
…personal

…portable

…connected

Dialog SDK 5.0.3 Training Materials –
Pairing, Bonding and Security

2016 June

BLE security overview

Custom profile service Source code discussion

Dialog Semiconductor © 2016 2

BLE Custom profile with security

What would you see as output

BLE Custom profile with security

Let’s build a demo together …

Dialog Semiconductor © 2016 3

 Before we start, we recommend you to …

 Take a look at Training material 2 custom profile application

 What are you going to learn from this training …

 Basic understanding of BLE Security and issues

 What is Pairing? What is Bonding?

 ‘Just-Works’ pairing

 Single-device bonding

 Basic understanding of multi-device bonding

 Small assignment to add pairing in the custom service database

 What’s next …

 See Reference section of this training slide

GAP LE Security

Generic Access Profile Low Energy (LE) Security Considerations

Dialog Semiconductor © 2016 4

• Several security concerns exist with Bluetooth LE communications:

• Man-in-the-Middle (MITM)

A MITM requires an attacker to have the ability to both monitor and alter messages into a

communication channel. One example is active eavesdropping, in which the attacker makes

independent connections with the victims and relays messages between them to make

them believe they are talking directly to each other over a private connection. The attacker

must be able to intercept all relevant messages passing between the two victims and inject

new ones. Protection against MITM attack is obtained by using the passkey entry pairing

method or may be obtained using the out of band pairing method.

GAP LE Security

Generic Access Profile Low Energy (LE) Security Considerations

Dialog Semiconductor © 2016 5

• Several security concerns exist with Bluetooth LE communications:

• Passive Eavesdropping

Passive Eavesdropping is secretly capturing pairing data, or normal communications if no

pairing has been done, and then listening (by using a sniffing device) to the private

communication of others without consent. BLE v4.0 offers no protection against such

attacks. (In BLE v4.2, LE Secure Connection uses ECDH public key cryptography as a

means to thwart passive eavesdropping attacks – not considered further here.)

• Privacy/Identity Tracking

BLE supports the Privacy Feature that reduces the ability to track a LE device over a period

of time by changing the Bluetooth device address on a frequent basis. The frequently

changing address is called the private address and the trusted devices can resolve it.

GAP LE Security

Generic Access Profile Low Energy (LE) Bonding

Dialog Semiconductor © 2016 6

• To remove the risk of MITM and passive eavesdropping attacks, two BLE devices may be

paired.

• Pairing is the process in which two devices exchange security and identity information, to

create a trusted relationship.

• This security and identity information is also known as the bonding information. When the

devices store the bonding information, ‘a bond is created’ or ‘the devices have bonded.’

• Once keys are exchanged, each end of the connection may store the keys. This ‘bonds’ the

devices, and allows them to communicate securely, or to re-pair in future, without re-

exchanging keys.

• BLE devices can be configured in non-bondable mode or bondable mode.

– Pairing is only possible in bondable mode .

• Bonding can only be initiated by the master device.

BLE Custom Profile - Bonding

Dialog Semiconductor © 2016 7

• The devices first exchange IO capabilities in the Pairing Feature Exchange to

determine which of the following methods are available to pair:

– ‘Just Works Pairing.’ Both devices set the Temporary Key value to zero

– Passkey Entry. Uses 6 numeric characters

– Out Of Band (OOB). Offers greater security than using the Passkey Entry or

Just Works methods. However, both devices need to have matching OOB

interfaces (e.g. near-field or infra-red communications, etc.)

• The information exchanged is used to select which key generation method is

used.

• Note that any Master can authenticate with a BLE device and exchange

bonding information. To limit access, some further authorization must be

performed (although this can be done after authentication).

• The recommended pairing scheme depends on the IO capabilities of the

device; this is described in Section 2.3.5.1 of Volume 3 Part H of the

Bluetooth Specification

Authentication Options

BLE Custom Profile - Bonding

Dialog Semiconductor © 2016 8

• Authentication in the GATT Profile is applied to each characteristic

independently

• To enable authentication and subsequent encryption of a characteristic, the

following steps must occur:

1. The GATT Profile procedures that are used to access information can be

configured to require the client to be authenticated and have an encrypted

connection before a characteristic can be read or written.

2. In this case, and where the physical link is unauthenticated or

unencrypted, the server shall send an Error Response with the status

code set to Insufficient Authentication.

3. The client wanting to read or write this characteristic can then request that

the physical link be authenticated using the GAP authentication

procedure, and once this has been completed, send the request again.

Authentication of Characteristics

BLE Custom Profile - Bonding

Single Device Bonding

Dialog Semiconductor © 2016 9

• By default, the latest key is always stored in retention RAM.

– This is retained in all sleep modes and will remain unless the device is

completely powered down.

– If using a single master, no extra bonding needs to be performed.

– Connecting with a different master will erase the existing bonding information.

• The "just works" version of the pairing mechanism is insecure if the air traffic is

sniffed by someone during pairing since the long term key is sent in plain text over

the air (but only during the pairing phase), so avoid this mode if possible.

• Passkey entry (MITM) example is shown in the next slides. The example shows

how to enable security at connection.

The example for simple bonding is based on the custom profile example from

Training Material 2.

• In da1458x_config_basic.h, enable CFG_APP_SECURITY
#define CFG_APP_SECURITY

• In user_config.h, change line 44 to 58. (tk.key = PIN code in hex: 0x01E240 =

“123456”). We are using a fixed PIN code in this example, but normally the PIN is

randomly generated.

static const struct security_configuration user_security_configuration = {

.oob = GAP_OOB_AUTH_DATA_NOT_PRESENT,

.key_size = KEY_LEN,

.iocap = GAP_IO_CAP_DISPLAY_ONLY,

.auth = GAP_AUTH_REQ_MITM_BOND,

.sec_req = GAP_SEC1_AUTH_PAIR_ENC,

.ikey_dist = GAP_KDIST_SIGNKEY,

.rkey_dist = GAP_KDIST_ENCKEY,

.tk={

.key={0x40,0xE2,0x01,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0},

},

.csrk={

.key={0xAB,0xAB,0x45,0x55,0x23,0x01,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0},

},

};

BLE Custom Profile - Bonding
Exercise: how to enable MITM passkey entry

Dialog Semiconductor © 2016 10

• In app_default_handlers.c disable the first two lines in function

default_app_on_tk_exch_nomitm()

void default_app_on_tk_exch_nomitm(uint8_t connection_idx, struct gapc_bond_req_ind const * param)

{

// uint32_t pin_code = app_sec_gen_tk();

// app_easy_security_set_tk(connection_idx, (uint8_t*) &pin_code, 4);

app_easy_security_tk_exch(connection_idx);

}

• In user_config.h (almost at the end of the file) change this line

.security_request_scenario=DEF_SEC_REQ_NEVER

into

.security_request_scenario=DEF_SEC_REQ_ON_CONNECT

• In user_modules_config.h change this define into (0)

#define EXCLUDE_DLG_SEC (0)

BLE Custom Profile - Bonding
Exercise: how to enable MITM passkey entry

Dialog Semiconductor © 2016 11

• In user_callback_config.h check that the default handlers are set, the default project

should be correct.

static const struct app_callbacks user_app_callbacks = {

.app_on_connection = default_app_on_connection,

.app_on_disconnect = default_app_on_disconnect,

.app_on_update_params_rejected = NULL,

.app_on_update_params_complete = NULL,

.app_on_set_dev_config_complete = default_app_on_set_dev_config_complete,

.app_on_adv_undirect_complete = app_advertise_complete,

.app_on_adv_direct_complete = NULL,

.app_on_db_init_complete = default_app_on_db_init_complete,

.app_on_scanning_completed = NULL,

.app_on_adv_report_ind = NULL,

.app_on_pairing_request = default_app_on_pairing_request,

.app_on_tk_exch_nomitm = default_app_on_tk_exch_nomitm,

.app_on_irk_exch = NULL,

.app_on_csrk_exch = default_app_on_csrk_exch,

.app_on_ltk_exch = default_app_on_ltk_exch,

.app_on_pairing_succeded = NULL,

.app_on_encrypt_ind = NULL,

.app_on_mitm_passcode_req = NULL,

.app_on_encrypt_req_ind = default_app_on_encrypt_req_ind,

};

BLE Custom Profile - Bonding
Exercise: how to enable MITM passkey entry

Dialog Semiconductor © 2016 12

• The following example shows how to enable security per characteristic

• This can be achieved by changing the permissions from UNAUTH to AUTH

• Using this setting .security_request_scenario=DEF_SEC_REQ_ON_CONNECT in user_config.h you can

select when authorization is required: during connection or during read/write of a

characteristic.

BLE Custom Profile - Bonding
GATT Characteristic Value permissions

Dialog Semiconductor © 2016 13

BLE Custom Profile - Bonding

Single Device Bonding Example

Dialog Semiconductor © 2016 14

• To convert an existing read or write characteristic to require pairing change the

Characteristic Value permissions in the Database Description change the

permission flag:

• This is the only change required to support bonding with a single Master.

BLE Custom Profile - Bonding

What would you see as output

Dialog Semiconductor © 2016 15

 Note: The devices will be connectable in this and future examples. Connecting to a

device will mean that other scanners won’t be able to locate the device – it is

recommended that you only connect to your own device.

 Note: Some scanners (notably Apple devices) may not update the name of device if it is

changed – to correct this, it is necessary to disable then re-enable Bluetooth.

BLE Custom Profile - Bonding

Dialog Semiconductor © 2016 16

BLE Custom Profile - Bonding

Multiple Device Bonding

Dialog Semiconductor © 2016 17

• To support multiple devices, the bonding information must be stored for each

device.

• The simplest way is to store the bonding information in retained memory, using the

attribute __attribute__((section("retention_mem_area0"),zero_init)).

• The SDK app_sec module provides a structure app_sec_env in this retained

memory in which bonding information may be stored.

– This module also provides helper functions to generate PINs and the Long Term

Key

BLE Custom Profile - Bonding

Multiple Device Bonding

Dialog Semiconductor © 2016 18

• Bonding information may be stored and used using the following procedure:

– On successful pairing, the callback .app_on_pairing_succeded will be called. At this

point you may store the app_sec_env.rand_nb, app_sec_env.ediv, app_sec_env.ltk and

app_sec_env.key_size values to your permanent store.

– When the callback .app_on_encrypt_req_ind is called, do a lookup on the

app_sec_env.rand_nb and app_sec_env.ediv variables stored previously. If a match is

found, write the values to app_sec_env.rand_nb, app_sec_env.ediv, app_sec_env.ltk and

app_sec_env.key_size and return true.

• Dialog’s IoT Sensor and Keyboard reference designs (available through

support.dialog-semiconductor.com) include example code dealing with storing

bonding information to EEPROM.

BLE Custom Profile - Bonding

Further Considerations

Dialog Semiconductor © 2016 19

• Other pairing modes:

– Other pairing methods like Pass Key Entry and Out Of Band are supported by

the Dialog platform and SDK

• Private addresses:

– Generally, a peripheral will broadcast its presence to all listeners using the same

address every time. It is possible to obfuscate the identity of a peripheral using a

‘Private Address’

– Only devices which are bonded to the client can resolve the address, using their

stored keys.

• Bondable / non-bondable:

– When a master connects to a BLE slave, it may only pair if the slave allows it.

– Typically, bonding can be controlled using a user interaction on the device – for

example, pressing a specific button will start the device advertising in a mode

that allows bonding.

Information on bonding storage feature

Further Considerations

Dialog Semiconductor © 2016 20

• The DA14580 does not store any bonding info after power cycling the device. Even

if the PIN code is not changed, the LTK is changed every time.

– It is recommended to remove the bonding info in the Smartphone/Tablet.

– It is normal because when you reset the DA14580, the keys do not match

anymore.

– There is a random part in the key so the bonding information is not stored in the

memory of DA14580.

BLE Contents

Reference

Dialog Semiconductor © 2016 21

 https://developer.bluetooth.org/gatt/Pages/default.aspx

 https://www.bluetooth.com/specifications/adopted-specifications

 http://support.dialog-semiconductor.com/connectivity

 https://www.wikiwand.com/en/Universally_unique_identifier

 Register with Dialog semiconductor to get enormous development support

 http://support.dialog-semiconductor.com/user/register

…personal

…portable

…connected

Dialog Semiconductor © 2016 22

The Power To Be...

