 15.6 ms as the

longest set time.

• Set the lower 4 bits of TM1 to 1100B. Then, select the 8-bit timer counter mode, count operation,

and timer start command.

• The initial set value of the timer counter modulo register (TMOD1) is as follows:

– 1 = 147.5 – 1 147 = 93H

• The set value for rewriting TMOD1 is as follows:

– 1 = 73.8 – 1 73 = 49H

• Set the higher 4 bits of TC2 to 0000B.

• Set the lower 4 bits of TC2 to 0000B. The carrier clock is output when no return zero data is “1”,

and the no return zero data to be output next is cleared to “0”.

<Program example>

SEL MB15 ; or CLR1 MBE

MOV XA, #093H

MOV TMOD1, XA ; Sets modulo (carrier clock output period)

MOV XA, #00000000B

MOV TC2, XA

SET1 NRZ ; Sets no return zero data to “1”

MOV XA, #01101100B

MOV TM1, XA ; Sets mode and starts timer

EI ; Enables interrupt

EI IET1 ; Enables interrupt of timer counter channel 1

; <subroutine>

MOV XA, #049H

MOV TMOD1, XA ; Rewrites modulo (low-level output period)

RETI

9 ms 4.5 ms

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

137

<3> To output a custom code with a 0.56-ms period to output a carrier clock when data is “1”, a 1.69-ms

to output a low level, a 0.56-ms to output a carrier clock when data is “0”, and a 0.56-ms period to output

a low level (Refer to the figure below.)

• Set the higher 4 bits of the timer counter mode register (TM1) to 0011B and select 1.95 ms as the

longest set time.

• Set the lower 4 bits of TM1 to 1100B. Then, select the 8-bit timer counter mode, count operation,

and timer start command.

• The initial set value of the timer counter modulo register (TMOD1) is as follows:

– 1 = 73.3 – 1 = 72 = 48H

• During the period in which the carrier output of TMOD1 is not performed, processing is executed for

the duration of the same as the output period when data is “0” and for the duration three times that

of the output period when data is “1” (software repeats three times the period in which carrier output

is not performed when data is “0”).

• Set the higher 4 bits of TC2 to 0000B.

• Set the lower 4 bits of TC2 to 0000B. The carrier clock is output when the no return zero data is “1”.

The no return zero data to be output next is cleared to “0”.

• Set the transmit data (“0” or “1”) to the bit sequential buffer.

0.56 ms 0.56 ms 0.56 ms1.69 ms

Data "1" Data "0"

0.56 ms

7.64 µs

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

138

<Program example>

In the following example, it is assumed that the output latch of the PTO2 pin is cleared to “0” and that

the output mode has been set. It is also assumed that the carrier clock is generated with the status of

the program in the preceding example (2).

; SEND_CARIER_DATA_PRO

SEL MB15 ; or CLR1 MBE

MOV HL, #00H ; Sets pointer of BSB (bit sequential buffer) to L.

Uses H as bit data temporary saving area of BSB

; CG_Init & Send_1st_Data

MOV XA, #48H

MOV TMOD1, XA ; Sets modulo register (carrier clock output period)

MOV XA, #00000000B ; Enables output of carrier clock, and initializes NRZB and

NRZ to 0

MOV TC2, XA

SET1 NRZ ; Sets no return zero flag to “1”

MOV XA, #01101100B ; Selects count pulse and 8-bit timer counter mode

MOV TM1, XA ; Enables timer counter operation and issues timer start

command

; Send_1st_Data

CALL !GET_DATA ; Gets data from BSB

CALL !SEND_D_0 ; Outputs carrier with data 0 and 1 and first low level output

period setting processing

SKE H, #1H ; If bit 0 is 1, proceeds to second additional processing of low

level output period

BR SEND_1_F ; If bit 0 is 0, outputs low level and transfers control to search

of next data

CALL !SEND_D_1 ; Second additional processing of low level output period.

Transfers control to data transmission processing of BSB

bit 0-F with PTO2 pin outputting low

; SEND_1_F: ; Data transmission processing of bit 0-F of BSB

SET1 NRZB ; Sets NRZB to 1 so that carrier of data to be transmitted next

is output by IRQT1 generated next during low level output

period of preceding data

INCS L ; Counts data being transmitted and ends data transmission

when L changes from 0FH to 0H

BR LOOP_C_0

BR SEND_END

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

139

LOOP_C_0: SKTCLR IRQT1 ; Waits for low level output of preceding data (confirmation

of end of preceding data)

BR LOOP_C_0

; Starts carrier output

CLR1 NRZB ; Clears NRZB to 0 in advance so that first low level output

is performed by IRQT1 generated next

CALL !GET_DATA

CALL !SEND_D_0

SKE H, #1H ; If data gotten is 1, proceeds to second additional process-

ing of low level output period (SEND_D_1)

BR SEND_1_F ; If data is 0, proceeds to transmission processing of next

data with PTO2 pin outputting low level

CALL !SEND_D_1

BR SEND_1_F

SEND_END : ; Completes transmission of 16 bits of data

; <subroutine>

GET_DATA: ; Searches data of BSB indicated by @L. Sets value to H

register

SKT BSB0.@L

MOV A, #0

MOV A, #1

MOV H, A

RET

SEND_D_0 : ; Processing to set carrier output of data 0 and 1 and first low

level output

LOOP_1ST :SKTCLR IRQT1

BR LOOP_1ST ; Waits for carrier output

RET ; Starts output of first low level

SEND_D_1 :

CLR1 NRZB ; Sets second low level output if data is 1

LOOP_2ND : SKTCLR IRQT1

BR LOOP_2ND ; Waits for first low level output

; Starts second low level output

CLR1 NRZB ; Sets third low level output

LOOP_3RD : SKTCLR IRQT1

BR LOOP_3RD ; Waits for second low level output

; Starts third low level output

RET

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

140

5.4.6 Notes on using timer counter

(1) Error when timer starts

After the timer has been started (bit 3 of TMn has been set to “1”), the time required for generation of the

coincidence, which is calculated by the expression (contents of modulo register + 1) × resolution, deviates

by up to one clock of count pulse (CP). This is because timer counter count register Tn is cleared

asynchronously with CP, as shown below.

1 2 3 1 2

Timer startsTimer starts

Count pulse (CP)

Timer counter
count register (Tn) 0 0

If the frequency of CP is greater than one machine cycle, the time required for generation of the coincidence

signal, which is calculated by the expression (modulo register contents + 1) × resolution, deviates by up to

CP2 clock after the timer has been started (bit 3 of TMn has been set to “1”). This is because Tn is cleared

asynchronously with CP, based on the CPU clock, as shown below.

1 12

Timer startsTimer starts

Count pulse (CP)

Timer counter
count register (Tn) 00

Remark n = 0-2

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

141

(2) Note on starting timer

Usually, count register Tn and interrupt request flag IRQTn are cleared when the timer is started (bit 3 of TMn

is set to “1”). However, if the timer is in an operation mode, and if IRQTn is set as soon as the timer is started,

IRQTn may not be cleared. This does not pose any problem when IRQTn is used as a vector interrupt. In

an application where IRQTn is being tested, however, IRQTn is not set after the timer has been started and

this poses a problem. Therefore, there is a possibility that the timer could be started as soon as IRQTn is

set to 1, either stop the timer once (by clearing the bit 2 of TMn to “0”), or start the timer two times.

Example If there is a possibility that timer could be started as soon as IRQTn is set

SEL MB15

MOV XA, #0

MOV TMn, XA ; Stops timer

MOV XA, #4CH

MOV TMn, XA ; Restarts

Or,

SEL MB15

SET1 TMn.3

SET1 TMn.3 ; Restarts

Remark n = 0-2

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

142

(3) Notes on changing count pulse

When it is specified to change the count pulse (CP) by rewriting the contents of the timer counter mode register

(TMn), the specification becomes valid immediately after execution of the instruction that commands the

specification.

Clock A specification Clock B specification

Rewrite instruction Rewrite instruction

Clock A specification

Clock A

Clock B

Count pulse (CP)

A whisker-like CP (<1> or <2 > in the figure below) may be generated depending on the combination of the

clocks for changing CP. In this case, a miscount may occur or the contents of the count register (Tn) may

be destroyed. To change CP, be sure to set the bit 3 of TMn bit to “1” and restart the timer at the same time.

Clock A specification Clock B specification

Rewrite instruction Rewrite instruction

Clock A specification

Clock A

Clock B

Count pulse (CP)

<1> <2>

Remark n = 0-2

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

143

(4) Operation after changing modulo register

The contents of the timer counter modulo register (TMODn) and high-level period setting timer counter modulo

register (TMOD2H) are changed as soon as an 8-bit data memory manipulation instruction has been executed.

n

Rewrite instruction

Count pulse (CP)

Timer counter
modulo register (TMODn)

High-level period setting timer
counter modulo register

(TMOD2H)

m

n
Timer counter

count register (Tn)

Coincidence signal

Coincidence signal

0 1 m 0

If the value of TMODn after change is less than the value of the timer counter count register (Tn), Tn continues

counting. When an overflow occurs, Tn starts counting again from 0. If the values of TMODn and TMOD2H

after the change are less than the values before change (n), it is necessary to restart the timer after changing

TMODn and TMOD2H.

n

Count pulse (CP)

Timer counter
modulo register (TMODn)

High-level period setting
timer counter modulo

register (TMOD2H)

m

x – 1
Timer counter

count register (Tn)

n > x > m

x 0 1255

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

144

(5) Note on application of carrier generator (on starting)

When the carrier clock is generated, after the timer has been started (by setting bit 3 of TM2 to “1”), the high-

level period of the initial carrier clock may deviate by up to one clock of count pulse (CP) (up to two clocks

of CP if the frequency of CP is higher than one machine cycle) from the value calculated by the expression

(contents of modulo register + 1) × resolution (for details, refer to (1) Error when timer starts).

To output a carrier as the initial code, if the timer is started (by setting bit 3 of TM2 to “1”) after the no return

zero flag (NRZ) has been set to “1”, the high-level period of the initial carrier clock includes the possibility of

an error that may occur when the timer is started.

01010

0 1

PTO2

TOUT F/F

NRZ

SET1 NRZ

SET1 TM2.3 Error on start of
timer is included

Therefore, to output a carrier as the initial code, set NRZ to “1” after the timer has been started (by setting

bit 3 of TM2 to “1”).

01010

0 1

Clock

TOUT F/F

NRZ

SET1 NRZ

SET1 TM2.3 Error on start of
timer is included

PTO2

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

145

(6) Notes on application of carrier generator (reload)

To output a carrier to the PTO2 pin, the time required for the initial carrier to be generated deviates up to one

clock of carrier clock after reloading (the contents of the no return zero buffer flag (NRZB) are transferred to

the no return zero flag (NRZ) by occurrence of the interrupt of timer counter channel 1, and the contents of

NRZ are updated to “1”).

This is because reloading is performed asynchronously with the carrier clock, as illustrated below in order to

hold constant the high-level period of the carrier.

<If delay after reloading is minimum>

10

0 1

Clock

NRZ

NRZB

Reloading by occurrence of interrupt

PTO2

0TOUT F/F 1 0 1 0 1 0

<If delay after reloading is maximum>

10

0 1

Clock

NRZ

NRZB

Reloading by occurrence of interrupt

PTO2

0TOUT F/F 1 0 1 0 1

Delay of up to one
carrier clock occurs.

0

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

146

(7) Notes on application of carrier generator (restarting)

If forced reloading is performed by directly rewriting the contents of the no return zero flag (NRZ) and then

the timer is restarted (by setting bit 3 of TM2 to “1”) when the carrier clock is high (TOUT F/F holds “1”), the

carrier may not be output to the PTO2 pin as shown below.

10

0 1

PTO2

TOUT F/F

NRZ

SET1 NRZ

SET1 TM2.3 Carrier is
not output

0 111

Clock

0 0

Likewise, if forced reloading is performed by directly rewriting the contents of NRZ and the timer is restarted

(by setting bit 3 of TM2 to “1”) when the carrier clock is high (TOUT F/F holds “1”), the high-level period of

the carrier output to the PTO2 pin may be extended as shown below.

10

0 1

PTO2

TOUT F/F

NRZ

CLR1 NRZ

SET1 TM2.3 High-level period of
carrier is extended

0 111

Clock

0 0

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

147

5.5 Bit Sequential Buffer ... 16 bits

The bit sequential buffer (BSB) is a special data memory used for bit manipulation. It can manipulate bits by

sequentially changing the address and bit specification. Therefore, this buffer is useful for processing data with a

long bit length in bit units.

This data memory is configured of 16 bits and can be addressed by a bit manipulation instruction in the pmem.@L

addressing mode. Its bits can be indirectly specified by the L register. The processing can be executed by only

incrementing or decrementing the L register in a program loop and by moving the specified bit sequentially.

Fig. 5-46 Format of Bit Sequential Buffer

3 2 1 0

BSB3

FC3H

L = FH L = CH

3 2 1 0

BSB2

L = BH L = 8H

3 2 1 0

BSB1

L = 7H L = 4H

3 2 1 0

BSB0

L = 3H L = 0H

FC2H FC1H FC0H

INCS L

DECS L

L register

Symbol

Bit

Address

Remarks 1. The specified bit is moved according to the L register in the pmem.@L addressing mode.

2. BSB can be manipulated at any time in the pmem.@L addressing mode, regardless of the

specification by MBE and MBS.

The data in this buffer can also be manipulated even in direct addressing mode. By using 1-, 4-, or 8-bit direct

addressing mode and pmem.@L addressing mode in combination, 1-bit data can be successively input or output.

To manipulate BSB in 8-bit units, the higher and lower 8 bits are manipulated by specifying BSB0 and BSB2.

CHAPTER 5 PERIPHERAL HARDWARE FUNCTION

148

Example For serial output of the 16-bit data of BUFF1, 2 from bit 0 of port 3

CLR1 MBE

MOV XA, BUFF1

MOV BSB0, XA ; Sets BSB0, 1

MOV XA, BUFF2

MOV BSB2, XA ; Sets BSB2, 3

MOV L, #0

LOOP0: SKT BSB0, @L ; Tests specified bit of BSB

BR LOOP1

NOP ; Dummy (to adjust timing)

SET1 PORT3.0 ; Sets bit 0 of port 3

BR LOOP2

LOOP1: CLR1 PORT3.0 ; Clears bit 0 of port 3

NOP ; Dummy (to adjust timing)

NOP

LOOP2: INCS L ; L ← L + 1

BR LOOP0

RET

149

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

The µPD754202 has five vectored interrupt sources and one test input that can be used for various applications.

The interrupt control circuit of the µPD754202 has unique features and can service interrupts at extremely high

speed.

(1) Interrupt function

(a) Hardware-controlled vectored interrupt functions that can control acknowledgment of an interrupt by using

an interrupt enable flag (IE×××) and interrupt master enable flag (IME)

(b) Any interrupt start address can be set.

(c) Interrupt nesting function that can specify priority by using an interrupt priority select register (IPS)

(d) Test function of interrupt request flag (IRQ×××) (Occurrence of an interrupt can be checked by software.)

(e) Releases standby mode (The interrupt that is used to release the standby mode can be selected by the

interrupt enable flag.)

(2) Test function

(a) Checks setting of a test request flag (IRQ2) via software

(b) Releases standby mode (The test source that releases the standby mode can be selected by the test

enable flag.)

6.1 Configuration of Interrupt Control Circuit

The interrupt control circuit is configured as shown in Fig. 6-1, and each hardware unit is mapped to the data memory

space.

C
H

A
P

T
E

R
 6 IN

T
E

R
R

U
P

T
 A

N
D

 T
E

S
T

 F
U

N
C

T
IO

N
S

150 Fig. 6-1 Block Diagram of Interrupt Control Circuit

Notes 1. Noise eliminator (Standby release is disable when noise eliminator is selected.)

2. The µPD754202 does not have the INT2 pin. Interrupt request flag (IRQ2) is set at the KRn pin falling edge when IM20 = 1 and IM21 = 0.

Internal bus

Interrupt enable flag (IE×××)

2 4

IM2 IM0

Note1
Edge
detector

INT0/P61

INTBT

INTT0

INTT1

INTT2

IRQBT

IRQ0

IRQT0

IRQT1

IRQT2

IRQ2
KR4/P70

KR7/P73

Falling edge
detectorNote2

Key return reset circuit

IM2

IME IPS IST1 IST0

Decoder

VRQn

Priority control
ciricuit

Standby release
signal

S
el

ec
to

r

Vector table
address

generator

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

151

6.2 Types of Interrupt Sources and Vector Table

The µPD754202 has the following five interrupt sources and nesting of interrupts can be controlled by software.

Table 6-1 Types of Interrupt Sources

Interrupt Source Internal/External
Vectored Interrupt Request Signal

(vector table address)

Interrupt

PriorityNote

INBT (reference time interval signal from ba-

sic interval timer/watchdog timer)

INT0 (rising edge or falling edge is selected)

INTT0 (signal indicating coincidence between

count register of timer counter 0 and

modulo register)

INTT1 (signal indicating coincidence between

count register of timer counter 1 and

modulo register)

INTT2 (signal indicating coincidence between

count register of timer counter 2 and

modulo register)

Internal 1 VRQ1 (0002H)

 External 2 VRQ2 (0004H)

 Internal 3 VRQ5 (000AH)

Internal 4 VRQ6 (000CH)

Internal

Note If two or more interrupts occur at the same time, the interrupts are processed according to this priority.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

152

Fig. 6-2 Interrupt Vector Table

Address

0002H

0004H

0006H

0008H

000AH

000CH

MBE

MBE

MBE

MBE

RBE

RBE

RBE

RBE

INTBT start address (higher 3 bits)

INTBT start address (lower 8 bits)

INT0 start address (higher 3 bits)

INT0 start address (lower 8 bits)

INTT0 start address (higher 3 bits)

INTT0 start address (lower 8 bits)

INTT1, INTT2 start address (higher 3 bits)

INTT1, INTT2 start address (lower 8 bits)

0

0

0

0

0

0

0

0

0

0

0

0

The priority column in Table 6-1 indicates the priority according to which interrupts are executed if two or more

interrupts occur at the same time, or if two or more interrupt requests are kept pending.

Write the start address of interrupt service to the vector table , and the set values of MBE and RBE during interrupt

service. The vector table is set by using an assembler directive (VENTn: n = 1, 2, 5, 6).

Example Setting of vector table of INTBT

VENT1 MBE=0, RBE=0, GOTOBT

↑ ↑ ↑ ↑
<1> <2> <3> <4>

<1> Vector table of address 0002

<2> Setting of MBE in interrupt service routine

<3> Setting of RBE in interrupt service routine

<4> Symbol indicating start address of interrupt service routine

Caution The contents described in the operand of VENTn (n = 1, 2, 5, 6) instruction (MBE, RBE, start

address) are stored in the vector table address 2n.

Example Setting of vector tables of INTBT and INTT0

VENT1 MBE=0, RBE=0, GOTOBT; INTBT start address

VENT5 MBE=0, RBE=1, GOTOT0; INTT0 start address

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

153

6.3 Hardware Controlling Interrupt Function

(1) Interrupt request flag and interrupt enable flag

The µPD754202 has the following five interrupt request flags (IRQ×××) corresponding to the respective

interrupt sources:

INT0 interrupt request flag (IRQ0)

BT interrupt request flag (IRQBT)

Timer counter 0 interrupt request flag (IRQT0)

Timer counter 1 interrupt request flag (IRQT1)

Timer counter 2 interrupt request flag (IRQT2)

Each interrupt request flag is set to “1” when the corresponding interrupt request is generated, and is

automatically cleared to “0” when the interrupt service is executed. However, because IRQT1 and IRQT2 share

the vector address, these flags are cleared differently from the other flags (refer to 6.6 Service of Interrupts

Sharing Vector Address).

The µPD754202 also has five interrupt enable flags (IE×××) corresponding to the respective interrupt request

flags.

INT0 interrupt enable flag (IE0)

BT interrupt enable flag (IEBT)

Timer counter 0 interrupt enable flag (IET0)

Timer counter 1 interrupt enable flag (IET1)

Timer counter 2 interrupt enable flag (IET2)

The interrupt enable flag enables the corresponding interrupt when it is “1”, and disables the interrupt when

it is “0”.

If an interrupt request flag is set and the corresponding interrupt enable flag enables the interrupt, a vectored

interrupt (VRQn: n = 1, 2, 5, 6) occurs. This signal is also used to release the standby mode.

The interrupt request flags and interrupt enable flags are manipulated by a bit manipulation or 4-bit

manipulation instruction. When a bit manipulation instruction is used, the flags can be directly manipulated,

regardless of the setting of MBE. The interrupt enable flags are manipulated by the EI IE××× and DI IE×××
instructions. To test an interrupt request flag, the SKTCLR instruction is usually used.

Example

EI IE0 ; Enables INT0

DI IET1 ; Disables INTT1

SKTCLR IRQBT ; Skips and clears if IRQBT is 1

When an interrupt request flag is set by an instruction, a vectored interrupt is executed even if an interrupt

does not occur, in the same manner as when the interrupt occurs.

The interrupt request flags and interrupt enable flags are cleared to “0” when the RESET signal is asserted,

disabling all the interrupts.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

154

Table 6-2 Signals Setting Interrupt Request Flags

Interrupt Request

Flag
Signal Setting Interrupt Request Flag

Interrupt Enable

Flag

Set by reference time interval signal from basic interval timer

watchdog timer

Set by detection of edge of INT0/P61 pin input signal. Edge to be

detected is selected by INT0 edge detection mode register (IM0)

Set by coincidence signal from timer counter 0

Set by coincidence signal from timer counter 1

Set by coincidence signal from timer counter 2

IRQBT

IRQ0

IRQT0

IRQT1

IRQT2

IEBT

IE0

IET0

IET1

IET2

(2) Interrupt priority select register (IPS)

The interrupt priority select register selects an interrupt with the higher priority that can be nested. The lower

3 bits of this register are used for this purpose.

Bit 3 is an interrupt master enable flag (IME) that enables or disables all the interrupts.

IPS is set by a 4-bit memory manipulation instruction, but bit 3 is set or reset by the EI or DI instruction.

To change the contents of the lower 3 bits of IPS, the interrupt must be disabled (IME = 0).

Example

DI ; Disables interrupt

CLR1 MBE

MOV A, #1001

MOV IPS, A ; Gives higher priority to INTBT and enables interrupt

When the RESET signal is asserted, all the bits of this register are cleared to “0”.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

155

Fig. 6-3 Interrupt Priority Select Register

IPS3 IPS2 IPS1 IPS0

3 2 1 0

IPS

Symbol

FB2H

Address

0 0 0

0

0

0

1

1

1

1

0

1

1

0

0

1

1

1

0

1

0

1

0

1

No interrupts are handled as higher-priority
interrupts.

VRQ1

(INTBT)

VRQ2

(INT0)

Setting prohibited Note

VRQ5

(INTT0)

VRQ6

(INTT1, INTT2)

Setting prohibited Note

Vectored interrupt

at left is selected as

higher priority.

Selection of higher-priority interrupts

Interrupt master enable flag (IME)

0

1

Disables all the interrupts and no vectored interrupt is

started.

Controls interrupt enable/disable by the corresponding

interrupt enable flag.

Vectored interrupt

at left is selected as

higher priority.

Note If this value is set in the IPS register then the state is the same as if it had been set to IPS = X000B (Does

not give high priority to any interrupt.)

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

156

(3) Hardware of INT0

(a) Fig. 6-4 shows the configuration of INT0, which is an external interrupt input that can be detected at the

rising or falling edge depending on specification.

INT0 also has a noise rejection function which uses a sampling clock (refer to Fig. 6-5 I/O Timing of Noise

Rejection Circuit). The noise rejection circuit rejects a pulse having a width narrower than 2 cyclesNote

of the sampling clock as a noise. However, a pulse having a width wider than one cycle of the sampling

clock may be accepted as the interrupt signal depending on the timing of sampling (refer to Fig. 6-5 <2>

(a)). A pulse having a width wider than two cycles of the sampling clock is always accepted as the interrupt

without fail.

INT0 has two sampling clocks for selection: Φ and fX/64. These sampling clocks are selected by using

bit 3 (IM03) of the INT0 edge detection mode register (IM0) (refer to Fig. 6-6).

The edge of INT0 to be detected is selected by using bits 0 and 1 of IM0.

Fig. 6-6 shows the format of IM0. This register is manipulated by a 4-bit manipulation instruction. All

the bits of this register are cleared to “0” when the RESET signal is asserted, and the rising edge of INT0

is specified to be detected.

Note When sampling clock is Φ : 2tCY

When sampling clock is fX/64 : 128/fX

Cautions 1. Even when a signal is input to the INT0/P61 pin in the port mode, it is input through

the noise rejection circuit. Therefore, input a signal having a width wider than two

cycles of the sampling clock.

2. When the noise rejection circuit is selected (by clearing IM02 to 0), INT0 does not

operate in the standby mode because it performs sampling by using the clock (the

noise rejection circuit does not operate when CPU clock Φ is not supplied).

Therefore, do not select the noise rejection circuit if it is necessary to release the

standby mode by INT0 (set IM02 to 1).

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

157

Fig. 6-4 Configuration of INT0

Internal bus

4

IM0

Noise rejection
circuitINT0/P61

S
el

ec
to

r

SelectorNote

Φ fX/64

IM03

Edge
detection circuit

INT0
(IRQ0 set signal)

IM00, IM01IM02

Specifies edge to be detected.
Selects sampling clock.

Input buffer

Note HALT mode by INT0 cannot be released even if fX/64 is selected.

Fig. 6-5 I/O Timing of Noise Rejection Circuit

LL

HH

LL

LL

H

L

HH
LL

Rejected as noise

Rejected as noise

tSMP tSMP tSMP tSMP tSMP

<1> Narrow than sampling cycle
(tSMP)

INT0

Shaped output

INT0

Shaped output

INT0

Shaped output

INT0

Shaped output

<2> 1 to 2 times wider than
sampling cycle

(a)

(b)

<3> More than two times wider
than sampling clock

"L"

"L"

Remark tSMP = tCY or 64/fX

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

158

Fig. 6-6 Format of INT0 Edge Detection Mode Register (IM0)

3 2 1 0

IM00IM01IM02IM03

Address

IM0FB4H

Symbol

IM01 Specifies edge to be detectedIM00

0 Rising edge0

0 Falling edge1

1 Both rising and falling edges0

1 Ignored (interrupt request flag is not set)1

IM02 Noise rejection circuit select bit

0 Selects noise rejection circuit

1 Does not select noise rejection circuit

Sampling Standby release

Enabled

Disabled

Disabled

Enabled

IM03 Sampling clock

0 Note

1 fX/64Note

Φ

Note This value differs depending on the system clock frequency (fX).

Caution When the contents of the edge detection mode register are changed, the interrupt request flag

may be set. Therefore, you should disable interrupts before changing the contents of the mode

register. Then, clear the interrupt request flag by using the CLR1 instruction to enable the

interrupts. If the contents of IM0 are changed and the sampling clock of f X/64 is selected, clear

the interrupt request flag after 16 machine cycles after the contents of the mode register have

been changed.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

159

(4) Interrupt status flag

The interrupt status flags (IST0 and IST1) indicate the status of the processing currently executed by the CPU

and are included in PSW.

The interrupt priority control circuit controls nesting of interrupts according to the contents of these flags as

shown in Table 6-3.

Because IST0 and IST1 can be changed by using a 4-bit or bit manipulation instruction, interrupts can be nested

with the status under execution changed. IST0 and IST1 can be manipulated in 1-bit units regardless of the

setting of MBE.

Before manipulating IST0 and IST1, be sure to execute the DI instruction to disable the interrupt. Execute

the EI instruction after manipulating the flags to enable the interrupt.

IST1 and IST0 are saved to the stack memory along with the other flags of PSW when an interrupt is

acknowledged, and their statuses are automatically changed one higher. When the RETI instruction is

executed, the original values of IST1 and IST0 are restored.

The contents of these flags are cleared to “0” when the RESET signal is asserted.

Table 6-3 IST1 and IST0 and Interrupt Servicing Status

IST1 IST0 Processing by CPU

0 0 Status 0 0 1

0 1 Status 1 1 0

1 0 Status 2 – –

1 1 Setting prohibited

 After Interrupt

Acknowledged

IST1 IST0

Status of Processing

under Execution

Interrupt Request That

Can Be Acknowledged

Executes normal

program

All interrupts can be

acknowledged

Services interrupt

with low or high

priority

Interrupt with high

priority can be ac-

knowledged

Services interrupt

with high priority

Acknowledging all

interrupts is disabled

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

160

6.4 Interrupt Sequence

When an interrupt occurs, it is processed in the procedure illustrated below.

Fig. 6-7 Interrupt Service Sequence

Notes 1. IST1 and 0: interrupt status flags (bits 3 and 2 of PSW; Refer to Table 6-3 .)

2. Each vector table stores the start address of an interrupt service program and the preset values of

MBE and RBE when the interrupt is started.

Interrupt (INT×××)
occurs

Sets IRQ×××

IE××× set?

Corresponding VRQn
occurs

Pending until
IE××× is set

NO

YES

IME=1 Pending until
IME is set

NO

Is
VRQn interrupt with

high priority?

YES

YES

Note 1
IST1, 0 = 00 or

01

Note 1
IST1 , 0 = 00

YES

NO

NO

If two or more VRQn occur
simultaneously, one is selected
according to the priority in Table 6-1.

Rest of
VRQn

Pending until
service under
execution is
completed

Selected
VRQn

Saves contents of PC and PSW to stack memory and sets
dataNote 2 to PC, RBE, and MBE in vector table corresponding to started VRQn

Updates contents of IST0 and 1 to 01 if they are
00, or to 10 if they are 01

Resets acknowledged IRQ××× (however, if interrupt source
shares vector address with other interrupt, refer to 6.6)

Jumps to interrupt service program service
start address

YES

NO

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

161

6.5 Nesting Control of Interrupts

The µPD754202 can nest interrupts by the following two methods:

(1) Nesting with interrupt having high priority specified

This method is the standard nesting method of the µPD754202. One interrupt source is selected and nested.

An interrupt with the higher priority specified by the interrupt priority select register (IPS) can occur when the

status of the processing under execution is 0 or 1, and the other interrupts (interrupts with the lower priority)

can occur when the status is 0 (refer to Fig. 6-8 and Table 6-3).

Therefore, if you use this method when you wish to nest only one interrupt, operations such as enabling and

disabling interrupts, that is, changing the interrupt status flag, while the interrupt is serviced need not to be

performed, and the nesting level can be kept to 2.

Fig. 6-8 Nesting of Interrupt with High Priority

Interrupt disabled

IPS set

Interrupt enabled

Interrupt with
low or high
priority occurs

Interrupt
with high
priority
occurs

Normal
processing
(status 0)

Interrupt service
with low or high
priority (status 1)

Interrupt service
with high priority
(status 2)

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

162

(2) Nesting by changing interrupt status flags

Nesting can be implemented if the interrupt status flags are changed by program. In other words, nesting is

enabled when IST1 and IST0 are cleared to “0, 0” by an interrupt service program, and status 0 is set.

This method is used to nest two or more interrupts, or to implement nesting level 3 or higher.

Before changing IST1 and IST0, disable interrupts by using the DI instruction.

Fig. 6-9 Interrupt Nesting by Changing Interrupt Status Flag

Interrupt disabled

IPS set

Interrupt enabled

Interrupt with low
or high priority occurs

Interrupt
disabled

IST changed

Interrupt enabled

Interrupt with
low or high
 priority occurs

Status 1

Status 0

Status 0

Status 1

Normal processing
(status 0) Nesting of one interrupt Nesting of two interrupts

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

163

6.6 Service of Interrupts Sharing Vector Address

Because interrupt sources INTT1 and INTT2 share vector tables, you should select one or both of the interrupt

sources in the following way:

(1) To use one interrupt

Of the two interrupt sources sharing a vector table, set the interrupt enable flag of the necessary interrupt

source to “1”, and clear the interrupt enable flag of the other interrupt source to “0”. In this case, an interrupt

request is generated by the interrupt source that is enabled (IE××× = 1). When the interrupt is acknowledged,

the interrupt request flag is reset.

(2) To use both interrupts

Set the interrupt enable flags of both the interrupt sources to “1”. In this case, the interrupt request flags of

the two interrupt sources are ORed.

In this case, if an interrupt request is acknowledged when one or both the interrupt flags are set, the interrupt

request flags of both the interrupt sources are not reset. This is in order to ascertain which interrupt was

generated during interrupt service.

Therefore, it is necessary to identify which interrupt source has generated the interrupt by using an interrupt

service routine. This can be done by checking the interrupt request flags by executing the SKTCLR instruction

at the beginning of the interrupt service routine.

If both the request flags are set when this request flag is tested or cleared, the interrupt request remains even

if one of the request flags is cleared. If this interrupt is selected as having the higher priority, nesting servicing

is started by the remaining interrupt request.

Consequently, the interrupt request not tested is serviced first. If the selected interrupt has the lower priority,

the remaining interrupt is kept pending and therefore, the interrupt request tested is serviced first. Therefore,

an interrupt sharing a vector address with the other interrupt is identified differently, depending whether it has

the higher priority, as shown in Table 6-4.

Table 6-4 Identifying Interrupt Sharing Vector Address

With higher priority Interrupt is disabled and interrupt request

flag of interrupt that takes precedence is

tested

With lower priority Interrupt request flag of interrupt that takes

precedence is tested

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

164

...

Examples 1. To use both INTT1 and INTT2 as having the higher priority, and give priority to INTT2

DI

SKTCLR IRQT2 ; IRQT2=1?

BR VSUBBT

EI

RETI

:

VSUBBT: CLR1 IRQT1

EI

RETI

2. To use both INTT1 and INTT2 as having the lower priority, and give priority to INTT2

SKTCLR IRQT2 ; IRQT2 =1?

BR VSUBBT

RETI

VSUBBT: CLR1 IRQT1

RETI

...
...

Service routine of INTT2

...
...

...
...

Service routine of INTT1

...
...

...
...

...
...

...
...

Service routine of INTT2

Service routine of INTT1

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

165

6.7 Machine Cycles until Interrupt Servicing

The number of machine cycles required from when an interrupt request flag (IRQ×××) has been set until the interrupt

routine is executed is as follows:

(1) If IRQ××× is set while interrupt control instruction is executed

If IRQ××× is set while an interrupt control instruction is executed, the next one instruction is executed. Then

three machine cycles of interrupt service is performed and the interrupt routine is executed.

A B C D

Interrupt control instruction

A: Sets IRQ×××
B: Executes next one instruction (1 to 3 machine cycles; differs depending on instruction)

C: Interrupt service (3 machine cycles)

D: Executes interrupt routine

Cautions1. If two or more interrupt control instructions are successively executed, the one instruction

following the interrupt control instruction executed last is executed, three machine cycles of

interrupt service is performed, and then the interrupt routine is executed.

2. If the DI instruction is executed when or after IRQ ××× is set (A in the above figure), the interrupt

request corresponding to IRQ ××× that has been set is kept pending until the EI instruction is

executed next time.

Remarks 1. An interrupt control instruction manipulates the hardware units related to interrupt (address FB×H

of the data memory). The EI and DI instructions are interrupt control instructions.

2. The three machine cycles of interrupt service is the time required to manipulate the stack which

will be manipulated when an interrupt is acknowledged.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

166

(2) If IRQ××× is set while instruction other than (1) is executed

(a) If IRQ××× is set at the last machine cycle of the instruction under execution

In this case, the one instruction following the instruction under execution is executed, three machine cycles

of interrupt service is performed, and then the interrupt routine is executed.

A B C D

Instruction other than
interrupt control
instruction

A: Sets IRQ×××
B: Executes next one instruction (1 to 3 machine cycles; differs depending on instruction)

C: Interrupt service (3 machine cycles)

D: Executes interrupt routine

Caution If the next instruction is an interrupt control instruction, the one instruction following the

interrupt control instruction executed last is executed, three machine cycles of interrupt service

is performed, and then the interrupt routine is executed. If the DI instruction is executed after

IRQ××× has been set, the interrupt request corresponding to the set IRQ ××× is kept pending.

(b) If IRQ××× is set before the last machine cycle of the instruction under execution

In this case, three machine cycles of service is performed after execution of the current instruction, and

then the interrupt routine is executed.

C D

Instruction other than
interrupt control
instruction

A

A: Sets IRQ×××
B: Interrupt service (3 machine cycles)

C: Executes interrupt routine

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

167

6.8 Effective Usage of Interrupts

Use the interrupt function effectively as follows:

(1) Use different register banks for the normal routine and interrupt routine.

The normal routine uses register banks 2 and 3 with RBE = 1 and RBS = 2. If the interrupt service routine

for one nested interrupt, use register bank 0 with RBE = 0, so that you do not have to save or restore the

registers. When two or more interrupts are nested, set RBE to 1, save the register bank by using the PUSH

BR instruction, and set RBS to 1 to select register bank 1.

(2) Use the software interrupt for debugging.

Even if an interrupt request flag is set by an instruction, the same operation as when an interrupt occurs is

performed. For debugging of an irregular interrupt or debugging when two or more interrupts occur at the same

time, the efficiency can be increased by using an instruction to set the interrupt flag.

6.9 Application of Interrupt

To use the interrupt function, first set as follows by the main program:

(a) Set the interrupt enable flag of the interrupt used (by using the EI IE××× instruction).

(b) To use INT0, select the active edge (set IM0).

(c) To use nesting (of an interrupt with the higher priority), set IPS (IME can be set at the same time).

(d) Set the interrupt master enable flag (by using the EI instruction).

In the interrupt service program, MBE and RBE are set by the vector table. However, when the interrupt specified

as having the higher priority is serviced, the register bank must be saved and set.

To return from the interrupt service program, use the RETI instruction.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

168

(1) Enabling or disabling interrupt

Reset
 .
 .
 .

<1>

EI IE0
EI IET1

<2>

EI
 .
 .
 .
 .
 .
 .

<3>

DI IE0
 .
 .
 .
 .
 .
 .

<4>

DI
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

<5>

Disables
interrupts

Enables INT0 and INTT1

Enables INTT1

Disables
interrupts

<Main program>

<1> All the interrupts are disabled by the RESET signal.

<2> An interrupt enable flag is set by the EI IE××× instruction. At this stage, the interrupts are still disabled.

<3> The interrupt master enable flag is set by the EI instruction. INT0 and INTT1 are enabled at this time.

<4> The interrupt enable flag is cleared by the DI IE××× instruction, and INT0 is disabled.

<5> All the interrupts are disabled by the DI instruction.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

169

(2) Example of using INTBT and INT0 (falling edge active). Not nested (all interrupts have higher priority)

SEL<1>

Reset

INT0<4>

RB2

MOV

MOV

CLR1

<2> A, #1

IM0, A

IRQ0

EI

EI

EI

EI
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

IEBT

IE0

IET0

<3>

Status 0

Status

Status 1

RETI<5>

(INT0 servicing program)

; RBE=1, MBE=0

; RBE=0

<Main program>

<1> All the interrupts are disabled by the RESET signal and status 0 is set.

RBE = 1 is specified by the reset vector table. The SEL SB2 instruction uses register banks 2 and 3.

<2> INT0 is specified to be active at the falling edge.

<3> The interrupt is enabled by the EI, EI IE××× instruction.

<4> The INT0 interrupt service program is started at the falling edge of INT0. The status is changed to 1,

and all the interrupts are disabled.

RBE = 0, and register banks 0 and 1 are used.

<5> Execution returns from the interrupt routine when the RETI instruction is executed. The status is returned

to 0 and the interrupt is enabled.

Remark If all the interrupts are used with lower priority as shown in this example, saving or restoring the

register bank is not necessary if RBE = 1 and RBS = 2 for the main program and register banks

2 and 3 are used, and RBE = 0 for the interrupt service program and register banks 0 and 1 are

used.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

170

(3) Nesting of interrupts with higher priority (INTBT has higher priority and INTT0 and INTT2 have lower

priority)

<1>

Reset

INTT0<2>

SEL

EI

EI

EI

MOV

MOV
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

RB2

IEBT

IET0

IET2

A, #9

IPS, A

Status 0

Status 0

Status 1

RETI

<lNTT0 service program>

; RBE=1, MBE=0

; RBE=0

Status 1

Status 2

; RBE=1
<lNTBT service program>

INTBT<3>

SEL RB1<4>

SEL RB2
RETI

<5>

<1> INTBT is specified as having the higher priority by setting of IPS, and the interrupt is enabled at the same

time.

<2> INTT0 service program is started when INTT0 with the lower priority occurs. Status 1 is set and the

other interrupts with the lower priority are disabled. RBE = 0 to select register bank 0.

<3> INTBT with the higher priority occurs. The interrupts are nested. The status is changed to 0 and all

the interrupts are disabled.

<4> RBE = 1 and RBS = 1 to select register bank 1 (only the registers used may be saved by the PUSH

instruction).

<5> RBS is returned to 2, and execution returns to the main routine. The status is returned to 1.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

171

(4) Executing pending interrupt - interrupt input while interrupts are disabled -

Reset

EI IE0
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

EI
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

 EI IET0
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

<2>

<1> INT0

<4>

<lNT0 service program>

<3> INTT0

RETI

<lNTT0 service program>

RETI

<Main program>

<1> The request flag is kept pending even if INT0 is set while the interrupts are disabled.

<2> INT0 servicing program is started when the interrupts are enabled by the EI instruction.

<3> Same as <1>.

<4> INTT0 service program is started when the pending INTT0 is enabled.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

172

(5) Executing pending interrupt - two interrupts with lower priority occur simultaneously -

Reset

EI IET0

EI IE0

EI
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

INT0

INTT0
<1>

<lNT0 service program>

<lNTT0 service program>

<2> RETI

RETI

<Main program>

<1> If INT0 and INTT0 with the lower priority occur at the same time (while the same instruction is executed),

INT0 with the higher priority is executed first (INTT0 is kept pending).

<2> When the INT0 service routine is terminated by the RETI instruction, the pending INTT0 service program

is started.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

173

(6) Executing pending interrupt - interrupt occurs during interrupt service (INTBT has higher priority and

INTT0 and INTT2 have lower priority) -

<1> If INTBT with the higher priority and INTT0 with the lower priority occur at the same time, the service

of the interrupt with the higher priority is started. (If there is no possibility that an interrupt with the higher

priority will occur while another interrupt with the higher priority is being serviced, DI IE×× is not

necessary.)

<2> If an interrupt with the lower priority occurs while the interrupt with the higher priority is executed, the

interrupt with the lower priority is kept pending.

<3> When the interrupt with the higher priority has been serviced, INTT0 with the higher priority of the pending

interrupts is executed.

<4> When the service of INTT0 has been completed, the pending INTT2 is serviced.

Reset

EI IEBT

EI IET0

EI IET2

MOV A, #9

MOV IPS, A
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

INTT0

INTBT
<1>

<lNTBT service program>

<lNTT2 service program>

<4> RETI

RETI

<lNTT0 service program>

<3> RETI

INTT2

PUSH rp
 .
 .
 .
 .
 .
 .
 .

POP rp

<Main program>

<2>

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

174

(7) Enabling two nesting of interrupts - INTT0 and INT0 are nested doubly and INTBT and INTT2 are nested

singly -

<1> When an INTBT that does not enable nesting occurs, the INTBT service routine is started. The status

is 1.

<2> The status is changed to 0 by clearing IST0. INTBT and INTT2 that do not enable nesting are disabled.

<3> When an INTT0 that enables nesting occurs, nesting is executed. The status is changed to 1, and all

the interrupts are disabled.

<4> The status is returned to 1 when INTT0 service is completed.

<5> The disabled INTBT and INTT2 are enabled, and execution returns to the main routine.

Reset

INTBT<1>

EI

EI

EI

EI

EI

IET0

IE0

IEBT

IET2

Status 0

Status 0

<lNTBT service program>

Status 0

Status 1

INTT0<3>

RETI<4>

Status 1

Status 0

EI

EI

RETI

<5> IEBT

IET2

DI

CLR1

DI

DI

EI

<2>

IST0

IEBT

IET2

<lNTT0 service program>

<Main program>

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

175

6.10 Test Function

6.10.1 Types of test sources

The µPD754202 has a test source INT2. INT2 is an edge-detection testable inputs.

Table 6-5 Types of Test Sources

Test Source Internal/External

INT2 (detects falling edge of input to KR4-KR7 pin) External

6.10.2 Hardware controlling test function

(1) Test request and test enable flags

A test request flag (IRQ2) is set to “1” when a test request is generated (INT2). Clear this flat to “0” by software

after the test processing has been executed.

A test enable flag (IE2) is provided to a test enable flag. When this flag is “1”, the standby release signal is

enabled; when it is “0”, the signal is disabled.

If both the test request flag and test enable flag are set to “1”, the standby release signal is generated.

Table 6-6 shows the signals that set the test request flags.

Table 6-6 Test Request Flag Setting Signals

Test Request Flag Test Request Flag Setting Signal Test Enable Flag

IRQ2 Detection of falling edge of any input to KR4/P70-KR7/P73 pins. IE2

Edge to be detected is selected by INT2 edge detection mode

register (IM2)

(2) Hardware of key interrupts (KR4-KR7)

Fig. 6-10 shows the configuration of KR4 through KR7.

The IRQ2 setting signal is output when a specified edge is detected on either of the key interrupt. Which falling

input of the pin is selected is specified by using the INT2 edge detection mode register (IM2).

Fig. 6-11 shows the format of IM2. IM2 is set by a 4-bit manipulation instruction. When the reset signal is

asserted, all the bits of this register are cleared to “0”.

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

176

KR7/P73

KR6/P72

KR5/P71

KR4/P70

Nothing is assigned
(in reset mode)

Key return reset circuit

Falling edge
detection

circuit

IM2

INT2
 (IRQ2 setting signal)

Input buffer

4

Internal bus

S
el

ec
to

r

Fig. 6-10 KR4-KR7 Block Diagram

CHAPTER 6 INTERRUPT AND TEST FUNCTIONS

177

Fig. 6-11 Format of INT2 Edge Detection Mode Register (IM2)

3 2 1 0

IM20IM2100

Address

IM2FB6H

Symbol

IM21 INT2 test sourceIM20

0 Assigned nothing0

0 1

Others

Test input pin

–

KR4-KR7Inputs falling edge of any of KR4/P70 to
KR7/P73 pin

Setting prohibited

Cautions1. If the contents of the edge detection mode register are changed, the test request flag may be

set. Disable the test input before changing the contents of the mode register. Then, clear the

test request flag by the CLR1 instruction and enable the test input.

2. If a low level is input to even one of the KR × pins, IRQ2 is not set even if the falling edge is

input to the other pins.

3. On reset, all bits of IM2 become 0. For this reason, nothing is assigned as the N2 test source.

When performing an interrupt using a falling edge input on any of pins KR4-KR7, IM2 must

be set to 0001B.

(3) KRREN pin functions

In the STOP mode, when the KRREN pin is high, and a falling edge input is generated any of pins KR4-KR7,

a system reset occurs.

Table 6-7 KR4-KR7 Pins, KRREN Pin and Test Function

Pins KR4-KR7 Operating Mode KRREN Pin Test Function

Falling edge signal Normal operating and Low Set IRQ2

generated HALT mode High

STOP mode Low

High Disabled for system reset

Furthermore, STOP mode can be released without altering the interrupt enable flag when the KRREN pin is high,

by using falling edge input (key return reset) at pin KRn (n = 4-7).

178

[MEMO]

179

CHAPTER 7 STANDBY FUNCTION

The µPD754202 possesses a standby function that reduces the power consumption of the system. This standby

function can be implemented in the following two modes:

• STOP mode

• HALT mode

The functions of the STOP and HALT modes are as follows:

(1) STOP mode

In this mode, the system clock oscillation circuit is stopped and therefore, the entire system is stopped. The

current consumption of the CPU is substantially reduced.

Moreover, the contents of the data memory can be retained at a low voltage (VDD = 1.8 V MIN.). This mode

is therefore useful for retaining the data memory contents with an extremely low current consumption.

The STOP mode of the µPD754202 can be released by an interrupt request; therefore, the microcontroller

can operate intermittently. However, because a certain wait time is required for stabilizing the oscillation of

the clock oscillation circuit when the STOP mode has been released, use the HALT mode if service must be

started immediately after the standby mode has been released by an interrupt request.

(2) HALT mode

In this mode, the operating clock of the CPU is stopped. Oscillation of the system clock oscillation circuit

continues. This mode does not reduce the current consumption as much as the STOP mode, but it is useful

when service must be resumed immediately when an interrupt request is issued, or for an intermittent operation

such as a watch operation.

In either mode, all the contents of the registers, flags, and data memory immediately before the standby mode

is set are retained. Moreover, the contents of the output latches and output buffers of the I/O ports are also retained;

therefore, the statuses of the I/O ports are processed in advance so that the current consumption of the overall system

can be minimized.

The following page describes the points to be noted in using the standby mode.

Cautions 1. You can operate the µPD754202 efficiently with a low current consumption at a low voltage

by selecting the standby mode and CPU clock. In any case, however, the time described in

5.2.3 Setting of CPU Clock is required until the operation is started with the new clock when

the clock has been changed by manipulating the control register. To use the clock selecting

function and standby mode in combination, therefore, set the standby mode after the time

required for selection has elapsed.

2. To use the standby mode, process so that the current consumption of the I/O ports is

minimized.

Especially, do not open the input port, and be sure to input either low or high level to it.

CHAPTER 7 STANDBY FUNCTION

180

7.1 Setting of and Operating Status in Standby Mode

Table 7-1 Operation States in Standby Mode

STOP Mode HALT Mode

Instruction to be set STOP instruction HALT instruction

Operating status Clock generator Operation stopped Only CPU clock Φ is stopped

(oscillation continues)

Basic interval timer/ Operation stopped Operation possible

watchdog timer BT mode : Sets IRQBT at the

reference time interval

WT mode: Generates reset signal on

BT overflow

Timer counter Operation stopped Operation possible

External interrupt INT0 cannot operateNote

INT2 can only operate at KRn fall.

CPU Operation stopped

Release signal • Reset signal • Reset signal

• Interrupt request signal from hardware • Interrupt request signal from hardware

in which interrupt is enabled in which interrupt is enabled

• System reset signal (key return reset)

generated by KRn fall when KRREN

pin is 1

Note Operation is possible only when the noise eliminator is not selected (when IM02 = 1) by bit 2 of the edge

detection mode register (IM0).

CHAPTER 7 STANDBY FUNCTION

181

The STOP mode is set by the STOP instruction, and the HALT mode is set by the HALT instruction (the STOP

and HALT instructions respectively set bits 3 and 2 of PCC).

Be sure to write the NOP instruction after the STOP and HALT instructions.

When changing the CPU operating clock by using the lower 2 bits of PCC, a certain time elapses after the bits

of PCC have been rewritten until the CPU clock is actually changed, as indicated in Table 5-5 Maximum Time

Required for Changing CPU Clock . To change the operating clock before the standby mode is set and the CPU

clock after the standby mode has been released, set the standby mode after the lapse of the machine cycles necessary

for changing the CPU clock, after rewriting the contents of PCC.

In the standby mode, the data is retained for all the registers and data memory that stop in the standby mode,

such as general-purpose registers, flags, mode registers, and output latches.

Cautions 1. When the STOP mode is set, the X2 pin is internally pulled up to V DD with a resistor of 50 k Ω
(TYP.).

2. Reset all the interrupt request flags before setting the standby mode.

If there is an interrupt source whose interrupt request flag and interrupt enable flag are both

set, the standby mode is released immediately after it has been set (refer to Fig. 6-1 Block

Diagram of Interrupt Control Circuit).

If the STOP mode is set, however, the HALT mode is set immediately after the STOP

instruction has been executed, and the time set by the BTM register elapses. Then, the

normal operation mode is restored.

CHAPTER 7 STANDBY FUNCTION

182

7.2 Releasing Standby Mode

Both the STOP and HALT modes can be released when an interrupt request signal occurs that is enabled by the

corresponding interrupt enable flag, or when the RESET signal is asserted. Furthermore, STOP mode can be released

without altering the interrupt enable flag, when the KRREN pin is high, by using a falling edge input (key return reset)

at KRn pin.

Fig. 7-1 illustrates how each mode is released.

Fig. 7-1 Releasing Standby Mode (1/2)

(a) Releasing STOP mode by RESET signal, or by key return reset

Clock

STOP
instruction

Operation
mode STOP mode

Oscillates Stops

HALT mode

Oscillates

WaitNote 1

Operation
mode

RESET
signal, KRn

(b) Releasing STOP mode by interrupt (except for releasing by key return reset)

Standby release
signal

Clock

STOP
instruction

Operation
mode STOP mode

Stops

HALT mode

Oscillates

Wait (time set by BTM)Note 2

Operation
mode

Oscillates

Note The following two times can be selected by mask option:

217/fX (21.8 ms at 6.0 MHz, 31.3 ms at 4.19 MHz)

215/fX (5.46 ms at 6.0 MHz, 7.81 ms at 4.19 MHz)

Remark The broken line indicates acknowledgment of the interrupt request that releases the standby mode.

CHAPTER 7 STANDBY FUNCTION

183

Fig. 7-1 Releasing Standby Mode (2/2)

(c) Releasing HALT mode by RESET signal

RESET
signal

Clock

HALT

instruction

Operation
mode HALT mode

WaitNote

Operation
mode

Oscillates

(d) Releasing HALT mode by interrupt

Standby release
signal

Clock

HALT

instruction

Operation
mode HALT mode Operation mode

Oscillates

Note The following two times can be selected by mask option:

217/fX (21.8 ms at 6.0 MHz, 31.3 ms at 4.19 MHz)

215/fX (5.46 ms at 6.0 MHz, 7.81 ms at 4.19 MHz)

Remark The broken line indicates acknowledgment of the interrupt request that releases the standby mode.

The interrupt used to release STOP mode is selected by setting (1) the corresponding interrupt enable flag (IE).

STOP mode is released when the interrupt request flag (IRQ) selected in STOP mode is set (1).

In this case, be sure to clear (0) all IEs and IRQs before setting (1) the corresponding interrupt IE. This is because

STOP mode is not released by any interrupt other than that selected.

The procedure to release STOP mode by interrupt generation is shown below.

<1> Clear all IEs and IRQs

<2> Set IE for the interrupt used to release STOP mode.

<3> Clear again the IRQ used to release STOP mode to enter STOP mode.

In this STOP mode, IRQ of the selected interrupt is set and HALT mode is entered.

Then, after a wait time, the system returns to normal operating mode.

CHAPTER 7 STANDBY FUNCTION

184

When the STOP mode has been released by an interrupt, the wait time is determined by the setting of BTM (refer

to Table 7-2).

The time required for the oscillation to stabilize varies depending on the type of the resonator used and the supply

voltage when the STOP mode has been released. Therefore, you should select the appropriate wait time depending

on the given conditions, and set BTM before setting the STOP mode.

Table 7-2 Selecting Wait Time by BTM

Wait TimeNote

fX = 6.0 MHz fX = 4.19 MHz

– 0 0 0 About 220/fX (about 175 ms) About 220/fX (about 250 ms)

– 0 1 1 About 217/fX (about 21.8 ms) About 217/fX (about 31.3 ms)

– 1 0 1 About 215/fX (about 5.46 ms) About 215/fX (about 7.81 ms)

– 1 1 1 About 213/fX (about 1.37 ms) About 213/fX (about 1.95 ms)

Other than the above Setting prohibited

Note This time does not include the time required to start oscillation after the STOP mode has been released.

Caution The wait time that elapses when the STOP mode has been released does not include the time

that elapses until the clock oscillation is started after the STOP mode has been released (a in

Fig. 7-2), regardless of whether the STOP mode has been released by the RESET signal or

occurrence of an interrupt.

Fig. 7-2 Wait Time after Releasing STOP Mode

VSS

STOP mode released

Voltage
waveform
of X1 pin

a

Before releasing STOP mode by a key return reset or RESET input rather than interrupt input, be sure to clear

all interrupt enable flags (including IE2) as shown in Fig. 7-3.

BTM3 BTM2 BTM1 BTM0

CHAPTER 7 STANDBY FUNCTION

185

Fig. 7-3 STOP Mode Release by Key Return Reset or RESET Input

IE×××←0

STOP

NOP

Key return reset
or RESET input

The differences between release by a key return reset and release by RESET input are as follows.

RESET Input Key Return Reset

Key return flag (KRF) 0 1

Watchdog flag (WDF) 0 Retained

CHAPTER 7 STANDBY FUNCTION

186

7.3 Operation After Release of Standby Mode

(1) When the standby mode has been released by the RESET signal, the normal reset operation is performed.

(2) When the standby mode has been released by an interrupt, whether or not a vectored interrupt is executed

when the CPU has resumed instruction execution is determined by the content of the interrupt master enable

flag (IME).

(a) When IME = 0

Execution is started from the instruction next to the one that set the standby mode after the standby mode

has been released. The interrupt request flag is retained.

(b) When IME = 1

A vectored interrupt is executed after the standby mode has been released and then two instructions have

been executed. However, if the standby mode has been released by INT2 (testable input), the service

same as (a) is performed because no vectored interrupt is generated in this case.

7.4 Application of Standby Mode

Use the standby mode in the following procedure:

This example applies to the operation at fX = 4.19 MHz. At fX = 6.0 MHz, the CPU clock and the wait time are

different while the settings are the same.

<1> Detect the cause that sets the standby mode such as an interrupt input or power failure by port input.

<2> Process the I/O ports (process so that the current consumption is minimized).

Especially, do not open the input port. Be sure to input a low or high level to it.

<3> Specify an interrupt that releases the standby mode.

<4> Specify the operation to be performed after the standby mode has been released (manipulate IME depending

on whether interrupt service is performed or not).

<5> Specify the CPU clock to be used after the standby mode has been released. (To change the clock, make

sure that the necessary machine cycles elapse before the standby mode is set.)

<6> Select the wait time to elapse after the standby mode has been released.

<7> Set the standby mode (by using the STOP or HALT instruction).

CHAPTER 7 STANDBY FUNCTION

187

(1) Application example of STOP mode (at f X = 4.19 MHz)

<When using the STOP mode under the following conditions>

• The STOP mode is set at the falling edge of INT0 and released at the rising edge.

• All the I/O ports go into a high-impedance state (if the pins are externally processed so that the current

consumption is reduced in a high-impedance state).

• Interrupts INTBT and INTT0 are used in the program. However, these interrupts are not used to release the

STOP mode.

• The interrupts are enabled even after the STOP mode has been released.

• After the STOP mode has been released, operation is started with the slowest CPU clock.

• The wait time that elapses after the mode has been released is about 31.3 ms.

• A wait time of 31.3 ms elapses until the power supply stabilizes after the mode has been released. The P61/

INT0 pin is checked two times to prevent chattering.

<Timing chart>

CPU operation

STOP instruction

INT0 INT0

About
31.3 ms

Operation mode STOP mode

HALT mode (wait)
Low-speed operation

High-speed operation

About
31.3 ms

0 V

VDD

P61/INT0

VDD pin voltage

CHAPTER 7 STANDBY FUNCTION

188

.
.

<Program example>

(INT0 service program, MBE = 0)

VSUB0: SKT PORT6.1 ; P61 = 1?

BR PDOWN ; Power down

SET1 BTM.3 ; Power on

WAIT: SKT IRQBT ; Waits for 31.3 ms

BR WAIT

SKT PORT6.1 ; Checks chattering

BR PDOWN

MOV A, #0011B

MOV PCC, A ; Sets high-speed mode

MOV XA.#××H ; Sets port mode register

MOV PMGm, XA

EI IEBT

EI IET0

RETI

PDOWN: MOV A, #0 ; Lowest-speed mode

MOV PCC, A

MOV XA, #00H

MOV PMGA, XA ; I/O port in high-impedance state

DI IEBT ; Disables INTBT and INTT0

DI IET0

MOV A, #1011B

MOV BTM, A ; Wait time = 31.3 ms

NOP

STOP ; Sets STOP mode

NOP

RETI

CHAPTER 7 STANDBY FUNCTION

189

(2) Application example of HALT mode (at f X = 4.19 MHz)

<To perform intermittent operation under the following conditions>

• The standby mode is set at the falling edge of INT0 and released at the rising edge.

• In the standby mode, an intermittent operation is performed at intervals of 250 ms (INTBT).

• INT0 and INTBT are assigned with the lower priority.

• The slowest CPU clock is selected in the standby mode.

<Timing chart>

INT0 INT0

Operation
mode

CPU operation

Intermittent operation
(HALT mode + Iow-speed operation)

Operation mode
(low-speed)

250 ms

Operation mode
(high-speed)

P61/INT0

0 V

VDD

 VDD pin voltage

CHAPTER 7 STANDBY FUNCTION

190

<Program example>

BTAND4: SKTCLR IRQ0 ; INT0 = 1?

BR VSUBBT ; NO

SKT PORT6.1 ; P61 = 1?

BR PDOWN ; Power down

SET1 BTM.3 ; Starts BT

WAIT: SKT IRQBT ; Waits for 250 ms

BR WAIT

SKT PORT6.1

BR PDOWN

MOV A, #0011B ; High-speed mode

MOV PCC, A

[EI IEn] ; IEn ← 1

RETI

PDOWN: MOV A, #0 ; Lowest-speed mode

MOV PCC, A

[DI IEn] ; IEn ← 0

Keeps 32 machine cycles

SETHLT: HALT ; HALT mode

NOP

RETI

VSUBBT: CLR1 IRQBT

Processing during intermittent operation

BR SETHLT

..
..

..
..

..
..

..
..

..
..

..
..

..
.

191

CHAPTER 8 RESET FUNCTION

8.1 Configuration and Operation of Reset Function

Three types of reset signals are used: the external reset signal (RESET) and a reset signal from the basic interval

timer/watchdog timer, and key return reset. When either of these reset signals is input, an internal reset signal is

asserted. Fig. 8-1 shows the configuration of the reset circuit.

Fig. 8-1 Configuration of Reset Circuit

VDD

Mask option

KRREN

RESET

Q R

S

QS

R

QS

R

Instruction

STOP mode

KRF

WDF

Watchdog timer overflow

Internal reset signal

Instruction

One-shot pulse generator
VDD

Mask option

P70/KR4

P71/KR5

P72/KR6

P73/KR7

In
te

rn
al

 b
us

Falling edge detector
Interrupt

Each hardware unit is initialized when the RESET signal is asserted as shown in Table 8-1. Fig. 8-2 shows the

timing of the reset operation.

CHAPTER 8 RESET FUNCTION

192

Fig. 8-2 Reset Operation by RESET Signal

RESET signal

HALT mode
Operation mode or

standby mode

Internal reset operation

Operation mode

WaitNote

Note The following two times can be selected by the mask option:

217/fX (21.8 ms at 6.0 MHz, 31.3 ms at 4.19 MHz)

215/fX (5.46 ms at 6.0 MHz, 7.81 ms at 4.19 MHz)

CHAPTER 8 RESET FUNCTION

193

When RESET Signal Asserted

in Standby Mode

When RESET Signal Asserted

during Operation
Hardware

Sets lower 3 bits of program

memory address 0000H to

PC10-PC8, and contents of

address 0001H to PC7-PC0

 Retained

0

0

Sets bit 6 of program memory

address 0000H to RBE and bit

7 to MBE

Undefined

1000B

Retained

Retained

0, 0

Undefined

0

0

0

FFH

0

0, 0

0

FFH

0

0, 0

Same as left

Undefined

0

0

Same as left

Undefined

1000B

Undefined

Undefined

0, 0

Undefined

0

0

0

FFH

0

0, 0

0

FFH

0

0, 0

Program counter (PC)

PSW Carry flag (CY)

Skip flags (SK0-SK2)

Interrupt status flags (IST0, IST1)

Bank enable flags (MBE, RBE)

Stack pointer (SP)

Stack bank select register (SBS)

Data memory (RAM)

General-purpose register (X, A, H, L, D, E, B, C)

Bank select registers (MBS, RBS)

Counter (BT)

Mode register (BTM)

Watchdog timer enable flag

(WDTM)

Counter (T0)

Modulo register (TMOD0)

Mode register (TM0)

TOE0, TOUT F/F

Counter (T1)

Modulo register (TMOD1)

Mode register (TM1)

TOE1, TOUT F/F

Table 8-1 Status of Each Hardware Unit after Reset (1/3)

Timer

counter (T0)

Timer

counter (T1)

Basic

interval

timer/

watchdog

timer

CHAPTER 8 RESET FUNCTION

194

Bit sequential buffer (BSB0-BSB3) Retained Undefined

Table 8-1 Status of Each Hardware Unit after Reset (3/3)

Hardware Generation of RESET Signal Generation of RESET Generation of RESET Signal Generation of RESET

by Key Return Reset Signal in Standby Mode by WDT in Operation Signal in Operation

Watchdog flag Retains the previous
0 1 0

(WDF) state.

Key return flag
1 0

Retains the previous
0

(KRF) state.

Table 8-1 Status of Each Hardware Unit after Reset (2/3)

When RESET Signal Asserted

in Standby Mode

When RESET Signal Asserted

during Operation
Hardware

Counter (T2)

Modulo register (TMOD2)

High-level period setting

modulo register (TMOD2H)

Mode register (TM2)

TOE2, TOUT F/F

REMC, NRZ, NRZB

Processor clock control

register (PCC)

Interrupt request flag

(IRQ×××)

Interrupt enable flag (IE×××)

Interrupt master enable flag

(IME)

Interrupt priority select

register (IPS)

INT0, 2 mode registers

(IM0, IM2)

Output buffer

Output latch

I/O mode registers

(PMGA, PMGC)

Pull-up resistor specification

register (POGA, POGB)

0

FFH

FFH

0

0, 0

0, 0, 0

0

Reset (0)

0

0

0

0, 0

Off

Cleared (0)

0

0

0

FFH

FFH

0

0, 0

0, 0, 0

0

Reset (0)

0

0

0

0, 0

Off

Cleared (0)

0

0

Timer

counter (T2)

Clock generation

circuit

Digital port

Interrupt

function

CHAPTER 8 RESET FUNCTION

195

8.2 Watchdog Flag (WDF), Key Return Flag (KRF)

The WDF and KRF are mapped to bit 2 and 3 of address FC6H respectively.

The contents of WDF and KRF are undefined initially, but they are initialized to “0”, by external RESET signal

generation.

The WDF is cleared by a watchdog timer overflow signal, and the KRF is set by a reset signal generated by

the KRn pins. As a result, by checking the contents of WDF and KRF, it is possible to know what kind of reset

signal is generated.

As the WDF and KRF are cleared only by external signal or instruction execution, if once these flags are set,

they are not cleared until an external signal is generated or a clear instruction is executed. Check and clear the

contents of WDF and KRF after reset start operation by executing SKTCLR instruction and so on.

Table 8-2 lists the contents of WDF and KRF corresponding to each signal. Fig. 8-3 shows the WDF operation

in generating each signal, and Fig. 8-4 shows the KRF operation in generating each signal.

Table 8-2 WDF and KRF Contents Correspond to Each Signal

External RESET Reset Signal Reset Signal WDF Clear KRF Clear

Hardware Signal Generation Generation by Watch- Generation by the Instruction Instruction

Dog Timer Overflow KRn Input Execution Execution

Watchdog flag (WDF) 0 1 Hold 0 Hold

Key return flag (KRF) 0 Hold 1 Hold 0

Fig. 8-3 WDF Operation in Generating Each Signal

External RESET

WDF

Operation mode

Reset signal generation by
watchdog timer overflow

External RESET
signal generation

WDF clear
instruction
execution

Operation mode

HALT
mode

Operation
mode

HALT
mode

Operation
mode

HALT
mode

Operation mode

Internal reset operation Internal reset operation Internal reset operation

Reset signal generation by
watchdog timer overflow

CHAPTER 8 RESET FUNCTION

196

Fig. 8-4 KRF Operation in Generating Each Signal

External RESET

KRF

Operation mode

Operation mode

HALT
mode

Operation
mode

Internal reset operation

STOP
mode

Internal reset operation Internal reset operation

HALT
mode

Operation
mode

STOP
mode

HALT
mode

Operation mode

STOP instruction
execution

Reset signal
generation by
the KRn input

External RESET
signal generation

STOP instruction
execution

KRF clear instruction
execution

Reset signal
generation by
the KRn input

197

CHAPTER 9 MASK OPTION

The µPD754202 has the following mask options.

Table 9-1 Selection of Mask Options

Item Mask Options

P70/KR4-P73/KR7 On-chip pull-up resistors specifiable in 1-bit unit by mask option

RESET pin On-chip pull-up resistors specifiable by mask option

Oscillation stabilization wait time Selectable from 217/fX, 215/fX

9.1 Pin Mask Option

9.1.1 P70/KR4-P73/KR7 mask option

On-chip pull-up resistors can be specified by mask option for P70/KR4-P73/KR7 (port 7). Mask option can be

specified in 1-bit unit.

Mask options can be selected from the following three ways:

<1> Incorporating no pull-up resistor

<2> Incorporating 30-kΩ (TYP.) pull-up resistor

<3> Incorporating 100-kΩ (TYP.) pull-up resistor

The state of port 7 after a reset is high if on-chip resistors have been specified by mask option. It goes to high

impedance if not specified.

9.1.2 RESET pin mask option

100-kΩ (TYP.) on-chip pull-up resistors can be specified by mask option for the RESET pin.

9.2 Oscillation Stabilization Wait Time Mask Option

The oscillation stabilization wait time can be selected by the mask options.

It is possible to select a wait time by mask option. This wait time refers to the time after the standby function is

released by RESET signal until the system returns to normal operation mode (refer to 7.2 Standby Mode Release ,

for details.)

The wait time can be selected from the following two times:

<1> 217/fX (21.8 ms: at fX = 6.0 MHz, 31.3 ms: at fX = 4.19 MHz)

<2> 215/fX (5.46 ms: at fX = 6.0 MHz, 7.81 ms: at fX = 4.19 MHz)

198

[MEMO]

199

CHAPTER 10 INSTRUCTION SET

The instruction set of the µPD754202 is based on the instruction set of the 75X series and therefore, maintains

compatibility with the 75X series, but has some improved features. They are:

(1) Bit manipulation instructions for various applications

(2) Efficient 4-bit manipulation instructions

(3) 8-bit manipulation instructions comparable to those of 8-bit microcontrollers

(4) GETI instruction reducing program size

(5) String-effect and base number adjustment instructions enhancing program efficiency

(6) Table reference instructions ideal for successive reference

(7) 1-byte relative branch instruction

(8) Easy-to-understand, well-organized NEC’s standard mnemonics

For the addressing modes applicable to data memory manipulation and the register banks valid for instruction

execution, refer to 3.2 Bank Configuration of General-Purpose Registers .

10.1 Unique Instructions

This section describes the unique instructions of the µPD754202’s instruction set.

10.1.1 GETI instruction

The GETI instruction converts the following instructions into 1-byte instructions:

(a) Subroutine call instruction to 2K-byte space (0000H-07FFH)

(b) Branch instruction to 2K-byte space (0000H-07FFH)

(c) Any 2-byte, 2-machine cycle instruction (except BRCB and CALLF instructions)

(c) Combination of two 1-byte instructions

The GETI instruction references a table at addresses 0020H through 007FH of the program memory and executes

the referenced 2-byte data as an instruction of (a) to (d). Therefore, 48 types of instructions can be converted into

1-byte instructions.

If instructions that are frequently used are converted into 1-byte instructions by using this GETI instruction, the

number of bytes of the program can be substantially decreased.

CHAPTER 10 INSTRUCTION SET

200

10.1.2 Bit manipulation instruction

The µPD754202 has reinforced bit test, bit transfer, and bit Boolean (AND, OR, and XOR) instruction, in addition

to the ordinary bit manipulation (set and clear) instructions.

The bit to be manipulated is specified in the bit manipulation addressing mode. Three types of bit manipulation

addressing modes can be used. The bits manipulated in each addressing mode are shown in Table 10-1.

Table 10-1 Types of Bit Manipulation Addressing Modes and Specification Range

fmem. bit RBE, MBE, IST1, IST0, FB0H-FBFH

IE×××, IRQ×××

PORT3, 6, 7, 8 FF0H-FFFH

pmem. @L BSB0-3, PORT8 FC0H-FFFH

@H+mem. bit All peripheral hardware units that can be

manipulated bitwise

Remarks 1. ×××: 0, 2, T0, T1, T2

2. MB = MBE MBS

10.1.3 String-effect instruction

The µPD754202 has the following two types of string-effect instructions:

(a) MOV A, #n4 or MOV XA, #n8

(b) MOV HL, #n8

“String effect” means locating these two types of instructions at contiguous addresses.

Example A0: MOV A, #0

A1: MOV A, #1

XA7: MOV XA, #07

When string-effect instructions are arranged as shown in this example, and if the address executed first is A0, the

two instructions following this address are replaced with the NOP instructions. If the address executed first is A1,

the following one instruction is replaced with the NOP instruction. In other words, only the instruction that is executed

first is valid, and all the string-effect instructions that follow are processed as NOP instructions.

By using these string-effect instructions, constants can be efficiently set to the accumulator (A register or register

pair XA) and data pointer (register pair HL).

Addressing Range of Bit That Can be

Manipulated

Peripheral Hardware That Can Be

Manipulated
Addressing

All bits of memory bank specified by MB that

can be manipulated bitwise

.

CHAPTER 10 INSTRUCTION SET

201

10.1.4 Base number adjustment instruction

Some application requires that the result of addition or subtraction of 4-bit data (which is carried out in binary

number) be converted into a decimal number or into a number with a base of 6, such as time.

Therefore, the µPD754202 is provided with base number adjustment instructions that adjusts the result of addition

or subtraction of 4-bit data into a number with any base.

(1) Base adjustment of result of addition

Where the base number to which the result of addition executed is to be adjusted is m, the contents of

the accumulator and memory are added in the following combination, and the result is adjusted to a number

with a base of m:

ADDS A, #16 – m

ADDC A, @HL ; A, CY ← A + (HL) + CY

ADDS A, #m

Occurrence of an overflow is indicated by the carry flag.

If a carry occurs as a result of executing the ADDC A, @HL instruction, the ADDS A, #n4 instruction is

skipped. If a carry does not occur, the ADDS A, #n4 instruction is executed. At this time, however, the

skip function of the instruction is disabled, and the following instruction is not skipped even if a carry occurs

as a result of addition. Therefore, a program can be written after the ADDS A, #n4 instruction.

Example To add accumulator and memory in decimal

ADDS A, #6

ADDC A, @HL ; A, CY ← A + (HL) + CY

ADDS A, #10

(2) Base adjustment of result of subtraction

Where the base number into which the result of subtraction executed is to be adjusted is m, the contents

of memory (HL) are subtracted from those of the accumulator in the following combination, and the result

of subtraction is adjusted to a number with a base of m:

SUBC A, @HL

ADDS A, #m

Occurrence of an underflow is indicated by the carry flag.

If a borrow does not occur as a result of executing the SUBC A, @HL instruction, the following ADDS

A, #n4 instruction is skipped. If a borrow occurs, the ADDS A, #n4 instruction is executed. At this time,

the skip function of this instruction is disabled, and the following instruction is not skipped even if a carry

occurs as a result of addition. Therefore, a program can be written after the ADDS A, #n4 instruction.

…

CHAPTER 10 INSTRUCTION SET

202

10.1.5 Skip instruction and number of machine cycles required for skipping

The instruction set of the µPD754202 configures a program where instructions may be or may not be skipped if

a given condition is satisfied.

If a skip condition is satisfied when a skip instruction is executed, the instruction next to the skip instruction is

skipped and the instruction after next is executed.

When a skip occurs, the number of machine cycles required for skipping is:

(a) If the instruction that follows the skip instruction (i.e., the instruction to be skipped) is a 3-byte

instruction (BR !addr, BRA !addr1, CALL !addr, or CALLA !addr1 instruction): 2 machine cycles

(b) Instruction other than (a): 1 machine cycle

10.2 Instruction Set and Operation

(1) Operand representation and description

Describe an operand in the operand field of each instruction according to the operand description method of

the instruction (for details, refer to RA75X Assembler Package User’s Manual - Language (EEU-1363) . If

two or more operands are shown, select one of them. The uppercase letters, +, and – are keywords and must

be described as is.

The symbols of register flags can be described as labels, instead of mem, fmem, pmem, and bit. (However,

the number of labels described for fmem and pmem are limited. For details, refer to Table 3-1 Addressing

Modes and Fig. 3-7 I/O Map).

CHAPTER 10 INSTRUCTION SET

203

Representation Description

reg X, A, B, C, D, E, H, L

reg1 X, B, C, D, E, H, L

rp XA, BC, DE, HL

rp1 BC, DE, HL

rp2 BC, DE

rp' XA, BC, DE, HL, XA', BC', DE', HL'

rp'1 BC, DE, HL, XA', BC', DE', HL'

rpa HL, HL+, HL–, DE, DL

rpa1 DE, DL

n4 4-bit immediate data or label

n8 8-bit immediate data or label

mem 8-bit immediate data or labelNote

bit 2-bit immediate data or label

fmem Immediate data FB0H-FBFH, FF0H-FFFH or label

pmem Immediate data FC0H-FFFH or label

addr Immediate data 0000H-07FFH or label

addr1 Immediate data 0000H-07FFH or label

caddr 12-bit immediate data or label

faddr 11-bit immediate data or label

taddr Immediate data 20H-7FH (where bit0 = 0) or label

PORTn PORT3, 6, 7, 8

IE××× IEBT, IET0-IET2, IE0, IE2

RBn RB0-RB3

MBn MB0, MB15

Note mem can be described only for an even address for 8-bit data processing.

CHAPTER 10 INSTRUCTION SET

204

(2) Legend for explanation of operation

A : A register; 4-bit accumulator

B : B register

C : C register

D : D register

E : E register

H : H register

L : L register

X : X register

XA : Register pair (XA); 8-bit accumulator

BC : Register pair (BC)

DE : Register pair (DE)

HL : Register pair (HL)

XA’ : Expansion register pair (XA’)

BC’ : Expansion register pair (BC’)

DE’ : Expansion register pair (DE’)

HL’ : Expansion register pair (HL’)

PC : Program counter

SP : Stack pointer

CY : Carry flag; bit accumulator

PSW : Program status word

MBE : Memory bank enable flag

RBE : Register bank enable flag

PORTn : Port n (n = 3, 6, 7, 8)

IME : Interrupt master enable flag

IPS : Interrupt priority select register

IE××× : Interrupt enable flag

RBS : Register bank select flag

MBS : Memory bank select flag

PCC : Processor clock control register

. : Address or bit delimiter

(××) : Contents addressed by ××
××H : Hexadecimal data

CHAPTER 10 INSTRUCTION SET

205

*1 MB = MBE • MBS
(MBS = 0, 15)

*2 MB = 0

*3 MBE = 0 : MB = 0 (000H-07FH)
MB = 15 (F80H-FFFH)

MBE = 1 : MB = MBS (MBS = 0, 15)

*4 MB = 15, fmem = FB0H-FBFH,
FF0H-FFFH

*5 MB = 15, pmem = FC0H-FFFH

*6 addr = 0000H-07FFH

*7 addr, addr1 = (Current PC) – 15 to (Current PC) –1
(Current PC) + 2 to (Current PC) +16

*8 caddr = 0000H-07FFH

*9 taddr = 000H-07FFH

*10 taddr = 0020H-007FH

*11 addr1 = 0000H-07FFH

(3) Symbols in addressing area field

Program memory

addressing

Data memory

 addressing

Remarks 1. MB indicates a memory bank that can be accessed.

2. In *2, MB = 0 regardless of MBE and MBS.

3. In *4 and *5, MB = 15 regardless of MBE and MBS.

4. *6 through *11 indicate areas that can be addressed.

(4) Explanation for machine cycle field

S indicates the number of machine cycles required for an instruction with skip to execute the skip operation.

The value of S varies as follows:

• When skip is executed .. S = 0

• When 1- or 2-byte instruction is skipped ... S = 1

• When 3-byte instructionNote is skipped.. S = 2

Note 3-byte instructions: BR !addr, BRA !addr1, CALL !addr, CALLA !addr1

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of CPU clock Φ (=tCY), and four times can be set by PCC (refer to

Fig. 5-13 Format of Processor Clock Control Register).

CHAPTER 10 INSTRUCTION SET

206

Transfer MOV A, #n4 1 1 A ← n4 String effect A

reg1, #n4 2 2 reg1← n4

XA, #n8 2 2 XA ← n8 String effect A

HL, #n8 2 2 HL ← n8 String effect B

rp2, #n8 2 2 rp2 ← n8

A, @HL 1 1 A ← (HL) *1

A, @HL+ 1 2 + S A ← (HL), then L ← L + 1 *1 L = 0

A, @HL– 1 2 + S A ← (HL), then L ← L – 1 *1 L = FH

A, @rpa1 1 1 A ← (rpa1) *2

XA, @HL 2 2 XA ← (HL) *1

@HL, A 1 1 (HL) ← A *1

@HL, XA 2 2 (HL) ← XA *1

A, mem 2 2 A ← (mem) *3

XA, mem 2 2 XA ← (mem) *3

mem, A 2 2 (mem) ← A *3

mem, XA 2 2 (mem) ← XA *3

A, reg 2 2 A ← reg

XA, rp' 2 2 XA ← rp'

reg1, A 2 2 reg1← A

rp'1, XA 2 2 rp'1 ← XA

XCH A, @HL 1 1 A ↔ (HL) *1

A, @HL+ 1 2 + S A ↔ (HL), then L ← L + 1 *1 L=0

A, @HL– 1 2 + S A ↔ (HL), then L ← L – 1 *1 L=FH

A, @rpa1 1 1 A ↔ (rpa1) *2

XA, @HL 2 2 XA ↔ (HL) *1

A, mem 2 2 A ↔ (mem) *3

XA, mem 2 2 XA ↔ (mem) *3

A, reg1 1 1 A ↔ reg1

XA, rp' 2 2 XA ↔ rp'

Machine

Cycle
Instructions Mnemonic Operand Bytes Operation Skip Condition

Addressing

Area

CHAPTER 10 INSTRUCTION SET

207

Machine

Cycle
Instructions Mnemonic Operand Bytes Operation Skip Condition

Addressing

Area

MOVT XA, @PCDE 1 3 XA ← (PC10-8 + DE)ROM

XA, @PCXA 1 3 XA ← (PC10-8 + XA)ROM

XA, @BCDE 1 3 XA ← (BCDE)ROMNote *6

XA, @BCXA 1 3 XA ← (BCXA)ROMNote *6

Bit transfer MOV1 CY, fmem.bit 2 2 CY ← (fmem.bit) *4

CY, pmem.@L 2 2 CY ← (pmem7-2 + L3-2.bit(L1-0)) *5

CY, @H+mem.bit 2 2 CY ← (H + mem3-0.bit) *1

fmem.bit, CY 2 2 (fmem.bit) ← CY *4

pmem.@L, CY 2 2 (pmem7-2 + L3-2.bit(L1-0)) ← CY *5

@H+mem.bit, CY 2 2 (H + mem3-0.bit) ← CY *1

Operation ADDS A, #n4 1 1 + S A ← A + n4 carry

XA, #n8 2 2 + S XA ← XA + n8 carry

A, @HL 1 1 + S A ← A + (HL) *1 carry

XA, rp' 2 2 + S XA ← XA + rp' carry

rp'1, XA 2 2 + S rp'1 ← rp'1 + XA carry

ADDC A, @HL 1 1 A, CY ← A + (HL) + CY *1

XA, rp' 2 2 XA, CY ← XA + rp' + CY

rp'1, XA 2 2 rp', CY ← rp'1 + XA + CY

SUBS A, @HL 1 1 + S A ← A – (HL) *1 borrow

XA, rp' 2 2 + S XA ← XA – rp' borrow

rp'1, XA 2 2 + S rp'1 ← rp'1 – XA borrow

SUBC A, @HL 1 1 A, CY ← A – (HL) – CY *1

XA, rp' 2 2 XA, CY ← XA – rp' – CY

rp'1, XA 2 2 rp'1, CY ← rp'1 – XA – CY

AND A, #n4 2 2 A ← A n4

A, @HL 1 1 A ← A (HL) *1

XA, rp' 2 2 XA ← XA rp'

rp'1, XA 2 2 rp'1 ← rp'1 XA

OR A, #n4 2 2 A ← A n4

A, @HL 1 1 A ← A (HL) *1

XA, rp' 2 2 XA ← XA rp'

rp'1, XA 2 2 rp'1 ← rp'1 XA

XOR A, #n4 2 2 A ← A n4

A, @HL 1 1 A ← A (HL) *1

XA, rp' 2 2 XA ← XA rp'

rp'1, XA 2 2 rp'1 ← rp'1 XA

Note Set 0 to the B register.

Table

reference

CHAPTER 10 INSTRUCTION SET

208

RORC A 1 1 CY ← A0, A3 ← CY, An–1 ← An

NOT A 2 2 A ← A

INCS reg 1 1 + S reg ← reg + 1 reg = 0

rp1 1 1 + S rp1 ← rp1 + 1 rp1 = 00H

@HL 2 2 + S (HL) ← (HL) + 1 *1 (HL) = 0

mem 2 2 + S (mem) ← (mem) + 1 *3 (mem) = 0

DECS reg 1 1 + S reg ← reg – 1 reg = FH

rp' 2 2 + S rp' ← rp' – 1 rp' = FFH

Comparison SKE reg, #n4 2 2 + S Skip if reg = n4 reg = n4

@HL, #n4 2 2 + S Skip if (HL) = n4 *1 (HL) = n4

A, @HL 1 1 + S Skip if A = (HL) *1 A = (HL)

XA, @HL 2 2 + S Skip if XA = (HL) *1 XA = (HL)

A, reg 2 2 + S Skip if A = reg A = reg

XA, rp' 2 2 + S Skip if XA = rp' XA = rp'

SET1 CY 1 1 CY ← 1

CLR1 CY 1 1 CY ← 0

SKT CY 1 1 + S Skip if CY = 1 CY = 1

NOT1 CY 1 1 CY ← CY

SET1 mem.bit 2 2 (mem.bit) ← 1 *3

fmem.bit 2 2 (fmem.bit) ← 1 *4

pmem. @L 2 2 (pmem7-2 + L3-2.bit(L1-0)) ← 1 *5

@H+mem.bit 2 2 (H + mem3-0.bit) ← 1 *1

CLR1 mem.bit 2 2 (mem.bit) ← 0 *3

fmem.bit 2 2 (fmem.bit) ← 0 *4

pmem.@L 2 2 (pmem7-2 + L3-2.bit(L1-0)) ← 0 *5

@H+mem.bit 2 2 (H + mem3-0.bit) ← 0 *1

SKT mem.bit 2 2 + S Skip if(mem.bit) = 1 *3 (mem.bit) = 1

fmem.bit 2 2 + S Skip if(mem.bit) = 1 *4 (fmem.bit) = 1

pmem.@L 2 2 + S Skip if(pmem7-2 + L3-2.bit(L1-0)) = 1 *5 (pmem.@L) = 1

@H+mem.bit 2 2 + S Skip if(H + mem3-0.bit) = 1 *1 (@H + mem.bit) = 1

SKF mem.bit 2 2 + S Skip if(mem.bit) = 0 *3 (mem.bit) = 0

fmem.bit 2 2 + S Skip if(fmem.bit) = 0 *4 (fmem.bit) = 0

pmem.@L 2 2 + S Skip if(pmem7-2 + L3-2.bit(L1-0)) = 0 *5 (pmem.@L) = 0

@H+mem.bit 2 2 + S Skip if(H + mem3-0.bit) = 0 *1 (@H + mem.bit) = 0

SKTCLR fmem.bit 2 2 + S Skip if(fmem.bit) = 1 and clear *4 (fmem.bit) = 1

pmem.@L 2 2 + S Skip if(pmem7-2 + L3-2.bit(L1-0)) = 1 and clear *5 (pmem.@L) = 1

@H+mem.bit 2 2 + S Skip if(H + mem3-0.bit) = 1 and clear *1 (@H + mem.bit) = 1

Machine

Cycle
Instructions Mnemonic Operand Bytes Operation Skip Condition

Addressing

Area

Accumulator

manipulation

Increment/

decrement

Memory bit

manipula-

tion

Carry flag

manipula-

tion

CHAPTER 10 INSTRUCTION SET

209

Machine

Cycle
Instructions Mnemonic Operand Bytes Operation Skip Condition

Addressing

Area

AND1 CY, fmem.bit 2 2 CY ← CY (fmem.bit) *4

CY, pmem.@L 2 2 CY ← CY (pmem7-2 + L3-2.bit(L1-0)) *5

CY, @H + mem.bit 2 2 CY ← CY (H + mem3-0.bit) *1

OR1 CY, fmem.bit 2 2 CY ← CY (fmem.bit) *4

CY, pmem.@L 2 2 CY ← CY (pmem7-2 + L3-2.bit(L1-0)) *5

CY, @H + mem.bit 2 2 CY ← CY (H + mem3-0.bit) *1

XOR1 CY, fmem.bit 2 2 CY ← CY (fmem.bit) *4

CY, pmem.@L 2 2 CY ← CY (pmem7-2 + L3-2.bit(L1-0)) *5

CY, @H + mem.bit 2 2 CY ← CY (H + mem3-0.bit) *1

Branch BRNote1 addr – – PC10-0 ← addr *6

Optimum instruction is selected

by assembler from following:

BR !addr

BRCB !caddr

BR $addr1

addr1 – – PC10-0 ← addr1 *11

Optimum instruction is selected

by assembler from following:

BR !addr

BRA !addr1

BRCB !caddr

BR $addr1

!addr 3 3 PC10-0 ← addr *6

$addr 1 2 PC10-0 ← addr *7

$addr1 1 2 PC10-0 ← addr1 *7

PCDE 2 3 PC10-0 ← PC10-8 + DE

PCXA 2 3 PC10-0 ← PC10-8 + XA

BCDE 2 3 PC10-0 ← BCDENote2 *6

BCXA 2 3 PC10-0 ← BCXANote2 *6

BRANote1 !addr1 3 3 PC10-0 ← addr1 *11

BRCB !caddr 2 2 PC10-0 ← caddr11-0 *8

Notes 1. The shaded portion is supported only in the MkII mode. The others are supported in the MkI mode

only.

2. Set 0 to the B register

Memory bit

manipula-

tion

CHAPTER 10 INSTRUCTION SET

210

Subroutine/

stack

control

Machine

Cycle
Instructions Mnemonic Operand Bytes Operation Skip Condition

Addressing

Area

CALLA Note !addr1 3 3 (SP–6) (SP–3) (SP–4) ← 0, PC10-0 *11

(SP–5) ← 0, 0, 0, 0

(SP–2) ← ×, ×, MBE, RBE

PC10-0 ← addr1, SP ← SP – 6

CALL Note !addr 3 3 (SP–4) (SP–1) (SP–2) ← 0, PC10-0 *6

(SP–3) ← MBE, RBE, 0

PC10-0 ← addr, SP ← SP – 4

4 (SP–6) (SP–3) (SP–4) ← 0, PC10-0

(SP–5) ← 0, 0, 0, 0

(SP–2) ← ×, ×, MBE, RBE

PC10-0 ← addr, SP ← SP – 6

CALLF Note !faddr 2 2 (SP–4) (SP–1) (SP–2) ← 0, PC10-0 *9

(SP – 3) ← MBE, RBE, 0, 0

PC10-0 ← 0 + faddr, SP ← SP – 4

3 (SP–6) (SP–3) (SP–4) ← 0, PC10-0

(SP–5) ← 0, 0, 0, 0

(SP – 2) ← ×, ×, MBE, RBE

PC10-0 ← 0 + faddr, SP ← SP – 6

RETNote 1 3 MBE, RBE, 0, 0 ← (SP + 1)

PC10-0 ← (SP)2-0 (SP + 3) (SP + 2)

SP ← SP + 4

×, ×, MBE, RBE ← (SP + 4)

0, 0, 0, 0 ← (SP + 1)

PC10-0 ← (SP)2-0 (SP + 3) (SP + 2)

SP ← SP + 6

RETSNote 1 3 + S MBE, RBE2-0, 0, 0 ← (SP + 1) Unconditional

PC10-0 ← (SP)2-0 (SP + 3) (SP + 2)

SP ← SP + 4

then skip unconditionally

×, ×, MBE, RBE ← (SP + 4)

0, 0, 0, 0 ← (SP + 1)

PC10-0 ← (SP)2-0 (SP + 3) (SP + 2)

SP ← SP + 6

then skip unconditionally

RETINote 1 3 MBE, RBE, 0, 0 ← (SP + 1)

PC10-0 ← (SP)2-0 (SP + 3) (SP + 2)

PSW ← (SP + 4) (SP + 5), SP ← SP + 6

0, 0, 0, 0 ← (SP + 1)

PC10-0 ← (SP)2-0 (SP + 3) (SP + 2)

PSW ← (SP + 4) (SP + 5), SP ← SP + 6

Note The shaded portion is supported only in the MkII mode. The others are supported in the MkI mode only.

CHAPTER 10 INSTRUCTION SET

211

Machine

Cycle
Instructions Mnemonic Operand Bytes Operation Skip Condition

Addressing

Area

Subroutine/

stack

control

Interrupt

control

Depends on

referenced

instruction

Depends on

referenced

instruction

PUSH rp 1 1 (SP – 1) (SP – 2) ← rp, SP ← SP – 2

BS 2 2 (SP – 1) ← MBS, (SP – 2) ← RBS, SP ← SP–2

POP rp 1 1 rp ← (SP + 1) (SP), SP ← SP + 2

BS 2 2 MBS ← (SP + 1), RBS ← (SP), SP ← SP + 2

EI 2 2 IME (IPS.3) ← 1

IE××× 2 2 IE××× ← 1

DI 2 2 IME (IPS.3) ← 0

IE××× 2 2 IE××× ← 0

I/O INNote 1 A, PORTn 2 2 A ← PORTn (n = 3, 6, 7, 8)

OUTNote 1 PORTn, A 2 2 PORTn ← A (n = 3, 6, 8)

CPU control HALT 2 2 Set HALT Mode (PCC.2 ← 1)

STOP 2 2 Set STOP Mode (PCC.3 ← 1)

NOP 1 1 No Operation

Special SEL RBn 2 2 RBS ← n (n = 0-3)

MBn 2 2 MBS ← n (n = 0, 15)

GETINote 2, 3 taddr 1 3 . TBR instruction *10

PC10-0 ← (taddr)2-0 + (taddr+1)

. TCALL instruction

(SP–4) (SP–1) (SP–2) ← 0, PC10-0

(SP–3) ← MBE, RBE, 0, 0

PC10-0 ← (taddr)2-0 + (taddr+1)

SP ← SP–4

. Other than TBR and TCALL

instructions

Executes instruction of (taddr)

(taddr+1)

1 3 . TBR instruction

PC10-0 ← (taddr)2-0 + (taddr+1)

4 . TCALL instruction

(SP–6) (SP–3) (SP–4) ← 0, PC10-0

(SP–5) ← 0, 0, 0, 0

(SP–2) ← ×, ×, MBE, RBE

PC10-0 ← (taddr)2-0 + (taddr+1)

SP ← SP-6

3 . Other than TBR and TCALL

instructions

Executes instruction of (taddr) (taddr+1)

Notes 1. To execute IN/OUT instruction, it is necessary that MBE = 0 or MBE = 1, MBS = 15.

2. The shaded portion is supported only in the MkII mode. The others are supported in the MkI mode

only.

3. TBR and TCALL instructions are the assembler directives for table definition.

CHAPTER 10 INSTRUCTION SET

212

10.3 Op Code of Each Instruction

(1) Description of symbol of op code

R2 R1 R0 reg

0 0 0 A

0 0 1 X

0 1 0 L

0 1 1 H

1 0 0 E

1 0 1 D

1 1 0 C

1 1 1 B

reg reg1

P2 P1 P0 reg-pair

0 0 0 XA

0 0 1 XA'

0 1 0 HL

0 1 1 HL'

1 0 0 DE

1 0 1 DE'

1 1 0 BC

1 1 1 BC'

rp' rp'1

Q2 Q1 Q0 addressing

0 0 0 @HL

0 1 0 @HL+

0 1 1 @HL–

1 0 0 @DE

1 0 1 @DL

P2 P1 reg-pair

0 0 XA

0 1 HL

1 0 DE

1 1 BC
rp2

rp1

rp

N5 N2 N1 N0 IE×××

0 0 0 0 IEBT

0 1 0 0 IET0

0 1 1 0 IE0

0 1 1 1 IE2

1 1 0 0 IET1

1 1 0 1 IET2

@rpa

@rpa1

In : immediate data for n4 or n8

Dn : immediate data for mem

Bn : immediate data for bit

Nn : immediate data for n or IE×××
Tn : immediate data for taddr × 1/2

An : immediate data for [relative address distance from branch destination address (2-16)] – 1

Sn : immediate data for 1’s complement of [relative address distance from branch destination address (15-

1)]

CHAPTER 10 INSTRUCTION SET

213

(2) Op code for bit manipulation addressing

 *1 in the operand field indicates the following three types:

• fmem.bit

• pmem.@L

• @H+mem.bit

The second byte *2 of the op code corresponding to the above addressing is as follows:

*1 2nd Byte of Op Code Accessible Bit

fmem. bit 1 0 B1 B0 F3 F2 F1 F0 Bit of FB0H-FBFH that can be manipulated

1 1 B1 B0 F3 F2 F1 F0 Bit of FF0H-FFFH that can be manipulated

pmem. @L 0 1 0 0 G3 G2 G1 G0 Bit of FC0H-FFFH that can be manipulated

@H+mem. bit 0 0 B1 B0 D3 D2 D1 D0 Bit of accessible memory bank that can be

manipulated

Bn : immediate data for bit

Fn : immediate data for fmem

(indicates lower 4 bits of address)

Gn : immediate data for pmem

(indicates bits 5-2 of address)

Dn : immediate data for mem

(indicates lower 4 bits of address)

CHAPTER 10 INSTRUCTION SET

214

Instruction Mnemonic Operand
Op Code

B1 B2 B3

Transfer MOV A, #n4 0 1 1 1 I3 I2 I1 I0

reg1, #n4 1 0 0 1 1 0 1 0 I3 I2 I1 I0 1 R2 R1 R0

rp, #n8 1 0 0 0 1 P2 P1 1 I7 I6 I5 I4 I3 I2 I1 I0

A, @rpa1 1 1 1 0 0 Q2 Q1 Q0

XA, @HL 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0

@HL, A 1 1 1 0 1 0 0 0

@HL, XA 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0

A, mem 1 0 1 0 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0

XA, mem 1 0 1 0 0 0 1 0 D7 D6 D5 D4 D3 D2 D1 0

mem, A 1 0 0 1 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0

mem, XA 1 0 0 1 0 0 1 0 D7 D6 D5 D4 D3 D2 D1 0

A, reg 1 0 0 1 1 0 0 1 0 1 1 1 1 R2 R1 R0

XA, rp' 1 0 1 0 1 0 1 0 0 1 0 1 1 P2 P1 P0

reg1, A 1 0 0 1 1 0 0 1 0 1 1 1 0 R2 R1 R0

rp'1, XA 1 0 1 0 1 0 1 0 0 1 0 1 0 P2 P1 P0

XCH A, @rpa1 1 1 1 0 1 Q2 Q1 Q0

XA, @HL 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1

A, mem 1 0 1 1 0 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0

XA, mem 1 0 1 1 0 0 1 0 D7 D6 D5 D4 D3 D2 D1 0

A, reg1 1 1 0 1 1 R2 R1 R0

XA, rp' 1 0 1 0 1 0 1 0 0 1 0 0 0 P2 P1 P0

MOVT XA, @PCDE 1 1 0 1 0 1 0 0

XA, @PCXA 1 1 0 1 0 0 0 0

XA, @BCXA 1 1 0 1 0 0 0 1

XA, @BCDE 1 1 0 1 0 1 0 1

Bit transfer MOV1 CY, *1 1 0 1 1 1 1 0 1 *2

 *1 , CY 1 0 0 1 1 0 1 1 *2

Table

reference

CHAPTER 10 INSTRUCTION SET

215

Op Code

B1 B2 B3

Operation ADDS A, #n4 0 1 1 0 I3 I2 I1 I0

XA, #n8 1 0 1 1 1 0 0 1 I7 I6 I5 I4 I3 I2 I1 I0

A, @HL 1 1 0 1 0 0 1 0

XA, rp' 1 0 1 0 1 0 1 0 1 1 0 0 1 P2 P1 P0

rp'1, XA 1 0 1 0 1 0 1 0 1 1 0 0 0 P2 P1 P0

ADDC A, @HL 1 0 1 0 1 0 0 1

XA, rp' 1 0 1 0 1 0 1 0 1 1 0 1 1 P2 P1 P0

rp'1, XA 1 0 1 0 1 0 1 0 1 1 0 1 0 P2 P1 P0

SUBS A, @HL 1 0 1 0 1 0 0 0

XA, rp' 1 0 1 0 1 0 1 0 1 1 1 0 1 P2 P1 P0

rp'1, XA 1 0 1 0 1 0 1 0 1 1 1 0 0 P2 P1 P0

SUBC A, @HL 1 0 1 1 1 0 0 0

XA, rp' 1 0 1 0 1 0 1 0 1 1 1 1 1 P2 P1 P0

rp'1, XA 1 0 1 0 1 0 1 0 1 1 1 1 0 P2 P1 P0

AND A, #n4 1 0 0 1 1 0 0 1 0 0 1 1 I3 I2 I1 I0

A, @HL 1 0 0 1 0 0 0 0

XA, rp' 1 0 1 0 1 0 1 0 1 0 0 1 1 P2 P1 P0

rp'1, XA 1 0 1 0 1 0 1 0 1 0 0 1 0 P2 P1 P0

OR A, #n4 1 0 0 1 1 0 0 1 0 1 0 0 I3 I2 I1 I0

A, @HL 1 0 1 0 0 0 0 0

XA, rp' 1 0 1 0 1 0 1 0 1 0 1 0 1 P2 P1 P0

rp'1, XA 1 0 1 0 1 0 1 0 1 0 1 0 0 P2 P1 P0

XOR A, #n4 1 0 0 1 1 0 0 1 0 1 0 1 I3 I2 I1 I0

A, @HL 1 0 1 1 0 0 0 0

XA, rp' 1 0 1 0 1 0 1 0 1 0 1 1 1 P2 P1 P0

rp'1, XA 1 0 1 0 1 0 1 0 1 0 1 1 0 P2 P1 P0

RORC A 1 0 0 1 1 0 0 0

NOT A 1 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1

Instruction Mnemonic Operand

Accumulator
manipula-

tion

CHAPTER 10 INSTRUCTION SET

216

Op Code

B1 B2 B3

INCS reg 1 1 0 0 0 R2 R1 R0

rp1 1 0 0 0 1 P2 P1 0

@HL 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0

mem 1 0 0 0 0 0 1 0 D7 D6 D5 D4 D3 D2 D1 D0

DECS reg 1 1 0 0 1 R2 R1 R0

rp' 1 0 1 0 1 0 1 0 0 1 1 0 1 P2 P1 P0

Comparison SKE reg, #n4 1 0 0 1 1 0 1 0 I3 I2 I1 I0 0 R2 R1 R0

@HL, #n4 1 0 0 1 1 0 0 1 0 1 1 0 I3 I2 I1 I0

A, @HL 1 0 0 0 0 0 0 0

XA, @HL 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1

A, reg 1 0 0 1 1 0 0 1 0 0 0 0 1 R2 R1 R0

XA, rp' 1 0 1 0 1 0 1 0 0 1 0 0 1 P2 P1 P0

SET1 CY 1 1 1 0 0 1 1 1

CLR1 CY 1 1 1 0 0 1 1 0

SKT CY 1 1 0 1 0 1 1 1

NOT1 CY 1 1 0 1 0 1 1 0

SET1 mem.bit 1 0 B1 B0 0 1 0 1 D7 D6 D5 D4 D3 D2 D1 D0

 *1 1 0 0 1 1 1 0 1 *2

CLR1 mem.bit 1 0 B1 B0 0 1 0 0 D7 D6 D5 D4 D3 D2 D1 D0

 *1 1 0 0 1 1 1 0 0 *2

SKT mem.bit 1 0 B1 B0 0 1 1 1 D7 D6 D5 D4 D3 D2 D1 D0

 *1 1 0 1 1 1 1 1 1 *2

SKF mem.bit 1 0 B1 B0 0 1 1 0 D7 D6 D5 D4 D3 D2 D1 D0

 *1 1 0 1 1 1 1 1 0 *2

SKTCLR *1 1 0 0 1 1 1 1 1 *2

AND1 CY, *1 1 0 1 0 1 1 0 0 *2

OR1 CY, *1 1 0 1 0 1 1 1 0 *2

XOR1 CY, *1 1 0 1 1 1 1 0 0 *2

Instruction Mnemonic Operand

Increment/

decrement

Carry flag
manipula-

tion

Memory bit
manipula-

tion

CHAPTER 10 INSTRUCTION SET

217

Op Code

B1 B2 B3

Branch BR !addr 1 0 1 0 1 0 1 1 0 0 addr

$addr1 0 0 0 0 A3 A2 A1 A0

1 1 1 1 S3 S2 S1 S0

PCDE 1 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0

PCXA 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

BCDE 1 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1

BCXA 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1

BRA !addr1 1 0 1 1 1 0 1 0 0 addr1

BRCB !caddr 0 1 0 1 caddr

CALLA !addr1 1 0 1 1 1 0 1 1 0 addr1

CALL !addr 1 0 1 0 1 0 1 1 0 1 addr

CALLF !faddr 0 1 0 0 0 faddr

RET 1 1 1 0 1 1 1 0

RETS 1 1 1 0 0 0 0 0

RETI 1 1 1 0 1 1 1 1

PUSH rp 0 1 0 0 1 P2 P1 1

BS 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1

POP rp 0 1 0 0 1 P2 P1 0

BS 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0

EI 1 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0

IE××× 1 0 0 1 1 1 0 1 1 0 N5 1 1 N2 N1 N0

DI 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0

IE××× 1 0 0 1 1 1 0 0 1 0 N5 1 1 N2 N1 N0

I/O IN A, PORTn 1 0 1 0 0 0 1 1 1 1 1 1 N3 N2 N1 N0

OUT PORTn, A 1 0 0 1 0 0 1 1 1 1 1 1 N3 N2 N1 N0

CPU control HALT 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 1

STOP 1 0 0 1 1 1 0 1 1 0 1 1 0 0 1 1

NOP 0 1 1 0 0 0 0 0

Special SEL RBn 1 0 0 1 1 0 0 1 0 0 1 0 0 0 N1 N0

MBn 1 0 0 1 1 0 0 1 0 0 0 1 N3 N2 N1 N0

GETI taddr 0 0 T5 T4 T3 T2 T1 T0

Instruction Mnemonic Operand

(+16)

(+2)
(–1)

(–15)

~
~

Subroutine/
stack

control

Interrupt
control

CHAPTER 10 INSTRUCTION SET

218

10.4 Instruction Function and Application

This section describes the functions and applications of the respective instructions. The instructions that can be

used and the functions of the instructions differ between the MkI and MkII modes of the µPD754202. Read the

descriptions on the following pages according to the following guidance:

How to read

: This instruction can be used commonly in the MkI and MkII modes.

: This instruction can be used only in the MkI mode.

: This instruction can be used only in the MkII mode.

: This instruction can be used commonly in the MkI and MkII modes, but the function may differ

between the MkI and MkII modes.

In the MkI mode, refer to the description under the heading [MkI mode]. In the MkII mode, read

the description under the heading [MkII mode].

I

II

I/II

CHAPTER 10 INSTRUCTION SET

219

10.4.1 Transfer instructions

MOV A, #n4

Function: A ← n4 n4 = I3-0: 0-FH

Transfers 4-bit immediate data n4 to the A register (4-bit accumulator). This instruction has a string effect (group

A), and if MOV A, #n4 or MOV XA, #n8 follows this instruction, the string-effect instruction following the instruction

executed is processed as NOP.

Application example

(1) To set 0BH to the accumulator

MOV A, #0BH

(2) To select data output to port 3 from 0 to 2

A0: MOV A, #0

A1: MOV A, #1

A2: MOV A, #2

OUT PORT3, A

MOV reg1, #n4

Function: reg1 ← n4 n4 = I3-0 0-FH

Transfers 4-bit immediate data n4 to A register reg1 (X, H, L, D, E, B, or C).

MOV XA, #n8

Function: XA ← n8 n8 = I7-0: 00H-FFH

Transfers 8-bit immediate data n8 to register pair XA. This instruction has a string effect, and if the same instruction

or an MOV A, #n4 instruction follows this instruction, the string-effect instruction following the instruction executed

is processed as NOP.

CHAPTER 10 INSTRUCTION SET

220

MOV HL, #n8

Function: HL ← n8 n8 = I7-0: 00H-FFH

Transfers 8-bit immediate data n8 to register pair HL. This instruction has a string effect, and if the same

instruction follows this instruction, the string-effect instructions following the instruction executed is processed as

NOP.

MOV rp2, #n8

Function: rp2 ← n8 n8 = I7-0: 00H-FFH

Transfers 8-bit immediate data n8 to register pair rp2 (BC, DE).

MOV A, @HL

Function: A ← (HL)

Transfers the contents of the data memory content addressed by register pair HL is transferred to the A register.

MOV A, @HL+

Function: A ← (HL), L ← L+1

 skip if L = 0H

Transfers the contents of the data memory addressed by register pair HL to the A register. Then, the contents

of the L register are automatically incremented by one, and if the contents of the L register become 0H as a result,

the next instruction is skipped.

MOV A, @HL–

Function: A ← (HL), L ← L–1

 skip if L = FH

Transfers the contents of the data memory addressed by register pair HL to the A register. Then, the contents

of the L register are automatically decremented by one, and if the contents of the L register become FH as a result

the next instruction is skipped.

CHAPTER 10 INSTRUCTION SET

221

MOV A, @rpa1

Function: A ← (rpa)

Where rpa = HL+: skip if L = 0

where rpa = HL–: skip if L = FH

Transfers the contents of the data memory addressed by register pair rpa (HL, HL+, HL–, DE, or DL) to the A

register.

If autoincrement (HL+) is specified as rpa, the contents of the L register are automatically incremented by one after

the data has been transferred. If the contents of the L register become 0 as a result, the next one instruction is skipped.

If autodecrement (HL–) is specified as rpa, the contents of the L register are automatically decremented by one

after the data has been transferred. If the contents of the L register become FH as a result, the next one instruction

is skipped.

MOV XA, @HL

Function: A ← (HL), X ← (HL+1)

Transfers the contents of the data memory addressed by register pair HL to the A register, and the contents of

the next memory address to the X register.

If the contents of the L register are a odd number, an address whose least significant bit is ignored is transferred.

Application example

To transfer the data at addresses 3EH and 3FH to register pair XA

MOV HL, #3EH

MOV XA, @HL

MOV @HL, A

Function: (HL) ← A

Transfers the contents of the A register to the data memory addressed by register pair HL.

CHAPTER 10 INSTRUCTION SET

222

MOV @HL, XA

Function: (HL) ← A, (HL+1) ← X

Transfers the contents of the A register to the data memory addressed by register pair HL, and the contents of

the X register to the next memory address.

However, if the contents of the L register are a odd number, an address whose least significant bit is ignored is

transferred.

MOV A, mem

Function: A ← (mem) mem = D7-0: 00H-FFH

Transfers the contents of the data memory addressed by 8-bit immediate data mem to the A register.

MOV XA, mem

Function: A ← (mem), X ← (mem+1) mem = D7-0: 00H-FEH

Transfers the contents of the data memory addressed by 8-bit immediate data mem to the A register and the

contents of the next address to the X register.

The address that can be specified by mem is an even address.

Application example

To transfer the data at addresses 40H and 41H to register pair XA

MOV XA, 40H

MOV mem, A

Function: (mem) ← A mem = D7-0: 00H-FFH

Transfers the contents of the A register to the data memory addressed by 8-bit immediate data mem.

CHAPTER 10 INSTRUCTION SET

223

MOV mem, XA

Function: (mem) ← A, (mem+1) ← X mem = D7-0: 00H-FEH

Transfers the contents of the A register to the data memory addressed by 8-bit immediate data mem and the

contents of the X register to the next memory address.

The address that can be specified by mem is an even address.

MOV A, reg

Function: A ← reg

Transfers the contents of register reg (X, A, H, L, D, E, B, or C) to the A register.

MOV XA, rp’

Function: XA ← rp’

Transfers the contents of register pair rp’ (XA, HL, DE, BC, XA’, HL’, DE’, or BC’) to register pair XA.

Application example

To transfer the data of register pair XA’ to register pair XA

MOV XA, XA’

MOV reg1, A

Function: reg1 ← A

Transfers the contents of the A register to register reg1 (X, H, L, D, E, B, or C).

MOV rp’1, XA

Function: rp’1 ← XA

Transfers the contents of register pair XA to register pair rp’1 (HL, DE, BC, XA’, HL’, DE’, or BC’).

CHAPTER 10 INSTRUCTION SET

224

XCH A, @HL

Function: A ↔ (HL)

Exchanges the contents of the A register with the contents of the data memory addressed by register pair HL.

XCH A, @HL+

Function: A ↔ (HL), L ← L+1

 skip if L = 0H

Exchanges the contents of the A register with the contents of the data memory addressed by register pair HL. Then,

the contents of the L register are automatically incremented by one, and if the contents of the L register become 0H

as a result, the next instruction is skipped.

XCH A, @HL–

Function: A ↔ (HL), L ← L–1

 skip if L = FH

Exchanges the contents of the A register with the contents of the data memory addressed by register pair HL. Then,

the contents of the L register are automatically decremented by one, and if the contents of the L register become

FH as a result, the next instruction is skipped.

CHAPTER 10 INSTRUCTION SET

225

XCH A, @rpa1

Function: A ↔ (rpa)

Where rpa = HL+: skip if L = 0

Where rpa = HL–: sKIP if L = FH

Exchanges the contents of the A register with the contents of the data memory addressed by register pair rpa (HL,

HL+, HL–, DE, or DL). If autoincrement (HL+) or autodecrement (HL–) is specified as rpa, the contents of the L register

are automatically incremented or decremented by one after the data have been exchanged. If the result is 0 in the

case of HL+ and FH in the case of HL–, the next one instruction is skipped.

Application example

To exchange the data at data memory addresses 20H through 2FH with the data at addresses 30H through 3FH

SEL MB0

MOV D, #2

MOV HL, #30H

LOOP: XCH A, @HL ; A ↔ (3×)

XCH A, @DL ; A ↔ (2×)

XCH A, @HL+ ; A ↔ (3×)

BR LOOP

XCH XA, @HL

Function: A ↔ (HL), X ↔ (HL+1)

Exchanges the contents of the A register with the contents of the data memory addressed by register pair HL, and

the contents of the X register with the contents of the next address.

If the contents of the L register are an odd number, however, an address whose least significant bit is ignored is

specified.

XCH A, mem

Function: A ↔ (mem) mem = D7-0: 00H-FEH

Exchanges the contents of the A register with the contents of the data memory addressed by 8-bit immediate data

mem.

CHAPTER 10 INSTRUCTION SET

226

XCH XA, mem

Function: A ↔ (mem), X ↔ (mem+1) mem = D7-0: 00H-FEH

Exchanges the contents of the A register with the data memory contents addressed by 8-bit immediate data mem,

and the contents of the X register with the contents of the next memory address.

The address that can be specified by mem is an even address.

XCH A, reg1

Function: A ↔ reg1

Exchanges the contents of the A register with the contents of register reg1 (X, H, L, D, E, B, or C).

XCH XA, rp’

Function: XA ↔ rp’

Exchanges the contents of register pair XA with the contents of register pair rp’ (XA, HL, DE, BC, XA’, HL’, DE’,

or BC’).

CHAPTER 10 INSTRUCTION SET

227

10.4.2 Table reference instruction

MOV XA, @PCDE

Function: XA ← ROM (PC10-8+DE)

Transfers the lower 4 bits of the table data in the program memory addressed when the lower 8 bits (PC7-0) of the

program counter (PC) are replaced with the contents of register pair DE, to the A register, and the higher 4 bits to

the X register.

The table address is determined by the contents of the program counter (PC) when this instruction is executed.

The necessary data must be programmed to the table area in advance by using an assembler directive (DB

instruction).

The program counter is not affected by execution of this instruction.

This instruction is useful for successively referencing table data.

Example

PC10–8

10 8

D3–0

7 4

E3–0

3 0

X

3 0

A

3 0

Table data H

7 4

Table data L

3 0

Table address

Program memory

CHAPTER 10 INSTRUCTION SET

228

Caution

The MOVT XA, @PCDE instruction usually references the table data in page where the instruction

exists. If the instruction is at address ××FFH, however, not the table data in the page where the

instruction exists, but the table data in the next page is referenced.

7 0

02FFH

0300H

Page 3

Page 2

Program memory

a

For example, if the MOVT XA, @PCDE instruction is located at position a in the above figure, the table data in

page 3, not page 2, specified by the contents of register pair DE is transferred to register pair XA.

Application example

To transfer the 16-byte data at program memory addresses 0×F0H through 0×FFH to data memory addresses 30H

through 4FH

SUB: SEL MB0

MOV HL, #30H ; HL ← 30H

MOV DE, #0F0H ; DE ← F0H

LOOP: MOVT XA, @PCDE ; XA ← table data

MOV @HL, XA ; (HL) ← XA

INCS HL ; HL ← HL+2

INCS HL

INCS E ; E ← E+1

BR LOOP

RET

ORG 0×F0H

DB ××H, ××H, ... ; table data

CHAPTER 10 INSTRUCTION SET

229

MOVT XA, @PCXA

Function: XA ← ROM (PC10-8+XA)

Transfers the lower 4 bits of the table data in the program memory addressed when the lower 8 bits (PC7-0) of the

program counter (PC) are replaced with the contents of register pair XA, to the A register, and the higher 4 bits to

the X register.

The table address is determined by the contents of the PC when this instruction is executed.

The necessary data must be programmed to the table area in advance by using an assembler directive (DB

instruction).

The PC is not affected by execution of this instruction.

Caution If an instruction exists at address ××FFH, the table data of the next page is transferred, in the

same manner as MOVT XA, @PCDE.

MOVT XA, @BCDE

Function: XA ← ROM (BCDE)

Transfers the lower 4 bits of the table data (8-bit) in the program memory addressed by the register B and the

contents of registers C, D, and E, to the A register, and the higher 4 bits to the X register.

However, in the µPD754202, register B is invalid. Be sure to set register B to 0000B.

The necessary data must be programmed to the table area in advance by using an assembler directive (DB

instruction). The PC is not affected by execution of this instruction.

Example

B (0) C D E

15 1211 8 7 4 3 0

Table data H

X

3 0

Table data L

A

3 0

CHAPTER 10 INSTRUCTION SET

230

MOVT XA, @BCXA

Function: XA ← ROM (BCXA)

Transfers the lower 4 bits of the table data (8-bit) in the program memory addressed by the register B and the

contents of registers C, X, and A, to the A register, and the higher 4 bits to the X register.

However, on the µPD754202, register B is invalid. Be sure to set register B to 0000B.

The necessary data must be programmed to the table area in advance by using an assembler directive (DB

instruction). The PC is not affected by execution of this instruction.

Example

B (0) C X A

15 1211 8 7 4 3 0

Table data H

X

3 0

Table data L

A

3 0

CHAPTER 10 INSTRUCTION SET

231

10.4.3 Bit transfer instruction

MOV1 CY, fmem.bit

MOV1 CY, pmem.@L

MOV1 CY, @H+mem.bit

Function: CY ← (bit specified by operand)

Transfers the contents of the data memory addressed in the bit manipulating addressing mode (fmem.bit,

pmem.@L, or @H+mem.bit) to the carry flag (CY).

MOV1 fmem.bit, CY

MOV1 pmem.@L, CY

MOV1 @H+mem.bit, CY

Function: (Bit specified by operand) ← CY

Transfers the contents of the carry flag (CY) to the data memory bit addressed in the bit manipulation addressing

mode (fmem.bit, pmem.@L, or @H+mem.bit).

Application example

To output the flag of bit 3 at data memory address 3FH to the bit 2 of port 3

FLAG EQU 3FH.3

SEL MB0

MOV H, #FLAG SHR 6 ; H ← higher 4 bits of FLAG

MOV1 CY, @H+FLAG ; CY ← FLAG

MOV1 PORT3.2, CY ; P32 ← CY

CHAPTER 10 INSTRUCTION SET

232

10.4.4 Operation instruction

ADDS A, #n4

Function: A ← A+n4; Skip if carry. n4 = l3-0: 0-FH

Adds 4-bit immediate data n4 to the contents of the A register. If a carry occurs as a result, the next one instruction

is skipped. The carry flag is not affected.

If this instruction is used in combination with ADDC A, @HL or SUBC A, @HL instruction, it can be used as a base

number adjustment instruction (refer to 10.1.4 Base number adjustment instruction).

ADDS XA, #n8

Function: XA ← XA+n8; Skip if carry. n8 = I7-0: 00H-FFH

Adds 8-bit immediate data n8 to the contents of register pair XA. If a carry occurs as a result, the next one instruction

is skipped. The carry flag is not affected.

ADDS A, @HL

Function: A ← A + (HL); Skip if carry.

Adds the contents of the data memory addressed by register pair HL to the contents of the A register. If a carry

occurs as a result, the next one instruction is skipped. The carry flag is not affected.

ADDS XA, rp’

Function: XA ← XA + rp’; Skip if carry.

Adds the contents of register pair rp’ (XA, HL, DE, BC, XA’, HL’, DE’, or BC’) to the contents of register pair XA.

If a carry occurs as a result, the next one instruction is skipped. The carry flag is not affected.

ADDS rp’1, XA

Function: rp’ ← rp’1 + XA; Skip if carry.

Adds the contents of register pair XA to register pair rp’1 (HL, DE, BC, XA’, HL’, DE’, or BC’). If a carry occurs

as a result, the next one instruction is skipped. The carry flag is not affected.

Application example

To shift a register pair to the left

MOV XA, rp’1

ADDS rp’1, XA

NOP

CHAPTER 10 INSTRUCTION SET

233

ADDC A, @HL

Function: A, CY ← A+ (HL) +CY

Adds the contents of the data memory addressed by register pair HL to the contents of the A register, including

the carry flag. If a carry occurs as a result, the carry flag is set; if not, the carry flag is reset.

If the ADDS A, #n4 instruction is placed next to this instruction, and if a carry occurs as a result of executing this

instruction, the ADDS A, #n4 instruction is skipped. If a carry does not occur, the ADDS A, #n4 instruction is executed,

and a function that disables the skip function of the ADDS A, #n4 instruction is effected. Therefore, these instructions

can be used in combination for base number adjustment (refer to 10.1.4 Base number adjustment instruction).

ADDC XA, rp’

Function: XA, CY ← XA + rp’ + CY

Adds the contents of register pair rp’ (XA, HL, DE, BC, XA’, HL’, DE’, or BC’) to the contents of register pair XA,

including the carry. If a carry occurs as a result, the carry flag is set; if not, the carry flag is reset.

ADDC rp’1, XA

Function: rp’1, CY ← rp’1+XA+CY

Adds the contents of register pair XA to the contents of register pair rp’1 (HL, DE, BC, XA’, HL’, DE’, or BC’), including

the carry flag. If a carry occurs as a result, the carry flag is set; if not, the carry flag is reset.

CHAPTER 10 INSTRUCTION SET

234

SUBS A, @HL

Function: A ← A – (HL); Skip if borrow.

Subtracts the contents of the data memory addressed by register pair HL from the contents of the A register, and

sets the result to the A register. If a borrow occurs as a result, the next one instruction is skipped.

The carry flag is not affected.

SUBS XA, rp’

Function: XA ← XA – rp’; Skip if borrow.

Subtracts the contents of register pair rp’ (XA, HL, DE, BC, XA’, HL’, DE’, or BC’) from the contents of register

pair XA, and sets the result to register pair XA. If a borrow occurs as a result, the next one instruction is skipped.

The carry flag is not affected.

Application example

To compare specified data memory contents with the contents of a register pair

MOV XA, mem

SUBS XA, rp’

; (mem) ≥ rp’

; (mem) < rp’

SUBS rp’1, XA

Function: rp’ ← rp’1 – XA; Skip if borrow.

Subtracts the contents of register pair XA from register pair rp’1 (HL, DE, BC, XA’, HL’, DE’, or BC’), and sets the

result to specified register pair rp’1. If a borrow occurs as a result, the next one instruction is skipped.

The carry flag is not affected.

CHAPTER 10 INSTRUCTION SET

235

SUBC A, @HL

Function: A, CY ← A – (HL) – CY

Subtracts the contents of the data memory addressed by register pair HL to the contents from the A register,

including the carry flag, and sets the result to the A register. If a borrow occurs as a result, the carry flag is set; if

not, the carry flag is reset.

If the ADDS A, #n4 instruction is placed next to this instruction, and if a borrow does not occur as a result of executing

this instruction, the ADDS A, #n4 instruction is skipped. If a borrow occurs, the ADDS A, #n4 instruction is executed,

and a function that disables the skip function of the ADDS A, #n4 instruction is effected. Therefore, these instructions

can be used in combination for base number adjustment (refer to 10.1.4 Base number adjustment instruction).

SUBC XA, rp’

Function: XA, CY ← XA – rp’ – CY

Subtracts the contents of register pair rp’ (XA, HL, DE, BC, XA’, HL’, DE’, or BC’) from the contents of register

pair XA, including the carry, and sets the result to register pair XA. If a borrow occurs as a result, the carry flag is

set; if not, the carry flag is reset.

SUBC rp’1, XA

Function: rp’1, CY ← rp’1 – XA – CY

Subtracts the contents of register pair XA from the contents of register pair rp’1 (HL, DE, BC, XA’, HL’, DE’, or

BC’), including the carry flag, and sets the result to specified register pair rp’1. If a borrow occurs as a result, the carry

flag is set; if not, the carry flag is reset.

CHAPTER 10 INSTRUCTION SET

236

AND A, #n4

Function: A ← A n4 n4 = l3-0: 0-FH

ANDs 4-bit immediate data n4 with the contents of the A register, and sets the result to the A register.

Application example

To clear the higher 2 bits of the accumulator to 0

AND A, #0011B

AND A, @HL

Function: A ← A (HL)

ANDs the contents of the data memory addressed by register pair HL with the contents of the A register, and sets

the result to the A register.

AND XA, rp’

Function: XA ← XA rp’

ANDs the contents of register pair rp’ (XA, HL, DE, BC, XA’, HL’, DE’, or BC’) with the contents of register pair

XA, and sets the result to register pair XA.

AND rp’1, XA

Function: rp’1 ← rp’1 XA

ANDs the contents of register pair XA with register pair rp’1 (HL, DE, BC, XA’, HL’, DE’, or BC’), and sets the result

to a specified register pair.

CHAPTER 10 INSTRUCTION SET

237

OR A, #n4

Function: A ← A n4 n4 = l3-0: 0-FH

ORs 4-bit immediate data n4 with the contents of the A register, and sets the result to the A register.

Application example

To set the lower 3 bits of the accumulator to 1

OR A, #0111B

OR A, @HL

Function: A ← A (HL)

ORs the contents of the data memory addressed by register pair HL with the contents of the A register, and sets

the result to the A register.

OR XA, rp’

Function: XA ← XA rp’

ORs the contents of register pair rp’ (XA, HL, DE, BC, XA’, HL’, DE’, or BC’) with the contents of register pair XA,

and sets the result to register pair XA.

OR rp’1, XA

Function: rp’1 ← rp’1 XA

ORs the contents of register pair XA with register pair rp’1 (HL, DE, BC, XA’, HL’, DE’, or BC’), and sets the result

to a specified register pair.

CHAPTER 10 INSTRUCTION SET

238

XOR A, #n4

Function: A ← A n4 n4 = l3-0: 0-FH

Exclusive-ORs 4-bit immediate data n4 with the contents of the A register, and sets the result to the A register.

Application example

To invert the higher 4 bits of the accumulator

XOR A, #1000B

XOR A, @HL

Function: A ← A (HL)

Exclusive-ORs the contents of the data memory addressed by register pair HL with the contents of the A register,

and sets the result to the A register.

XOR XA, rp’

Function: XA ← XA rp’

Exclusive-ORs the contents of register pair rp’ (XA, HL, DE, BC, XA’, HL’, DE’, or BC’) with the contents of register

pair XA, and sets the result to register pair XA.

XOR rp’1, XA

Function: rp’1 ← rp’1 XA

Exclusive-ORs the contents of register pair XA with register pair rp’1 (HL, DE, BC, XA’, HL’, DE’, or BC’), and sets

the result to a specified register pair.

CHAPTER 10 INSTRUCTION SET

239

10.4.5 Accumulator manipulation instruction

RORC A

Function: CY ← A0, An-1 ← An, A3 ← CY (n = 1-3)

Rotates the contents of the A register (4-bit accumulator) 1 bit to the left with the carry flag.

0

CY

0

3

1

2

0

1

1

0
A

Before
execution

1 0 0 1 0After
execution

RORC A

....

NOT A

Function: A ← A

Takes 1’s complement of the A register (4-bit accumulator) (inverts the bits of the accumulator).

CHAPTER 10 INSTRUCTION SET

240

10.4.6 Increment/decrement instruction

INCS reg

Function: reg ← reg+1; Skip if reg = 0

Increments the contents of register reg (X, A, H, L, D, E, B, or C). If reg = 0 as a result, the next one instruction

is skipped.

INCS rp1

Function: rp1 ← rp1+1; Skip if rp1 = 00H

Increments the contents of register pair rp1 (HL, DE, or BC). If rp1 = 00H as a result, the next one instruction

is skipped.

INCS @HL

Function: (HL) ← (HL)+1; Skip if (HL) = 0

Increments the contents of the data memory addressed by pair register HL. If the contents of the data memory

become 0 as a result, the next one instruction is skipped.

INCS mem

Function: (mem) ← (mem) + 1; Skip if (mem) = 0, mem = D7-0: 00H-FFH

Increments the contents of the data memory addressed by 8-bit immediate data mem. If the contents of the data

memory become 0 as a result, the next one instruction is skipped.

DECS reg

Function: reg ← reg–1; Skip if reg = FH

Decrements the contents of register reg (X, A, H, L, D, E, B, or C). If reg = FH as a result, the next one instruction

is skipped.

DECS rp’

Function: rp’ ← rp’–1; Skip if rp’ = FFH

Decrements the contents of register pair rp' (XA, HL, DE, BC, XA', HL', DE', or BC'). If rp’ = FFH as a result, the

next one instruction is skipped.

CHAPTER 10 INSTRUCTION SET

241

10.4.7 Compare instruction

SKE reg, #n4

Function: Skip if reg = n4 n4 = I3-0: 0-FH

Skips the next one instruction if the contents of register reg (X, A, H, L, D, E, B, or C) are equal to 4-bit immediate

data n4.

SKE @HL, #n4

Function: Skip if (HL) = n4 n4 = I3-0: 0-FH

Skips the next one instruction if the contents of the data memory addressed by register pair HL are equal to 4-

bit immediate data n4.

SKE A, @HL

Function: Skip if A = (HL)

Skips the next one instruction if the contents of the A register are equal to the contents of the data memory

addressed by register pair HL.

SKE XA, @HL

Function: Skip if A = (HL) and X = (HL + 1)

Skips the next one instruction if the contents of the A register are equal to the contents of the data memory

addressed by register pair HL and if the contents of the X register are equal to the contents of the next memory address.

However, if the contents of the L register are an odd number, an address whose least significant address is ignored

is specified.

SKE A, reg

Function: Skip if A = reg

Skips the next one instruction if the contents of the A register are equal to register reg (X, A, H, L, D, E, B, or C).

SKE XA, rp’

Function: Skip if XA = rp’

Skips the next one instruction if the contents of register pair XA are equal to the contents of register pair rp’ (XA,

HL, DE, BC, XA’, HL’, DE’, or BC’).

CHAPTER 10 INSTRUCTION SET

242

10.4.8 Carry flag manipulation instruction

SET1 CY

Function: CY ← 1

Sets the carry flag.

CLR1 CY

Function: CY ← 0

Clears the carry flag.

SKT CY

Function: Skip if CY = 1

Skips the next one instruction if the carry flag is 1.

NOT1 CY

Function: CY ← CY

Inverts the carry flag. Therefore, sets the carry flag to 1 if it is 0, and clears the flag to 0 if it is 1.

CHAPTER 10 INSTRUCTION SET

243

10.4.9 Memory bit manipulation instruction

SET1 mem.bit

Function: (mem.bit) ← 1 mem = D7-0: 00H-FFH, bit = B1-0: 0-3

Sets the bit specified by 2-bit immediate data bit at the address specified by 8-bit immediate data mem.

SET1 fmem.bit

SET1 pmem.@L

SET1 @H+mem.bit

Function: (bit specified by operand) ← 1

Sets the bit of the data memory addressed in the bit manipulation addressing mode (fmem.bit, pmem.@L, or

@H+mem.bit).

CLR1 mem.bit

Function: (mem.bit) ← 0 mem = D7-0: 00H-FFH, bit = B1-0: 0-3

Clears the bit specified by 2-bit immediate data bit at the address specified by 8-bit immediate data mem.

CLR1 fmem.bit

CLR1 pmem.@L

CLR1 @H+mem.bit

Function: (bit specified by operand) ← 0

Clears the bit of the data memory addressed in the bit manipulation addressing mode (fmem.bit, pmem.@L, or

@H+mem.bit).

CHAPTER 10 INSTRUCTION SET

244

SKT mem.bit

Function: Skip if (mem.bit) = 1

 mem = D7-0: 00H-FFH, bit = B1-0: 0-3

Skips the next one instruction if the bit specified by 2-bit immediate data bit at the address specified by 8-bit

immediate data mem is 1.

SKT fmem.bit

SKT pmem.@L

SKT @H+mem.bit

Function: Skip if (bit specified by operand) = 1

Skips the next one instruction if the bit of the data memory addressed in the bit manipulation addressing mode

(fmem.bit, pmem.@L, or @H+mem.bit) is 1.

SKF mem.bit

Function: Skip if (mem.bit) = 0

 mem = D7-0: 00H-FFH, bit = B1-0: 0-3

Skips the next one instruction if the bit specified by 2-bit immediate data bit at the address specified by 8-bit

immediate data mem is 0.

SKF fmem.bit

SKF pmem.@L

SKF @H+mem.bit

Function: Skip if (bit specified by operand) = 0

Skips the next one instruction if the bit of the data memory addressed in the bit manipulation addressing mode

(fmem.bit, pmem.@L, or @H+mem.bit) is 0.

CHAPTER 10 INSTRUCTION SET

245

SKTCLR fmem.bit

SKTCLR pmem.@L

SKTCLR @H+mem.bit

Function: Skip if (bit specified by operand) = 1 then clear

Skips the next one instruction if the bit of the data memory addressed in the bit manipulation addressing mode

(fmem.bit, pmem.@L, or @H+mem.bit) is 1, and clears the bit to “0”.

AND1 CY, fmem.bit

AND1 CY, pmem.@L

AND1 CY, @H+mem.bit

Function: CY ← CY (bit specified by operand)

ANDs the content of the carry flag with the contents of the data memory addressed in the bit manipulation

addressing mode (fmem.bit, pmem.@L, or @H+mem.bit), and sets the result to the carry flag.

OR1 CY, fmem.bit

OR1 CY, pmem.@L

OR1 CY, @H+mem.bit

Function: CY ← CY (bit specified by operand)

ORs the content of the carry flag with the contents of the data memory addressed in the bit manipulation addressing

mode (fmem.bit, pmem.@L, or @H+mem.bit), and sets the result to the carry flag.

XOR1 CY, fmem.bit

XOR1 CY, pmem.@L

XOR1 CY, @H+mem.bit

Function: CY ← CY (bit specified by operand)

Exclusive-ORs the content of the carry flag with the contents of the data memory addressed in the bit manipulation

addressing mode (fmem.bit, pmem.@L, or @H+mem.bit), and sets the result to the carry flag.

CHAPTER 10 INSTRUCTION SET

246

10.4.10 Branch instruction

BR addr

Function: PC10-0 ← addr

addr = 0000H-07FFH

Branches to an address specified by immediate data addr.

This instruction is an assembler directive and is replaced by the assembler at assembly time with the optimum

instruction from the BR !addr, BRCB !caddr, and BR $addr instructions.

BR addr1

Function: PC10-0 ← addr1

addr1 = 0000H-07FFH

Branches to an address specified by immediate data addr1.

This instruction is an assembler directive and is replaced by the assembler at assembly time with the optimum

instruction from the BRA !addr1, BR !addr, BRCB !caddr, and BR $addr instructions.

BRA !addr1

Function: PC10-0 ← addr1

BR !addr

Function: PC10-0 ← addr

addr = 0000H-07FFH

Transfers immediate data addr to the program counter (PC) and branches to an address specified by the PC.

BR $addr

Function: PC10-0 ← addr

addr = (PC–15) to (PC–1), (PC+2) to (PC+16)

This is a relative branch instruction that has a branch range of (–15 to –1) and (+2 to +16) from the current address.

It is not affected by a page boundary or block boundary.

I

II

II

CHAPTER 10 INSTRUCTION SET

247

BR $addr1

Function: PC10-0 ← addr1

addr1 = (PC–15) to (PC–1), (PC+2) to (PC+16)

This is a relative branch instruction that has a branch range of (–15 to –1) and (+2 to +16) from the current address.

It is not affected by a page boundary or block boundary.

BRCB !caddr

Function: PC10-0 ← caddr10-0

caddr = 0000H-07FFH

Branches to an address specified by the program counter (PC10-0) replaced with 12-bit immediate data caddr.

Caution

The BRCB !caddr instruction usually branches execution in a block where the instruction exists. If the first byte

of this instruction is at address 07FEH, however, execution does not branch to block 0 but to block 1.

7 0

0FFFH

1000H

Block 1

Block 0

Program memory

0FFEH
a

If the BRCB !caddr instruction is at position a in the figure above, execution branches to block 1 (unmounted), not

block 0. Do not use the BRC !caddr instruction at the address 0FFEH.

II

I/II

CHAPTER 10 INSTRUCTION SET

248

BR PCDE

Function: PC10-0 ← PC10-8 + DE

PC7-4 ← D, PC3-0 ← E

Branches to an address specified by the lower 8 bits of the program counter (PC7-0) replaced with the contents

of register pair DE. The higher bits of the program counter are not affected.

Caution

The BR PCDE instruction usually branches execution to the page where the instruction exists. If the first byte of

the op code is at address ××FE or ××FFH, however, execution does not branch in that page, but to the next page.

7 0

02FFH

0300H

Page 3

Page 2

Program memory

02FEH
a

b

For example, if the BR PCDE instruction is at position a or b in the above figure, execution branches to the lower

8-bit address specified by the contents of register pair DE in page 3, not in page 2.

BR PCXA

Function: PC10-0 ← PC10-8 + XA

PC7-4 ← X, PC3-0 ← A

Branches to an address specified by the lower 8 bits of the program counter (PC7-0) replaced with the contents

of register pair XA. The higher bits of the program counter are not affected.

Caution

This instruction branches execution to the next page, not to the same page, if the first byte of the op code is at

address ××FEH or ××FFH, in the same manner as the BR PCDE instruction.

CHAPTER 10 INSTRUCTION SET

249

BR BCDE

Function: PC10-0 ← BCDE

Example

To branch to an address specified by the contents of the program counter replaced by the contents of registers

B, C, D, and E

However, the PC of the µPD754202 is 11 bits. The contents of PC are replaced by the contents of registers C,

D and E. Always set register B to 0000B.

I/II

10

PC

8

2 0

C

7 4

3 0

D

3 0

3 0

E

BR BCXA

Function: PC10-0 ← BCXA

Example

To branch to an address specified by the contents of the program counter replaced by the contents of registers

B, C, X, and A

However, the PC of the µPD754202 is 11 bits. The contents of PC are replaced by the contents of registers C,

X and A. Always set register B to 0000B.

TBR addr

Function:

This is an assembler directive for table definition by the GETI instruction. It is used to replace a 3-byte BR !addr

instruction with a 1-byte GETI instruction. Describe 12-bit address data as addr. For details, refer to RA75X

Assembler Package User’s Manual - Language (EEU-1363) .

10

PC

8

2 0

C

7 4

3 0

X

3 0

3 0

A

CHAPTER 10 INSTRUCTION SET

250

10.4.11 Subroutine/stack control instruction

CALLA !addr1

Function: (SP–2) ← ×, ×, MBE, RBE, (SP–3) ← PC7-4

(SP–4) ← PC3-0, (SP–5) ← 0, 0, 0, 0

(SP–6) ← 0, PC10-8

PC10-0 ← addr1, SP ← SP – 6

CALL !addr

Function: [MkI mode]

(SP–1) ← PC7-4, (SP–2) ← PC3-0

(SP–3) ← MBE, RBE, 0, 0

(SP–4) ← 0, PC10-8, PC10-0 ← addr, SP←SP – 4

addr = 0000H-07FFH

[MkII mode]

(SP–2) ← ×, ×, MBE, RBE

(SP–3) ← PC7-4, (SP–4) ← PC3-0

(SP–5) ← 0, 0, 0, 0, (SP–6) ← 0, PC10-8

PC10-0 ← addr, SP ← SP–6

Saves the contents of the program counter (return address), MBE, and RBE to the data memory (stack) addressed

by the stack pointer (SP), decrements the SP, and then branches to an address specified by 12-bit immediate data

addr.

I/II

II

CHAPTER 10 INSTRUCTION SET

251

CALLF !faddr

Function: [MkI mode]

(SP–1) ← PC7-4, (SP–2) ← PC3-0

(SP–3) ← MBE, RBE, 0, 0

(SP–4) ← 0, PC10-8, SP ← SP–4

PC10-0 ← 0+faddr

faddr = 0000H-07FFH

[MkII mode]

(SP–2) ← ×, ×, MBE, RBE

(SP–3) ← PC7-4, (SP–4) ← PC3-0

(SP–5) ← 0, 0, 0, 0, (SP–6) ← 0, PC10-8

SP ← SP–6

PC10-0 ← 0+faddr

faddr = 0000H-07FFH

Saves the contents of the program counter (return address), MBE, and RBE to the data memory (stack) addressed

by the stack pointer (SP), decrements the SP, and then branches to an address specified by 11-bit immediate data

faddr.

TCALL !addr

Function:

This is an assembler directive for table definition by the GETI instruction. It is used to replace a 3-byte CALL !addr

instruction with a 1-byte GETI instruction. Describe 12-bit address data as addr. For details, refer to RA75X

Assembler Package User’s Manual - Language (EEU-1363) .

I/II

CHAPTER 10 INSTRUCTION SET

252

RET

Function: [MkI mode] PC10-8 ← (SP) 2-0, MBE, RBE, 0, 0 ← (SP+1)

PC3-0 ← (SP+2)

PC7-4 ← (SP+3), SP ← SP+4

[MkII mode] PC10-8 ← (SP) 2-0, 0, 0, 0, 0 ← (SP+1)

PC3-0 ← (SP+2), PC7-4 ← (SP+3)

×, ×, MBE, RBE ← (SP+4), SP ← SP+6

Restores the contents of the data memory (stack) addressed by the stack pointer (SP) to the program counter (PC),

memory bank enable flag (MBE), and register bank enable flag (RBE), and then increments the contents of the SP.

Caution

All the flags of the program status word (PSW) other than MBE and RBE are not restored.

RETS

Function: [MkI mode] PC10-8 ← (SP) 2-0, MBE, RBE, 0, 0 ← (SP+1)

PC3-0 ← (SP+2), PC7-4 ← (SP+3), SP ← SP+4

Then skip unconditionally

[MkII mode] PC10-8 ← (SP) 2-0, 0, 0, 0, 0 ← (SP+1)

PC3-0 ← (SP+2), PC7-4 ← (SP+3)

×, ×, MBE, RBE ← (SP+4), SP ← SP+6

Then skip unconditionally

Restores the contents of the data memory (stack) addressed by the stack pointer (SP) to the program counter (PC),

memory bank enable flag (MBE), and register bank enable flag (RBE), increments the contents of the SP, and then

skips unconditionally.

Caution

All the flags of the program status word (PSW) other than MBE and RBE are not restored.

I/II

I/II

CHAPTER 10 INSTRUCTION SET

253

RETI

Function: [MkI mode] PC10-8 ← (SP) 2-0, MBE, RBE, 0, 0 ← (SP+1)

PC3-0 ← (SP+2), PC7-4 ← (SP+3)

PSWL ← (SP+4), PSWH ← (SP+5)

SP ← SP+6

[MkII mode] PC10-8 ← (SP) 2-0, 0, 0, 0, 0 ← (SP+1)

PC3-0 ← (SP+2), PC7-4 ← (SP+3)

PSWL ← (SP+4), PSWH ← (SP+5)

SP ← SP+6

Restores the contents of the data memory (stack) addressed by the stack pointer (SP) to the program counter (PC)

and program status word (PSW), and then increments the contents of the SP.

This instruction is used to return execution from an interrupt service routine.

I/II

CHAPTER 10 INSTRUCTION SET

254

PUSH rp

Function: (SP–1) ←rpH, (SP–2) ← rpL, SP ← SP–2

Saves the contents of register pair rp (XA, HL, DE, or BC) to the data memory (stack) addressed by the stack pointer

(SP), and then decrements the contents of the SP.

The higher 4 bits of the register pair (rpH, X, H, D, or B) are saved to the stack addressed by (SP–1), and the lower

4 bits (rpL: A, L, E, or C) are saved to the stack addressed by (SP–2).

PUSH BS

Function: (SP–1) ← MBS, (SP–2) ← RBS, SP ← SP–2

Saves the contents of the memory bank select register (MBS) and register bank select register (RBS) to the data

memory (stack) addressed by the stack pointer (SP), and then decrements the contents of the SP.

POP rp

Function : rpL ← (SP), rpH ← (SP+1), SP ← SP+2

Restores the contents of the data memory addressed by the stack pointer (SP) to register pair rp (XA, HL, DE,

or BC), and then decrements the contents of the stack pointer.

The contents of (SP) are restored to the higher 4 bits of the register pair (rpH, X, H, D, or B), and the contents of

(SP+1) are restored to the lower 4 bits (rpL: A, L, E, or C).

POP BS

Function: RBS ← (SP), MBS ← (SP+1), SP ← SP+2

Restores the contents of the data memory (stack) addressed by the stack pointer (SP) to the register bank select

register (RBS) and memory bank select register (MBS), and then increments the contents of the SP.

CHAPTER 10 INSTRUCTION SET

255

10.4.12 Interrupt control instruction

EI

Function: IME (IPS.3) ← 1

Sets the interrupt mask enable flag (bit 3 of the interrupt priority select register) to “1” to enable interrupts.

Acknowledging an interrupt is controlled by an interrupt enable flag corresponding to the interrupt.

EI IE×××

Function: IE××× ← 1 ××× = N5, N2-0

Sets a specified interrupt enable flag (IE×××) to “1” to enable acknowledging the corresponding interrupt (××× =

BT, T0, T1, T2, 0, 2).

DI

Function: IME (IPS.3) ← 0

Resets the interrupt mask enable flag (bit 3 of the interrupt priority select register) to “0” to disable all interrupts,

regardless of the contents of the respective interrupt enable flags.

DI IE×××

Function: IE××× ← 1 ××× = N5, N2-0

Resets a specified interrupt enable flag (IE×××) to “0” to disable acknowledging the corresponding interrupt (×××
= BT, T0, T1, T2, 0, 2).

CHAPTER 10 INSTRUCTION SET

256

10.4.13 Input/output instruction

IN A, PORTn

Function: A ← PORTn n = N3-0: 3, 6, 7, 8

Transfers the contents of a port specified by PORTn (n = 3, 6, 7, 8) to the A register.

Caution

When this instruction is executed, it is necessary that MBE = 0 or (MBE = 1, MBS = 15). n can be 3, 6, 7, 8.

The data of the output latch is loaded to the A register in the output mode, and the data of the port pins are loaded

to the register in the input mode.

OUT PORTn, A

Function: PORTn ← A n = N3-0: 3, 6, 8

Transfers the contents of the A register to the output latch of a port specified by PORTn (n = 3, 6, 8).

Caution

When this instruction is executed, it is necessary that MBE = 0 or (MBE = 1, MBS = 15).

Only 3, 6, and 8 can be specified as n.

CHAPTER 10 INSTRUCTION SET

257

10.4.14 CPU control instruction

HALT

Function: PCC.2 ← 1

Sets the HALT mode (this instruction sets the bit 2 of the processor clock control register).

Caution

Make sure that an NOP instruction follows the HALT instruction.

STOP

Function: PCC.3 ← 1

Sets the STOP mode (this instruction sets the bit 3 of the processor clock control register).

Caution

Make sure that an NOP instruction follows the STOP instruction.

NOP

Function: Executes nothing but consumes 1 machine cycle.

CHAPTER 10 INSTRUCTION SET

258

10.4.15 Special instruction

SEL RBn

Function: RBS ← n n = N1-0: 0-3

Sets 2-bit immediate data n to the register bank select register (RBS).

SEL MBn

Function: MBS ← n n = N3-0: 0, 15

Transfers 4-bit immediate data n to the memory bank select register (MBS).

GETI taddr

Function: taddr = T5-0, 0: 20H-7FH

[MkI mode]

• When table defined by TBR instruction is referenced

PC10-0 ← (taddr)2-0 + (taddr+1)

• When table defined by TCALL instruction is referenced

(SP–1) ← PC7-4, (SP–2) ← PC3-0

(SP–3) ← MBE, RBE, 0, 0

(SP–4) ← 0, PC10-8

PC10-0 ← (taddr)2-0 + (taddr+1)

SP ← SP–4

• When table defined by instruction other than TBR and TCALL is referenced

Executes instruction with (taddr) (taddr+1) as op code

[MkII mode]

• When table defined by TBR instruction is referenced

PC10-0 ← (taddr)2-0 + (taddr+1)

• When table defined by TCALL instruction is referenced

(SP–2) ← ×, ×, MBE, RBE

(SP–3) ← PC7-4, (SP–4) ← PC3-0

(SP–5) ← 0, 0, 0, 0, (SP–6) ← 0, PC10-8

PC10-0 ← (taddr)2-0 + (taddr+1), SP ← SP–6

• When table defined by instruction other than TBR and TCALL is referenced

Executes instruction with (taddr) (taddr+1) as op code

References the 2-byte data at the program memory address specified by (taddr), (taddr+1) and executes it as an

instruction.

The area of the reference table consists of addresses 0020H through 007FH. Data must be written to this area

in advance. Write the mnemonic of a 1-byte or 2-byte instruction as the data as is.

When a 3-byte call instruction and 3-byte branch instruction is used, data is written by using an assembler directive

(TCALL or TBR).

Only an even address can be specified by taddr.

I/II

CHAPTER 10 INSTRUCTION SET

259

Caution

Only the 2-machine cycle instruction can be set to the reference table as a 2-byte instruction (except the BRCB

and CALLF instructions). Two 1-byte instructions can be set only in the following combinations:

Instruction of 1st Byte Instruction of 2nd Byte

MOV A, @HL INCS L

MOV @HL, A DECS L

XCH A, @HL INCS H

DECS H

INCS HL

MOV A, @DE INCS E

XCH A, @DE DECS E

INCS D

DECS D

INCS DE

MOV A, @DL INCS L

XCH A, @DL DECS L

INCS D

DECS D

The contents of the PC are not incremented while the GETI instruction is executed. Therefore, after the reference

instruction has been executed, processing continues from the address next to that of the GETI instruction.

If the instruction preceding the GETI instruction has a skip function, the GETI instruction is skipped in the same

manner as the other 1-byte instructions. If the instruction referenced by the GETI instruction has a skip function, the

instruction that follows the GETI instruction is skipped.

If an instruction having a string effect is referenced by the GETI instruction, it is executed as follows:

• If the instruction preceding the GETI instruction has the string effect of the same group as the referenced

instruction, the string effect is lost and the referenced instruction is not skipped when GETI is executed.

• If the instruction next to GETI has the string effect of the same group as the referenced instruction, the string

effect by the referenced instruction is valid, and the instruction following that instruction is skipped.

CHAPTER 10 INSTRUCTION SET

260

Application example

MOV HL, #00H

MOV XA, #FFH

CALL SUB1

BR SUB2

ORG 20H

HL00: MOV HL, #00H

XAFF: MOV XA, #FFH

CSUB1: TCALL SUB1

BSUB2: TBR SUB2

GETI HL00 ; MOV HL, #00H

GETI BSUB2 ; BR SUB2

GETI CSUB1 ; CALL SUB1

GETI XAFF ; MOV XA, #FFH

Replaced by GETI

..
..

..
..

.
..

..
..

..
.

..
..

..
..

.
..

..
..

..
.

261

APPENDIX A FUNCTIONS OF µPD754202 AND 75F4264

Item µPD754202 µPD75F4264Note

Program memory

Static RAM

EEPROMTM

CPU

General-purpose register

Instruction execution time

I/O port CMOS input

CMOS input/output

Total

System clock oscillator

Start-up time after reset

Timer

A/D converter

Programmable threshold

port

Vectored interrupt

Test input

Supply voltage

Operating ambient

temperature

Package

Note Under development

Mask ROM

0000H-07FFH

(2048 × 8 bits)

000H-07FH

(128 × 4 bits)

None

75XL CPU

(4 bits × 8 or 8 bits × 4) × 4 banks

• 0.67, 1.33, 2.67, 10.7 µs (at fX = 6.0MHz)

• 0.95, 1.91, 3.81, 15.3 µs (at fX = 4.19MHz)

4 (connection of internal pull-up resistors specifiable by mask option)

9 (connection of internal pull-up resistors specifiable by software)

13

Crystal/ceramic oscillator

217/fX, 215/fX (selectable by mask option)

4 channels

• 8-bit timer counter: 3 channels

(can be used as 16-bit timer counter)

• Basic interval timer/watchdog timer: 1 channel

None

None

External: 1, internal: 4

External: 1 (with key return reset function)

VDD = 1.8 to 6.0 V

TA = –40 to +85 °C

• 20-pin plastic SOP

(300 mil, 1.27-mm pitch)

• 20-pin plastic shrink SOP

(300 mil, 0.65-mm pitch)

Data

memory

Flash memory

0000H-0FFFH

(4096 × 8 bits)

400H-43FH

(32 × 8 bits)

215/fX

• 8-bit resolution × 2 channels

(successive approximation type,

hardware control)

• Can be operated from VDD = 1.8 V

2 channels

External: 1, internal: 5

• 20-pin plastic SOP

(300 mil, 1.27-mm pitch)

262

[MEMO]

263

APPENDIX B DEVELOPMENT TOOLS

The following development tools are available to support development of systems using the µPD754202. With

the 75XL series, a relocatable assembler that can be used in common with any models in the series is used in

combination with a device file dedicated to the model being used.

Language processor

Order code
OS Supply media

PC-9800 series MS-DOSTM 3.5"2HD µS5A13RA75X

Ver.3.30 5"2HD µS5A10RA75X

to

Ver.6.2Note

3.5" 2HC µS7B13RA75X

5"2HC µS7B10RA75X

IBM PC/ATTM or

compatible machine

Refer to OS of IBM

PC.

Order code
OS Supply media

PC-9800 series MS-DOS 3.5"2HD µS5A13DF754202

Ver.3.30 5"2HD µS5A10DF754202

to

Ver.6.2Note

3.5" 2HC µS7B13DF754202

5"2HC µS7B10DF754202

IBM PC/AT or compat-

ible machine

Refer to OS of IBM

PC.

Note Although Ver.5.00 or above has a task swap function, this function cannot be used with this software.

Remark The operations of the assembler and device file are guaranteed only on the above host machines and

OS.

Host machineRA75X relocatable

assembler

Device file Host machine

APPENDIX B DEVELOPMENT TOOLS

264

IE-75000-RNote 1 The IE-75000-R is an in-circuit emulator that debugs the hardware and software of an

application system using the 75X series or 75XL series. To develop the µPD754202, use

this in-circuit emulator with an optional emulation board IE-75300-R-EM and emulation probe

EP-754144GS-R.

The in-circuit emulator is connected with a host machine for efficient debugging.

The IE-75000-R contains the emulation board IE-75000-R-EM.

IE-75001-R The IE-75001-R is an in-circuit emulator that debugs the hardware and software of an

application system using the 75X series or 75XL series. To develop the µPD754202, use

this in-circuit emulator with an optional emulation board IE-75300-R-EM and emulation probe

EP-754144GS-R.

The in-circuit emulator is connected with a host machine to provide efficient debugging.

IE-75300-R-EM This is an emulation board to evaluate an application system using the µPD754202. It is

used with the IE-75000-R or IE-75001-R.

EP-754144GS-R This is an emulation probe for the µPD754202.

It is connected to the IE-75000-R or IE-75001-R and IE-75300-R-EM.

A flexible board, EV-9200G-20 (20-pin plastic SOP supported), that facilitates

connection with the target system and EV-9501GS-20 (20-pin plastic SOP supported) is

also supplied.

IE control program This program connects the IE-75000-R or IE-75001-R and a host machine with an RS-232C

or Centronics interface to control the IE-75000-R or IE-75001-R on the host machine.

Debugging Tools

As the debugging tools for the µPD754202, in-circuit emulators (IE-75000-R and IE-75001-R) are available.

The following table shows the system configuration of the in-circuit emulators.

H
ar

dw
ar

e

EV-9500GS-20

EV-9501GS-20

Order code

IBM PC/AT or

compatible machine

Refer to OS of IBM

PC.

S
of

tw
ar

e

Host machine

OS Supply media

PC-9800 series MS-DOS 3.5"2HD µS5A13IE75X

Ver.3.30 5"2HD µS5A10IE75X

to

Ver.6.2Note 2

3.5" 2HC µS7B13IE75X

5"2HC µS7B10IE75X

Notes 1. This is a maintenance part.

2. Although Ver.5.00 or above has a task swap function, this function cannot be used with this software.

Remark The operation of the IE control program is guaranteed only on the above host machines and OS.

APPENDIX B DEVELOPMENT TOOLS

265

OS of IBM PC

The following OS is supported as the OS for IBM PC.

OS Version

PC DOSTM Ver.5.02 to Ver.6.3

J6.1/VNote to J6.3/VNote

MS-DOS Ver.5.0 to Ver.6.22

5.0/VNote to 6.2/VNote

IBM DOSTM J5.02/VNote

Note Only the English mode is supported.

Caution Although Ver.5.0 or above has a task swap function, this function cannot be used with this

software.

A
P

P
E

N
D

IX
 B

 D
E

V
E

LO
P

M
E

N
T

 T
O

O
LS

266 Development Tool Configuration

In-circuit emulator

IE-75000-R or IE-75001-R

Emulation board
IE-75300-R-EMNote 1

IE control
program

Host machine
PC-9800 series

lBM PC/AT
[Symbolic debugging

possible]

Relocatable
assembler

+

Device file

RS-232-C

Flash writer (FlashproII)

FL-PR2Note 3

Emulation probe

EP-754144GS

 PD75F4264GSµ

Flash memory
contained model

Target systemNote 2

Centronics l/F

1. The in-circuit emulator is not provided with IE-75300-R-EM (optional).
2. EV-9500GS-20, EV-9501GS-20
3. Manufactured by Naito Densei Machida Mfg. Co., Ltd.

Notes

267

APPENDIX C ORDERING MASK ROM

After your program has been developed, you can place an order for a mask ROM using the following procedure:

<1> Reservation for mask ROM ordering

Inform NEC of when you intend to place an order for the mask ROM. (NEC’s response may be delayed if

we are not informed in advance.)

<2> Preparation of ordering media

Following three medias are available for ordering mask ROM

• UV-EPROMNote

• 3.5-inch IBM format floppy disk (outside Japan only)

• 5-inch IBM format floppy disk (outside Japan only)

Note Prepare three UV-EPROMs with the same contents.

For the product with mask option, write down the mask option data on the mask option information sheet.

<3> Preparation of necessary documents

Fill out the following documents when ordering the mask ROM:

• Mask ROM Ordering Sheet

• Mask ROM Ordering Check Sheet

• Mask Option Information Sheet (necessary for product with mask option)

<4> Ordering

Submit the media prepared in <2> and documents prepared in <3> to NEC by the order reservation date.

Caution For details, see the information document “ROM Code Ordering Procedure” (IEM-1366).

268

[MEMO]

269

APPENDIX D INSTRUCTION INDEX

D.1 Instruction Index (by function)

[Table reference instruction]

MOVT XA, @PCDE ... 207, 227

MOVT XA, @PCXA ... 207, 229

MOVT XA, @BCDE ... 207, 229

MOVT XA, @BCXA ... 207, 230

[Bit transfer instruction]

MOV1 CY, fmem.bit ... 207, 231

MOV1 CY, pmem.@L ... 207, 231

MOV1 CY, @H+mem.bit ... 207, 231

MOV1 fmem.bit, CY ... 207, 231

MOV1 pmem.@L, CY ... 207, 231

MOV1 @H+mem.bit, CY ... 207, 231

[Operation instruction]

ADDS A, #n4 ... 207, 232

ADDS XA, #n8 ... 207, 232

ADDS A, @HL ... 207, 232

ADDS XA, rp' ... 207, 232

ADDS rp'1, XA ... 207, 232

ADDC A, @HL ... 207, 233

ADDC XA, rp' ... 207, 233

ADDC rp'1, XA ... 207, 233

SUBS A, @HL ... 207, 234

SUBS XA, rp' ... 207, 234

SUBS rp'1, XA ... 207, 234

SUBC A, @HL ... 207, 235

SUBC XA, rp' ... 207, 235

SUBC rp'1, XA ... 207, 235

AND A, #n4 ... 207, 236

[Transfer instruction]

MOV A, #n4 ... 206, 219

MOV reg1, #n4 ... 206, 219

MOV XA, #n8 ... 206, 219

MOV HL, #n8 ... 206, 220

MOV rp2, #n8 ... 206, 220

MOV A, @HL ... 206, 220

MOV A, @HL+ ... 206, 220

MOV A, @HL– ... 206, 220

MOV A, @rpa1 ... 206, 221

MOV XA, @HL ... 206, 221

MOV @HL, A ... 206, 221

MOV @HL, XA ... 206, 222

MOV A, mem ... 206, 222

MOV XA, mem ... 206, 222

MOV mem, A ... 206, 222

MOV mem, XA ... 206, 223

MOV A, reg ... 206, 223

MOV XA, rp' ... 206, 223

MOV reg1, A ... 206, 223

MOV rp'1, XA ... 206, 223

XCH A, @HL ... 206, 224

XCH A, @HL+ ... 206, 224

XCH A, @HL– ... 206, 224

XCH A, @rpa1 ... 206, 225

XCH XA, @HL ... 206, 225

XCH A, mem ... 206, 225

XCH XA, mem ... 206, 226

XCH A, reg1 ... 206, 226

XCH XA, rp' ... 206, 226

APPENDIX D INSTRUCTION INDEX

270

AND A, @HL ... 207, 236

AND XA, rp' ... 207, 236

AND rp'1, XA ... 207, 236

OR A, #n4 ... 207, 237

OR A, @HL ... 207, 237

OR XA, rp' ... 207, 237

OR rp'1, XA ... 207, 237

XOR A, #n4 ... 207, 238

XOR A, @HL ... 207, 238

XOR XA, rp' ... 207, 238

XOR rp'1, XA ... 207, 238

[Accumulator instruction]

RORC A ... 208, 249

NOT A ... 208, 249

[Increment/decrement instruction]

INCS reg ... 208, 240

INCS rp1 ... 208, 240

INCS @HL ... 208, 240

INCS mem ... 208, 240

DECS reg ... 208, 240

DECS rp' ... 208, 240

[Compare instruction]

SKE reg, #n4 ... 208, 241

SKE @HL, #n4 ... 208, 241

SKE A, @HL ... 208, 241

SKE XA, @HL ... 208, 241

SKE A, reg ... 208, 241

SKE XA, rp' ... 208, 241

[Carry flag manipulation instruction]

SET1 CY ... 208, 242

CLR1 CY ... 208, 242

SKT CY ... 208, 242

NOT1 CY ... 208, 242

[Memory bit manipulation instruction]

SET1 mem.bit ... 208, 243

SET1 fmem.bit ... 208, 243

SET1 pmem.@L ... 208, 243

SET1 @H+mem.bit ... 208, 243

CLR1 mem.bit ... 208, 243

CLR1 fmem.bit ... 208, 243

CLR1 pmem.@L ... 208, 243

CLR1 @H+mem.bit ... 208, 243

SKT mem.bit ... 208, 244

SKT fmem.bit ... 208, 244

SKT pmem.@L ... 208, 244

SKT @H+mem.bit ... 208, 244

SKF mem.bit ... 208, 244

SKF fmem.bit ... 208, 244

SKF pmem.@L ... 208, 244

SKF @H+mem.bit ... 208, 244

SKTCLR fmem.bit ... 208, 245

SKTCLR pmem.@L ... 208, 245

SKTCLR @H+mem.bit ... 208, 245

AND1 CY, fmem.bit ... 209, 245

AND1 CY, pmem.@L ... 209, 245

AND1 CY, @H+mem.bit ... 209, 245

OR1 CY, fmem.bit ... 209, 245

OR1 CY, pmem.@L ... 209, 245

OR1 CY, @H+mem.bit ... 209, 245

XOR1 CY, fmem.bit ... 209, 245

XOR1 CY, pmem.@L ... 209, 245

XOR1 CY, @H+mem.bit ... 209, 245

[Branch instruction]

BR addr ... 209, 246

BR addr1 ... 209, 246

BR !addr ... 209, 246

BR $addr ... 209, 246

BR $addr1 ... 209, 247

BR PCDE ... 209, 248

APPENDIX D INSTRUCTION INDEX

271

BR PCXA ... 209, 248

BR BCDE ... 209, 249

BR BCXA ... 209, 249

BRA !addr1 ... 209, 249

BRCB !caddr ... 209, 250

TBR addr ... 211, 250

[Subroutine/stack control instruction]

CALLA !addr1 ... 210, 250

CALL !addr ... 210, 250

CALLF !faddr ... 210, 251

TCALL !addr ... 210, 251

RET ... 210, 252

RETS ... 210, 252

RETI ... 210, 253

PUSH tp ... 211, 254

PUSH BS ... 211, 254

POP rp ... 211, 254

POP BS ... 211, 254

[Interrupt control instruction]

EI ... 211, 255

EI IE××× ... 211, 255

DI ... 211, 255

DI IE××× ... 211, 255

[Input/output instruction]

IN A, PORTn ... 211, 256

OUT PORTn, A ... 211, 256

[CPU control instruction]

HALT ... 211, 257

STOP ... 211, 257

NOP ... 211, 257

[Special instruction]

SEL RBn ... 211, 258

SEL MBn ... 211, 258

GETI taddr ... 211, 258

APPENDIX D INSTRUCTION INDEX

272

D.2 Instruction Index (alphabetical order)

[A]

ADDC A, @HL ... 207, 232

ADDC rp'1, XA ... 207, 232

ADDC XA, rp' ... 207, 232

ADDS A, #n4 ... 207, 232

ADDS A, @HL ... 207, 232

ADDS rp'1, XA ... 207, 232

ADDS XA, rp' ... 207, 232

ADDS XA, #n8 ... 207, 232

AND A, #n4 ... 207, 236

AND A, @HL ... 207, 236

AND rp'1, XA ... 207, 236

AND XA, rp' ... 207, 236

AND1 CY, fmem.bit ... 209, 245

AND1 CY, pmem.@L ... 209, 245

AND1 CY, @H+mem.bit ... 209, 245

[B]

BR addr ... 209, 246

BR addr1 ... 209, 246

BR BCDE ... 209, 249

BR BCXA ... 209, 248

BR PCDE ... 209, 248

BR PCXA ... 209, 248

BR !addr ... 209, 246

BR $addr ... 209, 246

BR $addr1 ... 209, 247

BRA !addr1 ... 209, 249

BRCB !caddr ... 209, 250

[C]

CALL !addr ... 210, 250

CALLA !addr1 ... 210, 250

CALLF !faddr ... 210, 251

CLR1 CY ... 208, 242

CLR1 fmem.bit ... 208, 243

CLR1 mem.bit ... 208, 243

CLR1 pmem.@L ... 208, 243

CLR1 @H+mem.bit ... 208, 243

[D]

DECS reg ... 208, 240

DECS rp' ... 208, 240

DI ... 211, 254

DI IE××× ... 211, 254

[E]

EI ... 211, 254

EI IE××× ... 211, 254

[G]

GETI taddr ... 211, 258

[H]

HALT ... 211, 257

[I]

IN A, PORTn ... 211, 256

INCS mem ... 210, 240

INCS reg ... 210, 240

INCS rp1 ... 210, 240

INCS @HL ... 210, 240

[M]

MOV A, mem ... 206, 222

MOV A, reg ... 206, 223

MOV A, #n4 ... 206 219

MOV A, @HL ... 206, 220

MOV A, @HL+ ... 206, 220

MOV A, @HL– ... 206, 220

APPENDIX D INSTRUCTION INDEX

273

MOV A, @rpa1 ... 206, 221

MOV HL, #n8 ... 206, 219

MOV mem, A ... 206, 222

MOV mem, XA ... 206, 223

MOV reg1, A ... 206, 223

MOV reg1, #n4 ... 206, 219

MOV rp'1, XA ... 206, 223

MOV rp2, #n8 ... 206, 220

MOV XA, mem ... 206, 222

MOV XA, rp' ... 206, 226

MOV XA, #n8 ... 206, 219

MOV XA, @HL ... 206, 221

MOV @HL, A ... 206, 221

MOV @HL, XA ... 206, 222

MOVT XA, @BCDE ... 207, 229

MOVT XA, @BCXA ... 207, 230

MOVT XA, @PCDE ... 207, 227

MOVT XA, @PCXA ... 207, 229

MOV1 CY, fmem.bit ... 207, 231

MOV1 CY, pmem.@L ... 207, 231

MOV1 CY, @H+mem.bit ... 207, 231

MOV1 fmem.bit, CY ... 207, 231

MOV1 pmem.@L, CY ... 207, 231

MOV1 @H+mem.bit, CY ... 207, 231

[H]

NOP ... 211, 257

NOT A ... 208, 239

NOT1 CY ... 208, 242

[O]

OR A, #n4 ... 207, 237

OR A, @HL ... 207, 237

OR rp'1, XA ... 207, 237

OR XA, rp' ... 207, 237

OR1 CY, fmem.bit ... 209, 245

OR1 CY, pmem.@L ... 209, 245

OR1 CY, @H+mem.bit ... 209, 245

OUT PORTn, A ... 211, 256

[P]

POP BS ... 211, 254

POP rp ... 211, 254

PUSH BS ... 211, 254

PUSH rp ... 211, 254

[R]

RET ... 210, 252

RETI ... 210, 253

RETS ... 210, 252

RORC A ... 208, 239

[S]

SEL MBn ... 211, 258

SEL RBn ... 211, 258

SET1 CY ... 208, 243

SET1 fmem.bit ... 208, 243

SET1 mem.bit ... 208, 243

SET1 pmem.@L ... 208, 243

SET1 @H+mem.bit ... 208, 243

SKE A, reg ... 208, 241

SKE A, @HL ... 208, 241

SKE reg, #n4 ... 208, 241

SKE XA, rp' ... 208, 241

SKE XA, @HL ... 208, 241

SKE @HL, #n4 ... 208, 241

SKF fmem.bit ... 208, 244

SKF mem.bit ... 208, 244

SKF pmem.@L ... 208, 244

SKF @H+mem.bit ... 208, 244

SKT CY ... 208, 244

SKT fmem.bit ... 208, 244

SKT mem.bit ... 208, 244

SKT pmem.@L ... 208, 244

APPENDIX D INSTRUCTION INDEX

274

SKT @H+mem.bit ... 208, 244

SKTCLR fmem.bit ... 208, 245

SKTCLR pmem.@L ... 208, 245

SKTCLR @H+mem.bit ... 208, 245

STOP ... 211, 257

SUBC A, @HL ... 207, 235

SUBC rp'1, XA ... 207, 235

SUBC XA, rp' ... 207, 235

SUBS A, @HL ... 207, 234

SUBS rp'1, XA ... 207, 234

SUBS XA, rp' ... 207, 234

[T]

TBR addr ... 211, 250

TCALL !addr ... 210, 251

[X]

XCH A, mem ... 206, 225

XCH A, reg1 ... 206, 226

XCH A, @HL ... 206, 224

XCH A, @HL+ ... 206, 224

XCH A, @HL– ... 206, 224

XCH A, @rpa1 ... 206, 225

XCH XA, mem ... 206, 226

XCH XA, rp' ... 206, 226

XCH XA, @HL ... 206, 225

XOR A, #n4 ... 207, 238

XOR A, @HL ... 207, 238

XOR rp'1, XA ... 207, 238

XOR XA, rp' ... 207, 238

XOR1 CY, fmem.bit ... 209, 245

XOR1 CY, pmem.@L ... 209, 245

XOR1 CY, @H+mem.bit ... 209, 245

275

APPENDIX E HARDWARE INDEX

[B]

BS ... 59

BSB0-BSB3 ... 147

BT ... 84

BTM ... 87

[C]

CY ... 55

[I]

IE0 ... 153

IE2 ... 175

IEBT ... 153

IET0 ... 153

IET1 ... 153

IET2 ... 153

IM0 ... 158

IM2 ... 177

IME ... 155

INTA ... 36

INTE ... 36

INTF ... 36

INTG ... 36

INTH ... 36

IPS ... 154

IRQ0 ... 153

IRQ2 ... 175

IRQBT ... 153

IRQT0 ... 153

IRQT1 ... 153

IRQT2 ... 153

IST0, IST1 ... 57, 159

[K]

KR4-KR7 ... 175

KRF ... 195

KRREN ... 179

[M]

MBE ... 57

MBS ... 59

[N]

NRZ ... 103

NRZB ... 103

[P]

PC ... 43

PCC ... 77

PMGA, PMGC ... 67

POGA, POGB ... 72

PORT3, 6, 7, 8 ... 61

PSW ... 55

[R]

RBE ... 58

RBS ... 60

REMC ... 103

[S]

SBS ... 42, 51

SK0-SK2 ... 56

SP ... 51

[T]

T0, T1, T2 ... 34, 35

TC2 ... 103

TM0, TM1, TM2 ... 97

TMOD0, TMOD1, TMOD2 ... 34, 35

TMOD2H ... 33

TOE0, TOE1, TOE2 ... 102, 103

[W]

WDF ... 195

WDTM ... 87

276

[MEMO]

277

APPENDIX F REVISION HISTORY

The revisions in all the previous versions are shown below. The “Applied to:” column indicates the chapter names

in each edition.

Revision Revisions in Previous Version Applied to:

2nd edition Function list of µPD754202 and 75F4264 added APPENDIX A FUNCTIONS OF

µPD754202 AND 75F4264

Device file names changed APPENDIX B DEVELOPMENT TOOLS

278

[MEMO]

	COVER
	Major Revisions in This Version
	INTRODUCTION
	CHAPTER 1 GENERAL
	1.1 Functional Outline
	1.2 Ordering Information
	1.3 Block Diagram
	1.4 Pin Configuration (Top View)

	CHAPTER 2 PIN FUNCTIONS
	2.1 Pin Functions
	2.2 Description of Pin Functions
	2.2.1 P30-P33 (PORT3), P60-P63 (PORT6), P80 (PORT8)
	2.2.2 P70-P73 (PORT7)
	2.2.3 PTO0-PTO2
	2.2.4 INT0
	2.2.5 KR4-KR7
	2.2.6 KRREN
	2.2.7 X1 and X2
	2.2.8 RESET#
	2.2.9 IC
	2.2.10 VDD
	2.2.11 VSS

	2.3 I/O Circuits of Respective Pins
	2.4 Processing of Unused Pins

	CHAPTER 3 FEATURES OF ARCHITECTURE AND MEMORY MAP
	3.1 Bank Configuration of Data Memory and Addressing Mode
	3.1.1 Bank configuration of data memory
	3.1.2 Addressing mode of data memory

	3.2 Bank Configuration of General-Purpose Registers
	3.3 Memory-Mapped I/O

	CHAPTER 4 INTERNAL CPU FUNCTION
	4.1 Function to Select MkI and MkII Modes
	4.1.1 Difference between MkI and MkII modes
	4.1.2 Setting stack bank select register (SBS)

	4.2 Program Counter (PC)
	4.3 Program Memory (ROM)
	4.4 Data Memory (RAM)
	4.4.1 Configuration of data memory
	4.4.2 Specifying bank of data memory

	4.5 General-Purpose Register
	4.6 Accumulator
	4.7 Stack Pointer (SP) and Stack Bank Select Register (SBS)
	4.8 Program Status Word (PSW)
	4.9 Bank Select Register (BS)

	CHAPTER 5 PERIPHERAL HARDWARE FUNCTION
	5.1 Digital I/O Port
	5.1.1 Types, features, and configurations of digital I/O ports
	5.1.2 Setting I/O mode
	5.1.3 Digital I/O port manipulation instruction
	5.1.4 Operation of digital I/O port
	5.1.5 Connecting pull-up resistor
	5.1.6 I/O timing of digital I/O port

	5.2 Clock Generation Circuit
	5.2.1 Configuration of clock generation circuit
	5.2.2 Function and operation of clock generation circuit
	5.2.3 Setting CPU clock

	5.3 Basic Interval Timer/Watchdog Timer
	5.3.1 Configuration of basic interval timer/watchdog timer
	5.3.2 Basic interval timer mode register (BTM)
	5.3.3 Watchdog timer enable flag (WDTM)
	5.3.4 Operation as basic interval timer
	5.3.5 Operation as watchdog timer
	5.3.6 Other functions

	5.4 Timer Counter
	5.4.1 Configuration of timer counter
	5.4.2 Operation in 8-bit timer counter mode
	5.4.3 Operation in PWM pulse generator mode (PWM mode)
	5.4.4 Operation in 16-bit timer counter mode
	5.4.5 Operation in carrier generator mode (CG mode)
	5.4.6 Notes on using timer counter

	5.5 Bit Sequential Buffer

	CHAPTER 6 INTERRUPT AND TEST FUNCTIONS
	6.1 Configuration of Interrupt Control Circuit
	6.2 Types of Interrupt Sources and Vector Table
	6.3 Hardware Controlling Interrupt Function
	6.4 Interrupt Sequence
	6.5 Nesting Control of Interrupts
	6.6 Service of Interrupts Sharing Vector Address
	6.7 Machine Cycles until Interrupt Servicing
	6.8 Effective Usage of Interrupts
	6.9 Application of Interrupt
	6.10 Test Function
	6.10.1 Types of test sources
	6.10.2 Hardware controlling test function

	CHAPTER 7 STANDBY FUNCTION
	7.1 Setting of and Operating Status in Standby Mode
	7.2 Releasing Standby Mode
	7.3 Operation After Release of Standby Mode
	7.4 Application of Standby Mode

	CHAPTER 8 RESET FUNCTION
	8.1 Configuration and Operation of Reset Function
	8.2 Watchdog Flag (WDF), Key Return Flag (KRF)

	CHAPTER 9 MASK OPTION
	9.1 Pin Mask Option
	9.1.1 P70/KR4-P73/KR7 mask option
	9.1.2 RESET# pin mask option

	9.2 Oscillation Stabilization Wait Time Mask Option

	CHAPTER 10 INSTRUCTION SET
	10.1 Unique Instructions
	10.1.1 GETI instruction
	10.1.2 Bit manipulation instruction
	10.1.3 String-effect instruction
	10.1.4 Base number adjustment instruction
	10.1.5 Skip instruction and number of machine cycles required for skipping

	10.2 Instruction Set and Operation
	10.3 Op Code of Each Instruction
	10.4 Instruction Function and Application
	10.4.1 Transfer instructions
	10.4.2 Table reference instruction
	10.4.3 Bit transfer instruction
	10.4.4 Operation instruction
	10.4.5 Accumulator manipulation instruction
	10.4.6 Increment/decrement instruction
	10.4.7 Compare instruction
	10.4.8 Carry flag manipulation instruction
	10.4.9 Memory bit manipulation instruction
	10.4.10 Branch instruction
	10.4.11 Subroutine/stack control instruction
	10.4.12 Interrupt control instruction
	10.4.13 Input/output instruction
	10.4.14 CPU control instruction
	10.4.15 Special instruction

	APPENDIX A FUNCTIONS OF uPD754202 AND 75F4264
	APPENDIX B DEVELOPMENT TOOLS
	APPENDIX C ORDERING MASK ROM
	APPENDIX D INSTRUCTION INDEX
	D.1 Instruction Index (by function)
	D.2 Instruction Index (alphabetical order)

	APPENDIX E HARDWARE INDEX
	APPENDIX F REVISION HISTORY

